xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/uio.h>
27 #include <asm/unaligned.h>
28 
29 #include <linux/usb/composite.h>
30 #include <linux/usb/functionfs.h>
31 
32 #include <linux/aio.h>
33 #include <linux/mmu_context.h>
34 #include <linux/poll.h>
35 #include <linux/eventfd.h>
36 
37 #include "u_fs.h"
38 #include "u_f.h"
39 #include "u_os_desc.h"
40 #include "configfs.h"
41 
42 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
43 
44 /* Reference counter handling */
45 static void ffs_data_get(struct ffs_data *ffs);
46 static void ffs_data_put(struct ffs_data *ffs);
47 /* Creates new ffs_data object. */
48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
49 
50 /* Opened counter handling. */
51 static void ffs_data_opened(struct ffs_data *ffs);
52 static void ffs_data_closed(struct ffs_data *ffs);
53 
54 /* Called with ffs->mutex held; take over ownership of data. */
55 static int __must_check
56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
57 static int __must_check
58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
59 
60 
61 /* The function structure ***************************************************/
62 
63 struct ffs_ep;
64 
65 struct ffs_function {
66 	struct usb_configuration	*conf;
67 	struct usb_gadget		*gadget;
68 	struct ffs_data			*ffs;
69 
70 	struct ffs_ep			*eps;
71 	u8				eps_revmap[16];
72 	short				*interfaces_nums;
73 
74 	struct usb_function		function;
75 };
76 
77 
78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
79 {
80 	return container_of(f, struct ffs_function, function);
81 }
82 
83 
84 static inline enum ffs_setup_state
85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
86 {
87 	return (enum ffs_setup_state)
88 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
89 }
90 
91 
92 static void ffs_func_eps_disable(struct ffs_function *func);
93 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
94 
95 static int ffs_func_bind(struct usb_configuration *,
96 			 struct usb_function *);
97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
98 static void ffs_func_disable(struct usb_function *);
99 static int ffs_func_setup(struct usb_function *,
100 			  const struct usb_ctrlrequest *);
101 static void ffs_func_suspend(struct usb_function *);
102 static void ffs_func_resume(struct usb_function *);
103 
104 
105 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
106 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
107 
108 
109 /* The endpoints structures *************************************************/
110 
111 struct ffs_ep {
112 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
113 	struct usb_request		*req;	/* P: epfile->mutex */
114 
115 	/* [0]: full speed, [1]: high speed, [2]: super speed */
116 	struct usb_endpoint_descriptor	*descs[3];
117 
118 	u8				num;
119 
120 	int				status;	/* P: epfile->mutex */
121 };
122 
123 struct ffs_epfile {
124 	/* Protects ep->ep and ep->req. */
125 	struct mutex			mutex;
126 	wait_queue_head_t		wait;
127 
128 	struct ffs_data			*ffs;
129 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
130 
131 	struct dentry			*dentry;
132 
133 	char				name[5];
134 
135 	unsigned char			in;	/* P: ffs->eps_lock */
136 	unsigned char			isoc;	/* P: ffs->eps_lock */
137 
138 	unsigned char			_pad;
139 };
140 
141 /*  ffs_io_data structure ***************************************************/
142 
143 struct ffs_io_data {
144 	bool aio;
145 	bool read;
146 
147 	struct kiocb *kiocb;
148 	struct iov_iter data;
149 	const void *to_free;
150 	char *buf;
151 
152 	struct mm_struct *mm;
153 	struct work_struct work;
154 
155 	struct usb_ep *ep;
156 	struct usb_request *req;
157 
158 	struct ffs_data *ffs;
159 };
160 
161 struct ffs_desc_helper {
162 	struct ffs_data *ffs;
163 	unsigned interfaces_count;
164 	unsigned eps_count;
165 };
166 
167 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
168 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
169 
170 static struct dentry *
171 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
172 		   const struct file_operations *fops);
173 
174 /* Devices management *******************************************************/
175 
176 DEFINE_MUTEX(ffs_lock);
177 EXPORT_SYMBOL_GPL(ffs_lock);
178 
179 static struct ffs_dev *_ffs_find_dev(const char *name);
180 static struct ffs_dev *_ffs_alloc_dev(void);
181 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
182 static void _ffs_free_dev(struct ffs_dev *dev);
183 static void *ffs_acquire_dev(const char *dev_name);
184 static void ffs_release_dev(struct ffs_data *ffs_data);
185 static int ffs_ready(struct ffs_data *ffs);
186 static void ffs_closed(struct ffs_data *ffs);
187 
188 /* Misc helper functions ****************************************************/
189 
190 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
191 	__attribute__((warn_unused_result, nonnull));
192 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
193 	__attribute__((warn_unused_result, nonnull));
194 
195 
196 /* Control file aka ep0 *****************************************************/
197 
198 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
199 {
200 	struct ffs_data *ffs = req->context;
201 
202 	complete_all(&ffs->ep0req_completion);
203 }
204 
205 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
206 {
207 	struct usb_request *req = ffs->ep0req;
208 	int ret;
209 
210 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
211 
212 	spin_unlock_irq(&ffs->ev.waitq.lock);
213 
214 	req->buf      = data;
215 	req->length   = len;
216 
217 	/*
218 	 * UDC layer requires to provide a buffer even for ZLP, but should
219 	 * not use it at all. Let's provide some poisoned pointer to catch
220 	 * possible bug in the driver.
221 	 */
222 	if (req->buf == NULL)
223 		req->buf = (void *)0xDEADBABE;
224 
225 	reinit_completion(&ffs->ep0req_completion);
226 
227 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
228 	if (unlikely(ret < 0))
229 		return ret;
230 
231 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
232 	if (unlikely(ret)) {
233 		usb_ep_dequeue(ffs->gadget->ep0, req);
234 		return -EINTR;
235 	}
236 
237 	ffs->setup_state = FFS_NO_SETUP;
238 	return req->status ? req->status : req->actual;
239 }
240 
241 static int __ffs_ep0_stall(struct ffs_data *ffs)
242 {
243 	if (ffs->ev.can_stall) {
244 		pr_vdebug("ep0 stall\n");
245 		usb_ep_set_halt(ffs->gadget->ep0);
246 		ffs->setup_state = FFS_NO_SETUP;
247 		return -EL2HLT;
248 	} else {
249 		pr_debug("bogus ep0 stall!\n");
250 		return -ESRCH;
251 	}
252 }
253 
254 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
255 			     size_t len, loff_t *ptr)
256 {
257 	struct ffs_data *ffs = file->private_data;
258 	ssize_t ret;
259 	char *data;
260 
261 	ENTER();
262 
263 	/* Fast check if setup was canceled */
264 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
265 		return -EIDRM;
266 
267 	/* Acquire mutex */
268 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
269 	if (unlikely(ret < 0))
270 		return ret;
271 
272 	/* Check state */
273 	switch (ffs->state) {
274 	case FFS_READ_DESCRIPTORS:
275 	case FFS_READ_STRINGS:
276 		/* Copy data */
277 		if (unlikely(len < 16)) {
278 			ret = -EINVAL;
279 			break;
280 		}
281 
282 		data = ffs_prepare_buffer(buf, len);
283 		if (IS_ERR(data)) {
284 			ret = PTR_ERR(data);
285 			break;
286 		}
287 
288 		/* Handle data */
289 		if (ffs->state == FFS_READ_DESCRIPTORS) {
290 			pr_info("read descriptors\n");
291 			ret = __ffs_data_got_descs(ffs, data, len);
292 			if (unlikely(ret < 0))
293 				break;
294 
295 			ffs->state = FFS_READ_STRINGS;
296 			ret = len;
297 		} else {
298 			pr_info("read strings\n");
299 			ret = __ffs_data_got_strings(ffs, data, len);
300 			if (unlikely(ret < 0))
301 				break;
302 
303 			ret = ffs_epfiles_create(ffs);
304 			if (unlikely(ret)) {
305 				ffs->state = FFS_CLOSING;
306 				break;
307 			}
308 
309 			ffs->state = FFS_ACTIVE;
310 			mutex_unlock(&ffs->mutex);
311 
312 			ret = ffs_ready(ffs);
313 			if (unlikely(ret < 0)) {
314 				ffs->state = FFS_CLOSING;
315 				return ret;
316 			}
317 
318 			return len;
319 		}
320 		break;
321 
322 	case FFS_ACTIVE:
323 		data = NULL;
324 		/*
325 		 * We're called from user space, we can use _irq
326 		 * rather then _irqsave
327 		 */
328 		spin_lock_irq(&ffs->ev.waitq.lock);
329 		switch (ffs_setup_state_clear_cancelled(ffs)) {
330 		case FFS_SETUP_CANCELLED:
331 			ret = -EIDRM;
332 			goto done_spin;
333 
334 		case FFS_NO_SETUP:
335 			ret = -ESRCH;
336 			goto done_spin;
337 
338 		case FFS_SETUP_PENDING:
339 			break;
340 		}
341 
342 		/* FFS_SETUP_PENDING */
343 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
344 			spin_unlock_irq(&ffs->ev.waitq.lock);
345 			ret = __ffs_ep0_stall(ffs);
346 			break;
347 		}
348 
349 		/* FFS_SETUP_PENDING and not stall */
350 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
351 
352 		spin_unlock_irq(&ffs->ev.waitq.lock);
353 
354 		data = ffs_prepare_buffer(buf, len);
355 		if (IS_ERR(data)) {
356 			ret = PTR_ERR(data);
357 			break;
358 		}
359 
360 		spin_lock_irq(&ffs->ev.waitq.lock);
361 
362 		/*
363 		 * We are guaranteed to be still in FFS_ACTIVE state
364 		 * but the state of setup could have changed from
365 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
366 		 * to check for that.  If that happened we copied data
367 		 * from user space in vain but it's unlikely.
368 		 *
369 		 * For sure we are not in FFS_NO_SETUP since this is
370 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
371 		 * transition can be performed and it's protected by
372 		 * mutex.
373 		 */
374 		if (ffs_setup_state_clear_cancelled(ffs) ==
375 		    FFS_SETUP_CANCELLED) {
376 			ret = -EIDRM;
377 done_spin:
378 			spin_unlock_irq(&ffs->ev.waitq.lock);
379 		} else {
380 			/* unlocks spinlock */
381 			ret = __ffs_ep0_queue_wait(ffs, data, len);
382 		}
383 		kfree(data);
384 		break;
385 
386 	default:
387 		ret = -EBADFD;
388 		break;
389 	}
390 
391 	mutex_unlock(&ffs->mutex);
392 	return ret;
393 }
394 
395 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
396 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
397 				     size_t n)
398 {
399 	/*
400 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
401 	 * size of ffs->ev.types array (which is four) so that's how much space
402 	 * we reserve.
403 	 */
404 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
405 	const size_t size = n * sizeof *events;
406 	unsigned i = 0;
407 
408 	memset(events, 0, size);
409 
410 	do {
411 		events[i].type = ffs->ev.types[i];
412 		if (events[i].type == FUNCTIONFS_SETUP) {
413 			events[i].u.setup = ffs->ev.setup;
414 			ffs->setup_state = FFS_SETUP_PENDING;
415 		}
416 	} while (++i < n);
417 
418 	ffs->ev.count -= n;
419 	if (ffs->ev.count)
420 		memmove(ffs->ev.types, ffs->ev.types + n,
421 			ffs->ev.count * sizeof *ffs->ev.types);
422 
423 	spin_unlock_irq(&ffs->ev.waitq.lock);
424 	mutex_unlock(&ffs->mutex);
425 
426 	return unlikely(__copy_to_user(buf, events, size)) ? -EFAULT : size;
427 }
428 
429 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
430 			    size_t len, loff_t *ptr)
431 {
432 	struct ffs_data *ffs = file->private_data;
433 	char *data = NULL;
434 	size_t n;
435 	int ret;
436 
437 	ENTER();
438 
439 	/* Fast check if setup was canceled */
440 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
441 		return -EIDRM;
442 
443 	/* Acquire mutex */
444 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
445 	if (unlikely(ret < 0))
446 		return ret;
447 
448 	/* Check state */
449 	if (ffs->state != FFS_ACTIVE) {
450 		ret = -EBADFD;
451 		goto done_mutex;
452 	}
453 
454 	/*
455 	 * We're called from user space, we can use _irq rather then
456 	 * _irqsave
457 	 */
458 	spin_lock_irq(&ffs->ev.waitq.lock);
459 
460 	switch (ffs_setup_state_clear_cancelled(ffs)) {
461 	case FFS_SETUP_CANCELLED:
462 		ret = -EIDRM;
463 		break;
464 
465 	case FFS_NO_SETUP:
466 		n = len / sizeof(struct usb_functionfs_event);
467 		if (unlikely(!n)) {
468 			ret = -EINVAL;
469 			break;
470 		}
471 
472 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
473 			ret = -EAGAIN;
474 			break;
475 		}
476 
477 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
478 							ffs->ev.count)) {
479 			ret = -EINTR;
480 			break;
481 		}
482 
483 		return __ffs_ep0_read_events(ffs, buf,
484 					     min(n, (size_t)ffs->ev.count));
485 
486 	case FFS_SETUP_PENDING:
487 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
488 			spin_unlock_irq(&ffs->ev.waitq.lock);
489 			ret = __ffs_ep0_stall(ffs);
490 			goto done_mutex;
491 		}
492 
493 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
494 
495 		spin_unlock_irq(&ffs->ev.waitq.lock);
496 
497 		if (likely(len)) {
498 			data = kmalloc(len, GFP_KERNEL);
499 			if (unlikely(!data)) {
500 				ret = -ENOMEM;
501 				goto done_mutex;
502 			}
503 		}
504 
505 		spin_lock_irq(&ffs->ev.waitq.lock);
506 
507 		/* See ffs_ep0_write() */
508 		if (ffs_setup_state_clear_cancelled(ffs) ==
509 		    FFS_SETUP_CANCELLED) {
510 			ret = -EIDRM;
511 			break;
512 		}
513 
514 		/* unlocks spinlock */
515 		ret = __ffs_ep0_queue_wait(ffs, data, len);
516 		if (likely(ret > 0) && unlikely(__copy_to_user(buf, data, len)))
517 			ret = -EFAULT;
518 		goto done_mutex;
519 
520 	default:
521 		ret = -EBADFD;
522 		break;
523 	}
524 
525 	spin_unlock_irq(&ffs->ev.waitq.lock);
526 done_mutex:
527 	mutex_unlock(&ffs->mutex);
528 	kfree(data);
529 	return ret;
530 }
531 
532 static int ffs_ep0_open(struct inode *inode, struct file *file)
533 {
534 	struct ffs_data *ffs = inode->i_private;
535 
536 	ENTER();
537 
538 	if (unlikely(ffs->state == FFS_CLOSING))
539 		return -EBUSY;
540 
541 	file->private_data = ffs;
542 	ffs_data_opened(ffs);
543 
544 	return 0;
545 }
546 
547 static int ffs_ep0_release(struct inode *inode, struct file *file)
548 {
549 	struct ffs_data *ffs = file->private_data;
550 
551 	ENTER();
552 
553 	ffs_data_closed(ffs);
554 
555 	return 0;
556 }
557 
558 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
559 {
560 	struct ffs_data *ffs = file->private_data;
561 	struct usb_gadget *gadget = ffs->gadget;
562 	long ret;
563 
564 	ENTER();
565 
566 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
567 		struct ffs_function *func = ffs->func;
568 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
569 	} else if (gadget && gadget->ops->ioctl) {
570 		ret = gadget->ops->ioctl(gadget, code, value);
571 	} else {
572 		ret = -ENOTTY;
573 	}
574 
575 	return ret;
576 }
577 
578 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
579 {
580 	struct ffs_data *ffs = file->private_data;
581 	unsigned int mask = POLLWRNORM;
582 	int ret;
583 
584 	poll_wait(file, &ffs->ev.waitq, wait);
585 
586 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
587 	if (unlikely(ret < 0))
588 		return mask;
589 
590 	switch (ffs->state) {
591 	case FFS_READ_DESCRIPTORS:
592 	case FFS_READ_STRINGS:
593 		mask |= POLLOUT;
594 		break;
595 
596 	case FFS_ACTIVE:
597 		switch (ffs->setup_state) {
598 		case FFS_NO_SETUP:
599 			if (ffs->ev.count)
600 				mask |= POLLIN;
601 			break;
602 
603 		case FFS_SETUP_PENDING:
604 		case FFS_SETUP_CANCELLED:
605 			mask |= (POLLIN | POLLOUT);
606 			break;
607 		}
608 	case FFS_CLOSING:
609 		break;
610 	case FFS_DEACTIVATED:
611 		break;
612 	}
613 
614 	mutex_unlock(&ffs->mutex);
615 
616 	return mask;
617 }
618 
619 static const struct file_operations ffs_ep0_operations = {
620 	.llseek =	no_llseek,
621 
622 	.open =		ffs_ep0_open,
623 	.write =	ffs_ep0_write,
624 	.read =		ffs_ep0_read,
625 	.release =	ffs_ep0_release,
626 	.unlocked_ioctl =	ffs_ep0_ioctl,
627 	.poll =		ffs_ep0_poll,
628 };
629 
630 
631 /* "Normal" endpoints operations ********************************************/
632 
633 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
634 {
635 	ENTER();
636 	if (likely(req->context)) {
637 		struct ffs_ep *ep = _ep->driver_data;
638 		ep->status = req->status ? req->status : req->actual;
639 		complete(req->context);
640 	}
641 }
642 
643 static void ffs_user_copy_worker(struct work_struct *work)
644 {
645 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
646 						   work);
647 	int ret = io_data->req->status ? io_data->req->status :
648 					 io_data->req->actual;
649 
650 	if (io_data->read && ret > 0) {
651 		use_mm(io_data->mm);
652 		ret = copy_to_iter(io_data->buf, ret, &io_data->data);
653 		if (iov_iter_count(&io_data->data))
654 			ret = -EFAULT;
655 		unuse_mm(io_data->mm);
656 	}
657 
658 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
659 
660 	if (io_data->ffs->ffs_eventfd &&
661 	    !(io_data->kiocb->ki_flags & IOCB_EVENTFD))
662 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
663 
664 	usb_ep_free_request(io_data->ep, io_data->req);
665 
666 	io_data->kiocb->private = NULL;
667 	if (io_data->read)
668 		kfree(io_data->to_free);
669 	kfree(io_data->buf);
670 	kfree(io_data);
671 }
672 
673 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
674 					 struct usb_request *req)
675 {
676 	struct ffs_io_data *io_data = req->context;
677 
678 	ENTER();
679 
680 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
681 	schedule_work(&io_data->work);
682 }
683 
684 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
685 {
686 	struct ffs_epfile *epfile = file->private_data;
687 	struct ffs_ep *ep;
688 	char *data = NULL;
689 	ssize_t ret, data_len = -EINVAL;
690 	int halt;
691 
692 	/* Are we still active? */
693 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) {
694 		ret = -ENODEV;
695 		goto error;
696 	}
697 
698 	/* Wait for endpoint to be enabled */
699 	ep = epfile->ep;
700 	if (!ep) {
701 		if (file->f_flags & O_NONBLOCK) {
702 			ret = -EAGAIN;
703 			goto error;
704 		}
705 
706 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
707 		if (ret) {
708 			ret = -EINTR;
709 			goto error;
710 		}
711 	}
712 
713 	/* Do we halt? */
714 	halt = (!io_data->read == !epfile->in);
715 	if (halt && epfile->isoc) {
716 		ret = -EINVAL;
717 		goto error;
718 	}
719 
720 	/* Allocate & copy */
721 	if (!halt) {
722 		/*
723 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
724 		 * before the waiting completes, so do not assign to 'gadget' earlier
725 		 */
726 		struct usb_gadget *gadget = epfile->ffs->gadget;
727 		size_t copied;
728 
729 		spin_lock_irq(&epfile->ffs->eps_lock);
730 		/* In the meantime, endpoint got disabled or changed. */
731 		if (epfile->ep != ep) {
732 			spin_unlock_irq(&epfile->ffs->eps_lock);
733 			return -ESHUTDOWN;
734 		}
735 		data_len = iov_iter_count(&io_data->data);
736 		/*
737 		 * Controller may require buffer size to be aligned to
738 		 * maxpacketsize of an out endpoint.
739 		 */
740 		if (io_data->read)
741 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
742 		spin_unlock_irq(&epfile->ffs->eps_lock);
743 
744 		data = kmalloc(data_len, GFP_KERNEL);
745 		if (unlikely(!data))
746 			return -ENOMEM;
747 		if (!io_data->read) {
748 			copied = copy_from_iter(data, data_len, &io_data->data);
749 			if (copied != data_len) {
750 				ret = -EFAULT;
751 				goto error;
752 			}
753 		}
754 	}
755 
756 	/* We will be using request */
757 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
758 	if (unlikely(ret))
759 		goto error;
760 
761 	spin_lock_irq(&epfile->ffs->eps_lock);
762 
763 	if (epfile->ep != ep) {
764 		/* In the meantime, endpoint got disabled or changed. */
765 		ret = -ESHUTDOWN;
766 		spin_unlock_irq(&epfile->ffs->eps_lock);
767 	} else if (halt) {
768 		/* Halt */
769 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
770 			usb_ep_set_halt(ep->ep);
771 		spin_unlock_irq(&epfile->ffs->eps_lock);
772 		ret = -EBADMSG;
773 	} else {
774 		/* Fire the request */
775 		struct usb_request *req;
776 
777 		/*
778 		 * Sanity Check: even though data_len can't be used
779 		 * uninitialized at the time I write this comment, some
780 		 * compilers complain about this situation.
781 		 * In order to keep the code clean from warnings, data_len is
782 		 * being initialized to -EINVAL during its declaration, which
783 		 * means we can't rely on compiler anymore to warn no future
784 		 * changes won't result in data_len being used uninitialized.
785 		 * For such reason, we're adding this redundant sanity check
786 		 * here.
787 		 */
788 		if (unlikely(data_len == -EINVAL)) {
789 			WARN(1, "%s: data_len == -EINVAL\n", __func__);
790 			ret = -EINVAL;
791 			goto error_lock;
792 		}
793 
794 		if (io_data->aio) {
795 			req = usb_ep_alloc_request(ep->ep, GFP_KERNEL);
796 			if (unlikely(!req))
797 				goto error_lock;
798 
799 			req->buf      = data;
800 			req->length   = data_len;
801 
802 			io_data->buf = data;
803 			io_data->ep = ep->ep;
804 			io_data->req = req;
805 			io_data->ffs = epfile->ffs;
806 
807 			req->context  = io_data;
808 			req->complete = ffs_epfile_async_io_complete;
809 
810 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
811 			if (unlikely(ret)) {
812 				usb_ep_free_request(ep->ep, req);
813 				goto error_lock;
814 			}
815 			ret = -EIOCBQUEUED;
816 
817 			spin_unlock_irq(&epfile->ffs->eps_lock);
818 		} else {
819 			DECLARE_COMPLETION_ONSTACK(done);
820 
821 			req = ep->req;
822 			req->buf      = data;
823 			req->length   = data_len;
824 
825 			req->context  = &done;
826 			req->complete = ffs_epfile_io_complete;
827 
828 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
829 
830 			spin_unlock_irq(&epfile->ffs->eps_lock);
831 
832 			if (unlikely(ret < 0)) {
833 				/* nop */
834 			} else if (unlikely(
835 				   wait_for_completion_interruptible(&done))) {
836 				ret = -EINTR;
837 				usb_ep_dequeue(ep->ep, req);
838 			} else {
839 				/*
840 				 * XXX We may end up silently droping data
841 				 * here.  Since data_len (i.e. req->length) may
842 				 * be bigger than len (after being rounded up
843 				 * to maxpacketsize), we may end up with more
844 				 * data then user space has space for.
845 				 */
846 				ret = ep->status;
847 				if (io_data->read && ret > 0) {
848 					ret = copy_to_iter(data, ret, &io_data->data);
849 					if (!ret)
850 						ret = -EFAULT;
851 				}
852 			}
853 			kfree(data);
854 		}
855 	}
856 
857 	mutex_unlock(&epfile->mutex);
858 	return ret;
859 
860 error_lock:
861 	spin_unlock_irq(&epfile->ffs->eps_lock);
862 	mutex_unlock(&epfile->mutex);
863 error:
864 	kfree(data);
865 	return ret;
866 }
867 
868 static int
869 ffs_epfile_open(struct inode *inode, struct file *file)
870 {
871 	struct ffs_epfile *epfile = inode->i_private;
872 
873 	ENTER();
874 
875 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
876 		return -ENODEV;
877 
878 	file->private_data = epfile;
879 	ffs_data_opened(epfile->ffs);
880 
881 	return 0;
882 }
883 
884 static int ffs_aio_cancel(struct kiocb *kiocb)
885 {
886 	struct ffs_io_data *io_data = kiocb->private;
887 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
888 	int value;
889 
890 	ENTER();
891 
892 	spin_lock_irq(&epfile->ffs->eps_lock);
893 
894 	if (likely(io_data && io_data->ep && io_data->req))
895 		value = usb_ep_dequeue(io_data->ep, io_data->req);
896 	else
897 		value = -EINVAL;
898 
899 	spin_unlock_irq(&epfile->ffs->eps_lock);
900 
901 	return value;
902 }
903 
904 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
905 {
906 	struct ffs_io_data io_data, *p = &io_data;
907 	ssize_t res;
908 
909 	ENTER();
910 
911 	if (!is_sync_kiocb(kiocb)) {
912 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
913 		if (unlikely(!p))
914 			return -ENOMEM;
915 		p->aio = true;
916 	} else {
917 		p->aio = false;
918 	}
919 
920 	p->read = false;
921 	p->kiocb = kiocb;
922 	p->data = *from;
923 	p->mm = current->mm;
924 
925 	kiocb->private = p;
926 
927 	kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
928 
929 	res = ffs_epfile_io(kiocb->ki_filp, p);
930 	if (res == -EIOCBQUEUED)
931 		return res;
932 	if (p->aio)
933 		kfree(p);
934 	else
935 		*from = p->data;
936 	return res;
937 }
938 
939 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
940 {
941 	struct ffs_io_data io_data, *p = &io_data;
942 	ssize_t res;
943 
944 	ENTER();
945 
946 	if (!is_sync_kiocb(kiocb)) {
947 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
948 		if (unlikely(!p))
949 			return -ENOMEM;
950 		p->aio = true;
951 	} else {
952 		p->aio = false;
953 	}
954 
955 	p->read = true;
956 	p->kiocb = kiocb;
957 	if (p->aio) {
958 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
959 		if (!p->to_free) {
960 			kfree(p);
961 			return -ENOMEM;
962 		}
963 	} else {
964 		p->data = *to;
965 		p->to_free = NULL;
966 	}
967 	p->mm = current->mm;
968 
969 	kiocb->private = p;
970 
971 	kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
972 
973 	res = ffs_epfile_io(kiocb->ki_filp, p);
974 	if (res == -EIOCBQUEUED)
975 		return res;
976 
977 	if (p->aio) {
978 		kfree(p->to_free);
979 		kfree(p);
980 	} else {
981 		*to = p->data;
982 	}
983 	return res;
984 }
985 
986 static int
987 ffs_epfile_release(struct inode *inode, struct file *file)
988 {
989 	struct ffs_epfile *epfile = inode->i_private;
990 
991 	ENTER();
992 
993 	ffs_data_closed(epfile->ffs);
994 
995 	return 0;
996 }
997 
998 static long ffs_epfile_ioctl(struct file *file, unsigned code,
999 			     unsigned long value)
1000 {
1001 	struct ffs_epfile *epfile = file->private_data;
1002 	int ret;
1003 
1004 	ENTER();
1005 
1006 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1007 		return -ENODEV;
1008 
1009 	spin_lock_irq(&epfile->ffs->eps_lock);
1010 	if (likely(epfile->ep)) {
1011 		switch (code) {
1012 		case FUNCTIONFS_FIFO_STATUS:
1013 			ret = usb_ep_fifo_status(epfile->ep->ep);
1014 			break;
1015 		case FUNCTIONFS_FIFO_FLUSH:
1016 			usb_ep_fifo_flush(epfile->ep->ep);
1017 			ret = 0;
1018 			break;
1019 		case FUNCTIONFS_CLEAR_HALT:
1020 			ret = usb_ep_clear_halt(epfile->ep->ep);
1021 			break;
1022 		case FUNCTIONFS_ENDPOINT_REVMAP:
1023 			ret = epfile->ep->num;
1024 			break;
1025 		case FUNCTIONFS_ENDPOINT_DESC:
1026 		{
1027 			int desc_idx;
1028 			struct usb_endpoint_descriptor *desc;
1029 
1030 			switch (epfile->ffs->gadget->speed) {
1031 			case USB_SPEED_SUPER:
1032 				desc_idx = 2;
1033 				break;
1034 			case USB_SPEED_HIGH:
1035 				desc_idx = 1;
1036 				break;
1037 			default:
1038 				desc_idx = 0;
1039 			}
1040 			desc = epfile->ep->descs[desc_idx];
1041 
1042 			spin_unlock_irq(&epfile->ffs->eps_lock);
1043 			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1044 			if (ret)
1045 				ret = -EFAULT;
1046 			return ret;
1047 		}
1048 		default:
1049 			ret = -ENOTTY;
1050 		}
1051 	} else {
1052 		ret = -ENODEV;
1053 	}
1054 	spin_unlock_irq(&epfile->ffs->eps_lock);
1055 
1056 	return ret;
1057 }
1058 
1059 static const struct file_operations ffs_epfile_operations = {
1060 	.llseek =	no_llseek,
1061 
1062 	.open =		ffs_epfile_open,
1063 	.write_iter =	ffs_epfile_write_iter,
1064 	.read_iter =	ffs_epfile_read_iter,
1065 	.release =	ffs_epfile_release,
1066 	.unlocked_ioctl =	ffs_epfile_ioctl,
1067 };
1068 
1069 
1070 /* File system and super block operations ***********************************/
1071 
1072 /*
1073  * Mounting the file system creates a controller file, used first for
1074  * function configuration then later for event monitoring.
1075  */
1076 
1077 static struct inode *__must_check
1078 ffs_sb_make_inode(struct super_block *sb, void *data,
1079 		  const struct file_operations *fops,
1080 		  const struct inode_operations *iops,
1081 		  struct ffs_file_perms *perms)
1082 {
1083 	struct inode *inode;
1084 
1085 	ENTER();
1086 
1087 	inode = new_inode(sb);
1088 
1089 	if (likely(inode)) {
1090 		struct timespec current_time = CURRENT_TIME;
1091 
1092 		inode->i_ino	 = get_next_ino();
1093 		inode->i_mode    = perms->mode;
1094 		inode->i_uid     = perms->uid;
1095 		inode->i_gid     = perms->gid;
1096 		inode->i_atime   = current_time;
1097 		inode->i_mtime   = current_time;
1098 		inode->i_ctime   = current_time;
1099 		inode->i_private = data;
1100 		if (fops)
1101 			inode->i_fop = fops;
1102 		if (iops)
1103 			inode->i_op  = iops;
1104 	}
1105 
1106 	return inode;
1107 }
1108 
1109 /* Create "regular" file */
1110 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1111 					const char *name, void *data,
1112 					const struct file_operations *fops)
1113 {
1114 	struct ffs_data	*ffs = sb->s_fs_info;
1115 	struct dentry	*dentry;
1116 	struct inode	*inode;
1117 
1118 	ENTER();
1119 
1120 	dentry = d_alloc_name(sb->s_root, name);
1121 	if (unlikely(!dentry))
1122 		return NULL;
1123 
1124 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1125 	if (unlikely(!inode)) {
1126 		dput(dentry);
1127 		return NULL;
1128 	}
1129 
1130 	d_add(dentry, inode);
1131 	return dentry;
1132 }
1133 
1134 /* Super block */
1135 static const struct super_operations ffs_sb_operations = {
1136 	.statfs =	simple_statfs,
1137 	.drop_inode =	generic_delete_inode,
1138 };
1139 
1140 struct ffs_sb_fill_data {
1141 	struct ffs_file_perms perms;
1142 	umode_t root_mode;
1143 	const char *dev_name;
1144 	bool no_disconnect;
1145 	struct ffs_data *ffs_data;
1146 };
1147 
1148 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1149 {
1150 	struct ffs_sb_fill_data *data = _data;
1151 	struct inode	*inode;
1152 	struct ffs_data	*ffs = data->ffs_data;
1153 
1154 	ENTER();
1155 
1156 	ffs->sb              = sb;
1157 	data->ffs_data       = NULL;
1158 	sb->s_fs_info        = ffs;
1159 	sb->s_blocksize      = PAGE_CACHE_SIZE;
1160 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1161 	sb->s_magic          = FUNCTIONFS_MAGIC;
1162 	sb->s_op             = &ffs_sb_operations;
1163 	sb->s_time_gran      = 1;
1164 
1165 	/* Root inode */
1166 	data->perms.mode = data->root_mode;
1167 	inode = ffs_sb_make_inode(sb, NULL,
1168 				  &simple_dir_operations,
1169 				  &simple_dir_inode_operations,
1170 				  &data->perms);
1171 	sb->s_root = d_make_root(inode);
1172 	if (unlikely(!sb->s_root))
1173 		return -ENOMEM;
1174 
1175 	/* EP0 file */
1176 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1177 					 &ffs_ep0_operations)))
1178 		return -ENOMEM;
1179 
1180 	return 0;
1181 }
1182 
1183 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1184 {
1185 	ENTER();
1186 
1187 	if (!opts || !*opts)
1188 		return 0;
1189 
1190 	for (;;) {
1191 		unsigned long value;
1192 		char *eq, *comma;
1193 
1194 		/* Option limit */
1195 		comma = strchr(opts, ',');
1196 		if (comma)
1197 			*comma = 0;
1198 
1199 		/* Value limit */
1200 		eq = strchr(opts, '=');
1201 		if (unlikely(!eq)) {
1202 			pr_err("'=' missing in %s\n", opts);
1203 			return -EINVAL;
1204 		}
1205 		*eq = 0;
1206 
1207 		/* Parse value */
1208 		if (kstrtoul(eq + 1, 0, &value)) {
1209 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1210 			return -EINVAL;
1211 		}
1212 
1213 		/* Interpret option */
1214 		switch (eq - opts) {
1215 		case 13:
1216 			if (!memcmp(opts, "no_disconnect", 13))
1217 				data->no_disconnect = !!value;
1218 			else
1219 				goto invalid;
1220 			break;
1221 		case 5:
1222 			if (!memcmp(opts, "rmode", 5))
1223 				data->root_mode  = (value & 0555) | S_IFDIR;
1224 			else if (!memcmp(opts, "fmode", 5))
1225 				data->perms.mode = (value & 0666) | S_IFREG;
1226 			else
1227 				goto invalid;
1228 			break;
1229 
1230 		case 4:
1231 			if (!memcmp(opts, "mode", 4)) {
1232 				data->root_mode  = (value & 0555) | S_IFDIR;
1233 				data->perms.mode = (value & 0666) | S_IFREG;
1234 			} else {
1235 				goto invalid;
1236 			}
1237 			break;
1238 
1239 		case 3:
1240 			if (!memcmp(opts, "uid", 3)) {
1241 				data->perms.uid = make_kuid(current_user_ns(), value);
1242 				if (!uid_valid(data->perms.uid)) {
1243 					pr_err("%s: unmapped value: %lu\n", opts, value);
1244 					return -EINVAL;
1245 				}
1246 			} else if (!memcmp(opts, "gid", 3)) {
1247 				data->perms.gid = make_kgid(current_user_ns(), value);
1248 				if (!gid_valid(data->perms.gid)) {
1249 					pr_err("%s: unmapped value: %lu\n", opts, value);
1250 					return -EINVAL;
1251 				}
1252 			} else {
1253 				goto invalid;
1254 			}
1255 			break;
1256 
1257 		default:
1258 invalid:
1259 			pr_err("%s: invalid option\n", opts);
1260 			return -EINVAL;
1261 		}
1262 
1263 		/* Next iteration */
1264 		if (!comma)
1265 			break;
1266 		opts = comma + 1;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 /* "mount -t functionfs dev_name /dev/function" ends up here */
1273 
1274 static struct dentry *
1275 ffs_fs_mount(struct file_system_type *t, int flags,
1276 	      const char *dev_name, void *opts)
1277 {
1278 	struct ffs_sb_fill_data data = {
1279 		.perms = {
1280 			.mode = S_IFREG | 0600,
1281 			.uid = GLOBAL_ROOT_UID,
1282 			.gid = GLOBAL_ROOT_GID,
1283 		},
1284 		.root_mode = S_IFDIR | 0500,
1285 		.no_disconnect = false,
1286 	};
1287 	struct dentry *rv;
1288 	int ret;
1289 	void *ffs_dev;
1290 	struct ffs_data	*ffs;
1291 
1292 	ENTER();
1293 
1294 	ret = ffs_fs_parse_opts(&data, opts);
1295 	if (unlikely(ret < 0))
1296 		return ERR_PTR(ret);
1297 
1298 	ffs = ffs_data_new();
1299 	if (unlikely(!ffs))
1300 		return ERR_PTR(-ENOMEM);
1301 	ffs->file_perms = data.perms;
1302 	ffs->no_disconnect = data.no_disconnect;
1303 
1304 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1305 	if (unlikely(!ffs->dev_name)) {
1306 		ffs_data_put(ffs);
1307 		return ERR_PTR(-ENOMEM);
1308 	}
1309 
1310 	ffs_dev = ffs_acquire_dev(dev_name);
1311 	if (IS_ERR(ffs_dev)) {
1312 		ffs_data_put(ffs);
1313 		return ERR_CAST(ffs_dev);
1314 	}
1315 	ffs->private_data = ffs_dev;
1316 	data.ffs_data = ffs;
1317 
1318 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1319 	if (IS_ERR(rv) && data.ffs_data) {
1320 		ffs_release_dev(data.ffs_data);
1321 		ffs_data_put(data.ffs_data);
1322 	}
1323 	return rv;
1324 }
1325 
1326 static void
1327 ffs_fs_kill_sb(struct super_block *sb)
1328 {
1329 	ENTER();
1330 
1331 	kill_litter_super(sb);
1332 	if (sb->s_fs_info) {
1333 		ffs_release_dev(sb->s_fs_info);
1334 		ffs_data_closed(sb->s_fs_info);
1335 		ffs_data_put(sb->s_fs_info);
1336 	}
1337 }
1338 
1339 static struct file_system_type ffs_fs_type = {
1340 	.owner		= THIS_MODULE,
1341 	.name		= "functionfs",
1342 	.mount		= ffs_fs_mount,
1343 	.kill_sb	= ffs_fs_kill_sb,
1344 };
1345 MODULE_ALIAS_FS("functionfs");
1346 
1347 
1348 /* Driver's main init/cleanup functions *************************************/
1349 
1350 static int functionfs_init(void)
1351 {
1352 	int ret;
1353 
1354 	ENTER();
1355 
1356 	ret = register_filesystem(&ffs_fs_type);
1357 	if (likely(!ret))
1358 		pr_info("file system registered\n");
1359 	else
1360 		pr_err("failed registering file system (%d)\n", ret);
1361 
1362 	return ret;
1363 }
1364 
1365 static void functionfs_cleanup(void)
1366 {
1367 	ENTER();
1368 
1369 	pr_info("unloading\n");
1370 	unregister_filesystem(&ffs_fs_type);
1371 }
1372 
1373 
1374 /* ffs_data and ffs_function construction and destruction code **************/
1375 
1376 static void ffs_data_clear(struct ffs_data *ffs);
1377 static void ffs_data_reset(struct ffs_data *ffs);
1378 
1379 static void ffs_data_get(struct ffs_data *ffs)
1380 {
1381 	ENTER();
1382 
1383 	atomic_inc(&ffs->ref);
1384 }
1385 
1386 static void ffs_data_opened(struct ffs_data *ffs)
1387 {
1388 	ENTER();
1389 
1390 	atomic_inc(&ffs->ref);
1391 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1392 			ffs->state == FFS_DEACTIVATED) {
1393 		ffs->state = FFS_CLOSING;
1394 		ffs_data_reset(ffs);
1395 	}
1396 }
1397 
1398 static void ffs_data_put(struct ffs_data *ffs)
1399 {
1400 	ENTER();
1401 
1402 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1403 		pr_info("%s(): freeing\n", __func__);
1404 		ffs_data_clear(ffs);
1405 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1406 		       waitqueue_active(&ffs->ep0req_completion.wait));
1407 		kfree(ffs->dev_name);
1408 		kfree(ffs);
1409 	}
1410 }
1411 
1412 static void ffs_data_closed(struct ffs_data *ffs)
1413 {
1414 	ENTER();
1415 
1416 	if (atomic_dec_and_test(&ffs->opened)) {
1417 		if (ffs->no_disconnect) {
1418 			ffs->state = FFS_DEACTIVATED;
1419 			if (ffs->epfiles) {
1420 				ffs_epfiles_destroy(ffs->epfiles,
1421 						   ffs->eps_count);
1422 				ffs->epfiles = NULL;
1423 			}
1424 			if (ffs->setup_state == FFS_SETUP_PENDING)
1425 				__ffs_ep0_stall(ffs);
1426 		} else {
1427 			ffs->state = FFS_CLOSING;
1428 			ffs_data_reset(ffs);
1429 		}
1430 	}
1431 	if (atomic_read(&ffs->opened) < 0) {
1432 		ffs->state = FFS_CLOSING;
1433 		ffs_data_reset(ffs);
1434 	}
1435 
1436 	ffs_data_put(ffs);
1437 }
1438 
1439 static struct ffs_data *ffs_data_new(void)
1440 {
1441 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1442 	if (unlikely(!ffs))
1443 		return NULL;
1444 
1445 	ENTER();
1446 
1447 	atomic_set(&ffs->ref, 1);
1448 	atomic_set(&ffs->opened, 0);
1449 	ffs->state = FFS_READ_DESCRIPTORS;
1450 	mutex_init(&ffs->mutex);
1451 	spin_lock_init(&ffs->eps_lock);
1452 	init_waitqueue_head(&ffs->ev.waitq);
1453 	init_completion(&ffs->ep0req_completion);
1454 
1455 	/* XXX REVISIT need to update it in some places, or do we? */
1456 	ffs->ev.can_stall = 1;
1457 
1458 	return ffs;
1459 }
1460 
1461 static void ffs_data_clear(struct ffs_data *ffs)
1462 {
1463 	ENTER();
1464 
1465 	ffs_closed(ffs);
1466 
1467 	BUG_ON(ffs->gadget);
1468 
1469 	if (ffs->epfiles)
1470 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1471 
1472 	if (ffs->ffs_eventfd)
1473 		eventfd_ctx_put(ffs->ffs_eventfd);
1474 
1475 	kfree(ffs->raw_descs_data);
1476 	kfree(ffs->raw_strings);
1477 	kfree(ffs->stringtabs);
1478 }
1479 
1480 static void ffs_data_reset(struct ffs_data *ffs)
1481 {
1482 	ENTER();
1483 
1484 	ffs_data_clear(ffs);
1485 
1486 	ffs->epfiles = NULL;
1487 	ffs->raw_descs_data = NULL;
1488 	ffs->raw_descs = NULL;
1489 	ffs->raw_strings = NULL;
1490 	ffs->stringtabs = NULL;
1491 
1492 	ffs->raw_descs_length = 0;
1493 	ffs->fs_descs_count = 0;
1494 	ffs->hs_descs_count = 0;
1495 	ffs->ss_descs_count = 0;
1496 
1497 	ffs->strings_count = 0;
1498 	ffs->interfaces_count = 0;
1499 	ffs->eps_count = 0;
1500 
1501 	ffs->ev.count = 0;
1502 
1503 	ffs->state = FFS_READ_DESCRIPTORS;
1504 	ffs->setup_state = FFS_NO_SETUP;
1505 	ffs->flags = 0;
1506 }
1507 
1508 
1509 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1510 {
1511 	struct usb_gadget_strings **lang;
1512 	int first_id;
1513 
1514 	ENTER();
1515 
1516 	if (WARN_ON(ffs->state != FFS_ACTIVE
1517 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1518 		return -EBADFD;
1519 
1520 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1521 	if (unlikely(first_id < 0))
1522 		return first_id;
1523 
1524 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1525 	if (unlikely(!ffs->ep0req))
1526 		return -ENOMEM;
1527 	ffs->ep0req->complete = ffs_ep0_complete;
1528 	ffs->ep0req->context = ffs;
1529 
1530 	lang = ffs->stringtabs;
1531 	if (lang) {
1532 		for (; *lang; ++lang) {
1533 			struct usb_string *str = (*lang)->strings;
1534 			int id = first_id;
1535 			for (; str->s; ++id, ++str)
1536 				str->id = id;
1537 		}
1538 	}
1539 
1540 	ffs->gadget = cdev->gadget;
1541 	ffs_data_get(ffs);
1542 	return 0;
1543 }
1544 
1545 static void functionfs_unbind(struct ffs_data *ffs)
1546 {
1547 	ENTER();
1548 
1549 	if (!WARN_ON(!ffs->gadget)) {
1550 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1551 		ffs->ep0req = NULL;
1552 		ffs->gadget = NULL;
1553 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1554 		ffs_data_put(ffs);
1555 	}
1556 }
1557 
1558 static int ffs_epfiles_create(struct ffs_data *ffs)
1559 {
1560 	struct ffs_epfile *epfile, *epfiles;
1561 	unsigned i, count;
1562 
1563 	ENTER();
1564 
1565 	count = ffs->eps_count;
1566 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1567 	if (!epfiles)
1568 		return -ENOMEM;
1569 
1570 	epfile = epfiles;
1571 	for (i = 1; i <= count; ++i, ++epfile) {
1572 		epfile->ffs = ffs;
1573 		mutex_init(&epfile->mutex);
1574 		init_waitqueue_head(&epfile->wait);
1575 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1576 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1577 		else
1578 			sprintf(epfile->name, "ep%u", i);
1579 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1580 						 epfile,
1581 						 &ffs_epfile_operations);
1582 		if (unlikely(!epfile->dentry)) {
1583 			ffs_epfiles_destroy(epfiles, i - 1);
1584 			return -ENOMEM;
1585 		}
1586 	}
1587 
1588 	ffs->epfiles = epfiles;
1589 	return 0;
1590 }
1591 
1592 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1593 {
1594 	struct ffs_epfile *epfile = epfiles;
1595 
1596 	ENTER();
1597 
1598 	for (; count; --count, ++epfile) {
1599 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1600 		       waitqueue_active(&epfile->wait));
1601 		if (epfile->dentry) {
1602 			d_delete(epfile->dentry);
1603 			dput(epfile->dentry);
1604 			epfile->dentry = NULL;
1605 		}
1606 	}
1607 
1608 	kfree(epfiles);
1609 }
1610 
1611 static void ffs_func_eps_disable(struct ffs_function *func)
1612 {
1613 	struct ffs_ep *ep         = func->eps;
1614 	struct ffs_epfile *epfile = func->ffs->epfiles;
1615 	unsigned count            = func->ffs->eps_count;
1616 	unsigned long flags;
1617 
1618 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1619 	do {
1620 		/* pending requests get nuked */
1621 		if (likely(ep->ep))
1622 			usb_ep_disable(ep->ep);
1623 		++ep;
1624 
1625 		if (epfile) {
1626 			epfile->ep = NULL;
1627 			++epfile;
1628 		}
1629 	} while (--count);
1630 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1631 }
1632 
1633 static int ffs_func_eps_enable(struct ffs_function *func)
1634 {
1635 	struct ffs_data *ffs      = func->ffs;
1636 	struct ffs_ep *ep         = func->eps;
1637 	struct ffs_epfile *epfile = ffs->epfiles;
1638 	unsigned count            = ffs->eps_count;
1639 	unsigned long flags;
1640 	int ret = 0;
1641 
1642 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1643 	do {
1644 		struct usb_endpoint_descriptor *ds;
1645 		int desc_idx;
1646 
1647 		if (ffs->gadget->speed == USB_SPEED_SUPER)
1648 			desc_idx = 2;
1649 		else if (ffs->gadget->speed == USB_SPEED_HIGH)
1650 			desc_idx = 1;
1651 		else
1652 			desc_idx = 0;
1653 
1654 		/* fall-back to lower speed if desc missing for current speed */
1655 		do {
1656 			ds = ep->descs[desc_idx];
1657 		} while (!ds && --desc_idx >= 0);
1658 
1659 		if (!ds) {
1660 			ret = -EINVAL;
1661 			break;
1662 		}
1663 
1664 		ep->ep->driver_data = ep;
1665 		ep->ep->desc = ds;
1666 		ret = usb_ep_enable(ep->ep);
1667 		if (likely(!ret)) {
1668 			epfile->ep = ep;
1669 			epfile->in = usb_endpoint_dir_in(ds);
1670 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1671 		} else {
1672 			break;
1673 		}
1674 
1675 		wake_up(&epfile->wait);
1676 
1677 		++ep;
1678 		++epfile;
1679 	} while (--count);
1680 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1681 
1682 	return ret;
1683 }
1684 
1685 
1686 /* Parsing and building descriptors and strings *****************************/
1687 
1688 /*
1689  * This validates if data pointed by data is a valid USB descriptor as
1690  * well as record how many interfaces, endpoints and strings are
1691  * required by given configuration.  Returns address after the
1692  * descriptor or NULL if data is invalid.
1693  */
1694 
1695 enum ffs_entity_type {
1696 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1697 };
1698 
1699 enum ffs_os_desc_type {
1700 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1701 };
1702 
1703 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1704 				   u8 *valuep,
1705 				   struct usb_descriptor_header *desc,
1706 				   void *priv);
1707 
1708 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1709 				    struct usb_os_desc_header *h, void *data,
1710 				    unsigned len, void *priv);
1711 
1712 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1713 					   ffs_entity_callback entity,
1714 					   void *priv)
1715 {
1716 	struct usb_descriptor_header *_ds = (void *)data;
1717 	u8 length;
1718 	int ret;
1719 
1720 	ENTER();
1721 
1722 	/* At least two bytes are required: length and type */
1723 	if (len < 2) {
1724 		pr_vdebug("descriptor too short\n");
1725 		return -EINVAL;
1726 	}
1727 
1728 	/* If we have at least as many bytes as the descriptor takes? */
1729 	length = _ds->bLength;
1730 	if (len < length) {
1731 		pr_vdebug("descriptor longer then available data\n");
1732 		return -EINVAL;
1733 	}
1734 
1735 #define __entity_check_INTERFACE(val)  1
1736 #define __entity_check_STRING(val)     (val)
1737 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1738 #define __entity(type, val) do {					\
1739 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1740 		if (unlikely(!__entity_check_ ##type(val))) {		\
1741 			pr_vdebug("invalid entity's value\n");		\
1742 			return -EINVAL;					\
1743 		}							\
1744 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1745 		if (unlikely(ret < 0)) {				\
1746 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1747 				 (val), ret);				\
1748 			return ret;					\
1749 		}							\
1750 	} while (0)
1751 
1752 	/* Parse descriptor depending on type. */
1753 	switch (_ds->bDescriptorType) {
1754 	case USB_DT_DEVICE:
1755 	case USB_DT_CONFIG:
1756 	case USB_DT_STRING:
1757 	case USB_DT_DEVICE_QUALIFIER:
1758 		/* function can't have any of those */
1759 		pr_vdebug("descriptor reserved for gadget: %d\n",
1760 		      _ds->bDescriptorType);
1761 		return -EINVAL;
1762 
1763 	case USB_DT_INTERFACE: {
1764 		struct usb_interface_descriptor *ds = (void *)_ds;
1765 		pr_vdebug("interface descriptor\n");
1766 		if (length != sizeof *ds)
1767 			goto inv_length;
1768 
1769 		__entity(INTERFACE, ds->bInterfaceNumber);
1770 		if (ds->iInterface)
1771 			__entity(STRING, ds->iInterface);
1772 	}
1773 		break;
1774 
1775 	case USB_DT_ENDPOINT: {
1776 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1777 		pr_vdebug("endpoint descriptor\n");
1778 		if (length != USB_DT_ENDPOINT_SIZE &&
1779 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1780 			goto inv_length;
1781 		__entity(ENDPOINT, ds->bEndpointAddress);
1782 	}
1783 		break;
1784 
1785 	case HID_DT_HID:
1786 		pr_vdebug("hid descriptor\n");
1787 		if (length != sizeof(struct hid_descriptor))
1788 			goto inv_length;
1789 		break;
1790 
1791 	case USB_DT_OTG:
1792 		if (length != sizeof(struct usb_otg_descriptor))
1793 			goto inv_length;
1794 		break;
1795 
1796 	case USB_DT_INTERFACE_ASSOCIATION: {
1797 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1798 		pr_vdebug("interface association descriptor\n");
1799 		if (length != sizeof *ds)
1800 			goto inv_length;
1801 		if (ds->iFunction)
1802 			__entity(STRING, ds->iFunction);
1803 	}
1804 		break;
1805 
1806 	case USB_DT_SS_ENDPOINT_COMP:
1807 		pr_vdebug("EP SS companion descriptor\n");
1808 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1809 			goto inv_length;
1810 		break;
1811 
1812 	case USB_DT_OTHER_SPEED_CONFIG:
1813 	case USB_DT_INTERFACE_POWER:
1814 	case USB_DT_DEBUG:
1815 	case USB_DT_SECURITY:
1816 	case USB_DT_CS_RADIO_CONTROL:
1817 		/* TODO */
1818 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1819 		return -EINVAL;
1820 
1821 	default:
1822 		/* We should never be here */
1823 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1824 		return -EINVAL;
1825 
1826 inv_length:
1827 		pr_vdebug("invalid length: %d (descriptor %d)\n",
1828 			  _ds->bLength, _ds->bDescriptorType);
1829 		return -EINVAL;
1830 	}
1831 
1832 #undef __entity
1833 #undef __entity_check_DESCRIPTOR
1834 #undef __entity_check_INTERFACE
1835 #undef __entity_check_STRING
1836 #undef __entity_check_ENDPOINT
1837 
1838 	return length;
1839 }
1840 
1841 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1842 				     ffs_entity_callback entity, void *priv)
1843 {
1844 	const unsigned _len = len;
1845 	unsigned long num = 0;
1846 
1847 	ENTER();
1848 
1849 	for (;;) {
1850 		int ret;
1851 
1852 		if (num == count)
1853 			data = NULL;
1854 
1855 		/* Record "descriptor" entity */
1856 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1857 		if (unlikely(ret < 0)) {
1858 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1859 				 num, ret);
1860 			return ret;
1861 		}
1862 
1863 		if (!data)
1864 			return _len - len;
1865 
1866 		ret = ffs_do_single_desc(data, len, entity, priv);
1867 		if (unlikely(ret < 0)) {
1868 			pr_debug("%s returns %d\n", __func__, ret);
1869 			return ret;
1870 		}
1871 
1872 		len -= ret;
1873 		data += ret;
1874 		++num;
1875 	}
1876 }
1877 
1878 static int __ffs_data_do_entity(enum ffs_entity_type type,
1879 				u8 *valuep, struct usb_descriptor_header *desc,
1880 				void *priv)
1881 {
1882 	struct ffs_desc_helper *helper = priv;
1883 	struct usb_endpoint_descriptor *d;
1884 
1885 	ENTER();
1886 
1887 	switch (type) {
1888 	case FFS_DESCRIPTOR:
1889 		break;
1890 
1891 	case FFS_INTERFACE:
1892 		/*
1893 		 * Interfaces are indexed from zero so if we
1894 		 * encountered interface "n" then there are at least
1895 		 * "n+1" interfaces.
1896 		 */
1897 		if (*valuep >= helper->interfaces_count)
1898 			helper->interfaces_count = *valuep + 1;
1899 		break;
1900 
1901 	case FFS_STRING:
1902 		/*
1903 		 * Strings are indexed from 1 (0 is magic ;) reserved
1904 		 * for languages list or some such)
1905 		 */
1906 		if (*valuep > helper->ffs->strings_count)
1907 			helper->ffs->strings_count = *valuep;
1908 		break;
1909 
1910 	case FFS_ENDPOINT:
1911 		d = (void *)desc;
1912 		helper->eps_count++;
1913 		if (helper->eps_count >= 15)
1914 			return -EINVAL;
1915 		/* Check if descriptors for any speed were already parsed */
1916 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1917 			helper->ffs->eps_addrmap[helper->eps_count] =
1918 				d->bEndpointAddress;
1919 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1920 				d->bEndpointAddress)
1921 			return -EINVAL;
1922 		break;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1929 				   struct usb_os_desc_header *desc)
1930 {
1931 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1932 	u16 w_index = le16_to_cpu(desc->wIndex);
1933 
1934 	if (bcd_version != 1) {
1935 		pr_vdebug("unsupported os descriptors version: %d",
1936 			  bcd_version);
1937 		return -EINVAL;
1938 	}
1939 	switch (w_index) {
1940 	case 0x4:
1941 		*next_type = FFS_OS_DESC_EXT_COMPAT;
1942 		break;
1943 	case 0x5:
1944 		*next_type = FFS_OS_DESC_EXT_PROP;
1945 		break;
1946 	default:
1947 		pr_vdebug("unsupported os descriptor type: %d", w_index);
1948 		return -EINVAL;
1949 	}
1950 
1951 	return sizeof(*desc);
1952 }
1953 
1954 /*
1955  * Process all extended compatibility/extended property descriptors
1956  * of a feature descriptor
1957  */
1958 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
1959 					      enum ffs_os_desc_type type,
1960 					      u16 feature_count,
1961 					      ffs_os_desc_callback entity,
1962 					      void *priv,
1963 					      struct usb_os_desc_header *h)
1964 {
1965 	int ret;
1966 	const unsigned _len = len;
1967 
1968 	ENTER();
1969 
1970 	/* loop over all ext compat/ext prop descriptors */
1971 	while (feature_count--) {
1972 		ret = entity(type, h, data, len, priv);
1973 		if (unlikely(ret < 0)) {
1974 			pr_debug("bad OS descriptor, type: %d\n", type);
1975 			return ret;
1976 		}
1977 		data += ret;
1978 		len -= ret;
1979 	}
1980 	return _len - len;
1981 }
1982 
1983 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
1984 static int __must_check ffs_do_os_descs(unsigned count,
1985 					char *data, unsigned len,
1986 					ffs_os_desc_callback entity, void *priv)
1987 {
1988 	const unsigned _len = len;
1989 	unsigned long num = 0;
1990 
1991 	ENTER();
1992 
1993 	for (num = 0; num < count; ++num) {
1994 		int ret;
1995 		enum ffs_os_desc_type type;
1996 		u16 feature_count;
1997 		struct usb_os_desc_header *desc = (void *)data;
1998 
1999 		if (len < sizeof(*desc))
2000 			return -EINVAL;
2001 
2002 		/*
2003 		 * Record "descriptor" entity.
2004 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2005 		 * Move the data pointer to the beginning of extended
2006 		 * compatibilities proper or extended properties proper
2007 		 * portions of the data
2008 		 */
2009 		if (le32_to_cpu(desc->dwLength) > len)
2010 			return -EINVAL;
2011 
2012 		ret = __ffs_do_os_desc_header(&type, desc);
2013 		if (unlikely(ret < 0)) {
2014 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2015 				 num, ret);
2016 			return ret;
2017 		}
2018 		/*
2019 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2020 		 */
2021 		feature_count = le16_to_cpu(desc->wCount);
2022 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2023 		    (feature_count > 255 || desc->Reserved))
2024 				return -EINVAL;
2025 		len -= ret;
2026 		data += ret;
2027 
2028 		/*
2029 		 * Process all function/property descriptors
2030 		 * of this Feature Descriptor
2031 		 */
2032 		ret = ffs_do_single_os_desc(data, len, type,
2033 					    feature_count, entity, priv, desc);
2034 		if (unlikely(ret < 0)) {
2035 			pr_debug("%s returns %d\n", __func__, ret);
2036 			return ret;
2037 		}
2038 
2039 		len -= ret;
2040 		data += ret;
2041 	}
2042 	return _len - len;
2043 }
2044 
2045 /**
2046  * Validate contents of the buffer from userspace related to OS descriptors.
2047  */
2048 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2049 				 struct usb_os_desc_header *h, void *data,
2050 				 unsigned len, void *priv)
2051 {
2052 	struct ffs_data *ffs = priv;
2053 	u8 length;
2054 
2055 	ENTER();
2056 
2057 	switch (type) {
2058 	case FFS_OS_DESC_EXT_COMPAT: {
2059 		struct usb_ext_compat_desc *d = data;
2060 		int i;
2061 
2062 		if (len < sizeof(*d) ||
2063 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2064 		    d->Reserved1)
2065 			return -EINVAL;
2066 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2067 			if (d->Reserved2[i])
2068 				return -EINVAL;
2069 
2070 		length = sizeof(struct usb_ext_compat_desc);
2071 	}
2072 		break;
2073 	case FFS_OS_DESC_EXT_PROP: {
2074 		struct usb_ext_prop_desc *d = data;
2075 		u32 type, pdl;
2076 		u16 pnl;
2077 
2078 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2079 			return -EINVAL;
2080 		length = le32_to_cpu(d->dwSize);
2081 		type = le32_to_cpu(d->dwPropertyDataType);
2082 		if (type < USB_EXT_PROP_UNICODE ||
2083 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2084 			pr_vdebug("unsupported os descriptor property type: %d",
2085 				  type);
2086 			return -EINVAL;
2087 		}
2088 		pnl = le16_to_cpu(d->wPropertyNameLength);
2089 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2090 		if (length != 14 + pnl + pdl) {
2091 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2092 				  length, pnl, pdl, type);
2093 			return -EINVAL;
2094 		}
2095 		++ffs->ms_os_descs_ext_prop_count;
2096 		/* property name reported to the host as "WCHAR"s */
2097 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2098 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2099 	}
2100 		break;
2101 	default:
2102 		pr_vdebug("unknown descriptor: %d\n", type);
2103 		return -EINVAL;
2104 	}
2105 	return length;
2106 }
2107 
2108 static int __ffs_data_got_descs(struct ffs_data *ffs,
2109 				char *const _data, size_t len)
2110 {
2111 	char *data = _data, *raw_descs;
2112 	unsigned os_descs_count = 0, counts[3], flags;
2113 	int ret = -EINVAL, i;
2114 	struct ffs_desc_helper helper;
2115 
2116 	ENTER();
2117 
2118 	if (get_unaligned_le32(data + 4) != len)
2119 		goto error;
2120 
2121 	switch (get_unaligned_le32(data)) {
2122 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2123 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2124 		data += 8;
2125 		len  -= 8;
2126 		break;
2127 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2128 		flags = get_unaligned_le32(data + 8);
2129 		ffs->user_flags = flags;
2130 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2131 			      FUNCTIONFS_HAS_HS_DESC |
2132 			      FUNCTIONFS_HAS_SS_DESC |
2133 			      FUNCTIONFS_HAS_MS_OS_DESC |
2134 			      FUNCTIONFS_VIRTUAL_ADDR |
2135 			      FUNCTIONFS_EVENTFD)) {
2136 			ret = -ENOSYS;
2137 			goto error;
2138 		}
2139 		data += 12;
2140 		len  -= 12;
2141 		break;
2142 	default:
2143 		goto error;
2144 	}
2145 
2146 	if (flags & FUNCTIONFS_EVENTFD) {
2147 		if (len < 4)
2148 			goto error;
2149 		ffs->ffs_eventfd =
2150 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2151 		if (IS_ERR(ffs->ffs_eventfd)) {
2152 			ret = PTR_ERR(ffs->ffs_eventfd);
2153 			ffs->ffs_eventfd = NULL;
2154 			goto error;
2155 		}
2156 		data += 4;
2157 		len  -= 4;
2158 	}
2159 
2160 	/* Read fs_count, hs_count and ss_count (if present) */
2161 	for (i = 0; i < 3; ++i) {
2162 		if (!(flags & (1 << i))) {
2163 			counts[i] = 0;
2164 		} else if (len < 4) {
2165 			goto error;
2166 		} else {
2167 			counts[i] = get_unaligned_le32(data);
2168 			data += 4;
2169 			len  -= 4;
2170 		}
2171 	}
2172 	if (flags & (1 << i)) {
2173 		os_descs_count = get_unaligned_le32(data);
2174 		data += 4;
2175 		len -= 4;
2176 	};
2177 
2178 	/* Read descriptors */
2179 	raw_descs = data;
2180 	helper.ffs = ffs;
2181 	for (i = 0; i < 3; ++i) {
2182 		if (!counts[i])
2183 			continue;
2184 		helper.interfaces_count = 0;
2185 		helper.eps_count = 0;
2186 		ret = ffs_do_descs(counts[i], data, len,
2187 				   __ffs_data_do_entity, &helper);
2188 		if (ret < 0)
2189 			goto error;
2190 		if (!ffs->eps_count && !ffs->interfaces_count) {
2191 			ffs->eps_count = helper.eps_count;
2192 			ffs->interfaces_count = helper.interfaces_count;
2193 		} else {
2194 			if (ffs->eps_count != helper.eps_count) {
2195 				ret = -EINVAL;
2196 				goto error;
2197 			}
2198 			if (ffs->interfaces_count != helper.interfaces_count) {
2199 				ret = -EINVAL;
2200 				goto error;
2201 			}
2202 		}
2203 		data += ret;
2204 		len  -= ret;
2205 	}
2206 	if (os_descs_count) {
2207 		ret = ffs_do_os_descs(os_descs_count, data, len,
2208 				      __ffs_data_do_os_desc, ffs);
2209 		if (ret < 0)
2210 			goto error;
2211 		data += ret;
2212 		len -= ret;
2213 	}
2214 
2215 	if (raw_descs == data || len) {
2216 		ret = -EINVAL;
2217 		goto error;
2218 	}
2219 
2220 	ffs->raw_descs_data	= _data;
2221 	ffs->raw_descs		= raw_descs;
2222 	ffs->raw_descs_length	= data - raw_descs;
2223 	ffs->fs_descs_count	= counts[0];
2224 	ffs->hs_descs_count	= counts[1];
2225 	ffs->ss_descs_count	= counts[2];
2226 	ffs->ms_os_descs_count	= os_descs_count;
2227 
2228 	return 0;
2229 
2230 error:
2231 	kfree(_data);
2232 	return ret;
2233 }
2234 
2235 static int __ffs_data_got_strings(struct ffs_data *ffs,
2236 				  char *const _data, size_t len)
2237 {
2238 	u32 str_count, needed_count, lang_count;
2239 	struct usb_gadget_strings **stringtabs, *t;
2240 	struct usb_string *strings, *s;
2241 	const char *data = _data;
2242 
2243 	ENTER();
2244 
2245 	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2246 		     get_unaligned_le32(data + 4) != len))
2247 		goto error;
2248 	str_count  = get_unaligned_le32(data + 8);
2249 	lang_count = get_unaligned_le32(data + 12);
2250 
2251 	/* if one is zero the other must be zero */
2252 	if (unlikely(!str_count != !lang_count))
2253 		goto error;
2254 
2255 	/* Do we have at least as many strings as descriptors need? */
2256 	needed_count = ffs->strings_count;
2257 	if (unlikely(str_count < needed_count))
2258 		goto error;
2259 
2260 	/*
2261 	 * If we don't need any strings just return and free all
2262 	 * memory.
2263 	 */
2264 	if (!needed_count) {
2265 		kfree(_data);
2266 		return 0;
2267 	}
2268 
2269 	/* Allocate everything in one chunk so there's less maintenance. */
2270 	{
2271 		unsigned i = 0;
2272 		vla_group(d);
2273 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2274 			lang_count + 1);
2275 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2276 		vla_item(d, struct usb_string, strings,
2277 			lang_count*(needed_count+1));
2278 
2279 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2280 
2281 		if (unlikely(!vlabuf)) {
2282 			kfree(_data);
2283 			return -ENOMEM;
2284 		}
2285 
2286 		/* Initialize the VLA pointers */
2287 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2288 		t = vla_ptr(vlabuf, d, stringtab);
2289 		i = lang_count;
2290 		do {
2291 			*stringtabs++ = t++;
2292 		} while (--i);
2293 		*stringtabs = NULL;
2294 
2295 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2296 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2297 		t = vla_ptr(vlabuf, d, stringtab);
2298 		s = vla_ptr(vlabuf, d, strings);
2299 		strings = s;
2300 	}
2301 
2302 	/* For each language */
2303 	data += 16;
2304 	len -= 16;
2305 
2306 	do { /* lang_count > 0 so we can use do-while */
2307 		unsigned needed = needed_count;
2308 
2309 		if (unlikely(len < 3))
2310 			goto error_free;
2311 		t->language = get_unaligned_le16(data);
2312 		t->strings  = s;
2313 		++t;
2314 
2315 		data += 2;
2316 		len -= 2;
2317 
2318 		/* For each string */
2319 		do { /* str_count > 0 so we can use do-while */
2320 			size_t length = strnlen(data, len);
2321 
2322 			if (unlikely(length == len))
2323 				goto error_free;
2324 
2325 			/*
2326 			 * User may provide more strings then we need,
2327 			 * if that's the case we simply ignore the
2328 			 * rest
2329 			 */
2330 			if (likely(needed)) {
2331 				/*
2332 				 * s->id will be set while adding
2333 				 * function to configuration so for
2334 				 * now just leave garbage here.
2335 				 */
2336 				s->s = data;
2337 				--needed;
2338 				++s;
2339 			}
2340 
2341 			data += length + 1;
2342 			len -= length + 1;
2343 		} while (--str_count);
2344 
2345 		s->id = 0;   /* terminator */
2346 		s->s = NULL;
2347 		++s;
2348 
2349 	} while (--lang_count);
2350 
2351 	/* Some garbage left? */
2352 	if (unlikely(len))
2353 		goto error_free;
2354 
2355 	/* Done! */
2356 	ffs->stringtabs = stringtabs;
2357 	ffs->raw_strings = _data;
2358 
2359 	return 0;
2360 
2361 error_free:
2362 	kfree(stringtabs);
2363 error:
2364 	kfree(_data);
2365 	return -EINVAL;
2366 }
2367 
2368 
2369 /* Events handling and management *******************************************/
2370 
2371 static void __ffs_event_add(struct ffs_data *ffs,
2372 			    enum usb_functionfs_event_type type)
2373 {
2374 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2375 	int neg = 0;
2376 
2377 	/*
2378 	 * Abort any unhandled setup
2379 	 *
2380 	 * We do not need to worry about some cmpxchg() changing value
2381 	 * of ffs->setup_state without holding the lock because when
2382 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2383 	 * the source does nothing.
2384 	 */
2385 	if (ffs->setup_state == FFS_SETUP_PENDING)
2386 		ffs->setup_state = FFS_SETUP_CANCELLED;
2387 
2388 	/*
2389 	 * Logic of this function guarantees that there are at most four pending
2390 	 * evens on ffs->ev.types queue.  This is important because the queue
2391 	 * has space for four elements only and __ffs_ep0_read_events function
2392 	 * depends on that limit as well.  If more event types are added, those
2393 	 * limits have to be revisited or guaranteed to still hold.
2394 	 */
2395 	switch (type) {
2396 	case FUNCTIONFS_RESUME:
2397 		rem_type2 = FUNCTIONFS_SUSPEND;
2398 		/* FALL THROUGH */
2399 	case FUNCTIONFS_SUSPEND:
2400 	case FUNCTIONFS_SETUP:
2401 		rem_type1 = type;
2402 		/* Discard all similar events */
2403 		break;
2404 
2405 	case FUNCTIONFS_BIND:
2406 	case FUNCTIONFS_UNBIND:
2407 	case FUNCTIONFS_DISABLE:
2408 	case FUNCTIONFS_ENABLE:
2409 		/* Discard everything other then power management. */
2410 		rem_type1 = FUNCTIONFS_SUSPEND;
2411 		rem_type2 = FUNCTIONFS_RESUME;
2412 		neg = 1;
2413 		break;
2414 
2415 	default:
2416 		WARN(1, "%d: unknown event, this should not happen\n", type);
2417 		return;
2418 	}
2419 
2420 	{
2421 		u8 *ev  = ffs->ev.types, *out = ev;
2422 		unsigned n = ffs->ev.count;
2423 		for (; n; --n, ++ev)
2424 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2425 				*out++ = *ev;
2426 			else
2427 				pr_vdebug("purging event %d\n", *ev);
2428 		ffs->ev.count = out - ffs->ev.types;
2429 	}
2430 
2431 	pr_vdebug("adding event %d\n", type);
2432 	ffs->ev.types[ffs->ev.count++] = type;
2433 	wake_up_locked(&ffs->ev.waitq);
2434 	if (ffs->ffs_eventfd)
2435 		eventfd_signal(ffs->ffs_eventfd, 1);
2436 }
2437 
2438 static void ffs_event_add(struct ffs_data *ffs,
2439 			  enum usb_functionfs_event_type type)
2440 {
2441 	unsigned long flags;
2442 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2443 	__ffs_event_add(ffs, type);
2444 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2445 }
2446 
2447 /* Bind/unbind USB function hooks *******************************************/
2448 
2449 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2450 {
2451 	int i;
2452 
2453 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2454 		if (ffs->eps_addrmap[i] == endpoint_address)
2455 			return i;
2456 	return -ENOENT;
2457 }
2458 
2459 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2460 				    struct usb_descriptor_header *desc,
2461 				    void *priv)
2462 {
2463 	struct usb_endpoint_descriptor *ds = (void *)desc;
2464 	struct ffs_function *func = priv;
2465 	struct ffs_ep *ffs_ep;
2466 	unsigned ep_desc_id;
2467 	int idx;
2468 	static const char *speed_names[] = { "full", "high", "super" };
2469 
2470 	if (type != FFS_DESCRIPTOR)
2471 		return 0;
2472 
2473 	/*
2474 	 * If ss_descriptors is not NULL, we are reading super speed
2475 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2476 	 * speed descriptors; otherwise, we are reading full speed
2477 	 * descriptors.
2478 	 */
2479 	if (func->function.ss_descriptors) {
2480 		ep_desc_id = 2;
2481 		func->function.ss_descriptors[(long)valuep] = desc;
2482 	} else if (func->function.hs_descriptors) {
2483 		ep_desc_id = 1;
2484 		func->function.hs_descriptors[(long)valuep] = desc;
2485 	} else {
2486 		ep_desc_id = 0;
2487 		func->function.fs_descriptors[(long)valuep]    = desc;
2488 	}
2489 
2490 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2491 		return 0;
2492 
2493 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2494 	if (idx < 0)
2495 		return idx;
2496 
2497 	ffs_ep = func->eps + idx;
2498 
2499 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2500 		pr_err("two %sspeed descriptors for EP %d\n",
2501 			  speed_names[ep_desc_id],
2502 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2503 		return -EINVAL;
2504 	}
2505 	ffs_ep->descs[ep_desc_id] = ds;
2506 
2507 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2508 	if (ffs_ep->ep) {
2509 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2510 		if (!ds->wMaxPacketSize)
2511 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2512 	} else {
2513 		struct usb_request *req;
2514 		struct usb_ep *ep;
2515 		u8 bEndpointAddress;
2516 
2517 		/*
2518 		 * We back up bEndpointAddress because autoconfig overwrites
2519 		 * it with physical endpoint address.
2520 		 */
2521 		bEndpointAddress = ds->bEndpointAddress;
2522 		pr_vdebug("autoconfig\n");
2523 		ep = usb_ep_autoconfig(func->gadget, ds);
2524 		if (unlikely(!ep))
2525 			return -ENOTSUPP;
2526 		ep->driver_data = func->eps + idx;
2527 
2528 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2529 		if (unlikely(!req))
2530 			return -ENOMEM;
2531 
2532 		ffs_ep->ep  = ep;
2533 		ffs_ep->req = req;
2534 		func->eps_revmap[ds->bEndpointAddress &
2535 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2536 		/*
2537 		 * If we use virtual address mapping, we restore
2538 		 * original bEndpointAddress value.
2539 		 */
2540 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2541 			ds->bEndpointAddress = bEndpointAddress;
2542 	}
2543 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2544 
2545 	return 0;
2546 }
2547 
2548 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2549 				   struct usb_descriptor_header *desc,
2550 				   void *priv)
2551 {
2552 	struct ffs_function *func = priv;
2553 	unsigned idx;
2554 	u8 newValue;
2555 
2556 	switch (type) {
2557 	default:
2558 	case FFS_DESCRIPTOR:
2559 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2560 		return 0;
2561 
2562 	case FFS_INTERFACE:
2563 		idx = *valuep;
2564 		if (func->interfaces_nums[idx] < 0) {
2565 			int id = usb_interface_id(func->conf, &func->function);
2566 			if (unlikely(id < 0))
2567 				return id;
2568 			func->interfaces_nums[idx] = id;
2569 		}
2570 		newValue = func->interfaces_nums[idx];
2571 		break;
2572 
2573 	case FFS_STRING:
2574 		/* String' IDs are allocated when fsf_data is bound to cdev */
2575 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2576 		break;
2577 
2578 	case FFS_ENDPOINT:
2579 		/*
2580 		 * USB_DT_ENDPOINT are handled in
2581 		 * __ffs_func_bind_do_descs().
2582 		 */
2583 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2584 			return 0;
2585 
2586 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2587 		if (unlikely(!func->eps[idx].ep))
2588 			return -EINVAL;
2589 
2590 		{
2591 			struct usb_endpoint_descriptor **descs;
2592 			descs = func->eps[idx].descs;
2593 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2594 		}
2595 		break;
2596 	}
2597 
2598 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2599 	*valuep = newValue;
2600 	return 0;
2601 }
2602 
2603 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2604 				      struct usb_os_desc_header *h, void *data,
2605 				      unsigned len, void *priv)
2606 {
2607 	struct ffs_function *func = priv;
2608 	u8 length = 0;
2609 
2610 	switch (type) {
2611 	case FFS_OS_DESC_EXT_COMPAT: {
2612 		struct usb_ext_compat_desc *desc = data;
2613 		struct usb_os_desc_table *t;
2614 
2615 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2616 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2617 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2618 		       ARRAY_SIZE(desc->CompatibleID) +
2619 		       ARRAY_SIZE(desc->SubCompatibleID));
2620 		length = sizeof(*desc);
2621 	}
2622 		break;
2623 	case FFS_OS_DESC_EXT_PROP: {
2624 		struct usb_ext_prop_desc *desc = data;
2625 		struct usb_os_desc_table *t;
2626 		struct usb_os_desc_ext_prop *ext_prop;
2627 		char *ext_prop_name;
2628 		char *ext_prop_data;
2629 
2630 		t = &func->function.os_desc_table[h->interface];
2631 		t->if_id = func->interfaces_nums[h->interface];
2632 
2633 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2634 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2635 
2636 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2637 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2638 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2639 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2640 		length = ext_prop->name_len + ext_prop->data_len + 14;
2641 
2642 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2643 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2644 			ext_prop->name_len;
2645 
2646 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2647 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2648 			ext_prop->data_len;
2649 		memcpy(ext_prop_data,
2650 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2651 		       ext_prop->data_len);
2652 		/* unicode data reported to the host as "WCHAR"s */
2653 		switch (ext_prop->type) {
2654 		case USB_EXT_PROP_UNICODE:
2655 		case USB_EXT_PROP_UNICODE_ENV:
2656 		case USB_EXT_PROP_UNICODE_LINK:
2657 		case USB_EXT_PROP_UNICODE_MULTI:
2658 			ext_prop->data_len *= 2;
2659 			break;
2660 		}
2661 		ext_prop->data = ext_prop_data;
2662 
2663 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2664 		       ext_prop->name_len);
2665 		/* property name reported to the host as "WCHAR"s */
2666 		ext_prop->name_len *= 2;
2667 		ext_prop->name = ext_prop_name;
2668 
2669 		t->os_desc->ext_prop_len +=
2670 			ext_prop->name_len + ext_prop->data_len + 14;
2671 		++t->os_desc->ext_prop_count;
2672 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2673 	}
2674 		break;
2675 	default:
2676 		pr_vdebug("unknown descriptor: %d\n", type);
2677 	}
2678 
2679 	return length;
2680 }
2681 
2682 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2683 						struct usb_configuration *c)
2684 {
2685 	struct ffs_function *func = ffs_func_from_usb(f);
2686 	struct f_fs_opts *ffs_opts =
2687 		container_of(f->fi, struct f_fs_opts, func_inst);
2688 	int ret;
2689 
2690 	ENTER();
2691 
2692 	/*
2693 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2694 	 * which already uses locking; taking the same lock here would
2695 	 * cause a deadlock.
2696 	 *
2697 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2698 	 */
2699 	if (!ffs_opts->no_configfs)
2700 		ffs_dev_lock();
2701 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2702 	func->ffs = ffs_opts->dev->ffs_data;
2703 	if (!ffs_opts->no_configfs)
2704 		ffs_dev_unlock();
2705 	if (ret)
2706 		return ERR_PTR(ret);
2707 
2708 	func->conf = c;
2709 	func->gadget = c->cdev->gadget;
2710 
2711 	/*
2712 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2713 	 * configurations are bound in sequence with list_for_each_entry,
2714 	 * in each configuration its functions are bound in sequence
2715 	 * with list_for_each_entry, so we assume no race condition
2716 	 * with regard to ffs_opts->bound access
2717 	 */
2718 	if (!ffs_opts->refcnt) {
2719 		ret = functionfs_bind(func->ffs, c->cdev);
2720 		if (ret)
2721 			return ERR_PTR(ret);
2722 	}
2723 	ffs_opts->refcnt++;
2724 	func->function.strings = func->ffs->stringtabs;
2725 
2726 	return ffs_opts;
2727 }
2728 
2729 static int _ffs_func_bind(struct usb_configuration *c,
2730 			  struct usb_function *f)
2731 {
2732 	struct ffs_function *func = ffs_func_from_usb(f);
2733 	struct ffs_data *ffs = func->ffs;
2734 
2735 	const int full = !!func->ffs->fs_descs_count;
2736 	const int high = gadget_is_dualspeed(func->gadget) &&
2737 		func->ffs->hs_descs_count;
2738 	const int super = gadget_is_superspeed(func->gadget) &&
2739 		func->ffs->ss_descs_count;
2740 
2741 	int fs_len, hs_len, ss_len, ret, i;
2742 
2743 	/* Make it a single chunk, less management later on */
2744 	vla_group(d);
2745 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2746 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2747 		full ? ffs->fs_descs_count + 1 : 0);
2748 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2749 		high ? ffs->hs_descs_count + 1 : 0);
2750 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2751 		super ? ffs->ss_descs_count + 1 : 0);
2752 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2753 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2754 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2755 	vla_item_with_sz(d, char[16], ext_compat,
2756 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2757 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2758 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2759 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2760 			 ffs->ms_os_descs_ext_prop_count);
2761 	vla_item_with_sz(d, char, ext_prop_name,
2762 			 ffs->ms_os_descs_ext_prop_name_len);
2763 	vla_item_with_sz(d, char, ext_prop_data,
2764 			 ffs->ms_os_descs_ext_prop_data_len);
2765 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2766 	char *vlabuf;
2767 
2768 	ENTER();
2769 
2770 	/* Has descriptors only for speeds gadget does not support */
2771 	if (unlikely(!(full | high | super)))
2772 		return -ENOTSUPP;
2773 
2774 	/* Allocate a single chunk, less management later on */
2775 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2776 	if (unlikely(!vlabuf))
2777 		return -ENOMEM;
2778 
2779 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2780 	ffs->ms_os_descs_ext_prop_name_avail =
2781 		vla_ptr(vlabuf, d, ext_prop_name);
2782 	ffs->ms_os_descs_ext_prop_data_avail =
2783 		vla_ptr(vlabuf, d, ext_prop_data);
2784 
2785 	/* Copy descriptors  */
2786 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2787 	       ffs->raw_descs_length);
2788 
2789 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2790 	for (ret = ffs->eps_count; ret; --ret) {
2791 		struct ffs_ep *ptr;
2792 
2793 		ptr = vla_ptr(vlabuf, d, eps);
2794 		ptr[ret].num = -1;
2795 	}
2796 
2797 	/* Save pointers
2798 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2799 	*/
2800 	func->eps             = vla_ptr(vlabuf, d, eps);
2801 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2802 
2803 	/*
2804 	 * Go through all the endpoint descriptors and allocate
2805 	 * endpoints first, so that later we can rewrite the endpoint
2806 	 * numbers without worrying that it may be described later on.
2807 	 */
2808 	if (likely(full)) {
2809 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2810 		fs_len = ffs_do_descs(ffs->fs_descs_count,
2811 				      vla_ptr(vlabuf, d, raw_descs),
2812 				      d_raw_descs__sz,
2813 				      __ffs_func_bind_do_descs, func);
2814 		if (unlikely(fs_len < 0)) {
2815 			ret = fs_len;
2816 			goto error;
2817 		}
2818 	} else {
2819 		fs_len = 0;
2820 	}
2821 
2822 	if (likely(high)) {
2823 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2824 		hs_len = ffs_do_descs(ffs->hs_descs_count,
2825 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2826 				      d_raw_descs__sz - fs_len,
2827 				      __ffs_func_bind_do_descs, func);
2828 		if (unlikely(hs_len < 0)) {
2829 			ret = hs_len;
2830 			goto error;
2831 		}
2832 	} else {
2833 		hs_len = 0;
2834 	}
2835 
2836 	if (likely(super)) {
2837 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2838 		ss_len = ffs_do_descs(ffs->ss_descs_count,
2839 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2840 				d_raw_descs__sz - fs_len - hs_len,
2841 				__ffs_func_bind_do_descs, func);
2842 		if (unlikely(ss_len < 0)) {
2843 			ret = ss_len;
2844 			goto error;
2845 		}
2846 	} else {
2847 		ss_len = 0;
2848 	}
2849 
2850 	/*
2851 	 * Now handle interface numbers allocation and interface and
2852 	 * endpoint numbers rewriting.  We can do that in one go
2853 	 * now.
2854 	 */
2855 	ret = ffs_do_descs(ffs->fs_descs_count +
2856 			   (high ? ffs->hs_descs_count : 0) +
2857 			   (super ? ffs->ss_descs_count : 0),
2858 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2859 			   __ffs_func_bind_do_nums, func);
2860 	if (unlikely(ret < 0))
2861 		goto error;
2862 
2863 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2864 	if (c->cdev->use_os_string)
2865 		for (i = 0; i < ffs->interfaces_count; ++i) {
2866 			struct usb_os_desc *desc;
2867 
2868 			desc = func->function.os_desc_table[i].os_desc =
2869 				vla_ptr(vlabuf, d, os_desc) +
2870 				i * sizeof(struct usb_os_desc);
2871 			desc->ext_compat_id =
2872 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2873 			INIT_LIST_HEAD(&desc->ext_prop);
2874 		}
2875 	ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2876 			      vla_ptr(vlabuf, d, raw_descs) +
2877 			      fs_len + hs_len + ss_len,
2878 			      d_raw_descs__sz - fs_len - hs_len - ss_len,
2879 			      __ffs_func_bind_do_os_desc, func);
2880 	if (unlikely(ret < 0))
2881 		goto error;
2882 	func->function.os_desc_n =
2883 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2884 
2885 	/* And we're done */
2886 	ffs_event_add(ffs, FUNCTIONFS_BIND);
2887 	return 0;
2888 
2889 error:
2890 	/* XXX Do we need to release all claimed endpoints here? */
2891 	return ret;
2892 }
2893 
2894 static int ffs_func_bind(struct usb_configuration *c,
2895 			 struct usb_function *f)
2896 {
2897 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2898 
2899 	if (IS_ERR(ffs_opts))
2900 		return PTR_ERR(ffs_opts);
2901 
2902 	return _ffs_func_bind(c, f);
2903 }
2904 
2905 
2906 /* Other USB function hooks *************************************************/
2907 
2908 static void ffs_reset_work(struct work_struct *work)
2909 {
2910 	struct ffs_data *ffs = container_of(work,
2911 		struct ffs_data, reset_work);
2912 	ffs_data_reset(ffs);
2913 }
2914 
2915 static int ffs_func_set_alt(struct usb_function *f,
2916 			    unsigned interface, unsigned alt)
2917 {
2918 	struct ffs_function *func = ffs_func_from_usb(f);
2919 	struct ffs_data *ffs = func->ffs;
2920 	int ret = 0, intf;
2921 
2922 	if (alt != (unsigned)-1) {
2923 		intf = ffs_func_revmap_intf(func, interface);
2924 		if (unlikely(intf < 0))
2925 			return intf;
2926 	}
2927 
2928 	if (ffs->func)
2929 		ffs_func_eps_disable(ffs->func);
2930 
2931 	if (ffs->state == FFS_DEACTIVATED) {
2932 		ffs->state = FFS_CLOSING;
2933 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
2934 		schedule_work(&ffs->reset_work);
2935 		return -ENODEV;
2936 	}
2937 
2938 	if (ffs->state != FFS_ACTIVE)
2939 		return -ENODEV;
2940 
2941 	if (alt == (unsigned)-1) {
2942 		ffs->func = NULL;
2943 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2944 		return 0;
2945 	}
2946 
2947 	ffs->func = func;
2948 	ret = ffs_func_eps_enable(func);
2949 	if (likely(ret >= 0))
2950 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2951 	return ret;
2952 }
2953 
2954 static void ffs_func_disable(struct usb_function *f)
2955 {
2956 	ffs_func_set_alt(f, 0, (unsigned)-1);
2957 }
2958 
2959 static int ffs_func_setup(struct usb_function *f,
2960 			  const struct usb_ctrlrequest *creq)
2961 {
2962 	struct ffs_function *func = ffs_func_from_usb(f);
2963 	struct ffs_data *ffs = func->ffs;
2964 	unsigned long flags;
2965 	int ret;
2966 
2967 	ENTER();
2968 
2969 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2970 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
2971 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
2972 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
2973 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
2974 
2975 	/*
2976 	 * Most requests directed to interface go through here
2977 	 * (notable exceptions are set/get interface) so we need to
2978 	 * handle them.  All other either handled by composite or
2979 	 * passed to usb_configuration->setup() (if one is set).  No
2980 	 * matter, we will handle requests directed to endpoint here
2981 	 * as well (as it's straightforward) but what to do with any
2982 	 * other request?
2983 	 */
2984 	if (ffs->state != FFS_ACTIVE)
2985 		return -ENODEV;
2986 
2987 	switch (creq->bRequestType & USB_RECIP_MASK) {
2988 	case USB_RECIP_INTERFACE:
2989 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2990 		if (unlikely(ret < 0))
2991 			return ret;
2992 		break;
2993 
2994 	case USB_RECIP_ENDPOINT:
2995 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
2996 		if (unlikely(ret < 0))
2997 			return ret;
2998 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2999 			ret = func->ffs->eps_addrmap[ret];
3000 		break;
3001 
3002 	default:
3003 		return -EOPNOTSUPP;
3004 	}
3005 
3006 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3007 	ffs->ev.setup = *creq;
3008 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3009 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3010 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3011 
3012 	return 0;
3013 }
3014 
3015 static void ffs_func_suspend(struct usb_function *f)
3016 {
3017 	ENTER();
3018 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3019 }
3020 
3021 static void ffs_func_resume(struct usb_function *f)
3022 {
3023 	ENTER();
3024 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3025 }
3026 
3027 
3028 /* Endpoint and interface numbers reverse mapping ***************************/
3029 
3030 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3031 {
3032 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3033 	return num ? num : -EDOM;
3034 }
3035 
3036 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3037 {
3038 	short *nums = func->interfaces_nums;
3039 	unsigned count = func->ffs->interfaces_count;
3040 
3041 	for (; count; --count, ++nums) {
3042 		if (*nums >= 0 && *nums == intf)
3043 			return nums - func->interfaces_nums;
3044 	}
3045 
3046 	return -EDOM;
3047 }
3048 
3049 
3050 /* Devices management *******************************************************/
3051 
3052 static LIST_HEAD(ffs_devices);
3053 
3054 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3055 {
3056 	struct ffs_dev *dev;
3057 
3058 	list_for_each_entry(dev, &ffs_devices, entry) {
3059 		if (!dev->name || !name)
3060 			continue;
3061 		if (strcmp(dev->name, name) == 0)
3062 			return dev;
3063 	}
3064 
3065 	return NULL;
3066 }
3067 
3068 /*
3069  * ffs_lock must be taken by the caller of this function
3070  */
3071 static struct ffs_dev *_ffs_get_single_dev(void)
3072 {
3073 	struct ffs_dev *dev;
3074 
3075 	if (list_is_singular(&ffs_devices)) {
3076 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3077 		if (dev->single)
3078 			return dev;
3079 	}
3080 
3081 	return NULL;
3082 }
3083 
3084 /*
3085  * ffs_lock must be taken by the caller of this function
3086  */
3087 static struct ffs_dev *_ffs_find_dev(const char *name)
3088 {
3089 	struct ffs_dev *dev;
3090 
3091 	dev = _ffs_get_single_dev();
3092 	if (dev)
3093 		return dev;
3094 
3095 	return _ffs_do_find_dev(name);
3096 }
3097 
3098 /* Configfs support *********************************************************/
3099 
3100 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3101 {
3102 	return container_of(to_config_group(item), struct f_fs_opts,
3103 			    func_inst.group);
3104 }
3105 
3106 static void ffs_attr_release(struct config_item *item)
3107 {
3108 	struct f_fs_opts *opts = to_ffs_opts(item);
3109 
3110 	usb_put_function_instance(&opts->func_inst);
3111 }
3112 
3113 static struct configfs_item_operations ffs_item_ops = {
3114 	.release	= ffs_attr_release,
3115 };
3116 
3117 static struct config_item_type ffs_func_type = {
3118 	.ct_item_ops	= &ffs_item_ops,
3119 	.ct_owner	= THIS_MODULE,
3120 };
3121 
3122 
3123 /* Function registration interface ******************************************/
3124 
3125 static void ffs_free_inst(struct usb_function_instance *f)
3126 {
3127 	struct f_fs_opts *opts;
3128 
3129 	opts = to_f_fs_opts(f);
3130 	ffs_dev_lock();
3131 	_ffs_free_dev(opts->dev);
3132 	ffs_dev_unlock();
3133 	kfree(opts);
3134 }
3135 
3136 #define MAX_INST_NAME_LEN	40
3137 
3138 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3139 {
3140 	struct f_fs_opts *opts;
3141 	char *ptr;
3142 	const char *tmp;
3143 	int name_len, ret;
3144 
3145 	name_len = strlen(name) + 1;
3146 	if (name_len > MAX_INST_NAME_LEN)
3147 		return -ENAMETOOLONG;
3148 
3149 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3150 	if (!ptr)
3151 		return -ENOMEM;
3152 
3153 	opts = to_f_fs_opts(fi);
3154 	tmp = NULL;
3155 
3156 	ffs_dev_lock();
3157 
3158 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3159 	ret = _ffs_name_dev(opts->dev, ptr);
3160 	if (ret) {
3161 		kfree(ptr);
3162 		ffs_dev_unlock();
3163 		return ret;
3164 	}
3165 	opts->dev->name_allocated = true;
3166 
3167 	ffs_dev_unlock();
3168 
3169 	kfree(tmp);
3170 
3171 	return 0;
3172 }
3173 
3174 static struct usb_function_instance *ffs_alloc_inst(void)
3175 {
3176 	struct f_fs_opts *opts;
3177 	struct ffs_dev *dev;
3178 
3179 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3180 	if (!opts)
3181 		return ERR_PTR(-ENOMEM);
3182 
3183 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3184 	opts->func_inst.free_func_inst = ffs_free_inst;
3185 	ffs_dev_lock();
3186 	dev = _ffs_alloc_dev();
3187 	ffs_dev_unlock();
3188 	if (IS_ERR(dev)) {
3189 		kfree(opts);
3190 		return ERR_CAST(dev);
3191 	}
3192 	opts->dev = dev;
3193 	dev->opts = opts;
3194 
3195 	config_group_init_type_name(&opts->func_inst.group, "",
3196 				    &ffs_func_type);
3197 	return &opts->func_inst;
3198 }
3199 
3200 static void ffs_free(struct usb_function *f)
3201 {
3202 	kfree(ffs_func_from_usb(f));
3203 }
3204 
3205 static void ffs_func_unbind(struct usb_configuration *c,
3206 			    struct usb_function *f)
3207 {
3208 	struct ffs_function *func = ffs_func_from_usb(f);
3209 	struct ffs_data *ffs = func->ffs;
3210 	struct f_fs_opts *opts =
3211 		container_of(f->fi, struct f_fs_opts, func_inst);
3212 	struct ffs_ep *ep = func->eps;
3213 	unsigned count = ffs->eps_count;
3214 	unsigned long flags;
3215 
3216 	ENTER();
3217 	if (ffs->func == func) {
3218 		ffs_func_eps_disable(func);
3219 		ffs->func = NULL;
3220 	}
3221 
3222 	if (!--opts->refcnt)
3223 		functionfs_unbind(ffs);
3224 
3225 	/* cleanup after autoconfig */
3226 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3227 	do {
3228 		if (ep->ep && ep->req)
3229 			usb_ep_free_request(ep->ep, ep->req);
3230 		ep->req = NULL;
3231 		++ep;
3232 	} while (--count);
3233 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3234 	kfree(func->eps);
3235 	func->eps = NULL;
3236 	/*
3237 	 * eps, descriptors and interfaces_nums are allocated in the
3238 	 * same chunk so only one free is required.
3239 	 */
3240 	func->function.fs_descriptors = NULL;
3241 	func->function.hs_descriptors = NULL;
3242 	func->function.ss_descriptors = NULL;
3243 	func->interfaces_nums = NULL;
3244 
3245 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3246 }
3247 
3248 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3249 {
3250 	struct ffs_function *func;
3251 
3252 	ENTER();
3253 
3254 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3255 	if (unlikely(!func))
3256 		return ERR_PTR(-ENOMEM);
3257 
3258 	func->function.name    = "Function FS Gadget";
3259 
3260 	func->function.bind    = ffs_func_bind;
3261 	func->function.unbind  = ffs_func_unbind;
3262 	func->function.set_alt = ffs_func_set_alt;
3263 	func->function.disable = ffs_func_disable;
3264 	func->function.setup   = ffs_func_setup;
3265 	func->function.suspend = ffs_func_suspend;
3266 	func->function.resume  = ffs_func_resume;
3267 	func->function.free_func = ffs_free;
3268 
3269 	return &func->function;
3270 }
3271 
3272 /*
3273  * ffs_lock must be taken by the caller of this function
3274  */
3275 static struct ffs_dev *_ffs_alloc_dev(void)
3276 {
3277 	struct ffs_dev *dev;
3278 	int ret;
3279 
3280 	if (_ffs_get_single_dev())
3281 			return ERR_PTR(-EBUSY);
3282 
3283 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3284 	if (!dev)
3285 		return ERR_PTR(-ENOMEM);
3286 
3287 	if (list_empty(&ffs_devices)) {
3288 		ret = functionfs_init();
3289 		if (ret) {
3290 			kfree(dev);
3291 			return ERR_PTR(ret);
3292 		}
3293 	}
3294 
3295 	list_add(&dev->entry, &ffs_devices);
3296 
3297 	return dev;
3298 }
3299 
3300 /*
3301  * ffs_lock must be taken by the caller of this function
3302  * The caller is responsible for "name" being available whenever f_fs needs it
3303  */
3304 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3305 {
3306 	struct ffs_dev *existing;
3307 
3308 	existing = _ffs_do_find_dev(name);
3309 	if (existing)
3310 		return -EBUSY;
3311 
3312 	dev->name = name;
3313 
3314 	return 0;
3315 }
3316 
3317 /*
3318  * The caller is responsible for "name" being available whenever f_fs needs it
3319  */
3320 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3321 {
3322 	int ret;
3323 
3324 	ffs_dev_lock();
3325 	ret = _ffs_name_dev(dev, name);
3326 	ffs_dev_unlock();
3327 
3328 	return ret;
3329 }
3330 EXPORT_SYMBOL_GPL(ffs_name_dev);
3331 
3332 int ffs_single_dev(struct ffs_dev *dev)
3333 {
3334 	int ret;
3335 
3336 	ret = 0;
3337 	ffs_dev_lock();
3338 
3339 	if (!list_is_singular(&ffs_devices))
3340 		ret = -EBUSY;
3341 	else
3342 		dev->single = true;
3343 
3344 	ffs_dev_unlock();
3345 	return ret;
3346 }
3347 EXPORT_SYMBOL_GPL(ffs_single_dev);
3348 
3349 /*
3350  * ffs_lock must be taken by the caller of this function
3351  */
3352 static void _ffs_free_dev(struct ffs_dev *dev)
3353 {
3354 	list_del(&dev->entry);
3355 	if (dev->name_allocated)
3356 		kfree(dev->name);
3357 	kfree(dev);
3358 	if (list_empty(&ffs_devices))
3359 		functionfs_cleanup();
3360 }
3361 
3362 static void *ffs_acquire_dev(const char *dev_name)
3363 {
3364 	struct ffs_dev *ffs_dev;
3365 
3366 	ENTER();
3367 	ffs_dev_lock();
3368 
3369 	ffs_dev = _ffs_find_dev(dev_name);
3370 	if (!ffs_dev)
3371 		ffs_dev = ERR_PTR(-ENOENT);
3372 	else if (ffs_dev->mounted)
3373 		ffs_dev = ERR_PTR(-EBUSY);
3374 	else if (ffs_dev->ffs_acquire_dev_callback &&
3375 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3376 		ffs_dev = ERR_PTR(-ENOENT);
3377 	else
3378 		ffs_dev->mounted = true;
3379 
3380 	ffs_dev_unlock();
3381 	return ffs_dev;
3382 }
3383 
3384 static void ffs_release_dev(struct ffs_data *ffs_data)
3385 {
3386 	struct ffs_dev *ffs_dev;
3387 
3388 	ENTER();
3389 	ffs_dev_lock();
3390 
3391 	ffs_dev = ffs_data->private_data;
3392 	if (ffs_dev) {
3393 		ffs_dev->mounted = false;
3394 
3395 		if (ffs_dev->ffs_release_dev_callback)
3396 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3397 	}
3398 
3399 	ffs_dev_unlock();
3400 }
3401 
3402 static int ffs_ready(struct ffs_data *ffs)
3403 {
3404 	struct ffs_dev *ffs_obj;
3405 	int ret = 0;
3406 
3407 	ENTER();
3408 	ffs_dev_lock();
3409 
3410 	ffs_obj = ffs->private_data;
3411 	if (!ffs_obj) {
3412 		ret = -EINVAL;
3413 		goto done;
3414 	}
3415 	if (WARN_ON(ffs_obj->desc_ready)) {
3416 		ret = -EBUSY;
3417 		goto done;
3418 	}
3419 
3420 	ffs_obj->desc_ready = true;
3421 	ffs_obj->ffs_data = ffs;
3422 
3423 	if (ffs_obj->ffs_ready_callback) {
3424 		ret = ffs_obj->ffs_ready_callback(ffs);
3425 		if (ret)
3426 			goto done;
3427 	}
3428 
3429 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3430 done:
3431 	ffs_dev_unlock();
3432 	return ret;
3433 }
3434 
3435 static void ffs_closed(struct ffs_data *ffs)
3436 {
3437 	struct ffs_dev *ffs_obj;
3438 	struct f_fs_opts *opts;
3439 
3440 	ENTER();
3441 	ffs_dev_lock();
3442 
3443 	ffs_obj = ffs->private_data;
3444 	if (!ffs_obj)
3445 		goto done;
3446 
3447 	ffs_obj->desc_ready = false;
3448 
3449 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3450 	    ffs_obj->ffs_closed_callback)
3451 		ffs_obj->ffs_closed_callback(ffs);
3452 
3453 	if (ffs_obj->opts)
3454 		opts = ffs_obj->opts;
3455 	else
3456 		goto done;
3457 
3458 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3459 	    || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3460 		goto done;
3461 
3462 	unregister_gadget_item(ffs_obj->opts->
3463 			       func_inst.group.cg_item.ci_parent->ci_parent);
3464 done:
3465 	ffs_dev_unlock();
3466 }
3467 
3468 /* Misc helper functions ****************************************************/
3469 
3470 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3471 {
3472 	return nonblock
3473 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3474 		: mutex_lock_interruptible(mutex);
3475 }
3476 
3477 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3478 {
3479 	char *data;
3480 
3481 	if (unlikely(!len))
3482 		return NULL;
3483 
3484 	data = kmalloc(len, GFP_KERNEL);
3485 	if (unlikely(!data))
3486 		return ERR_PTR(-ENOMEM);
3487 
3488 	if (unlikely(__copy_from_user(data, buf, len))) {
3489 		kfree(data);
3490 		return ERR_PTR(-EFAULT);
3491 	}
3492 
3493 	pr_vdebug("Buffer from user space:\n");
3494 	ffs_dump_mem("", data, len);
3495 
3496 	return data;
3497 }
3498 
3499 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3500 MODULE_LICENSE("GPL");
3501 MODULE_AUTHOR("Michal Nazarewicz");
3502