xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 1c2dd16a)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32 
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37 
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42 
43 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
44 
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
50 
51 /* Opened counter handling. */
52 static void ffs_data_opened(struct ffs_data *ffs);
53 static void ffs_data_closed(struct ffs_data *ffs);
54 
55 /* Called with ffs->mutex held; take over ownership of data. */
56 static int __must_check
57 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
58 static int __must_check
59 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
60 
61 
62 /* The function structure ***************************************************/
63 
64 struct ffs_ep;
65 
66 struct ffs_function {
67 	struct usb_configuration	*conf;
68 	struct usb_gadget		*gadget;
69 	struct ffs_data			*ffs;
70 
71 	struct ffs_ep			*eps;
72 	u8				eps_revmap[16];
73 	short				*interfaces_nums;
74 
75 	struct usb_function		function;
76 };
77 
78 
79 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
80 {
81 	return container_of(f, struct ffs_function, function);
82 }
83 
84 
85 static inline enum ffs_setup_state
86 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
87 {
88 	return (enum ffs_setup_state)
89 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
90 }
91 
92 
93 static void ffs_func_eps_disable(struct ffs_function *func);
94 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
95 
96 static int ffs_func_bind(struct usb_configuration *,
97 			 struct usb_function *);
98 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
99 static void ffs_func_disable(struct usb_function *);
100 static int ffs_func_setup(struct usb_function *,
101 			  const struct usb_ctrlrequest *);
102 static bool ffs_func_req_match(struct usb_function *,
103 			       const struct usb_ctrlrequest *,
104 			       bool config0);
105 static void ffs_func_suspend(struct usb_function *);
106 static void ffs_func_resume(struct usb_function *);
107 
108 
109 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
110 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
111 
112 
113 /* The endpoints structures *************************************************/
114 
115 struct ffs_ep {
116 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
117 	struct usb_request		*req;	/* P: epfile->mutex */
118 
119 	/* [0]: full speed, [1]: high speed, [2]: super speed */
120 	struct usb_endpoint_descriptor	*descs[3];
121 
122 	u8				num;
123 
124 	int				status;	/* P: epfile->mutex */
125 };
126 
127 struct ffs_epfile {
128 	/* Protects ep->ep and ep->req. */
129 	struct mutex			mutex;
130 	wait_queue_head_t		wait;
131 
132 	struct ffs_data			*ffs;
133 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
134 
135 	struct dentry			*dentry;
136 
137 	/*
138 	 * Buffer for holding data from partial reads which may happen since
139 	 * we’re rounding user read requests to a multiple of a max packet size.
140 	 *
141 	 * The pointer is initialised with NULL value and may be set by
142 	 * __ffs_epfile_read_data function to point to a temporary buffer.
143 	 *
144 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
145 	 * data from said buffer and eventually free it.  Importantly, while the
146 	 * function is using the buffer, it sets the pointer to NULL.  This is
147 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148 	 * can never run concurrently (they are synchronised by epfile->mutex)
149 	 * so the latter will not assign a new value to the pointer.
150 	 *
151 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
153 	 * value is crux of the synchronisation between ffs_func_eps_disable and
154 	 * __ffs_epfile_read_data.
155 	 *
156 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
157 	 * pointer back to its old value (as described above), but seeing as the
158 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159 	 * the buffer.
160 	 *
161 	 * == State transitions ==
162 	 *
163 	 * • ptr == NULL:  (initial state)
164 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165 	 *   ◦ __ffs_epfile_read_buffered:    nop
166 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
168 	 * • ptr == DROP:
169 	 *   ◦ __ffs_epfile_read_buffer_free: nop
170 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
171 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
173 	 * • ptr == buf:
174 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
176 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
177 	 *                                    is always called first
178 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
179 	 * • ptr == NULL and reading:
180 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
182 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
183 	 *   ◦ reading finishes and …
184 	 *     … all data read:               free buf, go to ptr == NULL
185 	 *     … otherwise:                   go to ptr == buf and reading
186 	 * • ptr == DROP and reading:
187 	 *   ◦ __ffs_epfile_read_buffer_free: nop
188 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
189 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
190 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
191 	 */
192 	struct ffs_buffer		*read_buffer;
193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194 
195 	char				name[5];
196 
197 	unsigned char			in;	/* P: ffs->eps_lock */
198 	unsigned char			isoc;	/* P: ffs->eps_lock */
199 
200 	unsigned char			_pad;
201 };
202 
203 struct ffs_buffer {
204 	size_t length;
205 	char *data;
206 	char storage[];
207 };
208 
209 /*  ffs_io_data structure ***************************************************/
210 
211 struct ffs_io_data {
212 	bool aio;
213 	bool read;
214 
215 	struct kiocb *kiocb;
216 	struct iov_iter data;
217 	const void *to_free;
218 	char *buf;
219 
220 	struct mm_struct *mm;
221 	struct work_struct work;
222 
223 	struct usb_ep *ep;
224 	struct usb_request *req;
225 
226 	struct ffs_data *ffs;
227 };
228 
229 struct ffs_desc_helper {
230 	struct ffs_data *ffs;
231 	unsigned interfaces_count;
232 	unsigned eps_count;
233 };
234 
235 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
237 
238 static struct dentry *
239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
240 		   const struct file_operations *fops);
241 
242 /* Devices management *******************************************************/
243 
244 DEFINE_MUTEX(ffs_lock);
245 EXPORT_SYMBOL_GPL(ffs_lock);
246 
247 static struct ffs_dev *_ffs_find_dev(const char *name);
248 static struct ffs_dev *_ffs_alloc_dev(void);
249 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
250 static void _ffs_free_dev(struct ffs_dev *dev);
251 static void *ffs_acquire_dev(const char *dev_name);
252 static void ffs_release_dev(struct ffs_data *ffs_data);
253 static int ffs_ready(struct ffs_data *ffs);
254 static void ffs_closed(struct ffs_data *ffs);
255 
256 /* Misc helper functions ****************************************************/
257 
258 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
259 	__attribute__((warn_unused_result, nonnull));
260 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
261 	__attribute__((warn_unused_result, nonnull));
262 
263 
264 /* Control file aka ep0 *****************************************************/
265 
266 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
267 {
268 	struct ffs_data *ffs = req->context;
269 
270 	complete(&ffs->ep0req_completion);
271 }
272 
273 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
274 {
275 	struct usb_request *req = ffs->ep0req;
276 	int ret;
277 
278 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
279 
280 	spin_unlock_irq(&ffs->ev.waitq.lock);
281 
282 	req->buf      = data;
283 	req->length   = len;
284 
285 	/*
286 	 * UDC layer requires to provide a buffer even for ZLP, but should
287 	 * not use it at all. Let's provide some poisoned pointer to catch
288 	 * possible bug in the driver.
289 	 */
290 	if (req->buf == NULL)
291 		req->buf = (void *)0xDEADBABE;
292 
293 	reinit_completion(&ffs->ep0req_completion);
294 
295 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
296 	if (unlikely(ret < 0))
297 		return ret;
298 
299 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
300 	if (unlikely(ret)) {
301 		usb_ep_dequeue(ffs->gadget->ep0, req);
302 		return -EINTR;
303 	}
304 
305 	ffs->setup_state = FFS_NO_SETUP;
306 	return req->status ? req->status : req->actual;
307 }
308 
309 static int __ffs_ep0_stall(struct ffs_data *ffs)
310 {
311 	if (ffs->ev.can_stall) {
312 		pr_vdebug("ep0 stall\n");
313 		usb_ep_set_halt(ffs->gadget->ep0);
314 		ffs->setup_state = FFS_NO_SETUP;
315 		return -EL2HLT;
316 	} else {
317 		pr_debug("bogus ep0 stall!\n");
318 		return -ESRCH;
319 	}
320 }
321 
322 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
323 			     size_t len, loff_t *ptr)
324 {
325 	struct ffs_data *ffs = file->private_data;
326 	ssize_t ret;
327 	char *data;
328 
329 	ENTER();
330 
331 	/* Fast check if setup was canceled */
332 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
333 		return -EIDRM;
334 
335 	/* Acquire mutex */
336 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
337 	if (unlikely(ret < 0))
338 		return ret;
339 
340 	/* Check state */
341 	switch (ffs->state) {
342 	case FFS_READ_DESCRIPTORS:
343 	case FFS_READ_STRINGS:
344 		/* Copy data */
345 		if (unlikely(len < 16)) {
346 			ret = -EINVAL;
347 			break;
348 		}
349 
350 		data = ffs_prepare_buffer(buf, len);
351 		if (IS_ERR(data)) {
352 			ret = PTR_ERR(data);
353 			break;
354 		}
355 
356 		/* Handle data */
357 		if (ffs->state == FFS_READ_DESCRIPTORS) {
358 			pr_info("read descriptors\n");
359 			ret = __ffs_data_got_descs(ffs, data, len);
360 			if (unlikely(ret < 0))
361 				break;
362 
363 			ffs->state = FFS_READ_STRINGS;
364 			ret = len;
365 		} else {
366 			pr_info("read strings\n");
367 			ret = __ffs_data_got_strings(ffs, data, len);
368 			if (unlikely(ret < 0))
369 				break;
370 
371 			ret = ffs_epfiles_create(ffs);
372 			if (unlikely(ret)) {
373 				ffs->state = FFS_CLOSING;
374 				break;
375 			}
376 
377 			ffs->state = FFS_ACTIVE;
378 			mutex_unlock(&ffs->mutex);
379 
380 			ret = ffs_ready(ffs);
381 			if (unlikely(ret < 0)) {
382 				ffs->state = FFS_CLOSING;
383 				return ret;
384 			}
385 
386 			return len;
387 		}
388 		break;
389 
390 	case FFS_ACTIVE:
391 		data = NULL;
392 		/*
393 		 * We're called from user space, we can use _irq
394 		 * rather then _irqsave
395 		 */
396 		spin_lock_irq(&ffs->ev.waitq.lock);
397 		switch (ffs_setup_state_clear_cancelled(ffs)) {
398 		case FFS_SETUP_CANCELLED:
399 			ret = -EIDRM;
400 			goto done_spin;
401 
402 		case FFS_NO_SETUP:
403 			ret = -ESRCH;
404 			goto done_spin;
405 
406 		case FFS_SETUP_PENDING:
407 			break;
408 		}
409 
410 		/* FFS_SETUP_PENDING */
411 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
412 			spin_unlock_irq(&ffs->ev.waitq.lock);
413 			ret = __ffs_ep0_stall(ffs);
414 			break;
415 		}
416 
417 		/* FFS_SETUP_PENDING and not stall */
418 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
419 
420 		spin_unlock_irq(&ffs->ev.waitq.lock);
421 
422 		data = ffs_prepare_buffer(buf, len);
423 		if (IS_ERR(data)) {
424 			ret = PTR_ERR(data);
425 			break;
426 		}
427 
428 		spin_lock_irq(&ffs->ev.waitq.lock);
429 
430 		/*
431 		 * We are guaranteed to be still in FFS_ACTIVE state
432 		 * but the state of setup could have changed from
433 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
434 		 * to check for that.  If that happened we copied data
435 		 * from user space in vain but it's unlikely.
436 		 *
437 		 * For sure we are not in FFS_NO_SETUP since this is
438 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
439 		 * transition can be performed and it's protected by
440 		 * mutex.
441 		 */
442 		if (ffs_setup_state_clear_cancelled(ffs) ==
443 		    FFS_SETUP_CANCELLED) {
444 			ret = -EIDRM;
445 done_spin:
446 			spin_unlock_irq(&ffs->ev.waitq.lock);
447 		} else {
448 			/* unlocks spinlock */
449 			ret = __ffs_ep0_queue_wait(ffs, data, len);
450 		}
451 		kfree(data);
452 		break;
453 
454 	default:
455 		ret = -EBADFD;
456 		break;
457 	}
458 
459 	mutex_unlock(&ffs->mutex);
460 	return ret;
461 }
462 
463 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
464 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
465 				     size_t n)
466 {
467 	/*
468 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
469 	 * size of ffs->ev.types array (which is four) so that's how much space
470 	 * we reserve.
471 	 */
472 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
473 	const size_t size = n * sizeof *events;
474 	unsigned i = 0;
475 
476 	memset(events, 0, size);
477 
478 	do {
479 		events[i].type = ffs->ev.types[i];
480 		if (events[i].type == FUNCTIONFS_SETUP) {
481 			events[i].u.setup = ffs->ev.setup;
482 			ffs->setup_state = FFS_SETUP_PENDING;
483 		}
484 	} while (++i < n);
485 
486 	ffs->ev.count -= n;
487 	if (ffs->ev.count)
488 		memmove(ffs->ev.types, ffs->ev.types + n,
489 			ffs->ev.count * sizeof *ffs->ev.types);
490 
491 	spin_unlock_irq(&ffs->ev.waitq.lock);
492 	mutex_unlock(&ffs->mutex);
493 
494 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
495 }
496 
497 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
498 			    size_t len, loff_t *ptr)
499 {
500 	struct ffs_data *ffs = file->private_data;
501 	char *data = NULL;
502 	size_t n;
503 	int ret;
504 
505 	ENTER();
506 
507 	/* Fast check if setup was canceled */
508 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
509 		return -EIDRM;
510 
511 	/* Acquire mutex */
512 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
513 	if (unlikely(ret < 0))
514 		return ret;
515 
516 	/* Check state */
517 	if (ffs->state != FFS_ACTIVE) {
518 		ret = -EBADFD;
519 		goto done_mutex;
520 	}
521 
522 	/*
523 	 * We're called from user space, we can use _irq rather then
524 	 * _irqsave
525 	 */
526 	spin_lock_irq(&ffs->ev.waitq.lock);
527 
528 	switch (ffs_setup_state_clear_cancelled(ffs)) {
529 	case FFS_SETUP_CANCELLED:
530 		ret = -EIDRM;
531 		break;
532 
533 	case FFS_NO_SETUP:
534 		n = len / sizeof(struct usb_functionfs_event);
535 		if (unlikely(!n)) {
536 			ret = -EINVAL;
537 			break;
538 		}
539 
540 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
541 			ret = -EAGAIN;
542 			break;
543 		}
544 
545 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
546 							ffs->ev.count)) {
547 			ret = -EINTR;
548 			break;
549 		}
550 
551 		return __ffs_ep0_read_events(ffs, buf,
552 					     min(n, (size_t)ffs->ev.count));
553 
554 	case FFS_SETUP_PENDING:
555 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
556 			spin_unlock_irq(&ffs->ev.waitq.lock);
557 			ret = __ffs_ep0_stall(ffs);
558 			goto done_mutex;
559 		}
560 
561 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
562 
563 		spin_unlock_irq(&ffs->ev.waitq.lock);
564 
565 		if (likely(len)) {
566 			data = kmalloc(len, GFP_KERNEL);
567 			if (unlikely(!data)) {
568 				ret = -ENOMEM;
569 				goto done_mutex;
570 			}
571 		}
572 
573 		spin_lock_irq(&ffs->ev.waitq.lock);
574 
575 		/* See ffs_ep0_write() */
576 		if (ffs_setup_state_clear_cancelled(ffs) ==
577 		    FFS_SETUP_CANCELLED) {
578 			ret = -EIDRM;
579 			break;
580 		}
581 
582 		/* unlocks spinlock */
583 		ret = __ffs_ep0_queue_wait(ffs, data, len);
584 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
585 			ret = -EFAULT;
586 		goto done_mutex;
587 
588 	default:
589 		ret = -EBADFD;
590 		break;
591 	}
592 
593 	spin_unlock_irq(&ffs->ev.waitq.lock);
594 done_mutex:
595 	mutex_unlock(&ffs->mutex);
596 	kfree(data);
597 	return ret;
598 }
599 
600 static int ffs_ep0_open(struct inode *inode, struct file *file)
601 {
602 	struct ffs_data *ffs = inode->i_private;
603 
604 	ENTER();
605 
606 	if (unlikely(ffs->state == FFS_CLOSING))
607 		return -EBUSY;
608 
609 	file->private_data = ffs;
610 	ffs_data_opened(ffs);
611 
612 	return 0;
613 }
614 
615 static int ffs_ep0_release(struct inode *inode, struct file *file)
616 {
617 	struct ffs_data *ffs = file->private_data;
618 
619 	ENTER();
620 
621 	ffs_data_closed(ffs);
622 
623 	return 0;
624 }
625 
626 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
627 {
628 	struct ffs_data *ffs = file->private_data;
629 	struct usb_gadget *gadget = ffs->gadget;
630 	long ret;
631 
632 	ENTER();
633 
634 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
635 		struct ffs_function *func = ffs->func;
636 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
637 	} else if (gadget && gadget->ops->ioctl) {
638 		ret = gadget->ops->ioctl(gadget, code, value);
639 	} else {
640 		ret = -ENOTTY;
641 	}
642 
643 	return ret;
644 }
645 
646 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
647 {
648 	struct ffs_data *ffs = file->private_data;
649 	unsigned int mask = POLLWRNORM;
650 	int ret;
651 
652 	poll_wait(file, &ffs->ev.waitq, wait);
653 
654 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
655 	if (unlikely(ret < 0))
656 		return mask;
657 
658 	switch (ffs->state) {
659 	case FFS_READ_DESCRIPTORS:
660 	case FFS_READ_STRINGS:
661 		mask |= POLLOUT;
662 		break;
663 
664 	case FFS_ACTIVE:
665 		switch (ffs->setup_state) {
666 		case FFS_NO_SETUP:
667 			if (ffs->ev.count)
668 				mask |= POLLIN;
669 			break;
670 
671 		case FFS_SETUP_PENDING:
672 		case FFS_SETUP_CANCELLED:
673 			mask |= (POLLIN | POLLOUT);
674 			break;
675 		}
676 	case FFS_CLOSING:
677 		break;
678 	case FFS_DEACTIVATED:
679 		break;
680 	}
681 
682 	mutex_unlock(&ffs->mutex);
683 
684 	return mask;
685 }
686 
687 static const struct file_operations ffs_ep0_operations = {
688 	.llseek =	no_llseek,
689 
690 	.open =		ffs_ep0_open,
691 	.write =	ffs_ep0_write,
692 	.read =		ffs_ep0_read,
693 	.release =	ffs_ep0_release,
694 	.unlocked_ioctl =	ffs_ep0_ioctl,
695 	.poll =		ffs_ep0_poll,
696 };
697 
698 
699 /* "Normal" endpoints operations ********************************************/
700 
701 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
702 {
703 	ENTER();
704 	if (likely(req->context)) {
705 		struct ffs_ep *ep = _ep->driver_data;
706 		ep->status = req->status ? req->status : req->actual;
707 		complete(req->context);
708 	}
709 }
710 
711 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
712 {
713 	ssize_t ret = copy_to_iter(data, data_len, iter);
714 	if (likely(ret == data_len))
715 		return ret;
716 
717 	if (unlikely(iov_iter_count(iter)))
718 		return -EFAULT;
719 
720 	/*
721 	 * Dear user space developer!
722 	 *
723 	 * TL;DR: To stop getting below error message in your kernel log, change
724 	 * user space code using functionfs to align read buffers to a max
725 	 * packet size.
726 	 *
727 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
728 	 * packet size.  When unaligned buffer is passed to functionfs, it
729 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
730 	 *
731 	 * Unfortunately, this means that host may send more data than was
732 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
733 	 * that excess data so it simply drops it.
734 	 *
735 	 * Was the buffer aligned in the first place, no such problem would
736 	 * happen.
737 	 *
738 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
739 	 * by splitting a request into multiple parts.  This splitting may still
740 	 * be a problem though so it’s likely best to align the buffer
741 	 * regardless of it being AIO or not..
742 	 *
743 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
744 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
745 	 * affected.
746 	 */
747 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
748 	       "Align read buffer size to max packet size to avoid the problem.\n",
749 	       data_len, ret);
750 
751 	return ret;
752 }
753 
754 static void ffs_user_copy_worker(struct work_struct *work)
755 {
756 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
757 						   work);
758 	int ret = io_data->req->status ? io_data->req->status :
759 					 io_data->req->actual;
760 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
761 
762 	if (io_data->read && ret > 0) {
763 		use_mm(io_data->mm);
764 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
765 		unuse_mm(io_data->mm);
766 	}
767 
768 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
769 
770 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
771 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
772 
773 	usb_ep_free_request(io_data->ep, io_data->req);
774 
775 	if (io_data->read)
776 		kfree(io_data->to_free);
777 	kfree(io_data->buf);
778 	kfree(io_data);
779 }
780 
781 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
782 					 struct usb_request *req)
783 {
784 	struct ffs_io_data *io_data = req->context;
785 
786 	ENTER();
787 
788 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
789 	schedule_work(&io_data->work);
790 }
791 
792 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
793 {
794 	/*
795 	 * See comment in struct ffs_epfile for full read_buffer pointer
796 	 * synchronisation story.
797 	 */
798 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
799 	if (buf && buf != READ_BUFFER_DROP)
800 		kfree(buf);
801 }
802 
803 /* Assumes epfile->mutex is held. */
804 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
805 					  struct iov_iter *iter)
806 {
807 	/*
808 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
809 	 * the buffer while we are using it.  See comment in struct ffs_epfile
810 	 * for full read_buffer pointer synchronisation story.
811 	 */
812 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
813 	ssize_t ret;
814 	if (!buf || buf == READ_BUFFER_DROP)
815 		return 0;
816 
817 	ret = copy_to_iter(buf->data, buf->length, iter);
818 	if (buf->length == ret) {
819 		kfree(buf);
820 		return ret;
821 	}
822 
823 	if (unlikely(iov_iter_count(iter))) {
824 		ret = -EFAULT;
825 	} else {
826 		buf->length -= ret;
827 		buf->data += ret;
828 	}
829 
830 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
831 		kfree(buf);
832 
833 	return ret;
834 }
835 
836 /* Assumes epfile->mutex is held. */
837 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
838 				      void *data, int data_len,
839 				      struct iov_iter *iter)
840 {
841 	struct ffs_buffer *buf;
842 
843 	ssize_t ret = copy_to_iter(data, data_len, iter);
844 	if (likely(data_len == ret))
845 		return ret;
846 
847 	if (unlikely(iov_iter_count(iter)))
848 		return -EFAULT;
849 
850 	/* See ffs_copy_to_iter for more context. */
851 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
852 		data_len, ret);
853 
854 	data_len -= ret;
855 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
856 	if (!buf)
857 		return -ENOMEM;
858 	buf->length = data_len;
859 	buf->data = buf->storage;
860 	memcpy(buf->storage, data + ret, data_len);
861 
862 	/*
863 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
864 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
865 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
866 	 * story.
867 	 */
868 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
869 		kfree(buf);
870 
871 	return ret;
872 }
873 
874 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
875 {
876 	struct ffs_epfile *epfile = file->private_data;
877 	struct usb_request *req;
878 	struct ffs_ep *ep;
879 	char *data = NULL;
880 	ssize_t ret, data_len = -EINVAL;
881 	int halt;
882 
883 	/* Are we still active? */
884 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
885 		return -ENODEV;
886 
887 	/* Wait for endpoint to be enabled */
888 	ep = epfile->ep;
889 	if (!ep) {
890 		if (file->f_flags & O_NONBLOCK)
891 			return -EAGAIN;
892 
893 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
894 		if (ret)
895 			return -EINTR;
896 	}
897 
898 	/* Do we halt? */
899 	halt = (!io_data->read == !epfile->in);
900 	if (halt && epfile->isoc)
901 		return -EINVAL;
902 
903 	/* We will be using request and read_buffer */
904 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
905 	if (unlikely(ret))
906 		goto error;
907 
908 	/* Allocate & copy */
909 	if (!halt) {
910 		struct usb_gadget *gadget;
911 
912 		/*
913 		 * Do we have buffered data from previous partial read?  Check
914 		 * that for synchronous case only because we do not have
915 		 * facility to ‘wake up’ a pending asynchronous read and push
916 		 * buffered data to it which we would need to make things behave
917 		 * consistently.
918 		 */
919 		if (!io_data->aio && io_data->read) {
920 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
921 			if (ret)
922 				goto error_mutex;
923 		}
924 
925 		/*
926 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
927 		 * before the waiting completes, so do not assign to 'gadget'
928 		 * earlier
929 		 */
930 		gadget = epfile->ffs->gadget;
931 
932 		spin_lock_irq(&epfile->ffs->eps_lock);
933 		/* In the meantime, endpoint got disabled or changed. */
934 		if (epfile->ep != ep) {
935 			ret = -ESHUTDOWN;
936 			goto error_lock;
937 		}
938 		data_len = iov_iter_count(&io_data->data);
939 		/*
940 		 * Controller may require buffer size to be aligned to
941 		 * maxpacketsize of an out endpoint.
942 		 */
943 		if (io_data->read)
944 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
945 		spin_unlock_irq(&epfile->ffs->eps_lock);
946 
947 		data = kmalloc(data_len, GFP_KERNEL);
948 		if (unlikely(!data)) {
949 			ret = -ENOMEM;
950 			goto error_mutex;
951 		}
952 		if (!io_data->read &&
953 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
954 			ret = -EFAULT;
955 			goto error_mutex;
956 		}
957 	}
958 
959 	spin_lock_irq(&epfile->ffs->eps_lock);
960 
961 	if (epfile->ep != ep) {
962 		/* In the meantime, endpoint got disabled or changed. */
963 		ret = -ESHUTDOWN;
964 	} else if (halt) {
965 		/* Halt */
966 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
967 			usb_ep_set_halt(ep->ep);
968 		ret = -EBADMSG;
969 	} else if (unlikely(data_len == -EINVAL)) {
970 		/*
971 		 * Sanity Check: even though data_len can't be used
972 		 * uninitialized at the time I write this comment, some
973 		 * compilers complain about this situation.
974 		 * In order to keep the code clean from warnings, data_len is
975 		 * being initialized to -EINVAL during its declaration, which
976 		 * means we can't rely on compiler anymore to warn no future
977 		 * changes won't result in data_len being used uninitialized.
978 		 * For such reason, we're adding this redundant sanity check
979 		 * here.
980 		 */
981 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
982 		ret = -EINVAL;
983 	} else if (!io_data->aio) {
984 		DECLARE_COMPLETION_ONSTACK(done);
985 		bool interrupted = false;
986 
987 		req = ep->req;
988 		req->buf      = data;
989 		req->length   = data_len;
990 
991 		req->context  = &done;
992 		req->complete = ffs_epfile_io_complete;
993 
994 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
995 		if (unlikely(ret < 0))
996 			goto error_lock;
997 
998 		spin_unlock_irq(&epfile->ffs->eps_lock);
999 
1000 		if (unlikely(wait_for_completion_interruptible(&done))) {
1001 			/*
1002 			 * To avoid race condition with ffs_epfile_io_complete,
1003 			 * dequeue the request first then check
1004 			 * status. usb_ep_dequeue API should guarantee no race
1005 			 * condition with req->complete callback.
1006 			 */
1007 			usb_ep_dequeue(ep->ep, req);
1008 			interrupted = ep->status < 0;
1009 		}
1010 
1011 		if (interrupted)
1012 			ret = -EINTR;
1013 		else if (io_data->read && ep->status > 0)
1014 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1015 						     &io_data->data);
1016 		else
1017 			ret = ep->status;
1018 		goto error_mutex;
1019 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1020 		ret = -ENOMEM;
1021 	} else {
1022 		req->buf      = data;
1023 		req->length   = data_len;
1024 
1025 		io_data->buf = data;
1026 		io_data->ep = ep->ep;
1027 		io_data->req = req;
1028 		io_data->ffs = epfile->ffs;
1029 
1030 		req->context  = io_data;
1031 		req->complete = ffs_epfile_async_io_complete;
1032 
1033 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1034 		if (unlikely(ret)) {
1035 			usb_ep_free_request(ep->ep, req);
1036 			goto error_lock;
1037 		}
1038 
1039 		ret = -EIOCBQUEUED;
1040 		/*
1041 		 * Do not kfree the buffer in this function.  It will be freed
1042 		 * by ffs_user_copy_worker.
1043 		 */
1044 		data = NULL;
1045 	}
1046 
1047 error_lock:
1048 	spin_unlock_irq(&epfile->ffs->eps_lock);
1049 error_mutex:
1050 	mutex_unlock(&epfile->mutex);
1051 error:
1052 	kfree(data);
1053 	return ret;
1054 }
1055 
1056 static int
1057 ffs_epfile_open(struct inode *inode, struct file *file)
1058 {
1059 	struct ffs_epfile *epfile = inode->i_private;
1060 
1061 	ENTER();
1062 
1063 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1064 		return -ENODEV;
1065 
1066 	file->private_data = epfile;
1067 	ffs_data_opened(epfile->ffs);
1068 
1069 	return 0;
1070 }
1071 
1072 static int ffs_aio_cancel(struct kiocb *kiocb)
1073 {
1074 	struct ffs_io_data *io_data = kiocb->private;
1075 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1076 	int value;
1077 
1078 	ENTER();
1079 
1080 	spin_lock_irq(&epfile->ffs->eps_lock);
1081 
1082 	if (likely(io_data && io_data->ep && io_data->req))
1083 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1084 	else
1085 		value = -EINVAL;
1086 
1087 	spin_unlock_irq(&epfile->ffs->eps_lock);
1088 
1089 	return value;
1090 }
1091 
1092 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1093 {
1094 	struct ffs_io_data io_data, *p = &io_data;
1095 	ssize_t res;
1096 
1097 	ENTER();
1098 
1099 	if (!is_sync_kiocb(kiocb)) {
1100 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1101 		if (unlikely(!p))
1102 			return -ENOMEM;
1103 		p->aio = true;
1104 	} else {
1105 		p->aio = false;
1106 	}
1107 
1108 	p->read = false;
1109 	p->kiocb = kiocb;
1110 	p->data = *from;
1111 	p->mm = current->mm;
1112 
1113 	kiocb->private = p;
1114 
1115 	if (p->aio)
1116 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1117 
1118 	res = ffs_epfile_io(kiocb->ki_filp, p);
1119 	if (res == -EIOCBQUEUED)
1120 		return res;
1121 	if (p->aio)
1122 		kfree(p);
1123 	else
1124 		*from = p->data;
1125 	return res;
1126 }
1127 
1128 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1129 {
1130 	struct ffs_io_data io_data, *p = &io_data;
1131 	ssize_t res;
1132 
1133 	ENTER();
1134 
1135 	if (!is_sync_kiocb(kiocb)) {
1136 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1137 		if (unlikely(!p))
1138 			return -ENOMEM;
1139 		p->aio = true;
1140 	} else {
1141 		p->aio = false;
1142 	}
1143 
1144 	p->read = true;
1145 	p->kiocb = kiocb;
1146 	if (p->aio) {
1147 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1148 		if (!p->to_free) {
1149 			kfree(p);
1150 			return -ENOMEM;
1151 		}
1152 	} else {
1153 		p->data = *to;
1154 		p->to_free = NULL;
1155 	}
1156 	p->mm = current->mm;
1157 
1158 	kiocb->private = p;
1159 
1160 	if (p->aio)
1161 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1162 
1163 	res = ffs_epfile_io(kiocb->ki_filp, p);
1164 	if (res == -EIOCBQUEUED)
1165 		return res;
1166 
1167 	if (p->aio) {
1168 		kfree(p->to_free);
1169 		kfree(p);
1170 	} else {
1171 		*to = p->data;
1172 	}
1173 	return res;
1174 }
1175 
1176 static int
1177 ffs_epfile_release(struct inode *inode, struct file *file)
1178 {
1179 	struct ffs_epfile *epfile = inode->i_private;
1180 
1181 	ENTER();
1182 
1183 	__ffs_epfile_read_buffer_free(epfile);
1184 	ffs_data_closed(epfile->ffs);
1185 
1186 	return 0;
1187 }
1188 
1189 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1190 			     unsigned long value)
1191 {
1192 	struct ffs_epfile *epfile = file->private_data;
1193 	int ret;
1194 
1195 	ENTER();
1196 
1197 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1198 		return -ENODEV;
1199 
1200 	spin_lock_irq(&epfile->ffs->eps_lock);
1201 	if (likely(epfile->ep)) {
1202 		switch (code) {
1203 		case FUNCTIONFS_FIFO_STATUS:
1204 			ret = usb_ep_fifo_status(epfile->ep->ep);
1205 			break;
1206 		case FUNCTIONFS_FIFO_FLUSH:
1207 			usb_ep_fifo_flush(epfile->ep->ep);
1208 			ret = 0;
1209 			break;
1210 		case FUNCTIONFS_CLEAR_HALT:
1211 			ret = usb_ep_clear_halt(epfile->ep->ep);
1212 			break;
1213 		case FUNCTIONFS_ENDPOINT_REVMAP:
1214 			ret = epfile->ep->num;
1215 			break;
1216 		case FUNCTIONFS_ENDPOINT_DESC:
1217 		{
1218 			int desc_idx;
1219 			struct usb_endpoint_descriptor *desc;
1220 
1221 			switch (epfile->ffs->gadget->speed) {
1222 			case USB_SPEED_SUPER:
1223 				desc_idx = 2;
1224 				break;
1225 			case USB_SPEED_HIGH:
1226 				desc_idx = 1;
1227 				break;
1228 			default:
1229 				desc_idx = 0;
1230 			}
1231 			desc = epfile->ep->descs[desc_idx];
1232 
1233 			spin_unlock_irq(&epfile->ffs->eps_lock);
1234 			ret = copy_to_user((void *)value, desc, desc->bLength);
1235 			if (ret)
1236 				ret = -EFAULT;
1237 			return ret;
1238 		}
1239 		default:
1240 			ret = -ENOTTY;
1241 		}
1242 	} else {
1243 		ret = -ENODEV;
1244 	}
1245 	spin_unlock_irq(&epfile->ffs->eps_lock);
1246 
1247 	return ret;
1248 }
1249 
1250 static const struct file_operations ffs_epfile_operations = {
1251 	.llseek =	no_llseek,
1252 
1253 	.open =		ffs_epfile_open,
1254 	.write_iter =	ffs_epfile_write_iter,
1255 	.read_iter =	ffs_epfile_read_iter,
1256 	.release =	ffs_epfile_release,
1257 	.unlocked_ioctl =	ffs_epfile_ioctl,
1258 };
1259 
1260 
1261 /* File system and super block operations ***********************************/
1262 
1263 /*
1264  * Mounting the file system creates a controller file, used first for
1265  * function configuration then later for event monitoring.
1266  */
1267 
1268 static struct inode *__must_check
1269 ffs_sb_make_inode(struct super_block *sb, void *data,
1270 		  const struct file_operations *fops,
1271 		  const struct inode_operations *iops,
1272 		  struct ffs_file_perms *perms)
1273 {
1274 	struct inode *inode;
1275 
1276 	ENTER();
1277 
1278 	inode = new_inode(sb);
1279 
1280 	if (likely(inode)) {
1281 		struct timespec ts = current_time(inode);
1282 
1283 		inode->i_ino	 = get_next_ino();
1284 		inode->i_mode    = perms->mode;
1285 		inode->i_uid     = perms->uid;
1286 		inode->i_gid     = perms->gid;
1287 		inode->i_atime   = ts;
1288 		inode->i_mtime   = ts;
1289 		inode->i_ctime   = ts;
1290 		inode->i_private = data;
1291 		if (fops)
1292 			inode->i_fop = fops;
1293 		if (iops)
1294 			inode->i_op  = iops;
1295 	}
1296 
1297 	return inode;
1298 }
1299 
1300 /* Create "regular" file */
1301 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1302 					const char *name, void *data,
1303 					const struct file_operations *fops)
1304 {
1305 	struct ffs_data	*ffs = sb->s_fs_info;
1306 	struct dentry	*dentry;
1307 	struct inode	*inode;
1308 
1309 	ENTER();
1310 
1311 	dentry = d_alloc_name(sb->s_root, name);
1312 	if (unlikely(!dentry))
1313 		return NULL;
1314 
1315 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1316 	if (unlikely(!inode)) {
1317 		dput(dentry);
1318 		return NULL;
1319 	}
1320 
1321 	d_add(dentry, inode);
1322 	return dentry;
1323 }
1324 
1325 /* Super block */
1326 static const struct super_operations ffs_sb_operations = {
1327 	.statfs =	simple_statfs,
1328 	.drop_inode =	generic_delete_inode,
1329 };
1330 
1331 struct ffs_sb_fill_data {
1332 	struct ffs_file_perms perms;
1333 	umode_t root_mode;
1334 	const char *dev_name;
1335 	bool no_disconnect;
1336 	struct ffs_data *ffs_data;
1337 };
1338 
1339 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1340 {
1341 	struct ffs_sb_fill_data *data = _data;
1342 	struct inode	*inode;
1343 	struct ffs_data	*ffs = data->ffs_data;
1344 
1345 	ENTER();
1346 
1347 	ffs->sb              = sb;
1348 	data->ffs_data       = NULL;
1349 	sb->s_fs_info        = ffs;
1350 	sb->s_blocksize      = PAGE_SIZE;
1351 	sb->s_blocksize_bits = PAGE_SHIFT;
1352 	sb->s_magic          = FUNCTIONFS_MAGIC;
1353 	sb->s_op             = &ffs_sb_operations;
1354 	sb->s_time_gran      = 1;
1355 
1356 	/* Root inode */
1357 	data->perms.mode = data->root_mode;
1358 	inode = ffs_sb_make_inode(sb, NULL,
1359 				  &simple_dir_operations,
1360 				  &simple_dir_inode_operations,
1361 				  &data->perms);
1362 	sb->s_root = d_make_root(inode);
1363 	if (unlikely(!sb->s_root))
1364 		return -ENOMEM;
1365 
1366 	/* EP0 file */
1367 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1368 					 &ffs_ep0_operations)))
1369 		return -ENOMEM;
1370 
1371 	return 0;
1372 }
1373 
1374 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1375 {
1376 	ENTER();
1377 
1378 	if (!opts || !*opts)
1379 		return 0;
1380 
1381 	for (;;) {
1382 		unsigned long value;
1383 		char *eq, *comma;
1384 
1385 		/* Option limit */
1386 		comma = strchr(opts, ',');
1387 		if (comma)
1388 			*comma = 0;
1389 
1390 		/* Value limit */
1391 		eq = strchr(opts, '=');
1392 		if (unlikely(!eq)) {
1393 			pr_err("'=' missing in %s\n", opts);
1394 			return -EINVAL;
1395 		}
1396 		*eq = 0;
1397 
1398 		/* Parse value */
1399 		if (kstrtoul(eq + 1, 0, &value)) {
1400 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1401 			return -EINVAL;
1402 		}
1403 
1404 		/* Interpret option */
1405 		switch (eq - opts) {
1406 		case 13:
1407 			if (!memcmp(opts, "no_disconnect", 13))
1408 				data->no_disconnect = !!value;
1409 			else
1410 				goto invalid;
1411 			break;
1412 		case 5:
1413 			if (!memcmp(opts, "rmode", 5))
1414 				data->root_mode  = (value & 0555) | S_IFDIR;
1415 			else if (!memcmp(opts, "fmode", 5))
1416 				data->perms.mode = (value & 0666) | S_IFREG;
1417 			else
1418 				goto invalid;
1419 			break;
1420 
1421 		case 4:
1422 			if (!memcmp(opts, "mode", 4)) {
1423 				data->root_mode  = (value & 0555) | S_IFDIR;
1424 				data->perms.mode = (value & 0666) | S_IFREG;
1425 			} else {
1426 				goto invalid;
1427 			}
1428 			break;
1429 
1430 		case 3:
1431 			if (!memcmp(opts, "uid", 3)) {
1432 				data->perms.uid = make_kuid(current_user_ns(), value);
1433 				if (!uid_valid(data->perms.uid)) {
1434 					pr_err("%s: unmapped value: %lu\n", opts, value);
1435 					return -EINVAL;
1436 				}
1437 			} else if (!memcmp(opts, "gid", 3)) {
1438 				data->perms.gid = make_kgid(current_user_ns(), value);
1439 				if (!gid_valid(data->perms.gid)) {
1440 					pr_err("%s: unmapped value: %lu\n", opts, value);
1441 					return -EINVAL;
1442 				}
1443 			} else {
1444 				goto invalid;
1445 			}
1446 			break;
1447 
1448 		default:
1449 invalid:
1450 			pr_err("%s: invalid option\n", opts);
1451 			return -EINVAL;
1452 		}
1453 
1454 		/* Next iteration */
1455 		if (!comma)
1456 			break;
1457 		opts = comma + 1;
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 /* "mount -t functionfs dev_name /dev/function" ends up here */
1464 
1465 static struct dentry *
1466 ffs_fs_mount(struct file_system_type *t, int flags,
1467 	      const char *dev_name, void *opts)
1468 {
1469 	struct ffs_sb_fill_data data = {
1470 		.perms = {
1471 			.mode = S_IFREG | 0600,
1472 			.uid = GLOBAL_ROOT_UID,
1473 			.gid = GLOBAL_ROOT_GID,
1474 		},
1475 		.root_mode = S_IFDIR | 0500,
1476 		.no_disconnect = false,
1477 	};
1478 	struct dentry *rv;
1479 	int ret;
1480 	void *ffs_dev;
1481 	struct ffs_data	*ffs;
1482 
1483 	ENTER();
1484 
1485 	ret = ffs_fs_parse_opts(&data, opts);
1486 	if (unlikely(ret < 0))
1487 		return ERR_PTR(ret);
1488 
1489 	ffs = ffs_data_new();
1490 	if (unlikely(!ffs))
1491 		return ERR_PTR(-ENOMEM);
1492 	ffs->file_perms = data.perms;
1493 	ffs->no_disconnect = data.no_disconnect;
1494 
1495 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1496 	if (unlikely(!ffs->dev_name)) {
1497 		ffs_data_put(ffs);
1498 		return ERR_PTR(-ENOMEM);
1499 	}
1500 
1501 	ffs_dev = ffs_acquire_dev(dev_name);
1502 	if (IS_ERR(ffs_dev)) {
1503 		ffs_data_put(ffs);
1504 		return ERR_CAST(ffs_dev);
1505 	}
1506 	ffs->private_data = ffs_dev;
1507 	data.ffs_data = ffs;
1508 
1509 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1510 	if (IS_ERR(rv) && data.ffs_data) {
1511 		ffs_release_dev(data.ffs_data);
1512 		ffs_data_put(data.ffs_data);
1513 	}
1514 	return rv;
1515 }
1516 
1517 static void
1518 ffs_fs_kill_sb(struct super_block *sb)
1519 {
1520 	ENTER();
1521 
1522 	kill_litter_super(sb);
1523 	if (sb->s_fs_info) {
1524 		ffs_release_dev(sb->s_fs_info);
1525 		ffs_data_closed(sb->s_fs_info);
1526 		ffs_data_put(sb->s_fs_info);
1527 	}
1528 }
1529 
1530 static struct file_system_type ffs_fs_type = {
1531 	.owner		= THIS_MODULE,
1532 	.name		= "functionfs",
1533 	.mount		= ffs_fs_mount,
1534 	.kill_sb	= ffs_fs_kill_sb,
1535 };
1536 MODULE_ALIAS_FS("functionfs");
1537 
1538 
1539 /* Driver's main init/cleanup functions *************************************/
1540 
1541 static int functionfs_init(void)
1542 {
1543 	int ret;
1544 
1545 	ENTER();
1546 
1547 	ret = register_filesystem(&ffs_fs_type);
1548 	if (likely(!ret))
1549 		pr_info("file system registered\n");
1550 	else
1551 		pr_err("failed registering file system (%d)\n", ret);
1552 
1553 	return ret;
1554 }
1555 
1556 static void functionfs_cleanup(void)
1557 {
1558 	ENTER();
1559 
1560 	pr_info("unloading\n");
1561 	unregister_filesystem(&ffs_fs_type);
1562 }
1563 
1564 
1565 /* ffs_data and ffs_function construction and destruction code **************/
1566 
1567 static void ffs_data_clear(struct ffs_data *ffs);
1568 static void ffs_data_reset(struct ffs_data *ffs);
1569 
1570 static void ffs_data_get(struct ffs_data *ffs)
1571 {
1572 	ENTER();
1573 
1574 	atomic_inc(&ffs->ref);
1575 }
1576 
1577 static void ffs_data_opened(struct ffs_data *ffs)
1578 {
1579 	ENTER();
1580 
1581 	atomic_inc(&ffs->ref);
1582 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1583 			ffs->state == FFS_DEACTIVATED) {
1584 		ffs->state = FFS_CLOSING;
1585 		ffs_data_reset(ffs);
1586 	}
1587 }
1588 
1589 static void ffs_data_put(struct ffs_data *ffs)
1590 {
1591 	ENTER();
1592 
1593 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1594 		pr_info("%s(): freeing\n", __func__);
1595 		ffs_data_clear(ffs);
1596 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1597 		       waitqueue_active(&ffs->ep0req_completion.wait));
1598 		kfree(ffs->dev_name);
1599 		kfree(ffs);
1600 	}
1601 }
1602 
1603 static void ffs_data_closed(struct ffs_data *ffs)
1604 {
1605 	ENTER();
1606 
1607 	if (atomic_dec_and_test(&ffs->opened)) {
1608 		if (ffs->no_disconnect) {
1609 			ffs->state = FFS_DEACTIVATED;
1610 			if (ffs->epfiles) {
1611 				ffs_epfiles_destroy(ffs->epfiles,
1612 						   ffs->eps_count);
1613 				ffs->epfiles = NULL;
1614 			}
1615 			if (ffs->setup_state == FFS_SETUP_PENDING)
1616 				__ffs_ep0_stall(ffs);
1617 		} else {
1618 			ffs->state = FFS_CLOSING;
1619 			ffs_data_reset(ffs);
1620 		}
1621 	}
1622 	if (atomic_read(&ffs->opened) < 0) {
1623 		ffs->state = FFS_CLOSING;
1624 		ffs_data_reset(ffs);
1625 	}
1626 
1627 	ffs_data_put(ffs);
1628 }
1629 
1630 static struct ffs_data *ffs_data_new(void)
1631 {
1632 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1633 	if (unlikely(!ffs))
1634 		return NULL;
1635 
1636 	ENTER();
1637 
1638 	atomic_set(&ffs->ref, 1);
1639 	atomic_set(&ffs->opened, 0);
1640 	ffs->state = FFS_READ_DESCRIPTORS;
1641 	mutex_init(&ffs->mutex);
1642 	spin_lock_init(&ffs->eps_lock);
1643 	init_waitqueue_head(&ffs->ev.waitq);
1644 	init_completion(&ffs->ep0req_completion);
1645 
1646 	/* XXX REVISIT need to update it in some places, or do we? */
1647 	ffs->ev.can_stall = 1;
1648 
1649 	return ffs;
1650 }
1651 
1652 static void ffs_data_clear(struct ffs_data *ffs)
1653 {
1654 	ENTER();
1655 
1656 	ffs_closed(ffs);
1657 
1658 	BUG_ON(ffs->gadget);
1659 
1660 	if (ffs->epfiles)
1661 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1662 
1663 	if (ffs->ffs_eventfd)
1664 		eventfd_ctx_put(ffs->ffs_eventfd);
1665 
1666 	kfree(ffs->raw_descs_data);
1667 	kfree(ffs->raw_strings);
1668 	kfree(ffs->stringtabs);
1669 }
1670 
1671 static void ffs_data_reset(struct ffs_data *ffs)
1672 {
1673 	ENTER();
1674 
1675 	ffs_data_clear(ffs);
1676 
1677 	ffs->epfiles = NULL;
1678 	ffs->raw_descs_data = NULL;
1679 	ffs->raw_descs = NULL;
1680 	ffs->raw_strings = NULL;
1681 	ffs->stringtabs = NULL;
1682 
1683 	ffs->raw_descs_length = 0;
1684 	ffs->fs_descs_count = 0;
1685 	ffs->hs_descs_count = 0;
1686 	ffs->ss_descs_count = 0;
1687 
1688 	ffs->strings_count = 0;
1689 	ffs->interfaces_count = 0;
1690 	ffs->eps_count = 0;
1691 
1692 	ffs->ev.count = 0;
1693 
1694 	ffs->state = FFS_READ_DESCRIPTORS;
1695 	ffs->setup_state = FFS_NO_SETUP;
1696 	ffs->flags = 0;
1697 }
1698 
1699 
1700 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1701 {
1702 	struct usb_gadget_strings **lang;
1703 	int first_id;
1704 
1705 	ENTER();
1706 
1707 	if (WARN_ON(ffs->state != FFS_ACTIVE
1708 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1709 		return -EBADFD;
1710 
1711 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1712 	if (unlikely(first_id < 0))
1713 		return first_id;
1714 
1715 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1716 	if (unlikely(!ffs->ep0req))
1717 		return -ENOMEM;
1718 	ffs->ep0req->complete = ffs_ep0_complete;
1719 	ffs->ep0req->context = ffs;
1720 
1721 	lang = ffs->stringtabs;
1722 	if (lang) {
1723 		for (; *lang; ++lang) {
1724 			struct usb_string *str = (*lang)->strings;
1725 			int id = first_id;
1726 			for (; str->s; ++id, ++str)
1727 				str->id = id;
1728 		}
1729 	}
1730 
1731 	ffs->gadget = cdev->gadget;
1732 	ffs_data_get(ffs);
1733 	return 0;
1734 }
1735 
1736 static void functionfs_unbind(struct ffs_data *ffs)
1737 {
1738 	ENTER();
1739 
1740 	if (!WARN_ON(!ffs->gadget)) {
1741 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1742 		ffs->ep0req = NULL;
1743 		ffs->gadget = NULL;
1744 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1745 		ffs_data_put(ffs);
1746 	}
1747 }
1748 
1749 static int ffs_epfiles_create(struct ffs_data *ffs)
1750 {
1751 	struct ffs_epfile *epfile, *epfiles;
1752 	unsigned i, count;
1753 
1754 	ENTER();
1755 
1756 	count = ffs->eps_count;
1757 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1758 	if (!epfiles)
1759 		return -ENOMEM;
1760 
1761 	epfile = epfiles;
1762 	for (i = 1; i <= count; ++i, ++epfile) {
1763 		epfile->ffs = ffs;
1764 		mutex_init(&epfile->mutex);
1765 		init_waitqueue_head(&epfile->wait);
1766 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1767 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1768 		else
1769 			sprintf(epfile->name, "ep%u", i);
1770 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1771 						 epfile,
1772 						 &ffs_epfile_operations);
1773 		if (unlikely(!epfile->dentry)) {
1774 			ffs_epfiles_destroy(epfiles, i - 1);
1775 			return -ENOMEM;
1776 		}
1777 	}
1778 
1779 	ffs->epfiles = epfiles;
1780 	return 0;
1781 }
1782 
1783 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1784 {
1785 	struct ffs_epfile *epfile = epfiles;
1786 
1787 	ENTER();
1788 
1789 	for (; count; --count, ++epfile) {
1790 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1791 		       waitqueue_active(&epfile->wait));
1792 		if (epfile->dentry) {
1793 			d_delete(epfile->dentry);
1794 			dput(epfile->dentry);
1795 			epfile->dentry = NULL;
1796 		}
1797 	}
1798 
1799 	kfree(epfiles);
1800 }
1801 
1802 static void ffs_func_eps_disable(struct ffs_function *func)
1803 {
1804 	struct ffs_ep *ep         = func->eps;
1805 	struct ffs_epfile *epfile = func->ffs->epfiles;
1806 	unsigned count            = func->ffs->eps_count;
1807 	unsigned long flags;
1808 
1809 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1810 	while (count--) {
1811 		/* pending requests get nuked */
1812 		if (likely(ep->ep))
1813 			usb_ep_disable(ep->ep);
1814 		++ep;
1815 
1816 		if (epfile) {
1817 			epfile->ep = NULL;
1818 			__ffs_epfile_read_buffer_free(epfile);
1819 			++epfile;
1820 		}
1821 	}
1822 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1823 }
1824 
1825 static int ffs_func_eps_enable(struct ffs_function *func)
1826 {
1827 	struct ffs_data *ffs      = func->ffs;
1828 	struct ffs_ep *ep         = func->eps;
1829 	struct ffs_epfile *epfile = ffs->epfiles;
1830 	unsigned count            = ffs->eps_count;
1831 	unsigned long flags;
1832 	int ret = 0;
1833 
1834 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1835 	while(count--) {
1836 		struct usb_endpoint_descriptor *ds;
1837 		struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1838 		int needs_comp_desc = false;
1839 		int desc_idx;
1840 
1841 		if (ffs->gadget->speed == USB_SPEED_SUPER) {
1842 			desc_idx = 2;
1843 			needs_comp_desc = true;
1844 		} else if (ffs->gadget->speed == USB_SPEED_HIGH)
1845 			desc_idx = 1;
1846 		else
1847 			desc_idx = 0;
1848 
1849 		/* fall-back to lower speed if desc missing for current speed */
1850 		do {
1851 			ds = ep->descs[desc_idx];
1852 		} while (!ds && --desc_idx >= 0);
1853 
1854 		if (!ds) {
1855 			ret = -EINVAL;
1856 			break;
1857 		}
1858 
1859 		ep->ep->driver_data = ep;
1860 		ep->ep->desc = ds;
1861 
1862 		comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1863 				USB_DT_ENDPOINT_SIZE);
1864 		ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1865 
1866 		if (needs_comp_desc)
1867 			ep->ep->comp_desc = comp_desc;
1868 
1869 		ret = usb_ep_enable(ep->ep);
1870 		if (likely(!ret)) {
1871 			epfile->ep = ep;
1872 			epfile->in = usb_endpoint_dir_in(ds);
1873 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1874 		} else {
1875 			break;
1876 		}
1877 
1878 		wake_up(&epfile->wait);
1879 
1880 		++ep;
1881 		++epfile;
1882 	}
1883 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1884 
1885 	return ret;
1886 }
1887 
1888 
1889 /* Parsing and building descriptors and strings *****************************/
1890 
1891 /*
1892  * This validates if data pointed by data is a valid USB descriptor as
1893  * well as record how many interfaces, endpoints and strings are
1894  * required by given configuration.  Returns address after the
1895  * descriptor or NULL if data is invalid.
1896  */
1897 
1898 enum ffs_entity_type {
1899 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1900 };
1901 
1902 enum ffs_os_desc_type {
1903 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1904 };
1905 
1906 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1907 				   u8 *valuep,
1908 				   struct usb_descriptor_header *desc,
1909 				   void *priv);
1910 
1911 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1912 				    struct usb_os_desc_header *h, void *data,
1913 				    unsigned len, void *priv);
1914 
1915 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1916 					   ffs_entity_callback entity,
1917 					   void *priv)
1918 {
1919 	struct usb_descriptor_header *_ds = (void *)data;
1920 	u8 length;
1921 	int ret;
1922 
1923 	ENTER();
1924 
1925 	/* At least two bytes are required: length and type */
1926 	if (len < 2) {
1927 		pr_vdebug("descriptor too short\n");
1928 		return -EINVAL;
1929 	}
1930 
1931 	/* If we have at least as many bytes as the descriptor takes? */
1932 	length = _ds->bLength;
1933 	if (len < length) {
1934 		pr_vdebug("descriptor longer then available data\n");
1935 		return -EINVAL;
1936 	}
1937 
1938 #define __entity_check_INTERFACE(val)  1
1939 #define __entity_check_STRING(val)     (val)
1940 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1941 #define __entity(type, val) do {					\
1942 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1943 		if (unlikely(!__entity_check_ ##type(val))) {		\
1944 			pr_vdebug("invalid entity's value\n");		\
1945 			return -EINVAL;					\
1946 		}							\
1947 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1948 		if (unlikely(ret < 0)) {				\
1949 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1950 				 (val), ret);				\
1951 			return ret;					\
1952 		}							\
1953 	} while (0)
1954 
1955 	/* Parse descriptor depending on type. */
1956 	switch (_ds->bDescriptorType) {
1957 	case USB_DT_DEVICE:
1958 	case USB_DT_CONFIG:
1959 	case USB_DT_STRING:
1960 	case USB_DT_DEVICE_QUALIFIER:
1961 		/* function can't have any of those */
1962 		pr_vdebug("descriptor reserved for gadget: %d\n",
1963 		      _ds->bDescriptorType);
1964 		return -EINVAL;
1965 
1966 	case USB_DT_INTERFACE: {
1967 		struct usb_interface_descriptor *ds = (void *)_ds;
1968 		pr_vdebug("interface descriptor\n");
1969 		if (length != sizeof *ds)
1970 			goto inv_length;
1971 
1972 		__entity(INTERFACE, ds->bInterfaceNumber);
1973 		if (ds->iInterface)
1974 			__entity(STRING, ds->iInterface);
1975 	}
1976 		break;
1977 
1978 	case USB_DT_ENDPOINT: {
1979 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1980 		pr_vdebug("endpoint descriptor\n");
1981 		if (length != USB_DT_ENDPOINT_SIZE &&
1982 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1983 			goto inv_length;
1984 		__entity(ENDPOINT, ds->bEndpointAddress);
1985 	}
1986 		break;
1987 
1988 	case HID_DT_HID:
1989 		pr_vdebug("hid descriptor\n");
1990 		if (length != sizeof(struct hid_descriptor))
1991 			goto inv_length;
1992 		break;
1993 
1994 	case USB_DT_OTG:
1995 		if (length != sizeof(struct usb_otg_descriptor))
1996 			goto inv_length;
1997 		break;
1998 
1999 	case USB_DT_INTERFACE_ASSOCIATION: {
2000 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2001 		pr_vdebug("interface association descriptor\n");
2002 		if (length != sizeof *ds)
2003 			goto inv_length;
2004 		if (ds->iFunction)
2005 			__entity(STRING, ds->iFunction);
2006 	}
2007 		break;
2008 
2009 	case USB_DT_SS_ENDPOINT_COMP:
2010 		pr_vdebug("EP SS companion descriptor\n");
2011 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2012 			goto inv_length;
2013 		break;
2014 
2015 	case USB_DT_OTHER_SPEED_CONFIG:
2016 	case USB_DT_INTERFACE_POWER:
2017 	case USB_DT_DEBUG:
2018 	case USB_DT_SECURITY:
2019 	case USB_DT_CS_RADIO_CONTROL:
2020 		/* TODO */
2021 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2022 		return -EINVAL;
2023 
2024 	default:
2025 		/* We should never be here */
2026 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2027 		return -EINVAL;
2028 
2029 inv_length:
2030 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2031 			  _ds->bLength, _ds->bDescriptorType);
2032 		return -EINVAL;
2033 	}
2034 
2035 #undef __entity
2036 #undef __entity_check_DESCRIPTOR
2037 #undef __entity_check_INTERFACE
2038 #undef __entity_check_STRING
2039 #undef __entity_check_ENDPOINT
2040 
2041 	return length;
2042 }
2043 
2044 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2045 				     ffs_entity_callback entity, void *priv)
2046 {
2047 	const unsigned _len = len;
2048 	unsigned long num = 0;
2049 
2050 	ENTER();
2051 
2052 	for (;;) {
2053 		int ret;
2054 
2055 		if (num == count)
2056 			data = NULL;
2057 
2058 		/* Record "descriptor" entity */
2059 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2060 		if (unlikely(ret < 0)) {
2061 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2062 				 num, ret);
2063 			return ret;
2064 		}
2065 
2066 		if (!data)
2067 			return _len - len;
2068 
2069 		ret = ffs_do_single_desc(data, len, entity, priv);
2070 		if (unlikely(ret < 0)) {
2071 			pr_debug("%s returns %d\n", __func__, ret);
2072 			return ret;
2073 		}
2074 
2075 		len -= ret;
2076 		data += ret;
2077 		++num;
2078 	}
2079 }
2080 
2081 static int __ffs_data_do_entity(enum ffs_entity_type type,
2082 				u8 *valuep, struct usb_descriptor_header *desc,
2083 				void *priv)
2084 {
2085 	struct ffs_desc_helper *helper = priv;
2086 	struct usb_endpoint_descriptor *d;
2087 
2088 	ENTER();
2089 
2090 	switch (type) {
2091 	case FFS_DESCRIPTOR:
2092 		break;
2093 
2094 	case FFS_INTERFACE:
2095 		/*
2096 		 * Interfaces are indexed from zero so if we
2097 		 * encountered interface "n" then there are at least
2098 		 * "n+1" interfaces.
2099 		 */
2100 		if (*valuep >= helper->interfaces_count)
2101 			helper->interfaces_count = *valuep + 1;
2102 		break;
2103 
2104 	case FFS_STRING:
2105 		/*
2106 		 * Strings are indexed from 1 (0 is reserved
2107 		 * for languages list)
2108 		 */
2109 		if (*valuep > helper->ffs->strings_count)
2110 			helper->ffs->strings_count = *valuep;
2111 		break;
2112 
2113 	case FFS_ENDPOINT:
2114 		d = (void *)desc;
2115 		helper->eps_count++;
2116 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2117 			return -EINVAL;
2118 		/* Check if descriptors for any speed were already parsed */
2119 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2120 			helper->ffs->eps_addrmap[helper->eps_count] =
2121 				d->bEndpointAddress;
2122 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2123 				d->bEndpointAddress)
2124 			return -EINVAL;
2125 		break;
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2132 				   struct usb_os_desc_header *desc)
2133 {
2134 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2135 	u16 w_index = le16_to_cpu(desc->wIndex);
2136 
2137 	if (bcd_version != 1) {
2138 		pr_vdebug("unsupported os descriptors version: %d",
2139 			  bcd_version);
2140 		return -EINVAL;
2141 	}
2142 	switch (w_index) {
2143 	case 0x4:
2144 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2145 		break;
2146 	case 0x5:
2147 		*next_type = FFS_OS_DESC_EXT_PROP;
2148 		break;
2149 	default:
2150 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2151 		return -EINVAL;
2152 	}
2153 
2154 	return sizeof(*desc);
2155 }
2156 
2157 /*
2158  * Process all extended compatibility/extended property descriptors
2159  * of a feature descriptor
2160  */
2161 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2162 					      enum ffs_os_desc_type type,
2163 					      u16 feature_count,
2164 					      ffs_os_desc_callback entity,
2165 					      void *priv,
2166 					      struct usb_os_desc_header *h)
2167 {
2168 	int ret;
2169 	const unsigned _len = len;
2170 
2171 	ENTER();
2172 
2173 	/* loop over all ext compat/ext prop descriptors */
2174 	while (feature_count--) {
2175 		ret = entity(type, h, data, len, priv);
2176 		if (unlikely(ret < 0)) {
2177 			pr_debug("bad OS descriptor, type: %d\n", type);
2178 			return ret;
2179 		}
2180 		data += ret;
2181 		len -= ret;
2182 	}
2183 	return _len - len;
2184 }
2185 
2186 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2187 static int __must_check ffs_do_os_descs(unsigned count,
2188 					char *data, unsigned len,
2189 					ffs_os_desc_callback entity, void *priv)
2190 {
2191 	const unsigned _len = len;
2192 	unsigned long num = 0;
2193 
2194 	ENTER();
2195 
2196 	for (num = 0; num < count; ++num) {
2197 		int ret;
2198 		enum ffs_os_desc_type type;
2199 		u16 feature_count;
2200 		struct usb_os_desc_header *desc = (void *)data;
2201 
2202 		if (len < sizeof(*desc))
2203 			return -EINVAL;
2204 
2205 		/*
2206 		 * Record "descriptor" entity.
2207 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2208 		 * Move the data pointer to the beginning of extended
2209 		 * compatibilities proper or extended properties proper
2210 		 * portions of the data
2211 		 */
2212 		if (le32_to_cpu(desc->dwLength) > len)
2213 			return -EINVAL;
2214 
2215 		ret = __ffs_do_os_desc_header(&type, desc);
2216 		if (unlikely(ret < 0)) {
2217 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2218 				 num, ret);
2219 			return ret;
2220 		}
2221 		/*
2222 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2223 		 */
2224 		feature_count = le16_to_cpu(desc->wCount);
2225 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2226 		    (feature_count > 255 || desc->Reserved))
2227 				return -EINVAL;
2228 		len -= ret;
2229 		data += ret;
2230 
2231 		/*
2232 		 * Process all function/property descriptors
2233 		 * of this Feature Descriptor
2234 		 */
2235 		ret = ffs_do_single_os_desc(data, len, type,
2236 					    feature_count, entity, priv, desc);
2237 		if (unlikely(ret < 0)) {
2238 			pr_debug("%s returns %d\n", __func__, ret);
2239 			return ret;
2240 		}
2241 
2242 		len -= ret;
2243 		data += ret;
2244 	}
2245 	return _len - len;
2246 }
2247 
2248 /**
2249  * Validate contents of the buffer from userspace related to OS descriptors.
2250  */
2251 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2252 				 struct usb_os_desc_header *h, void *data,
2253 				 unsigned len, void *priv)
2254 {
2255 	struct ffs_data *ffs = priv;
2256 	u8 length;
2257 
2258 	ENTER();
2259 
2260 	switch (type) {
2261 	case FFS_OS_DESC_EXT_COMPAT: {
2262 		struct usb_ext_compat_desc *d = data;
2263 		int i;
2264 
2265 		if (len < sizeof(*d) ||
2266 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2267 		    !d->Reserved1)
2268 			return -EINVAL;
2269 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2270 			if (d->Reserved2[i])
2271 				return -EINVAL;
2272 
2273 		length = sizeof(struct usb_ext_compat_desc);
2274 	}
2275 		break;
2276 	case FFS_OS_DESC_EXT_PROP: {
2277 		struct usb_ext_prop_desc *d = data;
2278 		u32 type, pdl;
2279 		u16 pnl;
2280 
2281 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2282 			return -EINVAL;
2283 		length = le32_to_cpu(d->dwSize);
2284 		if (len < length)
2285 			return -EINVAL;
2286 		type = le32_to_cpu(d->dwPropertyDataType);
2287 		if (type < USB_EXT_PROP_UNICODE ||
2288 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2289 			pr_vdebug("unsupported os descriptor property type: %d",
2290 				  type);
2291 			return -EINVAL;
2292 		}
2293 		pnl = le16_to_cpu(d->wPropertyNameLength);
2294 		if (length < 14 + pnl) {
2295 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2296 				  length, pnl, type);
2297 			return -EINVAL;
2298 		}
2299 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2300 		if (length != 14 + pnl + pdl) {
2301 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2302 				  length, pnl, pdl, type);
2303 			return -EINVAL;
2304 		}
2305 		++ffs->ms_os_descs_ext_prop_count;
2306 		/* property name reported to the host as "WCHAR"s */
2307 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2308 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2309 	}
2310 		break;
2311 	default:
2312 		pr_vdebug("unknown descriptor: %d\n", type);
2313 		return -EINVAL;
2314 	}
2315 	return length;
2316 }
2317 
2318 static int __ffs_data_got_descs(struct ffs_data *ffs,
2319 				char *const _data, size_t len)
2320 {
2321 	char *data = _data, *raw_descs;
2322 	unsigned os_descs_count = 0, counts[3], flags;
2323 	int ret = -EINVAL, i;
2324 	struct ffs_desc_helper helper;
2325 
2326 	ENTER();
2327 
2328 	if (get_unaligned_le32(data + 4) != len)
2329 		goto error;
2330 
2331 	switch (get_unaligned_le32(data)) {
2332 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2333 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2334 		data += 8;
2335 		len  -= 8;
2336 		break;
2337 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2338 		flags = get_unaligned_le32(data + 8);
2339 		ffs->user_flags = flags;
2340 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2341 			      FUNCTIONFS_HAS_HS_DESC |
2342 			      FUNCTIONFS_HAS_SS_DESC |
2343 			      FUNCTIONFS_HAS_MS_OS_DESC |
2344 			      FUNCTIONFS_VIRTUAL_ADDR |
2345 			      FUNCTIONFS_EVENTFD |
2346 			      FUNCTIONFS_ALL_CTRL_RECIP |
2347 			      FUNCTIONFS_CONFIG0_SETUP)) {
2348 			ret = -ENOSYS;
2349 			goto error;
2350 		}
2351 		data += 12;
2352 		len  -= 12;
2353 		break;
2354 	default:
2355 		goto error;
2356 	}
2357 
2358 	if (flags & FUNCTIONFS_EVENTFD) {
2359 		if (len < 4)
2360 			goto error;
2361 		ffs->ffs_eventfd =
2362 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2363 		if (IS_ERR(ffs->ffs_eventfd)) {
2364 			ret = PTR_ERR(ffs->ffs_eventfd);
2365 			ffs->ffs_eventfd = NULL;
2366 			goto error;
2367 		}
2368 		data += 4;
2369 		len  -= 4;
2370 	}
2371 
2372 	/* Read fs_count, hs_count and ss_count (if present) */
2373 	for (i = 0; i < 3; ++i) {
2374 		if (!(flags & (1 << i))) {
2375 			counts[i] = 0;
2376 		} else if (len < 4) {
2377 			goto error;
2378 		} else {
2379 			counts[i] = get_unaligned_le32(data);
2380 			data += 4;
2381 			len  -= 4;
2382 		}
2383 	}
2384 	if (flags & (1 << i)) {
2385 		if (len < 4) {
2386 			goto error;
2387 		}
2388 		os_descs_count = get_unaligned_le32(data);
2389 		data += 4;
2390 		len -= 4;
2391 	};
2392 
2393 	/* Read descriptors */
2394 	raw_descs = data;
2395 	helper.ffs = ffs;
2396 	for (i = 0; i < 3; ++i) {
2397 		if (!counts[i])
2398 			continue;
2399 		helper.interfaces_count = 0;
2400 		helper.eps_count = 0;
2401 		ret = ffs_do_descs(counts[i], data, len,
2402 				   __ffs_data_do_entity, &helper);
2403 		if (ret < 0)
2404 			goto error;
2405 		if (!ffs->eps_count && !ffs->interfaces_count) {
2406 			ffs->eps_count = helper.eps_count;
2407 			ffs->interfaces_count = helper.interfaces_count;
2408 		} else {
2409 			if (ffs->eps_count != helper.eps_count) {
2410 				ret = -EINVAL;
2411 				goto error;
2412 			}
2413 			if (ffs->interfaces_count != helper.interfaces_count) {
2414 				ret = -EINVAL;
2415 				goto error;
2416 			}
2417 		}
2418 		data += ret;
2419 		len  -= ret;
2420 	}
2421 	if (os_descs_count) {
2422 		ret = ffs_do_os_descs(os_descs_count, data, len,
2423 				      __ffs_data_do_os_desc, ffs);
2424 		if (ret < 0)
2425 			goto error;
2426 		data += ret;
2427 		len -= ret;
2428 	}
2429 
2430 	if (raw_descs == data || len) {
2431 		ret = -EINVAL;
2432 		goto error;
2433 	}
2434 
2435 	ffs->raw_descs_data	= _data;
2436 	ffs->raw_descs		= raw_descs;
2437 	ffs->raw_descs_length	= data - raw_descs;
2438 	ffs->fs_descs_count	= counts[0];
2439 	ffs->hs_descs_count	= counts[1];
2440 	ffs->ss_descs_count	= counts[2];
2441 	ffs->ms_os_descs_count	= os_descs_count;
2442 
2443 	return 0;
2444 
2445 error:
2446 	kfree(_data);
2447 	return ret;
2448 }
2449 
2450 static int __ffs_data_got_strings(struct ffs_data *ffs,
2451 				  char *const _data, size_t len)
2452 {
2453 	u32 str_count, needed_count, lang_count;
2454 	struct usb_gadget_strings **stringtabs, *t;
2455 	const char *data = _data;
2456 	struct usb_string *s;
2457 
2458 	ENTER();
2459 
2460 	if (unlikely(len < 16 ||
2461 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2462 		     get_unaligned_le32(data + 4) != len))
2463 		goto error;
2464 	str_count  = get_unaligned_le32(data + 8);
2465 	lang_count = get_unaligned_le32(data + 12);
2466 
2467 	/* if one is zero the other must be zero */
2468 	if (unlikely(!str_count != !lang_count))
2469 		goto error;
2470 
2471 	/* Do we have at least as many strings as descriptors need? */
2472 	needed_count = ffs->strings_count;
2473 	if (unlikely(str_count < needed_count))
2474 		goto error;
2475 
2476 	/*
2477 	 * If we don't need any strings just return and free all
2478 	 * memory.
2479 	 */
2480 	if (!needed_count) {
2481 		kfree(_data);
2482 		return 0;
2483 	}
2484 
2485 	/* Allocate everything in one chunk so there's less maintenance. */
2486 	{
2487 		unsigned i = 0;
2488 		vla_group(d);
2489 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2490 			lang_count + 1);
2491 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2492 		vla_item(d, struct usb_string, strings,
2493 			lang_count*(needed_count+1));
2494 
2495 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2496 
2497 		if (unlikely(!vlabuf)) {
2498 			kfree(_data);
2499 			return -ENOMEM;
2500 		}
2501 
2502 		/* Initialize the VLA pointers */
2503 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2504 		t = vla_ptr(vlabuf, d, stringtab);
2505 		i = lang_count;
2506 		do {
2507 			*stringtabs++ = t++;
2508 		} while (--i);
2509 		*stringtabs = NULL;
2510 
2511 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2512 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2513 		t = vla_ptr(vlabuf, d, stringtab);
2514 		s = vla_ptr(vlabuf, d, strings);
2515 	}
2516 
2517 	/* For each language */
2518 	data += 16;
2519 	len -= 16;
2520 
2521 	do { /* lang_count > 0 so we can use do-while */
2522 		unsigned needed = needed_count;
2523 
2524 		if (unlikely(len < 3))
2525 			goto error_free;
2526 		t->language = get_unaligned_le16(data);
2527 		t->strings  = s;
2528 		++t;
2529 
2530 		data += 2;
2531 		len -= 2;
2532 
2533 		/* For each string */
2534 		do { /* str_count > 0 so we can use do-while */
2535 			size_t length = strnlen(data, len);
2536 
2537 			if (unlikely(length == len))
2538 				goto error_free;
2539 
2540 			/*
2541 			 * User may provide more strings then we need,
2542 			 * if that's the case we simply ignore the
2543 			 * rest
2544 			 */
2545 			if (likely(needed)) {
2546 				/*
2547 				 * s->id will be set while adding
2548 				 * function to configuration so for
2549 				 * now just leave garbage here.
2550 				 */
2551 				s->s = data;
2552 				--needed;
2553 				++s;
2554 			}
2555 
2556 			data += length + 1;
2557 			len -= length + 1;
2558 		} while (--str_count);
2559 
2560 		s->id = 0;   /* terminator */
2561 		s->s = NULL;
2562 		++s;
2563 
2564 	} while (--lang_count);
2565 
2566 	/* Some garbage left? */
2567 	if (unlikely(len))
2568 		goto error_free;
2569 
2570 	/* Done! */
2571 	ffs->stringtabs = stringtabs;
2572 	ffs->raw_strings = _data;
2573 
2574 	return 0;
2575 
2576 error_free:
2577 	kfree(stringtabs);
2578 error:
2579 	kfree(_data);
2580 	return -EINVAL;
2581 }
2582 
2583 
2584 /* Events handling and management *******************************************/
2585 
2586 static void __ffs_event_add(struct ffs_data *ffs,
2587 			    enum usb_functionfs_event_type type)
2588 {
2589 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2590 	int neg = 0;
2591 
2592 	/*
2593 	 * Abort any unhandled setup
2594 	 *
2595 	 * We do not need to worry about some cmpxchg() changing value
2596 	 * of ffs->setup_state without holding the lock because when
2597 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2598 	 * the source does nothing.
2599 	 */
2600 	if (ffs->setup_state == FFS_SETUP_PENDING)
2601 		ffs->setup_state = FFS_SETUP_CANCELLED;
2602 
2603 	/*
2604 	 * Logic of this function guarantees that there are at most four pending
2605 	 * evens on ffs->ev.types queue.  This is important because the queue
2606 	 * has space for four elements only and __ffs_ep0_read_events function
2607 	 * depends on that limit as well.  If more event types are added, those
2608 	 * limits have to be revisited or guaranteed to still hold.
2609 	 */
2610 	switch (type) {
2611 	case FUNCTIONFS_RESUME:
2612 		rem_type2 = FUNCTIONFS_SUSPEND;
2613 		/* FALL THROUGH */
2614 	case FUNCTIONFS_SUSPEND:
2615 	case FUNCTIONFS_SETUP:
2616 		rem_type1 = type;
2617 		/* Discard all similar events */
2618 		break;
2619 
2620 	case FUNCTIONFS_BIND:
2621 	case FUNCTIONFS_UNBIND:
2622 	case FUNCTIONFS_DISABLE:
2623 	case FUNCTIONFS_ENABLE:
2624 		/* Discard everything other then power management. */
2625 		rem_type1 = FUNCTIONFS_SUSPEND;
2626 		rem_type2 = FUNCTIONFS_RESUME;
2627 		neg = 1;
2628 		break;
2629 
2630 	default:
2631 		WARN(1, "%d: unknown event, this should not happen\n", type);
2632 		return;
2633 	}
2634 
2635 	{
2636 		u8 *ev  = ffs->ev.types, *out = ev;
2637 		unsigned n = ffs->ev.count;
2638 		for (; n; --n, ++ev)
2639 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2640 				*out++ = *ev;
2641 			else
2642 				pr_vdebug("purging event %d\n", *ev);
2643 		ffs->ev.count = out - ffs->ev.types;
2644 	}
2645 
2646 	pr_vdebug("adding event %d\n", type);
2647 	ffs->ev.types[ffs->ev.count++] = type;
2648 	wake_up_locked(&ffs->ev.waitq);
2649 	if (ffs->ffs_eventfd)
2650 		eventfd_signal(ffs->ffs_eventfd, 1);
2651 }
2652 
2653 static void ffs_event_add(struct ffs_data *ffs,
2654 			  enum usb_functionfs_event_type type)
2655 {
2656 	unsigned long flags;
2657 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2658 	__ffs_event_add(ffs, type);
2659 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2660 }
2661 
2662 /* Bind/unbind USB function hooks *******************************************/
2663 
2664 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2665 {
2666 	int i;
2667 
2668 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2669 		if (ffs->eps_addrmap[i] == endpoint_address)
2670 			return i;
2671 	return -ENOENT;
2672 }
2673 
2674 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2675 				    struct usb_descriptor_header *desc,
2676 				    void *priv)
2677 {
2678 	struct usb_endpoint_descriptor *ds = (void *)desc;
2679 	struct ffs_function *func = priv;
2680 	struct ffs_ep *ffs_ep;
2681 	unsigned ep_desc_id;
2682 	int idx;
2683 	static const char *speed_names[] = { "full", "high", "super" };
2684 
2685 	if (type != FFS_DESCRIPTOR)
2686 		return 0;
2687 
2688 	/*
2689 	 * If ss_descriptors is not NULL, we are reading super speed
2690 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2691 	 * speed descriptors; otherwise, we are reading full speed
2692 	 * descriptors.
2693 	 */
2694 	if (func->function.ss_descriptors) {
2695 		ep_desc_id = 2;
2696 		func->function.ss_descriptors[(long)valuep] = desc;
2697 	} else if (func->function.hs_descriptors) {
2698 		ep_desc_id = 1;
2699 		func->function.hs_descriptors[(long)valuep] = desc;
2700 	} else {
2701 		ep_desc_id = 0;
2702 		func->function.fs_descriptors[(long)valuep]    = desc;
2703 	}
2704 
2705 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2706 		return 0;
2707 
2708 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2709 	if (idx < 0)
2710 		return idx;
2711 
2712 	ffs_ep = func->eps + idx;
2713 
2714 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2715 		pr_err("two %sspeed descriptors for EP %d\n",
2716 			  speed_names[ep_desc_id],
2717 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2718 		return -EINVAL;
2719 	}
2720 	ffs_ep->descs[ep_desc_id] = ds;
2721 
2722 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2723 	if (ffs_ep->ep) {
2724 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2725 		if (!ds->wMaxPacketSize)
2726 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2727 	} else {
2728 		struct usb_request *req;
2729 		struct usb_ep *ep;
2730 		u8 bEndpointAddress;
2731 
2732 		/*
2733 		 * We back up bEndpointAddress because autoconfig overwrites
2734 		 * it with physical endpoint address.
2735 		 */
2736 		bEndpointAddress = ds->bEndpointAddress;
2737 		pr_vdebug("autoconfig\n");
2738 		ep = usb_ep_autoconfig(func->gadget, ds);
2739 		if (unlikely(!ep))
2740 			return -ENOTSUPP;
2741 		ep->driver_data = func->eps + idx;
2742 
2743 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2744 		if (unlikely(!req))
2745 			return -ENOMEM;
2746 
2747 		ffs_ep->ep  = ep;
2748 		ffs_ep->req = req;
2749 		func->eps_revmap[ds->bEndpointAddress &
2750 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2751 		/*
2752 		 * If we use virtual address mapping, we restore
2753 		 * original bEndpointAddress value.
2754 		 */
2755 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2756 			ds->bEndpointAddress = bEndpointAddress;
2757 	}
2758 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2759 
2760 	return 0;
2761 }
2762 
2763 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2764 				   struct usb_descriptor_header *desc,
2765 				   void *priv)
2766 {
2767 	struct ffs_function *func = priv;
2768 	unsigned idx;
2769 	u8 newValue;
2770 
2771 	switch (type) {
2772 	default:
2773 	case FFS_DESCRIPTOR:
2774 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2775 		return 0;
2776 
2777 	case FFS_INTERFACE:
2778 		idx = *valuep;
2779 		if (func->interfaces_nums[idx] < 0) {
2780 			int id = usb_interface_id(func->conf, &func->function);
2781 			if (unlikely(id < 0))
2782 				return id;
2783 			func->interfaces_nums[idx] = id;
2784 		}
2785 		newValue = func->interfaces_nums[idx];
2786 		break;
2787 
2788 	case FFS_STRING:
2789 		/* String' IDs are allocated when fsf_data is bound to cdev */
2790 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2791 		break;
2792 
2793 	case FFS_ENDPOINT:
2794 		/*
2795 		 * USB_DT_ENDPOINT are handled in
2796 		 * __ffs_func_bind_do_descs().
2797 		 */
2798 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2799 			return 0;
2800 
2801 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2802 		if (unlikely(!func->eps[idx].ep))
2803 			return -EINVAL;
2804 
2805 		{
2806 			struct usb_endpoint_descriptor **descs;
2807 			descs = func->eps[idx].descs;
2808 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2809 		}
2810 		break;
2811 	}
2812 
2813 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2814 	*valuep = newValue;
2815 	return 0;
2816 }
2817 
2818 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2819 				      struct usb_os_desc_header *h, void *data,
2820 				      unsigned len, void *priv)
2821 {
2822 	struct ffs_function *func = priv;
2823 	u8 length = 0;
2824 
2825 	switch (type) {
2826 	case FFS_OS_DESC_EXT_COMPAT: {
2827 		struct usb_ext_compat_desc *desc = data;
2828 		struct usb_os_desc_table *t;
2829 
2830 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2831 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2832 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2833 		       ARRAY_SIZE(desc->CompatibleID) +
2834 		       ARRAY_SIZE(desc->SubCompatibleID));
2835 		length = sizeof(*desc);
2836 	}
2837 		break;
2838 	case FFS_OS_DESC_EXT_PROP: {
2839 		struct usb_ext_prop_desc *desc = data;
2840 		struct usb_os_desc_table *t;
2841 		struct usb_os_desc_ext_prop *ext_prop;
2842 		char *ext_prop_name;
2843 		char *ext_prop_data;
2844 
2845 		t = &func->function.os_desc_table[h->interface];
2846 		t->if_id = func->interfaces_nums[h->interface];
2847 
2848 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2849 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2850 
2851 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2852 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2853 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2854 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2855 		length = ext_prop->name_len + ext_prop->data_len + 14;
2856 
2857 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2858 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2859 			ext_prop->name_len;
2860 
2861 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2862 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2863 			ext_prop->data_len;
2864 		memcpy(ext_prop_data,
2865 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2866 		       ext_prop->data_len);
2867 		/* unicode data reported to the host as "WCHAR"s */
2868 		switch (ext_prop->type) {
2869 		case USB_EXT_PROP_UNICODE:
2870 		case USB_EXT_PROP_UNICODE_ENV:
2871 		case USB_EXT_PROP_UNICODE_LINK:
2872 		case USB_EXT_PROP_UNICODE_MULTI:
2873 			ext_prop->data_len *= 2;
2874 			break;
2875 		}
2876 		ext_prop->data = ext_prop_data;
2877 
2878 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2879 		       ext_prop->name_len);
2880 		/* property name reported to the host as "WCHAR"s */
2881 		ext_prop->name_len *= 2;
2882 		ext_prop->name = ext_prop_name;
2883 
2884 		t->os_desc->ext_prop_len +=
2885 			ext_prop->name_len + ext_prop->data_len + 14;
2886 		++t->os_desc->ext_prop_count;
2887 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2888 	}
2889 		break;
2890 	default:
2891 		pr_vdebug("unknown descriptor: %d\n", type);
2892 	}
2893 
2894 	return length;
2895 }
2896 
2897 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2898 						struct usb_configuration *c)
2899 {
2900 	struct ffs_function *func = ffs_func_from_usb(f);
2901 	struct f_fs_opts *ffs_opts =
2902 		container_of(f->fi, struct f_fs_opts, func_inst);
2903 	int ret;
2904 
2905 	ENTER();
2906 
2907 	/*
2908 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2909 	 * which already uses locking; taking the same lock here would
2910 	 * cause a deadlock.
2911 	 *
2912 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2913 	 */
2914 	if (!ffs_opts->no_configfs)
2915 		ffs_dev_lock();
2916 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2917 	func->ffs = ffs_opts->dev->ffs_data;
2918 	if (!ffs_opts->no_configfs)
2919 		ffs_dev_unlock();
2920 	if (ret)
2921 		return ERR_PTR(ret);
2922 
2923 	func->conf = c;
2924 	func->gadget = c->cdev->gadget;
2925 
2926 	/*
2927 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2928 	 * configurations are bound in sequence with list_for_each_entry,
2929 	 * in each configuration its functions are bound in sequence
2930 	 * with list_for_each_entry, so we assume no race condition
2931 	 * with regard to ffs_opts->bound access
2932 	 */
2933 	if (!ffs_opts->refcnt) {
2934 		ret = functionfs_bind(func->ffs, c->cdev);
2935 		if (ret)
2936 			return ERR_PTR(ret);
2937 	}
2938 	ffs_opts->refcnt++;
2939 	func->function.strings = func->ffs->stringtabs;
2940 
2941 	return ffs_opts;
2942 }
2943 
2944 static int _ffs_func_bind(struct usb_configuration *c,
2945 			  struct usb_function *f)
2946 {
2947 	struct ffs_function *func = ffs_func_from_usb(f);
2948 	struct ffs_data *ffs = func->ffs;
2949 
2950 	const int full = !!func->ffs->fs_descs_count;
2951 	const int high = gadget_is_dualspeed(func->gadget) &&
2952 		func->ffs->hs_descs_count;
2953 	const int super = gadget_is_superspeed(func->gadget) &&
2954 		func->ffs->ss_descs_count;
2955 
2956 	int fs_len, hs_len, ss_len, ret, i;
2957 	struct ffs_ep *eps_ptr;
2958 
2959 	/* Make it a single chunk, less management later on */
2960 	vla_group(d);
2961 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2962 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2963 		full ? ffs->fs_descs_count + 1 : 0);
2964 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2965 		high ? ffs->hs_descs_count + 1 : 0);
2966 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2967 		super ? ffs->ss_descs_count + 1 : 0);
2968 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2969 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2970 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2971 	vla_item_with_sz(d, char[16], ext_compat,
2972 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2973 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2974 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2975 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2976 			 ffs->ms_os_descs_ext_prop_count);
2977 	vla_item_with_sz(d, char, ext_prop_name,
2978 			 ffs->ms_os_descs_ext_prop_name_len);
2979 	vla_item_with_sz(d, char, ext_prop_data,
2980 			 ffs->ms_os_descs_ext_prop_data_len);
2981 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2982 	char *vlabuf;
2983 
2984 	ENTER();
2985 
2986 	/* Has descriptors only for speeds gadget does not support */
2987 	if (unlikely(!(full | high | super)))
2988 		return -ENOTSUPP;
2989 
2990 	/* Allocate a single chunk, less management later on */
2991 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2992 	if (unlikely(!vlabuf))
2993 		return -ENOMEM;
2994 
2995 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2996 	ffs->ms_os_descs_ext_prop_name_avail =
2997 		vla_ptr(vlabuf, d, ext_prop_name);
2998 	ffs->ms_os_descs_ext_prop_data_avail =
2999 		vla_ptr(vlabuf, d, ext_prop_data);
3000 
3001 	/* Copy descriptors  */
3002 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3003 	       ffs->raw_descs_length);
3004 
3005 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3006 	eps_ptr = vla_ptr(vlabuf, d, eps);
3007 	for (i = 0; i < ffs->eps_count; i++)
3008 		eps_ptr[i].num = -1;
3009 
3010 	/* Save pointers
3011 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3012 	*/
3013 	func->eps             = vla_ptr(vlabuf, d, eps);
3014 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3015 
3016 	/*
3017 	 * Go through all the endpoint descriptors and allocate
3018 	 * endpoints first, so that later we can rewrite the endpoint
3019 	 * numbers without worrying that it may be described later on.
3020 	 */
3021 	if (likely(full)) {
3022 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3023 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3024 				      vla_ptr(vlabuf, d, raw_descs),
3025 				      d_raw_descs__sz,
3026 				      __ffs_func_bind_do_descs, func);
3027 		if (unlikely(fs_len < 0)) {
3028 			ret = fs_len;
3029 			goto error;
3030 		}
3031 	} else {
3032 		fs_len = 0;
3033 	}
3034 
3035 	if (likely(high)) {
3036 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3037 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3038 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3039 				      d_raw_descs__sz - fs_len,
3040 				      __ffs_func_bind_do_descs, func);
3041 		if (unlikely(hs_len < 0)) {
3042 			ret = hs_len;
3043 			goto error;
3044 		}
3045 	} else {
3046 		hs_len = 0;
3047 	}
3048 
3049 	if (likely(super)) {
3050 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3051 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3052 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3053 				d_raw_descs__sz - fs_len - hs_len,
3054 				__ffs_func_bind_do_descs, func);
3055 		if (unlikely(ss_len < 0)) {
3056 			ret = ss_len;
3057 			goto error;
3058 		}
3059 	} else {
3060 		ss_len = 0;
3061 	}
3062 
3063 	/*
3064 	 * Now handle interface numbers allocation and interface and
3065 	 * endpoint numbers rewriting.  We can do that in one go
3066 	 * now.
3067 	 */
3068 	ret = ffs_do_descs(ffs->fs_descs_count +
3069 			   (high ? ffs->hs_descs_count : 0) +
3070 			   (super ? ffs->ss_descs_count : 0),
3071 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3072 			   __ffs_func_bind_do_nums, func);
3073 	if (unlikely(ret < 0))
3074 		goto error;
3075 
3076 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3077 	if (c->cdev->use_os_string) {
3078 		for (i = 0; i < ffs->interfaces_count; ++i) {
3079 			struct usb_os_desc *desc;
3080 
3081 			desc = func->function.os_desc_table[i].os_desc =
3082 				vla_ptr(vlabuf, d, os_desc) +
3083 				i * sizeof(struct usb_os_desc);
3084 			desc->ext_compat_id =
3085 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3086 			INIT_LIST_HEAD(&desc->ext_prop);
3087 		}
3088 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3089 				      vla_ptr(vlabuf, d, raw_descs) +
3090 				      fs_len + hs_len + ss_len,
3091 				      d_raw_descs__sz - fs_len - hs_len -
3092 				      ss_len,
3093 				      __ffs_func_bind_do_os_desc, func);
3094 		if (unlikely(ret < 0))
3095 			goto error;
3096 	}
3097 	func->function.os_desc_n =
3098 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3099 
3100 	/* And we're done */
3101 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3102 	return 0;
3103 
3104 error:
3105 	/* XXX Do we need to release all claimed endpoints here? */
3106 	return ret;
3107 }
3108 
3109 static int ffs_func_bind(struct usb_configuration *c,
3110 			 struct usb_function *f)
3111 {
3112 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3113 	struct ffs_function *func = ffs_func_from_usb(f);
3114 	int ret;
3115 
3116 	if (IS_ERR(ffs_opts))
3117 		return PTR_ERR(ffs_opts);
3118 
3119 	ret = _ffs_func_bind(c, f);
3120 	if (ret && !--ffs_opts->refcnt)
3121 		functionfs_unbind(func->ffs);
3122 
3123 	return ret;
3124 }
3125 
3126 
3127 /* Other USB function hooks *************************************************/
3128 
3129 static void ffs_reset_work(struct work_struct *work)
3130 {
3131 	struct ffs_data *ffs = container_of(work,
3132 		struct ffs_data, reset_work);
3133 	ffs_data_reset(ffs);
3134 }
3135 
3136 static int ffs_func_set_alt(struct usb_function *f,
3137 			    unsigned interface, unsigned alt)
3138 {
3139 	struct ffs_function *func = ffs_func_from_usb(f);
3140 	struct ffs_data *ffs = func->ffs;
3141 	int ret = 0, intf;
3142 
3143 	if (alt != (unsigned)-1) {
3144 		intf = ffs_func_revmap_intf(func, interface);
3145 		if (unlikely(intf < 0))
3146 			return intf;
3147 	}
3148 
3149 	if (ffs->func)
3150 		ffs_func_eps_disable(ffs->func);
3151 
3152 	if (ffs->state == FFS_DEACTIVATED) {
3153 		ffs->state = FFS_CLOSING;
3154 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3155 		schedule_work(&ffs->reset_work);
3156 		return -ENODEV;
3157 	}
3158 
3159 	if (ffs->state != FFS_ACTIVE)
3160 		return -ENODEV;
3161 
3162 	if (alt == (unsigned)-1) {
3163 		ffs->func = NULL;
3164 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3165 		return 0;
3166 	}
3167 
3168 	ffs->func = func;
3169 	ret = ffs_func_eps_enable(func);
3170 	if (likely(ret >= 0))
3171 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3172 	return ret;
3173 }
3174 
3175 static void ffs_func_disable(struct usb_function *f)
3176 {
3177 	ffs_func_set_alt(f, 0, (unsigned)-1);
3178 }
3179 
3180 static int ffs_func_setup(struct usb_function *f,
3181 			  const struct usb_ctrlrequest *creq)
3182 {
3183 	struct ffs_function *func = ffs_func_from_usb(f);
3184 	struct ffs_data *ffs = func->ffs;
3185 	unsigned long flags;
3186 	int ret;
3187 
3188 	ENTER();
3189 
3190 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3191 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3192 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3193 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3194 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3195 
3196 	/*
3197 	 * Most requests directed to interface go through here
3198 	 * (notable exceptions are set/get interface) so we need to
3199 	 * handle them.  All other either handled by composite or
3200 	 * passed to usb_configuration->setup() (if one is set).  No
3201 	 * matter, we will handle requests directed to endpoint here
3202 	 * as well (as it's straightforward).  Other request recipient
3203 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3204 	 * is being used.
3205 	 */
3206 	if (ffs->state != FFS_ACTIVE)
3207 		return -ENODEV;
3208 
3209 	switch (creq->bRequestType & USB_RECIP_MASK) {
3210 	case USB_RECIP_INTERFACE:
3211 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3212 		if (unlikely(ret < 0))
3213 			return ret;
3214 		break;
3215 
3216 	case USB_RECIP_ENDPOINT:
3217 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3218 		if (unlikely(ret < 0))
3219 			return ret;
3220 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3221 			ret = func->ffs->eps_addrmap[ret];
3222 		break;
3223 
3224 	default:
3225 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3226 			ret = le16_to_cpu(creq->wIndex);
3227 		else
3228 			return -EOPNOTSUPP;
3229 	}
3230 
3231 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3232 	ffs->ev.setup = *creq;
3233 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3234 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3235 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3236 
3237 	return 0;
3238 }
3239 
3240 static bool ffs_func_req_match(struct usb_function *f,
3241 			       const struct usb_ctrlrequest *creq,
3242 			       bool config0)
3243 {
3244 	struct ffs_function *func = ffs_func_from_usb(f);
3245 
3246 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3247 		return false;
3248 
3249 	switch (creq->bRequestType & USB_RECIP_MASK) {
3250 	case USB_RECIP_INTERFACE:
3251 		return (ffs_func_revmap_intf(func,
3252 					     le16_to_cpu(creq->wIndex)) >= 0);
3253 	case USB_RECIP_ENDPOINT:
3254 		return (ffs_func_revmap_ep(func,
3255 					   le16_to_cpu(creq->wIndex)) >= 0);
3256 	default:
3257 		return (bool) (func->ffs->user_flags &
3258 			       FUNCTIONFS_ALL_CTRL_RECIP);
3259 	}
3260 }
3261 
3262 static void ffs_func_suspend(struct usb_function *f)
3263 {
3264 	ENTER();
3265 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3266 }
3267 
3268 static void ffs_func_resume(struct usb_function *f)
3269 {
3270 	ENTER();
3271 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3272 }
3273 
3274 
3275 /* Endpoint and interface numbers reverse mapping ***************************/
3276 
3277 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3278 {
3279 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3280 	return num ? num : -EDOM;
3281 }
3282 
3283 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3284 {
3285 	short *nums = func->interfaces_nums;
3286 	unsigned count = func->ffs->interfaces_count;
3287 
3288 	for (; count; --count, ++nums) {
3289 		if (*nums >= 0 && *nums == intf)
3290 			return nums - func->interfaces_nums;
3291 	}
3292 
3293 	return -EDOM;
3294 }
3295 
3296 
3297 /* Devices management *******************************************************/
3298 
3299 static LIST_HEAD(ffs_devices);
3300 
3301 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3302 {
3303 	struct ffs_dev *dev;
3304 
3305 	list_for_each_entry(dev, &ffs_devices, entry) {
3306 		if (!dev->name || !name)
3307 			continue;
3308 		if (strcmp(dev->name, name) == 0)
3309 			return dev;
3310 	}
3311 
3312 	return NULL;
3313 }
3314 
3315 /*
3316  * ffs_lock must be taken by the caller of this function
3317  */
3318 static struct ffs_dev *_ffs_get_single_dev(void)
3319 {
3320 	struct ffs_dev *dev;
3321 
3322 	if (list_is_singular(&ffs_devices)) {
3323 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3324 		if (dev->single)
3325 			return dev;
3326 	}
3327 
3328 	return NULL;
3329 }
3330 
3331 /*
3332  * ffs_lock must be taken by the caller of this function
3333  */
3334 static struct ffs_dev *_ffs_find_dev(const char *name)
3335 {
3336 	struct ffs_dev *dev;
3337 
3338 	dev = _ffs_get_single_dev();
3339 	if (dev)
3340 		return dev;
3341 
3342 	return _ffs_do_find_dev(name);
3343 }
3344 
3345 /* Configfs support *********************************************************/
3346 
3347 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3348 {
3349 	return container_of(to_config_group(item), struct f_fs_opts,
3350 			    func_inst.group);
3351 }
3352 
3353 static void ffs_attr_release(struct config_item *item)
3354 {
3355 	struct f_fs_opts *opts = to_ffs_opts(item);
3356 
3357 	usb_put_function_instance(&opts->func_inst);
3358 }
3359 
3360 static struct configfs_item_operations ffs_item_ops = {
3361 	.release	= ffs_attr_release,
3362 };
3363 
3364 static struct config_item_type ffs_func_type = {
3365 	.ct_item_ops	= &ffs_item_ops,
3366 	.ct_owner	= THIS_MODULE,
3367 };
3368 
3369 
3370 /* Function registration interface ******************************************/
3371 
3372 static void ffs_free_inst(struct usb_function_instance *f)
3373 {
3374 	struct f_fs_opts *opts;
3375 
3376 	opts = to_f_fs_opts(f);
3377 	ffs_dev_lock();
3378 	_ffs_free_dev(opts->dev);
3379 	ffs_dev_unlock();
3380 	kfree(opts);
3381 }
3382 
3383 #define MAX_INST_NAME_LEN	40
3384 
3385 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3386 {
3387 	struct f_fs_opts *opts;
3388 	char *ptr;
3389 	const char *tmp;
3390 	int name_len, ret;
3391 
3392 	name_len = strlen(name) + 1;
3393 	if (name_len > MAX_INST_NAME_LEN)
3394 		return -ENAMETOOLONG;
3395 
3396 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3397 	if (!ptr)
3398 		return -ENOMEM;
3399 
3400 	opts = to_f_fs_opts(fi);
3401 	tmp = NULL;
3402 
3403 	ffs_dev_lock();
3404 
3405 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3406 	ret = _ffs_name_dev(opts->dev, ptr);
3407 	if (ret) {
3408 		kfree(ptr);
3409 		ffs_dev_unlock();
3410 		return ret;
3411 	}
3412 	opts->dev->name_allocated = true;
3413 
3414 	ffs_dev_unlock();
3415 
3416 	kfree(tmp);
3417 
3418 	return 0;
3419 }
3420 
3421 static struct usb_function_instance *ffs_alloc_inst(void)
3422 {
3423 	struct f_fs_opts *opts;
3424 	struct ffs_dev *dev;
3425 
3426 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3427 	if (!opts)
3428 		return ERR_PTR(-ENOMEM);
3429 
3430 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3431 	opts->func_inst.free_func_inst = ffs_free_inst;
3432 	ffs_dev_lock();
3433 	dev = _ffs_alloc_dev();
3434 	ffs_dev_unlock();
3435 	if (IS_ERR(dev)) {
3436 		kfree(opts);
3437 		return ERR_CAST(dev);
3438 	}
3439 	opts->dev = dev;
3440 	dev->opts = opts;
3441 
3442 	config_group_init_type_name(&opts->func_inst.group, "",
3443 				    &ffs_func_type);
3444 	return &opts->func_inst;
3445 }
3446 
3447 static void ffs_free(struct usb_function *f)
3448 {
3449 	kfree(ffs_func_from_usb(f));
3450 }
3451 
3452 static void ffs_func_unbind(struct usb_configuration *c,
3453 			    struct usb_function *f)
3454 {
3455 	struct ffs_function *func = ffs_func_from_usb(f);
3456 	struct ffs_data *ffs = func->ffs;
3457 	struct f_fs_opts *opts =
3458 		container_of(f->fi, struct f_fs_opts, func_inst);
3459 	struct ffs_ep *ep = func->eps;
3460 	unsigned count = ffs->eps_count;
3461 	unsigned long flags;
3462 
3463 	ENTER();
3464 	if (ffs->func == func) {
3465 		ffs_func_eps_disable(func);
3466 		ffs->func = NULL;
3467 	}
3468 
3469 	if (!--opts->refcnt)
3470 		functionfs_unbind(ffs);
3471 
3472 	/* cleanup after autoconfig */
3473 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3474 	while (count--) {
3475 		if (ep->ep && ep->req)
3476 			usb_ep_free_request(ep->ep, ep->req);
3477 		ep->req = NULL;
3478 		++ep;
3479 	}
3480 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3481 	kfree(func->eps);
3482 	func->eps = NULL;
3483 	/*
3484 	 * eps, descriptors and interfaces_nums are allocated in the
3485 	 * same chunk so only one free is required.
3486 	 */
3487 	func->function.fs_descriptors = NULL;
3488 	func->function.hs_descriptors = NULL;
3489 	func->function.ss_descriptors = NULL;
3490 	func->interfaces_nums = NULL;
3491 
3492 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3493 }
3494 
3495 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3496 {
3497 	struct ffs_function *func;
3498 
3499 	ENTER();
3500 
3501 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3502 	if (unlikely(!func))
3503 		return ERR_PTR(-ENOMEM);
3504 
3505 	func->function.name    = "Function FS Gadget";
3506 
3507 	func->function.bind    = ffs_func_bind;
3508 	func->function.unbind  = ffs_func_unbind;
3509 	func->function.set_alt = ffs_func_set_alt;
3510 	func->function.disable = ffs_func_disable;
3511 	func->function.setup   = ffs_func_setup;
3512 	func->function.req_match = ffs_func_req_match;
3513 	func->function.suspend = ffs_func_suspend;
3514 	func->function.resume  = ffs_func_resume;
3515 	func->function.free_func = ffs_free;
3516 
3517 	return &func->function;
3518 }
3519 
3520 /*
3521  * ffs_lock must be taken by the caller of this function
3522  */
3523 static struct ffs_dev *_ffs_alloc_dev(void)
3524 {
3525 	struct ffs_dev *dev;
3526 	int ret;
3527 
3528 	if (_ffs_get_single_dev())
3529 			return ERR_PTR(-EBUSY);
3530 
3531 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3532 	if (!dev)
3533 		return ERR_PTR(-ENOMEM);
3534 
3535 	if (list_empty(&ffs_devices)) {
3536 		ret = functionfs_init();
3537 		if (ret) {
3538 			kfree(dev);
3539 			return ERR_PTR(ret);
3540 		}
3541 	}
3542 
3543 	list_add(&dev->entry, &ffs_devices);
3544 
3545 	return dev;
3546 }
3547 
3548 /*
3549  * ffs_lock must be taken by the caller of this function
3550  * The caller is responsible for "name" being available whenever f_fs needs it
3551  */
3552 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3553 {
3554 	struct ffs_dev *existing;
3555 
3556 	existing = _ffs_do_find_dev(name);
3557 	if (existing)
3558 		return -EBUSY;
3559 
3560 	dev->name = name;
3561 
3562 	return 0;
3563 }
3564 
3565 /*
3566  * The caller is responsible for "name" being available whenever f_fs needs it
3567  */
3568 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3569 {
3570 	int ret;
3571 
3572 	ffs_dev_lock();
3573 	ret = _ffs_name_dev(dev, name);
3574 	ffs_dev_unlock();
3575 
3576 	return ret;
3577 }
3578 EXPORT_SYMBOL_GPL(ffs_name_dev);
3579 
3580 int ffs_single_dev(struct ffs_dev *dev)
3581 {
3582 	int ret;
3583 
3584 	ret = 0;
3585 	ffs_dev_lock();
3586 
3587 	if (!list_is_singular(&ffs_devices))
3588 		ret = -EBUSY;
3589 	else
3590 		dev->single = true;
3591 
3592 	ffs_dev_unlock();
3593 	return ret;
3594 }
3595 EXPORT_SYMBOL_GPL(ffs_single_dev);
3596 
3597 /*
3598  * ffs_lock must be taken by the caller of this function
3599  */
3600 static void _ffs_free_dev(struct ffs_dev *dev)
3601 {
3602 	list_del(&dev->entry);
3603 	if (dev->name_allocated)
3604 		kfree(dev->name);
3605 
3606 	/* Clear the private_data pointer to stop incorrect dev access */
3607 	if (dev->ffs_data)
3608 		dev->ffs_data->private_data = NULL;
3609 
3610 	kfree(dev);
3611 	if (list_empty(&ffs_devices))
3612 		functionfs_cleanup();
3613 }
3614 
3615 static void *ffs_acquire_dev(const char *dev_name)
3616 {
3617 	struct ffs_dev *ffs_dev;
3618 
3619 	ENTER();
3620 	ffs_dev_lock();
3621 
3622 	ffs_dev = _ffs_find_dev(dev_name);
3623 	if (!ffs_dev)
3624 		ffs_dev = ERR_PTR(-ENOENT);
3625 	else if (ffs_dev->mounted)
3626 		ffs_dev = ERR_PTR(-EBUSY);
3627 	else if (ffs_dev->ffs_acquire_dev_callback &&
3628 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3629 		ffs_dev = ERR_PTR(-ENOENT);
3630 	else
3631 		ffs_dev->mounted = true;
3632 
3633 	ffs_dev_unlock();
3634 	return ffs_dev;
3635 }
3636 
3637 static void ffs_release_dev(struct ffs_data *ffs_data)
3638 {
3639 	struct ffs_dev *ffs_dev;
3640 
3641 	ENTER();
3642 	ffs_dev_lock();
3643 
3644 	ffs_dev = ffs_data->private_data;
3645 	if (ffs_dev) {
3646 		ffs_dev->mounted = false;
3647 
3648 		if (ffs_dev->ffs_release_dev_callback)
3649 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3650 	}
3651 
3652 	ffs_dev_unlock();
3653 }
3654 
3655 static int ffs_ready(struct ffs_data *ffs)
3656 {
3657 	struct ffs_dev *ffs_obj;
3658 	int ret = 0;
3659 
3660 	ENTER();
3661 	ffs_dev_lock();
3662 
3663 	ffs_obj = ffs->private_data;
3664 	if (!ffs_obj) {
3665 		ret = -EINVAL;
3666 		goto done;
3667 	}
3668 	if (WARN_ON(ffs_obj->desc_ready)) {
3669 		ret = -EBUSY;
3670 		goto done;
3671 	}
3672 
3673 	ffs_obj->desc_ready = true;
3674 	ffs_obj->ffs_data = ffs;
3675 
3676 	if (ffs_obj->ffs_ready_callback) {
3677 		ret = ffs_obj->ffs_ready_callback(ffs);
3678 		if (ret)
3679 			goto done;
3680 	}
3681 
3682 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3683 done:
3684 	ffs_dev_unlock();
3685 	return ret;
3686 }
3687 
3688 static void ffs_closed(struct ffs_data *ffs)
3689 {
3690 	struct ffs_dev *ffs_obj;
3691 	struct f_fs_opts *opts;
3692 	struct config_item *ci;
3693 
3694 	ENTER();
3695 	ffs_dev_lock();
3696 
3697 	ffs_obj = ffs->private_data;
3698 	if (!ffs_obj)
3699 		goto done;
3700 
3701 	ffs_obj->desc_ready = false;
3702 
3703 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3704 	    ffs_obj->ffs_closed_callback)
3705 		ffs_obj->ffs_closed_callback(ffs);
3706 
3707 	if (ffs_obj->opts)
3708 		opts = ffs_obj->opts;
3709 	else
3710 		goto done;
3711 
3712 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3713 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3714 		goto done;
3715 
3716 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3717 	ffs_dev_unlock();
3718 
3719 	unregister_gadget_item(ci);
3720 	return;
3721 done:
3722 	ffs_dev_unlock();
3723 }
3724 
3725 /* Misc helper functions ****************************************************/
3726 
3727 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3728 {
3729 	return nonblock
3730 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3731 		: mutex_lock_interruptible(mutex);
3732 }
3733 
3734 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3735 {
3736 	char *data;
3737 
3738 	if (unlikely(!len))
3739 		return NULL;
3740 
3741 	data = kmalloc(len, GFP_KERNEL);
3742 	if (unlikely(!data))
3743 		return ERR_PTR(-ENOMEM);
3744 
3745 	if (unlikely(copy_from_user(data, buf, len))) {
3746 		kfree(data);
3747 		return ERR_PTR(-EFAULT);
3748 	}
3749 
3750 	pr_vdebug("Buffer from user space:\n");
3751 	ffs_dump_mem("", data, len);
3752 
3753 	return data;
3754 }
3755 
3756 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3757 MODULE_LICENSE("GPL");
3758 MODULE_AUTHOR("Michal Nazarewicz");
3759