1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/kthread.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 126 int status; /* P: epfile->mutex */ 127 }; 128 129 struct ffs_epfile { 130 /* Protects ep->ep and ep->req. */ 131 struct mutex mutex; 132 133 struct ffs_data *ffs; 134 struct ffs_ep *ep; /* P: ffs->eps_lock */ 135 136 struct dentry *dentry; 137 138 /* 139 * Buffer for holding data from partial reads which may happen since 140 * we’re rounding user read requests to a multiple of a max packet size. 141 * 142 * The pointer is initialised with NULL value and may be set by 143 * __ffs_epfile_read_data function to point to a temporary buffer. 144 * 145 * In normal operation, calls to __ffs_epfile_read_buffered will consume 146 * data from said buffer and eventually free it. Importantly, while the 147 * function is using the buffer, it sets the pointer to NULL. This is 148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 149 * can never run concurrently (they are synchronised by epfile->mutex) 150 * so the latter will not assign a new value to the pointer. 151 * 152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 154 * value is crux of the synchronisation between ffs_func_eps_disable and 155 * __ffs_epfile_read_data. 156 * 157 * Once __ffs_epfile_read_data is about to finish it will try to set the 158 * pointer back to its old value (as described above), but seeing as the 159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 160 * the buffer. 161 * 162 * == State transitions == 163 * 164 * • ptr == NULL: (initial state) 165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 166 * ◦ __ffs_epfile_read_buffered: nop 167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == DROP: 170 * ◦ __ffs_epfile_read_buffer_free: nop 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 173 * ◦ reading finishes: n/a, not in ‘and reading’ state 174 * • ptr == buf: 175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 178 * is always called first 179 * ◦ reading finishes: n/a, not in ‘and reading’ state 180 * • ptr == NULL and reading: 181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 183 * ◦ __ffs_epfile_read_data: n/a, mutex is held 184 * ◦ reading finishes and … 185 * … all data read: free buf, go to ptr == NULL 186 * … otherwise: go to ptr == buf and reading 187 * • ptr == DROP and reading: 188 * ◦ __ffs_epfile_read_buffer_free: nop 189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 190 * ◦ __ffs_epfile_read_data: n/a, mutex is held 191 * ◦ reading finishes: free buf, go to ptr == DROP 192 */ 193 struct ffs_buffer *read_buffer; 194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 195 196 char name[5]; 197 198 unsigned char in; /* P: ffs->eps_lock */ 199 unsigned char isoc; /* P: ffs->eps_lock */ 200 201 unsigned char _pad; 202 }; 203 204 struct ffs_buffer { 205 size_t length; 206 char *data; 207 char storage[]; 208 }; 209 210 /* ffs_io_data structure ***************************************************/ 211 212 struct ffs_io_data { 213 bool aio; 214 bool read; 215 216 struct kiocb *kiocb; 217 struct iov_iter data; 218 const void *to_free; 219 char *buf; 220 221 struct mm_struct *mm; 222 struct work_struct work; 223 224 struct usb_ep *ep; 225 struct usb_request *req; 226 struct sg_table sgt; 227 bool use_sg; 228 229 struct ffs_data *ffs; 230 }; 231 232 struct ffs_desc_helper { 233 struct ffs_data *ffs; 234 unsigned interfaces_count; 235 unsigned eps_count; 236 }; 237 238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 240 241 static struct dentry * 242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 243 const struct file_operations *fops); 244 245 /* Devices management *******************************************************/ 246 247 DEFINE_MUTEX(ffs_lock); 248 EXPORT_SYMBOL_GPL(ffs_lock); 249 250 static struct ffs_dev *_ffs_find_dev(const char *name); 251 static struct ffs_dev *_ffs_alloc_dev(void); 252 static void _ffs_free_dev(struct ffs_dev *dev); 253 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 254 static void ffs_release_dev(struct ffs_dev *ffs_dev); 255 static int ffs_ready(struct ffs_data *ffs); 256 static void ffs_closed(struct ffs_data *ffs); 257 258 /* Misc helper functions ****************************************************/ 259 260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 261 __attribute__((warn_unused_result, nonnull)); 262 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 263 __attribute__((warn_unused_result, nonnull)); 264 265 266 /* Control file aka ep0 *****************************************************/ 267 268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 269 { 270 struct ffs_data *ffs = req->context; 271 272 complete(&ffs->ep0req_completion); 273 } 274 275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 276 __releases(&ffs->ev.waitq.lock) 277 { 278 struct usb_request *req = ffs->ep0req; 279 int ret; 280 281 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 282 283 spin_unlock_irq(&ffs->ev.waitq.lock); 284 285 req->buf = data; 286 req->length = len; 287 288 /* 289 * UDC layer requires to provide a buffer even for ZLP, but should 290 * not use it at all. Let's provide some poisoned pointer to catch 291 * possible bug in the driver. 292 */ 293 if (req->buf == NULL) 294 req->buf = (void *)0xDEADBABE; 295 296 reinit_completion(&ffs->ep0req_completion); 297 298 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 299 if (ret < 0) 300 return ret; 301 302 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 303 if (ret) { 304 usb_ep_dequeue(ffs->gadget->ep0, req); 305 return -EINTR; 306 } 307 308 ffs->setup_state = FFS_NO_SETUP; 309 return req->status ? req->status : req->actual; 310 } 311 312 static int __ffs_ep0_stall(struct ffs_data *ffs) 313 { 314 if (ffs->ev.can_stall) { 315 pr_vdebug("ep0 stall\n"); 316 usb_ep_set_halt(ffs->gadget->ep0); 317 ffs->setup_state = FFS_NO_SETUP; 318 return -EL2HLT; 319 } else { 320 pr_debug("bogus ep0 stall!\n"); 321 return -ESRCH; 322 } 323 } 324 325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 326 size_t len, loff_t *ptr) 327 { 328 struct ffs_data *ffs = file->private_data; 329 ssize_t ret; 330 char *data; 331 332 ENTER(); 333 334 /* Fast check if setup was canceled */ 335 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 336 return -EIDRM; 337 338 /* Acquire mutex */ 339 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 340 if (ret < 0) 341 return ret; 342 343 /* Check state */ 344 switch (ffs->state) { 345 case FFS_READ_DESCRIPTORS: 346 case FFS_READ_STRINGS: 347 /* Copy data */ 348 if (len < 16) { 349 ret = -EINVAL; 350 break; 351 } 352 353 data = ffs_prepare_buffer(buf, len); 354 if (IS_ERR(data)) { 355 ret = PTR_ERR(data); 356 break; 357 } 358 359 /* Handle data */ 360 if (ffs->state == FFS_READ_DESCRIPTORS) { 361 pr_info("read descriptors\n"); 362 ret = __ffs_data_got_descs(ffs, data, len); 363 if (ret < 0) 364 break; 365 366 ffs->state = FFS_READ_STRINGS; 367 ret = len; 368 } else { 369 pr_info("read strings\n"); 370 ret = __ffs_data_got_strings(ffs, data, len); 371 if (ret < 0) 372 break; 373 374 ret = ffs_epfiles_create(ffs); 375 if (ret) { 376 ffs->state = FFS_CLOSING; 377 break; 378 } 379 380 ffs->state = FFS_ACTIVE; 381 mutex_unlock(&ffs->mutex); 382 383 ret = ffs_ready(ffs); 384 if (ret < 0) { 385 ffs->state = FFS_CLOSING; 386 return ret; 387 } 388 389 return len; 390 } 391 break; 392 393 case FFS_ACTIVE: 394 data = NULL; 395 /* 396 * We're called from user space, we can use _irq 397 * rather then _irqsave 398 */ 399 spin_lock_irq(&ffs->ev.waitq.lock); 400 switch (ffs_setup_state_clear_cancelled(ffs)) { 401 case FFS_SETUP_CANCELLED: 402 ret = -EIDRM; 403 goto done_spin; 404 405 case FFS_NO_SETUP: 406 ret = -ESRCH; 407 goto done_spin; 408 409 case FFS_SETUP_PENDING: 410 break; 411 } 412 413 /* FFS_SETUP_PENDING */ 414 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 415 spin_unlock_irq(&ffs->ev.waitq.lock); 416 ret = __ffs_ep0_stall(ffs); 417 break; 418 } 419 420 /* FFS_SETUP_PENDING and not stall */ 421 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 422 423 spin_unlock_irq(&ffs->ev.waitq.lock); 424 425 data = ffs_prepare_buffer(buf, len); 426 if (IS_ERR(data)) { 427 ret = PTR_ERR(data); 428 break; 429 } 430 431 spin_lock_irq(&ffs->ev.waitq.lock); 432 433 /* 434 * We are guaranteed to be still in FFS_ACTIVE state 435 * but the state of setup could have changed from 436 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 437 * to check for that. If that happened we copied data 438 * from user space in vain but it's unlikely. 439 * 440 * For sure we are not in FFS_NO_SETUP since this is 441 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 442 * transition can be performed and it's protected by 443 * mutex. 444 */ 445 if (ffs_setup_state_clear_cancelled(ffs) == 446 FFS_SETUP_CANCELLED) { 447 ret = -EIDRM; 448 done_spin: 449 spin_unlock_irq(&ffs->ev.waitq.lock); 450 } else { 451 /* unlocks spinlock */ 452 ret = __ffs_ep0_queue_wait(ffs, data, len); 453 } 454 kfree(data); 455 break; 456 457 default: 458 ret = -EBADFD; 459 break; 460 } 461 462 mutex_unlock(&ffs->mutex); 463 return ret; 464 } 465 466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 468 size_t n) 469 __releases(&ffs->ev.waitq.lock) 470 { 471 /* 472 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 473 * size of ffs->ev.types array (which is four) so that's how much space 474 * we reserve. 475 */ 476 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 477 const size_t size = n * sizeof *events; 478 unsigned i = 0; 479 480 memset(events, 0, size); 481 482 do { 483 events[i].type = ffs->ev.types[i]; 484 if (events[i].type == FUNCTIONFS_SETUP) { 485 events[i].u.setup = ffs->ev.setup; 486 ffs->setup_state = FFS_SETUP_PENDING; 487 } 488 } while (++i < n); 489 490 ffs->ev.count -= n; 491 if (ffs->ev.count) 492 memmove(ffs->ev.types, ffs->ev.types + n, 493 ffs->ev.count * sizeof *ffs->ev.types); 494 495 spin_unlock_irq(&ffs->ev.waitq.lock); 496 mutex_unlock(&ffs->mutex); 497 498 return copy_to_user(buf, events, size) ? -EFAULT : size; 499 } 500 501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 502 size_t len, loff_t *ptr) 503 { 504 struct ffs_data *ffs = file->private_data; 505 char *data = NULL; 506 size_t n; 507 int ret; 508 509 ENTER(); 510 511 /* Fast check if setup was canceled */ 512 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 513 return -EIDRM; 514 515 /* Acquire mutex */ 516 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 517 if (ret < 0) 518 return ret; 519 520 /* Check state */ 521 if (ffs->state != FFS_ACTIVE) { 522 ret = -EBADFD; 523 goto done_mutex; 524 } 525 526 /* 527 * We're called from user space, we can use _irq rather then 528 * _irqsave 529 */ 530 spin_lock_irq(&ffs->ev.waitq.lock); 531 532 switch (ffs_setup_state_clear_cancelled(ffs)) { 533 case FFS_SETUP_CANCELLED: 534 ret = -EIDRM; 535 break; 536 537 case FFS_NO_SETUP: 538 n = len / sizeof(struct usb_functionfs_event); 539 if (!n) { 540 ret = -EINVAL; 541 break; 542 } 543 544 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 545 ret = -EAGAIN; 546 break; 547 } 548 549 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 550 ffs->ev.count)) { 551 ret = -EINTR; 552 break; 553 } 554 555 /* unlocks spinlock */ 556 return __ffs_ep0_read_events(ffs, buf, 557 min(n, (size_t)ffs->ev.count)); 558 559 case FFS_SETUP_PENDING: 560 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 ret = __ffs_ep0_stall(ffs); 563 goto done_mutex; 564 } 565 566 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 567 568 spin_unlock_irq(&ffs->ev.waitq.lock); 569 570 if (len) { 571 data = kmalloc(len, GFP_KERNEL); 572 if (!data) { 573 ret = -ENOMEM; 574 goto done_mutex; 575 } 576 } 577 578 spin_lock_irq(&ffs->ev.waitq.lock); 579 580 /* See ffs_ep0_write() */ 581 if (ffs_setup_state_clear_cancelled(ffs) == 582 FFS_SETUP_CANCELLED) { 583 ret = -EIDRM; 584 break; 585 } 586 587 /* unlocks spinlock */ 588 ret = __ffs_ep0_queue_wait(ffs, data, len); 589 if ((ret > 0) && (copy_to_user(buf, data, len))) 590 ret = -EFAULT; 591 goto done_mutex; 592 593 default: 594 ret = -EBADFD; 595 break; 596 } 597 598 spin_unlock_irq(&ffs->ev.waitq.lock); 599 done_mutex: 600 mutex_unlock(&ffs->mutex); 601 kfree(data); 602 return ret; 603 } 604 605 static int ffs_ep0_open(struct inode *inode, struct file *file) 606 { 607 struct ffs_data *ffs = inode->i_private; 608 609 ENTER(); 610 611 if (ffs->state == FFS_CLOSING) 612 return -EBUSY; 613 614 file->private_data = ffs; 615 ffs_data_opened(ffs); 616 617 return 0; 618 } 619 620 static int ffs_ep0_release(struct inode *inode, struct file *file) 621 { 622 struct ffs_data *ffs = file->private_data; 623 624 ENTER(); 625 626 ffs_data_closed(ffs); 627 628 return 0; 629 } 630 631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 632 { 633 struct ffs_data *ffs = file->private_data; 634 struct usb_gadget *gadget = ffs->gadget; 635 long ret; 636 637 ENTER(); 638 639 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 640 struct ffs_function *func = ffs->func; 641 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 642 } else if (gadget && gadget->ops->ioctl) { 643 ret = gadget->ops->ioctl(gadget, code, value); 644 } else { 645 ret = -ENOTTY; 646 } 647 648 return ret; 649 } 650 651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 652 { 653 struct ffs_data *ffs = file->private_data; 654 __poll_t mask = EPOLLWRNORM; 655 int ret; 656 657 poll_wait(file, &ffs->ev.waitq, wait); 658 659 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 660 if (ret < 0) 661 return mask; 662 663 switch (ffs->state) { 664 case FFS_READ_DESCRIPTORS: 665 case FFS_READ_STRINGS: 666 mask |= EPOLLOUT; 667 break; 668 669 case FFS_ACTIVE: 670 switch (ffs->setup_state) { 671 case FFS_NO_SETUP: 672 if (ffs->ev.count) 673 mask |= EPOLLIN; 674 break; 675 676 case FFS_SETUP_PENDING: 677 case FFS_SETUP_CANCELLED: 678 mask |= (EPOLLIN | EPOLLOUT); 679 break; 680 } 681 break; 682 683 case FFS_CLOSING: 684 break; 685 case FFS_DEACTIVATED: 686 break; 687 } 688 689 mutex_unlock(&ffs->mutex); 690 691 return mask; 692 } 693 694 static const struct file_operations ffs_ep0_operations = { 695 .llseek = no_llseek, 696 697 .open = ffs_ep0_open, 698 .write = ffs_ep0_write, 699 .read = ffs_ep0_read, 700 .release = ffs_ep0_release, 701 .unlocked_ioctl = ffs_ep0_ioctl, 702 .poll = ffs_ep0_poll, 703 }; 704 705 706 /* "Normal" endpoints operations ********************************************/ 707 708 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 709 { 710 ENTER(); 711 if (req->context) { 712 struct ffs_ep *ep = _ep->driver_data; 713 ep->status = req->status ? req->status : req->actual; 714 complete(req->context); 715 } 716 } 717 718 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 719 { 720 ssize_t ret = copy_to_iter(data, data_len, iter); 721 if (ret == data_len) 722 return ret; 723 724 if (iov_iter_count(iter)) 725 return -EFAULT; 726 727 /* 728 * Dear user space developer! 729 * 730 * TL;DR: To stop getting below error message in your kernel log, change 731 * user space code using functionfs to align read buffers to a max 732 * packet size. 733 * 734 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 735 * packet size. When unaligned buffer is passed to functionfs, it 736 * internally uses a larger, aligned buffer so that such UDCs are happy. 737 * 738 * Unfortunately, this means that host may send more data than was 739 * requested in read(2) system call. f_fs doesn’t know what to do with 740 * that excess data so it simply drops it. 741 * 742 * Was the buffer aligned in the first place, no such problem would 743 * happen. 744 * 745 * Data may be dropped only in AIO reads. Synchronous reads are handled 746 * by splitting a request into multiple parts. This splitting may still 747 * be a problem though so it’s likely best to align the buffer 748 * regardless of it being AIO or not.. 749 * 750 * This only affects OUT endpoints, i.e. reading data with a read(2), 751 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 752 * affected. 753 */ 754 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 755 "Align read buffer size to max packet size to avoid the problem.\n", 756 data_len, ret); 757 758 return ret; 759 } 760 761 /* 762 * allocate a virtually contiguous buffer and create a scatterlist describing it 763 * @sg_table - pointer to a place to be filled with sg_table contents 764 * @size - required buffer size 765 */ 766 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 767 { 768 struct page **pages; 769 void *vaddr, *ptr; 770 unsigned int n_pages; 771 int i; 772 773 vaddr = vmalloc(sz); 774 if (!vaddr) 775 return NULL; 776 777 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 778 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 779 if (!pages) { 780 vfree(vaddr); 781 782 return NULL; 783 } 784 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 785 pages[i] = vmalloc_to_page(ptr); 786 787 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 788 kvfree(pages); 789 vfree(vaddr); 790 791 return NULL; 792 } 793 kvfree(pages); 794 795 return vaddr; 796 } 797 798 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 799 size_t data_len) 800 { 801 if (io_data->use_sg) 802 return ffs_build_sg_list(&io_data->sgt, data_len); 803 804 return kmalloc(data_len, GFP_KERNEL); 805 } 806 807 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 808 { 809 if (!io_data->buf) 810 return; 811 812 if (io_data->use_sg) { 813 sg_free_table(&io_data->sgt); 814 vfree(io_data->buf); 815 } else { 816 kfree(io_data->buf); 817 } 818 } 819 820 static void ffs_user_copy_worker(struct work_struct *work) 821 { 822 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 823 work); 824 int ret = io_data->req->status ? io_data->req->status : 825 io_data->req->actual; 826 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 827 828 if (io_data->read && ret > 0) { 829 kthread_use_mm(io_data->mm); 830 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 831 kthread_unuse_mm(io_data->mm); 832 } 833 834 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 835 836 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 837 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 838 839 usb_ep_free_request(io_data->ep, io_data->req); 840 841 if (io_data->read) 842 kfree(io_data->to_free); 843 ffs_free_buffer(io_data); 844 kfree(io_data); 845 } 846 847 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 848 struct usb_request *req) 849 { 850 struct ffs_io_data *io_data = req->context; 851 struct ffs_data *ffs = io_data->ffs; 852 853 ENTER(); 854 855 INIT_WORK(&io_data->work, ffs_user_copy_worker); 856 queue_work(ffs->io_completion_wq, &io_data->work); 857 } 858 859 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 860 { 861 /* 862 * See comment in struct ffs_epfile for full read_buffer pointer 863 * synchronisation story. 864 */ 865 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 866 if (buf && buf != READ_BUFFER_DROP) 867 kfree(buf); 868 } 869 870 /* Assumes epfile->mutex is held. */ 871 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 872 struct iov_iter *iter) 873 { 874 /* 875 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 876 * the buffer while we are using it. See comment in struct ffs_epfile 877 * for full read_buffer pointer synchronisation story. 878 */ 879 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 880 ssize_t ret; 881 if (!buf || buf == READ_BUFFER_DROP) 882 return 0; 883 884 ret = copy_to_iter(buf->data, buf->length, iter); 885 if (buf->length == ret) { 886 kfree(buf); 887 return ret; 888 } 889 890 if (iov_iter_count(iter)) { 891 ret = -EFAULT; 892 } else { 893 buf->length -= ret; 894 buf->data += ret; 895 } 896 897 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 898 kfree(buf); 899 900 return ret; 901 } 902 903 /* Assumes epfile->mutex is held. */ 904 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 905 void *data, int data_len, 906 struct iov_iter *iter) 907 { 908 struct ffs_buffer *buf; 909 910 ssize_t ret = copy_to_iter(data, data_len, iter); 911 if (data_len == ret) 912 return ret; 913 914 if (iov_iter_count(iter)) 915 return -EFAULT; 916 917 /* See ffs_copy_to_iter for more context. */ 918 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 919 data_len, ret); 920 921 data_len -= ret; 922 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 923 if (!buf) 924 return -ENOMEM; 925 buf->length = data_len; 926 buf->data = buf->storage; 927 memcpy(buf->storage, data + ret, data_len); 928 929 /* 930 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 931 * ffs_func_eps_disable has been called in the meanwhile). See comment 932 * in struct ffs_epfile for full read_buffer pointer synchronisation 933 * story. 934 */ 935 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 936 kfree(buf); 937 938 return ret; 939 } 940 941 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 942 { 943 struct ffs_epfile *epfile = file->private_data; 944 struct usb_request *req; 945 struct ffs_ep *ep; 946 char *data = NULL; 947 ssize_t ret, data_len = -EINVAL; 948 int halt; 949 950 /* Are we still active? */ 951 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 952 return -ENODEV; 953 954 /* Wait for endpoint to be enabled */ 955 ep = epfile->ep; 956 if (!ep) { 957 if (file->f_flags & O_NONBLOCK) 958 return -EAGAIN; 959 960 ret = wait_event_interruptible( 961 epfile->ffs->wait, (ep = epfile->ep)); 962 if (ret) 963 return -EINTR; 964 } 965 966 /* Do we halt? */ 967 halt = (!io_data->read == !epfile->in); 968 if (halt && epfile->isoc) 969 return -EINVAL; 970 971 /* We will be using request and read_buffer */ 972 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 973 if (ret) 974 goto error; 975 976 /* Allocate & copy */ 977 if (!halt) { 978 struct usb_gadget *gadget; 979 980 /* 981 * Do we have buffered data from previous partial read? Check 982 * that for synchronous case only because we do not have 983 * facility to ‘wake up’ a pending asynchronous read and push 984 * buffered data to it which we would need to make things behave 985 * consistently. 986 */ 987 if (!io_data->aio && io_data->read) { 988 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 989 if (ret) 990 goto error_mutex; 991 } 992 993 /* 994 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 995 * before the waiting completes, so do not assign to 'gadget' 996 * earlier 997 */ 998 gadget = epfile->ffs->gadget; 999 1000 spin_lock_irq(&epfile->ffs->eps_lock); 1001 /* In the meantime, endpoint got disabled or changed. */ 1002 if (epfile->ep != ep) { 1003 ret = -ESHUTDOWN; 1004 goto error_lock; 1005 } 1006 data_len = iov_iter_count(&io_data->data); 1007 /* 1008 * Controller may require buffer size to be aligned to 1009 * maxpacketsize of an out endpoint. 1010 */ 1011 if (io_data->read) 1012 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1013 1014 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1015 spin_unlock_irq(&epfile->ffs->eps_lock); 1016 1017 data = ffs_alloc_buffer(io_data, data_len); 1018 if (!data) { 1019 ret = -ENOMEM; 1020 goto error_mutex; 1021 } 1022 if (!io_data->read && 1023 !copy_from_iter_full(data, data_len, &io_data->data)) { 1024 ret = -EFAULT; 1025 goto error_mutex; 1026 } 1027 } 1028 1029 spin_lock_irq(&epfile->ffs->eps_lock); 1030 1031 if (epfile->ep != ep) { 1032 /* In the meantime, endpoint got disabled or changed. */ 1033 ret = -ESHUTDOWN; 1034 } else if (halt) { 1035 ret = usb_ep_set_halt(ep->ep); 1036 if (!ret) 1037 ret = -EBADMSG; 1038 } else if (data_len == -EINVAL) { 1039 /* 1040 * Sanity Check: even though data_len can't be used 1041 * uninitialized at the time I write this comment, some 1042 * compilers complain about this situation. 1043 * In order to keep the code clean from warnings, data_len is 1044 * being initialized to -EINVAL during its declaration, which 1045 * means we can't rely on compiler anymore to warn no future 1046 * changes won't result in data_len being used uninitialized. 1047 * For such reason, we're adding this redundant sanity check 1048 * here. 1049 */ 1050 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1051 ret = -EINVAL; 1052 } else if (!io_data->aio) { 1053 DECLARE_COMPLETION_ONSTACK(done); 1054 bool interrupted = false; 1055 1056 req = ep->req; 1057 if (io_data->use_sg) { 1058 req->buf = NULL; 1059 req->sg = io_data->sgt.sgl; 1060 req->num_sgs = io_data->sgt.nents; 1061 } else { 1062 req->buf = data; 1063 req->num_sgs = 0; 1064 } 1065 req->length = data_len; 1066 1067 io_data->buf = data; 1068 1069 req->context = &done; 1070 req->complete = ffs_epfile_io_complete; 1071 1072 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1073 if (ret < 0) 1074 goto error_lock; 1075 1076 spin_unlock_irq(&epfile->ffs->eps_lock); 1077 1078 if (wait_for_completion_interruptible(&done)) { 1079 /* 1080 * To avoid race condition with ffs_epfile_io_complete, 1081 * dequeue the request first then check 1082 * status. usb_ep_dequeue API should guarantee no race 1083 * condition with req->complete callback. 1084 */ 1085 usb_ep_dequeue(ep->ep, req); 1086 wait_for_completion(&done); 1087 interrupted = ep->status < 0; 1088 } 1089 1090 if (interrupted) 1091 ret = -EINTR; 1092 else if (io_data->read && ep->status > 0) 1093 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1094 &io_data->data); 1095 else 1096 ret = ep->status; 1097 goto error_mutex; 1098 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1099 ret = -ENOMEM; 1100 } else { 1101 if (io_data->use_sg) { 1102 req->buf = NULL; 1103 req->sg = io_data->sgt.sgl; 1104 req->num_sgs = io_data->sgt.nents; 1105 } else { 1106 req->buf = data; 1107 req->num_sgs = 0; 1108 } 1109 req->length = data_len; 1110 1111 io_data->buf = data; 1112 io_data->ep = ep->ep; 1113 io_data->req = req; 1114 io_data->ffs = epfile->ffs; 1115 1116 req->context = io_data; 1117 req->complete = ffs_epfile_async_io_complete; 1118 1119 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1120 if (ret) { 1121 io_data->req = NULL; 1122 usb_ep_free_request(ep->ep, req); 1123 goto error_lock; 1124 } 1125 1126 ret = -EIOCBQUEUED; 1127 /* 1128 * Do not kfree the buffer in this function. It will be freed 1129 * by ffs_user_copy_worker. 1130 */ 1131 data = NULL; 1132 } 1133 1134 error_lock: 1135 spin_unlock_irq(&epfile->ffs->eps_lock); 1136 error_mutex: 1137 mutex_unlock(&epfile->mutex); 1138 error: 1139 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1140 ffs_free_buffer(io_data); 1141 return ret; 1142 } 1143 1144 static int 1145 ffs_epfile_open(struct inode *inode, struct file *file) 1146 { 1147 struct ffs_epfile *epfile = inode->i_private; 1148 1149 ENTER(); 1150 1151 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1152 return -ENODEV; 1153 1154 file->private_data = epfile; 1155 ffs_data_opened(epfile->ffs); 1156 1157 return 0; 1158 } 1159 1160 static int ffs_aio_cancel(struct kiocb *kiocb) 1161 { 1162 struct ffs_io_data *io_data = kiocb->private; 1163 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1164 unsigned long flags; 1165 int value; 1166 1167 ENTER(); 1168 1169 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1170 1171 if (io_data && io_data->ep && io_data->req) 1172 value = usb_ep_dequeue(io_data->ep, io_data->req); 1173 else 1174 value = -EINVAL; 1175 1176 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1177 1178 return value; 1179 } 1180 1181 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1182 { 1183 struct ffs_io_data io_data, *p = &io_data; 1184 ssize_t res; 1185 1186 ENTER(); 1187 1188 if (!is_sync_kiocb(kiocb)) { 1189 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1190 if (!p) 1191 return -ENOMEM; 1192 p->aio = true; 1193 } else { 1194 memset(p, 0, sizeof(*p)); 1195 p->aio = false; 1196 } 1197 1198 p->read = false; 1199 p->kiocb = kiocb; 1200 p->data = *from; 1201 p->mm = current->mm; 1202 1203 kiocb->private = p; 1204 1205 if (p->aio) 1206 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1207 1208 res = ffs_epfile_io(kiocb->ki_filp, p); 1209 if (res == -EIOCBQUEUED) 1210 return res; 1211 if (p->aio) 1212 kfree(p); 1213 else 1214 *from = p->data; 1215 return res; 1216 } 1217 1218 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1219 { 1220 struct ffs_io_data io_data, *p = &io_data; 1221 ssize_t res; 1222 1223 ENTER(); 1224 1225 if (!is_sync_kiocb(kiocb)) { 1226 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1227 if (!p) 1228 return -ENOMEM; 1229 p->aio = true; 1230 } else { 1231 memset(p, 0, sizeof(*p)); 1232 p->aio = false; 1233 } 1234 1235 p->read = true; 1236 p->kiocb = kiocb; 1237 if (p->aio) { 1238 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1239 if (!p->to_free) { 1240 kfree(p); 1241 return -ENOMEM; 1242 } 1243 } else { 1244 p->data = *to; 1245 p->to_free = NULL; 1246 } 1247 p->mm = current->mm; 1248 1249 kiocb->private = p; 1250 1251 if (p->aio) 1252 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1253 1254 res = ffs_epfile_io(kiocb->ki_filp, p); 1255 if (res == -EIOCBQUEUED) 1256 return res; 1257 1258 if (p->aio) { 1259 kfree(p->to_free); 1260 kfree(p); 1261 } else { 1262 *to = p->data; 1263 } 1264 return res; 1265 } 1266 1267 static int 1268 ffs_epfile_release(struct inode *inode, struct file *file) 1269 { 1270 struct ffs_epfile *epfile = inode->i_private; 1271 1272 ENTER(); 1273 1274 __ffs_epfile_read_buffer_free(epfile); 1275 ffs_data_closed(epfile->ffs); 1276 1277 return 0; 1278 } 1279 1280 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1281 unsigned long value) 1282 { 1283 struct ffs_epfile *epfile = file->private_data; 1284 struct ffs_ep *ep; 1285 int ret; 1286 1287 ENTER(); 1288 1289 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1290 return -ENODEV; 1291 1292 /* Wait for endpoint to be enabled */ 1293 ep = epfile->ep; 1294 if (!ep) { 1295 if (file->f_flags & O_NONBLOCK) 1296 return -EAGAIN; 1297 1298 ret = wait_event_interruptible( 1299 epfile->ffs->wait, (ep = epfile->ep)); 1300 if (ret) 1301 return -EINTR; 1302 } 1303 1304 spin_lock_irq(&epfile->ffs->eps_lock); 1305 1306 /* In the meantime, endpoint got disabled or changed. */ 1307 if (epfile->ep != ep) { 1308 spin_unlock_irq(&epfile->ffs->eps_lock); 1309 return -ESHUTDOWN; 1310 } 1311 1312 switch (code) { 1313 case FUNCTIONFS_FIFO_STATUS: 1314 ret = usb_ep_fifo_status(epfile->ep->ep); 1315 break; 1316 case FUNCTIONFS_FIFO_FLUSH: 1317 usb_ep_fifo_flush(epfile->ep->ep); 1318 ret = 0; 1319 break; 1320 case FUNCTIONFS_CLEAR_HALT: 1321 ret = usb_ep_clear_halt(epfile->ep->ep); 1322 break; 1323 case FUNCTIONFS_ENDPOINT_REVMAP: 1324 ret = epfile->ep->num; 1325 break; 1326 case FUNCTIONFS_ENDPOINT_DESC: 1327 { 1328 int desc_idx; 1329 struct usb_endpoint_descriptor desc1, *desc; 1330 1331 switch (epfile->ffs->gadget->speed) { 1332 case USB_SPEED_SUPER: 1333 case USB_SPEED_SUPER_PLUS: 1334 desc_idx = 2; 1335 break; 1336 case USB_SPEED_HIGH: 1337 desc_idx = 1; 1338 break; 1339 default: 1340 desc_idx = 0; 1341 } 1342 1343 desc = epfile->ep->descs[desc_idx]; 1344 memcpy(&desc1, desc, desc->bLength); 1345 1346 spin_unlock_irq(&epfile->ffs->eps_lock); 1347 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1348 if (ret) 1349 ret = -EFAULT; 1350 return ret; 1351 } 1352 default: 1353 ret = -ENOTTY; 1354 } 1355 spin_unlock_irq(&epfile->ffs->eps_lock); 1356 1357 return ret; 1358 } 1359 1360 static const struct file_operations ffs_epfile_operations = { 1361 .llseek = no_llseek, 1362 1363 .open = ffs_epfile_open, 1364 .write_iter = ffs_epfile_write_iter, 1365 .read_iter = ffs_epfile_read_iter, 1366 .release = ffs_epfile_release, 1367 .unlocked_ioctl = ffs_epfile_ioctl, 1368 .compat_ioctl = compat_ptr_ioctl, 1369 }; 1370 1371 1372 /* File system and super block operations ***********************************/ 1373 1374 /* 1375 * Mounting the file system creates a controller file, used first for 1376 * function configuration then later for event monitoring. 1377 */ 1378 1379 static struct inode *__must_check 1380 ffs_sb_make_inode(struct super_block *sb, void *data, 1381 const struct file_operations *fops, 1382 const struct inode_operations *iops, 1383 struct ffs_file_perms *perms) 1384 { 1385 struct inode *inode; 1386 1387 ENTER(); 1388 1389 inode = new_inode(sb); 1390 1391 if (inode) { 1392 struct timespec64 ts = current_time(inode); 1393 1394 inode->i_ino = get_next_ino(); 1395 inode->i_mode = perms->mode; 1396 inode->i_uid = perms->uid; 1397 inode->i_gid = perms->gid; 1398 inode->i_atime = ts; 1399 inode->i_mtime = ts; 1400 inode->i_ctime = ts; 1401 inode->i_private = data; 1402 if (fops) 1403 inode->i_fop = fops; 1404 if (iops) 1405 inode->i_op = iops; 1406 } 1407 1408 return inode; 1409 } 1410 1411 /* Create "regular" file */ 1412 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1413 const char *name, void *data, 1414 const struct file_operations *fops) 1415 { 1416 struct ffs_data *ffs = sb->s_fs_info; 1417 struct dentry *dentry; 1418 struct inode *inode; 1419 1420 ENTER(); 1421 1422 dentry = d_alloc_name(sb->s_root, name); 1423 if (!dentry) 1424 return NULL; 1425 1426 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1427 if (!inode) { 1428 dput(dentry); 1429 return NULL; 1430 } 1431 1432 d_add(dentry, inode); 1433 return dentry; 1434 } 1435 1436 /* Super block */ 1437 static const struct super_operations ffs_sb_operations = { 1438 .statfs = simple_statfs, 1439 .drop_inode = generic_delete_inode, 1440 }; 1441 1442 struct ffs_sb_fill_data { 1443 struct ffs_file_perms perms; 1444 umode_t root_mode; 1445 const char *dev_name; 1446 bool no_disconnect; 1447 struct ffs_data *ffs_data; 1448 }; 1449 1450 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1451 { 1452 struct ffs_sb_fill_data *data = fc->fs_private; 1453 struct inode *inode; 1454 struct ffs_data *ffs = data->ffs_data; 1455 1456 ENTER(); 1457 1458 ffs->sb = sb; 1459 data->ffs_data = NULL; 1460 sb->s_fs_info = ffs; 1461 sb->s_blocksize = PAGE_SIZE; 1462 sb->s_blocksize_bits = PAGE_SHIFT; 1463 sb->s_magic = FUNCTIONFS_MAGIC; 1464 sb->s_op = &ffs_sb_operations; 1465 sb->s_time_gran = 1; 1466 1467 /* Root inode */ 1468 data->perms.mode = data->root_mode; 1469 inode = ffs_sb_make_inode(sb, NULL, 1470 &simple_dir_operations, 1471 &simple_dir_inode_operations, 1472 &data->perms); 1473 sb->s_root = d_make_root(inode); 1474 if (!sb->s_root) 1475 return -ENOMEM; 1476 1477 /* EP0 file */ 1478 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1479 return -ENOMEM; 1480 1481 return 0; 1482 } 1483 1484 enum { 1485 Opt_no_disconnect, 1486 Opt_rmode, 1487 Opt_fmode, 1488 Opt_mode, 1489 Opt_uid, 1490 Opt_gid, 1491 }; 1492 1493 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1494 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1495 fsparam_u32 ("rmode", Opt_rmode), 1496 fsparam_u32 ("fmode", Opt_fmode), 1497 fsparam_u32 ("mode", Opt_mode), 1498 fsparam_u32 ("uid", Opt_uid), 1499 fsparam_u32 ("gid", Opt_gid), 1500 {} 1501 }; 1502 1503 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1504 { 1505 struct ffs_sb_fill_data *data = fc->fs_private; 1506 struct fs_parse_result result; 1507 int opt; 1508 1509 ENTER(); 1510 1511 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1512 if (opt < 0) 1513 return opt; 1514 1515 switch (opt) { 1516 case Opt_no_disconnect: 1517 data->no_disconnect = result.boolean; 1518 break; 1519 case Opt_rmode: 1520 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1521 break; 1522 case Opt_fmode: 1523 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1524 break; 1525 case Opt_mode: 1526 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1527 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1528 break; 1529 1530 case Opt_uid: 1531 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1532 if (!uid_valid(data->perms.uid)) 1533 goto unmapped_value; 1534 break; 1535 case Opt_gid: 1536 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1537 if (!gid_valid(data->perms.gid)) 1538 goto unmapped_value; 1539 break; 1540 1541 default: 1542 return -ENOPARAM; 1543 } 1544 1545 return 0; 1546 1547 unmapped_value: 1548 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1549 } 1550 1551 /* 1552 * Set up the superblock for a mount. 1553 */ 1554 static int ffs_fs_get_tree(struct fs_context *fc) 1555 { 1556 struct ffs_sb_fill_data *ctx = fc->fs_private; 1557 struct ffs_data *ffs; 1558 int ret; 1559 1560 ENTER(); 1561 1562 if (!fc->source) 1563 return invalf(fc, "No source specified"); 1564 1565 ffs = ffs_data_new(fc->source); 1566 if (!ffs) 1567 return -ENOMEM; 1568 ffs->file_perms = ctx->perms; 1569 ffs->no_disconnect = ctx->no_disconnect; 1570 1571 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1572 if (!ffs->dev_name) { 1573 ffs_data_put(ffs); 1574 return -ENOMEM; 1575 } 1576 1577 ret = ffs_acquire_dev(ffs->dev_name, ffs); 1578 if (ret) { 1579 ffs_data_put(ffs); 1580 return ret; 1581 } 1582 1583 ctx->ffs_data = ffs; 1584 return get_tree_nodev(fc, ffs_sb_fill); 1585 } 1586 1587 static void ffs_fs_free_fc(struct fs_context *fc) 1588 { 1589 struct ffs_sb_fill_data *ctx = fc->fs_private; 1590 1591 if (ctx) { 1592 if (ctx->ffs_data) { 1593 ffs_data_put(ctx->ffs_data); 1594 } 1595 1596 kfree(ctx); 1597 } 1598 } 1599 1600 static const struct fs_context_operations ffs_fs_context_ops = { 1601 .free = ffs_fs_free_fc, 1602 .parse_param = ffs_fs_parse_param, 1603 .get_tree = ffs_fs_get_tree, 1604 }; 1605 1606 static int ffs_fs_init_fs_context(struct fs_context *fc) 1607 { 1608 struct ffs_sb_fill_data *ctx; 1609 1610 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1611 if (!ctx) 1612 return -ENOMEM; 1613 1614 ctx->perms.mode = S_IFREG | 0600; 1615 ctx->perms.uid = GLOBAL_ROOT_UID; 1616 ctx->perms.gid = GLOBAL_ROOT_GID; 1617 ctx->root_mode = S_IFDIR | 0500; 1618 ctx->no_disconnect = false; 1619 1620 fc->fs_private = ctx; 1621 fc->ops = &ffs_fs_context_ops; 1622 return 0; 1623 } 1624 1625 static void 1626 ffs_fs_kill_sb(struct super_block *sb) 1627 { 1628 ENTER(); 1629 1630 kill_litter_super(sb); 1631 if (sb->s_fs_info) 1632 ffs_data_closed(sb->s_fs_info); 1633 } 1634 1635 static struct file_system_type ffs_fs_type = { 1636 .owner = THIS_MODULE, 1637 .name = "functionfs", 1638 .init_fs_context = ffs_fs_init_fs_context, 1639 .parameters = ffs_fs_fs_parameters, 1640 .kill_sb = ffs_fs_kill_sb, 1641 }; 1642 MODULE_ALIAS_FS("functionfs"); 1643 1644 1645 /* Driver's main init/cleanup functions *************************************/ 1646 1647 static int functionfs_init(void) 1648 { 1649 int ret; 1650 1651 ENTER(); 1652 1653 ret = register_filesystem(&ffs_fs_type); 1654 if (!ret) 1655 pr_info("file system registered\n"); 1656 else 1657 pr_err("failed registering file system (%d)\n", ret); 1658 1659 return ret; 1660 } 1661 1662 static void functionfs_cleanup(void) 1663 { 1664 ENTER(); 1665 1666 pr_info("unloading\n"); 1667 unregister_filesystem(&ffs_fs_type); 1668 } 1669 1670 1671 /* ffs_data and ffs_function construction and destruction code **************/ 1672 1673 static void ffs_data_clear(struct ffs_data *ffs); 1674 static void ffs_data_reset(struct ffs_data *ffs); 1675 1676 static void ffs_data_get(struct ffs_data *ffs) 1677 { 1678 ENTER(); 1679 1680 refcount_inc(&ffs->ref); 1681 } 1682 1683 static void ffs_data_opened(struct ffs_data *ffs) 1684 { 1685 ENTER(); 1686 1687 refcount_inc(&ffs->ref); 1688 if (atomic_add_return(1, &ffs->opened) == 1 && 1689 ffs->state == FFS_DEACTIVATED) { 1690 ffs->state = FFS_CLOSING; 1691 ffs_data_reset(ffs); 1692 } 1693 } 1694 1695 static void ffs_data_put(struct ffs_data *ffs) 1696 { 1697 ENTER(); 1698 1699 if (refcount_dec_and_test(&ffs->ref)) { 1700 pr_info("%s(): freeing\n", __func__); 1701 ffs_data_clear(ffs); 1702 ffs_release_dev(ffs->private_data); 1703 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1704 swait_active(&ffs->ep0req_completion.wait) || 1705 waitqueue_active(&ffs->wait)); 1706 destroy_workqueue(ffs->io_completion_wq); 1707 kfree(ffs->dev_name); 1708 kfree(ffs); 1709 } 1710 } 1711 1712 static void ffs_data_closed(struct ffs_data *ffs) 1713 { 1714 ENTER(); 1715 1716 if (atomic_dec_and_test(&ffs->opened)) { 1717 if (ffs->no_disconnect) { 1718 ffs->state = FFS_DEACTIVATED; 1719 if (ffs->epfiles) { 1720 ffs_epfiles_destroy(ffs->epfiles, 1721 ffs->eps_count); 1722 ffs->epfiles = NULL; 1723 } 1724 if (ffs->setup_state == FFS_SETUP_PENDING) 1725 __ffs_ep0_stall(ffs); 1726 } else { 1727 ffs->state = FFS_CLOSING; 1728 ffs_data_reset(ffs); 1729 } 1730 } 1731 if (atomic_read(&ffs->opened) < 0) { 1732 ffs->state = FFS_CLOSING; 1733 ffs_data_reset(ffs); 1734 } 1735 1736 ffs_data_put(ffs); 1737 } 1738 1739 static struct ffs_data *ffs_data_new(const char *dev_name) 1740 { 1741 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1742 if (!ffs) 1743 return NULL; 1744 1745 ENTER(); 1746 1747 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1748 if (!ffs->io_completion_wq) { 1749 kfree(ffs); 1750 return NULL; 1751 } 1752 1753 refcount_set(&ffs->ref, 1); 1754 atomic_set(&ffs->opened, 0); 1755 ffs->state = FFS_READ_DESCRIPTORS; 1756 mutex_init(&ffs->mutex); 1757 spin_lock_init(&ffs->eps_lock); 1758 init_waitqueue_head(&ffs->ev.waitq); 1759 init_waitqueue_head(&ffs->wait); 1760 init_completion(&ffs->ep0req_completion); 1761 1762 /* XXX REVISIT need to update it in some places, or do we? */ 1763 ffs->ev.can_stall = 1; 1764 1765 return ffs; 1766 } 1767 1768 static void ffs_data_clear(struct ffs_data *ffs) 1769 { 1770 ENTER(); 1771 1772 ffs_closed(ffs); 1773 1774 BUG_ON(ffs->gadget); 1775 1776 if (ffs->epfiles) 1777 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1778 1779 if (ffs->ffs_eventfd) 1780 eventfd_ctx_put(ffs->ffs_eventfd); 1781 1782 kfree(ffs->raw_descs_data); 1783 kfree(ffs->raw_strings); 1784 kfree(ffs->stringtabs); 1785 } 1786 1787 static void ffs_data_reset(struct ffs_data *ffs) 1788 { 1789 ENTER(); 1790 1791 ffs_data_clear(ffs); 1792 1793 ffs->epfiles = NULL; 1794 ffs->raw_descs_data = NULL; 1795 ffs->raw_descs = NULL; 1796 ffs->raw_strings = NULL; 1797 ffs->stringtabs = NULL; 1798 1799 ffs->raw_descs_length = 0; 1800 ffs->fs_descs_count = 0; 1801 ffs->hs_descs_count = 0; 1802 ffs->ss_descs_count = 0; 1803 1804 ffs->strings_count = 0; 1805 ffs->interfaces_count = 0; 1806 ffs->eps_count = 0; 1807 1808 ffs->ev.count = 0; 1809 1810 ffs->state = FFS_READ_DESCRIPTORS; 1811 ffs->setup_state = FFS_NO_SETUP; 1812 ffs->flags = 0; 1813 1814 ffs->ms_os_descs_ext_prop_count = 0; 1815 ffs->ms_os_descs_ext_prop_name_len = 0; 1816 ffs->ms_os_descs_ext_prop_data_len = 0; 1817 } 1818 1819 1820 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1821 { 1822 struct usb_gadget_strings **lang; 1823 int first_id; 1824 1825 ENTER(); 1826 1827 if (WARN_ON(ffs->state != FFS_ACTIVE 1828 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1829 return -EBADFD; 1830 1831 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1832 if (first_id < 0) 1833 return first_id; 1834 1835 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1836 if (!ffs->ep0req) 1837 return -ENOMEM; 1838 ffs->ep0req->complete = ffs_ep0_complete; 1839 ffs->ep0req->context = ffs; 1840 1841 lang = ffs->stringtabs; 1842 if (lang) { 1843 for (; *lang; ++lang) { 1844 struct usb_string *str = (*lang)->strings; 1845 int id = first_id; 1846 for (; str->s; ++id, ++str) 1847 str->id = id; 1848 } 1849 } 1850 1851 ffs->gadget = cdev->gadget; 1852 ffs_data_get(ffs); 1853 return 0; 1854 } 1855 1856 static void functionfs_unbind(struct ffs_data *ffs) 1857 { 1858 ENTER(); 1859 1860 if (!WARN_ON(!ffs->gadget)) { 1861 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1862 ffs->ep0req = NULL; 1863 ffs->gadget = NULL; 1864 clear_bit(FFS_FL_BOUND, &ffs->flags); 1865 ffs_data_put(ffs); 1866 } 1867 } 1868 1869 static int ffs_epfiles_create(struct ffs_data *ffs) 1870 { 1871 struct ffs_epfile *epfile, *epfiles; 1872 unsigned i, count; 1873 1874 ENTER(); 1875 1876 count = ffs->eps_count; 1877 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1878 if (!epfiles) 1879 return -ENOMEM; 1880 1881 epfile = epfiles; 1882 for (i = 1; i <= count; ++i, ++epfile) { 1883 epfile->ffs = ffs; 1884 mutex_init(&epfile->mutex); 1885 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1886 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1887 else 1888 sprintf(epfile->name, "ep%u", i); 1889 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1890 epfile, 1891 &ffs_epfile_operations); 1892 if (!epfile->dentry) { 1893 ffs_epfiles_destroy(epfiles, i - 1); 1894 return -ENOMEM; 1895 } 1896 } 1897 1898 ffs->epfiles = epfiles; 1899 return 0; 1900 } 1901 1902 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1903 { 1904 struct ffs_epfile *epfile = epfiles; 1905 1906 ENTER(); 1907 1908 for (; count; --count, ++epfile) { 1909 BUG_ON(mutex_is_locked(&epfile->mutex)); 1910 if (epfile->dentry) { 1911 d_delete(epfile->dentry); 1912 dput(epfile->dentry); 1913 epfile->dentry = NULL; 1914 } 1915 } 1916 1917 kfree(epfiles); 1918 } 1919 1920 static void ffs_func_eps_disable(struct ffs_function *func) 1921 { 1922 struct ffs_ep *ep = func->eps; 1923 struct ffs_epfile *epfile = func->ffs->epfiles; 1924 unsigned count = func->ffs->eps_count; 1925 unsigned long flags; 1926 1927 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1928 while (count--) { 1929 /* pending requests get nuked */ 1930 if (ep->ep) 1931 usb_ep_disable(ep->ep); 1932 ++ep; 1933 1934 if (epfile) { 1935 epfile->ep = NULL; 1936 __ffs_epfile_read_buffer_free(epfile); 1937 ++epfile; 1938 } 1939 } 1940 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1941 } 1942 1943 static int ffs_func_eps_enable(struct ffs_function *func) 1944 { 1945 struct ffs_data *ffs = func->ffs; 1946 struct ffs_ep *ep = func->eps; 1947 struct ffs_epfile *epfile = ffs->epfiles; 1948 unsigned count = ffs->eps_count; 1949 unsigned long flags; 1950 int ret = 0; 1951 1952 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1953 while(count--) { 1954 ep->ep->driver_data = ep; 1955 1956 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1957 if (ret) { 1958 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1959 __func__, ep->ep->name, ret); 1960 break; 1961 } 1962 1963 ret = usb_ep_enable(ep->ep); 1964 if (!ret) { 1965 epfile->ep = ep; 1966 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1967 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1968 } else { 1969 break; 1970 } 1971 1972 ++ep; 1973 ++epfile; 1974 } 1975 1976 wake_up_interruptible(&ffs->wait); 1977 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1978 1979 return ret; 1980 } 1981 1982 1983 /* Parsing and building descriptors and strings *****************************/ 1984 1985 /* 1986 * This validates if data pointed by data is a valid USB descriptor as 1987 * well as record how many interfaces, endpoints and strings are 1988 * required by given configuration. Returns address after the 1989 * descriptor or NULL if data is invalid. 1990 */ 1991 1992 enum ffs_entity_type { 1993 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1994 }; 1995 1996 enum ffs_os_desc_type { 1997 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1998 }; 1999 2000 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2001 u8 *valuep, 2002 struct usb_descriptor_header *desc, 2003 void *priv); 2004 2005 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2006 struct usb_os_desc_header *h, void *data, 2007 unsigned len, void *priv); 2008 2009 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2010 ffs_entity_callback entity, 2011 void *priv, int *current_class) 2012 { 2013 struct usb_descriptor_header *_ds = (void *)data; 2014 u8 length; 2015 int ret; 2016 2017 ENTER(); 2018 2019 /* At least two bytes are required: length and type */ 2020 if (len < 2) { 2021 pr_vdebug("descriptor too short\n"); 2022 return -EINVAL; 2023 } 2024 2025 /* If we have at least as many bytes as the descriptor takes? */ 2026 length = _ds->bLength; 2027 if (len < length) { 2028 pr_vdebug("descriptor longer then available data\n"); 2029 return -EINVAL; 2030 } 2031 2032 #define __entity_check_INTERFACE(val) 1 2033 #define __entity_check_STRING(val) (val) 2034 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2035 #define __entity(type, val) do { \ 2036 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2037 if (!__entity_check_ ##type(val)) { \ 2038 pr_vdebug("invalid entity's value\n"); \ 2039 return -EINVAL; \ 2040 } \ 2041 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2042 if (ret < 0) { \ 2043 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2044 (val), ret); \ 2045 return ret; \ 2046 } \ 2047 } while (0) 2048 2049 /* Parse descriptor depending on type. */ 2050 switch (_ds->bDescriptorType) { 2051 case USB_DT_DEVICE: 2052 case USB_DT_CONFIG: 2053 case USB_DT_STRING: 2054 case USB_DT_DEVICE_QUALIFIER: 2055 /* function can't have any of those */ 2056 pr_vdebug("descriptor reserved for gadget: %d\n", 2057 _ds->bDescriptorType); 2058 return -EINVAL; 2059 2060 case USB_DT_INTERFACE: { 2061 struct usb_interface_descriptor *ds = (void *)_ds; 2062 pr_vdebug("interface descriptor\n"); 2063 if (length != sizeof *ds) 2064 goto inv_length; 2065 2066 __entity(INTERFACE, ds->bInterfaceNumber); 2067 if (ds->iInterface) 2068 __entity(STRING, ds->iInterface); 2069 *current_class = ds->bInterfaceClass; 2070 } 2071 break; 2072 2073 case USB_DT_ENDPOINT: { 2074 struct usb_endpoint_descriptor *ds = (void *)_ds; 2075 pr_vdebug("endpoint descriptor\n"); 2076 if (length != USB_DT_ENDPOINT_SIZE && 2077 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2078 goto inv_length; 2079 __entity(ENDPOINT, ds->bEndpointAddress); 2080 } 2081 break; 2082 2083 case USB_TYPE_CLASS | 0x01: 2084 if (*current_class == USB_INTERFACE_CLASS_HID) { 2085 pr_vdebug("hid descriptor\n"); 2086 if (length != sizeof(struct hid_descriptor)) 2087 goto inv_length; 2088 break; 2089 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2090 pr_vdebug("ccid descriptor\n"); 2091 if (length != sizeof(struct ccid_descriptor)) 2092 goto inv_length; 2093 break; 2094 } else { 2095 pr_vdebug("unknown descriptor: %d for class %d\n", 2096 _ds->bDescriptorType, *current_class); 2097 return -EINVAL; 2098 } 2099 2100 case USB_DT_OTG: 2101 if (length != sizeof(struct usb_otg_descriptor)) 2102 goto inv_length; 2103 break; 2104 2105 case USB_DT_INTERFACE_ASSOCIATION: { 2106 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2107 pr_vdebug("interface association descriptor\n"); 2108 if (length != sizeof *ds) 2109 goto inv_length; 2110 if (ds->iFunction) 2111 __entity(STRING, ds->iFunction); 2112 } 2113 break; 2114 2115 case USB_DT_SS_ENDPOINT_COMP: 2116 pr_vdebug("EP SS companion descriptor\n"); 2117 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2118 goto inv_length; 2119 break; 2120 2121 case USB_DT_OTHER_SPEED_CONFIG: 2122 case USB_DT_INTERFACE_POWER: 2123 case USB_DT_DEBUG: 2124 case USB_DT_SECURITY: 2125 case USB_DT_CS_RADIO_CONTROL: 2126 /* TODO */ 2127 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2128 return -EINVAL; 2129 2130 default: 2131 /* We should never be here */ 2132 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2133 return -EINVAL; 2134 2135 inv_length: 2136 pr_vdebug("invalid length: %d (descriptor %d)\n", 2137 _ds->bLength, _ds->bDescriptorType); 2138 return -EINVAL; 2139 } 2140 2141 #undef __entity 2142 #undef __entity_check_DESCRIPTOR 2143 #undef __entity_check_INTERFACE 2144 #undef __entity_check_STRING 2145 #undef __entity_check_ENDPOINT 2146 2147 return length; 2148 } 2149 2150 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2151 ffs_entity_callback entity, void *priv) 2152 { 2153 const unsigned _len = len; 2154 unsigned long num = 0; 2155 int current_class = -1; 2156 2157 ENTER(); 2158 2159 for (;;) { 2160 int ret; 2161 2162 if (num == count) 2163 data = NULL; 2164 2165 /* Record "descriptor" entity */ 2166 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2167 if (ret < 0) { 2168 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2169 num, ret); 2170 return ret; 2171 } 2172 2173 if (!data) 2174 return _len - len; 2175 2176 ret = ffs_do_single_desc(data, len, entity, priv, 2177 ¤t_class); 2178 if (ret < 0) { 2179 pr_debug("%s returns %d\n", __func__, ret); 2180 return ret; 2181 } 2182 2183 len -= ret; 2184 data += ret; 2185 ++num; 2186 } 2187 } 2188 2189 static int __ffs_data_do_entity(enum ffs_entity_type type, 2190 u8 *valuep, struct usb_descriptor_header *desc, 2191 void *priv) 2192 { 2193 struct ffs_desc_helper *helper = priv; 2194 struct usb_endpoint_descriptor *d; 2195 2196 ENTER(); 2197 2198 switch (type) { 2199 case FFS_DESCRIPTOR: 2200 break; 2201 2202 case FFS_INTERFACE: 2203 /* 2204 * Interfaces are indexed from zero so if we 2205 * encountered interface "n" then there are at least 2206 * "n+1" interfaces. 2207 */ 2208 if (*valuep >= helper->interfaces_count) 2209 helper->interfaces_count = *valuep + 1; 2210 break; 2211 2212 case FFS_STRING: 2213 /* 2214 * Strings are indexed from 1 (0 is reserved 2215 * for languages list) 2216 */ 2217 if (*valuep > helper->ffs->strings_count) 2218 helper->ffs->strings_count = *valuep; 2219 break; 2220 2221 case FFS_ENDPOINT: 2222 d = (void *)desc; 2223 helper->eps_count++; 2224 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2225 return -EINVAL; 2226 /* Check if descriptors for any speed were already parsed */ 2227 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2228 helper->ffs->eps_addrmap[helper->eps_count] = 2229 d->bEndpointAddress; 2230 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2231 d->bEndpointAddress) 2232 return -EINVAL; 2233 break; 2234 } 2235 2236 return 0; 2237 } 2238 2239 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2240 struct usb_os_desc_header *desc) 2241 { 2242 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2243 u16 w_index = le16_to_cpu(desc->wIndex); 2244 2245 if (bcd_version != 1) { 2246 pr_vdebug("unsupported os descriptors version: %d", 2247 bcd_version); 2248 return -EINVAL; 2249 } 2250 switch (w_index) { 2251 case 0x4: 2252 *next_type = FFS_OS_DESC_EXT_COMPAT; 2253 break; 2254 case 0x5: 2255 *next_type = FFS_OS_DESC_EXT_PROP; 2256 break; 2257 default: 2258 pr_vdebug("unsupported os descriptor type: %d", w_index); 2259 return -EINVAL; 2260 } 2261 2262 return sizeof(*desc); 2263 } 2264 2265 /* 2266 * Process all extended compatibility/extended property descriptors 2267 * of a feature descriptor 2268 */ 2269 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2270 enum ffs_os_desc_type type, 2271 u16 feature_count, 2272 ffs_os_desc_callback entity, 2273 void *priv, 2274 struct usb_os_desc_header *h) 2275 { 2276 int ret; 2277 const unsigned _len = len; 2278 2279 ENTER(); 2280 2281 /* loop over all ext compat/ext prop descriptors */ 2282 while (feature_count--) { 2283 ret = entity(type, h, data, len, priv); 2284 if (ret < 0) { 2285 pr_debug("bad OS descriptor, type: %d\n", type); 2286 return ret; 2287 } 2288 data += ret; 2289 len -= ret; 2290 } 2291 return _len - len; 2292 } 2293 2294 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2295 static int __must_check ffs_do_os_descs(unsigned count, 2296 char *data, unsigned len, 2297 ffs_os_desc_callback entity, void *priv) 2298 { 2299 const unsigned _len = len; 2300 unsigned long num = 0; 2301 2302 ENTER(); 2303 2304 for (num = 0; num < count; ++num) { 2305 int ret; 2306 enum ffs_os_desc_type type; 2307 u16 feature_count; 2308 struct usb_os_desc_header *desc = (void *)data; 2309 2310 if (len < sizeof(*desc)) 2311 return -EINVAL; 2312 2313 /* 2314 * Record "descriptor" entity. 2315 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2316 * Move the data pointer to the beginning of extended 2317 * compatibilities proper or extended properties proper 2318 * portions of the data 2319 */ 2320 if (le32_to_cpu(desc->dwLength) > len) 2321 return -EINVAL; 2322 2323 ret = __ffs_do_os_desc_header(&type, desc); 2324 if (ret < 0) { 2325 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2326 num, ret); 2327 return ret; 2328 } 2329 /* 2330 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2331 */ 2332 feature_count = le16_to_cpu(desc->wCount); 2333 if (type == FFS_OS_DESC_EXT_COMPAT && 2334 (feature_count > 255 || desc->Reserved)) 2335 return -EINVAL; 2336 len -= ret; 2337 data += ret; 2338 2339 /* 2340 * Process all function/property descriptors 2341 * of this Feature Descriptor 2342 */ 2343 ret = ffs_do_single_os_desc(data, len, type, 2344 feature_count, entity, priv, desc); 2345 if (ret < 0) { 2346 pr_debug("%s returns %d\n", __func__, ret); 2347 return ret; 2348 } 2349 2350 len -= ret; 2351 data += ret; 2352 } 2353 return _len - len; 2354 } 2355 2356 /* 2357 * Validate contents of the buffer from userspace related to OS descriptors. 2358 */ 2359 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2360 struct usb_os_desc_header *h, void *data, 2361 unsigned len, void *priv) 2362 { 2363 struct ffs_data *ffs = priv; 2364 u8 length; 2365 2366 ENTER(); 2367 2368 switch (type) { 2369 case FFS_OS_DESC_EXT_COMPAT: { 2370 struct usb_ext_compat_desc *d = data; 2371 int i; 2372 2373 if (len < sizeof(*d) || 2374 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2375 return -EINVAL; 2376 if (d->Reserved1 != 1) { 2377 /* 2378 * According to the spec, Reserved1 must be set to 1 2379 * but older kernels incorrectly rejected non-zero 2380 * values. We fix it here to avoid returning EINVAL 2381 * in response to values we used to accept. 2382 */ 2383 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2384 d->Reserved1 = 1; 2385 } 2386 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2387 if (d->Reserved2[i]) 2388 return -EINVAL; 2389 2390 length = sizeof(struct usb_ext_compat_desc); 2391 } 2392 break; 2393 case FFS_OS_DESC_EXT_PROP: { 2394 struct usb_ext_prop_desc *d = data; 2395 u32 type, pdl; 2396 u16 pnl; 2397 2398 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2399 return -EINVAL; 2400 length = le32_to_cpu(d->dwSize); 2401 if (len < length) 2402 return -EINVAL; 2403 type = le32_to_cpu(d->dwPropertyDataType); 2404 if (type < USB_EXT_PROP_UNICODE || 2405 type > USB_EXT_PROP_UNICODE_MULTI) { 2406 pr_vdebug("unsupported os descriptor property type: %d", 2407 type); 2408 return -EINVAL; 2409 } 2410 pnl = le16_to_cpu(d->wPropertyNameLength); 2411 if (length < 14 + pnl) { 2412 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2413 length, pnl, type); 2414 return -EINVAL; 2415 } 2416 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2417 if (length != 14 + pnl + pdl) { 2418 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2419 length, pnl, pdl, type); 2420 return -EINVAL; 2421 } 2422 ++ffs->ms_os_descs_ext_prop_count; 2423 /* property name reported to the host as "WCHAR"s */ 2424 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2425 ffs->ms_os_descs_ext_prop_data_len += pdl; 2426 } 2427 break; 2428 default: 2429 pr_vdebug("unknown descriptor: %d\n", type); 2430 return -EINVAL; 2431 } 2432 return length; 2433 } 2434 2435 static int __ffs_data_got_descs(struct ffs_data *ffs, 2436 char *const _data, size_t len) 2437 { 2438 char *data = _data, *raw_descs; 2439 unsigned os_descs_count = 0, counts[3], flags; 2440 int ret = -EINVAL, i; 2441 struct ffs_desc_helper helper; 2442 2443 ENTER(); 2444 2445 if (get_unaligned_le32(data + 4) != len) 2446 goto error; 2447 2448 switch (get_unaligned_le32(data)) { 2449 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2450 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2451 data += 8; 2452 len -= 8; 2453 break; 2454 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2455 flags = get_unaligned_le32(data + 8); 2456 ffs->user_flags = flags; 2457 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2458 FUNCTIONFS_HAS_HS_DESC | 2459 FUNCTIONFS_HAS_SS_DESC | 2460 FUNCTIONFS_HAS_MS_OS_DESC | 2461 FUNCTIONFS_VIRTUAL_ADDR | 2462 FUNCTIONFS_EVENTFD | 2463 FUNCTIONFS_ALL_CTRL_RECIP | 2464 FUNCTIONFS_CONFIG0_SETUP)) { 2465 ret = -ENOSYS; 2466 goto error; 2467 } 2468 data += 12; 2469 len -= 12; 2470 break; 2471 default: 2472 goto error; 2473 } 2474 2475 if (flags & FUNCTIONFS_EVENTFD) { 2476 if (len < 4) 2477 goto error; 2478 ffs->ffs_eventfd = 2479 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2480 if (IS_ERR(ffs->ffs_eventfd)) { 2481 ret = PTR_ERR(ffs->ffs_eventfd); 2482 ffs->ffs_eventfd = NULL; 2483 goto error; 2484 } 2485 data += 4; 2486 len -= 4; 2487 } 2488 2489 /* Read fs_count, hs_count and ss_count (if present) */ 2490 for (i = 0; i < 3; ++i) { 2491 if (!(flags & (1 << i))) { 2492 counts[i] = 0; 2493 } else if (len < 4) { 2494 goto error; 2495 } else { 2496 counts[i] = get_unaligned_le32(data); 2497 data += 4; 2498 len -= 4; 2499 } 2500 } 2501 if (flags & (1 << i)) { 2502 if (len < 4) { 2503 goto error; 2504 } 2505 os_descs_count = get_unaligned_le32(data); 2506 data += 4; 2507 len -= 4; 2508 } 2509 2510 /* Read descriptors */ 2511 raw_descs = data; 2512 helper.ffs = ffs; 2513 for (i = 0; i < 3; ++i) { 2514 if (!counts[i]) 2515 continue; 2516 helper.interfaces_count = 0; 2517 helper.eps_count = 0; 2518 ret = ffs_do_descs(counts[i], data, len, 2519 __ffs_data_do_entity, &helper); 2520 if (ret < 0) 2521 goto error; 2522 if (!ffs->eps_count && !ffs->interfaces_count) { 2523 ffs->eps_count = helper.eps_count; 2524 ffs->interfaces_count = helper.interfaces_count; 2525 } else { 2526 if (ffs->eps_count != helper.eps_count) { 2527 ret = -EINVAL; 2528 goto error; 2529 } 2530 if (ffs->interfaces_count != helper.interfaces_count) { 2531 ret = -EINVAL; 2532 goto error; 2533 } 2534 } 2535 data += ret; 2536 len -= ret; 2537 } 2538 if (os_descs_count) { 2539 ret = ffs_do_os_descs(os_descs_count, data, len, 2540 __ffs_data_do_os_desc, ffs); 2541 if (ret < 0) 2542 goto error; 2543 data += ret; 2544 len -= ret; 2545 } 2546 2547 if (raw_descs == data || len) { 2548 ret = -EINVAL; 2549 goto error; 2550 } 2551 2552 ffs->raw_descs_data = _data; 2553 ffs->raw_descs = raw_descs; 2554 ffs->raw_descs_length = data - raw_descs; 2555 ffs->fs_descs_count = counts[0]; 2556 ffs->hs_descs_count = counts[1]; 2557 ffs->ss_descs_count = counts[2]; 2558 ffs->ms_os_descs_count = os_descs_count; 2559 2560 return 0; 2561 2562 error: 2563 kfree(_data); 2564 return ret; 2565 } 2566 2567 static int __ffs_data_got_strings(struct ffs_data *ffs, 2568 char *const _data, size_t len) 2569 { 2570 u32 str_count, needed_count, lang_count; 2571 struct usb_gadget_strings **stringtabs, *t; 2572 const char *data = _data; 2573 struct usb_string *s; 2574 2575 ENTER(); 2576 2577 if (len < 16 || 2578 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2579 get_unaligned_le32(data + 4) != len) 2580 goto error; 2581 str_count = get_unaligned_le32(data + 8); 2582 lang_count = get_unaligned_le32(data + 12); 2583 2584 /* if one is zero the other must be zero */ 2585 if (!str_count != !lang_count) 2586 goto error; 2587 2588 /* Do we have at least as many strings as descriptors need? */ 2589 needed_count = ffs->strings_count; 2590 if (str_count < needed_count) 2591 goto error; 2592 2593 /* 2594 * If we don't need any strings just return and free all 2595 * memory. 2596 */ 2597 if (!needed_count) { 2598 kfree(_data); 2599 return 0; 2600 } 2601 2602 /* Allocate everything in one chunk so there's less maintenance. */ 2603 { 2604 unsigned i = 0; 2605 vla_group(d); 2606 vla_item(d, struct usb_gadget_strings *, stringtabs, 2607 lang_count + 1); 2608 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2609 vla_item(d, struct usb_string, strings, 2610 lang_count*(needed_count+1)); 2611 2612 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2613 2614 if (!vlabuf) { 2615 kfree(_data); 2616 return -ENOMEM; 2617 } 2618 2619 /* Initialize the VLA pointers */ 2620 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2621 t = vla_ptr(vlabuf, d, stringtab); 2622 i = lang_count; 2623 do { 2624 *stringtabs++ = t++; 2625 } while (--i); 2626 *stringtabs = NULL; 2627 2628 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2629 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2630 t = vla_ptr(vlabuf, d, stringtab); 2631 s = vla_ptr(vlabuf, d, strings); 2632 } 2633 2634 /* For each language */ 2635 data += 16; 2636 len -= 16; 2637 2638 do { /* lang_count > 0 so we can use do-while */ 2639 unsigned needed = needed_count; 2640 u32 str_per_lang = str_count; 2641 2642 if (len < 3) 2643 goto error_free; 2644 t->language = get_unaligned_le16(data); 2645 t->strings = s; 2646 ++t; 2647 2648 data += 2; 2649 len -= 2; 2650 2651 /* For each string */ 2652 do { /* str_count > 0 so we can use do-while */ 2653 size_t length = strnlen(data, len); 2654 2655 if (length == len) 2656 goto error_free; 2657 2658 /* 2659 * User may provide more strings then we need, 2660 * if that's the case we simply ignore the 2661 * rest 2662 */ 2663 if (needed) { 2664 /* 2665 * s->id will be set while adding 2666 * function to configuration so for 2667 * now just leave garbage here. 2668 */ 2669 s->s = data; 2670 --needed; 2671 ++s; 2672 } 2673 2674 data += length + 1; 2675 len -= length + 1; 2676 } while (--str_per_lang); 2677 2678 s->id = 0; /* terminator */ 2679 s->s = NULL; 2680 ++s; 2681 2682 } while (--lang_count); 2683 2684 /* Some garbage left? */ 2685 if (len) 2686 goto error_free; 2687 2688 /* Done! */ 2689 ffs->stringtabs = stringtabs; 2690 ffs->raw_strings = _data; 2691 2692 return 0; 2693 2694 error_free: 2695 kfree(stringtabs); 2696 error: 2697 kfree(_data); 2698 return -EINVAL; 2699 } 2700 2701 2702 /* Events handling and management *******************************************/ 2703 2704 static void __ffs_event_add(struct ffs_data *ffs, 2705 enum usb_functionfs_event_type type) 2706 { 2707 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2708 int neg = 0; 2709 2710 /* 2711 * Abort any unhandled setup 2712 * 2713 * We do not need to worry about some cmpxchg() changing value 2714 * of ffs->setup_state without holding the lock because when 2715 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2716 * the source does nothing. 2717 */ 2718 if (ffs->setup_state == FFS_SETUP_PENDING) 2719 ffs->setup_state = FFS_SETUP_CANCELLED; 2720 2721 /* 2722 * Logic of this function guarantees that there are at most four pending 2723 * evens on ffs->ev.types queue. This is important because the queue 2724 * has space for four elements only and __ffs_ep0_read_events function 2725 * depends on that limit as well. If more event types are added, those 2726 * limits have to be revisited or guaranteed to still hold. 2727 */ 2728 switch (type) { 2729 case FUNCTIONFS_RESUME: 2730 rem_type2 = FUNCTIONFS_SUSPEND; 2731 fallthrough; 2732 case FUNCTIONFS_SUSPEND: 2733 case FUNCTIONFS_SETUP: 2734 rem_type1 = type; 2735 /* Discard all similar events */ 2736 break; 2737 2738 case FUNCTIONFS_BIND: 2739 case FUNCTIONFS_UNBIND: 2740 case FUNCTIONFS_DISABLE: 2741 case FUNCTIONFS_ENABLE: 2742 /* Discard everything other then power management. */ 2743 rem_type1 = FUNCTIONFS_SUSPEND; 2744 rem_type2 = FUNCTIONFS_RESUME; 2745 neg = 1; 2746 break; 2747 2748 default: 2749 WARN(1, "%d: unknown event, this should not happen\n", type); 2750 return; 2751 } 2752 2753 { 2754 u8 *ev = ffs->ev.types, *out = ev; 2755 unsigned n = ffs->ev.count; 2756 for (; n; --n, ++ev) 2757 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2758 *out++ = *ev; 2759 else 2760 pr_vdebug("purging event %d\n", *ev); 2761 ffs->ev.count = out - ffs->ev.types; 2762 } 2763 2764 pr_vdebug("adding event %d\n", type); 2765 ffs->ev.types[ffs->ev.count++] = type; 2766 wake_up_locked(&ffs->ev.waitq); 2767 if (ffs->ffs_eventfd) 2768 eventfd_signal(ffs->ffs_eventfd, 1); 2769 } 2770 2771 static void ffs_event_add(struct ffs_data *ffs, 2772 enum usb_functionfs_event_type type) 2773 { 2774 unsigned long flags; 2775 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2776 __ffs_event_add(ffs, type); 2777 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2778 } 2779 2780 /* Bind/unbind USB function hooks *******************************************/ 2781 2782 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2783 { 2784 int i; 2785 2786 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2787 if (ffs->eps_addrmap[i] == endpoint_address) 2788 return i; 2789 return -ENOENT; 2790 } 2791 2792 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2793 struct usb_descriptor_header *desc, 2794 void *priv) 2795 { 2796 struct usb_endpoint_descriptor *ds = (void *)desc; 2797 struct ffs_function *func = priv; 2798 struct ffs_ep *ffs_ep; 2799 unsigned ep_desc_id; 2800 int idx; 2801 static const char *speed_names[] = { "full", "high", "super" }; 2802 2803 if (type != FFS_DESCRIPTOR) 2804 return 0; 2805 2806 /* 2807 * If ss_descriptors is not NULL, we are reading super speed 2808 * descriptors; if hs_descriptors is not NULL, we are reading high 2809 * speed descriptors; otherwise, we are reading full speed 2810 * descriptors. 2811 */ 2812 if (func->function.ss_descriptors) { 2813 ep_desc_id = 2; 2814 func->function.ss_descriptors[(long)valuep] = desc; 2815 } else if (func->function.hs_descriptors) { 2816 ep_desc_id = 1; 2817 func->function.hs_descriptors[(long)valuep] = desc; 2818 } else { 2819 ep_desc_id = 0; 2820 func->function.fs_descriptors[(long)valuep] = desc; 2821 } 2822 2823 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2824 return 0; 2825 2826 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2827 if (idx < 0) 2828 return idx; 2829 2830 ffs_ep = func->eps + idx; 2831 2832 if (ffs_ep->descs[ep_desc_id]) { 2833 pr_err("two %sspeed descriptors for EP %d\n", 2834 speed_names[ep_desc_id], 2835 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2836 return -EINVAL; 2837 } 2838 ffs_ep->descs[ep_desc_id] = ds; 2839 2840 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2841 if (ffs_ep->ep) { 2842 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2843 if (!ds->wMaxPacketSize) 2844 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2845 } else { 2846 struct usb_request *req; 2847 struct usb_ep *ep; 2848 u8 bEndpointAddress; 2849 u16 wMaxPacketSize; 2850 2851 /* 2852 * We back up bEndpointAddress because autoconfig overwrites 2853 * it with physical endpoint address. 2854 */ 2855 bEndpointAddress = ds->bEndpointAddress; 2856 /* 2857 * We back up wMaxPacketSize because autoconfig treats 2858 * endpoint descriptors as if they were full speed. 2859 */ 2860 wMaxPacketSize = ds->wMaxPacketSize; 2861 pr_vdebug("autoconfig\n"); 2862 ep = usb_ep_autoconfig(func->gadget, ds); 2863 if (!ep) 2864 return -ENOTSUPP; 2865 ep->driver_data = func->eps + idx; 2866 2867 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2868 if (!req) 2869 return -ENOMEM; 2870 2871 ffs_ep->ep = ep; 2872 ffs_ep->req = req; 2873 func->eps_revmap[ds->bEndpointAddress & 2874 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2875 /* 2876 * If we use virtual address mapping, we restore 2877 * original bEndpointAddress value. 2878 */ 2879 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2880 ds->bEndpointAddress = bEndpointAddress; 2881 /* 2882 * Restore wMaxPacketSize which was potentially 2883 * overwritten by autoconfig. 2884 */ 2885 ds->wMaxPacketSize = wMaxPacketSize; 2886 } 2887 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2888 2889 return 0; 2890 } 2891 2892 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2893 struct usb_descriptor_header *desc, 2894 void *priv) 2895 { 2896 struct ffs_function *func = priv; 2897 unsigned idx; 2898 u8 newValue; 2899 2900 switch (type) { 2901 default: 2902 case FFS_DESCRIPTOR: 2903 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2904 return 0; 2905 2906 case FFS_INTERFACE: 2907 idx = *valuep; 2908 if (func->interfaces_nums[idx] < 0) { 2909 int id = usb_interface_id(func->conf, &func->function); 2910 if (id < 0) 2911 return id; 2912 func->interfaces_nums[idx] = id; 2913 } 2914 newValue = func->interfaces_nums[idx]; 2915 break; 2916 2917 case FFS_STRING: 2918 /* String' IDs are allocated when fsf_data is bound to cdev */ 2919 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2920 break; 2921 2922 case FFS_ENDPOINT: 2923 /* 2924 * USB_DT_ENDPOINT are handled in 2925 * __ffs_func_bind_do_descs(). 2926 */ 2927 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2928 return 0; 2929 2930 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2931 if (!func->eps[idx].ep) 2932 return -EINVAL; 2933 2934 { 2935 struct usb_endpoint_descriptor **descs; 2936 descs = func->eps[idx].descs; 2937 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2938 } 2939 break; 2940 } 2941 2942 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2943 *valuep = newValue; 2944 return 0; 2945 } 2946 2947 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2948 struct usb_os_desc_header *h, void *data, 2949 unsigned len, void *priv) 2950 { 2951 struct ffs_function *func = priv; 2952 u8 length = 0; 2953 2954 switch (type) { 2955 case FFS_OS_DESC_EXT_COMPAT: { 2956 struct usb_ext_compat_desc *desc = data; 2957 struct usb_os_desc_table *t; 2958 2959 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2960 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2961 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2962 ARRAY_SIZE(desc->CompatibleID) + 2963 ARRAY_SIZE(desc->SubCompatibleID)); 2964 length = sizeof(*desc); 2965 } 2966 break; 2967 case FFS_OS_DESC_EXT_PROP: { 2968 struct usb_ext_prop_desc *desc = data; 2969 struct usb_os_desc_table *t; 2970 struct usb_os_desc_ext_prop *ext_prop; 2971 char *ext_prop_name; 2972 char *ext_prop_data; 2973 2974 t = &func->function.os_desc_table[h->interface]; 2975 t->if_id = func->interfaces_nums[h->interface]; 2976 2977 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2978 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2979 2980 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2981 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2982 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2983 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2984 length = ext_prop->name_len + ext_prop->data_len + 14; 2985 2986 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2987 func->ffs->ms_os_descs_ext_prop_name_avail += 2988 ext_prop->name_len; 2989 2990 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2991 func->ffs->ms_os_descs_ext_prop_data_avail += 2992 ext_prop->data_len; 2993 memcpy(ext_prop_data, 2994 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2995 ext_prop->data_len); 2996 /* unicode data reported to the host as "WCHAR"s */ 2997 switch (ext_prop->type) { 2998 case USB_EXT_PROP_UNICODE: 2999 case USB_EXT_PROP_UNICODE_ENV: 3000 case USB_EXT_PROP_UNICODE_LINK: 3001 case USB_EXT_PROP_UNICODE_MULTI: 3002 ext_prop->data_len *= 2; 3003 break; 3004 } 3005 ext_prop->data = ext_prop_data; 3006 3007 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3008 ext_prop->name_len); 3009 /* property name reported to the host as "WCHAR"s */ 3010 ext_prop->name_len *= 2; 3011 ext_prop->name = ext_prop_name; 3012 3013 t->os_desc->ext_prop_len += 3014 ext_prop->name_len + ext_prop->data_len + 14; 3015 ++t->os_desc->ext_prop_count; 3016 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3017 } 3018 break; 3019 default: 3020 pr_vdebug("unknown descriptor: %d\n", type); 3021 } 3022 3023 return length; 3024 } 3025 3026 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3027 struct usb_configuration *c) 3028 { 3029 struct ffs_function *func = ffs_func_from_usb(f); 3030 struct f_fs_opts *ffs_opts = 3031 container_of(f->fi, struct f_fs_opts, func_inst); 3032 struct ffs_data *ffs_data; 3033 int ret; 3034 3035 ENTER(); 3036 3037 /* 3038 * Legacy gadget triggers binding in functionfs_ready_callback, 3039 * which already uses locking; taking the same lock here would 3040 * cause a deadlock. 3041 * 3042 * Configfs-enabled gadgets however do need ffs_dev_lock. 3043 */ 3044 if (!ffs_opts->no_configfs) 3045 ffs_dev_lock(); 3046 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3047 ffs_data = ffs_opts->dev->ffs_data; 3048 if (!ffs_opts->no_configfs) 3049 ffs_dev_unlock(); 3050 if (ret) 3051 return ERR_PTR(ret); 3052 3053 func->ffs = ffs_data; 3054 func->conf = c; 3055 func->gadget = c->cdev->gadget; 3056 3057 /* 3058 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3059 * configurations are bound in sequence with list_for_each_entry, 3060 * in each configuration its functions are bound in sequence 3061 * with list_for_each_entry, so we assume no race condition 3062 * with regard to ffs_opts->bound access 3063 */ 3064 if (!ffs_opts->refcnt) { 3065 ret = functionfs_bind(func->ffs, c->cdev); 3066 if (ret) 3067 return ERR_PTR(ret); 3068 } 3069 ffs_opts->refcnt++; 3070 func->function.strings = func->ffs->stringtabs; 3071 3072 return ffs_opts; 3073 } 3074 3075 static int _ffs_func_bind(struct usb_configuration *c, 3076 struct usb_function *f) 3077 { 3078 struct ffs_function *func = ffs_func_from_usb(f); 3079 struct ffs_data *ffs = func->ffs; 3080 3081 const int full = !!func->ffs->fs_descs_count; 3082 const int high = !!func->ffs->hs_descs_count; 3083 const int super = !!func->ffs->ss_descs_count; 3084 3085 int fs_len, hs_len, ss_len, ret, i; 3086 struct ffs_ep *eps_ptr; 3087 3088 /* Make it a single chunk, less management later on */ 3089 vla_group(d); 3090 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3091 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3092 full ? ffs->fs_descs_count + 1 : 0); 3093 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3094 high ? ffs->hs_descs_count + 1 : 0); 3095 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3096 super ? ffs->ss_descs_count + 1 : 0); 3097 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3098 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3099 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3100 vla_item_with_sz(d, char[16], ext_compat, 3101 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3102 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3103 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3104 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3105 ffs->ms_os_descs_ext_prop_count); 3106 vla_item_with_sz(d, char, ext_prop_name, 3107 ffs->ms_os_descs_ext_prop_name_len); 3108 vla_item_with_sz(d, char, ext_prop_data, 3109 ffs->ms_os_descs_ext_prop_data_len); 3110 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3111 char *vlabuf; 3112 3113 ENTER(); 3114 3115 /* Has descriptors only for speeds gadget does not support */ 3116 if (!(full | high | super)) 3117 return -ENOTSUPP; 3118 3119 /* Allocate a single chunk, less management later on */ 3120 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3121 if (!vlabuf) 3122 return -ENOMEM; 3123 3124 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3125 ffs->ms_os_descs_ext_prop_name_avail = 3126 vla_ptr(vlabuf, d, ext_prop_name); 3127 ffs->ms_os_descs_ext_prop_data_avail = 3128 vla_ptr(vlabuf, d, ext_prop_data); 3129 3130 /* Copy descriptors */ 3131 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3132 ffs->raw_descs_length); 3133 3134 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3135 eps_ptr = vla_ptr(vlabuf, d, eps); 3136 for (i = 0; i < ffs->eps_count; i++) 3137 eps_ptr[i].num = -1; 3138 3139 /* Save pointers 3140 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3141 */ 3142 func->eps = vla_ptr(vlabuf, d, eps); 3143 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3144 3145 /* 3146 * Go through all the endpoint descriptors and allocate 3147 * endpoints first, so that later we can rewrite the endpoint 3148 * numbers without worrying that it may be described later on. 3149 */ 3150 if (full) { 3151 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3152 fs_len = ffs_do_descs(ffs->fs_descs_count, 3153 vla_ptr(vlabuf, d, raw_descs), 3154 d_raw_descs__sz, 3155 __ffs_func_bind_do_descs, func); 3156 if (fs_len < 0) { 3157 ret = fs_len; 3158 goto error; 3159 } 3160 } else { 3161 fs_len = 0; 3162 } 3163 3164 if (high) { 3165 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3166 hs_len = ffs_do_descs(ffs->hs_descs_count, 3167 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3168 d_raw_descs__sz - fs_len, 3169 __ffs_func_bind_do_descs, func); 3170 if (hs_len < 0) { 3171 ret = hs_len; 3172 goto error; 3173 } 3174 } else { 3175 hs_len = 0; 3176 } 3177 3178 if (super) { 3179 func->function.ss_descriptors = func->function.ssp_descriptors = 3180 vla_ptr(vlabuf, d, ss_descs); 3181 ss_len = ffs_do_descs(ffs->ss_descs_count, 3182 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3183 d_raw_descs__sz - fs_len - hs_len, 3184 __ffs_func_bind_do_descs, func); 3185 if (ss_len < 0) { 3186 ret = ss_len; 3187 goto error; 3188 } 3189 } else { 3190 ss_len = 0; 3191 } 3192 3193 /* 3194 * Now handle interface numbers allocation and interface and 3195 * endpoint numbers rewriting. We can do that in one go 3196 * now. 3197 */ 3198 ret = ffs_do_descs(ffs->fs_descs_count + 3199 (high ? ffs->hs_descs_count : 0) + 3200 (super ? ffs->ss_descs_count : 0), 3201 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3202 __ffs_func_bind_do_nums, func); 3203 if (ret < 0) 3204 goto error; 3205 3206 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3207 if (c->cdev->use_os_string) { 3208 for (i = 0; i < ffs->interfaces_count; ++i) { 3209 struct usb_os_desc *desc; 3210 3211 desc = func->function.os_desc_table[i].os_desc = 3212 vla_ptr(vlabuf, d, os_desc) + 3213 i * sizeof(struct usb_os_desc); 3214 desc->ext_compat_id = 3215 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3216 INIT_LIST_HEAD(&desc->ext_prop); 3217 } 3218 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3219 vla_ptr(vlabuf, d, raw_descs) + 3220 fs_len + hs_len + ss_len, 3221 d_raw_descs__sz - fs_len - hs_len - 3222 ss_len, 3223 __ffs_func_bind_do_os_desc, func); 3224 if (ret < 0) 3225 goto error; 3226 } 3227 func->function.os_desc_n = 3228 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3229 3230 /* And we're done */ 3231 ffs_event_add(ffs, FUNCTIONFS_BIND); 3232 return 0; 3233 3234 error: 3235 /* XXX Do we need to release all claimed endpoints here? */ 3236 return ret; 3237 } 3238 3239 static int ffs_func_bind(struct usb_configuration *c, 3240 struct usb_function *f) 3241 { 3242 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3243 struct ffs_function *func = ffs_func_from_usb(f); 3244 int ret; 3245 3246 if (IS_ERR(ffs_opts)) 3247 return PTR_ERR(ffs_opts); 3248 3249 ret = _ffs_func_bind(c, f); 3250 if (ret && !--ffs_opts->refcnt) 3251 functionfs_unbind(func->ffs); 3252 3253 return ret; 3254 } 3255 3256 3257 /* Other USB function hooks *************************************************/ 3258 3259 static void ffs_reset_work(struct work_struct *work) 3260 { 3261 struct ffs_data *ffs = container_of(work, 3262 struct ffs_data, reset_work); 3263 ffs_data_reset(ffs); 3264 } 3265 3266 static int ffs_func_set_alt(struct usb_function *f, 3267 unsigned interface, unsigned alt) 3268 { 3269 struct ffs_function *func = ffs_func_from_usb(f); 3270 struct ffs_data *ffs = func->ffs; 3271 int ret = 0, intf; 3272 3273 if (alt != (unsigned)-1) { 3274 intf = ffs_func_revmap_intf(func, interface); 3275 if (intf < 0) 3276 return intf; 3277 } 3278 3279 if (ffs->func) 3280 ffs_func_eps_disable(ffs->func); 3281 3282 if (ffs->state == FFS_DEACTIVATED) { 3283 ffs->state = FFS_CLOSING; 3284 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3285 schedule_work(&ffs->reset_work); 3286 return -ENODEV; 3287 } 3288 3289 if (ffs->state != FFS_ACTIVE) 3290 return -ENODEV; 3291 3292 if (alt == (unsigned)-1) { 3293 ffs->func = NULL; 3294 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3295 return 0; 3296 } 3297 3298 ffs->func = func; 3299 ret = ffs_func_eps_enable(func); 3300 if (ret >= 0) 3301 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3302 return ret; 3303 } 3304 3305 static void ffs_func_disable(struct usb_function *f) 3306 { 3307 ffs_func_set_alt(f, 0, (unsigned)-1); 3308 } 3309 3310 static int ffs_func_setup(struct usb_function *f, 3311 const struct usb_ctrlrequest *creq) 3312 { 3313 struct ffs_function *func = ffs_func_from_usb(f); 3314 struct ffs_data *ffs = func->ffs; 3315 unsigned long flags; 3316 int ret; 3317 3318 ENTER(); 3319 3320 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3321 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3322 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3323 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3324 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3325 3326 /* 3327 * Most requests directed to interface go through here 3328 * (notable exceptions are set/get interface) so we need to 3329 * handle them. All other either handled by composite or 3330 * passed to usb_configuration->setup() (if one is set). No 3331 * matter, we will handle requests directed to endpoint here 3332 * as well (as it's straightforward). Other request recipient 3333 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3334 * is being used. 3335 */ 3336 if (ffs->state != FFS_ACTIVE) 3337 return -ENODEV; 3338 3339 switch (creq->bRequestType & USB_RECIP_MASK) { 3340 case USB_RECIP_INTERFACE: 3341 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3342 if (ret < 0) 3343 return ret; 3344 break; 3345 3346 case USB_RECIP_ENDPOINT: 3347 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3348 if (ret < 0) 3349 return ret; 3350 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3351 ret = func->ffs->eps_addrmap[ret]; 3352 break; 3353 3354 default: 3355 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3356 ret = le16_to_cpu(creq->wIndex); 3357 else 3358 return -EOPNOTSUPP; 3359 } 3360 3361 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3362 ffs->ev.setup = *creq; 3363 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3364 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3365 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3366 3367 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3368 } 3369 3370 static bool ffs_func_req_match(struct usb_function *f, 3371 const struct usb_ctrlrequest *creq, 3372 bool config0) 3373 { 3374 struct ffs_function *func = ffs_func_from_usb(f); 3375 3376 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3377 return false; 3378 3379 switch (creq->bRequestType & USB_RECIP_MASK) { 3380 case USB_RECIP_INTERFACE: 3381 return (ffs_func_revmap_intf(func, 3382 le16_to_cpu(creq->wIndex)) >= 0); 3383 case USB_RECIP_ENDPOINT: 3384 return (ffs_func_revmap_ep(func, 3385 le16_to_cpu(creq->wIndex)) >= 0); 3386 default: 3387 return (bool) (func->ffs->user_flags & 3388 FUNCTIONFS_ALL_CTRL_RECIP); 3389 } 3390 } 3391 3392 static void ffs_func_suspend(struct usb_function *f) 3393 { 3394 ENTER(); 3395 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3396 } 3397 3398 static void ffs_func_resume(struct usb_function *f) 3399 { 3400 ENTER(); 3401 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3402 } 3403 3404 3405 /* Endpoint and interface numbers reverse mapping ***************************/ 3406 3407 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3408 { 3409 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3410 return num ? num : -EDOM; 3411 } 3412 3413 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3414 { 3415 short *nums = func->interfaces_nums; 3416 unsigned count = func->ffs->interfaces_count; 3417 3418 for (; count; --count, ++nums) { 3419 if (*nums >= 0 && *nums == intf) 3420 return nums - func->interfaces_nums; 3421 } 3422 3423 return -EDOM; 3424 } 3425 3426 3427 /* Devices management *******************************************************/ 3428 3429 static LIST_HEAD(ffs_devices); 3430 3431 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3432 { 3433 struct ffs_dev *dev; 3434 3435 if (!name) 3436 return NULL; 3437 3438 list_for_each_entry(dev, &ffs_devices, entry) { 3439 if (strcmp(dev->name, name) == 0) 3440 return dev; 3441 } 3442 3443 return NULL; 3444 } 3445 3446 /* 3447 * ffs_lock must be taken by the caller of this function 3448 */ 3449 static struct ffs_dev *_ffs_get_single_dev(void) 3450 { 3451 struct ffs_dev *dev; 3452 3453 if (list_is_singular(&ffs_devices)) { 3454 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3455 if (dev->single) 3456 return dev; 3457 } 3458 3459 return NULL; 3460 } 3461 3462 /* 3463 * ffs_lock must be taken by the caller of this function 3464 */ 3465 static struct ffs_dev *_ffs_find_dev(const char *name) 3466 { 3467 struct ffs_dev *dev; 3468 3469 dev = _ffs_get_single_dev(); 3470 if (dev) 3471 return dev; 3472 3473 return _ffs_do_find_dev(name); 3474 } 3475 3476 /* Configfs support *********************************************************/ 3477 3478 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3479 { 3480 return container_of(to_config_group(item), struct f_fs_opts, 3481 func_inst.group); 3482 } 3483 3484 static void ffs_attr_release(struct config_item *item) 3485 { 3486 struct f_fs_opts *opts = to_ffs_opts(item); 3487 3488 usb_put_function_instance(&opts->func_inst); 3489 } 3490 3491 static struct configfs_item_operations ffs_item_ops = { 3492 .release = ffs_attr_release, 3493 }; 3494 3495 static const struct config_item_type ffs_func_type = { 3496 .ct_item_ops = &ffs_item_ops, 3497 .ct_owner = THIS_MODULE, 3498 }; 3499 3500 3501 /* Function registration interface ******************************************/ 3502 3503 static void ffs_free_inst(struct usb_function_instance *f) 3504 { 3505 struct f_fs_opts *opts; 3506 3507 opts = to_f_fs_opts(f); 3508 ffs_release_dev(opts->dev); 3509 ffs_dev_lock(); 3510 _ffs_free_dev(opts->dev); 3511 ffs_dev_unlock(); 3512 kfree(opts); 3513 } 3514 3515 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3516 { 3517 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3518 return -ENAMETOOLONG; 3519 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3520 } 3521 3522 static struct usb_function_instance *ffs_alloc_inst(void) 3523 { 3524 struct f_fs_opts *opts; 3525 struct ffs_dev *dev; 3526 3527 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3528 if (!opts) 3529 return ERR_PTR(-ENOMEM); 3530 3531 opts->func_inst.set_inst_name = ffs_set_inst_name; 3532 opts->func_inst.free_func_inst = ffs_free_inst; 3533 ffs_dev_lock(); 3534 dev = _ffs_alloc_dev(); 3535 ffs_dev_unlock(); 3536 if (IS_ERR(dev)) { 3537 kfree(opts); 3538 return ERR_CAST(dev); 3539 } 3540 opts->dev = dev; 3541 dev->opts = opts; 3542 3543 config_group_init_type_name(&opts->func_inst.group, "", 3544 &ffs_func_type); 3545 return &opts->func_inst; 3546 } 3547 3548 static void ffs_free(struct usb_function *f) 3549 { 3550 kfree(ffs_func_from_usb(f)); 3551 } 3552 3553 static void ffs_func_unbind(struct usb_configuration *c, 3554 struct usb_function *f) 3555 { 3556 struct ffs_function *func = ffs_func_from_usb(f); 3557 struct ffs_data *ffs = func->ffs; 3558 struct f_fs_opts *opts = 3559 container_of(f->fi, struct f_fs_opts, func_inst); 3560 struct ffs_ep *ep = func->eps; 3561 unsigned count = ffs->eps_count; 3562 unsigned long flags; 3563 3564 ENTER(); 3565 if (ffs->func == func) { 3566 ffs_func_eps_disable(func); 3567 ffs->func = NULL; 3568 } 3569 3570 /* Drain any pending AIO completions */ 3571 drain_workqueue(ffs->io_completion_wq); 3572 3573 if (!--opts->refcnt) 3574 functionfs_unbind(ffs); 3575 3576 /* cleanup after autoconfig */ 3577 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3578 while (count--) { 3579 if (ep->ep && ep->req) 3580 usb_ep_free_request(ep->ep, ep->req); 3581 ep->req = NULL; 3582 ++ep; 3583 } 3584 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3585 kfree(func->eps); 3586 func->eps = NULL; 3587 /* 3588 * eps, descriptors and interfaces_nums are allocated in the 3589 * same chunk so only one free is required. 3590 */ 3591 func->function.fs_descriptors = NULL; 3592 func->function.hs_descriptors = NULL; 3593 func->function.ss_descriptors = NULL; 3594 func->function.ssp_descriptors = NULL; 3595 func->interfaces_nums = NULL; 3596 3597 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3598 } 3599 3600 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3601 { 3602 struct ffs_function *func; 3603 3604 ENTER(); 3605 3606 func = kzalloc(sizeof(*func), GFP_KERNEL); 3607 if (!func) 3608 return ERR_PTR(-ENOMEM); 3609 3610 func->function.name = "Function FS Gadget"; 3611 3612 func->function.bind = ffs_func_bind; 3613 func->function.unbind = ffs_func_unbind; 3614 func->function.set_alt = ffs_func_set_alt; 3615 func->function.disable = ffs_func_disable; 3616 func->function.setup = ffs_func_setup; 3617 func->function.req_match = ffs_func_req_match; 3618 func->function.suspend = ffs_func_suspend; 3619 func->function.resume = ffs_func_resume; 3620 func->function.free_func = ffs_free; 3621 3622 return &func->function; 3623 } 3624 3625 /* 3626 * ffs_lock must be taken by the caller of this function 3627 */ 3628 static struct ffs_dev *_ffs_alloc_dev(void) 3629 { 3630 struct ffs_dev *dev; 3631 int ret; 3632 3633 if (_ffs_get_single_dev()) 3634 return ERR_PTR(-EBUSY); 3635 3636 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3637 if (!dev) 3638 return ERR_PTR(-ENOMEM); 3639 3640 if (list_empty(&ffs_devices)) { 3641 ret = functionfs_init(); 3642 if (ret) { 3643 kfree(dev); 3644 return ERR_PTR(ret); 3645 } 3646 } 3647 3648 list_add(&dev->entry, &ffs_devices); 3649 3650 return dev; 3651 } 3652 3653 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3654 { 3655 struct ffs_dev *existing; 3656 int ret = 0; 3657 3658 ffs_dev_lock(); 3659 3660 existing = _ffs_do_find_dev(name); 3661 if (!existing) 3662 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3663 else if (existing != dev) 3664 ret = -EBUSY; 3665 3666 ffs_dev_unlock(); 3667 3668 return ret; 3669 } 3670 EXPORT_SYMBOL_GPL(ffs_name_dev); 3671 3672 int ffs_single_dev(struct ffs_dev *dev) 3673 { 3674 int ret; 3675 3676 ret = 0; 3677 ffs_dev_lock(); 3678 3679 if (!list_is_singular(&ffs_devices)) 3680 ret = -EBUSY; 3681 else 3682 dev->single = true; 3683 3684 ffs_dev_unlock(); 3685 return ret; 3686 } 3687 EXPORT_SYMBOL_GPL(ffs_single_dev); 3688 3689 /* 3690 * ffs_lock must be taken by the caller of this function 3691 */ 3692 static void _ffs_free_dev(struct ffs_dev *dev) 3693 { 3694 list_del(&dev->entry); 3695 3696 kfree(dev); 3697 if (list_empty(&ffs_devices)) 3698 functionfs_cleanup(); 3699 } 3700 3701 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 3702 { 3703 int ret = 0; 3704 struct ffs_dev *ffs_dev; 3705 3706 ENTER(); 3707 ffs_dev_lock(); 3708 3709 ffs_dev = _ffs_find_dev(dev_name); 3710 if (!ffs_dev) { 3711 ret = -ENOENT; 3712 } else if (ffs_dev->mounted) { 3713 ret = -EBUSY; 3714 } else if (ffs_dev->ffs_acquire_dev_callback && 3715 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 3716 ret = -ENOENT; 3717 } else { 3718 ffs_dev->mounted = true; 3719 ffs_dev->ffs_data = ffs_data; 3720 ffs_data->private_data = ffs_dev; 3721 } 3722 3723 ffs_dev_unlock(); 3724 return ret; 3725 } 3726 3727 static void ffs_release_dev(struct ffs_dev *ffs_dev) 3728 { 3729 ENTER(); 3730 ffs_dev_lock(); 3731 3732 if (ffs_dev && ffs_dev->mounted) { 3733 ffs_dev->mounted = false; 3734 if (ffs_dev->ffs_data) { 3735 ffs_dev->ffs_data->private_data = NULL; 3736 ffs_dev->ffs_data = NULL; 3737 } 3738 3739 if (ffs_dev->ffs_release_dev_callback) 3740 ffs_dev->ffs_release_dev_callback(ffs_dev); 3741 } 3742 3743 ffs_dev_unlock(); 3744 } 3745 3746 static int ffs_ready(struct ffs_data *ffs) 3747 { 3748 struct ffs_dev *ffs_obj; 3749 int ret = 0; 3750 3751 ENTER(); 3752 ffs_dev_lock(); 3753 3754 ffs_obj = ffs->private_data; 3755 if (!ffs_obj) { 3756 ret = -EINVAL; 3757 goto done; 3758 } 3759 if (WARN_ON(ffs_obj->desc_ready)) { 3760 ret = -EBUSY; 3761 goto done; 3762 } 3763 3764 ffs_obj->desc_ready = true; 3765 3766 if (ffs_obj->ffs_ready_callback) { 3767 ret = ffs_obj->ffs_ready_callback(ffs); 3768 if (ret) 3769 goto done; 3770 } 3771 3772 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3773 done: 3774 ffs_dev_unlock(); 3775 return ret; 3776 } 3777 3778 static void ffs_closed(struct ffs_data *ffs) 3779 { 3780 struct ffs_dev *ffs_obj; 3781 struct f_fs_opts *opts; 3782 struct config_item *ci; 3783 3784 ENTER(); 3785 ffs_dev_lock(); 3786 3787 ffs_obj = ffs->private_data; 3788 if (!ffs_obj) 3789 goto done; 3790 3791 ffs_obj->desc_ready = false; 3792 3793 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3794 ffs_obj->ffs_closed_callback) 3795 ffs_obj->ffs_closed_callback(ffs); 3796 3797 if (ffs_obj->opts) 3798 opts = ffs_obj->opts; 3799 else 3800 goto done; 3801 3802 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3803 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3804 goto done; 3805 3806 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3807 ffs_dev_unlock(); 3808 3809 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3810 unregister_gadget_item(ci); 3811 return; 3812 done: 3813 ffs_dev_unlock(); 3814 } 3815 3816 /* Misc helper functions ****************************************************/ 3817 3818 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3819 { 3820 return nonblock 3821 ? mutex_trylock(mutex) ? 0 : -EAGAIN 3822 : mutex_lock_interruptible(mutex); 3823 } 3824 3825 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3826 { 3827 char *data; 3828 3829 if (!len) 3830 return NULL; 3831 3832 data = memdup_user(buf, len); 3833 if (IS_ERR(data)) 3834 return data; 3835 3836 pr_vdebug("Buffer from user space:\n"); 3837 ffs_dump_mem("", data, len); 3838 3839 return data; 3840 } 3841 3842 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3843 MODULE_LICENSE("GPL"); 3844 MODULE_AUTHOR("Michal Nazarewicz"); 3845