1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/kthread.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 }; 126 127 struct ffs_epfile { 128 /* Protects ep->ep and ep->req. */ 129 struct mutex mutex; 130 131 struct ffs_data *ffs; 132 struct ffs_ep *ep; /* P: ffs->eps_lock */ 133 134 struct dentry *dentry; 135 136 /* 137 * Buffer for holding data from partial reads which may happen since 138 * we’re rounding user read requests to a multiple of a max packet size. 139 * 140 * The pointer is initialised with NULL value and may be set by 141 * __ffs_epfile_read_data function to point to a temporary buffer. 142 * 143 * In normal operation, calls to __ffs_epfile_read_buffered will consume 144 * data from said buffer and eventually free it. Importantly, while the 145 * function is using the buffer, it sets the pointer to NULL. This is 146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 147 * can never run concurrently (they are synchronised by epfile->mutex) 148 * so the latter will not assign a new value to the pointer. 149 * 150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 152 * value is crux of the synchronisation between ffs_func_eps_disable and 153 * __ffs_epfile_read_data. 154 * 155 * Once __ffs_epfile_read_data is about to finish it will try to set the 156 * pointer back to its old value (as described above), but seeing as the 157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 158 * the buffer. 159 * 160 * == State transitions == 161 * 162 * • ptr == NULL: (initial state) 163 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 164 * ◦ __ffs_epfile_read_buffered: nop 165 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 166 * ◦ reading finishes: n/a, not in ‘and reading’ state 167 * • ptr == DROP: 168 * ◦ __ffs_epfile_read_buffer_free: nop 169 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 170 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 171 * ◦ reading finishes: n/a, not in ‘and reading’ state 172 * • ptr == buf: 173 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 174 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 175 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 176 * is always called first 177 * ◦ reading finishes: n/a, not in ‘and reading’ state 178 * • ptr == NULL and reading: 179 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 180 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 181 * ◦ __ffs_epfile_read_data: n/a, mutex is held 182 * ◦ reading finishes and … 183 * … all data read: free buf, go to ptr == NULL 184 * … otherwise: go to ptr == buf and reading 185 * • ptr == DROP and reading: 186 * ◦ __ffs_epfile_read_buffer_free: nop 187 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 188 * ◦ __ffs_epfile_read_data: n/a, mutex is held 189 * ◦ reading finishes: free buf, go to ptr == DROP 190 */ 191 struct ffs_buffer *read_buffer; 192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 193 194 char name[5]; 195 196 unsigned char in; /* P: ffs->eps_lock */ 197 unsigned char isoc; /* P: ffs->eps_lock */ 198 199 unsigned char _pad; 200 }; 201 202 struct ffs_buffer { 203 size_t length; 204 char *data; 205 char storage[]; 206 }; 207 208 /* ffs_io_data structure ***************************************************/ 209 210 struct ffs_io_data { 211 bool aio; 212 bool read; 213 214 struct kiocb *kiocb; 215 struct iov_iter data; 216 const void *to_free; 217 char *buf; 218 219 struct mm_struct *mm; 220 struct work_struct work; 221 222 struct usb_ep *ep; 223 struct usb_request *req; 224 struct sg_table sgt; 225 bool use_sg; 226 227 struct ffs_data *ffs; 228 229 int status; 230 struct completion done; 231 }; 232 233 struct ffs_desc_helper { 234 struct ffs_data *ffs; 235 unsigned interfaces_count; 236 unsigned eps_count; 237 }; 238 239 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 240 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 241 242 static struct dentry * 243 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 244 const struct file_operations *fops); 245 246 /* Devices management *******************************************************/ 247 248 DEFINE_MUTEX(ffs_lock); 249 EXPORT_SYMBOL_GPL(ffs_lock); 250 251 static struct ffs_dev *_ffs_find_dev(const char *name); 252 static struct ffs_dev *_ffs_alloc_dev(void); 253 static void _ffs_free_dev(struct ffs_dev *dev); 254 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 255 static void ffs_release_dev(struct ffs_dev *ffs_dev); 256 static int ffs_ready(struct ffs_data *ffs); 257 static void ffs_closed(struct ffs_data *ffs); 258 259 /* Misc helper functions ****************************************************/ 260 261 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 262 __attribute__((warn_unused_result, nonnull)); 263 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 264 __attribute__((warn_unused_result, nonnull)); 265 266 267 /* Control file aka ep0 *****************************************************/ 268 269 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 270 { 271 struct ffs_data *ffs = req->context; 272 273 complete(&ffs->ep0req_completion); 274 } 275 276 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 277 __releases(&ffs->ev.waitq.lock) 278 { 279 struct usb_request *req = ffs->ep0req; 280 int ret; 281 282 if (!req) { 283 spin_unlock_irq(&ffs->ev.waitq.lock); 284 return -EINVAL; 285 } 286 287 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 288 289 spin_unlock_irq(&ffs->ev.waitq.lock); 290 291 req->buf = data; 292 req->length = len; 293 294 /* 295 * UDC layer requires to provide a buffer even for ZLP, but should 296 * not use it at all. Let's provide some poisoned pointer to catch 297 * possible bug in the driver. 298 */ 299 if (req->buf == NULL) 300 req->buf = (void *)0xDEADBABE; 301 302 reinit_completion(&ffs->ep0req_completion); 303 304 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 305 if (ret < 0) 306 return ret; 307 308 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 309 if (ret) { 310 usb_ep_dequeue(ffs->gadget->ep0, req); 311 return -EINTR; 312 } 313 314 ffs->setup_state = FFS_NO_SETUP; 315 return req->status ? req->status : req->actual; 316 } 317 318 static int __ffs_ep0_stall(struct ffs_data *ffs) 319 { 320 if (ffs->ev.can_stall) { 321 pr_vdebug("ep0 stall\n"); 322 usb_ep_set_halt(ffs->gadget->ep0); 323 ffs->setup_state = FFS_NO_SETUP; 324 return -EL2HLT; 325 } else { 326 pr_debug("bogus ep0 stall!\n"); 327 return -ESRCH; 328 } 329 } 330 331 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 332 size_t len, loff_t *ptr) 333 { 334 struct ffs_data *ffs = file->private_data; 335 ssize_t ret; 336 char *data; 337 338 /* Fast check if setup was canceled */ 339 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 340 return -EIDRM; 341 342 /* Acquire mutex */ 343 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 344 if (ret < 0) 345 return ret; 346 347 /* Check state */ 348 switch (ffs->state) { 349 case FFS_READ_DESCRIPTORS: 350 case FFS_READ_STRINGS: 351 /* Copy data */ 352 if (len < 16) { 353 ret = -EINVAL; 354 break; 355 } 356 357 data = ffs_prepare_buffer(buf, len); 358 if (IS_ERR(data)) { 359 ret = PTR_ERR(data); 360 break; 361 } 362 363 /* Handle data */ 364 if (ffs->state == FFS_READ_DESCRIPTORS) { 365 pr_info("read descriptors\n"); 366 ret = __ffs_data_got_descs(ffs, data, len); 367 if (ret < 0) 368 break; 369 370 ffs->state = FFS_READ_STRINGS; 371 ret = len; 372 } else { 373 pr_info("read strings\n"); 374 ret = __ffs_data_got_strings(ffs, data, len); 375 if (ret < 0) 376 break; 377 378 ret = ffs_epfiles_create(ffs); 379 if (ret) { 380 ffs->state = FFS_CLOSING; 381 break; 382 } 383 384 ffs->state = FFS_ACTIVE; 385 mutex_unlock(&ffs->mutex); 386 387 ret = ffs_ready(ffs); 388 if (ret < 0) { 389 ffs->state = FFS_CLOSING; 390 return ret; 391 } 392 393 return len; 394 } 395 break; 396 397 case FFS_ACTIVE: 398 data = NULL; 399 /* 400 * We're called from user space, we can use _irq 401 * rather then _irqsave 402 */ 403 spin_lock_irq(&ffs->ev.waitq.lock); 404 switch (ffs_setup_state_clear_cancelled(ffs)) { 405 case FFS_SETUP_CANCELLED: 406 ret = -EIDRM; 407 goto done_spin; 408 409 case FFS_NO_SETUP: 410 ret = -ESRCH; 411 goto done_spin; 412 413 case FFS_SETUP_PENDING: 414 break; 415 } 416 417 /* FFS_SETUP_PENDING */ 418 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 419 spin_unlock_irq(&ffs->ev.waitq.lock); 420 ret = __ffs_ep0_stall(ffs); 421 break; 422 } 423 424 /* FFS_SETUP_PENDING and not stall */ 425 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 426 427 spin_unlock_irq(&ffs->ev.waitq.lock); 428 429 data = ffs_prepare_buffer(buf, len); 430 if (IS_ERR(data)) { 431 ret = PTR_ERR(data); 432 break; 433 } 434 435 spin_lock_irq(&ffs->ev.waitq.lock); 436 437 /* 438 * We are guaranteed to be still in FFS_ACTIVE state 439 * but the state of setup could have changed from 440 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 441 * to check for that. If that happened we copied data 442 * from user space in vain but it's unlikely. 443 * 444 * For sure we are not in FFS_NO_SETUP since this is 445 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 446 * transition can be performed and it's protected by 447 * mutex. 448 */ 449 if (ffs_setup_state_clear_cancelled(ffs) == 450 FFS_SETUP_CANCELLED) { 451 ret = -EIDRM; 452 done_spin: 453 spin_unlock_irq(&ffs->ev.waitq.lock); 454 } else { 455 /* unlocks spinlock */ 456 ret = __ffs_ep0_queue_wait(ffs, data, len); 457 } 458 kfree(data); 459 break; 460 461 default: 462 ret = -EBADFD; 463 break; 464 } 465 466 mutex_unlock(&ffs->mutex); 467 return ret; 468 } 469 470 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 471 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 472 size_t n) 473 __releases(&ffs->ev.waitq.lock) 474 { 475 /* 476 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 477 * size of ffs->ev.types array (which is four) so that's how much space 478 * we reserve. 479 */ 480 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 481 const size_t size = n * sizeof *events; 482 unsigned i = 0; 483 484 memset(events, 0, size); 485 486 do { 487 events[i].type = ffs->ev.types[i]; 488 if (events[i].type == FUNCTIONFS_SETUP) { 489 events[i].u.setup = ffs->ev.setup; 490 ffs->setup_state = FFS_SETUP_PENDING; 491 } 492 } while (++i < n); 493 494 ffs->ev.count -= n; 495 if (ffs->ev.count) 496 memmove(ffs->ev.types, ffs->ev.types + n, 497 ffs->ev.count * sizeof *ffs->ev.types); 498 499 spin_unlock_irq(&ffs->ev.waitq.lock); 500 mutex_unlock(&ffs->mutex); 501 502 return copy_to_user(buf, events, size) ? -EFAULT : size; 503 } 504 505 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 506 size_t len, loff_t *ptr) 507 { 508 struct ffs_data *ffs = file->private_data; 509 char *data = NULL; 510 size_t n; 511 int ret; 512 513 /* Fast check if setup was canceled */ 514 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 515 return -EIDRM; 516 517 /* Acquire mutex */ 518 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 519 if (ret < 0) 520 return ret; 521 522 /* Check state */ 523 if (ffs->state != FFS_ACTIVE) { 524 ret = -EBADFD; 525 goto done_mutex; 526 } 527 528 /* 529 * We're called from user space, we can use _irq rather then 530 * _irqsave 531 */ 532 spin_lock_irq(&ffs->ev.waitq.lock); 533 534 switch (ffs_setup_state_clear_cancelled(ffs)) { 535 case FFS_SETUP_CANCELLED: 536 ret = -EIDRM; 537 break; 538 539 case FFS_NO_SETUP: 540 n = len / sizeof(struct usb_functionfs_event); 541 if (!n) { 542 ret = -EINVAL; 543 break; 544 } 545 546 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 547 ret = -EAGAIN; 548 break; 549 } 550 551 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 552 ffs->ev.count)) { 553 ret = -EINTR; 554 break; 555 } 556 557 /* unlocks spinlock */ 558 return __ffs_ep0_read_events(ffs, buf, 559 min(n, (size_t)ffs->ev.count)); 560 561 case FFS_SETUP_PENDING: 562 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 563 spin_unlock_irq(&ffs->ev.waitq.lock); 564 ret = __ffs_ep0_stall(ffs); 565 goto done_mutex; 566 } 567 568 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 569 570 spin_unlock_irq(&ffs->ev.waitq.lock); 571 572 if (len) { 573 data = kmalloc(len, GFP_KERNEL); 574 if (!data) { 575 ret = -ENOMEM; 576 goto done_mutex; 577 } 578 } 579 580 spin_lock_irq(&ffs->ev.waitq.lock); 581 582 /* See ffs_ep0_write() */ 583 if (ffs_setup_state_clear_cancelled(ffs) == 584 FFS_SETUP_CANCELLED) { 585 ret = -EIDRM; 586 break; 587 } 588 589 /* unlocks spinlock */ 590 ret = __ffs_ep0_queue_wait(ffs, data, len); 591 if ((ret > 0) && (copy_to_user(buf, data, len))) 592 ret = -EFAULT; 593 goto done_mutex; 594 595 default: 596 ret = -EBADFD; 597 break; 598 } 599 600 spin_unlock_irq(&ffs->ev.waitq.lock); 601 done_mutex: 602 mutex_unlock(&ffs->mutex); 603 kfree(data); 604 return ret; 605 } 606 607 static int ffs_ep0_open(struct inode *inode, struct file *file) 608 { 609 struct ffs_data *ffs = inode->i_private; 610 611 if (ffs->state == FFS_CLOSING) 612 return -EBUSY; 613 614 file->private_data = ffs; 615 ffs_data_opened(ffs); 616 617 return stream_open(inode, file); 618 } 619 620 static int ffs_ep0_release(struct inode *inode, struct file *file) 621 { 622 struct ffs_data *ffs = file->private_data; 623 624 ffs_data_closed(ffs); 625 626 return 0; 627 } 628 629 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 630 { 631 struct ffs_data *ffs = file->private_data; 632 struct usb_gadget *gadget = ffs->gadget; 633 long ret; 634 635 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 636 struct ffs_function *func = ffs->func; 637 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 638 } else if (gadget && gadget->ops->ioctl) { 639 ret = gadget->ops->ioctl(gadget, code, value); 640 } else { 641 ret = -ENOTTY; 642 } 643 644 return ret; 645 } 646 647 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 648 { 649 struct ffs_data *ffs = file->private_data; 650 __poll_t mask = EPOLLWRNORM; 651 int ret; 652 653 poll_wait(file, &ffs->ev.waitq, wait); 654 655 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 656 if (ret < 0) 657 return mask; 658 659 switch (ffs->state) { 660 case FFS_READ_DESCRIPTORS: 661 case FFS_READ_STRINGS: 662 mask |= EPOLLOUT; 663 break; 664 665 case FFS_ACTIVE: 666 switch (ffs->setup_state) { 667 case FFS_NO_SETUP: 668 if (ffs->ev.count) 669 mask |= EPOLLIN; 670 break; 671 672 case FFS_SETUP_PENDING: 673 case FFS_SETUP_CANCELLED: 674 mask |= (EPOLLIN | EPOLLOUT); 675 break; 676 } 677 break; 678 679 case FFS_CLOSING: 680 break; 681 case FFS_DEACTIVATED: 682 break; 683 } 684 685 mutex_unlock(&ffs->mutex); 686 687 return mask; 688 } 689 690 static const struct file_operations ffs_ep0_operations = { 691 .llseek = no_llseek, 692 693 .open = ffs_ep0_open, 694 .write = ffs_ep0_write, 695 .read = ffs_ep0_read, 696 .release = ffs_ep0_release, 697 .unlocked_ioctl = ffs_ep0_ioctl, 698 .poll = ffs_ep0_poll, 699 }; 700 701 702 /* "Normal" endpoints operations ********************************************/ 703 704 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 705 { 706 struct ffs_io_data *io_data = req->context; 707 708 if (req->status) 709 io_data->status = req->status; 710 else 711 io_data->status = req->actual; 712 713 complete(&io_data->done); 714 } 715 716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 717 { 718 ssize_t ret = copy_to_iter(data, data_len, iter); 719 if (ret == data_len) 720 return ret; 721 722 if (iov_iter_count(iter)) 723 return -EFAULT; 724 725 /* 726 * Dear user space developer! 727 * 728 * TL;DR: To stop getting below error message in your kernel log, change 729 * user space code using functionfs to align read buffers to a max 730 * packet size. 731 * 732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 733 * packet size. When unaligned buffer is passed to functionfs, it 734 * internally uses a larger, aligned buffer so that such UDCs are happy. 735 * 736 * Unfortunately, this means that host may send more data than was 737 * requested in read(2) system call. f_fs doesn’t know what to do with 738 * that excess data so it simply drops it. 739 * 740 * Was the buffer aligned in the first place, no such problem would 741 * happen. 742 * 743 * Data may be dropped only in AIO reads. Synchronous reads are handled 744 * by splitting a request into multiple parts. This splitting may still 745 * be a problem though so it’s likely best to align the buffer 746 * regardless of it being AIO or not.. 747 * 748 * This only affects OUT endpoints, i.e. reading data with a read(2), 749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 750 * affected. 751 */ 752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 753 "Align read buffer size to max packet size to avoid the problem.\n", 754 data_len, ret); 755 756 return ret; 757 } 758 759 /* 760 * allocate a virtually contiguous buffer and create a scatterlist describing it 761 * @sg_table - pointer to a place to be filled with sg_table contents 762 * @size - required buffer size 763 */ 764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 765 { 766 struct page **pages; 767 void *vaddr, *ptr; 768 unsigned int n_pages; 769 int i; 770 771 vaddr = vmalloc(sz); 772 if (!vaddr) 773 return NULL; 774 775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 777 if (!pages) { 778 vfree(vaddr); 779 780 return NULL; 781 } 782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 783 pages[i] = vmalloc_to_page(ptr); 784 785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 786 kvfree(pages); 787 vfree(vaddr); 788 789 return NULL; 790 } 791 kvfree(pages); 792 793 return vaddr; 794 } 795 796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 797 size_t data_len) 798 { 799 if (io_data->use_sg) 800 return ffs_build_sg_list(&io_data->sgt, data_len); 801 802 return kmalloc(data_len, GFP_KERNEL); 803 } 804 805 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 806 { 807 if (!io_data->buf) 808 return; 809 810 if (io_data->use_sg) { 811 sg_free_table(&io_data->sgt); 812 vfree(io_data->buf); 813 } else { 814 kfree(io_data->buf); 815 } 816 } 817 818 static void ffs_user_copy_worker(struct work_struct *work) 819 { 820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 821 work); 822 int ret = io_data->status; 823 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 824 825 if (io_data->read && ret > 0) { 826 kthread_use_mm(io_data->mm); 827 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 828 kthread_unuse_mm(io_data->mm); 829 } 830 831 io_data->kiocb->ki_complete(io_data->kiocb, ret); 832 833 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 834 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 835 836 if (io_data->read) 837 kfree(io_data->to_free); 838 ffs_free_buffer(io_data); 839 kfree(io_data); 840 } 841 842 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 843 struct usb_request *req) 844 { 845 struct ffs_io_data *io_data = req->context; 846 struct ffs_data *ffs = io_data->ffs; 847 848 io_data->status = req->status ? req->status : req->actual; 849 usb_ep_free_request(_ep, req); 850 851 INIT_WORK(&io_data->work, ffs_user_copy_worker); 852 queue_work(ffs->io_completion_wq, &io_data->work); 853 } 854 855 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 856 { 857 /* 858 * See comment in struct ffs_epfile for full read_buffer pointer 859 * synchronisation story. 860 */ 861 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 862 if (buf && buf != READ_BUFFER_DROP) 863 kfree(buf); 864 } 865 866 /* Assumes epfile->mutex is held. */ 867 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 868 struct iov_iter *iter) 869 { 870 /* 871 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 872 * the buffer while we are using it. See comment in struct ffs_epfile 873 * for full read_buffer pointer synchronisation story. 874 */ 875 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 876 ssize_t ret; 877 if (!buf || buf == READ_BUFFER_DROP) 878 return 0; 879 880 ret = copy_to_iter(buf->data, buf->length, iter); 881 if (buf->length == ret) { 882 kfree(buf); 883 return ret; 884 } 885 886 if (iov_iter_count(iter)) { 887 ret = -EFAULT; 888 } else { 889 buf->length -= ret; 890 buf->data += ret; 891 } 892 893 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 894 kfree(buf); 895 896 return ret; 897 } 898 899 /* Assumes epfile->mutex is held. */ 900 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 901 void *data, int data_len, 902 struct iov_iter *iter) 903 { 904 struct ffs_buffer *buf; 905 906 ssize_t ret = copy_to_iter(data, data_len, iter); 907 if (data_len == ret) 908 return ret; 909 910 if (iov_iter_count(iter)) 911 return -EFAULT; 912 913 /* See ffs_copy_to_iter for more context. */ 914 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 915 data_len, ret); 916 917 data_len -= ret; 918 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 919 if (!buf) 920 return -ENOMEM; 921 buf->length = data_len; 922 buf->data = buf->storage; 923 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 924 925 /* 926 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 927 * ffs_func_eps_disable has been called in the meanwhile). See comment 928 * in struct ffs_epfile for full read_buffer pointer synchronisation 929 * story. 930 */ 931 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 932 kfree(buf); 933 934 return ret; 935 } 936 937 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 938 { 939 struct ffs_epfile *epfile = file->private_data; 940 struct usb_request *req; 941 struct ffs_ep *ep; 942 char *data = NULL; 943 ssize_t ret, data_len = -EINVAL; 944 int halt; 945 946 /* Are we still active? */ 947 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 948 return -ENODEV; 949 950 /* Wait for endpoint to be enabled */ 951 ep = epfile->ep; 952 if (!ep) { 953 if (file->f_flags & O_NONBLOCK) 954 return -EAGAIN; 955 956 ret = wait_event_interruptible( 957 epfile->ffs->wait, (ep = epfile->ep)); 958 if (ret) 959 return -EINTR; 960 } 961 962 /* Do we halt? */ 963 halt = (!io_data->read == !epfile->in); 964 if (halt && epfile->isoc) 965 return -EINVAL; 966 967 /* We will be using request and read_buffer */ 968 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 969 if (ret) 970 goto error; 971 972 /* Allocate & copy */ 973 if (!halt) { 974 struct usb_gadget *gadget; 975 976 /* 977 * Do we have buffered data from previous partial read? Check 978 * that for synchronous case only because we do not have 979 * facility to ‘wake up’ a pending asynchronous read and push 980 * buffered data to it which we would need to make things behave 981 * consistently. 982 */ 983 if (!io_data->aio && io_data->read) { 984 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 985 if (ret) 986 goto error_mutex; 987 } 988 989 /* 990 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 991 * before the waiting completes, so do not assign to 'gadget' 992 * earlier 993 */ 994 gadget = epfile->ffs->gadget; 995 996 spin_lock_irq(&epfile->ffs->eps_lock); 997 /* In the meantime, endpoint got disabled or changed. */ 998 if (epfile->ep != ep) { 999 ret = -ESHUTDOWN; 1000 goto error_lock; 1001 } 1002 data_len = iov_iter_count(&io_data->data); 1003 /* 1004 * Controller may require buffer size to be aligned to 1005 * maxpacketsize of an out endpoint. 1006 */ 1007 if (io_data->read) 1008 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1009 1010 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1011 spin_unlock_irq(&epfile->ffs->eps_lock); 1012 1013 data = ffs_alloc_buffer(io_data, data_len); 1014 if (!data) { 1015 ret = -ENOMEM; 1016 goto error_mutex; 1017 } 1018 if (!io_data->read && 1019 !copy_from_iter_full(data, data_len, &io_data->data)) { 1020 ret = -EFAULT; 1021 goto error_mutex; 1022 } 1023 } 1024 1025 spin_lock_irq(&epfile->ffs->eps_lock); 1026 1027 if (epfile->ep != ep) { 1028 /* In the meantime, endpoint got disabled or changed. */ 1029 ret = -ESHUTDOWN; 1030 } else if (halt) { 1031 ret = usb_ep_set_halt(ep->ep); 1032 if (!ret) 1033 ret = -EBADMSG; 1034 } else if (data_len == -EINVAL) { 1035 /* 1036 * Sanity Check: even though data_len can't be used 1037 * uninitialized at the time I write this comment, some 1038 * compilers complain about this situation. 1039 * In order to keep the code clean from warnings, data_len is 1040 * being initialized to -EINVAL during its declaration, which 1041 * means we can't rely on compiler anymore to warn no future 1042 * changes won't result in data_len being used uninitialized. 1043 * For such reason, we're adding this redundant sanity check 1044 * here. 1045 */ 1046 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1047 ret = -EINVAL; 1048 } else if (!io_data->aio) { 1049 bool interrupted = false; 1050 1051 req = ep->req; 1052 if (io_data->use_sg) { 1053 req->buf = NULL; 1054 req->sg = io_data->sgt.sgl; 1055 req->num_sgs = io_data->sgt.nents; 1056 } else { 1057 req->buf = data; 1058 req->num_sgs = 0; 1059 } 1060 req->length = data_len; 1061 1062 io_data->buf = data; 1063 1064 init_completion(&io_data->done); 1065 req->context = io_data; 1066 req->complete = ffs_epfile_io_complete; 1067 1068 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1069 if (ret < 0) 1070 goto error_lock; 1071 1072 spin_unlock_irq(&epfile->ffs->eps_lock); 1073 1074 if (wait_for_completion_interruptible(&io_data->done)) { 1075 spin_lock_irq(&epfile->ffs->eps_lock); 1076 if (epfile->ep != ep) { 1077 ret = -ESHUTDOWN; 1078 goto error_lock; 1079 } 1080 /* 1081 * To avoid race condition with ffs_epfile_io_complete, 1082 * dequeue the request first then check 1083 * status. usb_ep_dequeue API should guarantee no race 1084 * condition with req->complete callback. 1085 */ 1086 usb_ep_dequeue(ep->ep, req); 1087 spin_unlock_irq(&epfile->ffs->eps_lock); 1088 wait_for_completion(&io_data->done); 1089 interrupted = io_data->status < 0; 1090 } 1091 1092 if (interrupted) 1093 ret = -EINTR; 1094 else if (io_data->read && io_data->status > 0) 1095 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1096 &io_data->data); 1097 else 1098 ret = io_data->status; 1099 goto error_mutex; 1100 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1101 ret = -ENOMEM; 1102 } else { 1103 if (io_data->use_sg) { 1104 req->buf = NULL; 1105 req->sg = io_data->sgt.sgl; 1106 req->num_sgs = io_data->sgt.nents; 1107 } else { 1108 req->buf = data; 1109 req->num_sgs = 0; 1110 } 1111 req->length = data_len; 1112 1113 io_data->buf = data; 1114 io_data->ep = ep->ep; 1115 io_data->req = req; 1116 io_data->ffs = epfile->ffs; 1117 1118 req->context = io_data; 1119 req->complete = ffs_epfile_async_io_complete; 1120 1121 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1122 if (ret) { 1123 io_data->req = NULL; 1124 usb_ep_free_request(ep->ep, req); 1125 goto error_lock; 1126 } 1127 1128 ret = -EIOCBQUEUED; 1129 /* 1130 * Do not kfree the buffer in this function. It will be freed 1131 * by ffs_user_copy_worker. 1132 */ 1133 data = NULL; 1134 } 1135 1136 error_lock: 1137 spin_unlock_irq(&epfile->ffs->eps_lock); 1138 error_mutex: 1139 mutex_unlock(&epfile->mutex); 1140 error: 1141 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1142 ffs_free_buffer(io_data); 1143 return ret; 1144 } 1145 1146 static int 1147 ffs_epfile_open(struct inode *inode, struct file *file) 1148 { 1149 struct ffs_epfile *epfile = inode->i_private; 1150 1151 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1152 return -ENODEV; 1153 1154 file->private_data = epfile; 1155 ffs_data_opened(epfile->ffs); 1156 1157 return stream_open(inode, file); 1158 } 1159 1160 static int ffs_aio_cancel(struct kiocb *kiocb) 1161 { 1162 struct ffs_io_data *io_data = kiocb->private; 1163 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1164 unsigned long flags; 1165 int value; 1166 1167 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1168 1169 if (io_data && io_data->ep && io_data->req) 1170 value = usb_ep_dequeue(io_data->ep, io_data->req); 1171 else 1172 value = -EINVAL; 1173 1174 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1175 1176 return value; 1177 } 1178 1179 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1180 { 1181 struct ffs_io_data io_data, *p = &io_data; 1182 ssize_t res; 1183 1184 if (!is_sync_kiocb(kiocb)) { 1185 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1186 if (!p) 1187 return -ENOMEM; 1188 p->aio = true; 1189 } else { 1190 memset(p, 0, sizeof(*p)); 1191 p->aio = false; 1192 } 1193 1194 p->read = false; 1195 p->kiocb = kiocb; 1196 p->data = *from; 1197 p->mm = current->mm; 1198 1199 kiocb->private = p; 1200 1201 if (p->aio) 1202 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1203 1204 res = ffs_epfile_io(kiocb->ki_filp, p); 1205 if (res == -EIOCBQUEUED) 1206 return res; 1207 if (p->aio) 1208 kfree(p); 1209 else 1210 *from = p->data; 1211 return res; 1212 } 1213 1214 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1215 { 1216 struct ffs_io_data io_data, *p = &io_data; 1217 ssize_t res; 1218 1219 if (!is_sync_kiocb(kiocb)) { 1220 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1221 if (!p) 1222 return -ENOMEM; 1223 p->aio = true; 1224 } else { 1225 memset(p, 0, sizeof(*p)); 1226 p->aio = false; 1227 } 1228 1229 p->read = true; 1230 p->kiocb = kiocb; 1231 if (p->aio) { 1232 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1233 if (!iter_is_ubuf(&p->data) && !p->to_free) { 1234 kfree(p); 1235 return -ENOMEM; 1236 } 1237 } else { 1238 p->data = *to; 1239 p->to_free = NULL; 1240 } 1241 p->mm = current->mm; 1242 1243 kiocb->private = p; 1244 1245 if (p->aio) 1246 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1247 1248 res = ffs_epfile_io(kiocb->ki_filp, p); 1249 if (res == -EIOCBQUEUED) 1250 return res; 1251 1252 if (p->aio) { 1253 kfree(p->to_free); 1254 kfree(p); 1255 } else { 1256 *to = p->data; 1257 } 1258 return res; 1259 } 1260 1261 static int 1262 ffs_epfile_release(struct inode *inode, struct file *file) 1263 { 1264 struct ffs_epfile *epfile = inode->i_private; 1265 1266 __ffs_epfile_read_buffer_free(epfile); 1267 ffs_data_closed(epfile->ffs); 1268 1269 return 0; 1270 } 1271 1272 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1273 unsigned long value) 1274 { 1275 struct ffs_epfile *epfile = file->private_data; 1276 struct ffs_ep *ep; 1277 int ret; 1278 1279 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1280 return -ENODEV; 1281 1282 /* Wait for endpoint to be enabled */ 1283 ep = epfile->ep; 1284 if (!ep) { 1285 if (file->f_flags & O_NONBLOCK) 1286 return -EAGAIN; 1287 1288 ret = wait_event_interruptible( 1289 epfile->ffs->wait, (ep = epfile->ep)); 1290 if (ret) 1291 return -EINTR; 1292 } 1293 1294 spin_lock_irq(&epfile->ffs->eps_lock); 1295 1296 /* In the meantime, endpoint got disabled or changed. */ 1297 if (epfile->ep != ep) { 1298 spin_unlock_irq(&epfile->ffs->eps_lock); 1299 return -ESHUTDOWN; 1300 } 1301 1302 switch (code) { 1303 case FUNCTIONFS_FIFO_STATUS: 1304 ret = usb_ep_fifo_status(epfile->ep->ep); 1305 break; 1306 case FUNCTIONFS_FIFO_FLUSH: 1307 usb_ep_fifo_flush(epfile->ep->ep); 1308 ret = 0; 1309 break; 1310 case FUNCTIONFS_CLEAR_HALT: 1311 ret = usb_ep_clear_halt(epfile->ep->ep); 1312 break; 1313 case FUNCTIONFS_ENDPOINT_REVMAP: 1314 ret = epfile->ep->num; 1315 break; 1316 case FUNCTIONFS_ENDPOINT_DESC: 1317 { 1318 int desc_idx; 1319 struct usb_endpoint_descriptor desc1, *desc; 1320 1321 switch (epfile->ffs->gadget->speed) { 1322 case USB_SPEED_SUPER: 1323 case USB_SPEED_SUPER_PLUS: 1324 desc_idx = 2; 1325 break; 1326 case USB_SPEED_HIGH: 1327 desc_idx = 1; 1328 break; 1329 default: 1330 desc_idx = 0; 1331 } 1332 1333 desc = epfile->ep->descs[desc_idx]; 1334 memcpy(&desc1, desc, desc->bLength); 1335 1336 spin_unlock_irq(&epfile->ffs->eps_lock); 1337 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1338 if (ret) 1339 ret = -EFAULT; 1340 return ret; 1341 } 1342 default: 1343 ret = -ENOTTY; 1344 } 1345 spin_unlock_irq(&epfile->ffs->eps_lock); 1346 1347 return ret; 1348 } 1349 1350 static const struct file_operations ffs_epfile_operations = { 1351 .llseek = no_llseek, 1352 1353 .open = ffs_epfile_open, 1354 .write_iter = ffs_epfile_write_iter, 1355 .read_iter = ffs_epfile_read_iter, 1356 .release = ffs_epfile_release, 1357 .unlocked_ioctl = ffs_epfile_ioctl, 1358 .compat_ioctl = compat_ptr_ioctl, 1359 }; 1360 1361 1362 /* File system and super block operations ***********************************/ 1363 1364 /* 1365 * Mounting the file system creates a controller file, used first for 1366 * function configuration then later for event monitoring. 1367 */ 1368 1369 static struct inode *__must_check 1370 ffs_sb_make_inode(struct super_block *sb, void *data, 1371 const struct file_operations *fops, 1372 const struct inode_operations *iops, 1373 struct ffs_file_perms *perms) 1374 { 1375 struct inode *inode; 1376 1377 inode = new_inode(sb); 1378 1379 if (inode) { 1380 struct timespec64 ts = current_time(inode); 1381 1382 inode->i_ino = get_next_ino(); 1383 inode->i_mode = perms->mode; 1384 inode->i_uid = perms->uid; 1385 inode->i_gid = perms->gid; 1386 inode->i_atime = ts; 1387 inode->i_mtime = ts; 1388 inode->i_ctime = ts; 1389 inode->i_private = data; 1390 if (fops) 1391 inode->i_fop = fops; 1392 if (iops) 1393 inode->i_op = iops; 1394 } 1395 1396 return inode; 1397 } 1398 1399 /* Create "regular" file */ 1400 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1401 const char *name, void *data, 1402 const struct file_operations *fops) 1403 { 1404 struct ffs_data *ffs = sb->s_fs_info; 1405 struct dentry *dentry; 1406 struct inode *inode; 1407 1408 dentry = d_alloc_name(sb->s_root, name); 1409 if (!dentry) 1410 return NULL; 1411 1412 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1413 if (!inode) { 1414 dput(dentry); 1415 return NULL; 1416 } 1417 1418 d_add(dentry, inode); 1419 return dentry; 1420 } 1421 1422 /* Super block */ 1423 static const struct super_operations ffs_sb_operations = { 1424 .statfs = simple_statfs, 1425 .drop_inode = generic_delete_inode, 1426 }; 1427 1428 struct ffs_sb_fill_data { 1429 struct ffs_file_perms perms; 1430 umode_t root_mode; 1431 const char *dev_name; 1432 bool no_disconnect; 1433 struct ffs_data *ffs_data; 1434 }; 1435 1436 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1437 { 1438 struct ffs_sb_fill_data *data = fc->fs_private; 1439 struct inode *inode; 1440 struct ffs_data *ffs = data->ffs_data; 1441 1442 ffs->sb = sb; 1443 data->ffs_data = NULL; 1444 sb->s_fs_info = ffs; 1445 sb->s_blocksize = PAGE_SIZE; 1446 sb->s_blocksize_bits = PAGE_SHIFT; 1447 sb->s_magic = FUNCTIONFS_MAGIC; 1448 sb->s_op = &ffs_sb_operations; 1449 sb->s_time_gran = 1; 1450 1451 /* Root inode */ 1452 data->perms.mode = data->root_mode; 1453 inode = ffs_sb_make_inode(sb, NULL, 1454 &simple_dir_operations, 1455 &simple_dir_inode_operations, 1456 &data->perms); 1457 sb->s_root = d_make_root(inode); 1458 if (!sb->s_root) 1459 return -ENOMEM; 1460 1461 /* EP0 file */ 1462 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1463 return -ENOMEM; 1464 1465 return 0; 1466 } 1467 1468 enum { 1469 Opt_no_disconnect, 1470 Opt_rmode, 1471 Opt_fmode, 1472 Opt_mode, 1473 Opt_uid, 1474 Opt_gid, 1475 }; 1476 1477 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1478 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1479 fsparam_u32 ("rmode", Opt_rmode), 1480 fsparam_u32 ("fmode", Opt_fmode), 1481 fsparam_u32 ("mode", Opt_mode), 1482 fsparam_u32 ("uid", Opt_uid), 1483 fsparam_u32 ("gid", Opt_gid), 1484 {} 1485 }; 1486 1487 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1488 { 1489 struct ffs_sb_fill_data *data = fc->fs_private; 1490 struct fs_parse_result result; 1491 int opt; 1492 1493 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1494 if (opt < 0) 1495 return opt; 1496 1497 switch (opt) { 1498 case Opt_no_disconnect: 1499 data->no_disconnect = result.boolean; 1500 break; 1501 case Opt_rmode: 1502 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1503 break; 1504 case Opt_fmode: 1505 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1506 break; 1507 case Opt_mode: 1508 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1509 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1510 break; 1511 1512 case Opt_uid: 1513 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1514 if (!uid_valid(data->perms.uid)) 1515 goto unmapped_value; 1516 break; 1517 case Opt_gid: 1518 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1519 if (!gid_valid(data->perms.gid)) 1520 goto unmapped_value; 1521 break; 1522 1523 default: 1524 return -ENOPARAM; 1525 } 1526 1527 return 0; 1528 1529 unmapped_value: 1530 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1531 } 1532 1533 /* 1534 * Set up the superblock for a mount. 1535 */ 1536 static int ffs_fs_get_tree(struct fs_context *fc) 1537 { 1538 struct ffs_sb_fill_data *ctx = fc->fs_private; 1539 struct ffs_data *ffs; 1540 int ret; 1541 1542 if (!fc->source) 1543 return invalf(fc, "No source specified"); 1544 1545 ffs = ffs_data_new(fc->source); 1546 if (!ffs) 1547 return -ENOMEM; 1548 ffs->file_perms = ctx->perms; 1549 ffs->no_disconnect = ctx->no_disconnect; 1550 1551 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1552 if (!ffs->dev_name) { 1553 ffs_data_put(ffs); 1554 return -ENOMEM; 1555 } 1556 1557 ret = ffs_acquire_dev(ffs->dev_name, ffs); 1558 if (ret) { 1559 ffs_data_put(ffs); 1560 return ret; 1561 } 1562 1563 ctx->ffs_data = ffs; 1564 return get_tree_nodev(fc, ffs_sb_fill); 1565 } 1566 1567 static void ffs_fs_free_fc(struct fs_context *fc) 1568 { 1569 struct ffs_sb_fill_data *ctx = fc->fs_private; 1570 1571 if (ctx) { 1572 if (ctx->ffs_data) { 1573 ffs_data_put(ctx->ffs_data); 1574 } 1575 1576 kfree(ctx); 1577 } 1578 } 1579 1580 static const struct fs_context_operations ffs_fs_context_ops = { 1581 .free = ffs_fs_free_fc, 1582 .parse_param = ffs_fs_parse_param, 1583 .get_tree = ffs_fs_get_tree, 1584 }; 1585 1586 static int ffs_fs_init_fs_context(struct fs_context *fc) 1587 { 1588 struct ffs_sb_fill_data *ctx; 1589 1590 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1591 if (!ctx) 1592 return -ENOMEM; 1593 1594 ctx->perms.mode = S_IFREG | 0600; 1595 ctx->perms.uid = GLOBAL_ROOT_UID; 1596 ctx->perms.gid = GLOBAL_ROOT_GID; 1597 ctx->root_mode = S_IFDIR | 0500; 1598 ctx->no_disconnect = false; 1599 1600 fc->fs_private = ctx; 1601 fc->ops = &ffs_fs_context_ops; 1602 return 0; 1603 } 1604 1605 static void 1606 ffs_fs_kill_sb(struct super_block *sb) 1607 { 1608 kill_litter_super(sb); 1609 if (sb->s_fs_info) 1610 ffs_data_closed(sb->s_fs_info); 1611 } 1612 1613 static struct file_system_type ffs_fs_type = { 1614 .owner = THIS_MODULE, 1615 .name = "functionfs", 1616 .init_fs_context = ffs_fs_init_fs_context, 1617 .parameters = ffs_fs_fs_parameters, 1618 .kill_sb = ffs_fs_kill_sb, 1619 }; 1620 MODULE_ALIAS_FS("functionfs"); 1621 1622 1623 /* Driver's main init/cleanup functions *************************************/ 1624 1625 static int functionfs_init(void) 1626 { 1627 int ret; 1628 1629 ret = register_filesystem(&ffs_fs_type); 1630 if (!ret) 1631 pr_info("file system registered\n"); 1632 else 1633 pr_err("failed registering file system (%d)\n", ret); 1634 1635 return ret; 1636 } 1637 1638 static void functionfs_cleanup(void) 1639 { 1640 pr_info("unloading\n"); 1641 unregister_filesystem(&ffs_fs_type); 1642 } 1643 1644 1645 /* ffs_data and ffs_function construction and destruction code **************/ 1646 1647 static void ffs_data_clear(struct ffs_data *ffs); 1648 static void ffs_data_reset(struct ffs_data *ffs); 1649 1650 static void ffs_data_get(struct ffs_data *ffs) 1651 { 1652 refcount_inc(&ffs->ref); 1653 } 1654 1655 static void ffs_data_opened(struct ffs_data *ffs) 1656 { 1657 refcount_inc(&ffs->ref); 1658 if (atomic_add_return(1, &ffs->opened) == 1 && 1659 ffs->state == FFS_DEACTIVATED) { 1660 ffs->state = FFS_CLOSING; 1661 ffs_data_reset(ffs); 1662 } 1663 } 1664 1665 static void ffs_data_put(struct ffs_data *ffs) 1666 { 1667 if (refcount_dec_and_test(&ffs->ref)) { 1668 pr_info("%s(): freeing\n", __func__); 1669 ffs_data_clear(ffs); 1670 ffs_release_dev(ffs->private_data); 1671 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1672 swait_active(&ffs->ep0req_completion.wait) || 1673 waitqueue_active(&ffs->wait)); 1674 destroy_workqueue(ffs->io_completion_wq); 1675 kfree(ffs->dev_name); 1676 kfree(ffs); 1677 } 1678 } 1679 1680 static void ffs_data_closed(struct ffs_data *ffs) 1681 { 1682 struct ffs_epfile *epfiles; 1683 unsigned long flags; 1684 1685 if (atomic_dec_and_test(&ffs->opened)) { 1686 if (ffs->no_disconnect) { 1687 ffs->state = FFS_DEACTIVATED; 1688 spin_lock_irqsave(&ffs->eps_lock, flags); 1689 epfiles = ffs->epfiles; 1690 ffs->epfiles = NULL; 1691 spin_unlock_irqrestore(&ffs->eps_lock, 1692 flags); 1693 1694 if (epfiles) 1695 ffs_epfiles_destroy(epfiles, 1696 ffs->eps_count); 1697 1698 if (ffs->setup_state == FFS_SETUP_PENDING) 1699 __ffs_ep0_stall(ffs); 1700 } else { 1701 ffs->state = FFS_CLOSING; 1702 ffs_data_reset(ffs); 1703 } 1704 } 1705 if (atomic_read(&ffs->opened) < 0) { 1706 ffs->state = FFS_CLOSING; 1707 ffs_data_reset(ffs); 1708 } 1709 1710 ffs_data_put(ffs); 1711 } 1712 1713 static struct ffs_data *ffs_data_new(const char *dev_name) 1714 { 1715 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1716 if (!ffs) 1717 return NULL; 1718 1719 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1720 if (!ffs->io_completion_wq) { 1721 kfree(ffs); 1722 return NULL; 1723 } 1724 1725 refcount_set(&ffs->ref, 1); 1726 atomic_set(&ffs->opened, 0); 1727 ffs->state = FFS_READ_DESCRIPTORS; 1728 mutex_init(&ffs->mutex); 1729 spin_lock_init(&ffs->eps_lock); 1730 init_waitqueue_head(&ffs->ev.waitq); 1731 init_waitqueue_head(&ffs->wait); 1732 init_completion(&ffs->ep0req_completion); 1733 1734 /* XXX REVISIT need to update it in some places, or do we? */ 1735 ffs->ev.can_stall = 1; 1736 1737 return ffs; 1738 } 1739 1740 static void ffs_data_clear(struct ffs_data *ffs) 1741 { 1742 struct ffs_epfile *epfiles; 1743 unsigned long flags; 1744 1745 ffs_closed(ffs); 1746 1747 BUG_ON(ffs->gadget); 1748 1749 spin_lock_irqsave(&ffs->eps_lock, flags); 1750 epfiles = ffs->epfiles; 1751 ffs->epfiles = NULL; 1752 spin_unlock_irqrestore(&ffs->eps_lock, flags); 1753 1754 /* 1755 * potential race possible between ffs_func_eps_disable 1756 * & ffs_epfile_release therefore maintaining a local 1757 * copy of epfile will save us from use-after-free. 1758 */ 1759 if (epfiles) { 1760 ffs_epfiles_destroy(epfiles, ffs->eps_count); 1761 ffs->epfiles = NULL; 1762 } 1763 1764 if (ffs->ffs_eventfd) { 1765 eventfd_ctx_put(ffs->ffs_eventfd); 1766 ffs->ffs_eventfd = NULL; 1767 } 1768 1769 kfree(ffs->raw_descs_data); 1770 kfree(ffs->raw_strings); 1771 kfree(ffs->stringtabs); 1772 } 1773 1774 static void ffs_data_reset(struct ffs_data *ffs) 1775 { 1776 ffs_data_clear(ffs); 1777 1778 ffs->raw_descs_data = NULL; 1779 ffs->raw_descs = NULL; 1780 ffs->raw_strings = NULL; 1781 ffs->stringtabs = NULL; 1782 1783 ffs->raw_descs_length = 0; 1784 ffs->fs_descs_count = 0; 1785 ffs->hs_descs_count = 0; 1786 ffs->ss_descs_count = 0; 1787 1788 ffs->strings_count = 0; 1789 ffs->interfaces_count = 0; 1790 ffs->eps_count = 0; 1791 1792 ffs->ev.count = 0; 1793 1794 ffs->state = FFS_READ_DESCRIPTORS; 1795 ffs->setup_state = FFS_NO_SETUP; 1796 ffs->flags = 0; 1797 1798 ffs->ms_os_descs_ext_prop_count = 0; 1799 ffs->ms_os_descs_ext_prop_name_len = 0; 1800 ffs->ms_os_descs_ext_prop_data_len = 0; 1801 } 1802 1803 1804 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1805 { 1806 struct usb_gadget_strings **lang; 1807 int first_id; 1808 1809 if (WARN_ON(ffs->state != FFS_ACTIVE 1810 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1811 return -EBADFD; 1812 1813 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1814 if (first_id < 0) 1815 return first_id; 1816 1817 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1818 if (!ffs->ep0req) 1819 return -ENOMEM; 1820 ffs->ep0req->complete = ffs_ep0_complete; 1821 ffs->ep0req->context = ffs; 1822 1823 lang = ffs->stringtabs; 1824 if (lang) { 1825 for (; *lang; ++lang) { 1826 struct usb_string *str = (*lang)->strings; 1827 int id = first_id; 1828 for (; str->s; ++id, ++str) 1829 str->id = id; 1830 } 1831 } 1832 1833 ffs->gadget = cdev->gadget; 1834 ffs_data_get(ffs); 1835 return 0; 1836 } 1837 1838 static void functionfs_unbind(struct ffs_data *ffs) 1839 { 1840 if (!WARN_ON(!ffs->gadget)) { 1841 /* dequeue before freeing ep0req */ 1842 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 1843 mutex_lock(&ffs->mutex); 1844 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1845 ffs->ep0req = NULL; 1846 ffs->gadget = NULL; 1847 clear_bit(FFS_FL_BOUND, &ffs->flags); 1848 mutex_unlock(&ffs->mutex); 1849 ffs_data_put(ffs); 1850 } 1851 } 1852 1853 static int ffs_epfiles_create(struct ffs_data *ffs) 1854 { 1855 struct ffs_epfile *epfile, *epfiles; 1856 unsigned i, count; 1857 1858 count = ffs->eps_count; 1859 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1860 if (!epfiles) 1861 return -ENOMEM; 1862 1863 epfile = epfiles; 1864 for (i = 1; i <= count; ++i, ++epfile) { 1865 epfile->ffs = ffs; 1866 mutex_init(&epfile->mutex); 1867 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1868 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1869 else 1870 sprintf(epfile->name, "ep%u", i); 1871 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1872 epfile, 1873 &ffs_epfile_operations); 1874 if (!epfile->dentry) { 1875 ffs_epfiles_destroy(epfiles, i - 1); 1876 return -ENOMEM; 1877 } 1878 } 1879 1880 ffs->epfiles = epfiles; 1881 return 0; 1882 } 1883 1884 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1885 { 1886 struct ffs_epfile *epfile = epfiles; 1887 1888 for (; count; --count, ++epfile) { 1889 BUG_ON(mutex_is_locked(&epfile->mutex)); 1890 if (epfile->dentry) { 1891 d_delete(epfile->dentry); 1892 dput(epfile->dentry); 1893 epfile->dentry = NULL; 1894 } 1895 } 1896 1897 kfree(epfiles); 1898 } 1899 1900 static void ffs_func_eps_disable(struct ffs_function *func) 1901 { 1902 struct ffs_ep *ep; 1903 struct ffs_epfile *epfile; 1904 unsigned short count; 1905 unsigned long flags; 1906 1907 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1908 count = func->ffs->eps_count; 1909 epfile = func->ffs->epfiles; 1910 ep = func->eps; 1911 while (count--) { 1912 /* pending requests get nuked */ 1913 if (ep->ep) 1914 usb_ep_disable(ep->ep); 1915 ++ep; 1916 1917 if (epfile) { 1918 epfile->ep = NULL; 1919 __ffs_epfile_read_buffer_free(epfile); 1920 ++epfile; 1921 } 1922 } 1923 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1924 } 1925 1926 static int ffs_func_eps_enable(struct ffs_function *func) 1927 { 1928 struct ffs_data *ffs; 1929 struct ffs_ep *ep; 1930 struct ffs_epfile *epfile; 1931 unsigned short count; 1932 unsigned long flags; 1933 int ret = 0; 1934 1935 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1936 ffs = func->ffs; 1937 ep = func->eps; 1938 epfile = ffs->epfiles; 1939 count = ffs->eps_count; 1940 while(count--) { 1941 ep->ep->driver_data = ep; 1942 1943 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1944 if (ret) { 1945 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1946 __func__, ep->ep->name, ret); 1947 break; 1948 } 1949 1950 ret = usb_ep_enable(ep->ep); 1951 if (!ret) { 1952 epfile->ep = ep; 1953 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1954 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1955 } else { 1956 break; 1957 } 1958 1959 ++ep; 1960 ++epfile; 1961 } 1962 1963 wake_up_interruptible(&ffs->wait); 1964 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1965 1966 return ret; 1967 } 1968 1969 1970 /* Parsing and building descriptors and strings *****************************/ 1971 1972 /* 1973 * This validates if data pointed by data is a valid USB descriptor as 1974 * well as record how many interfaces, endpoints and strings are 1975 * required by given configuration. Returns address after the 1976 * descriptor or NULL if data is invalid. 1977 */ 1978 1979 enum ffs_entity_type { 1980 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1981 }; 1982 1983 enum ffs_os_desc_type { 1984 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1985 }; 1986 1987 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1988 u8 *valuep, 1989 struct usb_descriptor_header *desc, 1990 void *priv); 1991 1992 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1993 struct usb_os_desc_header *h, void *data, 1994 unsigned len, void *priv); 1995 1996 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1997 ffs_entity_callback entity, 1998 void *priv, int *current_class) 1999 { 2000 struct usb_descriptor_header *_ds = (void *)data; 2001 u8 length; 2002 int ret; 2003 2004 /* At least two bytes are required: length and type */ 2005 if (len < 2) { 2006 pr_vdebug("descriptor too short\n"); 2007 return -EINVAL; 2008 } 2009 2010 /* If we have at least as many bytes as the descriptor takes? */ 2011 length = _ds->bLength; 2012 if (len < length) { 2013 pr_vdebug("descriptor longer then available data\n"); 2014 return -EINVAL; 2015 } 2016 2017 #define __entity_check_INTERFACE(val) 1 2018 #define __entity_check_STRING(val) (val) 2019 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2020 #define __entity(type, val) do { \ 2021 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2022 if (!__entity_check_ ##type(val)) { \ 2023 pr_vdebug("invalid entity's value\n"); \ 2024 return -EINVAL; \ 2025 } \ 2026 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2027 if (ret < 0) { \ 2028 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2029 (val), ret); \ 2030 return ret; \ 2031 } \ 2032 } while (0) 2033 2034 /* Parse descriptor depending on type. */ 2035 switch (_ds->bDescriptorType) { 2036 case USB_DT_DEVICE: 2037 case USB_DT_CONFIG: 2038 case USB_DT_STRING: 2039 case USB_DT_DEVICE_QUALIFIER: 2040 /* function can't have any of those */ 2041 pr_vdebug("descriptor reserved for gadget: %d\n", 2042 _ds->bDescriptorType); 2043 return -EINVAL; 2044 2045 case USB_DT_INTERFACE: { 2046 struct usb_interface_descriptor *ds = (void *)_ds; 2047 pr_vdebug("interface descriptor\n"); 2048 if (length != sizeof *ds) 2049 goto inv_length; 2050 2051 __entity(INTERFACE, ds->bInterfaceNumber); 2052 if (ds->iInterface) 2053 __entity(STRING, ds->iInterface); 2054 *current_class = ds->bInterfaceClass; 2055 } 2056 break; 2057 2058 case USB_DT_ENDPOINT: { 2059 struct usb_endpoint_descriptor *ds = (void *)_ds; 2060 pr_vdebug("endpoint descriptor\n"); 2061 if (length != USB_DT_ENDPOINT_SIZE && 2062 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2063 goto inv_length; 2064 __entity(ENDPOINT, ds->bEndpointAddress); 2065 } 2066 break; 2067 2068 case USB_TYPE_CLASS | 0x01: 2069 if (*current_class == USB_INTERFACE_CLASS_HID) { 2070 pr_vdebug("hid descriptor\n"); 2071 if (length != sizeof(struct hid_descriptor)) 2072 goto inv_length; 2073 break; 2074 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2075 pr_vdebug("ccid descriptor\n"); 2076 if (length != sizeof(struct ccid_descriptor)) 2077 goto inv_length; 2078 break; 2079 } else { 2080 pr_vdebug("unknown descriptor: %d for class %d\n", 2081 _ds->bDescriptorType, *current_class); 2082 return -EINVAL; 2083 } 2084 2085 case USB_DT_OTG: 2086 if (length != sizeof(struct usb_otg_descriptor)) 2087 goto inv_length; 2088 break; 2089 2090 case USB_DT_INTERFACE_ASSOCIATION: { 2091 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2092 pr_vdebug("interface association descriptor\n"); 2093 if (length != sizeof *ds) 2094 goto inv_length; 2095 if (ds->iFunction) 2096 __entity(STRING, ds->iFunction); 2097 } 2098 break; 2099 2100 case USB_DT_SS_ENDPOINT_COMP: 2101 pr_vdebug("EP SS companion descriptor\n"); 2102 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2103 goto inv_length; 2104 break; 2105 2106 case USB_DT_OTHER_SPEED_CONFIG: 2107 case USB_DT_INTERFACE_POWER: 2108 case USB_DT_DEBUG: 2109 case USB_DT_SECURITY: 2110 case USB_DT_CS_RADIO_CONTROL: 2111 /* TODO */ 2112 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2113 return -EINVAL; 2114 2115 default: 2116 /* We should never be here */ 2117 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2118 return -EINVAL; 2119 2120 inv_length: 2121 pr_vdebug("invalid length: %d (descriptor %d)\n", 2122 _ds->bLength, _ds->bDescriptorType); 2123 return -EINVAL; 2124 } 2125 2126 #undef __entity 2127 #undef __entity_check_DESCRIPTOR 2128 #undef __entity_check_INTERFACE 2129 #undef __entity_check_STRING 2130 #undef __entity_check_ENDPOINT 2131 2132 return length; 2133 } 2134 2135 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2136 ffs_entity_callback entity, void *priv) 2137 { 2138 const unsigned _len = len; 2139 unsigned long num = 0; 2140 int current_class = -1; 2141 2142 for (;;) { 2143 int ret; 2144 2145 if (num == count) 2146 data = NULL; 2147 2148 /* Record "descriptor" entity */ 2149 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2150 if (ret < 0) { 2151 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2152 num, ret); 2153 return ret; 2154 } 2155 2156 if (!data) 2157 return _len - len; 2158 2159 ret = ffs_do_single_desc(data, len, entity, priv, 2160 ¤t_class); 2161 if (ret < 0) { 2162 pr_debug("%s returns %d\n", __func__, ret); 2163 return ret; 2164 } 2165 2166 len -= ret; 2167 data += ret; 2168 ++num; 2169 } 2170 } 2171 2172 static int __ffs_data_do_entity(enum ffs_entity_type type, 2173 u8 *valuep, struct usb_descriptor_header *desc, 2174 void *priv) 2175 { 2176 struct ffs_desc_helper *helper = priv; 2177 struct usb_endpoint_descriptor *d; 2178 2179 switch (type) { 2180 case FFS_DESCRIPTOR: 2181 break; 2182 2183 case FFS_INTERFACE: 2184 /* 2185 * Interfaces are indexed from zero so if we 2186 * encountered interface "n" then there are at least 2187 * "n+1" interfaces. 2188 */ 2189 if (*valuep >= helper->interfaces_count) 2190 helper->interfaces_count = *valuep + 1; 2191 break; 2192 2193 case FFS_STRING: 2194 /* 2195 * Strings are indexed from 1 (0 is reserved 2196 * for languages list) 2197 */ 2198 if (*valuep > helper->ffs->strings_count) 2199 helper->ffs->strings_count = *valuep; 2200 break; 2201 2202 case FFS_ENDPOINT: 2203 d = (void *)desc; 2204 helper->eps_count++; 2205 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2206 return -EINVAL; 2207 /* Check if descriptors for any speed were already parsed */ 2208 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2209 helper->ffs->eps_addrmap[helper->eps_count] = 2210 d->bEndpointAddress; 2211 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2212 d->bEndpointAddress) 2213 return -EINVAL; 2214 break; 2215 } 2216 2217 return 0; 2218 } 2219 2220 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2221 struct usb_os_desc_header *desc) 2222 { 2223 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2224 u16 w_index = le16_to_cpu(desc->wIndex); 2225 2226 if (bcd_version == 0x1) { 2227 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " 2228 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); 2229 } else if (bcd_version != 0x100) { 2230 pr_vdebug("unsupported os descriptors version: 0x%x\n", 2231 bcd_version); 2232 return -EINVAL; 2233 } 2234 switch (w_index) { 2235 case 0x4: 2236 *next_type = FFS_OS_DESC_EXT_COMPAT; 2237 break; 2238 case 0x5: 2239 *next_type = FFS_OS_DESC_EXT_PROP; 2240 break; 2241 default: 2242 pr_vdebug("unsupported os descriptor type: %d", w_index); 2243 return -EINVAL; 2244 } 2245 2246 return sizeof(*desc); 2247 } 2248 2249 /* 2250 * Process all extended compatibility/extended property descriptors 2251 * of a feature descriptor 2252 */ 2253 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2254 enum ffs_os_desc_type type, 2255 u16 feature_count, 2256 ffs_os_desc_callback entity, 2257 void *priv, 2258 struct usb_os_desc_header *h) 2259 { 2260 int ret; 2261 const unsigned _len = len; 2262 2263 /* loop over all ext compat/ext prop descriptors */ 2264 while (feature_count--) { 2265 ret = entity(type, h, data, len, priv); 2266 if (ret < 0) { 2267 pr_debug("bad OS descriptor, type: %d\n", type); 2268 return ret; 2269 } 2270 data += ret; 2271 len -= ret; 2272 } 2273 return _len - len; 2274 } 2275 2276 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2277 static int __must_check ffs_do_os_descs(unsigned count, 2278 char *data, unsigned len, 2279 ffs_os_desc_callback entity, void *priv) 2280 { 2281 const unsigned _len = len; 2282 unsigned long num = 0; 2283 2284 for (num = 0; num < count; ++num) { 2285 int ret; 2286 enum ffs_os_desc_type type; 2287 u16 feature_count; 2288 struct usb_os_desc_header *desc = (void *)data; 2289 2290 if (len < sizeof(*desc)) 2291 return -EINVAL; 2292 2293 /* 2294 * Record "descriptor" entity. 2295 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2296 * Move the data pointer to the beginning of extended 2297 * compatibilities proper or extended properties proper 2298 * portions of the data 2299 */ 2300 if (le32_to_cpu(desc->dwLength) > len) 2301 return -EINVAL; 2302 2303 ret = __ffs_do_os_desc_header(&type, desc); 2304 if (ret < 0) { 2305 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2306 num, ret); 2307 return ret; 2308 } 2309 /* 2310 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2311 */ 2312 feature_count = le16_to_cpu(desc->wCount); 2313 if (type == FFS_OS_DESC_EXT_COMPAT && 2314 (feature_count > 255 || desc->Reserved)) 2315 return -EINVAL; 2316 len -= ret; 2317 data += ret; 2318 2319 /* 2320 * Process all function/property descriptors 2321 * of this Feature Descriptor 2322 */ 2323 ret = ffs_do_single_os_desc(data, len, type, 2324 feature_count, entity, priv, desc); 2325 if (ret < 0) { 2326 pr_debug("%s returns %d\n", __func__, ret); 2327 return ret; 2328 } 2329 2330 len -= ret; 2331 data += ret; 2332 } 2333 return _len - len; 2334 } 2335 2336 /* 2337 * Validate contents of the buffer from userspace related to OS descriptors. 2338 */ 2339 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2340 struct usb_os_desc_header *h, void *data, 2341 unsigned len, void *priv) 2342 { 2343 struct ffs_data *ffs = priv; 2344 u8 length; 2345 2346 switch (type) { 2347 case FFS_OS_DESC_EXT_COMPAT: { 2348 struct usb_ext_compat_desc *d = data; 2349 int i; 2350 2351 if (len < sizeof(*d) || 2352 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2353 return -EINVAL; 2354 if (d->Reserved1 != 1) { 2355 /* 2356 * According to the spec, Reserved1 must be set to 1 2357 * but older kernels incorrectly rejected non-zero 2358 * values. We fix it here to avoid returning EINVAL 2359 * in response to values we used to accept. 2360 */ 2361 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2362 d->Reserved1 = 1; 2363 } 2364 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2365 if (d->Reserved2[i]) 2366 return -EINVAL; 2367 2368 length = sizeof(struct usb_ext_compat_desc); 2369 } 2370 break; 2371 case FFS_OS_DESC_EXT_PROP: { 2372 struct usb_ext_prop_desc *d = data; 2373 u32 type, pdl; 2374 u16 pnl; 2375 2376 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2377 return -EINVAL; 2378 length = le32_to_cpu(d->dwSize); 2379 if (len < length) 2380 return -EINVAL; 2381 type = le32_to_cpu(d->dwPropertyDataType); 2382 if (type < USB_EXT_PROP_UNICODE || 2383 type > USB_EXT_PROP_UNICODE_MULTI) { 2384 pr_vdebug("unsupported os descriptor property type: %d", 2385 type); 2386 return -EINVAL; 2387 } 2388 pnl = le16_to_cpu(d->wPropertyNameLength); 2389 if (length < 14 + pnl) { 2390 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2391 length, pnl, type); 2392 return -EINVAL; 2393 } 2394 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2395 if (length != 14 + pnl + pdl) { 2396 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2397 length, pnl, pdl, type); 2398 return -EINVAL; 2399 } 2400 ++ffs->ms_os_descs_ext_prop_count; 2401 /* property name reported to the host as "WCHAR"s */ 2402 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2403 ffs->ms_os_descs_ext_prop_data_len += pdl; 2404 } 2405 break; 2406 default: 2407 pr_vdebug("unknown descriptor: %d\n", type); 2408 return -EINVAL; 2409 } 2410 return length; 2411 } 2412 2413 static int __ffs_data_got_descs(struct ffs_data *ffs, 2414 char *const _data, size_t len) 2415 { 2416 char *data = _data, *raw_descs; 2417 unsigned os_descs_count = 0, counts[3], flags; 2418 int ret = -EINVAL, i; 2419 struct ffs_desc_helper helper; 2420 2421 if (get_unaligned_le32(data + 4) != len) 2422 goto error; 2423 2424 switch (get_unaligned_le32(data)) { 2425 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2426 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2427 data += 8; 2428 len -= 8; 2429 break; 2430 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2431 flags = get_unaligned_le32(data + 8); 2432 ffs->user_flags = flags; 2433 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2434 FUNCTIONFS_HAS_HS_DESC | 2435 FUNCTIONFS_HAS_SS_DESC | 2436 FUNCTIONFS_HAS_MS_OS_DESC | 2437 FUNCTIONFS_VIRTUAL_ADDR | 2438 FUNCTIONFS_EVENTFD | 2439 FUNCTIONFS_ALL_CTRL_RECIP | 2440 FUNCTIONFS_CONFIG0_SETUP)) { 2441 ret = -ENOSYS; 2442 goto error; 2443 } 2444 data += 12; 2445 len -= 12; 2446 break; 2447 default: 2448 goto error; 2449 } 2450 2451 if (flags & FUNCTIONFS_EVENTFD) { 2452 if (len < 4) 2453 goto error; 2454 ffs->ffs_eventfd = 2455 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2456 if (IS_ERR(ffs->ffs_eventfd)) { 2457 ret = PTR_ERR(ffs->ffs_eventfd); 2458 ffs->ffs_eventfd = NULL; 2459 goto error; 2460 } 2461 data += 4; 2462 len -= 4; 2463 } 2464 2465 /* Read fs_count, hs_count and ss_count (if present) */ 2466 for (i = 0; i < 3; ++i) { 2467 if (!(flags & (1 << i))) { 2468 counts[i] = 0; 2469 } else if (len < 4) { 2470 goto error; 2471 } else { 2472 counts[i] = get_unaligned_le32(data); 2473 data += 4; 2474 len -= 4; 2475 } 2476 } 2477 if (flags & (1 << i)) { 2478 if (len < 4) { 2479 goto error; 2480 } 2481 os_descs_count = get_unaligned_le32(data); 2482 data += 4; 2483 len -= 4; 2484 } 2485 2486 /* Read descriptors */ 2487 raw_descs = data; 2488 helper.ffs = ffs; 2489 for (i = 0; i < 3; ++i) { 2490 if (!counts[i]) 2491 continue; 2492 helper.interfaces_count = 0; 2493 helper.eps_count = 0; 2494 ret = ffs_do_descs(counts[i], data, len, 2495 __ffs_data_do_entity, &helper); 2496 if (ret < 0) 2497 goto error; 2498 if (!ffs->eps_count && !ffs->interfaces_count) { 2499 ffs->eps_count = helper.eps_count; 2500 ffs->interfaces_count = helper.interfaces_count; 2501 } else { 2502 if (ffs->eps_count != helper.eps_count) { 2503 ret = -EINVAL; 2504 goto error; 2505 } 2506 if (ffs->interfaces_count != helper.interfaces_count) { 2507 ret = -EINVAL; 2508 goto error; 2509 } 2510 } 2511 data += ret; 2512 len -= ret; 2513 } 2514 if (os_descs_count) { 2515 ret = ffs_do_os_descs(os_descs_count, data, len, 2516 __ffs_data_do_os_desc, ffs); 2517 if (ret < 0) 2518 goto error; 2519 data += ret; 2520 len -= ret; 2521 } 2522 2523 if (raw_descs == data || len) { 2524 ret = -EINVAL; 2525 goto error; 2526 } 2527 2528 ffs->raw_descs_data = _data; 2529 ffs->raw_descs = raw_descs; 2530 ffs->raw_descs_length = data - raw_descs; 2531 ffs->fs_descs_count = counts[0]; 2532 ffs->hs_descs_count = counts[1]; 2533 ffs->ss_descs_count = counts[2]; 2534 ffs->ms_os_descs_count = os_descs_count; 2535 2536 return 0; 2537 2538 error: 2539 kfree(_data); 2540 return ret; 2541 } 2542 2543 static int __ffs_data_got_strings(struct ffs_data *ffs, 2544 char *const _data, size_t len) 2545 { 2546 u32 str_count, needed_count, lang_count; 2547 struct usb_gadget_strings **stringtabs, *t; 2548 const char *data = _data; 2549 struct usb_string *s; 2550 2551 if (len < 16 || 2552 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2553 get_unaligned_le32(data + 4) != len) 2554 goto error; 2555 str_count = get_unaligned_le32(data + 8); 2556 lang_count = get_unaligned_le32(data + 12); 2557 2558 /* if one is zero the other must be zero */ 2559 if (!str_count != !lang_count) 2560 goto error; 2561 2562 /* Do we have at least as many strings as descriptors need? */ 2563 needed_count = ffs->strings_count; 2564 if (str_count < needed_count) 2565 goto error; 2566 2567 /* 2568 * If we don't need any strings just return and free all 2569 * memory. 2570 */ 2571 if (!needed_count) { 2572 kfree(_data); 2573 return 0; 2574 } 2575 2576 /* Allocate everything in one chunk so there's less maintenance. */ 2577 { 2578 unsigned i = 0; 2579 vla_group(d); 2580 vla_item(d, struct usb_gadget_strings *, stringtabs, 2581 size_add(lang_count, 1)); 2582 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2583 vla_item(d, struct usb_string, strings, 2584 size_mul(lang_count, (needed_count + 1))); 2585 2586 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2587 2588 if (!vlabuf) { 2589 kfree(_data); 2590 return -ENOMEM; 2591 } 2592 2593 /* Initialize the VLA pointers */ 2594 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2595 t = vla_ptr(vlabuf, d, stringtab); 2596 i = lang_count; 2597 do { 2598 *stringtabs++ = t++; 2599 } while (--i); 2600 *stringtabs = NULL; 2601 2602 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2603 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2604 t = vla_ptr(vlabuf, d, stringtab); 2605 s = vla_ptr(vlabuf, d, strings); 2606 } 2607 2608 /* For each language */ 2609 data += 16; 2610 len -= 16; 2611 2612 do { /* lang_count > 0 so we can use do-while */ 2613 unsigned needed = needed_count; 2614 u32 str_per_lang = str_count; 2615 2616 if (len < 3) 2617 goto error_free; 2618 t->language = get_unaligned_le16(data); 2619 t->strings = s; 2620 ++t; 2621 2622 data += 2; 2623 len -= 2; 2624 2625 /* For each string */ 2626 do { /* str_count > 0 so we can use do-while */ 2627 size_t length = strnlen(data, len); 2628 2629 if (length == len) 2630 goto error_free; 2631 2632 /* 2633 * User may provide more strings then we need, 2634 * if that's the case we simply ignore the 2635 * rest 2636 */ 2637 if (needed) { 2638 /* 2639 * s->id will be set while adding 2640 * function to configuration so for 2641 * now just leave garbage here. 2642 */ 2643 s->s = data; 2644 --needed; 2645 ++s; 2646 } 2647 2648 data += length + 1; 2649 len -= length + 1; 2650 } while (--str_per_lang); 2651 2652 s->id = 0; /* terminator */ 2653 s->s = NULL; 2654 ++s; 2655 2656 } while (--lang_count); 2657 2658 /* Some garbage left? */ 2659 if (len) 2660 goto error_free; 2661 2662 /* Done! */ 2663 ffs->stringtabs = stringtabs; 2664 ffs->raw_strings = _data; 2665 2666 return 0; 2667 2668 error_free: 2669 kfree(stringtabs); 2670 error: 2671 kfree(_data); 2672 return -EINVAL; 2673 } 2674 2675 2676 /* Events handling and management *******************************************/ 2677 2678 static void __ffs_event_add(struct ffs_data *ffs, 2679 enum usb_functionfs_event_type type) 2680 { 2681 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2682 int neg = 0; 2683 2684 /* 2685 * Abort any unhandled setup 2686 * 2687 * We do not need to worry about some cmpxchg() changing value 2688 * of ffs->setup_state without holding the lock because when 2689 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2690 * the source does nothing. 2691 */ 2692 if (ffs->setup_state == FFS_SETUP_PENDING) 2693 ffs->setup_state = FFS_SETUP_CANCELLED; 2694 2695 /* 2696 * Logic of this function guarantees that there are at most four pending 2697 * evens on ffs->ev.types queue. This is important because the queue 2698 * has space for four elements only and __ffs_ep0_read_events function 2699 * depends on that limit as well. If more event types are added, those 2700 * limits have to be revisited or guaranteed to still hold. 2701 */ 2702 switch (type) { 2703 case FUNCTIONFS_RESUME: 2704 rem_type2 = FUNCTIONFS_SUSPEND; 2705 fallthrough; 2706 case FUNCTIONFS_SUSPEND: 2707 case FUNCTIONFS_SETUP: 2708 rem_type1 = type; 2709 /* Discard all similar events */ 2710 break; 2711 2712 case FUNCTIONFS_BIND: 2713 case FUNCTIONFS_UNBIND: 2714 case FUNCTIONFS_DISABLE: 2715 case FUNCTIONFS_ENABLE: 2716 /* Discard everything other then power management. */ 2717 rem_type1 = FUNCTIONFS_SUSPEND; 2718 rem_type2 = FUNCTIONFS_RESUME; 2719 neg = 1; 2720 break; 2721 2722 default: 2723 WARN(1, "%d: unknown event, this should not happen\n", type); 2724 return; 2725 } 2726 2727 { 2728 u8 *ev = ffs->ev.types, *out = ev; 2729 unsigned n = ffs->ev.count; 2730 for (; n; --n, ++ev) 2731 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2732 *out++ = *ev; 2733 else 2734 pr_vdebug("purging event %d\n", *ev); 2735 ffs->ev.count = out - ffs->ev.types; 2736 } 2737 2738 pr_vdebug("adding event %d\n", type); 2739 ffs->ev.types[ffs->ev.count++] = type; 2740 wake_up_locked(&ffs->ev.waitq); 2741 if (ffs->ffs_eventfd) 2742 eventfd_signal(ffs->ffs_eventfd, 1); 2743 } 2744 2745 static void ffs_event_add(struct ffs_data *ffs, 2746 enum usb_functionfs_event_type type) 2747 { 2748 unsigned long flags; 2749 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2750 __ffs_event_add(ffs, type); 2751 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2752 } 2753 2754 /* Bind/unbind USB function hooks *******************************************/ 2755 2756 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2757 { 2758 int i; 2759 2760 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2761 if (ffs->eps_addrmap[i] == endpoint_address) 2762 return i; 2763 return -ENOENT; 2764 } 2765 2766 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2767 struct usb_descriptor_header *desc, 2768 void *priv) 2769 { 2770 struct usb_endpoint_descriptor *ds = (void *)desc; 2771 struct ffs_function *func = priv; 2772 struct ffs_ep *ffs_ep; 2773 unsigned ep_desc_id; 2774 int idx; 2775 static const char *speed_names[] = { "full", "high", "super" }; 2776 2777 if (type != FFS_DESCRIPTOR) 2778 return 0; 2779 2780 /* 2781 * If ss_descriptors is not NULL, we are reading super speed 2782 * descriptors; if hs_descriptors is not NULL, we are reading high 2783 * speed descriptors; otherwise, we are reading full speed 2784 * descriptors. 2785 */ 2786 if (func->function.ss_descriptors) { 2787 ep_desc_id = 2; 2788 func->function.ss_descriptors[(long)valuep] = desc; 2789 } else if (func->function.hs_descriptors) { 2790 ep_desc_id = 1; 2791 func->function.hs_descriptors[(long)valuep] = desc; 2792 } else { 2793 ep_desc_id = 0; 2794 func->function.fs_descriptors[(long)valuep] = desc; 2795 } 2796 2797 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2798 return 0; 2799 2800 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2801 if (idx < 0) 2802 return idx; 2803 2804 ffs_ep = func->eps + idx; 2805 2806 if (ffs_ep->descs[ep_desc_id]) { 2807 pr_err("two %sspeed descriptors for EP %d\n", 2808 speed_names[ep_desc_id], 2809 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2810 return -EINVAL; 2811 } 2812 ffs_ep->descs[ep_desc_id] = ds; 2813 2814 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2815 if (ffs_ep->ep) { 2816 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2817 if (!ds->wMaxPacketSize) 2818 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2819 } else { 2820 struct usb_request *req; 2821 struct usb_ep *ep; 2822 u8 bEndpointAddress; 2823 u16 wMaxPacketSize; 2824 2825 /* 2826 * We back up bEndpointAddress because autoconfig overwrites 2827 * it with physical endpoint address. 2828 */ 2829 bEndpointAddress = ds->bEndpointAddress; 2830 /* 2831 * We back up wMaxPacketSize because autoconfig treats 2832 * endpoint descriptors as if they were full speed. 2833 */ 2834 wMaxPacketSize = ds->wMaxPacketSize; 2835 pr_vdebug("autoconfig\n"); 2836 ep = usb_ep_autoconfig(func->gadget, ds); 2837 if (!ep) 2838 return -ENOTSUPP; 2839 ep->driver_data = func->eps + idx; 2840 2841 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2842 if (!req) 2843 return -ENOMEM; 2844 2845 ffs_ep->ep = ep; 2846 ffs_ep->req = req; 2847 func->eps_revmap[ds->bEndpointAddress & 2848 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2849 /* 2850 * If we use virtual address mapping, we restore 2851 * original bEndpointAddress value. 2852 */ 2853 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2854 ds->bEndpointAddress = bEndpointAddress; 2855 /* 2856 * Restore wMaxPacketSize which was potentially 2857 * overwritten by autoconfig. 2858 */ 2859 ds->wMaxPacketSize = wMaxPacketSize; 2860 } 2861 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2862 2863 return 0; 2864 } 2865 2866 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2867 struct usb_descriptor_header *desc, 2868 void *priv) 2869 { 2870 struct ffs_function *func = priv; 2871 unsigned idx; 2872 u8 newValue; 2873 2874 switch (type) { 2875 default: 2876 case FFS_DESCRIPTOR: 2877 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2878 return 0; 2879 2880 case FFS_INTERFACE: 2881 idx = *valuep; 2882 if (func->interfaces_nums[idx] < 0) { 2883 int id = usb_interface_id(func->conf, &func->function); 2884 if (id < 0) 2885 return id; 2886 func->interfaces_nums[idx] = id; 2887 } 2888 newValue = func->interfaces_nums[idx]; 2889 break; 2890 2891 case FFS_STRING: 2892 /* String' IDs are allocated when fsf_data is bound to cdev */ 2893 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2894 break; 2895 2896 case FFS_ENDPOINT: 2897 /* 2898 * USB_DT_ENDPOINT are handled in 2899 * __ffs_func_bind_do_descs(). 2900 */ 2901 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2902 return 0; 2903 2904 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2905 if (!func->eps[idx].ep) 2906 return -EINVAL; 2907 2908 { 2909 struct usb_endpoint_descriptor **descs; 2910 descs = func->eps[idx].descs; 2911 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2912 } 2913 break; 2914 } 2915 2916 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2917 *valuep = newValue; 2918 return 0; 2919 } 2920 2921 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2922 struct usb_os_desc_header *h, void *data, 2923 unsigned len, void *priv) 2924 { 2925 struct ffs_function *func = priv; 2926 u8 length = 0; 2927 2928 switch (type) { 2929 case FFS_OS_DESC_EXT_COMPAT: { 2930 struct usb_ext_compat_desc *desc = data; 2931 struct usb_os_desc_table *t; 2932 2933 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2934 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2935 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2936 ARRAY_SIZE(desc->CompatibleID) + 2937 ARRAY_SIZE(desc->SubCompatibleID)); 2938 length = sizeof(*desc); 2939 } 2940 break; 2941 case FFS_OS_DESC_EXT_PROP: { 2942 struct usb_ext_prop_desc *desc = data; 2943 struct usb_os_desc_table *t; 2944 struct usb_os_desc_ext_prop *ext_prop; 2945 char *ext_prop_name; 2946 char *ext_prop_data; 2947 2948 t = &func->function.os_desc_table[h->interface]; 2949 t->if_id = func->interfaces_nums[h->interface]; 2950 2951 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2952 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2953 2954 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2955 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2956 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2957 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2958 length = ext_prop->name_len + ext_prop->data_len + 14; 2959 2960 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2961 func->ffs->ms_os_descs_ext_prop_name_avail += 2962 ext_prop->name_len; 2963 2964 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2965 func->ffs->ms_os_descs_ext_prop_data_avail += 2966 ext_prop->data_len; 2967 memcpy(ext_prop_data, 2968 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2969 ext_prop->data_len); 2970 /* unicode data reported to the host as "WCHAR"s */ 2971 switch (ext_prop->type) { 2972 case USB_EXT_PROP_UNICODE: 2973 case USB_EXT_PROP_UNICODE_ENV: 2974 case USB_EXT_PROP_UNICODE_LINK: 2975 case USB_EXT_PROP_UNICODE_MULTI: 2976 ext_prop->data_len *= 2; 2977 break; 2978 } 2979 ext_prop->data = ext_prop_data; 2980 2981 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2982 ext_prop->name_len); 2983 /* property name reported to the host as "WCHAR"s */ 2984 ext_prop->name_len *= 2; 2985 ext_prop->name = ext_prop_name; 2986 2987 t->os_desc->ext_prop_len += 2988 ext_prop->name_len + ext_prop->data_len + 14; 2989 ++t->os_desc->ext_prop_count; 2990 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2991 } 2992 break; 2993 default: 2994 pr_vdebug("unknown descriptor: %d\n", type); 2995 } 2996 2997 return length; 2998 } 2999 3000 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3001 struct usb_configuration *c) 3002 { 3003 struct ffs_function *func = ffs_func_from_usb(f); 3004 struct f_fs_opts *ffs_opts = 3005 container_of(f->fi, struct f_fs_opts, func_inst); 3006 struct ffs_data *ffs_data; 3007 int ret; 3008 3009 /* 3010 * Legacy gadget triggers binding in functionfs_ready_callback, 3011 * which already uses locking; taking the same lock here would 3012 * cause a deadlock. 3013 * 3014 * Configfs-enabled gadgets however do need ffs_dev_lock. 3015 */ 3016 if (!ffs_opts->no_configfs) 3017 ffs_dev_lock(); 3018 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3019 ffs_data = ffs_opts->dev->ffs_data; 3020 if (!ffs_opts->no_configfs) 3021 ffs_dev_unlock(); 3022 if (ret) 3023 return ERR_PTR(ret); 3024 3025 func->ffs = ffs_data; 3026 func->conf = c; 3027 func->gadget = c->cdev->gadget; 3028 3029 /* 3030 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3031 * configurations are bound in sequence with list_for_each_entry, 3032 * in each configuration its functions are bound in sequence 3033 * with list_for_each_entry, so we assume no race condition 3034 * with regard to ffs_opts->bound access 3035 */ 3036 if (!ffs_opts->refcnt) { 3037 ret = functionfs_bind(func->ffs, c->cdev); 3038 if (ret) 3039 return ERR_PTR(ret); 3040 } 3041 ffs_opts->refcnt++; 3042 func->function.strings = func->ffs->stringtabs; 3043 3044 return ffs_opts; 3045 } 3046 3047 static int _ffs_func_bind(struct usb_configuration *c, 3048 struct usb_function *f) 3049 { 3050 struct ffs_function *func = ffs_func_from_usb(f); 3051 struct ffs_data *ffs = func->ffs; 3052 3053 const int full = !!func->ffs->fs_descs_count; 3054 const int high = !!func->ffs->hs_descs_count; 3055 const int super = !!func->ffs->ss_descs_count; 3056 3057 int fs_len, hs_len, ss_len, ret, i; 3058 struct ffs_ep *eps_ptr; 3059 3060 /* Make it a single chunk, less management later on */ 3061 vla_group(d); 3062 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3063 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3064 full ? ffs->fs_descs_count + 1 : 0); 3065 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3066 high ? ffs->hs_descs_count + 1 : 0); 3067 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3068 super ? ffs->ss_descs_count + 1 : 0); 3069 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3070 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3071 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3072 vla_item_with_sz(d, char[16], ext_compat, 3073 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3074 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3075 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3076 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3077 ffs->ms_os_descs_ext_prop_count); 3078 vla_item_with_sz(d, char, ext_prop_name, 3079 ffs->ms_os_descs_ext_prop_name_len); 3080 vla_item_with_sz(d, char, ext_prop_data, 3081 ffs->ms_os_descs_ext_prop_data_len); 3082 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3083 char *vlabuf; 3084 3085 /* Has descriptors only for speeds gadget does not support */ 3086 if (!(full | high | super)) 3087 return -ENOTSUPP; 3088 3089 /* Allocate a single chunk, less management later on */ 3090 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3091 if (!vlabuf) 3092 return -ENOMEM; 3093 3094 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3095 ffs->ms_os_descs_ext_prop_name_avail = 3096 vla_ptr(vlabuf, d, ext_prop_name); 3097 ffs->ms_os_descs_ext_prop_data_avail = 3098 vla_ptr(vlabuf, d, ext_prop_data); 3099 3100 /* Copy descriptors */ 3101 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3102 ffs->raw_descs_length); 3103 3104 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3105 eps_ptr = vla_ptr(vlabuf, d, eps); 3106 for (i = 0; i < ffs->eps_count; i++) 3107 eps_ptr[i].num = -1; 3108 3109 /* Save pointers 3110 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3111 */ 3112 func->eps = vla_ptr(vlabuf, d, eps); 3113 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3114 3115 /* 3116 * Go through all the endpoint descriptors and allocate 3117 * endpoints first, so that later we can rewrite the endpoint 3118 * numbers without worrying that it may be described later on. 3119 */ 3120 if (full) { 3121 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3122 fs_len = ffs_do_descs(ffs->fs_descs_count, 3123 vla_ptr(vlabuf, d, raw_descs), 3124 d_raw_descs__sz, 3125 __ffs_func_bind_do_descs, func); 3126 if (fs_len < 0) { 3127 ret = fs_len; 3128 goto error; 3129 } 3130 } else { 3131 fs_len = 0; 3132 } 3133 3134 if (high) { 3135 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3136 hs_len = ffs_do_descs(ffs->hs_descs_count, 3137 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3138 d_raw_descs__sz - fs_len, 3139 __ffs_func_bind_do_descs, func); 3140 if (hs_len < 0) { 3141 ret = hs_len; 3142 goto error; 3143 } 3144 } else { 3145 hs_len = 0; 3146 } 3147 3148 if (super) { 3149 func->function.ss_descriptors = func->function.ssp_descriptors = 3150 vla_ptr(vlabuf, d, ss_descs); 3151 ss_len = ffs_do_descs(ffs->ss_descs_count, 3152 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3153 d_raw_descs__sz - fs_len - hs_len, 3154 __ffs_func_bind_do_descs, func); 3155 if (ss_len < 0) { 3156 ret = ss_len; 3157 goto error; 3158 } 3159 } else { 3160 ss_len = 0; 3161 } 3162 3163 /* 3164 * Now handle interface numbers allocation and interface and 3165 * endpoint numbers rewriting. We can do that in one go 3166 * now. 3167 */ 3168 ret = ffs_do_descs(ffs->fs_descs_count + 3169 (high ? ffs->hs_descs_count : 0) + 3170 (super ? ffs->ss_descs_count : 0), 3171 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3172 __ffs_func_bind_do_nums, func); 3173 if (ret < 0) 3174 goto error; 3175 3176 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3177 if (c->cdev->use_os_string) { 3178 for (i = 0; i < ffs->interfaces_count; ++i) { 3179 struct usb_os_desc *desc; 3180 3181 desc = func->function.os_desc_table[i].os_desc = 3182 vla_ptr(vlabuf, d, os_desc) + 3183 i * sizeof(struct usb_os_desc); 3184 desc->ext_compat_id = 3185 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3186 INIT_LIST_HEAD(&desc->ext_prop); 3187 } 3188 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3189 vla_ptr(vlabuf, d, raw_descs) + 3190 fs_len + hs_len + ss_len, 3191 d_raw_descs__sz - fs_len - hs_len - 3192 ss_len, 3193 __ffs_func_bind_do_os_desc, func); 3194 if (ret < 0) 3195 goto error; 3196 } 3197 func->function.os_desc_n = 3198 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3199 3200 /* And we're done */ 3201 ffs_event_add(ffs, FUNCTIONFS_BIND); 3202 return 0; 3203 3204 error: 3205 /* XXX Do we need to release all claimed endpoints here? */ 3206 return ret; 3207 } 3208 3209 static int ffs_func_bind(struct usb_configuration *c, 3210 struct usb_function *f) 3211 { 3212 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3213 struct ffs_function *func = ffs_func_from_usb(f); 3214 int ret; 3215 3216 if (IS_ERR(ffs_opts)) 3217 return PTR_ERR(ffs_opts); 3218 3219 ret = _ffs_func_bind(c, f); 3220 if (ret && !--ffs_opts->refcnt) 3221 functionfs_unbind(func->ffs); 3222 3223 return ret; 3224 } 3225 3226 3227 /* Other USB function hooks *************************************************/ 3228 3229 static void ffs_reset_work(struct work_struct *work) 3230 { 3231 struct ffs_data *ffs = container_of(work, 3232 struct ffs_data, reset_work); 3233 ffs_data_reset(ffs); 3234 } 3235 3236 static int ffs_func_set_alt(struct usb_function *f, 3237 unsigned interface, unsigned alt) 3238 { 3239 struct ffs_function *func = ffs_func_from_usb(f); 3240 struct ffs_data *ffs = func->ffs; 3241 int ret = 0, intf; 3242 3243 if (alt != (unsigned)-1) { 3244 intf = ffs_func_revmap_intf(func, interface); 3245 if (intf < 0) 3246 return intf; 3247 } 3248 3249 if (ffs->func) 3250 ffs_func_eps_disable(ffs->func); 3251 3252 if (ffs->state == FFS_DEACTIVATED) { 3253 ffs->state = FFS_CLOSING; 3254 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3255 schedule_work(&ffs->reset_work); 3256 return -ENODEV; 3257 } 3258 3259 if (ffs->state != FFS_ACTIVE) 3260 return -ENODEV; 3261 3262 if (alt == (unsigned)-1) { 3263 ffs->func = NULL; 3264 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3265 return 0; 3266 } 3267 3268 ffs->func = func; 3269 ret = ffs_func_eps_enable(func); 3270 if (ret >= 0) 3271 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3272 return ret; 3273 } 3274 3275 static void ffs_func_disable(struct usb_function *f) 3276 { 3277 ffs_func_set_alt(f, 0, (unsigned)-1); 3278 } 3279 3280 static int ffs_func_setup(struct usb_function *f, 3281 const struct usb_ctrlrequest *creq) 3282 { 3283 struct ffs_function *func = ffs_func_from_usb(f); 3284 struct ffs_data *ffs = func->ffs; 3285 unsigned long flags; 3286 int ret; 3287 3288 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3289 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3290 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3291 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3292 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3293 3294 /* 3295 * Most requests directed to interface go through here 3296 * (notable exceptions are set/get interface) so we need to 3297 * handle them. All other either handled by composite or 3298 * passed to usb_configuration->setup() (if one is set). No 3299 * matter, we will handle requests directed to endpoint here 3300 * as well (as it's straightforward). Other request recipient 3301 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3302 * is being used. 3303 */ 3304 if (ffs->state != FFS_ACTIVE) 3305 return -ENODEV; 3306 3307 switch (creq->bRequestType & USB_RECIP_MASK) { 3308 case USB_RECIP_INTERFACE: 3309 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3310 if (ret < 0) 3311 return ret; 3312 break; 3313 3314 case USB_RECIP_ENDPOINT: 3315 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3316 if (ret < 0) 3317 return ret; 3318 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3319 ret = func->ffs->eps_addrmap[ret]; 3320 break; 3321 3322 default: 3323 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3324 ret = le16_to_cpu(creq->wIndex); 3325 else 3326 return -EOPNOTSUPP; 3327 } 3328 3329 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3330 ffs->ev.setup = *creq; 3331 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3332 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3333 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3334 3335 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3336 } 3337 3338 static bool ffs_func_req_match(struct usb_function *f, 3339 const struct usb_ctrlrequest *creq, 3340 bool config0) 3341 { 3342 struct ffs_function *func = ffs_func_from_usb(f); 3343 3344 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3345 return false; 3346 3347 switch (creq->bRequestType & USB_RECIP_MASK) { 3348 case USB_RECIP_INTERFACE: 3349 return (ffs_func_revmap_intf(func, 3350 le16_to_cpu(creq->wIndex)) >= 0); 3351 case USB_RECIP_ENDPOINT: 3352 return (ffs_func_revmap_ep(func, 3353 le16_to_cpu(creq->wIndex)) >= 0); 3354 default: 3355 return (bool) (func->ffs->user_flags & 3356 FUNCTIONFS_ALL_CTRL_RECIP); 3357 } 3358 } 3359 3360 static void ffs_func_suspend(struct usb_function *f) 3361 { 3362 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3363 } 3364 3365 static void ffs_func_resume(struct usb_function *f) 3366 { 3367 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3368 } 3369 3370 3371 /* Endpoint and interface numbers reverse mapping ***************************/ 3372 3373 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3374 { 3375 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3376 return num ? num : -EDOM; 3377 } 3378 3379 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3380 { 3381 short *nums = func->interfaces_nums; 3382 unsigned count = func->ffs->interfaces_count; 3383 3384 for (; count; --count, ++nums) { 3385 if (*nums >= 0 && *nums == intf) 3386 return nums - func->interfaces_nums; 3387 } 3388 3389 return -EDOM; 3390 } 3391 3392 3393 /* Devices management *******************************************************/ 3394 3395 static LIST_HEAD(ffs_devices); 3396 3397 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3398 { 3399 struct ffs_dev *dev; 3400 3401 if (!name) 3402 return NULL; 3403 3404 list_for_each_entry(dev, &ffs_devices, entry) { 3405 if (strcmp(dev->name, name) == 0) 3406 return dev; 3407 } 3408 3409 return NULL; 3410 } 3411 3412 /* 3413 * ffs_lock must be taken by the caller of this function 3414 */ 3415 static struct ffs_dev *_ffs_get_single_dev(void) 3416 { 3417 struct ffs_dev *dev; 3418 3419 if (list_is_singular(&ffs_devices)) { 3420 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3421 if (dev->single) 3422 return dev; 3423 } 3424 3425 return NULL; 3426 } 3427 3428 /* 3429 * ffs_lock must be taken by the caller of this function 3430 */ 3431 static struct ffs_dev *_ffs_find_dev(const char *name) 3432 { 3433 struct ffs_dev *dev; 3434 3435 dev = _ffs_get_single_dev(); 3436 if (dev) 3437 return dev; 3438 3439 return _ffs_do_find_dev(name); 3440 } 3441 3442 /* Configfs support *********************************************************/ 3443 3444 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3445 { 3446 return container_of(to_config_group(item), struct f_fs_opts, 3447 func_inst.group); 3448 } 3449 3450 static void ffs_attr_release(struct config_item *item) 3451 { 3452 struct f_fs_opts *opts = to_ffs_opts(item); 3453 3454 usb_put_function_instance(&opts->func_inst); 3455 } 3456 3457 static struct configfs_item_operations ffs_item_ops = { 3458 .release = ffs_attr_release, 3459 }; 3460 3461 static const struct config_item_type ffs_func_type = { 3462 .ct_item_ops = &ffs_item_ops, 3463 .ct_owner = THIS_MODULE, 3464 }; 3465 3466 3467 /* Function registration interface ******************************************/ 3468 3469 static void ffs_free_inst(struct usb_function_instance *f) 3470 { 3471 struct f_fs_opts *opts; 3472 3473 opts = to_f_fs_opts(f); 3474 ffs_release_dev(opts->dev); 3475 ffs_dev_lock(); 3476 _ffs_free_dev(opts->dev); 3477 ffs_dev_unlock(); 3478 kfree(opts); 3479 } 3480 3481 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3482 { 3483 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3484 return -ENAMETOOLONG; 3485 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3486 } 3487 3488 static struct usb_function_instance *ffs_alloc_inst(void) 3489 { 3490 struct f_fs_opts *opts; 3491 struct ffs_dev *dev; 3492 3493 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3494 if (!opts) 3495 return ERR_PTR(-ENOMEM); 3496 3497 opts->func_inst.set_inst_name = ffs_set_inst_name; 3498 opts->func_inst.free_func_inst = ffs_free_inst; 3499 ffs_dev_lock(); 3500 dev = _ffs_alloc_dev(); 3501 ffs_dev_unlock(); 3502 if (IS_ERR(dev)) { 3503 kfree(opts); 3504 return ERR_CAST(dev); 3505 } 3506 opts->dev = dev; 3507 dev->opts = opts; 3508 3509 config_group_init_type_name(&opts->func_inst.group, "", 3510 &ffs_func_type); 3511 return &opts->func_inst; 3512 } 3513 3514 static void ffs_free(struct usb_function *f) 3515 { 3516 kfree(ffs_func_from_usb(f)); 3517 } 3518 3519 static void ffs_func_unbind(struct usb_configuration *c, 3520 struct usb_function *f) 3521 { 3522 struct ffs_function *func = ffs_func_from_usb(f); 3523 struct ffs_data *ffs = func->ffs; 3524 struct f_fs_opts *opts = 3525 container_of(f->fi, struct f_fs_opts, func_inst); 3526 struct ffs_ep *ep = func->eps; 3527 unsigned count = ffs->eps_count; 3528 unsigned long flags; 3529 3530 if (ffs->func == func) { 3531 ffs_func_eps_disable(func); 3532 ffs->func = NULL; 3533 } 3534 3535 /* Drain any pending AIO completions */ 3536 drain_workqueue(ffs->io_completion_wq); 3537 3538 if (!--opts->refcnt) 3539 functionfs_unbind(ffs); 3540 3541 /* cleanup after autoconfig */ 3542 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3543 while (count--) { 3544 if (ep->ep && ep->req) 3545 usb_ep_free_request(ep->ep, ep->req); 3546 ep->req = NULL; 3547 ++ep; 3548 } 3549 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3550 kfree(func->eps); 3551 func->eps = NULL; 3552 /* 3553 * eps, descriptors and interfaces_nums are allocated in the 3554 * same chunk so only one free is required. 3555 */ 3556 func->function.fs_descriptors = NULL; 3557 func->function.hs_descriptors = NULL; 3558 func->function.ss_descriptors = NULL; 3559 func->function.ssp_descriptors = NULL; 3560 func->interfaces_nums = NULL; 3561 3562 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3563 } 3564 3565 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3566 { 3567 struct ffs_function *func; 3568 3569 func = kzalloc(sizeof(*func), GFP_KERNEL); 3570 if (!func) 3571 return ERR_PTR(-ENOMEM); 3572 3573 func->function.name = "Function FS Gadget"; 3574 3575 func->function.bind = ffs_func_bind; 3576 func->function.unbind = ffs_func_unbind; 3577 func->function.set_alt = ffs_func_set_alt; 3578 func->function.disable = ffs_func_disable; 3579 func->function.setup = ffs_func_setup; 3580 func->function.req_match = ffs_func_req_match; 3581 func->function.suspend = ffs_func_suspend; 3582 func->function.resume = ffs_func_resume; 3583 func->function.free_func = ffs_free; 3584 3585 return &func->function; 3586 } 3587 3588 /* 3589 * ffs_lock must be taken by the caller of this function 3590 */ 3591 static struct ffs_dev *_ffs_alloc_dev(void) 3592 { 3593 struct ffs_dev *dev; 3594 int ret; 3595 3596 if (_ffs_get_single_dev()) 3597 return ERR_PTR(-EBUSY); 3598 3599 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3600 if (!dev) 3601 return ERR_PTR(-ENOMEM); 3602 3603 if (list_empty(&ffs_devices)) { 3604 ret = functionfs_init(); 3605 if (ret) { 3606 kfree(dev); 3607 return ERR_PTR(ret); 3608 } 3609 } 3610 3611 list_add(&dev->entry, &ffs_devices); 3612 3613 return dev; 3614 } 3615 3616 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3617 { 3618 struct ffs_dev *existing; 3619 int ret = 0; 3620 3621 ffs_dev_lock(); 3622 3623 existing = _ffs_do_find_dev(name); 3624 if (!existing) 3625 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 3626 else if (existing != dev) 3627 ret = -EBUSY; 3628 3629 ffs_dev_unlock(); 3630 3631 return ret; 3632 } 3633 EXPORT_SYMBOL_GPL(ffs_name_dev); 3634 3635 int ffs_single_dev(struct ffs_dev *dev) 3636 { 3637 int ret; 3638 3639 ret = 0; 3640 ffs_dev_lock(); 3641 3642 if (!list_is_singular(&ffs_devices)) 3643 ret = -EBUSY; 3644 else 3645 dev->single = true; 3646 3647 ffs_dev_unlock(); 3648 return ret; 3649 } 3650 EXPORT_SYMBOL_GPL(ffs_single_dev); 3651 3652 /* 3653 * ffs_lock must be taken by the caller of this function 3654 */ 3655 static void _ffs_free_dev(struct ffs_dev *dev) 3656 { 3657 list_del(&dev->entry); 3658 3659 kfree(dev); 3660 if (list_empty(&ffs_devices)) 3661 functionfs_cleanup(); 3662 } 3663 3664 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 3665 { 3666 int ret = 0; 3667 struct ffs_dev *ffs_dev; 3668 3669 ffs_dev_lock(); 3670 3671 ffs_dev = _ffs_find_dev(dev_name); 3672 if (!ffs_dev) { 3673 ret = -ENOENT; 3674 } else if (ffs_dev->mounted) { 3675 ret = -EBUSY; 3676 } else if (ffs_dev->ffs_acquire_dev_callback && 3677 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 3678 ret = -ENOENT; 3679 } else { 3680 ffs_dev->mounted = true; 3681 ffs_dev->ffs_data = ffs_data; 3682 ffs_data->private_data = ffs_dev; 3683 } 3684 3685 ffs_dev_unlock(); 3686 return ret; 3687 } 3688 3689 static void ffs_release_dev(struct ffs_dev *ffs_dev) 3690 { 3691 ffs_dev_lock(); 3692 3693 if (ffs_dev && ffs_dev->mounted) { 3694 ffs_dev->mounted = false; 3695 if (ffs_dev->ffs_data) { 3696 ffs_dev->ffs_data->private_data = NULL; 3697 ffs_dev->ffs_data = NULL; 3698 } 3699 3700 if (ffs_dev->ffs_release_dev_callback) 3701 ffs_dev->ffs_release_dev_callback(ffs_dev); 3702 } 3703 3704 ffs_dev_unlock(); 3705 } 3706 3707 static int ffs_ready(struct ffs_data *ffs) 3708 { 3709 struct ffs_dev *ffs_obj; 3710 int ret = 0; 3711 3712 ffs_dev_lock(); 3713 3714 ffs_obj = ffs->private_data; 3715 if (!ffs_obj) { 3716 ret = -EINVAL; 3717 goto done; 3718 } 3719 if (WARN_ON(ffs_obj->desc_ready)) { 3720 ret = -EBUSY; 3721 goto done; 3722 } 3723 3724 ffs_obj->desc_ready = true; 3725 3726 if (ffs_obj->ffs_ready_callback) { 3727 ret = ffs_obj->ffs_ready_callback(ffs); 3728 if (ret) 3729 goto done; 3730 } 3731 3732 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3733 done: 3734 ffs_dev_unlock(); 3735 return ret; 3736 } 3737 3738 static void ffs_closed(struct ffs_data *ffs) 3739 { 3740 struct ffs_dev *ffs_obj; 3741 struct f_fs_opts *opts; 3742 struct config_item *ci; 3743 3744 ffs_dev_lock(); 3745 3746 ffs_obj = ffs->private_data; 3747 if (!ffs_obj) 3748 goto done; 3749 3750 ffs_obj->desc_ready = false; 3751 3752 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3753 ffs_obj->ffs_closed_callback) 3754 ffs_obj->ffs_closed_callback(ffs); 3755 3756 if (ffs_obj->opts) 3757 opts = ffs_obj->opts; 3758 else 3759 goto done; 3760 3761 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3762 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3763 goto done; 3764 3765 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3766 ffs_dev_unlock(); 3767 3768 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3769 unregister_gadget_item(ci); 3770 return; 3771 done: 3772 ffs_dev_unlock(); 3773 } 3774 3775 /* Misc helper functions ****************************************************/ 3776 3777 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3778 { 3779 return nonblock 3780 ? mutex_trylock(mutex) ? 0 : -EAGAIN 3781 : mutex_lock_interruptible(mutex); 3782 } 3783 3784 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3785 { 3786 char *data; 3787 3788 if (!len) 3789 return NULL; 3790 3791 data = memdup_user(buf, len); 3792 if (IS_ERR(data)) 3793 return data; 3794 3795 pr_vdebug("Buffer from user space:\n"); 3796 ffs_dump_mem("", data, len); 3797 3798 return data; 3799 } 3800 3801 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3802 MODULE_LICENSE("GPL"); 3803 MODULE_AUTHOR("Michal Nazarewicz"); 3804