1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/hid.h> 21 #include <linux/module.h> 22 #include <linux/sched/signal.h> 23 #include <linux/uio.h> 24 #include <asm/unaligned.h> 25 26 #include <linux/usb/composite.h> 27 #include <linux/usb/functionfs.h> 28 29 #include <linux/aio.h> 30 #include <linux/mmu_context.h> 31 #include <linux/poll.h> 32 #include <linux/eventfd.h> 33 34 #include "u_fs.h" 35 #include "u_f.h" 36 #include "u_os_desc.h" 37 #include "configfs.h" 38 39 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 40 41 /* Reference counter handling */ 42 static void ffs_data_get(struct ffs_data *ffs); 43 static void ffs_data_put(struct ffs_data *ffs); 44 /* Creates new ffs_data object. */ 45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 46 __attribute__((malloc)); 47 48 /* Opened counter handling. */ 49 static void ffs_data_opened(struct ffs_data *ffs); 50 static void ffs_data_closed(struct ffs_data *ffs); 51 52 /* Called with ffs->mutex held; take over ownership of data. */ 53 static int __must_check 54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 55 static int __must_check 56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 57 58 59 /* The function structure ***************************************************/ 60 61 struct ffs_ep; 62 63 struct ffs_function { 64 struct usb_configuration *conf; 65 struct usb_gadget *gadget; 66 struct ffs_data *ffs; 67 68 struct ffs_ep *eps; 69 u8 eps_revmap[16]; 70 short *interfaces_nums; 71 72 struct usb_function function; 73 }; 74 75 76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 77 { 78 return container_of(f, struct ffs_function, function); 79 } 80 81 82 static inline enum ffs_setup_state 83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 84 { 85 return (enum ffs_setup_state) 86 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 87 } 88 89 90 static void ffs_func_eps_disable(struct ffs_function *func); 91 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 92 93 static int ffs_func_bind(struct usb_configuration *, 94 struct usb_function *); 95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 96 static void ffs_func_disable(struct usb_function *); 97 static int ffs_func_setup(struct usb_function *, 98 const struct usb_ctrlrequest *); 99 static bool ffs_func_req_match(struct usb_function *, 100 const struct usb_ctrlrequest *, 101 bool config0); 102 static void ffs_func_suspend(struct usb_function *); 103 static void ffs_func_resume(struct usb_function *); 104 105 106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 108 109 110 /* The endpoints structures *************************************************/ 111 112 struct ffs_ep { 113 struct usb_ep *ep; /* P: ffs->eps_lock */ 114 struct usb_request *req; /* P: epfile->mutex */ 115 116 /* [0]: full speed, [1]: high speed, [2]: super speed */ 117 struct usb_endpoint_descriptor *descs[3]; 118 119 u8 num; 120 121 int status; /* P: epfile->mutex */ 122 }; 123 124 struct ffs_epfile { 125 /* Protects ep->ep and ep->req. */ 126 struct mutex mutex; 127 128 struct ffs_data *ffs; 129 struct ffs_ep *ep; /* P: ffs->eps_lock */ 130 131 struct dentry *dentry; 132 133 /* 134 * Buffer for holding data from partial reads which may happen since 135 * we’re rounding user read requests to a multiple of a max packet size. 136 * 137 * The pointer is initialised with NULL value and may be set by 138 * __ffs_epfile_read_data function to point to a temporary buffer. 139 * 140 * In normal operation, calls to __ffs_epfile_read_buffered will consume 141 * data from said buffer and eventually free it. Importantly, while the 142 * function is using the buffer, it sets the pointer to NULL. This is 143 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 144 * can never run concurrently (they are synchronised by epfile->mutex) 145 * so the latter will not assign a new value to the pointer. 146 * 147 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 148 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 149 * value is crux of the synchronisation between ffs_func_eps_disable and 150 * __ffs_epfile_read_data. 151 * 152 * Once __ffs_epfile_read_data is about to finish it will try to set the 153 * pointer back to its old value (as described above), but seeing as the 154 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 155 * the buffer. 156 * 157 * == State transitions == 158 * 159 * • ptr == NULL: (initial state) 160 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 161 * ◦ __ffs_epfile_read_buffered: nop 162 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 163 * ◦ reading finishes: n/a, not in ‘and reading’ state 164 * • ptr == DROP: 165 * ◦ __ffs_epfile_read_buffer_free: nop 166 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 167 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == buf: 170 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 172 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 173 * is always called first 174 * ◦ reading finishes: n/a, not in ‘and reading’ state 175 * • ptr == NULL and reading: 176 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 177 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 178 * ◦ __ffs_epfile_read_data: n/a, mutex is held 179 * ◦ reading finishes and … 180 * … all data read: free buf, go to ptr == NULL 181 * … otherwise: go to ptr == buf and reading 182 * • ptr == DROP and reading: 183 * ◦ __ffs_epfile_read_buffer_free: nop 184 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 185 * ◦ __ffs_epfile_read_data: n/a, mutex is held 186 * ◦ reading finishes: free buf, go to ptr == DROP 187 */ 188 struct ffs_buffer *read_buffer; 189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 190 191 char name[5]; 192 193 unsigned char in; /* P: ffs->eps_lock */ 194 unsigned char isoc; /* P: ffs->eps_lock */ 195 196 unsigned char _pad; 197 }; 198 199 struct ffs_buffer { 200 size_t length; 201 char *data; 202 char storage[]; 203 }; 204 205 /* ffs_io_data structure ***************************************************/ 206 207 struct ffs_io_data { 208 bool aio; 209 bool read; 210 211 struct kiocb *kiocb; 212 struct iov_iter data; 213 const void *to_free; 214 char *buf; 215 216 struct mm_struct *mm; 217 struct work_struct work; 218 struct work_struct cancellation_work; 219 220 struct usb_ep *ep; 221 struct usb_request *req; 222 223 struct ffs_data *ffs; 224 }; 225 226 struct ffs_desc_helper { 227 struct ffs_data *ffs; 228 unsigned interfaces_count; 229 unsigned eps_count; 230 }; 231 232 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 233 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 234 235 static struct dentry * 236 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 237 const struct file_operations *fops); 238 239 /* Devices management *******************************************************/ 240 241 DEFINE_MUTEX(ffs_lock); 242 EXPORT_SYMBOL_GPL(ffs_lock); 243 244 static struct ffs_dev *_ffs_find_dev(const char *name); 245 static struct ffs_dev *_ffs_alloc_dev(void); 246 static void _ffs_free_dev(struct ffs_dev *dev); 247 static void *ffs_acquire_dev(const char *dev_name); 248 static void ffs_release_dev(struct ffs_data *ffs_data); 249 static int ffs_ready(struct ffs_data *ffs); 250 static void ffs_closed(struct ffs_data *ffs); 251 252 /* Misc helper functions ****************************************************/ 253 254 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 255 __attribute__((warn_unused_result, nonnull)); 256 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 257 __attribute__((warn_unused_result, nonnull)); 258 259 260 /* Control file aka ep0 *****************************************************/ 261 262 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 263 { 264 struct ffs_data *ffs = req->context; 265 266 complete(&ffs->ep0req_completion); 267 } 268 269 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 270 __releases(&ffs->ev.waitq.lock) 271 { 272 struct usb_request *req = ffs->ep0req; 273 int ret; 274 275 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 276 277 spin_unlock_irq(&ffs->ev.waitq.lock); 278 279 req->buf = data; 280 req->length = len; 281 282 /* 283 * UDC layer requires to provide a buffer even for ZLP, but should 284 * not use it at all. Let's provide some poisoned pointer to catch 285 * possible bug in the driver. 286 */ 287 if (req->buf == NULL) 288 req->buf = (void *)0xDEADBABE; 289 290 reinit_completion(&ffs->ep0req_completion); 291 292 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 293 if (unlikely(ret < 0)) 294 return ret; 295 296 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 297 if (unlikely(ret)) { 298 usb_ep_dequeue(ffs->gadget->ep0, req); 299 return -EINTR; 300 } 301 302 ffs->setup_state = FFS_NO_SETUP; 303 return req->status ? req->status : req->actual; 304 } 305 306 static int __ffs_ep0_stall(struct ffs_data *ffs) 307 { 308 if (ffs->ev.can_stall) { 309 pr_vdebug("ep0 stall\n"); 310 usb_ep_set_halt(ffs->gadget->ep0); 311 ffs->setup_state = FFS_NO_SETUP; 312 return -EL2HLT; 313 } else { 314 pr_debug("bogus ep0 stall!\n"); 315 return -ESRCH; 316 } 317 } 318 319 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 320 size_t len, loff_t *ptr) 321 { 322 struct ffs_data *ffs = file->private_data; 323 ssize_t ret; 324 char *data; 325 326 ENTER(); 327 328 /* Fast check if setup was canceled */ 329 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 330 return -EIDRM; 331 332 /* Acquire mutex */ 333 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 334 if (unlikely(ret < 0)) 335 return ret; 336 337 /* Check state */ 338 switch (ffs->state) { 339 case FFS_READ_DESCRIPTORS: 340 case FFS_READ_STRINGS: 341 /* Copy data */ 342 if (unlikely(len < 16)) { 343 ret = -EINVAL; 344 break; 345 } 346 347 data = ffs_prepare_buffer(buf, len); 348 if (IS_ERR(data)) { 349 ret = PTR_ERR(data); 350 break; 351 } 352 353 /* Handle data */ 354 if (ffs->state == FFS_READ_DESCRIPTORS) { 355 pr_info("read descriptors\n"); 356 ret = __ffs_data_got_descs(ffs, data, len); 357 if (unlikely(ret < 0)) 358 break; 359 360 ffs->state = FFS_READ_STRINGS; 361 ret = len; 362 } else { 363 pr_info("read strings\n"); 364 ret = __ffs_data_got_strings(ffs, data, len); 365 if (unlikely(ret < 0)) 366 break; 367 368 ret = ffs_epfiles_create(ffs); 369 if (unlikely(ret)) { 370 ffs->state = FFS_CLOSING; 371 break; 372 } 373 374 ffs->state = FFS_ACTIVE; 375 mutex_unlock(&ffs->mutex); 376 377 ret = ffs_ready(ffs); 378 if (unlikely(ret < 0)) { 379 ffs->state = FFS_CLOSING; 380 return ret; 381 } 382 383 return len; 384 } 385 break; 386 387 case FFS_ACTIVE: 388 data = NULL; 389 /* 390 * We're called from user space, we can use _irq 391 * rather then _irqsave 392 */ 393 spin_lock_irq(&ffs->ev.waitq.lock); 394 switch (ffs_setup_state_clear_cancelled(ffs)) { 395 case FFS_SETUP_CANCELLED: 396 ret = -EIDRM; 397 goto done_spin; 398 399 case FFS_NO_SETUP: 400 ret = -ESRCH; 401 goto done_spin; 402 403 case FFS_SETUP_PENDING: 404 break; 405 } 406 407 /* FFS_SETUP_PENDING */ 408 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 409 spin_unlock_irq(&ffs->ev.waitq.lock); 410 ret = __ffs_ep0_stall(ffs); 411 break; 412 } 413 414 /* FFS_SETUP_PENDING and not stall */ 415 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 416 417 spin_unlock_irq(&ffs->ev.waitq.lock); 418 419 data = ffs_prepare_buffer(buf, len); 420 if (IS_ERR(data)) { 421 ret = PTR_ERR(data); 422 break; 423 } 424 425 spin_lock_irq(&ffs->ev.waitq.lock); 426 427 /* 428 * We are guaranteed to be still in FFS_ACTIVE state 429 * but the state of setup could have changed from 430 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 431 * to check for that. If that happened we copied data 432 * from user space in vain but it's unlikely. 433 * 434 * For sure we are not in FFS_NO_SETUP since this is 435 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 436 * transition can be performed and it's protected by 437 * mutex. 438 */ 439 if (ffs_setup_state_clear_cancelled(ffs) == 440 FFS_SETUP_CANCELLED) { 441 ret = -EIDRM; 442 done_spin: 443 spin_unlock_irq(&ffs->ev.waitq.lock); 444 } else { 445 /* unlocks spinlock */ 446 ret = __ffs_ep0_queue_wait(ffs, data, len); 447 } 448 kfree(data); 449 break; 450 451 default: 452 ret = -EBADFD; 453 break; 454 } 455 456 mutex_unlock(&ffs->mutex); 457 return ret; 458 } 459 460 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 461 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 462 size_t n) 463 __releases(&ffs->ev.waitq.lock) 464 { 465 /* 466 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 467 * size of ffs->ev.types array (which is four) so that's how much space 468 * we reserve. 469 */ 470 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 471 const size_t size = n * sizeof *events; 472 unsigned i = 0; 473 474 memset(events, 0, size); 475 476 do { 477 events[i].type = ffs->ev.types[i]; 478 if (events[i].type == FUNCTIONFS_SETUP) { 479 events[i].u.setup = ffs->ev.setup; 480 ffs->setup_state = FFS_SETUP_PENDING; 481 } 482 } while (++i < n); 483 484 ffs->ev.count -= n; 485 if (ffs->ev.count) 486 memmove(ffs->ev.types, ffs->ev.types + n, 487 ffs->ev.count * sizeof *ffs->ev.types); 488 489 spin_unlock_irq(&ffs->ev.waitq.lock); 490 mutex_unlock(&ffs->mutex); 491 492 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 493 } 494 495 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 496 size_t len, loff_t *ptr) 497 { 498 struct ffs_data *ffs = file->private_data; 499 char *data = NULL; 500 size_t n; 501 int ret; 502 503 ENTER(); 504 505 /* Fast check if setup was canceled */ 506 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 507 return -EIDRM; 508 509 /* Acquire mutex */ 510 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 511 if (unlikely(ret < 0)) 512 return ret; 513 514 /* Check state */ 515 if (ffs->state != FFS_ACTIVE) { 516 ret = -EBADFD; 517 goto done_mutex; 518 } 519 520 /* 521 * We're called from user space, we can use _irq rather then 522 * _irqsave 523 */ 524 spin_lock_irq(&ffs->ev.waitq.lock); 525 526 switch (ffs_setup_state_clear_cancelled(ffs)) { 527 case FFS_SETUP_CANCELLED: 528 ret = -EIDRM; 529 break; 530 531 case FFS_NO_SETUP: 532 n = len / sizeof(struct usb_functionfs_event); 533 if (unlikely(!n)) { 534 ret = -EINVAL; 535 break; 536 } 537 538 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 539 ret = -EAGAIN; 540 break; 541 } 542 543 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 544 ffs->ev.count)) { 545 ret = -EINTR; 546 break; 547 } 548 549 /* unlocks spinlock */ 550 return __ffs_ep0_read_events(ffs, buf, 551 min(n, (size_t)ffs->ev.count)); 552 553 case FFS_SETUP_PENDING: 554 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 555 spin_unlock_irq(&ffs->ev.waitq.lock); 556 ret = __ffs_ep0_stall(ffs); 557 goto done_mutex; 558 } 559 560 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 561 562 spin_unlock_irq(&ffs->ev.waitq.lock); 563 564 if (likely(len)) { 565 data = kmalloc(len, GFP_KERNEL); 566 if (unlikely(!data)) { 567 ret = -ENOMEM; 568 goto done_mutex; 569 } 570 } 571 572 spin_lock_irq(&ffs->ev.waitq.lock); 573 574 /* See ffs_ep0_write() */ 575 if (ffs_setup_state_clear_cancelled(ffs) == 576 FFS_SETUP_CANCELLED) { 577 ret = -EIDRM; 578 break; 579 } 580 581 /* unlocks spinlock */ 582 ret = __ffs_ep0_queue_wait(ffs, data, len); 583 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 584 ret = -EFAULT; 585 goto done_mutex; 586 587 default: 588 ret = -EBADFD; 589 break; 590 } 591 592 spin_unlock_irq(&ffs->ev.waitq.lock); 593 done_mutex: 594 mutex_unlock(&ffs->mutex); 595 kfree(data); 596 return ret; 597 } 598 599 static int ffs_ep0_open(struct inode *inode, struct file *file) 600 { 601 struct ffs_data *ffs = inode->i_private; 602 603 ENTER(); 604 605 if (unlikely(ffs->state == FFS_CLOSING)) 606 return -EBUSY; 607 608 file->private_data = ffs; 609 ffs_data_opened(ffs); 610 611 return 0; 612 } 613 614 static int ffs_ep0_release(struct inode *inode, struct file *file) 615 { 616 struct ffs_data *ffs = file->private_data; 617 618 ENTER(); 619 620 ffs_data_closed(ffs); 621 622 return 0; 623 } 624 625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 626 { 627 struct ffs_data *ffs = file->private_data; 628 struct usb_gadget *gadget = ffs->gadget; 629 long ret; 630 631 ENTER(); 632 633 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 634 struct ffs_function *func = ffs->func; 635 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 636 } else if (gadget && gadget->ops->ioctl) { 637 ret = gadget->ops->ioctl(gadget, code, value); 638 } else { 639 ret = -ENOTTY; 640 } 641 642 return ret; 643 } 644 645 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 646 { 647 struct ffs_data *ffs = file->private_data; 648 __poll_t mask = EPOLLWRNORM; 649 int ret; 650 651 poll_wait(file, &ffs->ev.waitq, wait); 652 653 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 654 if (unlikely(ret < 0)) 655 return mask; 656 657 switch (ffs->state) { 658 case FFS_READ_DESCRIPTORS: 659 case FFS_READ_STRINGS: 660 mask |= EPOLLOUT; 661 break; 662 663 case FFS_ACTIVE: 664 switch (ffs->setup_state) { 665 case FFS_NO_SETUP: 666 if (ffs->ev.count) 667 mask |= EPOLLIN; 668 break; 669 670 case FFS_SETUP_PENDING: 671 case FFS_SETUP_CANCELLED: 672 mask |= (EPOLLIN | EPOLLOUT); 673 break; 674 } 675 case FFS_CLOSING: 676 break; 677 case FFS_DEACTIVATED: 678 break; 679 } 680 681 mutex_unlock(&ffs->mutex); 682 683 return mask; 684 } 685 686 static const struct file_operations ffs_ep0_operations = { 687 .llseek = no_llseek, 688 689 .open = ffs_ep0_open, 690 .write = ffs_ep0_write, 691 .read = ffs_ep0_read, 692 .release = ffs_ep0_release, 693 .unlocked_ioctl = ffs_ep0_ioctl, 694 .poll = ffs_ep0_poll, 695 }; 696 697 698 /* "Normal" endpoints operations ********************************************/ 699 700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 701 { 702 ENTER(); 703 if (likely(req->context)) { 704 struct ffs_ep *ep = _ep->driver_data; 705 ep->status = req->status ? req->status : req->actual; 706 complete(req->context); 707 } 708 } 709 710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 711 { 712 ssize_t ret = copy_to_iter(data, data_len, iter); 713 if (likely(ret == data_len)) 714 return ret; 715 716 if (unlikely(iov_iter_count(iter))) 717 return -EFAULT; 718 719 /* 720 * Dear user space developer! 721 * 722 * TL;DR: To stop getting below error message in your kernel log, change 723 * user space code using functionfs to align read buffers to a max 724 * packet size. 725 * 726 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 727 * packet size. When unaligned buffer is passed to functionfs, it 728 * internally uses a larger, aligned buffer so that such UDCs are happy. 729 * 730 * Unfortunately, this means that host may send more data than was 731 * requested in read(2) system call. f_fs doesn’t know what to do with 732 * that excess data so it simply drops it. 733 * 734 * Was the buffer aligned in the first place, no such problem would 735 * happen. 736 * 737 * Data may be dropped only in AIO reads. Synchronous reads are handled 738 * by splitting a request into multiple parts. This splitting may still 739 * be a problem though so it’s likely best to align the buffer 740 * regardless of it being AIO or not.. 741 * 742 * This only affects OUT endpoints, i.e. reading data with a read(2), 743 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 744 * affected. 745 */ 746 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 747 "Align read buffer size to max packet size to avoid the problem.\n", 748 data_len, ret); 749 750 return ret; 751 } 752 753 static void ffs_user_copy_worker(struct work_struct *work) 754 { 755 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 756 work); 757 int ret = io_data->req->status ? io_data->req->status : 758 io_data->req->actual; 759 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 760 761 if (io_data->read && ret > 0) { 762 mm_segment_t oldfs = get_fs(); 763 764 set_fs(USER_DS); 765 use_mm(io_data->mm); 766 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 767 unuse_mm(io_data->mm); 768 set_fs(oldfs); 769 } 770 771 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 772 773 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 774 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 775 776 usb_ep_free_request(io_data->ep, io_data->req); 777 778 if (io_data->read) 779 kfree(io_data->to_free); 780 kfree(io_data->buf); 781 kfree(io_data); 782 } 783 784 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 785 struct usb_request *req) 786 { 787 struct ffs_io_data *io_data = req->context; 788 struct ffs_data *ffs = io_data->ffs; 789 790 ENTER(); 791 792 INIT_WORK(&io_data->work, ffs_user_copy_worker); 793 queue_work(ffs->io_completion_wq, &io_data->work); 794 } 795 796 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 797 { 798 /* 799 * See comment in struct ffs_epfile for full read_buffer pointer 800 * synchronisation story. 801 */ 802 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 803 if (buf && buf != READ_BUFFER_DROP) 804 kfree(buf); 805 } 806 807 /* Assumes epfile->mutex is held. */ 808 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 809 struct iov_iter *iter) 810 { 811 /* 812 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 813 * the buffer while we are using it. See comment in struct ffs_epfile 814 * for full read_buffer pointer synchronisation story. 815 */ 816 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 817 ssize_t ret; 818 if (!buf || buf == READ_BUFFER_DROP) 819 return 0; 820 821 ret = copy_to_iter(buf->data, buf->length, iter); 822 if (buf->length == ret) { 823 kfree(buf); 824 return ret; 825 } 826 827 if (unlikely(iov_iter_count(iter))) { 828 ret = -EFAULT; 829 } else { 830 buf->length -= ret; 831 buf->data += ret; 832 } 833 834 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 835 kfree(buf); 836 837 return ret; 838 } 839 840 /* Assumes epfile->mutex is held. */ 841 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 842 void *data, int data_len, 843 struct iov_iter *iter) 844 { 845 struct ffs_buffer *buf; 846 847 ssize_t ret = copy_to_iter(data, data_len, iter); 848 if (likely(data_len == ret)) 849 return ret; 850 851 if (unlikely(iov_iter_count(iter))) 852 return -EFAULT; 853 854 /* See ffs_copy_to_iter for more context. */ 855 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 856 data_len, ret); 857 858 data_len -= ret; 859 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 860 if (!buf) 861 return -ENOMEM; 862 buf->length = data_len; 863 buf->data = buf->storage; 864 memcpy(buf->storage, data + ret, data_len); 865 866 /* 867 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 868 * ffs_func_eps_disable has been called in the meanwhile). See comment 869 * in struct ffs_epfile for full read_buffer pointer synchronisation 870 * story. 871 */ 872 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 873 kfree(buf); 874 875 return ret; 876 } 877 878 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 879 { 880 struct ffs_epfile *epfile = file->private_data; 881 struct usb_request *req; 882 struct ffs_ep *ep; 883 char *data = NULL; 884 ssize_t ret, data_len = -EINVAL; 885 int halt; 886 887 /* Are we still active? */ 888 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 889 return -ENODEV; 890 891 /* Wait for endpoint to be enabled */ 892 ep = epfile->ep; 893 if (!ep) { 894 if (file->f_flags & O_NONBLOCK) 895 return -EAGAIN; 896 897 ret = wait_event_interruptible( 898 epfile->ffs->wait, (ep = epfile->ep)); 899 if (ret) 900 return -EINTR; 901 } 902 903 /* Do we halt? */ 904 halt = (!io_data->read == !epfile->in); 905 if (halt && epfile->isoc) 906 return -EINVAL; 907 908 /* We will be using request and read_buffer */ 909 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 910 if (unlikely(ret)) 911 goto error; 912 913 /* Allocate & copy */ 914 if (!halt) { 915 struct usb_gadget *gadget; 916 917 /* 918 * Do we have buffered data from previous partial read? Check 919 * that for synchronous case only because we do not have 920 * facility to ‘wake up’ a pending asynchronous read and push 921 * buffered data to it which we would need to make things behave 922 * consistently. 923 */ 924 if (!io_data->aio && io_data->read) { 925 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 926 if (ret) 927 goto error_mutex; 928 } 929 930 /* 931 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 932 * before the waiting completes, so do not assign to 'gadget' 933 * earlier 934 */ 935 gadget = epfile->ffs->gadget; 936 937 spin_lock_irq(&epfile->ffs->eps_lock); 938 /* In the meantime, endpoint got disabled or changed. */ 939 if (epfile->ep != ep) { 940 ret = -ESHUTDOWN; 941 goto error_lock; 942 } 943 data_len = iov_iter_count(&io_data->data); 944 /* 945 * Controller may require buffer size to be aligned to 946 * maxpacketsize of an out endpoint. 947 */ 948 if (io_data->read) 949 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 950 spin_unlock_irq(&epfile->ffs->eps_lock); 951 952 data = kmalloc(data_len, GFP_KERNEL); 953 if (unlikely(!data)) { 954 ret = -ENOMEM; 955 goto error_mutex; 956 } 957 if (!io_data->read && 958 !copy_from_iter_full(data, data_len, &io_data->data)) { 959 ret = -EFAULT; 960 goto error_mutex; 961 } 962 } 963 964 spin_lock_irq(&epfile->ffs->eps_lock); 965 966 if (epfile->ep != ep) { 967 /* In the meantime, endpoint got disabled or changed. */ 968 ret = -ESHUTDOWN; 969 } else if (halt) { 970 ret = usb_ep_set_halt(ep->ep); 971 if (!ret) 972 ret = -EBADMSG; 973 } else if (unlikely(data_len == -EINVAL)) { 974 /* 975 * Sanity Check: even though data_len can't be used 976 * uninitialized at the time I write this comment, some 977 * compilers complain about this situation. 978 * In order to keep the code clean from warnings, data_len is 979 * being initialized to -EINVAL during its declaration, which 980 * means we can't rely on compiler anymore to warn no future 981 * changes won't result in data_len being used uninitialized. 982 * For such reason, we're adding this redundant sanity check 983 * here. 984 */ 985 WARN(1, "%s: data_len == -EINVAL\n", __func__); 986 ret = -EINVAL; 987 } else if (!io_data->aio) { 988 DECLARE_COMPLETION_ONSTACK(done); 989 bool interrupted = false; 990 991 req = ep->req; 992 req->buf = data; 993 req->length = data_len; 994 995 req->context = &done; 996 req->complete = ffs_epfile_io_complete; 997 998 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 999 if (unlikely(ret < 0)) 1000 goto error_lock; 1001 1002 spin_unlock_irq(&epfile->ffs->eps_lock); 1003 1004 if (unlikely(wait_for_completion_interruptible(&done))) { 1005 /* 1006 * To avoid race condition with ffs_epfile_io_complete, 1007 * dequeue the request first then check 1008 * status. usb_ep_dequeue API should guarantee no race 1009 * condition with req->complete callback. 1010 */ 1011 usb_ep_dequeue(ep->ep, req); 1012 interrupted = ep->status < 0; 1013 } 1014 1015 if (interrupted) 1016 ret = -EINTR; 1017 else if (io_data->read && ep->status > 0) 1018 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1019 &io_data->data); 1020 else 1021 ret = ep->status; 1022 goto error_mutex; 1023 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1024 ret = -ENOMEM; 1025 } else { 1026 req->buf = data; 1027 req->length = data_len; 1028 1029 io_data->buf = data; 1030 io_data->ep = ep->ep; 1031 io_data->req = req; 1032 io_data->ffs = epfile->ffs; 1033 1034 req->context = io_data; 1035 req->complete = ffs_epfile_async_io_complete; 1036 1037 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1038 if (unlikely(ret)) { 1039 usb_ep_free_request(ep->ep, req); 1040 goto error_lock; 1041 } 1042 1043 ret = -EIOCBQUEUED; 1044 /* 1045 * Do not kfree the buffer in this function. It will be freed 1046 * by ffs_user_copy_worker. 1047 */ 1048 data = NULL; 1049 } 1050 1051 error_lock: 1052 spin_unlock_irq(&epfile->ffs->eps_lock); 1053 error_mutex: 1054 mutex_unlock(&epfile->mutex); 1055 error: 1056 kfree(data); 1057 return ret; 1058 } 1059 1060 static int 1061 ffs_epfile_open(struct inode *inode, struct file *file) 1062 { 1063 struct ffs_epfile *epfile = inode->i_private; 1064 1065 ENTER(); 1066 1067 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1068 return -ENODEV; 1069 1070 file->private_data = epfile; 1071 ffs_data_opened(epfile->ffs); 1072 1073 return 0; 1074 } 1075 1076 static void ffs_aio_cancel_worker(struct work_struct *work) 1077 { 1078 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 1079 cancellation_work); 1080 1081 ENTER(); 1082 1083 usb_ep_dequeue(io_data->ep, io_data->req); 1084 } 1085 1086 static int ffs_aio_cancel(struct kiocb *kiocb) 1087 { 1088 struct ffs_io_data *io_data = kiocb->private; 1089 struct ffs_data *ffs = io_data->ffs; 1090 int value; 1091 1092 ENTER(); 1093 1094 if (likely(io_data && io_data->ep && io_data->req)) { 1095 INIT_WORK(&io_data->cancellation_work, ffs_aio_cancel_worker); 1096 queue_work(ffs->io_completion_wq, &io_data->cancellation_work); 1097 value = -EINPROGRESS; 1098 } else { 1099 value = -EINVAL; 1100 } 1101 1102 return value; 1103 } 1104 1105 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1106 { 1107 struct ffs_io_data io_data, *p = &io_data; 1108 ssize_t res; 1109 1110 ENTER(); 1111 1112 if (!is_sync_kiocb(kiocb)) { 1113 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1114 if (unlikely(!p)) 1115 return -ENOMEM; 1116 p->aio = true; 1117 } else { 1118 p->aio = false; 1119 } 1120 1121 p->read = false; 1122 p->kiocb = kiocb; 1123 p->data = *from; 1124 p->mm = current->mm; 1125 1126 kiocb->private = p; 1127 1128 if (p->aio) 1129 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1130 1131 res = ffs_epfile_io(kiocb->ki_filp, p); 1132 if (res == -EIOCBQUEUED) 1133 return res; 1134 if (p->aio) 1135 kfree(p); 1136 else 1137 *from = p->data; 1138 return res; 1139 } 1140 1141 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1142 { 1143 struct ffs_io_data io_data, *p = &io_data; 1144 ssize_t res; 1145 1146 ENTER(); 1147 1148 if (!is_sync_kiocb(kiocb)) { 1149 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1150 if (unlikely(!p)) 1151 return -ENOMEM; 1152 p->aio = true; 1153 } else { 1154 p->aio = false; 1155 } 1156 1157 p->read = true; 1158 p->kiocb = kiocb; 1159 if (p->aio) { 1160 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1161 if (!p->to_free) { 1162 kfree(p); 1163 return -ENOMEM; 1164 } 1165 } else { 1166 p->data = *to; 1167 p->to_free = NULL; 1168 } 1169 p->mm = current->mm; 1170 1171 kiocb->private = p; 1172 1173 if (p->aio) 1174 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1175 1176 res = ffs_epfile_io(kiocb->ki_filp, p); 1177 if (res == -EIOCBQUEUED) 1178 return res; 1179 1180 if (p->aio) { 1181 kfree(p->to_free); 1182 kfree(p); 1183 } else { 1184 *to = p->data; 1185 } 1186 return res; 1187 } 1188 1189 static int 1190 ffs_epfile_release(struct inode *inode, struct file *file) 1191 { 1192 struct ffs_epfile *epfile = inode->i_private; 1193 1194 ENTER(); 1195 1196 __ffs_epfile_read_buffer_free(epfile); 1197 ffs_data_closed(epfile->ffs); 1198 1199 return 0; 1200 } 1201 1202 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1203 unsigned long value) 1204 { 1205 struct ffs_epfile *epfile = file->private_data; 1206 struct ffs_ep *ep; 1207 int ret; 1208 1209 ENTER(); 1210 1211 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1212 return -ENODEV; 1213 1214 /* Wait for endpoint to be enabled */ 1215 ep = epfile->ep; 1216 if (!ep) { 1217 if (file->f_flags & O_NONBLOCK) 1218 return -EAGAIN; 1219 1220 ret = wait_event_interruptible( 1221 epfile->ffs->wait, (ep = epfile->ep)); 1222 if (ret) 1223 return -EINTR; 1224 } 1225 1226 spin_lock_irq(&epfile->ffs->eps_lock); 1227 1228 /* In the meantime, endpoint got disabled or changed. */ 1229 if (epfile->ep != ep) { 1230 spin_unlock_irq(&epfile->ffs->eps_lock); 1231 return -ESHUTDOWN; 1232 } 1233 1234 switch (code) { 1235 case FUNCTIONFS_FIFO_STATUS: 1236 ret = usb_ep_fifo_status(epfile->ep->ep); 1237 break; 1238 case FUNCTIONFS_FIFO_FLUSH: 1239 usb_ep_fifo_flush(epfile->ep->ep); 1240 ret = 0; 1241 break; 1242 case FUNCTIONFS_CLEAR_HALT: 1243 ret = usb_ep_clear_halt(epfile->ep->ep); 1244 break; 1245 case FUNCTIONFS_ENDPOINT_REVMAP: 1246 ret = epfile->ep->num; 1247 break; 1248 case FUNCTIONFS_ENDPOINT_DESC: 1249 { 1250 int desc_idx; 1251 struct usb_endpoint_descriptor *desc; 1252 1253 switch (epfile->ffs->gadget->speed) { 1254 case USB_SPEED_SUPER: 1255 desc_idx = 2; 1256 break; 1257 case USB_SPEED_HIGH: 1258 desc_idx = 1; 1259 break; 1260 default: 1261 desc_idx = 0; 1262 } 1263 desc = epfile->ep->descs[desc_idx]; 1264 1265 spin_unlock_irq(&epfile->ffs->eps_lock); 1266 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1267 if (ret) 1268 ret = -EFAULT; 1269 return ret; 1270 } 1271 default: 1272 ret = -ENOTTY; 1273 } 1274 spin_unlock_irq(&epfile->ffs->eps_lock); 1275 1276 return ret; 1277 } 1278 1279 #ifdef CONFIG_COMPAT 1280 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code, 1281 unsigned long value) 1282 { 1283 return ffs_epfile_ioctl(file, code, value); 1284 } 1285 #endif 1286 1287 static const struct file_operations ffs_epfile_operations = { 1288 .llseek = no_llseek, 1289 1290 .open = ffs_epfile_open, 1291 .write_iter = ffs_epfile_write_iter, 1292 .read_iter = ffs_epfile_read_iter, 1293 .release = ffs_epfile_release, 1294 .unlocked_ioctl = ffs_epfile_ioctl, 1295 #ifdef CONFIG_COMPAT 1296 .compat_ioctl = ffs_epfile_compat_ioctl, 1297 #endif 1298 }; 1299 1300 1301 /* File system and super block operations ***********************************/ 1302 1303 /* 1304 * Mounting the file system creates a controller file, used first for 1305 * function configuration then later for event monitoring. 1306 */ 1307 1308 static struct inode *__must_check 1309 ffs_sb_make_inode(struct super_block *sb, void *data, 1310 const struct file_operations *fops, 1311 const struct inode_operations *iops, 1312 struct ffs_file_perms *perms) 1313 { 1314 struct inode *inode; 1315 1316 ENTER(); 1317 1318 inode = new_inode(sb); 1319 1320 if (likely(inode)) { 1321 struct timespec64 ts = current_time(inode); 1322 1323 inode->i_ino = get_next_ino(); 1324 inode->i_mode = perms->mode; 1325 inode->i_uid = perms->uid; 1326 inode->i_gid = perms->gid; 1327 inode->i_atime = ts; 1328 inode->i_mtime = ts; 1329 inode->i_ctime = ts; 1330 inode->i_private = data; 1331 if (fops) 1332 inode->i_fop = fops; 1333 if (iops) 1334 inode->i_op = iops; 1335 } 1336 1337 return inode; 1338 } 1339 1340 /* Create "regular" file */ 1341 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1342 const char *name, void *data, 1343 const struct file_operations *fops) 1344 { 1345 struct ffs_data *ffs = sb->s_fs_info; 1346 struct dentry *dentry; 1347 struct inode *inode; 1348 1349 ENTER(); 1350 1351 dentry = d_alloc_name(sb->s_root, name); 1352 if (unlikely(!dentry)) 1353 return NULL; 1354 1355 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1356 if (unlikely(!inode)) { 1357 dput(dentry); 1358 return NULL; 1359 } 1360 1361 d_add(dentry, inode); 1362 return dentry; 1363 } 1364 1365 /* Super block */ 1366 static const struct super_operations ffs_sb_operations = { 1367 .statfs = simple_statfs, 1368 .drop_inode = generic_delete_inode, 1369 }; 1370 1371 struct ffs_sb_fill_data { 1372 struct ffs_file_perms perms; 1373 umode_t root_mode; 1374 const char *dev_name; 1375 bool no_disconnect; 1376 struct ffs_data *ffs_data; 1377 }; 1378 1379 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1380 { 1381 struct ffs_sb_fill_data *data = _data; 1382 struct inode *inode; 1383 struct ffs_data *ffs = data->ffs_data; 1384 1385 ENTER(); 1386 1387 ffs->sb = sb; 1388 data->ffs_data = NULL; 1389 sb->s_fs_info = ffs; 1390 sb->s_blocksize = PAGE_SIZE; 1391 sb->s_blocksize_bits = PAGE_SHIFT; 1392 sb->s_magic = FUNCTIONFS_MAGIC; 1393 sb->s_op = &ffs_sb_operations; 1394 sb->s_time_gran = 1; 1395 1396 /* Root inode */ 1397 data->perms.mode = data->root_mode; 1398 inode = ffs_sb_make_inode(sb, NULL, 1399 &simple_dir_operations, 1400 &simple_dir_inode_operations, 1401 &data->perms); 1402 sb->s_root = d_make_root(inode); 1403 if (unlikely(!sb->s_root)) 1404 return -ENOMEM; 1405 1406 /* EP0 file */ 1407 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1408 &ffs_ep0_operations))) 1409 return -ENOMEM; 1410 1411 return 0; 1412 } 1413 1414 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1415 { 1416 ENTER(); 1417 1418 if (!opts || !*opts) 1419 return 0; 1420 1421 for (;;) { 1422 unsigned long value; 1423 char *eq, *comma; 1424 1425 /* Option limit */ 1426 comma = strchr(opts, ','); 1427 if (comma) 1428 *comma = 0; 1429 1430 /* Value limit */ 1431 eq = strchr(opts, '='); 1432 if (unlikely(!eq)) { 1433 pr_err("'=' missing in %s\n", opts); 1434 return -EINVAL; 1435 } 1436 *eq = 0; 1437 1438 /* Parse value */ 1439 if (kstrtoul(eq + 1, 0, &value)) { 1440 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1441 return -EINVAL; 1442 } 1443 1444 /* Interpret option */ 1445 switch (eq - opts) { 1446 case 13: 1447 if (!memcmp(opts, "no_disconnect", 13)) 1448 data->no_disconnect = !!value; 1449 else 1450 goto invalid; 1451 break; 1452 case 5: 1453 if (!memcmp(opts, "rmode", 5)) 1454 data->root_mode = (value & 0555) | S_IFDIR; 1455 else if (!memcmp(opts, "fmode", 5)) 1456 data->perms.mode = (value & 0666) | S_IFREG; 1457 else 1458 goto invalid; 1459 break; 1460 1461 case 4: 1462 if (!memcmp(opts, "mode", 4)) { 1463 data->root_mode = (value & 0555) | S_IFDIR; 1464 data->perms.mode = (value & 0666) | S_IFREG; 1465 } else { 1466 goto invalid; 1467 } 1468 break; 1469 1470 case 3: 1471 if (!memcmp(opts, "uid", 3)) { 1472 data->perms.uid = make_kuid(current_user_ns(), value); 1473 if (!uid_valid(data->perms.uid)) { 1474 pr_err("%s: unmapped value: %lu\n", opts, value); 1475 return -EINVAL; 1476 } 1477 } else if (!memcmp(opts, "gid", 3)) { 1478 data->perms.gid = make_kgid(current_user_ns(), value); 1479 if (!gid_valid(data->perms.gid)) { 1480 pr_err("%s: unmapped value: %lu\n", opts, value); 1481 return -EINVAL; 1482 } 1483 } else { 1484 goto invalid; 1485 } 1486 break; 1487 1488 default: 1489 invalid: 1490 pr_err("%s: invalid option\n", opts); 1491 return -EINVAL; 1492 } 1493 1494 /* Next iteration */ 1495 if (!comma) 1496 break; 1497 opts = comma + 1; 1498 } 1499 1500 return 0; 1501 } 1502 1503 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1504 1505 static struct dentry * 1506 ffs_fs_mount(struct file_system_type *t, int flags, 1507 const char *dev_name, void *opts) 1508 { 1509 struct ffs_sb_fill_data data = { 1510 .perms = { 1511 .mode = S_IFREG | 0600, 1512 .uid = GLOBAL_ROOT_UID, 1513 .gid = GLOBAL_ROOT_GID, 1514 }, 1515 .root_mode = S_IFDIR | 0500, 1516 .no_disconnect = false, 1517 }; 1518 struct dentry *rv; 1519 int ret; 1520 void *ffs_dev; 1521 struct ffs_data *ffs; 1522 1523 ENTER(); 1524 1525 ret = ffs_fs_parse_opts(&data, opts); 1526 if (unlikely(ret < 0)) 1527 return ERR_PTR(ret); 1528 1529 ffs = ffs_data_new(dev_name); 1530 if (unlikely(!ffs)) 1531 return ERR_PTR(-ENOMEM); 1532 ffs->file_perms = data.perms; 1533 ffs->no_disconnect = data.no_disconnect; 1534 1535 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1536 if (unlikely(!ffs->dev_name)) { 1537 ffs_data_put(ffs); 1538 return ERR_PTR(-ENOMEM); 1539 } 1540 1541 ffs_dev = ffs_acquire_dev(dev_name); 1542 if (IS_ERR(ffs_dev)) { 1543 ffs_data_put(ffs); 1544 return ERR_CAST(ffs_dev); 1545 } 1546 ffs->private_data = ffs_dev; 1547 data.ffs_data = ffs; 1548 1549 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1550 if (IS_ERR(rv) && data.ffs_data) { 1551 ffs_release_dev(data.ffs_data); 1552 ffs_data_put(data.ffs_data); 1553 } 1554 return rv; 1555 } 1556 1557 static void 1558 ffs_fs_kill_sb(struct super_block *sb) 1559 { 1560 ENTER(); 1561 1562 kill_litter_super(sb); 1563 if (sb->s_fs_info) { 1564 ffs_release_dev(sb->s_fs_info); 1565 ffs_data_closed(sb->s_fs_info); 1566 } 1567 } 1568 1569 static struct file_system_type ffs_fs_type = { 1570 .owner = THIS_MODULE, 1571 .name = "functionfs", 1572 .mount = ffs_fs_mount, 1573 .kill_sb = ffs_fs_kill_sb, 1574 }; 1575 MODULE_ALIAS_FS("functionfs"); 1576 1577 1578 /* Driver's main init/cleanup functions *************************************/ 1579 1580 static int functionfs_init(void) 1581 { 1582 int ret; 1583 1584 ENTER(); 1585 1586 ret = register_filesystem(&ffs_fs_type); 1587 if (likely(!ret)) 1588 pr_info("file system registered\n"); 1589 else 1590 pr_err("failed registering file system (%d)\n", ret); 1591 1592 return ret; 1593 } 1594 1595 static void functionfs_cleanup(void) 1596 { 1597 ENTER(); 1598 1599 pr_info("unloading\n"); 1600 unregister_filesystem(&ffs_fs_type); 1601 } 1602 1603 1604 /* ffs_data and ffs_function construction and destruction code **************/ 1605 1606 static void ffs_data_clear(struct ffs_data *ffs); 1607 static void ffs_data_reset(struct ffs_data *ffs); 1608 1609 static void ffs_data_get(struct ffs_data *ffs) 1610 { 1611 ENTER(); 1612 1613 refcount_inc(&ffs->ref); 1614 } 1615 1616 static void ffs_data_opened(struct ffs_data *ffs) 1617 { 1618 ENTER(); 1619 1620 refcount_inc(&ffs->ref); 1621 if (atomic_add_return(1, &ffs->opened) == 1 && 1622 ffs->state == FFS_DEACTIVATED) { 1623 ffs->state = FFS_CLOSING; 1624 ffs_data_reset(ffs); 1625 } 1626 } 1627 1628 static void ffs_data_put(struct ffs_data *ffs) 1629 { 1630 ENTER(); 1631 1632 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1633 pr_info("%s(): freeing\n", __func__); 1634 ffs_data_clear(ffs); 1635 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1636 waitqueue_active(&ffs->ep0req_completion.wait) || 1637 waitqueue_active(&ffs->wait)); 1638 destroy_workqueue(ffs->io_completion_wq); 1639 kfree(ffs->dev_name); 1640 kfree(ffs); 1641 } 1642 } 1643 1644 static void ffs_data_closed(struct ffs_data *ffs) 1645 { 1646 ENTER(); 1647 1648 if (atomic_dec_and_test(&ffs->opened)) { 1649 if (ffs->no_disconnect) { 1650 ffs->state = FFS_DEACTIVATED; 1651 if (ffs->epfiles) { 1652 ffs_epfiles_destroy(ffs->epfiles, 1653 ffs->eps_count); 1654 ffs->epfiles = NULL; 1655 } 1656 if (ffs->setup_state == FFS_SETUP_PENDING) 1657 __ffs_ep0_stall(ffs); 1658 } else { 1659 ffs->state = FFS_CLOSING; 1660 ffs_data_reset(ffs); 1661 } 1662 } 1663 if (atomic_read(&ffs->opened) < 0) { 1664 ffs->state = FFS_CLOSING; 1665 ffs_data_reset(ffs); 1666 } 1667 1668 ffs_data_put(ffs); 1669 } 1670 1671 static struct ffs_data *ffs_data_new(const char *dev_name) 1672 { 1673 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1674 if (unlikely(!ffs)) 1675 return NULL; 1676 1677 ENTER(); 1678 1679 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1680 if (!ffs->io_completion_wq) { 1681 kfree(ffs); 1682 return NULL; 1683 } 1684 1685 refcount_set(&ffs->ref, 1); 1686 atomic_set(&ffs->opened, 0); 1687 ffs->state = FFS_READ_DESCRIPTORS; 1688 mutex_init(&ffs->mutex); 1689 spin_lock_init(&ffs->eps_lock); 1690 init_waitqueue_head(&ffs->ev.waitq); 1691 init_waitqueue_head(&ffs->wait); 1692 init_completion(&ffs->ep0req_completion); 1693 1694 /* XXX REVISIT need to update it in some places, or do we? */ 1695 ffs->ev.can_stall = 1; 1696 1697 return ffs; 1698 } 1699 1700 static void ffs_data_clear(struct ffs_data *ffs) 1701 { 1702 ENTER(); 1703 1704 ffs_closed(ffs); 1705 1706 BUG_ON(ffs->gadget); 1707 1708 if (ffs->epfiles) 1709 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1710 1711 if (ffs->ffs_eventfd) 1712 eventfd_ctx_put(ffs->ffs_eventfd); 1713 1714 kfree(ffs->raw_descs_data); 1715 kfree(ffs->raw_strings); 1716 kfree(ffs->stringtabs); 1717 } 1718 1719 static void ffs_data_reset(struct ffs_data *ffs) 1720 { 1721 ENTER(); 1722 1723 ffs_data_clear(ffs); 1724 1725 ffs->epfiles = NULL; 1726 ffs->raw_descs_data = NULL; 1727 ffs->raw_descs = NULL; 1728 ffs->raw_strings = NULL; 1729 ffs->stringtabs = NULL; 1730 1731 ffs->raw_descs_length = 0; 1732 ffs->fs_descs_count = 0; 1733 ffs->hs_descs_count = 0; 1734 ffs->ss_descs_count = 0; 1735 1736 ffs->strings_count = 0; 1737 ffs->interfaces_count = 0; 1738 ffs->eps_count = 0; 1739 1740 ffs->ev.count = 0; 1741 1742 ffs->state = FFS_READ_DESCRIPTORS; 1743 ffs->setup_state = FFS_NO_SETUP; 1744 ffs->flags = 0; 1745 } 1746 1747 1748 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1749 { 1750 struct usb_gadget_strings **lang; 1751 int first_id; 1752 1753 ENTER(); 1754 1755 if (WARN_ON(ffs->state != FFS_ACTIVE 1756 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1757 return -EBADFD; 1758 1759 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1760 if (unlikely(first_id < 0)) 1761 return first_id; 1762 1763 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1764 if (unlikely(!ffs->ep0req)) 1765 return -ENOMEM; 1766 ffs->ep0req->complete = ffs_ep0_complete; 1767 ffs->ep0req->context = ffs; 1768 1769 lang = ffs->stringtabs; 1770 if (lang) { 1771 for (; *lang; ++lang) { 1772 struct usb_string *str = (*lang)->strings; 1773 int id = first_id; 1774 for (; str->s; ++id, ++str) 1775 str->id = id; 1776 } 1777 } 1778 1779 ffs->gadget = cdev->gadget; 1780 ffs_data_get(ffs); 1781 return 0; 1782 } 1783 1784 static void functionfs_unbind(struct ffs_data *ffs) 1785 { 1786 ENTER(); 1787 1788 if (!WARN_ON(!ffs->gadget)) { 1789 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1790 ffs->ep0req = NULL; 1791 ffs->gadget = NULL; 1792 clear_bit(FFS_FL_BOUND, &ffs->flags); 1793 ffs_data_put(ffs); 1794 } 1795 } 1796 1797 static int ffs_epfiles_create(struct ffs_data *ffs) 1798 { 1799 struct ffs_epfile *epfile, *epfiles; 1800 unsigned i, count; 1801 1802 ENTER(); 1803 1804 count = ffs->eps_count; 1805 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1806 if (!epfiles) 1807 return -ENOMEM; 1808 1809 epfile = epfiles; 1810 for (i = 1; i <= count; ++i, ++epfile) { 1811 epfile->ffs = ffs; 1812 mutex_init(&epfile->mutex); 1813 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1814 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1815 else 1816 sprintf(epfile->name, "ep%u", i); 1817 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1818 epfile, 1819 &ffs_epfile_operations); 1820 if (unlikely(!epfile->dentry)) { 1821 ffs_epfiles_destroy(epfiles, i - 1); 1822 return -ENOMEM; 1823 } 1824 } 1825 1826 ffs->epfiles = epfiles; 1827 return 0; 1828 } 1829 1830 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1831 { 1832 struct ffs_epfile *epfile = epfiles; 1833 1834 ENTER(); 1835 1836 for (; count; --count, ++epfile) { 1837 BUG_ON(mutex_is_locked(&epfile->mutex)); 1838 if (epfile->dentry) { 1839 d_delete(epfile->dentry); 1840 dput(epfile->dentry); 1841 epfile->dentry = NULL; 1842 } 1843 } 1844 1845 kfree(epfiles); 1846 } 1847 1848 static void ffs_func_eps_disable(struct ffs_function *func) 1849 { 1850 struct ffs_ep *ep = func->eps; 1851 struct ffs_epfile *epfile = func->ffs->epfiles; 1852 unsigned count = func->ffs->eps_count; 1853 unsigned long flags; 1854 1855 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1856 while (count--) { 1857 /* pending requests get nuked */ 1858 if (likely(ep->ep)) 1859 usb_ep_disable(ep->ep); 1860 ++ep; 1861 1862 if (epfile) { 1863 epfile->ep = NULL; 1864 __ffs_epfile_read_buffer_free(epfile); 1865 ++epfile; 1866 } 1867 } 1868 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1869 } 1870 1871 static int ffs_func_eps_enable(struct ffs_function *func) 1872 { 1873 struct ffs_data *ffs = func->ffs; 1874 struct ffs_ep *ep = func->eps; 1875 struct ffs_epfile *epfile = ffs->epfiles; 1876 unsigned count = ffs->eps_count; 1877 unsigned long flags; 1878 int ret = 0; 1879 1880 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1881 while(count--) { 1882 ep->ep->driver_data = ep; 1883 1884 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1885 if (ret) { 1886 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1887 __func__, ep->ep->name, ret); 1888 break; 1889 } 1890 1891 ret = usb_ep_enable(ep->ep); 1892 if (likely(!ret)) { 1893 epfile->ep = ep; 1894 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1895 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1896 } else { 1897 break; 1898 } 1899 1900 ++ep; 1901 ++epfile; 1902 } 1903 1904 wake_up_interruptible(&ffs->wait); 1905 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1906 1907 return ret; 1908 } 1909 1910 1911 /* Parsing and building descriptors and strings *****************************/ 1912 1913 /* 1914 * This validates if data pointed by data is a valid USB descriptor as 1915 * well as record how many interfaces, endpoints and strings are 1916 * required by given configuration. Returns address after the 1917 * descriptor or NULL if data is invalid. 1918 */ 1919 1920 enum ffs_entity_type { 1921 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1922 }; 1923 1924 enum ffs_os_desc_type { 1925 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1926 }; 1927 1928 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1929 u8 *valuep, 1930 struct usb_descriptor_header *desc, 1931 void *priv); 1932 1933 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1934 struct usb_os_desc_header *h, void *data, 1935 unsigned len, void *priv); 1936 1937 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1938 ffs_entity_callback entity, 1939 void *priv) 1940 { 1941 struct usb_descriptor_header *_ds = (void *)data; 1942 u8 length; 1943 int ret; 1944 1945 ENTER(); 1946 1947 /* At least two bytes are required: length and type */ 1948 if (len < 2) { 1949 pr_vdebug("descriptor too short\n"); 1950 return -EINVAL; 1951 } 1952 1953 /* If we have at least as many bytes as the descriptor takes? */ 1954 length = _ds->bLength; 1955 if (len < length) { 1956 pr_vdebug("descriptor longer then available data\n"); 1957 return -EINVAL; 1958 } 1959 1960 #define __entity_check_INTERFACE(val) 1 1961 #define __entity_check_STRING(val) (val) 1962 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1963 #define __entity(type, val) do { \ 1964 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1965 if (unlikely(!__entity_check_ ##type(val))) { \ 1966 pr_vdebug("invalid entity's value\n"); \ 1967 return -EINVAL; \ 1968 } \ 1969 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1970 if (unlikely(ret < 0)) { \ 1971 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1972 (val), ret); \ 1973 return ret; \ 1974 } \ 1975 } while (0) 1976 1977 /* Parse descriptor depending on type. */ 1978 switch (_ds->bDescriptorType) { 1979 case USB_DT_DEVICE: 1980 case USB_DT_CONFIG: 1981 case USB_DT_STRING: 1982 case USB_DT_DEVICE_QUALIFIER: 1983 /* function can't have any of those */ 1984 pr_vdebug("descriptor reserved for gadget: %d\n", 1985 _ds->bDescriptorType); 1986 return -EINVAL; 1987 1988 case USB_DT_INTERFACE: { 1989 struct usb_interface_descriptor *ds = (void *)_ds; 1990 pr_vdebug("interface descriptor\n"); 1991 if (length != sizeof *ds) 1992 goto inv_length; 1993 1994 __entity(INTERFACE, ds->bInterfaceNumber); 1995 if (ds->iInterface) 1996 __entity(STRING, ds->iInterface); 1997 } 1998 break; 1999 2000 case USB_DT_ENDPOINT: { 2001 struct usb_endpoint_descriptor *ds = (void *)_ds; 2002 pr_vdebug("endpoint descriptor\n"); 2003 if (length != USB_DT_ENDPOINT_SIZE && 2004 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2005 goto inv_length; 2006 __entity(ENDPOINT, ds->bEndpointAddress); 2007 } 2008 break; 2009 2010 case HID_DT_HID: 2011 pr_vdebug("hid descriptor\n"); 2012 if (length != sizeof(struct hid_descriptor)) 2013 goto inv_length; 2014 break; 2015 2016 case USB_DT_OTG: 2017 if (length != sizeof(struct usb_otg_descriptor)) 2018 goto inv_length; 2019 break; 2020 2021 case USB_DT_INTERFACE_ASSOCIATION: { 2022 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2023 pr_vdebug("interface association descriptor\n"); 2024 if (length != sizeof *ds) 2025 goto inv_length; 2026 if (ds->iFunction) 2027 __entity(STRING, ds->iFunction); 2028 } 2029 break; 2030 2031 case USB_DT_SS_ENDPOINT_COMP: 2032 pr_vdebug("EP SS companion descriptor\n"); 2033 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2034 goto inv_length; 2035 break; 2036 2037 case USB_DT_OTHER_SPEED_CONFIG: 2038 case USB_DT_INTERFACE_POWER: 2039 case USB_DT_DEBUG: 2040 case USB_DT_SECURITY: 2041 case USB_DT_CS_RADIO_CONTROL: 2042 /* TODO */ 2043 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2044 return -EINVAL; 2045 2046 default: 2047 /* We should never be here */ 2048 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2049 return -EINVAL; 2050 2051 inv_length: 2052 pr_vdebug("invalid length: %d (descriptor %d)\n", 2053 _ds->bLength, _ds->bDescriptorType); 2054 return -EINVAL; 2055 } 2056 2057 #undef __entity 2058 #undef __entity_check_DESCRIPTOR 2059 #undef __entity_check_INTERFACE 2060 #undef __entity_check_STRING 2061 #undef __entity_check_ENDPOINT 2062 2063 return length; 2064 } 2065 2066 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2067 ffs_entity_callback entity, void *priv) 2068 { 2069 const unsigned _len = len; 2070 unsigned long num = 0; 2071 2072 ENTER(); 2073 2074 for (;;) { 2075 int ret; 2076 2077 if (num == count) 2078 data = NULL; 2079 2080 /* Record "descriptor" entity */ 2081 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2082 if (unlikely(ret < 0)) { 2083 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2084 num, ret); 2085 return ret; 2086 } 2087 2088 if (!data) 2089 return _len - len; 2090 2091 ret = ffs_do_single_desc(data, len, entity, priv); 2092 if (unlikely(ret < 0)) { 2093 pr_debug("%s returns %d\n", __func__, ret); 2094 return ret; 2095 } 2096 2097 len -= ret; 2098 data += ret; 2099 ++num; 2100 } 2101 } 2102 2103 static int __ffs_data_do_entity(enum ffs_entity_type type, 2104 u8 *valuep, struct usb_descriptor_header *desc, 2105 void *priv) 2106 { 2107 struct ffs_desc_helper *helper = priv; 2108 struct usb_endpoint_descriptor *d; 2109 2110 ENTER(); 2111 2112 switch (type) { 2113 case FFS_DESCRIPTOR: 2114 break; 2115 2116 case FFS_INTERFACE: 2117 /* 2118 * Interfaces are indexed from zero so if we 2119 * encountered interface "n" then there are at least 2120 * "n+1" interfaces. 2121 */ 2122 if (*valuep >= helper->interfaces_count) 2123 helper->interfaces_count = *valuep + 1; 2124 break; 2125 2126 case FFS_STRING: 2127 /* 2128 * Strings are indexed from 1 (0 is reserved 2129 * for languages list) 2130 */ 2131 if (*valuep > helper->ffs->strings_count) 2132 helper->ffs->strings_count = *valuep; 2133 break; 2134 2135 case FFS_ENDPOINT: 2136 d = (void *)desc; 2137 helper->eps_count++; 2138 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2139 return -EINVAL; 2140 /* Check if descriptors for any speed were already parsed */ 2141 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2142 helper->ffs->eps_addrmap[helper->eps_count] = 2143 d->bEndpointAddress; 2144 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2145 d->bEndpointAddress) 2146 return -EINVAL; 2147 break; 2148 } 2149 2150 return 0; 2151 } 2152 2153 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2154 struct usb_os_desc_header *desc) 2155 { 2156 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2157 u16 w_index = le16_to_cpu(desc->wIndex); 2158 2159 if (bcd_version != 1) { 2160 pr_vdebug("unsupported os descriptors version: %d", 2161 bcd_version); 2162 return -EINVAL; 2163 } 2164 switch (w_index) { 2165 case 0x4: 2166 *next_type = FFS_OS_DESC_EXT_COMPAT; 2167 break; 2168 case 0x5: 2169 *next_type = FFS_OS_DESC_EXT_PROP; 2170 break; 2171 default: 2172 pr_vdebug("unsupported os descriptor type: %d", w_index); 2173 return -EINVAL; 2174 } 2175 2176 return sizeof(*desc); 2177 } 2178 2179 /* 2180 * Process all extended compatibility/extended property descriptors 2181 * of a feature descriptor 2182 */ 2183 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2184 enum ffs_os_desc_type type, 2185 u16 feature_count, 2186 ffs_os_desc_callback entity, 2187 void *priv, 2188 struct usb_os_desc_header *h) 2189 { 2190 int ret; 2191 const unsigned _len = len; 2192 2193 ENTER(); 2194 2195 /* loop over all ext compat/ext prop descriptors */ 2196 while (feature_count--) { 2197 ret = entity(type, h, data, len, priv); 2198 if (unlikely(ret < 0)) { 2199 pr_debug("bad OS descriptor, type: %d\n", type); 2200 return ret; 2201 } 2202 data += ret; 2203 len -= ret; 2204 } 2205 return _len - len; 2206 } 2207 2208 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2209 static int __must_check ffs_do_os_descs(unsigned count, 2210 char *data, unsigned len, 2211 ffs_os_desc_callback entity, void *priv) 2212 { 2213 const unsigned _len = len; 2214 unsigned long num = 0; 2215 2216 ENTER(); 2217 2218 for (num = 0; num < count; ++num) { 2219 int ret; 2220 enum ffs_os_desc_type type; 2221 u16 feature_count; 2222 struct usb_os_desc_header *desc = (void *)data; 2223 2224 if (len < sizeof(*desc)) 2225 return -EINVAL; 2226 2227 /* 2228 * Record "descriptor" entity. 2229 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2230 * Move the data pointer to the beginning of extended 2231 * compatibilities proper or extended properties proper 2232 * portions of the data 2233 */ 2234 if (le32_to_cpu(desc->dwLength) > len) 2235 return -EINVAL; 2236 2237 ret = __ffs_do_os_desc_header(&type, desc); 2238 if (unlikely(ret < 0)) { 2239 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2240 num, ret); 2241 return ret; 2242 } 2243 /* 2244 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2245 */ 2246 feature_count = le16_to_cpu(desc->wCount); 2247 if (type == FFS_OS_DESC_EXT_COMPAT && 2248 (feature_count > 255 || desc->Reserved)) 2249 return -EINVAL; 2250 len -= ret; 2251 data += ret; 2252 2253 /* 2254 * Process all function/property descriptors 2255 * of this Feature Descriptor 2256 */ 2257 ret = ffs_do_single_os_desc(data, len, type, 2258 feature_count, entity, priv, desc); 2259 if (unlikely(ret < 0)) { 2260 pr_debug("%s returns %d\n", __func__, ret); 2261 return ret; 2262 } 2263 2264 len -= ret; 2265 data += ret; 2266 } 2267 return _len - len; 2268 } 2269 2270 /** 2271 * Validate contents of the buffer from userspace related to OS descriptors. 2272 */ 2273 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2274 struct usb_os_desc_header *h, void *data, 2275 unsigned len, void *priv) 2276 { 2277 struct ffs_data *ffs = priv; 2278 u8 length; 2279 2280 ENTER(); 2281 2282 switch (type) { 2283 case FFS_OS_DESC_EXT_COMPAT: { 2284 struct usb_ext_compat_desc *d = data; 2285 int i; 2286 2287 if (len < sizeof(*d) || 2288 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2289 return -EINVAL; 2290 if (d->Reserved1 != 1) { 2291 /* 2292 * According to the spec, Reserved1 must be set to 1 2293 * but older kernels incorrectly rejected non-zero 2294 * values. We fix it here to avoid returning EINVAL 2295 * in response to values we used to accept. 2296 */ 2297 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2298 d->Reserved1 = 1; 2299 } 2300 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2301 if (d->Reserved2[i]) 2302 return -EINVAL; 2303 2304 length = sizeof(struct usb_ext_compat_desc); 2305 } 2306 break; 2307 case FFS_OS_DESC_EXT_PROP: { 2308 struct usb_ext_prop_desc *d = data; 2309 u32 type, pdl; 2310 u16 pnl; 2311 2312 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2313 return -EINVAL; 2314 length = le32_to_cpu(d->dwSize); 2315 if (len < length) 2316 return -EINVAL; 2317 type = le32_to_cpu(d->dwPropertyDataType); 2318 if (type < USB_EXT_PROP_UNICODE || 2319 type > USB_EXT_PROP_UNICODE_MULTI) { 2320 pr_vdebug("unsupported os descriptor property type: %d", 2321 type); 2322 return -EINVAL; 2323 } 2324 pnl = le16_to_cpu(d->wPropertyNameLength); 2325 if (length < 14 + pnl) { 2326 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2327 length, pnl, type); 2328 return -EINVAL; 2329 } 2330 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2331 if (length != 14 + pnl + pdl) { 2332 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2333 length, pnl, pdl, type); 2334 return -EINVAL; 2335 } 2336 ++ffs->ms_os_descs_ext_prop_count; 2337 /* property name reported to the host as "WCHAR"s */ 2338 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2339 ffs->ms_os_descs_ext_prop_data_len += pdl; 2340 } 2341 break; 2342 default: 2343 pr_vdebug("unknown descriptor: %d\n", type); 2344 return -EINVAL; 2345 } 2346 return length; 2347 } 2348 2349 static int __ffs_data_got_descs(struct ffs_data *ffs, 2350 char *const _data, size_t len) 2351 { 2352 char *data = _data, *raw_descs; 2353 unsigned os_descs_count = 0, counts[3], flags; 2354 int ret = -EINVAL, i; 2355 struct ffs_desc_helper helper; 2356 2357 ENTER(); 2358 2359 if (get_unaligned_le32(data + 4) != len) 2360 goto error; 2361 2362 switch (get_unaligned_le32(data)) { 2363 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2364 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2365 data += 8; 2366 len -= 8; 2367 break; 2368 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2369 flags = get_unaligned_le32(data + 8); 2370 ffs->user_flags = flags; 2371 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2372 FUNCTIONFS_HAS_HS_DESC | 2373 FUNCTIONFS_HAS_SS_DESC | 2374 FUNCTIONFS_HAS_MS_OS_DESC | 2375 FUNCTIONFS_VIRTUAL_ADDR | 2376 FUNCTIONFS_EVENTFD | 2377 FUNCTIONFS_ALL_CTRL_RECIP | 2378 FUNCTIONFS_CONFIG0_SETUP)) { 2379 ret = -ENOSYS; 2380 goto error; 2381 } 2382 data += 12; 2383 len -= 12; 2384 break; 2385 default: 2386 goto error; 2387 } 2388 2389 if (flags & FUNCTIONFS_EVENTFD) { 2390 if (len < 4) 2391 goto error; 2392 ffs->ffs_eventfd = 2393 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2394 if (IS_ERR(ffs->ffs_eventfd)) { 2395 ret = PTR_ERR(ffs->ffs_eventfd); 2396 ffs->ffs_eventfd = NULL; 2397 goto error; 2398 } 2399 data += 4; 2400 len -= 4; 2401 } 2402 2403 /* Read fs_count, hs_count and ss_count (if present) */ 2404 for (i = 0; i < 3; ++i) { 2405 if (!(flags & (1 << i))) { 2406 counts[i] = 0; 2407 } else if (len < 4) { 2408 goto error; 2409 } else { 2410 counts[i] = get_unaligned_le32(data); 2411 data += 4; 2412 len -= 4; 2413 } 2414 } 2415 if (flags & (1 << i)) { 2416 if (len < 4) { 2417 goto error; 2418 } 2419 os_descs_count = get_unaligned_le32(data); 2420 data += 4; 2421 len -= 4; 2422 }; 2423 2424 /* Read descriptors */ 2425 raw_descs = data; 2426 helper.ffs = ffs; 2427 for (i = 0; i < 3; ++i) { 2428 if (!counts[i]) 2429 continue; 2430 helper.interfaces_count = 0; 2431 helper.eps_count = 0; 2432 ret = ffs_do_descs(counts[i], data, len, 2433 __ffs_data_do_entity, &helper); 2434 if (ret < 0) 2435 goto error; 2436 if (!ffs->eps_count && !ffs->interfaces_count) { 2437 ffs->eps_count = helper.eps_count; 2438 ffs->interfaces_count = helper.interfaces_count; 2439 } else { 2440 if (ffs->eps_count != helper.eps_count) { 2441 ret = -EINVAL; 2442 goto error; 2443 } 2444 if (ffs->interfaces_count != helper.interfaces_count) { 2445 ret = -EINVAL; 2446 goto error; 2447 } 2448 } 2449 data += ret; 2450 len -= ret; 2451 } 2452 if (os_descs_count) { 2453 ret = ffs_do_os_descs(os_descs_count, data, len, 2454 __ffs_data_do_os_desc, ffs); 2455 if (ret < 0) 2456 goto error; 2457 data += ret; 2458 len -= ret; 2459 } 2460 2461 if (raw_descs == data || len) { 2462 ret = -EINVAL; 2463 goto error; 2464 } 2465 2466 ffs->raw_descs_data = _data; 2467 ffs->raw_descs = raw_descs; 2468 ffs->raw_descs_length = data - raw_descs; 2469 ffs->fs_descs_count = counts[0]; 2470 ffs->hs_descs_count = counts[1]; 2471 ffs->ss_descs_count = counts[2]; 2472 ffs->ms_os_descs_count = os_descs_count; 2473 2474 return 0; 2475 2476 error: 2477 kfree(_data); 2478 return ret; 2479 } 2480 2481 static int __ffs_data_got_strings(struct ffs_data *ffs, 2482 char *const _data, size_t len) 2483 { 2484 u32 str_count, needed_count, lang_count; 2485 struct usb_gadget_strings **stringtabs, *t; 2486 const char *data = _data; 2487 struct usb_string *s; 2488 2489 ENTER(); 2490 2491 if (unlikely(len < 16 || 2492 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2493 get_unaligned_le32(data + 4) != len)) 2494 goto error; 2495 str_count = get_unaligned_le32(data + 8); 2496 lang_count = get_unaligned_le32(data + 12); 2497 2498 /* if one is zero the other must be zero */ 2499 if (unlikely(!str_count != !lang_count)) 2500 goto error; 2501 2502 /* Do we have at least as many strings as descriptors need? */ 2503 needed_count = ffs->strings_count; 2504 if (unlikely(str_count < needed_count)) 2505 goto error; 2506 2507 /* 2508 * If we don't need any strings just return and free all 2509 * memory. 2510 */ 2511 if (!needed_count) { 2512 kfree(_data); 2513 return 0; 2514 } 2515 2516 /* Allocate everything in one chunk so there's less maintenance. */ 2517 { 2518 unsigned i = 0; 2519 vla_group(d); 2520 vla_item(d, struct usb_gadget_strings *, stringtabs, 2521 lang_count + 1); 2522 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2523 vla_item(d, struct usb_string, strings, 2524 lang_count*(needed_count+1)); 2525 2526 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2527 2528 if (unlikely(!vlabuf)) { 2529 kfree(_data); 2530 return -ENOMEM; 2531 } 2532 2533 /* Initialize the VLA pointers */ 2534 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2535 t = vla_ptr(vlabuf, d, stringtab); 2536 i = lang_count; 2537 do { 2538 *stringtabs++ = t++; 2539 } while (--i); 2540 *stringtabs = NULL; 2541 2542 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2543 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2544 t = vla_ptr(vlabuf, d, stringtab); 2545 s = vla_ptr(vlabuf, d, strings); 2546 } 2547 2548 /* For each language */ 2549 data += 16; 2550 len -= 16; 2551 2552 do { /* lang_count > 0 so we can use do-while */ 2553 unsigned needed = needed_count; 2554 2555 if (unlikely(len < 3)) 2556 goto error_free; 2557 t->language = get_unaligned_le16(data); 2558 t->strings = s; 2559 ++t; 2560 2561 data += 2; 2562 len -= 2; 2563 2564 /* For each string */ 2565 do { /* str_count > 0 so we can use do-while */ 2566 size_t length = strnlen(data, len); 2567 2568 if (unlikely(length == len)) 2569 goto error_free; 2570 2571 /* 2572 * User may provide more strings then we need, 2573 * if that's the case we simply ignore the 2574 * rest 2575 */ 2576 if (likely(needed)) { 2577 /* 2578 * s->id will be set while adding 2579 * function to configuration so for 2580 * now just leave garbage here. 2581 */ 2582 s->s = data; 2583 --needed; 2584 ++s; 2585 } 2586 2587 data += length + 1; 2588 len -= length + 1; 2589 } while (--str_count); 2590 2591 s->id = 0; /* terminator */ 2592 s->s = NULL; 2593 ++s; 2594 2595 } while (--lang_count); 2596 2597 /* Some garbage left? */ 2598 if (unlikely(len)) 2599 goto error_free; 2600 2601 /* Done! */ 2602 ffs->stringtabs = stringtabs; 2603 ffs->raw_strings = _data; 2604 2605 return 0; 2606 2607 error_free: 2608 kfree(stringtabs); 2609 error: 2610 kfree(_data); 2611 return -EINVAL; 2612 } 2613 2614 2615 /* Events handling and management *******************************************/ 2616 2617 static void __ffs_event_add(struct ffs_data *ffs, 2618 enum usb_functionfs_event_type type) 2619 { 2620 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2621 int neg = 0; 2622 2623 /* 2624 * Abort any unhandled setup 2625 * 2626 * We do not need to worry about some cmpxchg() changing value 2627 * of ffs->setup_state without holding the lock because when 2628 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2629 * the source does nothing. 2630 */ 2631 if (ffs->setup_state == FFS_SETUP_PENDING) 2632 ffs->setup_state = FFS_SETUP_CANCELLED; 2633 2634 /* 2635 * Logic of this function guarantees that there are at most four pending 2636 * evens on ffs->ev.types queue. This is important because the queue 2637 * has space for four elements only and __ffs_ep0_read_events function 2638 * depends on that limit as well. If more event types are added, those 2639 * limits have to be revisited or guaranteed to still hold. 2640 */ 2641 switch (type) { 2642 case FUNCTIONFS_RESUME: 2643 rem_type2 = FUNCTIONFS_SUSPEND; 2644 /* FALL THROUGH */ 2645 case FUNCTIONFS_SUSPEND: 2646 case FUNCTIONFS_SETUP: 2647 rem_type1 = type; 2648 /* Discard all similar events */ 2649 break; 2650 2651 case FUNCTIONFS_BIND: 2652 case FUNCTIONFS_UNBIND: 2653 case FUNCTIONFS_DISABLE: 2654 case FUNCTIONFS_ENABLE: 2655 /* Discard everything other then power management. */ 2656 rem_type1 = FUNCTIONFS_SUSPEND; 2657 rem_type2 = FUNCTIONFS_RESUME; 2658 neg = 1; 2659 break; 2660 2661 default: 2662 WARN(1, "%d: unknown event, this should not happen\n", type); 2663 return; 2664 } 2665 2666 { 2667 u8 *ev = ffs->ev.types, *out = ev; 2668 unsigned n = ffs->ev.count; 2669 for (; n; --n, ++ev) 2670 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2671 *out++ = *ev; 2672 else 2673 pr_vdebug("purging event %d\n", *ev); 2674 ffs->ev.count = out - ffs->ev.types; 2675 } 2676 2677 pr_vdebug("adding event %d\n", type); 2678 ffs->ev.types[ffs->ev.count++] = type; 2679 wake_up_locked(&ffs->ev.waitq); 2680 if (ffs->ffs_eventfd) 2681 eventfd_signal(ffs->ffs_eventfd, 1); 2682 } 2683 2684 static void ffs_event_add(struct ffs_data *ffs, 2685 enum usb_functionfs_event_type type) 2686 { 2687 unsigned long flags; 2688 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2689 __ffs_event_add(ffs, type); 2690 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2691 } 2692 2693 /* Bind/unbind USB function hooks *******************************************/ 2694 2695 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2696 { 2697 int i; 2698 2699 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2700 if (ffs->eps_addrmap[i] == endpoint_address) 2701 return i; 2702 return -ENOENT; 2703 } 2704 2705 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2706 struct usb_descriptor_header *desc, 2707 void *priv) 2708 { 2709 struct usb_endpoint_descriptor *ds = (void *)desc; 2710 struct ffs_function *func = priv; 2711 struct ffs_ep *ffs_ep; 2712 unsigned ep_desc_id; 2713 int idx; 2714 static const char *speed_names[] = { "full", "high", "super" }; 2715 2716 if (type != FFS_DESCRIPTOR) 2717 return 0; 2718 2719 /* 2720 * If ss_descriptors is not NULL, we are reading super speed 2721 * descriptors; if hs_descriptors is not NULL, we are reading high 2722 * speed descriptors; otherwise, we are reading full speed 2723 * descriptors. 2724 */ 2725 if (func->function.ss_descriptors) { 2726 ep_desc_id = 2; 2727 func->function.ss_descriptors[(long)valuep] = desc; 2728 } else if (func->function.hs_descriptors) { 2729 ep_desc_id = 1; 2730 func->function.hs_descriptors[(long)valuep] = desc; 2731 } else { 2732 ep_desc_id = 0; 2733 func->function.fs_descriptors[(long)valuep] = desc; 2734 } 2735 2736 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2737 return 0; 2738 2739 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2740 if (idx < 0) 2741 return idx; 2742 2743 ffs_ep = func->eps + idx; 2744 2745 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2746 pr_err("two %sspeed descriptors for EP %d\n", 2747 speed_names[ep_desc_id], 2748 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2749 return -EINVAL; 2750 } 2751 ffs_ep->descs[ep_desc_id] = ds; 2752 2753 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2754 if (ffs_ep->ep) { 2755 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2756 if (!ds->wMaxPacketSize) 2757 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2758 } else { 2759 struct usb_request *req; 2760 struct usb_ep *ep; 2761 u8 bEndpointAddress; 2762 2763 /* 2764 * We back up bEndpointAddress because autoconfig overwrites 2765 * it with physical endpoint address. 2766 */ 2767 bEndpointAddress = ds->bEndpointAddress; 2768 pr_vdebug("autoconfig\n"); 2769 ep = usb_ep_autoconfig(func->gadget, ds); 2770 if (unlikely(!ep)) 2771 return -ENOTSUPP; 2772 ep->driver_data = func->eps + idx; 2773 2774 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2775 if (unlikely(!req)) 2776 return -ENOMEM; 2777 2778 ffs_ep->ep = ep; 2779 ffs_ep->req = req; 2780 func->eps_revmap[ds->bEndpointAddress & 2781 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2782 /* 2783 * If we use virtual address mapping, we restore 2784 * original bEndpointAddress value. 2785 */ 2786 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2787 ds->bEndpointAddress = bEndpointAddress; 2788 } 2789 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2790 2791 return 0; 2792 } 2793 2794 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2795 struct usb_descriptor_header *desc, 2796 void *priv) 2797 { 2798 struct ffs_function *func = priv; 2799 unsigned idx; 2800 u8 newValue; 2801 2802 switch (type) { 2803 default: 2804 case FFS_DESCRIPTOR: 2805 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2806 return 0; 2807 2808 case FFS_INTERFACE: 2809 idx = *valuep; 2810 if (func->interfaces_nums[idx] < 0) { 2811 int id = usb_interface_id(func->conf, &func->function); 2812 if (unlikely(id < 0)) 2813 return id; 2814 func->interfaces_nums[idx] = id; 2815 } 2816 newValue = func->interfaces_nums[idx]; 2817 break; 2818 2819 case FFS_STRING: 2820 /* String' IDs are allocated when fsf_data is bound to cdev */ 2821 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2822 break; 2823 2824 case FFS_ENDPOINT: 2825 /* 2826 * USB_DT_ENDPOINT are handled in 2827 * __ffs_func_bind_do_descs(). 2828 */ 2829 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2830 return 0; 2831 2832 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2833 if (unlikely(!func->eps[idx].ep)) 2834 return -EINVAL; 2835 2836 { 2837 struct usb_endpoint_descriptor **descs; 2838 descs = func->eps[idx].descs; 2839 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2840 } 2841 break; 2842 } 2843 2844 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2845 *valuep = newValue; 2846 return 0; 2847 } 2848 2849 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2850 struct usb_os_desc_header *h, void *data, 2851 unsigned len, void *priv) 2852 { 2853 struct ffs_function *func = priv; 2854 u8 length = 0; 2855 2856 switch (type) { 2857 case FFS_OS_DESC_EXT_COMPAT: { 2858 struct usb_ext_compat_desc *desc = data; 2859 struct usb_os_desc_table *t; 2860 2861 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2862 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2863 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2864 ARRAY_SIZE(desc->CompatibleID) + 2865 ARRAY_SIZE(desc->SubCompatibleID)); 2866 length = sizeof(*desc); 2867 } 2868 break; 2869 case FFS_OS_DESC_EXT_PROP: { 2870 struct usb_ext_prop_desc *desc = data; 2871 struct usb_os_desc_table *t; 2872 struct usb_os_desc_ext_prop *ext_prop; 2873 char *ext_prop_name; 2874 char *ext_prop_data; 2875 2876 t = &func->function.os_desc_table[h->interface]; 2877 t->if_id = func->interfaces_nums[h->interface]; 2878 2879 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2880 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2881 2882 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2883 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2884 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2885 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2886 length = ext_prop->name_len + ext_prop->data_len + 14; 2887 2888 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2889 func->ffs->ms_os_descs_ext_prop_name_avail += 2890 ext_prop->name_len; 2891 2892 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2893 func->ffs->ms_os_descs_ext_prop_data_avail += 2894 ext_prop->data_len; 2895 memcpy(ext_prop_data, 2896 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2897 ext_prop->data_len); 2898 /* unicode data reported to the host as "WCHAR"s */ 2899 switch (ext_prop->type) { 2900 case USB_EXT_PROP_UNICODE: 2901 case USB_EXT_PROP_UNICODE_ENV: 2902 case USB_EXT_PROP_UNICODE_LINK: 2903 case USB_EXT_PROP_UNICODE_MULTI: 2904 ext_prop->data_len *= 2; 2905 break; 2906 } 2907 ext_prop->data = ext_prop_data; 2908 2909 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2910 ext_prop->name_len); 2911 /* property name reported to the host as "WCHAR"s */ 2912 ext_prop->name_len *= 2; 2913 ext_prop->name = ext_prop_name; 2914 2915 t->os_desc->ext_prop_len += 2916 ext_prop->name_len + ext_prop->data_len + 14; 2917 ++t->os_desc->ext_prop_count; 2918 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2919 } 2920 break; 2921 default: 2922 pr_vdebug("unknown descriptor: %d\n", type); 2923 } 2924 2925 return length; 2926 } 2927 2928 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2929 struct usb_configuration *c) 2930 { 2931 struct ffs_function *func = ffs_func_from_usb(f); 2932 struct f_fs_opts *ffs_opts = 2933 container_of(f->fi, struct f_fs_opts, func_inst); 2934 int ret; 2935 2936 ENTER(); 2937 2938 /* 2939 * Legacy gadget triggers binding in functionfs_ready_callback, 2940 * which already uses locking; taking the same lock here would 2941 * cause a deadlock. 2942 * 2943 * Configfs-enabled gadgets however do need ffs_dev_lock. 2944 */ 2945 if (!ffs_opts->no_configfs) 2946 ffs_dev_lock(); 2947 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2948 func->ffs = ffs_opts->dev->ffs_data; 2949 if (!ffs_opts->no_configfs) 2950 ffs_dev_unlock(); 2951 if (ret) 2952 return ERR_PTR(ret); 2953 2954 func->conf = c; 2955 func->gadget = c->cdev->gadget; 2956 2957 /* 2958 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2959 * configurations are bound in sequence with list_for_each_entry, 2960 * in each configuration its functions are bound in sequence 2961 * with list_for_each_entry, so we assume no race condition 2962 * with regard to ffs_opts->bound access 2963 */ 2964 if (!ffs_opts->refcnt) { 2965 ret = functionfs_bind(func->ffs, c->cdev); 2966 if (ret) 2967 return ERR_PTR(ret); 2968 } 2969 ffs_opts->refcnt++; 2970 func->function.strings = func->ffs->stringtabs; 2971 2972 return ffs_opts; 2973 } 2974 2975 static int _ffs_func_bind(struct usb_configuration *c, 2976 struct usb_function *f) 2977 { 2978 struct ffs_function *func = ffs_func_from_usb(f); 2979 struct ffs_data *ffs = func->ffs; 2980 2981 const int full = !!func->ffs->fs_descs_count; 2982 const int high = !!func->ffs->hs_descs_count; 2983 const int super = !!func->ffs->ss_descs_count; 2984 2985 int fs_len, hs_len, ss_len, ret, i; 2986 struct ffs_ep *eps_ptr; 2987 2988 /* Make it a single chunk, less management later on */ 2989 vla_group(d); 2990 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2991 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2992 full ? ffs->fs_descs_count + 1 : 0); 2993 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2994 high ? ffs->hs_descs_count + 1 : 0); 2995 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2996 super ? ffs->ss_descs_count + 1 : 0); 2997 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2998 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2999 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3000 vla_item_with_sz(d, char[16], ext_compat, 3001 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3002 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3003 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3004 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3005 ffs->ms_os_descs_ext_prop_count); 3006 vla_item_with_sz(d, char, ext_prop_name, 3007 ffs->ms_os_descs_ext_prop_name_len); 3008 vla_item_with_sz(d, char, ext_prop_data, 3009 ffs->ms_os_descs_ext_prop_data_len); 3010 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3011 char *vlabuf; 3012 3013 ENTER(); 3014 3015 /* Has descriptors only for speeds gadget does not support */ 3016 if (unlikely(!(full | high | super))) 3017 return -ENOTSUPP; 3018 3019 /* Allocate a single chunk, less management later on */ 3020 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3021 if (unlikely(!vlabuf)) 3022 return -ENOMEM; 3023 3024 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3025 ffs->ms_os_descs_ext_prop_name_avail = 3026 vla_ptr(vlabuf, d, ext_prop_name); 3027 ffs->ms_os_descs_ext_prop_data_avail = 3028 vla_ptr(vlabuf, d, ext_prop_data); 3029 3030 /* Copy descriptors */ 3031 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3032 ffs->raw_descs_length); 3033 3034 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3035 eps_ptr = vla_ptr(vlabuf, d, eps); 3036 for (i = 0; i < ffs->eps_count; i++) 3037 eps_ptr[i].num = -1; 3038 3039 /* Save pointers 3040 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3041 */ 3042 func->eps = vla_ptr(vlabuf, d, eps); 3043 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3044 3045 /* 3046 * Go through all the endpoint descriptors and allocate 3047 * endpoints first, so that later we can rewrite the endpoint 3048 * numbers without worrying that it may be described later on. 3049 */ 3050 if (likely(full)) { 3051 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3052 fs_len = ffs_do_descs(ffs->fs_descs_count, 3053 vla_ptr(vlabuf, d, raw_descs), 3054 d_raw_descs__sz, 3055 __ffs_func_bind_do_descs, func); 3056 if (unlikely(fs_len < 0)) { 3057 ret = fs_len; 3058 goto error; 3059 } 3060 } else { 3061 fs_len = 0; 3062 } 3063 3064 if (likely(high)) { 3065 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3066 hs_len = ffs_do_descs(ffs->hs_descs_count, 3067 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3068 d_raw_descs__sz - fs_len, 3069 __ffs_func_bind_do_descs, func); 3070 if (unlikely(hs_len < 0)) { 3071 ret = hs_len; 3072 goto error; 3073 } 3074 } else { 3075 hs_len = 0; 3076 } 3077 3078 if (likely(super)) { 3079 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3080 ss_len = ffs_do_descs(ffs->ss_descs_count, 3081 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3082 d_raw_descs__sz - fs_len - hs_len, 3083 __ffs_func_bind_do_descs, func); 3084 if (unlikely(ss_len < 0)) { 3085 ret = ss_len; 3086 goto error; 3087 } 3088 } else { 3089 ss_len = 0; 3090 } 3091 3092 /* 3093 * Now handle interface numbers allocation and interface and 3094 * endpoint numbers rewriting. We can do that in one go 3095 * now. 3096 */ 3097 ret = ffs_do_descs(ffs->fs_descs_count + 3098 (high ? ffs->hs_descs_count : 0) + 3099 (super ? ffs->ss_descs_count : 0), 3100 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3101 __ffs_func_bind_do_nums, func); 3102 if (unlikely(ret < 0)) 3103 goto error; 3104 3105 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3106 if (c->cdev->use_os_string) { 3107 for (i = 0; i < ffs->interfaces_count; ++i) { 3108 struct usb_os_desc *desc; 3109 3110 desc = func->function.os_desc_table[i].os_desc = 3111 vla_ptr(vlabuf, d, os_desc) + 3112 i * sizeof(struct usb_os_desc); 3113 desc->ext_compat_id = 3114 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3115 INIT_LIST_HEAD(&desc->ext_prop); 3116 } 3117 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3118 vla_ptr(vlabuf, d, raw_descs) + 3119 fs_len + hs_len + ss_len, 3120 d_raw_descs__sz - fs_len - hs_len - 3121 ss_len, 3122 __ffs_func_bind_do_os_desc, func); 3123 if (unlikely(ret < 0)) 3124 goto error; 3125 } 3126 func->function.os_desc_n = 3127 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3128 3129 /* And we're done */ 3130 ffs_event_add(ffs, FUNCTIONFS_BIND); 3131 return 0; 3132 3133 error: 3134 /* XXX Do we need to release all claimed endpoints here? */ 3135 return ret; 3136 } 3137 3138 static int ffs_func_bind(struct usb_configuration *c, 3139 struct usb_function *f) 3140 { 3141 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3142 struct ffs_function *func = ffs_func_from_usb(f); 3143 int ret; 3144 3145 if (IS_ERR(ffs_opts)) 3146 return PTR_ERR(ffs_opts); 3147 3148 ret = _ffs_func_bind(c, f); 3149 if (ret && !--ffs_opts->refcnt) 3150 functionfs_unbind(func->ffs); 3151 3152 return ret; 3153 } 3154 3155 3156 /* Other USB function hooks *************************************************/ 3157 3158 static void ffs_reset_work(struct work_struct *work) 3159 { 3160 struct ffs_data *ffs = container_of(work, 3161 struct ffs_data, reset_work); 3162 ffs_data_reset(ffs); 3163 } 3164 3165 static int ffs_func_set_alt(struct usb_function *f, 3166 unsigned interface, unsigned alt) 3167 { 3168 struct ffs_function *func = ffs_func_from_usb(f); 3169 struct ffs_data *ffs = func->ffs; 3170 int ret = 0, intf; 3171 3172 if (alt != (unsigned)-1) { 3173 intf = ffs_func_revmap_intf(func, interface); 3174 if (unlikely(intf < 0)) 3175 return intf; 3176 } 3177 3178 if (ffs->func) 3179 ffs_func_eps_disable(ffs->func); 3180 3181 if (ffs->state == FFS_DEACTIVATED) { 3182 ffs->state = FFS_CLOSING; 3183 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3184 schedule_work(&ffs->reset_work); 3185 return -ENODEV; 3186 } 3187 3188 if (ffs->state != FFS_ACTIVE) 3189 return -ENODEV; 3190 3191 if (alt == (unsigned)-1) { 3192 ffs->func = NULL; 3193 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3194 return 0; 3195 } 3196 3197 ffs->func = func; 3198 ret = ffs_func_eps_enable(func); 3199 if (likely(ret >= 0)) 3200 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3201 return ret; 3202 } 3203 3204 static void ffs_func_disable(struct usb_function *f) 3205 { 3206 ffs_func_set_alt(f, 0, (unsigned)-1); 3207 } 3208 3209 static int ffs_func_setup(struct usb_function *f, 3210 const struct usb_ctrlrequest *creq) 3211 { 3212 struct ffs_function *func = ffs_func_from_usb(f); 3213 struct ffs_data *ffs = func->ffs; 3214 unsigned long flags; 3215 int ret; 3216 3217 ENTER(); 3218 3219 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3220 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3221 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3222 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3223 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3224 3225 /* 3226 * Most requests directed to interface go through here 3227 * (notable exceptions are set/get interface) so we need to 3228 * handle them. All other either handled by composite or 3229 * passed to usb_configuration->setup() (if one is set). No 3230 * matter, we will handle requests directed to endpoint here 3231 * as well (as it's straightforward). Other request recipient 3232 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3233 * is being used. 3234 */ 3235 if (ffs->state != FFS_ACTIVE) 3236 return -ENODEV; 3237 3238 switch (creq->bRequestType & USB_RECIP_MASK) { 3239 case USB_RECIP_INTERFACE: 3240 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3241 if (unlikely(ret < 0)) 3242 return ret; 3243 break; 3244 3245 case USB_RECIP_ENDPOINT: 3246 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3247 if (unlikely(ret < 0)) 3248 return ret; 3249 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3250 ret = func->ffs->eps_addrmap[ret]; 3251 break; 3252 3253 default: 3254 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3255 ret = le16_to_cpu(creq->wIndex); 3256 else 3257 return -EOPNOTSUPP; 3258 } 3259 3260 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3261 ffs->ev.setup = *creq; 3262 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3263 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3264 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3265 3266 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3267 } 3268 3269 static bool ffs_func_req_match(struct usb_function *f, 3270 const struct usb_ctrlrequest *creq, 3271 bool config0) 3272 { 3273 struct ffs_function *func = ffs_func_from_usb(f); 3274 3275 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3276 return false; 3277 3278 switch (creq->bRequestType & USB_RECIP_MASK) { 3279 case USB_RECIP_INTERFACE: 3280 return (ffs_func_revmap_intf(func, 3281 le16_to_cpu(creq->wIndex)) >= 0); 3282 case USB_RECIP_ENDPOINT: 3283 return (ffs_func_revmap_ep(func, 3284 le16_to_cpu(creq->wIndex)) >= 0); 3285 default: 3286 return (bool) (func->ffs->user_flags & 3287 FUNCTIONFS_ALL_CTRL_RECIP); 3288 } 3289 } 3290 3291 static void ffs_func_suspend(struct usb_function *f) 3292 { 3293 ENTER(); 3294 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3295 } 3296 3297 static void ffs_func_resume(struct usb_function *f) 3298 { 3299 ENTER(); 3300 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3301 } 3302 3303 3304 /* Endpoint and interface numbers reverse mapping ***************************/ 3305 3306 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3307 { 3308 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3309 return num ? num : -EDOM; 3310 } 3311 3312 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3313 { 3314 short *nums = func->interfaces_nums; 3315 unsigned count = func->ffs->interfaces_count; 3316 3317 for (; count; --count, ++nums) { 3318 if (*nums >= 0 && *nums == intf) 3319 return nums - func->interfaces_nums; 3320 } 3321 3322 return -EDOM; 3323 } 3324 3325 3326 /* Devices management *******************************************************/ 3327 3328 static LIST_HEAD(ffs_devices); 3329 3330 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3331 { 3332 struct ffs_dev *dev; 3333 3334 if (!name) 3335 return NULL; 3336 3337 list_for_each_entry(dev, &ffs_devices, entry) { 3338 if (strcmp(dev->name, name) == 0) 3339 return dev; 3340 } 3341 3342 return NULL; 3343 } 3344 3345 /* 3346 * ffs_lock must be taken by the caller of this function 3347 */ 3348 static struct ffs_dev *_ffs_get_single_dev(void) 3349 { 3350 struct ffs_dev *dev; 3351 3352 if (list_is_singular(&ffs_devices)) { 3353 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3354 if (dev->single) 3355 return dev; 3356 } 3357 3358 return NULL; 3359 } 3360 3361 /* 3362 * ffs_lock must be taken by the caller of this function 3363 */ 3364 static struct ffs_dev *_ffs_find_dev(const char *name) 3365 { 3366 struct ffs_dev *dev; 3367 3368 dev = _ffs_get_single_dev(); 3369 if (dev) 3370 return dev; 3371 3372 return _ffs_do_find_dev(name); 3373 } 3374 3375 /* Configfs support *********************************************************/ 3376 3377 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3378 { 3379 return container_of(to_config_group(item), struct f_fs_opts, 3380 func_inst.group); 3381 } 3382 3383 static void ffs_attr_release(struct config_item *item) 3384 { 3385 struct f_fs_opts *opts = to_ffs_opts(item); 3386 3387 usb_put_function_instance(&opts->func_inst); 3388 } 3389 3390 static struct configfs_item_operations ffs_item_ops = { 3391 .release = ffs_attr_release, 3392 }; 3393 3394 static const struct config_item_type ffs_func_type = { 3395 .ct_item_ops = &ffs_item_ops, 3396 .ct_owner = THIS_MODULE, 3397 }; 3398 3399 3400 /* Function registration interface ******************************************/ 3401 3402 static void ffs_free_inst(struct usb_function_instance *f) 3403 { 3404 struct f_fs_opts *opts; 3405 3406 opts = to_f_fs_opts(f); 3407 ffs_dev_lock(); 3408 _ffs_free_dev(opts->dev); 3409 ffs_dev_unlock(); 3410 kfree(opts); 3411 } 3412 3413 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3414 { 3415 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3416 return -ENAMETOOLONG; 3417 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3418 } 3419 3420 static struct usb_function_instance *ffs_alloc_inst(void) 3421 { 3422 struct f_fs_opts *opts; 3423 struct ffs_dev *dev; 3424 3425 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3426 if (!opts) 3427 return ERR_PTR(-ENOMEM); 3428 3429 opts->func_inst.set_inst_name = ffs_set_inst_name; 3430 opts->func_inst.free_func_inst = ffs_free_inst; 3431 ffs_dev_lock(); 3432 dev = _ffs_alloc_dev(); 3433 ffs_dev_unlock(); 3434 if (IS_ERR(dev)) { 3435 kfree(opts); 3436 return ERR_CAST(dev); 3437 } 3438 opts->dev = dev; 3439 dev->opts = opts; 3440 3441 config_group_init_type_name(&opts->func_inst.group, "", 3442 &ffs_func_type); 3443 return &opts->func_inst; 3444 } 3445 3446 static void ffs_free(struct usb_function *f) 3447 { 3448 kfree(ffs_func_from_usb(f)); 3449 } 3450 3451 static void ffs_func_unbind(struct usb_configuration *c, 3452 struct usb_function *f) 3453 { 3454 struct ffs_function *func = ffs_func_from_usb(f); 3455 struct ffs_data *ffs = func->ffs; 3456 struct f_fs_opts *opts = 3457 container_of(f->fi, struct f_fs_opts, func_inst); 3458 struct ffs_ep *ep = func->eps; 3459 unsigned count = ffs->eps_count; 3460 unsigned long flags; 3461 3462 ENTER(); 3463 if (ffs->func == func) { 3464 ffs_func_eps_disable(func); 3465 ffs->func = NULL; 3466 } 3467 3468 if (!--opts->refcnt) 3469 functionfs_unbind(ffs); 3470 3471 /* cleanup after autoconfig */ 3472 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3473 while (count--) { 3474 if (ep->ep && ep->req) 3475 usb_ep_free_request(ep->ep, ep->req); 3476 ep->req = NULL; 3477 ++ep; 3478 } 3479 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3480 kfree(func->eps); 3481 func->eps = NULL; 3482 /* 3483 * eps, descriptors and interfaces_nums are allocated in the 3484 * same chunk so only one free is required. 3485 */ 3486 func->function.fs_descriptors = NULL; 3487 func->function.hs_descriptors = NULL; 3488 func->function.ss_descriptors = NULL; 3489 func->interfaces_nums = NULL; 3490 3491 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3492 } 3493 3494 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3495 { 3496 struct ffs_function *func; 3497 3498 ENTER(); 3499 3500 func = kzalloc(sizeof(*func), GFP_KERNEL); 3501 if (unlikely(!func)) 3502 return ERR_PTR(-ENOMEM); 3503 3504 func->function.name = "Function FS Gadget"; 3505 3506 func->function.bind = ffs_func_bind; 3507 func->function.unbind = ffs_func_unbind; 3508 func->function.set_alt = ffs_func_set_alt; 3509 func->function.disable = ffs_func_disable; 3510 func->function.setup = ffs_func_setup; 3511 func->function.req_match = ffs_func_req_match; 3512 func->function.suspend = ffs_func_suspend; 3513 func->function.resume = ffs_func_resume; 3514 func->function.free_func = ffs_free; 3515 3516 return &func->function; 3517 } 3518 3519 /* 3520 * ffs_lock must be taken by the caller of this function 3521 */ 3522 static struct ffs_dev *_ffs_alloc_dev(void) 3523 { 3524 struct ffs_dev *dev; 3525 int ret; 3526 3527 if (_ffs_get_single_dev()) 3528 return ERR_PTR(-EBUSY); 3529 3530 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3531 if (!dev) 3532 return ERR_PTR(-ENOMEM); 3533 3534 if (list_empty(&ffs_devices)) { 3535 ret = functionfs_init(); 3536 if (ret) { 3537 kfree(dev); 3538 return ERR_PTR(ret); 3539 } 3540 } 3541 3542 list_add(&dev->entry, &ffs_devices); 3543 3544 return dev; 3545 } 3546 3547 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3548 { 3549 struct ffs_dev *existing; 3550 int ret = 0; 3551 3552 ffs_dev_lock(); 3553 3554 existing = _ffs_do_find_dev(name); 3555 if (!existing) 3556 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3557 else if (existing != dev) 3558 ret = -EBUSY; 3559 3560 ffs_dev_unlock(); 3561 3562 return ret; 3563 } 3564 EXPORT_SYMBOL_GPL(ffs_name_dev); 3565 3566 int ffs_single_dev(struct ffs_dev *dev) 3567 { 3568 int ret; 3569 3570 ret = 0; 3571 ffs_dev_lock(); 3572 3573 if (!list_is_singular(&ffs_devices)) 3574 ret = -EBUSY; 3575 else 3576 dev->single = true; 3577 3578 ffs_dev_unlock(); 3579 return ret; 3580 } 3581 EXPORT_SYMBOL_GPL(ffs_single_dev); 3582 3583 /* 3584 * ffs_lock must be taken by the caller of this function 3585 */ 3586 static void _ffs_free_dev(struct ffs_dev *dev) 3587 { 3588 list_del(&dev->entry); 3589 3590 /* Clear the private_data pointer to stop incorrect dev access */ 3591 if (dev->ffs_data) 3592 dev->ffs_data->private_data = NULL; 3593 3594 kfree(dev); 3595 if (list_empty(&ffs_devices)) 3596 functionfs_cleanup(); 3597 } 3598 3599 static void *ffs_acquire_dev(const char *dev_name) 3600 { 3601 struct ffs_dev *ffs_dev; 3602 3603 ENTER(); 3604 ffs_dev_lock(); 3605 3606 ffs_dev = _ffs_find_dev(dev_name); 3607 if (!ffs_dev) 3608 ffs_dev = ERR_PTR(-ENOENT); 3609 else if (ffs_dev->mounted) 3610 ffs_dev = ERR_PTR(-EBUSY); 3611 else if (ffs_dev->ffs_acquire_dev_callback && 3612 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3613 ffs_dev = ERR_PTR(-ENOENT); 3614 else 3615 ffs_dev->mounted = true; 3616 3617 ffs_dev_unlock(); 3618 return ffs_dev; 3619 } 3620 3621 static void ffs_release_dev(struct ffs_data *ffs_data) 3622 { 3623 struct ffs_dev *ffs_dev; 3624 3625 ENTER(); 3626 ffs_dev_lock(); 3627 3628 ffs_dev = ffs_data->private_data; 3629 if (ffs_dev) { 3630 ffs_dev->mounted = false; 3631 3632 if (ffs_dev->ffs_release_dev_callback) 3633 ffs_dev->ffs_release_dev_callback(ffs_dev); 3634 } 3635 3636 ffs_dev_unlock(); 3637 } 3638 3639 static int ffs_ready(struct ffs_data *ffs) 3640 { 3641 struct ffs_dev *ffs_obj; 3642 int ret = 0; 3643 3644 ENTER(); 3645 ffs_dev_lock(); 3646 3647 ffs_obj = ffs->private_data; 3648 if (!ffs_obj) { 3649 ret = -EINVAL; 3650 goto done; 3651 } 3652 if (WARN_ON(ffs_obj->desc_ready)) { 3653 ret = -EBUSY; 3654 goto done; 3655 } 3656 3657 ffs_obj->desc_ready = true; 3658 ffs_obj->ffs_data = ffs; 3659 3660 if (ffs_obj->ffs_ready_callback) { 3661 ret = ffs_obj->ffs_ready_callback(ffs); 3662 if (ret) 3663 goto done; 3664 } 3665 3666 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3667 done: 3668 ffs_dev_unlock(); 3669 return ret; 3670 } 3671 3672 static void ffs_closed(struct ffs_data *ffs) 3673 { 3674 struct ffs_dev *ffs_obj; 3675 struct f_fs_opts *opts; 3676 struct config_item *ci; 3677 3678 ENTER(); 3679 ffs_dev_lock(); 3680 3681 ffs_obj = ffs->private_data; 3682 if (!ffs_obj) 3683 goto done; 3684 3685 ffs_obj->desc_ready = false; 3686 ffs_obj->ffs_data = NULL; 3687 3688 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3689 ffs_obj->ffs_closed_callback) 3690 ffs_obj->ffs_closed_callback(ffs); 3691 3692 if (ffs_obj->opts) 3693 opts = ffs_obj->opts; 3694 else 3695 goto done; 3696 3697 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3698 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3699 goto done; 3700 3701 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3702 ffs_dev_unlock(); 3703 3704 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3705 unregister_gadget_item(ci); 3706 return; 3707 done: 3708 ffs_dev_unlock(); 3709 } 3710 3711 /* Misc helper functions ****************************************************/ 3712 3713 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3714 { 3715 return nonblock 3716 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3717 : mutex_lock_interruptible(mutex); 3718 } 3719 3720 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3721 { 3722 char *data; 3723 3724 if (unlikely(!len)) 3725 return NULL; 3726 3727 data = kmalloc(len, GFP_KERNEL); 3728 if (unlikely(!data)) 3729 return ERR_PTR(-ENOMEM); 3730 3731 if (unlikely(copy_from_user(data, buf, len))) { 3732 kfree(data); 3733 return ERR_PTR(-EFAULT); 3734 } 3735 3736 pr_vdebug("Buffer from user space:\n"); 3737 ffs_dump_mem("", data, len); 3738 3739 return data; 3740 } 3741 3742 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3743 MODULE_LICENSE("GPL"); 3744 MODULE_AUTHOR("Michal Nazarewicz"); 3745