1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/hid.h> 21 #include <linux/mm.h> 22 #include <linux/module.h> 23 #include <linux/scatterlist.h> 24 #include <linux/sched/signal.h> 25 #include <linux/uio.h> 26 #include <linux/vmalloc.h> 27 #include <asm/unaligned.h> 28 29 #include <linux/usb/ccid.h> 30 #include <linux/usb/composite.h> 31 #include <linux/usb/functionfs.h> 32 33 #include <linux/aio.h> 34 #include <linux/mmu_context.h> 35 #include <linux/poll.h> 36 #include <linux/eventfd.h> 37 38 #include "u_fs.h" 39 #include "u_f.h" 40 #include "u_os_desc.h" 41 #include "configfs.h" 42 43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 44 45 /* Reference counter handling */ 46 static void ffs_data_get(struct ffs_data *ffs); 47 static void ffs_data_put(struct ffs_data *ffs); 48 /* Creates new ffs_data object. */ 49 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 50 __attribute__((malloc)); 51 52 /* Opened counter handling. */ 53 static void ffs_data_opened(struct ffs_data *ffs); 54 static void ffs_data_closed(struct ffs_data *ffs); 55 56 /* Called with ffs->mutex held; take over ownership of data. */ 57 static int __must_check 58 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 59 static int __must_check 60 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 61 62 63 /* The function structure ***************************************************/ 64 65 struct ffs_ep; 66 67 struct ffs_function { 68 struct usb_configuration *conf; 69 struct usb_gadget *gadget; 70 struct ffs_data *ffs; 71 72 struct ffs_ep *eps; 73 u8 eps_revmap[16]; 74 short *interfaces_nums; 75 76 struct usb_function function; 77 }; 78 79 80 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 81 { 82 return container_of(f, struct ffs_function, function); 83 } 84 85 86 static inline enum ffs_setup_state 87 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 88 { 89 return (enum ffs_setup_state) 90 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 91 } 92 93 94 static void ffs_func_eps_disable(struct ffs_function *func); 95 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 96 97 static int ffs_func_bind(struct usb_configuration *, 98 struct usb_function *); 99 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 100 static void ffs_func_disable(struct usb_function *); 101 static int ffs_func_setup(struct usb_function *, 102 const struct usb_ctrlrequest *); 103 static bool ffs_func_req_match(struct usb_function *, 104 const struct usb_ctrlrequest *, 105 bool config0); 106 static void ffs_func_suspend(struct usb_function *); 107 static void ffs_func_resume(struct usb_function *); 108 109 110 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 111 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 112 113 114 /* The endpoints structures *************************************************/ 115 116 struct ffs_ep { 117 struct usb_ep *ep; /* P: ffs->eps_lock */ 118 struct usb_request *req; /* P: epfile->mutex */ 119 120 /* [0]: full speed, [1]: high speed, [2]: super speed */ 121 struct usb_endpoint_descriptor *descs[3]; 122 123 u8 num; 124 125 int status; /* P: epfile->mutex */ 126 }; 127 128 struct ffs_epfile { 129 /* Protects ep->ep and ep->req. */ 130 struct mutex mutex; 131 132 struct ffs_data *ffs; 133 struct ffs_ep *ep; /* P: ffs->eps_lock */ 134 135 struct dentry *dentry; 136 137 /* 138 * Buffer for holding data from partial reads which may happen since 139 * we’re rounding user read requests to a multiple of a max packet size. 140 * 141 * The pointer is initialised with NULL value and may be set by 142 * __ffs_epfile_read_data function to point to a temporary buffer. 143 * 144 * In normal operation, calls to __ffs_epfile_read_buffered will consume 145 * data from said buffer and eventually free it. Importantly, while the 146 * function is using the buffer, it sets the pointer to NULL. This is 147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 148 * can never run concurrently (they are synchronised by epfile->mutex) 149 * so the latter will not assign a new value to the pointer. 150 * 151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 153 * value is crux of the synchronisation between ffs_func_eps_disable and 154 * __ffs_epfile_read_data. 155 * 156 * Once __ffs_epfile_read_data is about to finish it will try to set the 157 * pointer back to its old value (as described above), but seeing as the 158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 159 * the buffer. 160 * 161 * == State transitions == 162 * 163 * • ptr == NULL: (initial state) 164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 165 * ◦ __ffs_epfile_read_buffered: nop 166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 167 * ◦ reading finishes: n/a, not in ‘and reading’ state 168 * • ptr == DROP: 169 * ◦ __ffs_epfile_read_buffer_free: nop 170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 172 * ◦ reading finishes: n/a, not in ‘and reading’ state 173 * • ptr == buf: 174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 177 * is always called first 178 * ◦ reading finishes: n/a, not in ‘and reading’ state 179 * • ptr == NULL and reading: 180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 182 * ◦ __ffs_epfile_read_data: n/a, mutex is held 183 * ◦ reading finishes and … 184 * … all data read: free buf, go to ptr == NULL 185 * … otherwise: go to ptr == buf and reading 186 * • ptr == DROP and reading: 187 * ◦ __ffs_epfile_read_buffer_free: nop 188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 189 * ◦ __ffs_epfile_read_data: n/a, mutex is held 190 * ◦ reading finishes: free buf, go to ptr == DROP 191 */ 192 struct ffs_buffer *read_buffer; 193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 194 195 char name[5]; 196 197 unsigned char in; /* P: ffs->eps_lock */ 198 unsigned char isoc; /* P: ffs->eps_lock */ 199 200 unsigned char _pad; 201 }; 202 203 struct ffs_buffer { 204 size_t length; 205 char *data; 206 char storage[]; 207 }; 208 209 /* ffs_io_data structure ***************************************************/ 210 211 struct ffs_io_data { 212 bool aio; 213 bool read; 214 215 struct kiocb *kiocb; 216 struct iov_iter data; 217 const void *to_free; 218 char *buf; 219 220 struct mm_struct *mm; 221 struct work_struct work; 222 223 struct usb_ep *ep; 224 struct usb_request *req; 225 struct sg_table sgt; 226 bool use_sg; 227 228 struct ffs_data *ffs; 229 }; 230 231 struct ffs_desc_helper { 232 struct ffs_data *ffs; 233 unsigned interfaces_count; 234 unsigned eps_count; 235 }; 236 237 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 238 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 239 240 static struct dentry * 241 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 242 const struct file_operations *fops); 243 244 /* Devices management *******************************************************/ 245 246 DEFINE_MUTEX(ffs_lock); 247 EXPORT_SYMBOL_GPL(ffs_lock); 248 249 static struct ffs_dev *_ffs_find_dev(const char *name); 250 static struct ffs_dev *_ffs_alloc_dev(void); 251 static void _ffs_free_dev(struct ffs_dev *dev); 252 static void *ffs_acquire_dev(const char *dev_name); 253 static void ffs_release_dev(struct ffs_data *ffs_data); 254 static int ffs_ready(struct ffs_data *ffs); 255 static void ffs_closed(struct ffs_data *ffs); 256 257 /* Misc helper functions ****************************************************/ 258 259 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 260 __attribute__((warn_unused_result, nonnull)); 261 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 262 __attribute__((warn_unused_result, nonnull)); 263 264 265 /* Control file aka ep0 *****************************************************/ 266 267 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 268 { 269 struct ffs_data *ffs = req->context; 270 271 complete(&ffs->ep0req_completion); 272 } 273 274 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 275 __releases(&ffs->ev.waitq.lock) 276 { 277 struct usb_request *req = ffs->ep0req; 278 int ret; 279 280 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 281 282 spin_unlock_irq(&ffs->ev.waitq.lock); 283 284 req->buf = data; 285 req->length = len; 286 287 /* 288 * UDC layer requires to provide a buffer even for ZLP, but should 289 * not use it at all. Let's provide some poisoned pointer to catch 290 * possible bug in the driver. 291 */ 292 if (req->buf == NULL) 293 req->buf = (void *)0xDEADBABE; 294 295 reinit_completion(&ffs->ep0req_completion); 296 297 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 298 if (unlikely(ret < 0)) 299 return ret; 300 301 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 302 if (unlikely(ret)) { 303 usb_ep_dequeue(ffs->gadget->ep0, req); 304 return -EINTR; 305 } 306 307 ffs->setup_state = FFS_NO_SETUP; 308 return req->status ? req->status : req->actual; 309 } 310 311 static int __ffs_ep0_stall(struct ffs_data *ffs) 312 { 313 if (ffs->ev.can_stall) { 314 pr_vdebug("ep0 stall\n"); 315 usb_ep_set_halt(ffs->gadget->ep0); 316 ffs->setup_state = FFS_NO_SETUP; 317 return -EL2HLT; 318 } else { 319 pr_debug("bogus ep0 stall!\n"); 320 return -ESRCH; 321 } 322 } 323 324 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 325 size_t len, loff_t *ptr) 326 { 327 struct ffs_data *ffs = file->private_data; 328 ssize_t ret; 329 char *data; 330 331 ENTER(); 332 333 /* Fast check if setup was canceled */ 334 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 335 return -EIDRM; 336 337 /* Acquire mutex */ 338 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 339 if (unlikely(ret < 0)) 340 return ret; 341 342 /* Check state */ 343 switch (ffs->state) { 344 case FFS_READ_DESCRIPTORS: 345 case FFS_READ_STRINGS: 346 /* Copy data */ 347 if (unlikely(len < 16)) { 348 ret = -EINVAL; 349 break; 350 } 351 352 data = ffs_prepare_buffer(buf, len); 353 if (IS_ERR(data)) { 354 ret = PTR_ERR(data); 355 break; 356 } 357 358 /* Handle data */ 359 if (ffs->state == FFS_READ_DESCRIPTORS) { 360 pr_info("read descriptors\n"); 361 ret = __ffs_data_got_descs(ffs, data, len); 362 if (unlikely(ret < 0)) 363 break; 364 365 ffs->state = FFS_READ_STRINGS; 366 ret = len; 367 } else { 368 pr_info("read strings\n"); 369 ret = __ffs_data_got_strings(ffs, data, len); 370 if (unlikely(ret < 0)) 371 break; 372 373 ret = ffs_epfiles_create(ffs); 374 if (unlikely(ret)) { 375 ffs->state = FFS_CLOSING; 376 break; 377 } 378 379 ffs->state = FFS_ACTIVE; 380 mutex_unlock(&ffs->mutex); 381 382 ret = ffs_ready(ffs); 383 if (unlikely(ret < 0)) { 384 ffs->state = FFS_CLOSING; 385 return ret; 386 } 387 388 return len; 389 } 390 break; 391 392 case FFS_ACTIVE: 393 data = NULL; 394 /* 395 * We're called from user space, we can use _irq 396 * rather then _irqsave 397 */ 398 spin_lock_irq(&ffs->ev.waitq.lock); 399 switch (ffs_setup_state_clear_cancelled(ffs)) { 400 case FFS_SETUP_CANCELLED: 401 ret = -EIDRM; 402 goto done_spin; 403 404 case FFS_NO_SETUP: 405 ret = -ESRCH; 406 goto done_spin; 407 408 case FFS_SETUP_PENDING: 409 break; 410 } 411 412 /* FFS_SETUP_PENDING */ 413 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 414 spin_unlock_irq(&ffs->ev.waitq.lock); 415 ret = __ffs_ep0_stall(ffs); 416 break; 417 } 418 419 /* FFS_SETUP_PENDING and not stall */ 420 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 421 422 spin_unlock_irq(&ffs->ev.waitq.lock); 423 424 data = ffs_prepare_buffer(buf, len); 425 if (IS_ERR(data)) { 426 ret = PTR_ERR(data); 427 break; 428 } 429 430 spin_lock_irq(&ffs->ev.waitq.lock); 431 432 /* 433 * We are guaranteed to be still in FFS_ACTIVE state 434 * but the state of setup could have changed from 435 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 436 * to check for that. If that happened we copied data 437 * from user space in vain but it's unlikely. 438 * 439 * For sure we are not in FFS_NO_SETUP since this is 440 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 441 * transition can be performed and it's protected by 442 * mutex. 443 */ 444 if (ffs_setup_state_clear_cancelled(ffs) == 445 FFS_SETUP_CANCELLED) { 446 ret = -EIDRM; 447 done_spin: 448 spin_unlock_irq(&ffs->ev.waitq.lock); 449 } else { 450 /* unlocks spinlock */ 451 ret = __ffs_ep0_queue_wait(ffs, data, len); 452 } 453 kfree(data); 454 break; 455 456 default: 457 ret = -EBADFD; 458 break; 459 } 460 461 mutex_unlock(&ffs->mutex); 462 return ret; 463 } 464 465 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 466 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 467 size_t n) 468 __releases(&ffs->ev.waitq.lock) 469 { 470 /* 471 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 472 * size of ffs->ev.types array (which is four) so that's how much space 473 * we reserve. 474 */ 475 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 476 const size_t size = n * sizeof *events; 477 unsigned i = 0; 478 479 memset(events, 0, size); 480 481 do { 482 events[i].type = ffs->ev.types[i]; 483 if (events[i].type == FUNCTIONFS_SETUP) { 484 events[i].u.setup = ffs->ev.setup; 485 ffs->setup_state = FFS_SETUP_PENDING; 486 } 487 } while (++i < n); 488 489 ffs->ev.count -= n; 490 if (ffs->ev.count) 491 memmove(ffs->ev.types, ffs->ev.types + n, 492 ffs->ev.count * sizeof *ffs->ev.types); 493 494 spin_unlock_irq(&ffs->ev.waitq.lock); 495 mutex_unlock(&ffs->mutex); 496 497 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 498 } 499 500 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 501 size_t len, loff_t *ptr) 502 { 503 struct ffs_data *ffs = file->private_data; 504 char *data = NULL; 505 size_t n; 506 int ret; 507 508 ENTER(); 509 510 /* Fast check if setup was canceled */ 511 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 512 return -EIDRM; 513 514 /* Acquire mutex */ 515 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 516 if (unlikely(ret < 0)) 517 return ret; 518 519 /* Check state */ 520 if (ffs->state != FFS_ACTIVE) { 521 ret = -EBADFD; 522 goto done_mutex; 523 } 524 525 /* 526 * We're called from user space, we can use _irq rather then 527 * _irqsave 528 */ 529 spin_lock_irq(&ffs->ev.waitq.lock); 530 531 switch (ffs_setup_state_clear_cancelled(ffs)) { 532 case FFS_SETUP_CANCELLED: 533 ret = -EIDRM; 534 break; 535 536 case FFS_NO_SETUP: 537 n = len / sizeof(struct usb_functionfs_event); 538 if (unlikely(!n)) { 539 ret = -EINVAL; 540 break; 541 } 542 543 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 544 ret = -EAGAIN; 545 break; 546 } 547 548 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 549 ffs->ev.count)) { 550 ret = -EINTR; 551 break; 552 } 553 554 /* unlocks spinlock */ 555 return __ffs_ep0_read_events(ffs, buf, 556 min(n, (size_t)ffs->ev.count)); 557 558 case FFS_SETUP_PENDING: 559 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 560 spin_unlock_irq(&ffs->ev.waitq.lock); 561 ret = __ffs_ep0_stall(ffs); 562 goto done_mutex; 563 } 564 565 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 566 567 spin_unlock_irq(&ffs->ev.waitq.lock); 568 569 if (likely(len)) { 570 data = kmalloc(len, GFP_KERNEL); 571 if (unlikely(!data)) { 572 ret = -ENOMEM; 573 goto done_mutex; 574 } 575 } 576 577 spin_lock_irq(&ffs->ev.waitq.lock); 578 579 /* See ffs_ep0_write() */ 580 if (ffs_setup_state_clear_cancelled(ffs) == 581 FFS_SETUP_CANCELLED) { 582 ret = -EIDRM; 583 break; 584 } 585 586 /* unlocks spinlock */ 587 ret = __ffs_ep0_queue_wait(ffs, data, len); 588 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 589 ret = -EFAULT; 590 goto done_mutex; 591 592 default: 593 ret = -EBADFD; 594 break; 595 } 596 597 spin_unlock_irq(&ffs->ev.waitq.lock); 598 done_mutex: 599 mutex_unlock(&ffs->mutex); 600 kfree(data); 601 return ret; 602 } 603 604 static int ffs_ep0_open(struct inode *inode, struct file *file) 605 { 606 struct ffs_data *ffs = inode->i_private; 607 608 ENTER(); 609 610 if (unlikely(ffs->state == FFS_CLOSING)) 611 return -EBUSY; 612 613 file->private_data = ffs; 614 ffs_data_opened(ffs); 615 616 return 0; 617 } 618 619 static int ffs_ep0_release(struct inode *inode, struct file *file) 620 { 621 struct ffs_data *ffs = file->private_data; 622 623 ENTER(); 624 625 ffs_data_closed(ffs); 626 627 return 0; 628 } 629 630 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 631 { 632 struct ffs_data *ffs = file->private_data; 633 struct usb_gadget *gadget = ffs->gadget; 634 long ret; 635 636 ENTER(); 637 638 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 639 struct ffs_function *func = ffs->func; 640 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 641 } else if (gadget && gadget->ops->ioctl) { 642 ret = gadget->ops->ioctl(gadget, code, value); 643 } else { 644 ret = -ENOTTY; 645 } 646 647 return ret; 648 } 649 650 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 651 { 652 struct ffs_data *ffs = file->private_data; 653 __poll_t mask = EPOLLWRNORM; 654 int ret; 655 656 poll_wait(file, &ffs->ev.waitq, wait); 657 658 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 659 if (unlikely(ret < 0)) 660 return mask; 661 662 switch (ffs->state) { 663 case FFS_READ_DESCRIPTORS: 664 case FFS_READ_STRINGS: 665 mask |= EPOLLOUT; 666 break; 667 668 case FFS_ACTIVE: 669 switch (ffs->setup_state) { 670 case FFS_NO_SETUP: 671 if (ffs->ev.count) 672 mask |= EPOLLIN; 673 break; 674 675 case FFS_SETUP_PENDING: 676 case FFS_SETUP_CANCELLED: 677 mask |= (EPOLLIN | EPOLLOUT); 678 break; 679 } 680 case FFS_CLOSING: 681 break; 682 case FFS_DEACTIVATED: 683 break; 684 } 685 686 mutex_unlock(&ffs->mutex); 687 688 return mask; 689 } 690 691 static const struct file_operations ffs_ep0_operations = { 692 .llseek = no_llseek, 693 694 .open = ffs_ep0_open, 695 .write = ffs_ep0_write, 696 .read = ffs_ep0_read, 697 .release = ffs_ep0_release, 698 .unlocked_ioctl = ffs_ep0_ioctl, 699 .poll = ffs_ep0_poll, 700 }; 701 702 703 /* "Normal" endpoints operations ********************************************/ 704 705 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 706 { 707 ENTER(); 708 if (likely(req->context)) { 709 struct ffs_ep *ep = _ep->driver_data; 710 ep->status = req->status ? req->status : req->actual; 711 complete(req->context); 712 } 713 } 714 715 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 716 { 717 ssize_t ret = copy_to_iter(data, data_len, iter); 718 if (likely(ret == data_len)) 719 return ret; 720 721 if (unlikely(iov_iter_count(iter))) 722 return -EFAULT; 723 724 /* 725 * Dear user space developer! 726 * 727 * TL;DR: To stop getting below error message in your kernel log, change 728 * user space code using functionfs to align read buffers to a max 729 * packet size. 730 * 731 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 732 * packet size. When unaligned buffer is passed to functionfs, it 733 * internally uses a larger, aligned buffer so that such UDCs are happy. 734 * 735 * Unfortunately, this means that host may send more data than was 736 * requested in read(2) system call. f_fs doesn’t know what to do with 737 * that excess data so it simply drops it. 738 * 739 * Was the buffer aligned in the first place, no such problem would 740 * happen. 741 * 742 * Data may be dropped only in AIO reads. Synchronous reads are handled 743 * by splitting a request into multiple parts. This splitting may still 744 * be a problem though so it’s likely best to align the buffer 745 * regardless of it being AIO or not.. 746 * 747 * This only affects OUT endpoints, i.e. reading data with a read(2), 748 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 749 * affected. 750 */ 751 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 752 "Align read buffer size to max packet size to avoid the problem.\n", 753 data_len, ret); 754 755 return ret; 756 } 757 758 /* 759 * allocate a virtually contiguous buffer and create a scatterlist describing it 760 * @sg_table - pointer to a place to be filled with sg_table contents 761 * @size - required buffer size 762 */ 763 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 764 { 765 struct page **pages; 766 void *vaddr, *ptr; 767 unsigned int n_pages; 768 int i; 769 770 vaddr = vmalloc(sz); 771 if (!vaddr) 772 return NULL; 773 774 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 775 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 776 if (!pages) { 777 vfree(vaddr); 778 779 return NULL; 780 } 781 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 782 pages[i] = vmalloc_to_page(ptr); 783 784 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 785 kvfree(pages); 786 vfree(vaddr); 787 788 return NULL; 789 } 790 kvfree(pages); 791 792 return vaddr; 793 } 794 795 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 796 size_t data_len) 797 { 798 if (io_data->use_sg) 799 return ffs_build_sg_list(&io_data->sgt, data_len); 800 801 return kmalloc(data_len, GFP_KERNEL); 802 } 803 804 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 805 { 806 if (!io_data->buf) 807 return; 808 809 if (io_data->use_sg) { 810 sg_free_table(&io_data->sgt); 811 vfree(io_data->buf); 812 } else { 813 kfree(io_data->buf); 814 } 815 } 816 817 static void ffs_user_copy_worker(struct work_struct *work) 818 { 819 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 820 work); 821 int ret = io_data->req->status ? io_data->req->status : 822 io_data->req->actual; 823 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 824 825 if (io_data->read && ret > 0) { 826 mm_segment_t oldfs = get_fs(); 827 828 set_fs(USER_DS); 829 use_mm(io_data->mm); 830 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 831 unuse_mm(io_data->mm); 832 set_fs(oldfs); 833 } 834 835 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 836 837 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 838 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 839 840 usb_ep_free_request(io_data->ep, io_data->req); 841 842 if (io_data->read) 843 kfree(io_data->to_free); 844 ffs_free_buffer(io_data); 845 kfree(io_data); 846 } 847 848 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 849 struct usb_request *req) 850 { 851 struct ffs_io_data *io_data = req->context; 852 struct ffs_data *ffs = io_data->ffs; 853 854 ENTER(); 855 856 INIT_WORK(&io_data->work, ffs_user_copy_worker); 857 queue_work(ffs->io_completion_wq, &io_data->work); 858 } 859 860 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 861 { 862 /* 863 * See comment in struct ffs_epfile for full read_buffer pointer 864 * synchronisation story. 865 */ 866 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 867 if (buf && buf != READ_BUFFER_DROP) 868 kfree(buf); 869 } 870 871 /* Assumes epfile->mutex is held. */ 872 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 873 struct iov_iter *iter) 874 { 875 /* 876 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 877 * the buffer while we are using it. See comment in struct ffs_epfile 878 * for full read_buffer pointer synchronisation story. 879 */ 880 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 881 ssize_t ret; 882 if (!buf || buf == READ_BUFFER_DROP) 883 return 0; 884 885 ret = copy_to_iter(buf->data, buf->length, iter); 886 if (buf->length == ret) { 887 kfree(buf); 888 return ret; 889 } 890 891 if (unlikely(iov_iter_count(iter))) { 892 ret = -EFAULT; 893 } else { 894 buf->length -= ret; 895 buf->data += ret; 896 } 897 898 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 899 kfree(buf); 900 901 return ret; 902 } 903 904 /* Assumes epfile->mutex is held. */ 905 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 906 void *data, int data_len, 907 struct iov_iter *iter) 908 { 909 struct ffs_buffer *buf; 910 911 ssize_t ret = copy_to_iter(data, data_len, iter); 912 if (likely(data_len == ret)) 913 return ret; 914 915 if (unlikely(iov_iter_count(iter))) 916 return -EFAULT; 917 918 /* See ffs_copy_to_iter for more context. */ 919 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 920 data_len, ret); 921 922 data_len -= ret; 923 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 924 if (!buf) 925 return -ENOMEM; 926 buf->length = data_len; 927 buf->data = buf->storage; 928 memcpy(buf->storage, data + ret, data_len); 929 930 /* 931 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 932 * ffs_func_eps_disable has been called in the meanwhile). See comment 933 * in struct ffs_epfile for full read_buffer pointer synchronisation 934 * story. 935 */ 936 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 937 kfree(buf); 938 939 return ret; 940 } 941 942 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 943 { 944 struct ffs_epfile *epfile = file->private_data; 945 struct usb_request *req; 946 struct ffs_ep *ep; 947 char *data = NULL; 948 ssize_t ret, data_len = -EINVAL; 949 int halt; 950 951 /* Are we still active? */ 952 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 953 return -ENODEV; 954 955 /* Wait for endpoint to be enabled */ 956 ep = epfile->ep; 957 if (!ep) { 958 if (file->f_flags & O_NONBLOCK) 959 return -EAGAIN; 960 961 ret = wait_event_interruptible( 962 epfile->ffs->wait, (ep = epfile->ep)); 963 if (ret) 964 return -EINTR; 965 } 966 967 /* Do we halt? */ 968 halt = (!io_data->read == !epfile->in); 969 if (halt && epfile->isoc) 970 return -EINVAL; 971 972 /* We will be using request and read_buffer */ 973 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 974 if (unlikely(ret)) 975 goto error; 976 977 /* Allocate & copy */ 978 if (!halt) { 979 struct usb_gadget *gadget; 980 981 /* 982 * Do we have buffered data from previous partial read? Check 983 * that for synchronous case only because we do not have 984 * facility to ‘wake up’ a pending asynchronous read and push 985 * buffered data to it which we would need to make things behave 986 * consistently. 987 */ 988 if (!io_data->aio && io_data->read) { 989 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 990 if (ret) 991 goto error_mutex; 992 } 993 994 /* 995 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 996 * before the waiting completes, so do not assign to 'gadget' 997 * earlier 998 */ 999 gadget = epfile->ffs->gadget; 1000 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1001 1002 spin_lock_irq(&epfile->ffs->eps_lock); 1003 /* In the meantime, endpoint got disabled or changed. */ 1004 if (epfile->ep != ep) { 1005 ret = -ESHUTDOWN; 1006 goto error_lock; 1007 } 1008 data_len = iov_iter_count(&io_data->data); 1009 /* 1010 * Controller may require buffer size to be aligned to 1011 * maxpacketsize of an out endpoint. 1012 */ 1013 if (io_data->read) 1014 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1015 spin_unlock_irq(&epfile->ffs->eps_lock); 1016 1017 data = ffs_alloc_buffer(io_data, data_len); 1018 if (unlikely(!data)) { 1019 ret = -ENOMEM; 1020 goto error_mutex; 1021 } 1022 if (!io_data->read && 1023 !copy_from_iter_full(data, data_len, &io_data->data)) { 1024 ret = -EFAULT; 1025 goto error_mutex; 1026 } 1027 } 1028 1029 spin_lock_irq(&epfile->ffs->eps_lock); 1030 1031 if (epfile->ep != ep) { 1032 /* In the meantime, endpoint got disabled or changed. */ 1033 ret = -ESHUTDOWN; 1034 } else if (halt) { 1035 ret = usb_ep_set_halt(ep->ep); 1036 if (!ret) 1037 ret = -EBADMSG; 1038 } else if (unlikely(data_len == -EINVAL)) { 1039 /* 1040 * Sanity Check: even though data_len can't be used 1041 * uninitialized at the time I write this comment, some 1042 * compilers complain about this situation. 1043 * In order to keep the code clean from warnings, data_len is 1044 * being initialized to -EINVAL during its declaration, which 1045 * means we can't rely on compiler anymore to warn no future 1046 * changes won't result in data_len being used uninitialized. 1047 * For such reason, we're adding this redundant sanity check 1048 * here. 1049 */ 1050 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1051 ret = -EINVAL; 1052 } else if (!io_data->aio) { 1053 DECLARE_COMPLETION_ONSTACK(done); 1054 bool interrupted = false; 1055 1056 req = ep->req; 1057 if (io_data->use_sg) { 1058 req->buf = NULL; 1059 req->sg = io_data->sgt.sgl; 1060 req->num_sgs = io_data->sgt.nents; 1061 } else { 1062 req->buf = data; 1063 } 1064 req->length = data_len; 1065 1066 io_data->buf = data; 1067 1068 req->context = &done; 1069 req->complete = ffs_epfile_io_complete; 1070 1071 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1072 if (unlikely(ret < 0)) 1073 goto error_lock; 1074 1075 spin_unlock_irq(&epfile->ffs->eps_lock); 1076 1077 if (unlikely(wait_for_completion_interruptible(&done))) { 1078 /* 1079 * To avoid race condition with ffs_epfile_io_complete, 1080 * dequeue the request first then check 1081 * status. usb_ep_dequeue API should guarantee no race 1082 * condition with req->complete callback. 1083 */ 1084 usb_ep_dequeue(ep->ep, req); 1085 wait_for_completion(&done); 1086 interrupted = ep->status < 0; 1087 } 1088 1089 if (interrupted) 1090 ret = -EINTR; 1091 else if (io_data->read && ep->status > 0) 1092 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1093 &io_data->data); 1094 else 1095 ret = ep->status; 1096 goto error_mutex; 1097 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1098 ret = -ENOMEM; 1099 } else { 1100 if (io_data->use_sg) { 1101 req->buf = NULL; 1102 req->sg = io_data->sgt.sgl; 1103 req->num_sgs = io_data->sgt.nents; 1104 } else { 1105 req->buf = data; 1106 } 1107 req->length = data_len; 1108 1109 io_data->buf = data; 1110 io_data->ep = ep->ep; 1111 io_data->req = req; 1112 io_data->ffs = epfile->ffs; 1113 1114 req->context = io_data; 1115 req->complete = ffs_epfile_async_io_complete; 1116 1117 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1118 if (unlikely(ret)) { 1119 usb_ep_free_request(ep->ep, req); 1120 goto error_lock; 1121 } 1122 1123 ret = -EIOCBQUEUED; 1124 /* 1125 * Do not kfree the buffer in this function. It will be freed 1126 * by ffs_user_copy_worker. 1127 */ 1128 data = NULL; 1129 } 1130 1131 error_lock: 1132 spin_unlock_irq(&epfile->ffs->eps_lock); 1133 error_mutex: 1134 mutex_unlock(&epfile->mutex); 1135 error: 1136 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1137 ffs_free_buffer(io_data); 1138 return ret; 1139 } 1140 1141 static int 1142 ffs_epfile_open(struct inode *inode, struct file *file) 1143 { 1144 struct ffs_epfile *epfile = inode->i_private; 1145 1146 ENTER(); 1147 1148 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1149 return -ENODEV; 1150 1151 file->private_data = epfile; 1152 ffs_data_opened(epfile->ffs); 1153 1154 return 0; 1155 } 1156 1157 static int ffs_aio_cancel(struct kiocb *kiocb) 1158 { 1159 struct ffs_io_data *io_data = kiocb->private; 1160 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1161 int value; 1162 1163 ENTER(); 1164 1165 spin_lock_irq(&epfile->ffs->eps_lock); 1166 1167 if (likely(io_data && io_data->ep && io_data->req)) 1168 value = usb_ep_dequeue(io_data->ep, io_data->req); 1169 else 1170 value = -EINVAL; 1171 1172 spin_unlock_irq(&epfile->ffs->eps_lock); 1173 1174 return value; 1175 } 1176 1177 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1178 { 1179 struct ffs_io_data io_data, *p = &io_data; 1180 ssize_t res; 1181 1182 ENTER(); 1183 1184 if (!is_sync_kiocb(kiocb)) { 1185 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1186 if (unlikely(!p)) 1187 return -ENOMEM; 1188 p->aio = true; 1189 } else { 1190 p->aio = false; 1191 } 1192 1193 p->read = false; 1194 p->kiocb = kiocb; 1195 p->data = *from; 1196 p->mm = current->mm; 1197 1198 kiocb->private = p; 1199 1200 if (p->aio) 1201 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1202 1203 res = ffs_epfile_io(kiocb->ki_filp, p); 1204 if (res == -EIOCBQUEUED) 1205 return res; 1206 if (p->aio) 1207 kfree(p); 1208 else 1209 *from = p->data; 1210 return res; 1211 } 1212 1213 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1214 { 1215 struct ffs_io_data io_data, *p = &io_data; 1216 ssize_t res; 1217 1218 ENTER(); 1219 1220 if (!is_sync_kiocb(kiocb)) { 1221 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1222 if (unlikely(!p)) 1223 return -ENOMEM; 1224 p->aio = true; 1225 } else { 1226 p->aio = false; 1227 } 1228 1229 p->read = true; 1230 p->kiocb = kiocb; 1231 if (p->aio) { 1232 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1233 if (!p->to_free) { 1234 kfree(p); 1235 return -ENOMEM; 1236 } 1237 } else { 1238 p->data = *to; 1239 p->to_free = NULL; 1240 } 1241 p->mm = current->mm; 1242 1243 kiocb->private = p; 1244 1245 if (p->aio) 1246 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1247 1248 res = ffs_epfile_io(kiocb->ki_filp, p); 1249 if (res == -EIOCBQUEUED) 1250 return res; 1251 1252 if (p->aio) { 1253 kfree(p->to_free); 1254 kfree(p); 1255 } else { 1256 *to = p->data; 1257 } 1258 return res; 1259 } 1260 1261 static int 1262 ffs_epfile_release(struct inode *inode, struct file *file) 1263 { 1264 struct ffs_epfile *epfile = inode->i_private; 1265 1266 ENTER(); 1267 1268 __ffs_epfile_read_buffer_free(epfile); 1269 ffs_data_closed(epfile->ffs); 1270 1271 return 0; 1272 } 1273 1274 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1275 unsigned long value) 1276 { 1277 struct ffs_epfile *epfile = file->private_data; 1278 struct ffs_ep *ep; 1279 int ret; 1280 1281 ENTER(); 1282 1283 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1284 return -ENODEV; 1285 1286 /* Wait for endpoint to be enabled */ 1287 ep = epfile->ep; 1288 if (!ep) { 1289 if (file->f_flags & O_NONBLOCK) 1290 return -EAGAIN; 1291 1292 ret = wait_event_interruptible( 1293 epfile->ffs->wait, (ep = epfile->ep)); 1294 if (ret) 1295 return -EINTR; 1296 } 1297 1298 spin_lock_irq(&epfile->ffs->eps_lock); 1299 1300 /* In the meantime, endpoint got disabled or changed. */ 1301 if (epfile->ep != ep) { 1302 spin_unlock_irq(&epfile->ffs->eps_lock); 1303 return -ESHUTDOWN; 1304 } 1305 1306 switch (code) { 1307 case FUNCTIONFS_FIFO_STATUS: 1308 ret = usb_ep_fifo_status(epfile->ep->ep); 1309 break; 1310 case FUNCTIONFS_FIFO_FLUSH: 1311 usb_ep_fifo_flush(epfile->ep->ep); 1312 ret = 0; 1313 break; 1314 case FUNCTIONFS_CLEAR_HALT: 1315 ret = usb_ep_clear_halt(epfile->ep->ep); 1316 break; 1317 case FUNCTIONFS_ENDPOINT_REVMAP: 1318 ret = epfile->ep->num; 1319 break; 1320 case FUNCTIONFS_ENDPOINT_DESC: 1321 { 1322 int desc_idx; 1323 struct usb_endpoint_descriptor *desc; 1324 1325 switch (epfile->ffs->gadget->speed) { 1326 case USB_SPEED_SUPER: 1327 desc_idx = 2; 1328 break; 1329 case USB_SPEED_HIGH: 1330 desc_idx = 1; 1331 break; 1332 default: 1333 desc_idx = 0; 1334 } 1335 desc = epfile->ep->descs[desc_idx]; 1336 1337 spin_unlock_irq(&epfile->ffs->eps_lock); 1338 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1339 if (ret) 1340 ret = -EFAULT; 1341 return ret; 1342 } 1343 default: 1344 ret = -ENOTTY; 1345 } 1346 spin_unlock_irq(&epfile->ffs->eps_lock); 1347 1348 return ret; 1349 } 1350 1351 #ifdef CONFIG_COMPAT 1352 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code, 1353 unsigned long value) 1354 { 1355 return ffs_epfile_ioctl(file, code, value); 1356 } 1357 #endif 1358 1359 static const struct file_operations ffs_epfile_operations = { 1360 .llseek = no_llseek, 1361 1362 .open = ffs_epfile_open, 1363 .write_iter = ffs_epfile_write_iter, 1364 .read_iter = ffs_epfile_read_iter, 1365 .release = ffs_epfile_release, 1366 .unlocked_ioctl = ffs_epfile_ioctl, 1367 #ifdef CONFIG_COMPAT 1368 .compat_ioctl = ffs_epfile_compat_ioctl, 1369 #endif 1370 }; 1371 1372 1373 /* File system and super block operations ***********************************/ 1374 1375 /* 1376 * Mounting the file system creates a controller file, used first for 1377 * function configuration then later for event monitoring. 1378 */ 1379 1380 static struct inode *__must_check 1381 ffs_sb_make_inode(struct super_block *sb, void *data, 1382 const struct file_operations *fops, 1383 const struct inode_operations *iops, 1384 struct ffs_file_perms *perms) 1385 { 1386 struct inode *inode; 1387 1388 ENTER(); 1389 1390 inode = new_inode(sb); 1391 1392 if (likely(inode)) { 1393 struct timespec64 ts = current_time(inode); 1394 1395 inode->i_ino = get_next_ino(); 1396 inode->i_mode = perms->mode; 1397 inode->i_uid = perms->uid; 1398 inode->i_gid = perms->gid; 1399 inode->i_atime = ts; 1400 inode->i_mtime = ts; 1401 inode->i_ctime = ts; 1402 inode->i_private = data; 1403 if (fops) 1404 inode->i_fop = fops; 1405 if (iops) 1406 inode->i_op = iops; 1407 } 1408 1409 return inode; 1410 } 1411 1412 /* Create "regular" file */ 1413 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1414 const char *name, void *data, 1415 const struct file_operations *fops) 1416 { 1417 struct ffs_data *ffs = sb->s_fs_info; 1418 struct dentry *dentry; 1419 struct inode *inode; 1420 1421 ENTER(); 1422 1423 dentry = d_alloc_name(sb->s_root, name); 1424 if (unlikely(!dentry)) 1425 return NULL; 1426 1427 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1428 if (unlikely(!inode)) { 1429 dput(dentry); 1430 return NULL; 1431 } 1432 1433 d_add(dentry, inode); 1434 return dentry; 1435 } 1436 1437 /* Super block */ 1438 static const struct super_operations ffs_sb_operations = { 1439 .statfs = simple_statfs, 1440 .drop_inode = generic_delete_inode, 1441 }; 1442 1443 struct ffs_sb_fill_data { 1444 struct ffs_file_perms perms; 1445 umode_t root_mode; 1446 const char *dev_name; 1447 bool no_disconnect; 1448 struct ffs_data *ffs_data; 1449 }; 1450 1451 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1452 { 1453 struct ffs_sb_fill_data *data = _data; 1454 struct inode *inode; 1455 struct ffs_data *ffs = data->ffs_data; 1456 1457 ENTER(); 1458 1459 ffs->sb = sb; 1460 data->ffs_data = NULL; 1461 sb->s_fs_info = ffs; 1462 sb->s_blocksize = PAGE_SIZE; 1463 sb->s_blocksize_bits = PAGE_SHIFT; 1464 sb->s_magic = FUNCTIONFS_MAGIC; 1465 sb->s_op = &ffs_sb_operations; 1466 sb->s_time_gran = 1; 1467 1468 /* Root inode */ 1469 data->perms.mode = data->root_mode; 1470 inode = ffs_sb_make_inode(sb, NULL, 1471 &simple_dir_operations, 1472 &simple_dir_inode_operations, 1473 &data->perms); 1474 sb->s_root = d_make_root(inode); 1475 if (unlikely(!sb->s_root)) 1476 return -ENOMEM; 1477 1478 /* EP0 file */ 1479 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1480 &ffs_ep0_operations))) 1481 return -ENOMEM; 1482 1483 return 0; 1484 } 1485 1486 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1487 { 1488 ENTER(); 1489 1490 if (!opts || !*opts) 1491 return 0; 1492 1493 for (;;) { 1494 unsigned long value; 1495 char *eq, *comma; 1496 1497 /* Option limit */ 1498 comma = strchr(opts, ','); 1499 if (comma) 1500 *comma = 0; 1501 1502 /* Value limit */ 1503 eq = strchr(opts, '='); 1504 if (unlikely(!eq)) { 1505 pr_err("'=' missing in %s\n", opts); 1506 return -EINVAL; 1507 } 1508 *eq = 0; 1509 1510 /* Parse value */ 1511 if (kstrtoul(eq + 1, 0, &value)) { 1512 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1513 return -EINVAL; 1514 } 1515 1516 /* Interpret option */ 1517 switch (eq - opts) { 1518 case 13: 1519 if (!memcmp(opts, "no_disconnect", 13)) 1520 data->no_disconnect = !!value; 1521 else 1522 goto invalid; 1523 break; 1524 case 5: 1525 if (!memcmp(opts, "rmode", 5)) 1526 data->root_mode = (value & 0555) | S_IFDIR; 1527 else if (!memcmp(opts, "fmode", 5)) 1528 data->perms.mode = (value & 0666) | S_IFREG; 1529 else 1530 goto invalid; 1531 break; 1532 1533 case 4: 1534 if (!memcmp(opts, "mode", 4)) { 1535 data->root_mode = (value & 0555) | S_IFDIR; 1536 data->perms.mode = (value & 0666) | S_IFREG; 1537 } else { 1538 goto invalid; 1539 } 1540 break; 1541 1542 case 3: 1543 if (!memcmp(opts, "uid", 3)) { 1544 data->perms.uid = make_kuid(current_user_ns(), value); 1545 if (!uid_valid(data->perms.uid)) { 1546 pr_err("%s: unmapped value: %lu\n", opts, value); 1547 return -EINVAL; 1548 } 1549 } else if (!memcmp(opts, "gid", 3)) { 1550 data->perms.gid = make_kgid(current_user_ns(), value); 1551 if (!gid_valid(data->perms.gid)) { 1552 pr_err("%s: unmapped value: %lu\n", opts, value); 1553 return -EINVAL; 1554 } 1555 } else { 1556 goto invalid; 1557 } 1558 break; 1559 1560 default: 1561 invalid: 1562 pr_err("%s: invalid option\n", opts); 1563 return -EINVAL; 1564 } 1565 1566 /* Next iteration */ 1567 if (!comma) 1568 break; 1569 opts = comma + 1; 1570 } 1571 1572 return 0; 1573 } 1574 1575 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1576 1577 static struct dentry * 1578 ffs_fs_mount(struct file_system_type *t, int flags, 1579 const char *dev_name, void *opts) 1580 { 1581 struct ffs_sb_fill_data data = { 1582 .perms = { 1583 .mode = S_IFREG | 0600, 1584 .uid = GLOBAL_ROOT_UID, 1585 .gid = GLOBAL_ROOT_GID, 1586 }, 1587 .root_mode = S_IFDIR | 0500, 1588 .no_disconnect = false, 1589 }; 1590 struct dentry *rv; 1591 int ret; 1592 void *ffs_dev; 1593 struct ffs_data *ffs; 1594 1595 ENTER(); 1596 1597 ret = ffs_fs_parse_opts(&data, opts); 1598 if (unlikely(ret < 0)) 1599 return ERR_PTR(ret); 1600 1601 ffs = ffs_data_new(dev_name); 1602 if (unlikely(!ffs)) 1603 return ERR_PTR(-ENOMEM); 1604 ffs->file_perms = data.perms; 1605 ffs->no_disconnect = data.no_disconnect; 1606 1607 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1608 if (unlikely(!ffs->dev_name)) { 1609 ffs_data_put(ffs); 1610 return ERR_PTR(-ENOMEM); 1611 } 1612 1613 ffs_dev = ffs_acquire_dev(dev_name); 1614 if (IS_ERR(ffs_dev)) { 1615 ffs_data_put(ffs); 1616 return ERR_CAST(ffs_dev); 1617 } 1618 ffs->private_data = ffs_dev; 1619 data.ffs_data = ffs; 1620 1621 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1622 if (IS_ERR(rv) && data.ffs_data) { 1623 ffs_release_dev(data.ffs_data); 1624 ffs_data_put(data.ffs_data); 1625 } 1626 return rv; 1627 } 1628 1629 static void 1630 ffs_fs_kill_sb(struct super_block *sb) 1631 { 1632 ENTER(); 1633 1634 kill_litter_super(sb); 1635 if (sb->s_fs_info) { 1636 ffs_release_dev(sb->s_fs_info); 1637 ffs_data_closed(sb->s_fs_info); 1638 } 1639 } 1640 1641 static struct file_system_type ffs_fs_type = { 1642 .owner = THIS_MODULE, 1643 .name = "functionfs", 1644 .mount = ffs_fs_mount, 1645 .kill_sb = ffs_fs_kill_sb, 1646 }; 1647 MODULE_ALIAS_FS("functionfs"); 1648 1649 1650 /* Driver's main init/cleanup functions *************************************/ 1651 1652 static int functionfs_init(void) 1653 { 1654 int ret; 1655 1656 ENTER(); 1657 1658 ret = register_filesystem(&ffs_fs_type); 1659 if (likely(!ret)) 1660 pr_info("file system registered\n"); 1661 else 1662 pr_err("failed registering file system (%d)\n", ret); 1663 1664 return ret; 1665 } 1666 1667 static void functionfs_cleanup(void) 1668 { 1669 ENTER(); 1670 1671 pr_info("unloading\n"); 1672 unregister_filesystem(&ffs_fs_type); 1673 } 1674 1675 1676 /* ffs_data and ffs_function construction and destruction code **************/ 1677 1678 static void ffs_data_clear(struct ffs_data *ffs); 1679 static void ffs_data_reset(struct ffs_data *ffs); 1680 1681 static void ffs_data_get(struct ffs_data *ffs) 1682 { 1683 ENTER(); 1684 1685 refcount_inc(&ffs->ref); 1686 } 1687 1688 static void ffs_data_opened(struct ffs_data *ffs) 1689 { 1690 ENTER(); 1691 1692 refcount_inc(&ffs->ref); 1693 if (atomic_add_return(1, &ffs->opened) == 1 && 1694 ffs->state == FFS_DEACTIVATED) { 1695 ffs->state = FFS_CLOSING; 1696 ffs_data_reset(ffs); 1697 } 1698 } 1699 1700 static void ffs_data_put(struct ffs_data *ffs) 1701 { 1702 ENTER(); 1703 1704 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1705 pr_info("%s(): freeing\n", __func__); 1706 ffs_data_clear(ffs); 1707 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1708 waitqueue_active(&ffs->ep0req_completion.wait) || 1709 waitqueue_active(&ffs->wait)); 1710 destroy_workqueue(ffs->io_completion_wq); 1711 kfree(ffs->dev_name); 1712 kfree(ffs); 1713 } 1714 } 1715 1716 static void ffs_data_closed(struct ffs_data *ffs) 1717 { 1718 ENTER(); 1719 1720 if (atomic_dec_and_test(&ffs->opened)) { 1721 if (ffs->no_disconnect) { 1722 ffs->state = FFS_DEACTIVATED; 1723 if (ffs->epfiles) { 1724 ffs_epfiles_destroy(ffs->epfiles, 1725 ffs->eps_count); 1726 ffs->epfiles = NULL; 1727 } 1728 if (ffs->setup_state == FFS_SETUP_PENDING) 1729 __ffs_ep0_stall(ffs); 1730 } else { 1731 ffs->state = FFS_CLOSING; 1732 ffs_data_reset(ffs); 1733 } 1734 } 1735 if (atomic_read(&ffs->opened) < 0) { 1736 ffs->state = FFS_CLOSING; 1737 ffs_data_reset(ffs); 1738 } 1739 1740 ffs_data_put(ffs); 1741 } 1742 1743 static struct ffs_data *ffs_data_new(const char *dev_name) 1744 { 1745 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1746 if (unlikely(!ffs)) 1747 return NULL; 1748 1749 ENTER(); 1750 1751 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1752 if (!ffs->io_completion_wq) { 1753 kfree(ffs); 1754 return NULL; 1755 } 1756 1757 refcount_set(&ffs->ref, 1); 1758 atomic_set(&ffs->opened, 0); 1759 ffs->state = FFS_READ_DESCRIPTORS; 1760 mutex_init(&ffs->mutex); 1761 spin_lock_init(&ffs->eps_lock); 1762 init_waitqueue_head(&ffs->ev.waitq); 1763 init_waitqueue_head(&ffs->wait); 1764 init_completion(&ffs->ep0req_completion); 1765 1766 /* XXX REVISIT need to update it in some places, or do we? */ 1767 ffs->ev.can_stall = 1; 1768 1769 return ffs; 1770 } 1771 1772 static void ffs_data_clear(struct ffs_data *ffs) 1773 { 1774 ENTER(); 1775 1776 ffs_closed(ffs); 1777 1778 BUG_ON(ffs->gadget); 1779 1780 if (ffs->epfiles) 1781 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1782 1783 if (ffs->ffs_eventfd) 1784 eventfd_ctx_put(ffs->ffs_eventfd); 1785 1786 kfree(ffs->raw_descs_data); 1787 kfree(ffs->raw_strings); 1788 kfree(ffs->stringtabs); 1789 } 1790 1791 static void ffs_data_reset(struct ffs_data *ffs) 1792 { 1793 ENTER(); 1794 1795 ffs_data_clear(ffs); 1796 1797 ffs->epfiles = NULL; 1798 ffs->raw_descs_data = NULL; 1799 ffs->raw_descs = NULL; 1800 ffs->raw_strings = NULL; 1801 ffs->stringtabs = NULL; 1802 1803 ffs->raw_descs_length = 0; 1804 ffs->fs_descs_count = 0; 1805 ffs->hs_descs_count = 0; 1806 ffs->ss_descs_count = 0; 1807 1808 ffs->strings_count = 0; 1809 ffs->interfaces_count = 0; 1810 ffs->eps_count = 0; 1811 1812 ffs->ev.count = 0; 1813 1814 ffs->state = FFS_READ_DESCRIPTORS; 1815 ffs->setup_state = FFS_NO_SETUP; 1816 ffs->flags = 0; 1817 } 1818 1819 1820 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1821 { 1822 struct usb_gadget_strings **lang; 1823 int first_id; 1824 1825 ENTER(); 1826 1827 if (WARN_ON(ffs->state != FFS_ACTIVE 1828 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1829 return -EBADFD; 1830 1831 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1832 if (unlikely(first_id < 0)) 1833 return first_id; 1834 1835 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1836 if (unlikely(!ffs->ep0req)) 1837 return -ENOMEM; 1838 ffs->ep0req->complete = ffs_ep0_complete; 1839 ffs->ep0req->context = ffs; 1840 1841 lang = ffs->stringtabs; 1842 if (lang) { 1843 for (; *lang; ++lang) { 1844 struct usb_string *str = (*lang)->strings; 1845 int id = first_id; 1846 for (; str->s; ++id, ++str) 1847 str->id = id; 1848 } 1849 } 1850 1851 ffs->gadget = cdev->gadget; 1852 ffs_data_get(ffs); 1853 return 0; 1854 } 1855 1856 static void functionfs_unbind(struct ffs_data *ffs) 1857 { 1858 ENTER(); 1859 1860 if (!WARN_ON(!ffs->gadget)) { 1861 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1862 ffs->ep0req = NULL; 1863 ffs->gadget = NULL; 1864 clear_bit(FFS_FL_BOUND, &ffs->flags); 1865 ffs_data_put(ffs); 1866 } 1867 } 1868 1869 static int ffs_epfiles_create(struct ffs_data *ffs) 1870 { 1871 struct ffs_epfile *epfile, *epfiles; 1872 unsigned i, count; 1873 1874 ENTER(); 1875 1876 count = ffs->eps_count; 1877 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1878 if (!epfiles) 1879 return -ENOMEM; 1880 1881 epfile = epfiles; 1882 for (i = 1; i <= count; ++i, ++epfile) { 1883 epfile->ffs = ffs; 1884 mutex_init(&epfile->mutex); 1885 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1886 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1887 else 1888 sprintf(epfile->name, "ep%u", i); 1889 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1890 epfile, 1891 &ffs_epfile_operations); 1892 if (unlikely(!epfile->dentry)) { 1893 ffs_epfiles_destroy(epfiles, i - 1); 1894 return -ENOMEM; 1895 } 1896 } 1897 1898 ffs->epfiles = epfiles; 1899 return 0; 1900 } 1901 1902 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1903 { 1904 struct ffs_epfile *epfile = epfiles; 1905 1906 ENTER(); 1907 1908 for (; count; --count, ++epfile) { 1909 BUG_ON(mutex_is_locked(&epfile->mutex)); 1910 if (epfile->dentry) { 1911 d_delete(epfile->dentry); 1912 dput(epfile->dentry); 1913 epfile->dentry = NULL; 1914 } 1915 } 1916 1917 kfree(epfiles); 1918 } 1919 1920 static void ffs_func_eps_disable(struct ffs_function *func) 1921 { 1922 struct ffs_ep *ep = func->eps; 1923 struct ffs_epfile *epfile = func->ffs->epfiles; 1924 unsigned count = func->ffs->eps_count; 1925 unsigned long flags; 1926 1927 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1928 while (count--) { 1929 /* pending requests get nuked */ 1930 if (likely(ep->ep)) 1931 usb_ep_disable(ep->ep); 1932 ++ep; 1933 1934 if (epfile) { 1935 epfile->ep = NULL; 1936 __ffs_epfile_read_buffer_free(epfile); 1937 ++epfile; 1938 } 1939 } 1940 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1941 } 1942 1943 static int ffs_func_eps_enable(struct ffs_function *func) 1944 { 1945 struct ffs_data *ffs = func->ffs; 1946 struct ffs_ep *ep = func->eps; 1947 struct ffs_epfile *epfile = ffs->epfiles; 1948 unsigned count = ffs->eps_count; 1949 unsigned long flags; 1950 int ret = 0; 1951 1952 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1953 while(count--) { 1954 ep->ep->driver_data = ep; 1955 1956 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1957 if (ret) { 1958 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1959 __func__, ep->ep->name, ret); 1960 break; 1961 } 1962 1963 ret = usb_ep_enable(ep->ep); 1964 if (likely(!ret)) { 1965 epfile->ep = ep; 1966 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1967 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1968 } else { 1969 break; 1970 } 1971 1972 ++ep; 1973 ++epfile; 1974 } 1975 1976 wake_up_interruptible(&ffs->wait); 1977 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1978 1979 return ret; 1980 } 1981 1982 1983 /* Parsing and building descriptors and strings *****************************/ 1984 1985 /* 1986 * This validates if data pointed by data is a valid USB descriptor as 1987 * well as record how many interfaces, endpoints and strings are 1988 * required by given configuration. Returns address after the 1989 * descriptor or NULL if data is invalid. 1990 */ 1991 1992 enum ffs_entity_type { 1993 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1994 }; 1995 1996 enum ffs_os_desc_type { 1997 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1998 }; 1999 2000 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2001 u8 *valuep, 2002 struct usb_descriptor_header *desc, 2003 void *priv); 2004 2005 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2006 struct usb_os_desc_header *h, void *data, 2007 unsigned len, void *priv); 2008 2009 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2010 ffs_entity_callback entity, 2011 void *priv, int *current_class) 2012 { 2013 struct usb_descriptor_header *_ds = (void *)data; 2014 u8 length; 2015 int ret; 2016 2017 ENTER(); 2018 2019 /* At least two bytes are required: length and type */ 2020 if (len < 2) { 2021 pr_vdebug("descriptor too short\n"); 2022 return -EINVAL; 2023 } 2024 2025 /* If we have at least as many bytes as the descriptor takes? */ 2026 length = _ds->bLength; 2027 if (len < length) { 2028 pr_vdebug("descriptor longer then available data\n"); 2029 return -EINVAL; 2030 } 2031 2032 #define __entity_check_INTERFACE(val) 1 2033 #define __entity_check_STRING(val) (val) 2034 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2035 #define __entity(type, val) do { \ 2036 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2037 if (unlikely(!__entity_check_ ##type(val))) { \ 2038 pr_vdebug("invalid entity's value\n"); \ 2039 return -EINVAL; \ 2040 } \ 2041 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2042 if (unlikely(ret < 0)) { \ 2043 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2044 (val), ret); \ 2045 return ret; \ 2046 } \ 2047 } while (0) 2048 2049 /* Parse descriptor depending on type. */ 2050 switch (_ds->bDescriptorType) { 2051 case USB_DT_DEVICE: 2052 case USB_DT_CONFIG: 2053 case USB_DT_STRING: 2054 case USB_DT_DEVICE_QUALIFIER: 2055 /* function can't have any of those */ 2056 pr_vdebug("descriptor reserved for gadget: %d\n", 2057 _ds->bDescriptorType); 2058 return -EINVAL; 2059 2060 case USB_DT_INTERFACE: { 2061 struct usb_interface_descriptor *ds = (void *)_ds; 2062 pr_vdebug("interface descriptor\n"); 2063 if (length != sizeof *ds) 2064 goto inv_length; 2065 2066 __entity(INTERFACE, ds->bInterfaceNumber); 2067 if (ds->iInterface) 2068 __entity(STRING, ds->iInterface); 2069 *current_class = ds->bInterfaceClass; 2070 } 2071 break; 2072 2073 case USB_DT_ENDPOINT: { 2074 struct usb_endpoint_descriptor *ds = (void *)_ds; 2075 pr_vdebug("endpoint descriptor\n"); 2076 if (length != USB_DT_ENDPOINT_SIZE && 2077 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2078 goto inv_length; 2079 __entity(ENDPOINT, ds->bEndpointAddress); 2080 } 2081 break; 2082 2083 case USB_TYPE_CLASS | 0x01: 2084 if (*current_class == USB_INTERFACE_CLASS_HID) { 2085 pr_vdebug("hid descriptor\n"); 2086 if (length != sizeof(struct hid_descriptor)) 2087 goto inv_length; 2088 break; 2089 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2090 pr_vdebug("ccid descriptor\n"); 2091 if (length != sizeof(struct ccid_descriptor)) 2092 goto inv_length; 2093 break; 2094 } else { 2095 pr_vdebug("unknown descriptor: %d for class %d\n", 2096 _ds->bDescriptorType, *current_class); 2097 return -EINVAL; 2098 } 2099 2100 case USB_DT_OTG: 2101 if (length != sizeof(struct usb_otg_descriptor)) 2102 goto inv_length; 2103 break; 2104 2105 case USB_DT_INTERFACE_ASSOCIATION: { 2106 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2107 pr_vdebug("interface association descriptor\n"); 2108 if (length != sizeof *ds) 2109 goto inv_length; 2110 if (ds->iFunction) 2111 __entity(STRING, ds->iFunction); 2112 } 2113 break; 2114 2115 case USB_DT_SS_ENDPOINT_COMP: 2116 pr_vdebug("EP SS companion descriptor\n"); 2117 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2118 goto inv_length; 2119 break; 2120 2121 case USB_DT_OTHER_SPEED_CONFIG: 2122 case USB_DT_INTERFACE_POWER: 2123 case USB_DT_DEBUG: 2124 case USB_DT_SECURITY: 2125 case USB_DT_CS_RADIO_CONTROL: 2126 /* TODO */ 2127 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2128 return -EINVAL; 2129 2130 default: 2131 /* We should never be here */ 2132 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2133 return -EINVAL; 2134 2135 inv_length: 2136 pr_vdebug("invalid length: %d (descriptor %d)\n", 2137 _ds->bLength, _ds->bDescriptorType); 2138 return -EINVAL; 2139 } 2140 2141 #undef __entity 2142 #undef __entity_check_DESCRIPTOR 2143 #undef __entity_check_INTERFACE 2144 #undef __entity_check_STRING 2145 #undef __entity_check_ENDPOINT 2146 2147 return length; 2148 } 2149 2150 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2151 ffs_entity_callback entity, void *priv) 2152 { 2153 const unsigned _len = len; 2154 unsigned long num = 0; 2155 int current_class = -1; 2156 2157 ENTER(); 2158 2159 for (;;) { 2160 int ret; 2161 2162 if (num == count) 2163 data = NULL; 2164 2165 /* Record "descriptor" entity */ 2166 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2167 if (unlikely(ret < 0)) { 2168 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2169 num, ret); 2170 return ret; 2171 } 2172 2173 if (!data) 2174 return _len - len; 2175 2176 ret = ffs_do_single_desc(data, len, entity, priv, 2177 ¤t_class); 2178 if (unlikely(ret < 0)) { 2179 pr_debug("%s returns %d\n", __func__, ret); 2180 return ret; 2181 } 2182 2183 len -= ret; 2184 data += ret; 2185 ++num; 2186 } 2187 } 2188 2189 static int __ffs_data_do_entity(enum ffs_entity_type type, 2190 u8 *valuep, struct usb_descriptor_header *desc, 2191 void *priv) 2192 { 2193 struct ffs_desc_helper *helper = priv; 2194 struct usb_endpoint_descriptor *d; 2195 2196 ENTER(); 2197 2198 switch (type) { 2199 case FFS_DESCRIPTOR: 2200 break; 2201 2202 case FFS_INTERFACE: 2203 /* 2204 * Interfaces are indexed from zero so if we 2205 * encountered interface "n" then there are at least 2206 * "n+1" interfaces. 2207 */ 2208 if (*valuep >= helper->interfaces_count) 2209 helper->interfaces_count = *valuep + 1; 2210 break; 2211 2212 case FFS_STRING: 2213 /* 2214 * Strings are indexed from 1 (0 is reserved 2215 * for languages list) 2216 */ 2217 if (*valuep > helper->ffs->strings_count) 2218 helper->ffs->strings_count = *valuep; 2219 break; 2220 2221 case FFS_ENDPOINT: 2222 d = (void *)desc; 2223 helper->eps_count++; 2224 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2225 return -EINVAL; 2226 /* Check if descriptors for any speed were already parsed */ 2227 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2228 helper->ffs->eps_addrmap[helper->eps_count] = 2229 d->bEndpointAddress; 2230 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2231 d->bEndpointAddress) 2232 return -EINVAL; 2233 break; 2234 } 2235 2236 return 0; 2237 } 2238 2239 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2240 struct usb_os_desc_header *desc) 2241 { 2242 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2243 u16 w_index = le16_to_cpu(desc->wIndex); 2244 2245 if (bcd_version != 1) { 2246 pr_vdebug("unsupported os descriptors version: %d", 2247 bcd_version); 2248 return -EINVAL; 2249 } 2250 switch (w_index) { 2251 case 0x4: 2252 *next_type = FFS_OS_DESC_EXT_COMPAT; 2253 break; 2254 case 0x5: 2255 *next_type = FFS_OS_DESC_EXT_PROP; 2256 break; 2257 default: 2258 pr_vdebug("unsupported os descriptor type: %d", w_index); 2259 return -EINVAL; 2260 } 2261 2262 return sizeof(*desc); 2263 } 2264 2265 /* 2266 * Process all extended compatibility/extended property descriptors 2267 * of a feature descriptor 2268 */ 2269 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2270 enum ffs_os_desc_type type, 2271 u16 feature_count, 2272 ffs_os_desc_callback entity, 2273 void *priv, 2274 struct usb_os_desc_header *h) 2275 { 2276 int ret; 2277 const unsigned _len = len; 2278 2279 ENTER(); 2280 2281 /* loop over all ext compat/ext prop descriptors */ 2282 while (feature_count--) { 2283 ret = entity(type, h, data, len, priv); 2284 if (unlikely(ret < 0)) { 2285 pr_debug("bad OS descriptor, type: %d\n", type); 2286 return ret; 2287 } 2288 data += ret; 2289 len -= ret; 2290 } 2291 return _len - len; 2292 } 2293 2294 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2295 static int __must_check ffs_do_os_descs(unsigned count, 2296 char *data, unsigned len, 2297 ffs_os_desc_callback entity, void *priv) 2298 { 2299 const unsigned _len = len; 2300 unsigned long num = 0; 2301 2302 ENTER(); 2303 2304 for (num = 0; num < count; ++num) { 2305 int ret; 2306 enum ffs_os_desc_type type; 2307 u16 feature_count; 2308 struct usb_os_desc_header *desc = (void *)data; 2309 2310 if (len < sizeof(*desc)) 2311 return -EINVAL; 2312 2313 /* 2314 * Record "descriptor" entity. 2315 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2316 * Move the data pointer to the beginning of extended 2317 * compatibilities proper or extended properties proper 2318 * portions of the data 2319 */ 2320 if (le32_to_cpu(desc->dwLength) > len) 2321 return -EINVAL; 2322 2323 ret = __ffs_do_os_desc_header(&type, desc); 2324 if (unlikely(ret < 0)) { 2325 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2326 num, ret); 2327 return ret; 2328 } 2329 /* 2330 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2331 */ 2332 feature_count = le16_to_cpu(desc->wCount); 2333 if (type == FFS_OS_DESC_EXT_COMPAT && 2334 (feature_count > 255 || desc->Reserved)) 2335 return -EINVAL; 2336 len -= ret; 2337 data += ret; 2338 2339 /* 2340 * Process all function/property descriptors 2341 * of this Feature Descriptor 2342 */ 2343 ret = ffs_do_single_os_desc(data, len, type, 2344 feature_count, entity, priv, desc); 2345 if (unlikely(ret < 0)) { 2346 pr_debug("%s returns %d\n", __func__, ret); 2347 return ret; 2348 } 2349 2350 len -= ret; 2351 data += ret; 2352 } 2353 return _len - len; 2354 } 2355 2356 /** 2357 * Validate contents of the buffer from userspace related to OS descriptors. 2358 */ 2359 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2360 struct usb_os_desc_header *h, void *data, 2361 unsigned len, void *priv) 2362 { 2363 struct ffs_data *ffs = priv; 2364 u8 length; 2365 2366 ENTER(); 2367 2368 switch (type) { 2369 case FFS_OS_DESC_EXT_COMPAT: { 2370 struct usb_ext_compat_desc *d = data; 2371 int i; 2372 2373 if (len < sizeof(*d) || 2374 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2375 return -EINVAL; 2376 if (d->Reserved1 != 1) { 2377 /* 2378 * According to the spec, Reserved1 must be set to 1 2379 * but older kernels incorrectly rejected non-zero 2380 * values. We fix it here to avoid returning EINVAL 2381 * in response to values we used to accept. 2382 */ 2383 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2384 d->Reserved1 = 1; 2385 } 2386 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2387 if (d->Reserved2[i]) 2388 return -EINVAL; 2389 2390 length = sizeof(struct usb_ext_compat_desc); 2391 } 2392 break; 2393 case FFS_OS_DESC_EXT_PROP: { 2394 struct usb_ext_prop_desc *d = data; 2395 u32 type, pdl; 2396 u16 pnl; 2397 2398 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2399 return -EINVAL; 2400 length = le32_to_cpu(d->dwSize); 2401 if (len < length) 2402 return -EINVAL; 2403 type = le32_to_cpu(d->dwPropertyDataType); 2404 if (type < USB_EXT_PROP_UNICODE || 2405 type > USB_EXT_PROP_UNICODE_MULTI) { 2406 pr_vdebug("unsupported os descriptor property type: %d", 2407 type); 2408 return -EINVAL; 2409 } 2410 pnl = le16_to_cpu(d->wPropertyNameLength); 2411 if (length < 14 + pnl) { 2412 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2413 length, pnl, type); 2414 return -EINVAL; 2415 } 2416 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2417 if (length != 14 + pnl + pdl) { 2418 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2419 length, pnl, pdl, type); 2420 return -EINVAL; 2421 } 2422 ++ffs->ms_os_descs_ext_prop_count; 2423 /* property name reported to the host as "WCHAR"s */ 2424 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2425 ffs->ms_os_descs_ext_prop_data_len += pdl; 2426 } 2427 break; 2428 default: 2429 pr_vdebug("unknown descriptor: %d\n", type); 2430 return -EINVAL; 2431 } 2432 return length; 2433 } 2434 2435 static int __ffs_data_got_descs(struct ffs_data *ffs, 2436 char *const _data, size_t len) 2437 { 2438 char *data = _data, *raw_descs; 2439 unsigned os_descs_count = 0, counts[3], flags; 2440 int ret = -EINVAL, i; 2441 struct ffs_desc_helper helper; 2442 2443 ENTER(); 2444 2445 if (get_unaligned_le32(data + 4) != len) 2446 goto error; 2447 2448 switch (get_unaligned_le32(data)) { 2449 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2450 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2451 data += 8; 2452 len -= 8; 2453 break; 2454 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2455 flags = get_unaligned_le32(data + 8); 2456 ffs->user_flags = flags; 2457 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2458 FUNCTIONFS_HAS_HS_DESC | 2459 FUNCTIONFS_HAS_SS_DESC | 2460 FUNCTIONFS_HAS_MS_OS_DESC | 2461 FUNCTIONFS_VIRTUAL_ADDR | 2462 FUNCTIONFS_EVENTFD | 2463 FUNCTIONFS_ALL_CTRL_RECIP | 2464 FUNCTIONFS_CONFIG0_SETUP)) { 2465 ret = -ENOSYS; 2466 goto error; 2467 } 2468 data += 12; 2469 len -= 12; 2470 break; 2471 default: 2472 goto error; 2473 } 2474 2475 if (flags & FUNCTIONFS_EVENTFD) { 2476 if (len < 4) 2477 goto error; 2478 ffs->ffs_eventfd = 2479 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2480 if (IS_ERR(ffs->ffs_eventfd)) { 2481 ret = PTR_ERR(ffs->ffs_eventfd); 2482 ffs->ffs_eventfd = NULL; 2483 goto error; 2484 } 2485 data += 4; 2486 len -= 4; 2487 } 2488 2489 /* Read fs_count, hs_count and ss_count (if present) */ 2490 for (i = 0; i < 3; ++i) { 2491 if (!(flags & (1 << i))) { 2492 counts[i] = 0; 2493 } else if (len < 4) { 2494 goto error; 2495 } else { 2496 counts[i] = get_unaligned_le32(data); 2497 data += 4; 2498 len -= 4; 2499 } 2500 } 2501 if (flags & (1 << i)) { 2502 if (len < 4) { 2503 goto error; 2504 } 2505 os_descs_count = get_unaligned_le32(data); 2506 data += 4; 2507 len -= 4; 2508 }; 2509 2510 /* Read descriptors */ 2511 raw_descs = data; 2512 helper.ffs = ffs; 2513 for (i = 0; i < 3; ++i) { 2514 if (!counts[i]) 2515 continue; 2516 helper.interfaces_count = 0; 2517 helper.eps_count = 0; 2518 ret = ffs_do_descs(counts[i], data, len, 2519 __ffs_data_do_entity, &helper); 2520 if (ret < 0) 2521 goto error; 2522 if (!ffs->eps_count && !ffs->interfaces_count) { 2523 ffs->eps_count = helper.eps_count; 2524 ffs->interfaces_count = helper.interfaces_count; 2525 } else { 2526 if (ffs->eps_count != helper.eps_count) { 2527 ret = -EINVAL; 2528 goto error; 2529 } 2530 if (ffs->interfaces_count != helper.interfaces_count) { 2531 ret = -EINVAL; 2532 goto error; 2533 } 2534 } 2535 data += ret; 2536 len -= ret; 2537 } 2538 if (os_descs_count) { 2539 ret = ffs_do_os_descs(os_descs_count, data, len, 2540 __ffs_data_do_os_desc, ffs); 2541 if (ret < 0) 2542 goto error; 2543 data += ret; 2544 len -= ret; 2545 } 2546 2547 if (raw_descs == data || len) { 2548 ret = -EINVAL; 2549 goto error; 2550 } 2551 2552 ffs->raw_descs_data = _data; 2553 ffs->raw_descs = raw_descs; 2554 ffs->raw_descs_length = data - raw_descs; 2555 ffs->fs_descs_count = counts[0]; 2556 ffs->hs_descs_count = counts[1]; 2557 ffs->ss_descs_count = counts[2]; 2558 ffs->ms_os_descs_count = os_descs_count; 2559 2560 return 0; 2561 2562 error: 2563 kfree(_data); 2564 return ret; 2565 } 2566 2567 static int __ffs_data_got_strings(struct ffs_data *ffs, 2568 char *const _data, size_t len) 2569 { 2570 u32 str_count, needed_count, lang_count; 2571 struct usb_gadget_strings **stringtabs, *t; 2572 const char *data = _data; 2573 struct usb_string *s; 2574 2575 ENTER(); 2576 2577 if (unlikely(len < 16 || 2578 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2579 get_unaligned_le32(data + 4) != len)) 2580 goto error; 2581 str_count = get_unaligned_le32(data + 8); 2582 lang_count = get_unaligned_le32(data + 12); 2583 2584 /* if one is zero the other must be zero */ 2585 if (unlikely(!str_count != !lang_count)) 2586 goto error; 2587 2588 /* Do we have at least as many strings as descriptors need? */ 2589 needed_count = ffs->strings_count; 2590 if (unlikely(str_count < needed_count)) 2591 goto error; 2592 2593 /* 2594 * If we don't need any strings just return and free all 2595 * memory. 2596 */ 2597 if (!needed_count) { 2598 kfree(_data); 2599 return 0; 2600 } 2601 2602 /* Allocate everything in one chunk so there's less maintenance. */ 2603 { 2604 unsigned i = 0; 2605 vla_group(d); 2606 vla_item(d, struct usb_gadget_strings *, stringtabs, 2607 lang_count + 1); 2608 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2609 vla_item(d, struct usb_string, strings, 2610 lang_count*(needed_count+1)); 2611 2612 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2613 2614 if (unlikely(!vlabuf)) { 2615 kfree(_data); 2616 return -ENOMEM; 2617 } 2618 2619 /* Initialize the VLA pointers */ 2620 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2621 t = vla_ptr(vlabuf, d, stringtab); 2622 i = lang_count; 2623 do { 2624 *stringtabs++ = t++; 2625 } while (--i); 2626 *stringtabs = NULL; 2627 2628 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2629 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2630 t = vla_ptr(vlabuf, d, stringtab); 2631 s = vla_ptr(vlabuf, d, strings); 2632 } 2633 2634 /* For each language */ 2635 data += 16; 2636 len -= 16; 2637 2638 do { /* lang_count > 0 so we can use do-while */ 2639 unsigned needed = needed_count; 2640 2641 if (unlikely(len < 3)) 2642 goto error_free; 2643 t->language = get_unaligned_le16(data); 2644 t->strings = s; 2645 ++t; 2646 2647 data += 2; 2648 len -= 2; 2649 2650 /* For each string */ 2651 do { /* str_count > 0 so we can use do-while */ 2652 size_t length = strnlen(data, len); 2653 2654 if (unlikely(length == len)) 2655 goto error_free; 2656 2657 /* 2658 * User may provide more strings then we need, 2659 * if that's the case we simply ignore the 2660 * rest 2661 */ 2662 if (likely(needed)) { 2663 /* 2664 * s->id will be set while adding 2665 * function to configuration so for 2666 * now just leave garbage here. 2667 */ 2668 s->s = data; 2669 --needed; 2670 ++s; 2671 } 2672 2673 data += length + 1; 2674 len -= length + 1; 2675 } while (--str_count); 2676 2677 s->id = 0; /* terminator */ 2678 s->s = NULL; 2679 ++s; 2680 2681 } while (--lang_count); 2682 2683 /* Some garbage left? */ 2684 if (unlikely(len)) 2685 goto error_free; 2686 2687 /* Done! */ 2688 ffs->stringtabs = stringtabs; 2689 ffs->raw_strings = _data; 2690 2691 return 0; 2692 2693 error_free: 2694 kfree(stringtabs); 2695 error: 2696 kfree(_data); 2697 return -EINVAL; 2698 } 2699 2700 2701 /* Events handling and management *******************************************/ 2702 2703 static void __ffs_event_add(struct ffs_data *ffs, 2704 enum usb_functionfs_event_type type) 2705 { 2706 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2707 int neg = 0; 2708 2709 /* 2710 * Abort any unhandled setup 2711 * 2712 * We do not need to worry about some cmpxchg() changing value 2713 * of ffs->setup_state without holding the lock because when 2714 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2715 * the source does nothing. 2716 */ 2717 if (ffs->setup_state == FFS_SETUP_PENDING) 2718 ffs->setup_state = FFS_SETUP_CANCELLED; 2719 2720 /* 2721 * Logic of this function guarantees that there are at most four pending 2722 * evens on ffs->ev.types queue. This is important because the queue 2723 * has space for four elements only and __ffs_ep0_read_events function 2724 * depends on that limit as well. If more event types are added, those 2725 * limits have to be revisited or guaranteed to still hold. 2726 */ 2727 switch (type) { 2728 case FUNCTIONFS_RESUME: 2729 rem_type2 = FUNCTIONFS_SUSPEND; 2730 /* FALL THROUGH */ 2731 case FUNCTIONFS_SUSPEND: 2732 case FUNCTIONFS_SETUP: 2733 rem_type1 = type; 2734 /* Discard all similar events */ 2735 break; 2736 2737 case FUNCTIONFS_BIND: 2738 case FUNCTIONFS_UNBIND: 2739 case FUNCTIONFS_DISABLE: 2740 case FUNCTIONFS_ENABLE: 2741 /* Discard everything other then power management. */ 2742 rem_type1 = FUNCTIONFS_SUSPEND; 2743 rem_type2 = FUNCTIONFS_RESUME; 2744 neg = 1; 2745 break; 2746 2747 default: 2748 WARN(1, "%d: unknown event, this should not happen\n", type); 2749 return; 2750 } 2751 2752 { 2753 u8 *ev = ffs->ev.types, *out = ev; 2754 unsigned n = ffs->ev.count; 2755 for (; n; --n, ++ev) 2756 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2757 *out++ = *ev; 2758 else 2759 pr_vdebug("purging event %d\n", *ev); 2760 ffs->ev.count = out - ffs->ev.types; 2761 } 2762 2763 pr_vdebug("adding event %d\n", type); 2764 ffs->ev.types[ffs->ev.count++] = type; 2765 wake_up_locked(&ffs->ev.waitq); 2766 if (ffs->ffs_eventfd) 2767 eventfd_signal(ffs->ffs_eventfd, 1); 2768 } 2769 2770 static void ffs_event_add(struct ffs_data *ffs, 2771 enum usb_functionfs_event_type type) 2772 { 2773 unsigned long flags; 2774 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2775 __ffs_event_add(ffs, type); 2776 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2777 } 2778 2779 /* Bind/unbind USB function hooks *******************************************/ 2780 2781 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2782 { 2783 int i; 2784 2785 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2786 if (ffs->eps_addrmap[i] == endpoint_address) 2787 return i; 2788 return -ENOENT; 2789 } 2790 2791 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2792 struct usb_descriptor_header *desc, 2793 void *priv) 2794 { 2795 struct usb_endpoint_descriptor *ds = (void *)desc; 2796 struct ffs_function *func = priv; 2797 struct ffs_ep *ffs_ep; 2798 unsigned ep_desc_id; 2799 int idx; 2800 static const char *speed_names[] = { "full", "high", "super" }; 2801 2802 if (type != FFS_DESCRIPTOR) 2803 return 0; 2804 2805 /* 2806 * If ss_descriptors is not NULL, we are reading super speed 2807 * descriptors; if hs_descriptors is not NULL, we are reading high 2808 * speed descriptors; otherwise, we are reading full speed 2809 * descriptors. 2810 */ 2811 if (func->function.ss_descriptors) { 2812 ep_desc_id = 2; 2813 func->function.ss_descriptors[(long)valuep] = desc; 2814 } else if (func->function.hs_descriptors) { 2815 ep_desc_id = 1; 2816 func->function.hs_descriptors[(long)valuep] = desc; 2817 } else { 2818 ep_desc_id = 0; 2819 func->function.fs_descriptors[(long)valuep] = desc; 2820 } 2821 2822 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2823 return 0; 2824 2825 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2826 if (idx < 0) 2827 return idx; 2828 2829 ffs_ep = func->eps + idx; 2830 2831 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2832 pr_err("two %sspeed descriptors for EP %d\n", 2833 speed_names[ep_desc_id], 2834 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2835 return -EINVAL; 2836 } 2837 ffs_ep->descs[ep_desc_id] = ds; 2838 2839 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2840 if (ffs_ep->ep) { 2841 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2842 if (!ds->wMaxPacketSize) 2843 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2844 } else { 2845 struct usb_request *req; 2846 struct usb_ep *ep; 2847 u8 bEndpointAddress; 2848 u16 wMaxPacketSize; 2849 2850 /* 2851 * We back up bEndpointAddress because autoconfig overwrites 2852 * it with physical endpoint address. 2853 */ 2854 bEndpointAddress = ds->bEndpointAddress; 2855 /* 2856 * We back up wMaxPacketSize because autoconfig treats 2857 * endpoint descriptors as if they were full speed. 2858 */ 2859 wMaxPacketSize = ds->wMaxPacketSize; 2860 pr_vdebug("autoconfig\n"); 2861 ep = usb_ep_autoconfig(func->gadget, ds); 2862 if (unlikely(!ep)) 2863 return -ENOTSUPP; 2864 ep->driver_data = func->eps + idx; 2865 2866 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2867 if (unlikely(!req)) 2868 return -ENOMEM; 2869 2870 ffs_ep->ep = ep; 2871 ffs_ep->req = req; 2872 func->eps_revmap[ds->bEndpointAddress & 2873 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2874 /* 2875 * If we use virtual address mapping, we restore 2876 * original bEndpointAddress value. 2877 */ 2878 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2879 ds->bEndpointAddress = bEndpointAddress; 2880 /* 2881 * Restore wMaxPacketSize which was potentially 2882 * overwritten by autoconfig. 2883 */ 2884 ds->wMaxPacketSize = wMaxPacketSize; 2885 } 2886 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2887 2888 return 0; 2889 } 2890 2891 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2892 struct usb_descriptor_header *desc, 2893 void *priv) 2894 { 2895 struct ffs_function *func = priv; 2896 unsigned idx; 2897 u8 newValue; 2898 2899 switch (type) { 2900 default: 2901 case FFS_DESCRIPTOR: 2902 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2903 return 0; 2904 2905 case FFS_INTERFACE: 2906 idx = *valuep; 2907 if (func->interfaces_nums[idx] < 0) { 2908 int id = usb_interface_id(func->conf, &func->function); 2909 if (unlikely(id < 0)) 2910 return id; 2911 func->interfaces_nums[idx] = id; 2912 } 2913 newValue = func->interfaces_nums[idx]; 2914 break; 2915 2916 case FFS_STRING: 2917 /* String' IDs are allocated when fsf_data is bound to cdev */ 2918 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2919 break; 2920 2921 case FFS_ENDPOINT: 2922 /* 2923 * USB_DT_ENDPOINT are handled in 2924 * __ffs_func_bind_do_descs(). 2925 */ 2926 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2927 return 0; 2928 2929 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2930 if (unlikely(!func->eps[idx].ep)) 2931 return -EINVAL; 2932 2933 { 2934 struct usb_endpoint_descriptor **descs; 2935 descs = func->eps[idx].descs; 2936 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2937 } 2938 break; 2939 } 2940 2941 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2942 *valuep = newValue; 2943 return 0; 2944 } 2945 2946 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2947 struct usb_os_desc_header *h, void *data, 2948 unsigned len, void *priv) 2949 { 2950 struct ffs_function *func = priv; 2951 u8 length = 0; 2952 2953 switch (type) { 2954 case FFS_OS_DESC_EXT_COMPAT: { 2955 struct usb_ext_compat_desc *desc = data; 2956 struct usb_os_desc_table *t; 2957 2958 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2959 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2960 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2961 ARRAY_SIZE(desc->CompatibleID) + 2962 ARRAY_SIZE(desc->SubCompatibleID)); 2963 length = sizeof(*desc); 2964 } 2965 break; 2966 case FFS_OS_DESC_EXT_PROP: { 2967 struct usb_ext_prop_desc *desc = data; 2968 struct usb_os_desc_table *t; 2969 struct usb_os_desc_ext_prop *ext_prop; 2970 char *ext_prop_name; 2971 char *ext_prop_data; 2972 2973 t = &func->function.os_desc_table[h->interface]; 2974 t->if_id = func->interfaces_nums[h->interface]; 2975 2976 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2977 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2978 2979 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2980 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2981 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2982 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2983 length = ext_prop->name_len + ext_prop->data_len + 14; 2984 2985 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2986 func->ffs->ms_os_descs_ext_prop_name_avail += 2987 ext_prop->name_len; 2988 2989 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2990 func->ffs->ms_os_descs_ext_prop_data_avail += 2991 ext_prop->data_len; 2992 memcpy(ext_prop_data, 2993 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2994 ext_prop->data_len); 2995 /* unicode data reported to the host as "WCHAR"s */ 2996 switch (ext_prop->type) { 2997 case USB_EXT_PROP_UNICODE: 2998 case USB_EXT_PROP_UNICODE_ENV: 2999 case USB_EXT_PROP_UNICODE_LINK: 3000 case USB_EXT_PROP_UNICODE_MULTI: 3001 ext_prop->data_len *= 2; 3002 break; 3003 } 3004 ext_prop->data = ext_prop_data; 3005 3006 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3007 ext_prop->name_len); 3008 /* property name reported to the host as "WCHAR"s */ 3009 ext_prop->name_len *= 2; 3010 ext_prop->name = ext_prop_name; 3011 3012 t->os_desc->ext_prop_len += 3013 ext_prop->name_len + ext_prop->data_len + 14; 3014 ++t->os_desc->ext_prop_count; 3015 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3016 } 3017 break; 3018 default: 3019 pr_vdebug("unknown descriptor: %d\n", type); 3020 } 3021 3022 return length; 3023 } 3024 3025 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3026 struct usb_configuration *c) 3027 { 3028 struct ffs_function *func = ffs_func_from_usb(f); 3029 struct f_fs_opts *ffs_opts = 3030 container_of(f->fi, struct f_fs_opts, func_inst); 3031 int ret; 3032 3033 ENTER(); 3034 3035 /* 3036 * Legacy gadget triggers binding in functionfs_ready_callback, 3037 * which already uses locking; taking the same lock here would 3038 * cause a deadlock. 3039 * 3040 * Configfs-enabled gadgets however do need ffs_dev_lock. 3041 */ 3042 if (!ffs_opts->no_configfs) 3043 ffs_dev_lock(); 3044 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3045 func->ffs = ffs_opts->dev->ffs_data; 3046 if (!ffs_opts->no_configfs) 3047 ffs_dev_unlock(); 3048 if (ret) 3049 return ERR_PTR(ret); 3050 3051 func->conf = c; 3052 func->gadget = c->cdev->gadget; 3053 3054 /* 3055 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3056 * configurations are bound in sequence with list_for_each_entry, 3057 * in each configuration its functions are bound in sequence 3058 * with list_for_each_entry, so we assume no race condition 3059 * with regard to ffs_opts->bound access 3060 */ 3061 if (!ffs_opts->refcnt) { 3062 ret = functionfs_bind(func->ffs, c->cdev); 3063 if (ret) 3064 return ERR_PTR(ret); 3065 } 3066 ffs_opts->refcnt++; 3067 func->function.strings = func->ffs->stringtabs; 3068 3069 return ffs_opts; 3070 } 3071 3072 static int _ffs_func_bind(struct usb_configuration *c, 3073 struct usb_function *f) 3074 { 3075 struct ffs_function *func = ffs_func_from_usb(f); 3076 struct ffs_data *ffs = func->ffs; 3077 3078 const int full = !!func->ffs->fs_descs_count; 3079 const int high = !!func->ffs->hs_descs_count; 3080 const int super = !!func->ffs->ss_descs_count; 3081 3082 int fs_len, hs_len, ss_len, ret, i; 3083 struct ffs_ep *eps_ptr; 3084 3085 /* Make it a single chunk, less management later on */ 3086 vla_group(d); 3087 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3088 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3089 full ? ffs->fs_descs_count + 1 : 0); 3090 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3091 high ? ffs->hs_descs_count + 1 : 0); 3092 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3093 super ? ffs->ss_descs_count + 1 : 0); 3094 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3095 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3096 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3097 vla_item_with_sz(d, char[16], ext_compat, 3098 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3099 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3100 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3101 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3102 ffs->ms_os_descs_ext_prop_count); 3103 vla_item_with_sz(d, char, ext_prop_name, 3104 ffs->ms_os_descs_ext_prop_name_len); 3105 vla_item_with_sz(d, char, ext_prop_data, 3106 ffs->ms_os_descs_ext_prop_data_len); 3107 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3108 char *vlabuf; 3109 3110 ENTER(); 3111 3112 /* Has descriptors only for speeds gadget does not support */ 3113 if (unlikely(!(full | high | super))) 3114 return -ENOTSUPP; 3115 3116 /* Allocate a single chunk, less management later on */ 3117 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3118 if (unlikely(!vlabuf)) 3119 return -ENOMEM; 3120 3121 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3122 ffs->ms_os_descs_ext_prop_name_avail = 3123 vla_ptr(vlabuf, d, ext_prop_name); 3124 ffs->ms_os_descs_ext_prop_data_avail = 3125 vla_ptr(vlabuf, d, ext_prop_data); 3126 3127 /* Copy descriptors */ 3128 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3129 ffs->raw_descs_length); 3130 3131 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3132 eps_ptr = vla_ptr(vlabuf, d, eps); 3133 for (i = 0; i < ffs->eps_count; i++) 3134 eps_ptr[i].num = -1; 3135 3136 /* Save pointers 3137 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3138 */ 3139 func->eps = vla_ptr(vlabuf, d, eps); 3140 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3141 3142 /* 3143 * Go through all the endpoint descriptors and allocate 3144 * endpoints first, so that later we can rewrite the endpoint 3145 * numbers without worrying that it may be described later on. 3146 */ 3147 if (likely(full)) { 3148 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3149 fs_len = ffs_do_descs(ffs->fs_descs_count, 3150 vla_ptr(vlabuf, d, raw_descs), 3151 d_raw_descs__sz, 3152 __ffs_func_bind_do_descs, func); 3153 if (unlikely(fs_len < 0)) { 3154 ret = fs_len; 3155 goto error; 3156 } 3157 } else { 3158 fs_len = 0; 3159 } 3160 3161 if (likely(high)) { 3162 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3163 hs_len = ffs_do_descs(ffs->hs_descs_count, 3164 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3165 d_raw_descs__sz - fs_len, 3166 __ffs_func_bind_do_descs, func); 3167 if (unlikely(hs_len < 0)) { 3168 ret = hs_len; 3169 goto error; 3170 } 3171 } else { 3172 hs_len = 0; 3173 } 3174 3175 if (likely(super)) { 3176 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3177 ss_len = ffs_do_descs(ffs->ss_descs_count, 3178 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3179 d_raw_descs__sz - fs_len - hs_len, 3180 __ffs_func_bind_do_descs, func); 3181 if (unlikely(ss_len < 0)) { 3182 ret = ss_len; 3183 goto error; 3184 } 3185 } else { 3186 ss_len = 0; 3187 } 3188 3189 /* 3190 * Now handle interface numbers allocation and interface and 3191 * endpoint numbers rewriting. We can do that in one go 3192 * now. 3193 */ 3194 ret = ffs_do_descs(ffs->fs_descs_count + 3195 (high ? ffs->hs_descs_count : 0) + 3196 (super ? ffs->ss_descs_count : 0), 3197 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3198 __ffs_func_bind_do_nums, func); 3199 if (unlikely(ret < 0)) 3200 goto error; 3201 3202 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3203 if (c->cdev->use_os_string) { 3204 for (i = 0; i < ffs->interfaces_count; ++i) { 3205 struct usb_os_desc *desc; 3206 3207 desc = func->function.os_desc_table[i].os_desc = 3208 vla_ptr(vlabuf, d, os_desc) + 3209 i * sizeof(struct usb_os_desc); 3210 desc->ext_compat_id = 3211 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3212 INIT_LIST_HEAD(&desc->ext_prop); 3213 } 3214 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3215 vla_ptr(vlabuf, d, raw_descs) + 3216 fs_len + hs_len + ss_len, 3217 d_raw_descs__sz - fs_len - hs_len - 3218 ss_len, 3219 __ffs_func_bind_do_os_desc, func); 3220 if (unlikely(ret < 0)) 3221 goto error; 3222 } 3223 func->function.os_desc_n = 3224 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3225 3226 /* And we're done */ 3227 ffs_event_add(ffs, FUNCTIONFS_BIND); 3228 return 0; 3229 3230 error: 3231 /* XXX Do we need to release all claimed endpoints here? */ 3232 return ret; 3233 } 3234 3235 static int ffs_func_bind(struct usb_configuration *c, 3236 struct usb_function *f) 3237 { 3238 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3239 struct ffs_function *func = ffs_func_from_usb(f); 3240 int ret; 3241 3242 if (IS_ERR(ffs_opts)) 3243 return PTR_ERR(ffs_opts); 3244 3245 ret = _ffs_func_bind(c, f); 3246 if (ret && !--ffs_opts->refcnt) 3247 functionfs_unbind(func->ffs); 3248 3249 return ret; 3250 } 3251 3252 3253 /* Other USB function hooks *************************************************/ 3254 3255 static void ffs_reset_work(struct work_struct *work) 3256 { 3257 struct ffs_data *ffs = container_of(work, 3258 struct ffs_data, reset_work); 3259 ffs_data_reset(ffs); 3260 } 3261 3262 static int ffs_func_set_alt(struct usb_function *f, 3263 unsigned interface, unsigned alt) 3264 { 3265 struct ffs_function *func = ffs_func_from_usb(f); 3266 struct ffs_data *ffs = func->ffs; 3267 int ret = 0, intf; 3268 3269 if (alt != (unsigned)-1) { 3270 intf = ffs_func_revmap_intf(func, interface); 3271 if (unlikely(intf < 0)) 3272 return intf; 3273 } 3274 3275 if (ffs->func) 3276 ffs_func_eps_disable(ffs->func); 3277 3278 if (ffs->state == FFS_DEACTIVATED) { 3279 ffs->state = FFS_CLOSING; 3280 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3281 schedule_work(&ffs->reset_work); 3282 return -ENODEV; 3283 } 3284 3285 if (ffs->state != FFS_ACTIVE) 3286 return -ENODEV; 3287 3288 if (alt == (unsigned)-1) { 3289 ffs->func = NULL; 3290 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3291 return 0; 3292 } 3293 3294 ffs->func = func; 3295 ret = ffs_func_eps_enable(func); 3296 if (likely(ret >= 0)) 3297 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3298 return ret; 3299 } 3300 3301 static void ffs_func_disable(struct usb_function *f) 3302 { 3303 ffs_func_set_alt(f, 0, (unsigned)-1); 3304 } 3305 3306 static int ffs_func_setup(struct usb_function *f, 3307 const struct usb_ctrlrequest *creq) 3308 { 3309 struct ffs_function *func = ffs_func_from_usb(f); 3310 struct ffs_data *ffs = func->ffs; 3311 unsigned long flags; 3312 int ret; 3313 3314 ENTER(); 3315 3316 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3317 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3318 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3319 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3320 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3321 3322 /* 3323 * Most requests directed to interface go through here 3324 * (notable exceptions are set/get interface) so we need to 3325 * handle them. All other either handled by composite or 3326 * passed to usb_configuration->setup() (if one is set). No 3327 * matter, we will handle requests directed to endpoint here 3328 * as well (as it's straightforward). Other request recipient 3329 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3330 * is being used. 3331 */ 3332 if (ffs->state != FFS_ACTIVE) 3333 return -ENODEV; 3334 3335 switch (creq->bRequestType & USB_RECIP_MASK) { 3336 case USB_RECIP_INTERFACE: 3337 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3338 if (unlikely(ret < 0)) 3339 return ret; 3340 break; 3341 3342 case USB_RECIP_ENDPOINT: 3343 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3344 if (unlikely(ret < 0)) 3345 return ret; 3346 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3347 ret = func->ffs->eps_addrmap[ret]; 3348 break; 3349 3350 default: 3351 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3352 ret = le16_to_cpu(creq->wIndex); 3353 else 3354 return -EOPNOTSUPP; 3355 } 3356 3357 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3358 ffs->ev.setup = *creq; 3359 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3360 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3361 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3362 3363 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3364 } 3365 3366 static bool ffs_func_req_match(struct usb_function *f, 3367 const struct usb_ctrlrequest *creq, 3368 bool config0) 3369 { 3370 struct ffs_function *func = ffs_func_from_usb(f); 3371 3372 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3373 return false; 3374 3375 switch (creq->bRequestType & USB_RECIP_MASK) { 3376 case USB_RECIP_INTERFACE: 3377 return (ffs_func_revmap_intf(func, 3378 le16_to_cpu(creq->wIndex)) >= 0); 3379 case USB_RECIP_ENDPOINT: 3380 return (ffs_func_revmap_ep(func, 3381 le16_to_cpu(creq->wIndex)) >= 0); 3382 default: 3383 return (bool) (func->ffs->user_flags & 3384 FUNCTIONFS_ALL_CTRL_RECIP); 3385 } 3386 } 3387 3388 static void ffs_func_suspend(struct usb_function *f) 3389 { 3390 ENTER(); 3391 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3392 } 3393 3394 static void ffs_func_resume(struct usb_function *f) 3395 { 3396 ENTER(); 3397 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3398 } 3399 3400 3401 /* Endpoint and interface numbers reverse mapping ***************************/ 3402 3403 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3404 { 3405 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3406 return num ? num : -EDOM; 3407 } 3408 3409 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3410 { 3411 short *nums = func->interfaces_nums; 3412 unsigned count = func->ffs->interfaces_count; 3413 3414 for (; count; --count, ++nums) { 3415 if (*nums >= 0 && *nums == intf) 3416 return nums - func->interfaces_nums; 3417 } 3418 3419 return -EDOM; 3420 } 3421 3422 3423 /* Devices management *******************************************************/ 3424 3425 static LIST_HEAD(ffs_devices); 3426 3427 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3428 { 3429 struct ffs_dev *dev; 3430 3431 if (!name) 3432 return NULL; 3433 3434 list_for_each_entry(dev, &ffs_devices, entry) { 3435 if (strcmp(dev->name, name) == 0) 3436 return dev; 3437 } 3438 3439 return NULL; 3440 } 3441 3442 /* 3443 * ffs_lock must be taken by the caller of this function 3444 */ 3445 static struct ffs_dev *_ffs_get_single_dev(void) 3446 { 3447 struct ffs_dev *dev; 3448 3449 if (list_is_singular(&ffs_devices)) { 3450 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3451 if (dev->single) 3452 return dev; 3453 } 3454 3455 return NULL; 3456 } 3457 3458 /* 3459 * ffs_lock must be taken by the caller of this function 3460 */ 3461 static struct ffs_dev *_ffs_find_dev(const char *name) 3462 { 3463 struct ffs_dev *dev; 3464 3465 dev = _ffs_get_single_dev(); 3466 if (dev) 3467 return dev; 3468 3469 return _ffs_do_find_dev(name); 3470 } 3471 3472 /* Configfs support *********************************************************/ 3473 3474 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3475 { 3476 return container_of(to_config_group(item), struct f_fs_opts, 3477 func_inst.group); 3478 } 3479 3480 static void ffs_attr_release(struct config_item *item) 3481 { 3482 struct f_fs_opts *opts = to_ffs_opts(item); 3483 3484 usb_put_function_instance(&opts->func_inst); 3485 } 3486 3487 static struct configfs_item_operations ffs_item_ops = { 3488 .release = ffs_attr_release, 3489 }; 3490 3491 static const struct config_item_type ffs_func_type = { 3492 .ct_item_ops = &ffs_item_ops, 3493 .ct_owner = THIS_MODULE, 3494 }; 3495 3496 3497 /* Function registration interface ******************************************/ 3498 3499 static void ffs_free_inst(struct usb_function_instance *f) 3500 { 3501 struct f_fs_opts *opts; 3502 3503 opts = to_f_fs_opts(f); 3504 ffs_dev_lock(); 3505 _ffs_free_dev(opts->dev); 3506 ffs_dev_unlock(); 3507 kfree(opts); 3508 } 3509 3510 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3511 { 3512 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3513 return -ENAMETOOLONG; 3514 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3515 } 3516 3517 static struct usb_function_instance *ffs_alloc_inst(void) 3518 { 3519 struct f_fs_opts *opts; 3520 struct ffs_dev *dev; 3521 3522 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3523 if (!opts) 3524 return ERR_PTR(-ENOMEM); 3525 3526 opts->func_inst.set_inst_name = ffs_set_inst_name; 3527 opts->func_inst.free_func_inst = ffs_free_inst; 3528 ffs_dev_lock(); 3529 dev = _ffs_alloc_dev(); 3530 ffs_dev_unlock(); 3531 if (IS_ERR(dev)) { 3532 kfree(opts); 3533 return ERR_CAST(dev); 3534 } 3535 opts->dev = dev; 3536 dev->opts = opts; 3537 3538 config_group_init_type_name(&opts->func_inst.group, "", 3539 &ffs_func_type); 3540 return &opts->func_inst; 3541 } 3542 3543 static void ffs_free(struct usb_function *f) 3544 { 3545 kfree(ffs_func_from_usb(f)); 3546 } 3547 3548 static void ffs_func_unbind(struct usb_configuration *c, 3549 struct usb_function *f) 3550 { 3551 struct ffs_function *func = ffs_func_from_usb(f); 3552 struct ffs_data *ffs = func->ffs; 3553 struct f_fs_opts *opts = 3554 container_of(f->fi, struct f_fs_opts, func_inst); 3555 struct ffs_ep *ep = func->eps; 3556 unsigned count = ffs->eps_count; 3557 unsigned long flags; 3558 3559 ENTER(); 3560 if (ffs->func == func) { 3561 ffs_func_eps_disable(func); 3562 ffs->func = NULL; 3563 } 3564 3565 if (!--opts->refcnt) 3566 functionfs_unbind(ffs); 3567 3568 /* cleanup after autoconfig */ 3569 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3570 while (count--) { 3571 if (ep->ep && ep->req) 3572 usb_ep_free_request(ep->ep, ep->req); 3573 ep->req = NULL; 3574 ++ep; 3575 } 3576 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3577 kfree(func->eps); 3578 func->eps = NULL; 3579 /* 3580 * eps, descriptors and interfaces_nums are allocated in the 3581 * same chunk so only one free is required. 3582 */ 3583 func->function.fs_descriptors = NULL; 3584 func->function.hs_descriptors = NULL; 3585 func->function.ss_descriptors = NULL; 3586 func->interfaces_nums = NULL; 3587 3588 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3589 } 3590 3591 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3592 { 3593 struct ffs_function *func; 3594 3595 ENTER(); 3596 3597 func = kzalloc(sizeof(*func), GFP_KERNEL); 3598 if (unlikely(!func)) 3599 return ERR_PTR(-ENOMEM); 3600 3601 func->function.name = "Function FS Gadget"; 3602 3603 func->function.bind = ffs_func_bind; 3604 func->function.unbind = ffs_func_unbind; 3605 func->function.set_alt = ffs_func_set_alt; 3606 func->function.disable = ffs_func_disable; 3607 func->function.setup = ffs_func_setup; 3608 func->function.req_match = ffs_func_req_match; 3609 func->function.suspend = ffs_func_suspend; 3610 func->function.resume = ffs_func_resume; 3611 func->function.free_func = ffs_free; 3612 3613 return &func->function; 3614 } 3615 3616 /* 3617 * ffs_lock must be taken by the caller of this function 3618 */ 3619 static struct ffs_dev *_ffs_alloc_dev(void) 3620 { 3621 struct ffs_dev *dev; 3622 int ret; 3623 3624 if (_ffs_get_single_dev()) 3625 return ERR_PTR(-EBUSY); 3626 3627 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3628 if (!dev) 3629 return ERR_PTR(-ENOMEM); 3630 3631 if (list_empty(&ffs_devices)) { 3632 ret = functionfs_init(); 3633 if (ret) { 3634 kfree(dev); 3635 return ERR_PTR(ret); 3636 } 3637 } 3638 3639 list_add(&dev->entry, &ffs_devices); 3640 3641 return dev; 3642 } 3643 3644 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3645 { 3646 struct ffs_dev *existing; 3647 int ret = 0; 3648 3649 ffs_dev_lock(); 3650 3651 existing = _ffs_do_find_dev(name); 3652 if (!existing) 3653 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3654 else if (existing != dev) 3655 ret = -EBUSY; 3656 3657 ffs_dev_unlock(); 3658 3659 return ret; 3660 } 3661 EXPORT_SYMBOL_GPL(ffs_name_dev); 3662 3663 int ffs_single_dev(struct ffs_dev *dev) 3664 { 3665 int ret; 3666 3667 ret = 0; 3668 ffs_dev_lock(); 3669 3670 if (!list_is_singular(&ffs_devices)) 3671 ret = -EBUSY; 3672 else 3673 dev->single = true; 3674 3675 ffs_dev_unlock(); 3676 return ret; 3677 } 3678 EXPORT_SYMBOL_GPL(ffs_single_dev); 3679 3680 /* 3681 * ffs_lock must be taken by the caller of this function 3682 */ 3683 static void _ffs_free_dev(struct ffs_dev *dev) 3684 { 3685 list_del(&dev->entry); 3686 3687 /* Clear the private_data pointer to stop incorrect dev access */ 3688 if (dev->ffs_data) 3689 dev->ffs_data->private_data = NULL; 3690 3691 kfree(dev); 3692 if (list_empty(&ffs_devices)) 3693 functionfs_cleanup(); 3694 } 3695 3696 static void *ffs_acquire_dev(const char *dev_name) 3697 { 3698 struct ffs_dev *ffs_dev; 3699 3700 ENTER(); 3701 ffs_dev_lock(); 3702 3703 ffs_dev = _ffs_find_dev(dev_name); 3704 if (!ffs_dev) 3705 ffs_dev = ERR_PTR(-ENOENT); 3706 else if (ffs_dev->mounted) 3707 ffs_dev = ERR_PTR(-EBUSY); 3708 else if (ffs_dev->ffs_acquire_dev_callback && 3709 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3710 ffs_dev = ERR_PTR(-ENOENT); 3711 else 3712 ffs_dev->mounted = true; 3713 3714 ffs_dev_unlock(); 3715 return ffs_dev; 3716 } 3717 3718 static void ffs_release_dev(struct ffs_data *ffs_data) 3719 { 3720 struct ffs_dev *ffs_dev; 3721 3722 ENTER(); 3723 ffs_dev_lock(); 3724 3725 ffs_dev = ffs_data->private_data; 3726 if (ffs_dev) { 3727 ffs_dev->mounted = false; 3728 3729 if (ffs_dev->ffs_release_dev_callback) 3730 ffs_dev->ffs_release_dev_callback(ffs_dev); 3731 } 3732 3733 ffs_dev_unlock(); 3734 } 3735 3736 static int ffs_ready(struct ffs_data *ffs) 3737 { 3738 struct ffs_dev *ffs_obj; 3739 int ret = 0; 3740 3741 ENTER(); 3742 ffs_dev_lock(); 3743 3744 ffs_obj = ffs->private_data; 3745 if (!ffs_obj) { 3746 ret = -EINVAL; 3747 goto done; 3748 } 3749 if (WARN_ON(ffs_obj->desc_ready)) { 3750 ret = -EBUSY; 3751 goto done; 3752 } 3753 3754 ffs_obj->desc_ready = true; 3755 ffs_obj->ffs_data = ffs; 3756 3757 if (ffs_obj->ffs_ready_callback) { 3758 ret = ffs_obj->ffs_ready_callback(ffs); 3759 if (ret) 3760 goto done; 3761 } 3762 3763 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3764 done: 3765 ffs_dev_unlock(); 3766 return ret; 3767 } 3768 3769 static void ffs_closed(struct ffs_data *ffs) 3770 { 3771 struct ffs_dev *ffs_obj; 3772 struct f_fs_opts *opts; 3773 struct config_item *ci; 3774 3775 ENTER(); 3776 ffs_dev_lock(); 3777 3778 ffs_obj = ffs->private_data; 3779 if (!ffs_obj) 3780 goto done; 3781 3782 ffs_obj->desc_ready = false; 3783 ffs_obj->ffs_data = NULL; 3784 3785 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3786 ffs_obj->ffs_closed_callback) 3787 ffs_obj->ffs_closed_callback(ffs); 3788 3789 if (ffs_obj->opts) 3790 opts = ffs_obj->opts; 3791 else 3792 goto done; 3793 3794 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3795 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3796 goto done; 3797 3798 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3799 ffs_dev_unlock(); 3800 3801 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3802 unregister_gadget_item(ci); 3803 return; 3804 done: 3805 ffs_dev_unlock(); 3806 } 3807 3808 /* Misc helper functions ****************************************************/ 3809 3810 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3811 { 3812 return nonblock 3813 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3814 : mutex_lock_interruptible(mutex); 3815 } 3816 3817 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3818 { 3819 char *data; 3820 3821 if (unlikely(!len)) 3822 return NULL; 3823 3824 data = kmalloc(len, GFP_KERNEL); 3825 if (unlikely(!data)) 3826 return ERR_PTR(-ENOMEM); 3827 3828 if (unlikely(copy_from_user(data, buf, len))) { 3829 kfree(data); 3830 return ERR_PTR(-EFAULT); 3831 } 3832 3833 pr_vdebug("Buffer from user space:\n"); 3834 ffs_dump_mem("", data, len); 3835 3836 return data; 3837 } 3838 3839 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3840 MODULE_LICENSE("GPL"); 3841 MODULE_AUTHOR("Michal Nazarewicz"); 3842