1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/hid.h> 21 #include <linux/mm.h> 22 #include <linux/module.h> 23 #include <linux/scatterlist.h> 24 #include <linux/sched/signal.h> 25 #include <linux/uio.h> 26 #include <linux/vmalloc.h> 27 #include <asm/unaligned.h> 28 29 #include <linux/usb/ccid.h> 30 #include <linux/usb/composite.h> 31 #include <linux/usb/functionfs.h> 32 33 #include <linux/aio.h> 34 #include <linux/mmu_context.h> 35 #include <linux/poll.h> 36 #include <linux/eventfd.h> 37 38 #include "u_fs.h" 39 #include "u_f.h" 40 #include "u_os_desc.h" 41 #include "configfs.h" 42 43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 44 45 /* Reference counter handling */ 46 static void ffs_data_get(struct ffs_data *ffs); 47 static void ffs_data_put(struct ffs_data *ffs); 48 /* Creates new ffs_data object. */ 49 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 50 __attribute__((malloc)); 51 52 /* Opened counter handling. */ 53 static void ffs_data_opened(struct ffs_data *ffs); 54 static void ffs_data_closed(struct ffs_data *ffs); 55 56 /* Called with ffs->mutex held; take over ownership of data. */ 57 static int __must_check 58 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 59 static int __must_check 60 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 61 62 63 /* The function structure ***************************************************/ 64 65 struct ffs_ep; 66 67 struct ffs_function { 68 struct usb_configuration *conf; 69 struct usb_gadget *gadget; 70 struct ffs_data *ffs; 71 72 struct ffs_ep *eps; 73 u8 eps_revmap[16]; 74 short *interfaces_nums; 75 76 struct usb_function function; 77 }; 78 79 80 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 81 { 82 return container_of(f, struct ffs_function, function); 83 } 84 85 86 static inline enum ffs_setup_state 87 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 88 { 89 return (enum ffs_setup_state) 90 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 91 } 92 93 94 static void ffs_func_eps_disable(struct ffs_function *func); 95 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 96 97 static int ffs_func_bind(struct usb_configuration *, 98 struct usb_function *); 99 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 100 static void ffs_func_disable(struct usb_function *); 101 static int ffs_func_setup(struct usb_function *, 102 const struct usb_ctrlrequest *); 103 static bool ffs_func_req_match(struct usb_function *, 104 const struct usb_ctrlrequest *, 105 bool config0); 106 static void ffs_func_suspend(struct usb_function *); 107 static void ffs_func_resume(struct usb_function *); 108 109 110 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 111 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 112 113 114 /* The endpoints structures *************************************************/ 115 116 struct ffs_ep { 117 struct usb_ep *ep; /* P: ffs->eps_lock */ 118 struct usb_request *req; /* P: epfile->mutex */ 119 120 /* [0]: full speed, [1]: high speed, [2]: super speed */ 121 struct usb_endpoint_descriptor *descs[3]; 122 123 u8 num; 124 125 int status; /* P: epfile->mutex */ 126 }; 127 128 struct ffs_epfile { 129 /* Protects ep->ep and ep->req. */ 130 struct mutex mutex; 131 132 struct ffs_data *ffs; 133 struct ffs_ep *ep; /* P: ffs->eps_lock */ 134 135 struct dentry *dentry; 136 137 /* 138 * Buffer for holding data from partial reads which may happen since 139 * we’re rounding user read requests to a multiple of a max packet size. 140 * 141 * The pointer is initialised with NULL value and may be set by 142 * __ffs_epfile_read_data function to point to a temporary buffer. 143 * 144 * In normal operation, calls to __ffs_epfile_read_buffered will consume 145 * data from said buffer and eventually free it. Importantly, while the 146 * function is using the buffer, it sets the pointer to NULL. This is 147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 148 * can never run concurrently (they are synchronised by epfile->mutex) 149 * so the latter will not assign a new value to the pointer. 150 * 151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 153 * value is crux of the synchronisation between ffs_func_eps_disable and 154 * __ffs_epfile_read_data. 155 * 156 * Once __ffs_epfile_read_data is about to finish it will try to set the 157 * pointer back to its old value (as described above), but seeing as the 158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 159 * the buffer. 160 * 161 * == State transitions == 162 * 163 * • ptr == NULL: (initial state) 164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 165 * ◦ __ffs_epfile_read_buffered: nop 166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 167 * ◦ reading finishes: n/a, not in ‘and reading’ state 168 * • ptr == DROP: 169 * ◦ __ffs_epfile_read_buffer_free: nop 170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 172 * ◦ reading finishes: n/a, not in ‘and reading’ state 173 * • ptr == buf: 174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 177 * is always called first 178 * ◦ reading finishes: n/a, not in ‘and reading’ state 179 * • ptr == NULL and reading: 180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 182 * ◦ __ffs_epfile_read_data: n/a, mutex is held 183 * ◦ reading finishes and … 184 * … all data read: free buf, go to ptr == NULL 185 * … otherwise: go to ptr == buf and reading 186 * • ptr == DROP and reading: 187 * ◦ __ffs_epfile_read_buffer_free: nop 188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 189 * ◦ __ffs_epfile_read_data: n/a, mutex is held 190 * ◦ reading finishes: free buf, go to ptr == DROP 191 */ 192 struct ffs_buffer *read_buffer; 193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 194 195 char name[5]; 196 197 unsigned char in; /* P: ffs->eps_lock */ 198 unsigned char isoc; /* P: ffs->eps_lock */ 199 200 unsigned char _pad; 201 }; 202 203 struct ffs_buffer { 204 size_t length; 205 char *data; 206 char storage[]; 207 }; 208 209 /* ffs_io_data structure ***************************************************/ 210 211 struct ffs_io_data { 212 bool aio; 213 bool read; 214 215 struct kiocb *kiocb; 216 struct iov_iter data; 217 const void *to_free; 218 char *buf; 219 220 struct mm_struct *mm; 221 struct work_struct work; 222 223 struct usb_ep *ep; 224 struct usb_request *req; 225 struct sg_table sgt; 226 bool use_sg; 227 228 struct ffs_data *ffs; 229 }; 230 231 struct ffs_desc_helper { 232 struct ffs_data *ffs; 233 unsigned interfaces_count; 234 unsigned eps_count; 235 }; 236 237 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 238 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 239 240 static struct dentry * 241 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 242 const struct file_operations *fops); 243 244 /* Devices management *******************************************************/ 245 246 DEFINE_MUTEX(ffs_lock); 247 EXPORT_SYMBOL_GPL(ffs_lock); 248 249 static struct ffs_dev *_ffs_find_dev(const char *name); 250 static struct ffs_dev *_ffs_alloc_dev(void); 251 static void _ffs_free_dev(struct ffs_dev *dev); 252 static void *ffs_acquire_dev(const char *dev_name); 253 static void ffs_release_dev(struct ffs_data *ffs_data); 254 static int ffs_ready(struct ffs_data *ffs); 255 static void ffs_closed(struct ffs_data *ffs); 256 257 /* Misc helper functions ****************************************************/ 258 259 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 260 __attribute__((warn_unused_result, nonnull)); 261 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 262 __attribute__((warn_unused_result, nonnull)); 263 264 265 /* Control file aka ep0 *****************************************************/ 266 267 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 268 { 269 struct ffs_data *ffs = req->context; 270 271 complete(&ffs->ep0req_completion); 272 } 273 274 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 275 __releases(&ffs->ev.waitq.lock) 276 { 277 struct usb_request *req = ffs->ep0req; 278 int ret; 279 280 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 281 282 spin_unlock_irq(&ffs->ev.waitq.lock); 283 284 req->buf = data; 285 req->length = len; 286 287 /* 288 * UDC layer requires to provide a buffer even for ZLP, but should 289 * not use it at all. Let's provide some poisoned pointer to catch 290 * possible bug in the driver. 291 */ 292 if (req->buf == NULL) 293 req->buf = (void *)0xDEADBABE; 294 295 reinit_completion(&ffs->ep0req_completion); 296 297 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 298 if (unlikely(ret < 0)) 299 return ret; 300 301 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 302 if (unlikely(ret)) { 303 usb_ep_dequeue(ffs->gadget->ep0, req); 304 return -EINTR; 305 } 306 307 ffs->setup_state = FFS_NO_SETUP; 308 return req->status ? req->status : req->actual; 309 } 310 311 static int __ffs_ep0_stall(struct ffs_data *ffs) 312 { 313 if (ffs->ev.can_stall) { 314 pr_vdebug("ep0 stall\n"); 315 usb_ep_set_halt(ffs->gadget->ep0); 316 ffs->setup_state = FFS_NO_SETUP; 317 return -EL2HLT; 318 } else { 319 pr_debug("bogus ep0 stall!\n"); 320 return -ESRCH; 321 } 322 } 323 324 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 325 size_t len, loff_t *ptr) 326 { 327 struct ffs_data *ffs = file->private_data; 328 ssize_t ret; 329 char *data; 330 331 ENTER(); 332 333 /* Fast check if setup was canceled */ 334 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 335 return -EIDRM; 336 337 /* Acquire mutex */ 338 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 339 if (unlikely(ret < 0)) 340 return ret; 341 342 /* Check state */ 343 switch (ffs->state) { 344 case FFS_READ_DESCRIPTORS: 345 case FFS_READ_STRINGS: 346 /* Copy data */ 347 if (unlikely(len < 16)) { 348 ret = -EINVAL; 349 break; 350 } 351 352 data = ffs_prepare_buffer(buf, len); 353 if (IS_ERR(data)) { 354 ret = PTR_ERR(data); 355 break; 356 } 357 358 /* Handle data */ 359 if (ffs->state == FFS_READ_DESCRIPTORS) { 360 pr_info("read descriptors\n"); 361 ret = __ffs_data_got_descs(ffs, data, len); 362 if (unlikely(ret < 0)) 363 break; 364 365 ffs->state = FFS_READ_STRINGS; 366 ret = len; 367 } else { 368 pr_info("read strings\n"); 369 ret = __ffs_data_got_strings(ffs, data, len); 370 if (unlikely(ret < 0)) 371 break; 372 373 ret = ffs_epfiles_create(ffs); 374 if (unlikely(ret)) { 375 ffs->state = FFS_CLOSING; 376 break; 377 } 378 379 ffs->state = FFS_ACTIVE; 380 mutex_unlock(&ffs->mutex); 381 382 ret = ffs_ready(ffs); 383 if (unlikely(ret < 0)) { 384 ffs->state = FFS_CLOSING; 385 return ret; 386 } 387 388 return len; 389 } 390 break; 391 392 case FFS_ACTIVE: 393 data = NULL; 394 /* 395 * We're called from user space, we can use _irq 396 * rather then _irqsave 397 */ 398 spin_lock_irq(&ffs->ev.waitq.lock); 399 switch (ffs_setup_state_clear_cancelled(ffs)) { 400 case FFS_SETUP_CANCELLED: 401 ret = -EIDRM; 402 goto done_spin; 403 404 case FFS_NO_SETUP: 405 ret = -ESRCH; 406 goto done_spin; 407 408 case FFS_SETUP_PENDING: 409 break; 410 } 411 412 /* FFS_SETUP_PENDING */ 413 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 414 spin_unlock_irq(&ffs->ev.waitq.lock); 415 ret = __ffs_ep0_stall(ffs); 416 break; 417 } 418 419 /* FFS_SETUP_PENDING and not stall */ 420 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 421 422 spin_unlock_irq(&ffs->ev.waitq.lock); 423 424 data = ffs_prepare_buffer(buf, len); 425 if (IS_ERR(data)) { 426 ret = PTR_ERR(data); 427 break; 428 } 429 430 spin_lock_irq(&ffs->ev.waitq.lock); 431 432 /* 433 * We are guaranteed to be still in FFS_ACTIVE state 434 * but the state of setup could have changed from 435 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 436 * to check for that. If that happened we copied data 437 * from user space in vain but it's unlikely. 438 * 439 * For sure we are not in FFS_NO_SETUP since this is 440 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 441 * transition can be performed and it's protected by 442 * mutex. 443 */ 444 if (ffs_setup_state_clear_cancelled(ffs) == 445 FFS_SETUP_CANCELLED) { 446 ret = -EIDRM; 447 done_spin: 448 spin_unlock_irq(&ffs->ev.waitq.lock); 449 } else { 450 /* unlocks spinlock */ 451 ret = __ffs_ep0_queue_wait(ffs, data, len); 452 } 453 kfree(data); 454 break; 455 456 default: 457 ret = -EBADFD; 458 break; 459 } 460 461 mutex_unlock(&ffs->mutex); 462 return ret; 463 } 464 465 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 466 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 467 size_t n) 468 __releases(&ffs->ev.waitq.lock) 469 { 470 /* 471 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 472 * size of ffs->ev.types array (which is four) so that's how much space 473 * we reserve. 474 */ 475 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 476 const size_t size = n * sizeof *events; 477 unsigned i = 0; 478 479 memset(events, 0, size); 480 481 do { 482 events[i].type = ffs->ev.types[i]; 483 if (events[i].type == FUNCTIONFS_SETUP) { 484 events[i].u.setup = ffs->ev.setup; 485 ffs->setup_state = FFS_SETUP_PENDING; 486 } 487 } while (++i < n); 488 489 ffs->ev.count -= n; 490 if (ffs->ev.count) 491 memmove(ffs->ev.types, ffs->ev.types + n, 492 ffs->ev.count * sizeof *ffs->ev.types); 493 494 spin_unlock_irq(&ffs->ev.waitq.lock); 495 mutex_unlock(&ffs->mutex); 496 497 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 498 } 499 500 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 501 size_t len, loff_t *ptr) 502 { 503 struct ffs_data *ffs = file->private_data; 504 char *data = NULL; 505 size_t n; 506 int ret; 507 508 ENTER(); 509 510 /* Fast check if setup was canceled */ 511 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 512 return -EIDRM; 513 514 /* Acquire mutex */ 515 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 516 if (unlikely(ret < 0)) 517 return ret; 518 519 /* Check state */ 520 if (ffs->state != FFS_ACTIVE) { 521 ret = -EBADFD; 522 goto done_mutex; 523 } 524 525 /* 526 * We're called from user space, we can use _irq rather then 527 * _irqsave 528 */ 529 spin_lock_irq(&ffs->ev.waitq.lock); 530 531 switch (ffs_setup_state_clear_cancelled(ffs)) { 532 case FFS_SETUP_CANCELLED: 533 ret = -EIDRM; 534 break; 535 536 case FFS_NO_SETUP: 537 n = len / sizeof(struct usb_functionfs_event); 538 if (unlikely(!n)) { 539 ret = -EINVAL; 540 break; 541 } 542 543 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 544 ret = -EAGAIN; 545 break; 546 } 547 548 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 549 ffs->ev.count)) { 550 ret = -EINTR; 551 break; 552 } 553 554 /* unlocks spinlock */ 555 return __ffs_ep0_read_events(ffs, buf, 556 min(n, (size_t)ffs->ev.count)); 557 558 case FFS_SETUP_PENDING: 559 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 560 spin_unlock_irq(&ffs->ev.waitq.lock); 561 ret = __ffs_ep0_stall(ffs); 562 goto done_mutex; 563 } 564 565 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 566 567 spin_unlock_irq(&ffs->ev.waitq.lock); 568 569 if (likely(len)) { 570 data = kmalloc(len, GFP_KERNEL); 571 if (unlikely(!data)) { 572 ret = -ENOMEM; 573 goto done_mutex; 574 } 575 } 576 577 spin_lock_irq(&ffs->ev.waitq.lock); 578 579 /* See ffs_ep0_write() */ 580 if (ffs_setup_state_clear_cancelled(ffs) == 581 FFS_SETUP_CANCELLED) { 582 ret = -EIDRM; 583 break; 584 } 585 586 /* unlocks spinlock */ 587 ret = __ffs_ep0_queue_wait(ffs, data, len); 588 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 589 ret = -EFAULT; 590 goto done_mutex; 591 592 default: 593 ret = -EBADFD; 594 break; 595 } 596 597 spin_unlock_irq(&ffs->ev.waitq.lock); 598 done_mutex: 599 mutex_unlock(&ffs->mutex); 600 kfree(data); 601 return ret; 602 } 603 604 static int ffs_ep0_open(struct inode *inode, struct file *file) 605 { 606 struct ffs_data *ffs = inode->i_private; 607 608 ENTER(); 609 610 if (unlikely(ffs->state == FFS_CLOSING)) 611 return -EBUSY; 612 613 file->private_data = ffs; 614 ffs_data_opened(ffs); 615 616 return 0; 617 } 618 619 static int ffs_ep0_release(struct inode *inode, struct file *file) 620 { 621 struct ffs_data *ffs = file->private_data; 622 623 ENTER(); 624 625 ffs_data_closed(ffs); 626 627 return 0; 628 } 629 630 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 631 { 632 struct ffs_data *ffs = file->private_data; 633 struct usb_gadget *gadget = ffs->gadget; 634 long ret; 635 636 ENTER(); 637 638 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 639 struct ffs_function *func = ffs->func; 640 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 641 } else if (gadget && gadget->ops->ioctl) { 642 ret = gadget->ops->ioctl(gadget, code, value); 643 } else { 644 ret = -ENOTTY; 645 } 646 647 return ret; 648 } 649 650 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 651 { 652 struct ffs_data *ffs = file->private_data; 653 __poll_t mask = EPOLLWRNORM; 654 int ret; 655 656 poll_wait(file, &ffs->ev.waitq, wait); 657 658 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 659 if (unlikely(ret < 0)) 660 return mask; 661 662 switch (ffs->state) { 663 case FFS_READ_DESCRIPTORS: 664 case FFS_READ_STRINGS: 665 mask |= EPOLLOUT; 666 break; 667 668 case FFS_ACTIVE: 669 switch (ffs->setup_state) { 670 case FFS_NO_SETUP: 671 if (ffs->ev.count) 672 mask |= EPOLLIN; 673 break; 674 675 case FFS_SETUP_PENDING: 676 case FFS_SETUP_CANCELLED: 677 mask |= (EPOLLIN | EPOLLOUT); 678 break; 679 } 680 case FFS_CLOSING: 681 break; 682 case FFS_DEACTIVATED: 683 break; 684 } 685 686 mutex_unlock(&ffs->mutex); 687 688 return mask; 689 } 690 691 static const struct file_operations ffs_ep0_operations = { 692 .llseek = no_llseek, 693 694 .open = ffs_ep0_open, 695 .write = ffs_ep0_write, 696 .read = ffs_ep0_read, 697 .release = ffs_ep0_release, 698 .unlocked_ioctl = ffs_ep0_ioctl, 699 .poll = ffs_ep0_poll, 700 }; 701 702 703 /* "Normal" endpoints operations ********************************************/ 704 705 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 706 { 707 ENTER(); 708 if (likely(req->context)) { 709 struct ffs_ep *ep = _ep->driver_data; 710 ep->status = req->status ? req->status : req->actual; 711 complete(req->context); 712 } 713 } 714 715 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 716 { 717 ssize_t ret = copy_to_iter(data, data_len, iter); 718 if (likely(ret == data_len)) 719 return ret; 720 721 if (unlikely(iov_iter_count(iter))) 722 return -EFAULT; 723 724 /* 725 * Dear user space developer! 726 * 727 * TL;DR: To stop getting below error message in your kernel log, change 728 * user space code using functionfs to align read buffers to a max 729 * packet size. 730 * 731 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 732 * packet size. When unaligned buffer is passed to functionfs, it 733 * internally uses a larger, aligned buffer so that such UDCs are happy. 734 * 735 * Unfortunately, this means that host may send more data than was 736 * requested in read(2) system call. f_fs doesn’t know what to do with 737 * that excess data so it simply drops it. 738 * 739 * Was the buffer aligned in the first place, no such problem would 740 * happen. 741 * 742 * Data may be dropped only in AIO reads. Synchronous reads are handled 743 * by splitting a request into multiple parts. This splitting may still 744 * be a problem though so it’s likely best to align the buffer 745 * regardless of it being AIO or not.. 746 * 747 * This only affects OUT endpoints, i.e. reading data with a read(2), 748 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 749 * affected. 750 */ 751 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 752 "Align read buffer size to max packet size to avoid the problem.\n", 753 data_len, ret); 754 755 return ret; 756 } 757 758 /* 759 * allocate a virtually contiguous buffer and create a scatterlist describing it 760 * @sg_table - pointer to a place to be filled with sg_table contents 761 * @size - required buffer size 762 */ 763 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 764 { 765 struct page **pages; 766 void *vaddr, *ptr; 767 unsigned int n_pages; 768 int i; 769 770 vaddr = vmalloc(sz); 771 if (!vaddr) 772 return NULL; 773 774 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 775 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 776 if (!pages) { 777 vfree(vaddr); 778 779 return NULL; 780 } 781 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 782 pages[i] = vmalloc_to_page(ptr); 783 784 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 785 kvfree(pages); 786 vfree(vaddr); 787 788 return NULL; 789 } 790 kvfree(pages); 791 792 return vaddr; 793 } 794 795 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 796 size_t data_len) 797 { 798 if (io_data->use_sg) 799 return ffs_build_sg_list(&io_data->sgt, data_len); 800 801 return kmalloc(data_len, GFP_KERNEL); 802 } 803 804 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 805 { 806 if (!io_data->buf) 807 return; 808 809 if (io_data->use_sg) { 810 sg_free_table(&io_data->sgt); 811 vfree(io_data->buf); 812 } else { 813 kfree(io_data->buf); 814 } 815 } 816 817 static void ffs_user_copy_worker(struct work_struct *work) 818 { 819 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 820 work); 821 int ret = io_data->req->status ? io_data->req->status : 822 io_data->req->actual; 823 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 824 825 if (io_data->read && ret > 0) { 826 mm_segment_t oldfs = get_fs(); 827 828 set_fs(USER_DS); 829 use_mm(io_data->mm); 830 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 831 unuse_mm(io_data->mm); 832 set_fs(oldfs); 833 } 834 835 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 836 837 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 838 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 839 840 usb_ep_free_request(io_data->ep, io_data->req); 841 842 if (io_data->read) 843 kfree(io_data->to_free); 844 ffs_free_buffer(io_data); 845 kfree(io_data); 846 } 847 848 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 849 struct usb_request *req) 850 { 851 struct ffs_io_data *io_data = req->context; 852 struct ffs_data *ffs = io_data->ffs; 853 854 ENTER(); 855 856 INIT_WORK(&io_data->work, ffs_user_copy_worker); 857 queue_work(ffs->io_completion_wq, &io_data->work); 858 } 859 860 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 861 { 862 /* 863 * See comment in struct ffs_epfile for full read_buffer pointer 864 * synchronisation story. 865 */ 866 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 867 if (buf && buf != READ_BUFFER_DROP) 868 kfree(buf); 869 } 870 871 /* Assumes epfile->mutex is held. */ 872 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 873 struct iov_iter *iter) 874 { 875 /* 876 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 877 * the buffer while we are using it. See comment in struct ffs_epfile 878 * for full read_buffer pointer synchronisation story. 879 */ 880 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 881 ssize_t ret; 882 if (!buf || buf == READ_BUFFER_DROP) 883 return 0; 884 885 ret = copy_to_iter(buf->data, buf->length, iter); 886 if (buf->length == ret) { 887 kfree(buf); 888 return ret; 889 } 890 891 if (unlikely(iov_iter_count(iter))) { 892 ret = -EFAULT; 893 } else { 894 buf->length -= ret; 895 buf->data += ret; 896 } 897 898 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 899 kfree(buf); 900 901 return ret; 902 } 903 904 /* Assumes epfile->mutex is held. */ 905 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 906 void *data, int data_len, 907 struct iov_iter *iter) 908 { 909 struct ffs_buffer *buf; 910 911 ssize_t ret = copy_to_iter(data, data_len, iter); 912 if (likely(data_len == ret)) 913 return ret; 914 915 if (unlikely(iov_iter_count(iter))) 916 return -EFAULT; 917 918 /* See ffs_copy_to_iter for more context. */ 919 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 920 data_len, ret); 921 922 data_len -= ret; 923 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 924 if (!buf) 925 return -ENOMEM; 926 buf->length = data_len; 927 buf->data = buf->storage; 928 memcpy(buf->storage, data + ret, data_len); 929 930 /* 931 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 932 * ffs_func_eps_disable has been called in the meanwhile). See comment 933 * in struct ffs_epfile for full read_buffer pointer synchronisation 934 * story. 935 */ 936 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 937 kfree(buf); 938 939 return ret; 940 } 941 942 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 943 { 944 struct ffs_epfile *epfile = file->private_data; 945 struct usb_request *req; 946 struct ffs_ep *ep; 947 char *data = NULL; 948 ssize_t ret, data_len = -EINVAL; 949 int halt; 950 951 /* Are we still active? */ 952 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 953 return -ENODEV; 954 955 /* Wait for endpoint to be enabled */ 956 ep = epfile->ep; 957 if (!ep) { 958 if (file->f_flags & O_NONBLOCK) 959 return -EAGAIN; 960 961 ret = wait_event_interruptible( 962 epfile->ffs->wait, (ep = epfile->ep)); 963 if (ret) 964 return -EINTR; 965 } 966 967 /* Do we halt? */ 968 halt = (!io_data->read == !epfile->in); 969 if (halt && epfile->isoc) 970 return -EINVAL; 971 972 /* We will be using request and read_buffer */ 973 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 974 if (unlikely(ret)) 975 goto error; 976 977 /* Allocate & copy */ 978 if (!halt) { 979 struct usb_gadget *gadget; 980 981 /* 982 * Do we have buffered data from previous partial read? Check 983 * that for synchronous case only because we do not have 984 * facility to ‘wake up’ a pending asynchronous read and push 985 * buffered data to it which we would need to make things behave 986 * consistently. 987 */ 988 if (!io_data->aio && io_data->read) { 989 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 990 if (ret) 991 goto error_mutex; 992 } 993 994 /* 995 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 996 * before the waiting completes, so do not assign to 'gadget' 997 * earlier 998 */ 999 gadget = epfile->ffs->gadget; 1000 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1001 1002 spin_lock_irq(&epfile->ffs->eps_lock); 1003 /* In the meantime, endpoint got disabled or changed. */ 1004 if (epfile->ep != ep) { 1005 ret = -ESHUTDOWN; 1006 goto error_lock; 1007 } 1008 data_len = iov_iter_count(&io_data->data); 1009 /* 1010 * Controller may require buffer size to be aligned to 1011 * maxpacketsize of an out endpoint. 1012 */ 1013 if (io_data->read) 1014 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1015 spin_unlock_irq(&epfile->ffs->eps_lock); 1016 1017 data = ffs_alloc_buffer(io_data, data_len); 1018 if (unlikely(!data)) { 1019 ret = -ENOMEM; 1020 goto error_mutex; 1021 } 1022 if (!io_data->read && 1023 !copy_from_iter_full(data, data_len, &io_data->data)) { 1024 ret = -EFAULT; 1025 goto error_mutex; 1026 } 1027 } 1028 1029 spin_lock_irq(&epfile->ffs->eps_lock); 1030 1031 if (epfile->ep != ep) { 1032 /* In the meantime, endpoint got disabled or changed. */ 1033 ret = -ESHUTDOWN; 1034 } else if (halt) { 1035 ret = usb_ep_set_halt(ep->ep); 1036 if (!ret) 1037 ret = -EBADMSG; 1038 } else if (unlikely(data_len == -EINVAL)) { 1039 /* 1040 * Sanity Check: even though data_len can't be used 1041 * uninitialized at the time I write this comment, some 1042 * compilers complain about this situation. 1043 * In order to keep the code clean from warnings, data_len is 1044 * being initialized to -EINVAL during its declaration, which 1045 * means we can't rely on compiler anymore to warn no future 1046 * changes won't result in data_len being used uninitialized. 1047 * For such reason, we're adding this redundant sanity check 1048 * here. 1049 */ 1050 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1051 ret = -EINVAL; 1052 } else if (!io_data->aio) { 1053 DECLARE_COMPLETION_ONSTACK(done); 1054 bool interrupted = false; 1055 1056 req = ep->req; 1057 if (io_data->use_sg) { 1058 req->buf = NULL; 1059 req->sg = io_data->sgt.sgl; 1060 req->num_sgs = io_data->sgt.nents; 1061 } else { 1062 req->buf = data; 1063 } 1064 req->length = data_len; 1065 1066 io_data->buf = data; 1067 1068 req->context = &done; 1069 req->complete = ffs_epfile_io_complete; 1070 1071 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1072 if (unlikely(ret < 0)) 1073 goto error_lock; 1074 1075 spin_unlock_irq(&epfile->ffs->eps_lock); 1076 1077 if (unlikely(wait_for_completion_interruptible(&done))) { 1078 /* 1079 * To avoid race condition with ffs_epfile_io_complete, 1080 * dequeue the request first then check 1081 * status. usb_ep_dequeue API should guarantee no race 1082 * condition with req->complete callback. 1083 */ 1084 usb_ep_dequeue(ep->ep, req); 1085 interrupted = ep->status < 0; 1086 } 1087 1088 if (interrupted) 1089 ret = -EINTR; 1090 else if (io_data->read && ep->status > 0) 1091 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1092 &io_data->data); 1093 else 1094 ret = ep->status; 1095 goto error_mutex; 1096 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1097 ret = -ENOMEM; 1098 } else { 1099 if (io_data->use_sg) { 1100 req->buf = NULL; 1101 req->sg = io_data->sgt.sgl; 1102 req->num_sgs = io_data->sgt.nents; 1103 } else { 1104 req->buf = data; 1105 } 1106 req->length = data_len; 1107 1108 io_data->buf = data; 1109 io_data->ep = ep->ep; 1110 io_data->req = req; 1111 io_data->ffs = epfile->ffs; 1112 1113 req->context = io_data; 1114 req->complete = ffs_epfile_async_io_complete; 1115 1116 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1117 if (unlikely(ret)) { 1118 usb_ep_free_request(ep->ep, req); 1119 goto error_lock; 1120 } 1121 1122 ret = -EIOCBQUEUED; 1123 /* 1124 * Do not kfree the buffer in this function. It will be freed 1125 * by ffs_user_copy_worker. 1126 */ 1127 data = NULL; 1128 } 1129 1130 error_lock: 1131 spin_unlock_irq(&epfile->ffs->eps_lock); 1132 error_mutex: 1133 mutex_unlock(&epfile->mutex); 1134 error: 1135 ffs_free_buffer(io_data); 1136 return ret; 1137 } 1138 1139 static int 1140 ffs_epfile_open(struct inode *inode, struct file *file) 1141 { 1142 struct ffs_epfile *epfile = inode->i_private; 1143 1144 ENTER(); 1145 1146 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1147 return -ENODEV; 1148 1149 file->private_data = epfile; 1150 ffs_data_opened(epfile->ffs); 1151 1152 return 0; 1153 } 1154 1155 static int ffs_aio_cancel(struct kiocb *kiocb) 1156 { 1157 struct ffs_io_data *io_data = kiocb->private; 1158 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1159 int value; 1160 1161 ENTER(); 1162 1163 spin_lock_irq(&epfile->ffs->eps_lock); 1164 1165 if (likely(io_data && io_data->ep && io_data->req)) 1166 value = usb_ep_dequeue(io_data->ep, io_data->req); 1167 else 1168 value = -EINVAL; 1169 1170 spin_unlock_irq(&epfile->ffs->eps_lock); 1171 1172 return value; 1173 } 1174 1175 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1176 { 1177 struct ffs_io_data io_data, *p = &io_data; 1178 ssize_t res; 1179 1180 ENTER(); 1181 1182 if (!is_sync_kiocb(kiocb)) { 1183 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1184 if (unlikely(!p)) 1185 return -ENOMEM; 1186 p->aio = true; 1187 } else { 1188 p->aio = false; 1189 } 1190 1191 p->read = false; 1192 p->kiocb = kiocb; 1193 p->data = *from; 1194 p->mm = current->mm; 1195 1196 kiocb->private = p; 1197 1198 if (p->aio) 1199 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1200 1201 res = ffs_epfile_io(kiocb->ki_filp, p); 1202 if (res == -EIOCBQUEUED) 1203 return res; 1204 if (p->aio) 1205 kfree(p); 1206 else 1207 *from = p->data; 1208 return res; 1209 } 1210 1211 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1212 { 1213 struct ffs_io_data io_data, *p = &io_data; 1214 ssize_t res; 1215 1216 ENTER(); 1217 1218 if (!is_sync_kiocb(kiocb)) { 1219 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1220 if (unlikely(!p)) 1221 return -ENOMEM; 1222 p->aio = true; 1223 } else { 1224 p->aio = false; 1225 } 1226 1227 p->read = true; 1228 p->kiocb = kiocb; 1229 if (p->aio) { 1230 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1231 if (!p->to_free) { 1232 kfree(p); 1233 return -ENOMEM; 1234 } 1235 } else { 1236 p->data = *to; 1237 p->to_free = NULL; 1238 } 1239 p->mm = current->mm; 1240 1241 kiocb->private = p; 1242 1243 if (p->aio) 1244 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1245 1246 res = ffs_epfile_io(kiocb->ki_filp, p); 1247 if (res == -EIOCBQUEUED) 1248 return res; 1249 1250 if (p->aio) { 1251 kfree(p->to_free); 1252 kfree(p); 1253 } else { 1254 *to = p->data; 1255 } 1256 return res; 1257 } 1258 1259 static int 1260 ffs_epfile_release(struct inode *inode, struct file *file) 1261 { 1262 struct ffs_epfile *epfile = inode->i_private; 1263 1264 ENTER(); 1265 1266 __ffs_epfile_read_buffer_free(epfile); 1267 ffs_data_closed(epfile->ffs); 1268 1269 return 0; 1270 } 1271 1272 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1273 unsigned long value) 1274 { 1275 struct ffs_epfile *epfile = file->private_data; 1276 struct ffs_ep *ep; 1277 int ret; 1278 1279 ENTER(); 1280 1281 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1282 return -ENODEV; 1283 1284 /* Wait for endpoint to be enabled */ 1285 ep = epfile->ep; 1286 if (!ep) { 1287 if (file->f_flags & O_NONBLOCK) 1288 return -EAGAIN; 1289 1290 ret = wait_event_interruptible( 1291 epfile->ffs->wait, (ep = epfile->ep)); 1292 if (ret) 1293 return -EINTR; 1294 } 1295 1296 spin_lock_irq(&epfile->ffs->eps_lock); 1297 1298 /* In the meantime, endpoint got disabled or changed. */ 1299 if (epfile->ep != ep) { 1300 spin_unlock_irq(&epfile->ffs->eps_lock); 1301 return -ESHUTDOWN; 1302 } 1303 1304 switch (code) { 1305 case FUNCTIONFS_FIFO_STATUS: 1306 ret = usb_ep_fifo_status(epfile->ep->ep); 1307 break; 1308 case FUNCTIONFS_FIFO_FLUSH: 1309 usb_ep_fifo_flush(epfile->ep->ep); 1310 ret = 0; 1311 break; 1312 case FUNCTIONFS_CLEAR_HALT: 1313 ret = usb_ep_clear_halt(epfile->ep->ep); 1314 break; 1315 case FUNCTIONFS_ENDPOINT_REVMAP: 1316 ret = epfile->ep->num; 1317 break; 1318 case FUNCTIONFS_ENDPOINT_DESC: 1319 { 1320 int desc_idx; 1321 struct usb_endpoint_descriptor *desc; 1322 1323 switch (epfile->ffs->gadget->speed) { 1324 case USB_SPEED_SUPER: 1325 desc_idx = 2; 1326 break; 1327 case USB_SPEED_HIGH: 1328 desc_idx = 1; 1329 break; 1330 default: 1331 desc_idx = 0; 1332 } 1333 desc = epfile->ep->descs[desc_idx]; 1334 1335 spin_unlock_irq(&epfile->ffs->eps_lock); 1336 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1337 if (ret) 1338 ret = -EFAULT; 1339 return ret; 1340 } 1341 default: 1342 ret = -ENOTTY; 1343 } 1344 spin_unlock_irq(&epfile->ffs->eps_lock); 1345 1346 return ret; 1347 } 1348 1349 #ifdef CONFIG_COMPAT 1350 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code, 1351 unsigned long value) 1352 { 1353 return ffs_epfile_ioctl(file, code, value); 1354 } 1355 #endif 1356 1357 static const struct file_operations ffs_epfile_operations = { 1358 .llseek = no_llseek, 1359 1360 .open = ffs_epfile_open, 1361 .write_iter = ffs_epfile_write_iter, 1362 .read_iter = ffs_epfile_read_iter, 1363 .release = ffs_epfile_release, 1364 .unlocked_ioctl = ffs_epfile_ioctl, 1365 #ifdef CONFIG_COMPAT 1366 .compat_ioctl = ffs_epfile_compat_ioctl, 1367 #endif 1368 }; 1369 1370 1371 /* File system and super block operations ***********************************/ 1372 1373 /* 1374 * Mounting the file system creates a controller file, used first for 1375 * function configuration then later for event monitoring. 1376 */ 1377 1378 static struct inode *__must_check 1379 ffs_sb_make_inode(struct super_block *sb, void *data, 1380 const struct file_operations *fops, 1381 const struct inode_operations *iops, 1382 struct ffs_file_perms *perms) 1383 { 1384 struct inode *inode; 1385 1386 ENTER(); 1387 1388 inode = new_inode(sb); 1389 1390 if (likely(inode)) { 1391 struct timespec64 ts = current_time(inode); 1392 1393 inode->i_ino = get_next_ino(); 1394 inode->i_mode = perms->mode; 1395 inode->i_uid = perms->uid; 1396 inode->i_gid = perms->gid; 1397 inode->i_atime = ts; 1398 inode->i_mtime = ts; 1399 inode->i_ctime = ts; 1400 inode->i_private = data; 1401 if (fops) 1402 inode->i_fop = fops; 1403 if (iops) 1404 inode->i_op = iops; 1405 } 1406 1407 return inode; 1408 } 1409 1410 /* Create "regular" file */ 1411 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1412 const char *name, void *data, 1413 const struct file_operations *fops) 1414 { 1415 struct ffs_data *ffs = sb->s_fs_info; 1416 struct dentry *dentry; 1417 struct inode *inode; 1418 1419 ENTER(); 1420 1421 dentry = d_alloc_name(sb->s_root, name); 1422 if (unlikely(!dentry)) 1423 return NULL; 1424 1425 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1426 if (unlikely(!inode)) { 1427 dput(dentry); 1428 return NULL; 1429 } 1430 1431 d_add(dentry, inode); 1432 return dentry; 1433 } 1434 1435 /* Super block */ 1436 static const struct super_operations ffs_sb_operations = { 1437 .statfs = simple_statfs, 1438 .drop_inode = generic_delete_inode, 1439 }; 1440 1441 struct ffs_sb_fill_data { 1442 struct ffs_file_perms perms; 1443 umode_t root_mode; 1444 const char *dev_name; 1445 bool no_disconnect; 1446 struct ffs_data *ffs_data; 1447 }; 1448 1449 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1450 { 1451 struct ffs_sb_fill_data *data = _data; 1452 struct inode *inode; 1453 struct ffs_data *ffs = data->ffs_data; 1454 1455 ENTER(); 1456 1457 ffs->sb = sb; 1458 data->ffs_data = NULL; 1459 sb->s_fs_info = ffs; 1460 sb->s_blocksize = PAGE_SIZE; 1461 sb->s_blocksize_bits = PAGE_SHIFT; 1462 sb->s_magic = FUNCTIONFS_MAGIC; 1463 sb->s_op = &ffs_sb_operations; 1464 sb->s_time_gran = 1; 1465 1466 /* Root inode */ 1467 data->perms.mode = data->root_mode; 1468 inode = ffs_sb_make_inode(sb, NULL, 1469 &simple_dir_operations, 1470 &simple_dir_inode_operations, 1471 &data->perms); 1472 sb->s_root = d_make_root(inode); 1473 if (unlikely(!sb->s_root)) 1474 return -ENOMEM; 1475 1476 /* EP0 file */ 1477 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1478 &ffs_ep0_operations))) 1479 return -ENOMEM; 1480 1481 return 0; 1482 } 1483 1484 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1485 { 1486 ENTER(); 1487 1488 if (!opts || !*opts) 1489 return 0; 1490 1491 for (;;) { 1492 unsigned long value; 1493 char *eq, *comma; 1494 1495 /* Option limit */ 1496 comma = strchr(opts, ','); 1497 if (comma) 1498 *comma = 0; 1499 1500 /* Value limit */ 1501 eq = strchr(opts, '='); 1502 if (unlikely(!eq)) { 1503 pr_err("'=' missing in %s\n", opts); 1504 return -EINVAL; 1505 } 1506 *eq = 0; 1507 1508 /* Parse value */ 1509 if (kstrtoul(eq + 1, 0, &value)) { 1510 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1511 return -EINVAL; 1512 } 1513 1514 /* Interpret option */ 1515 switch (eq - opts) { 1516 case 13: 1517 if (!memcmp(opts, "no_disconnect", 13)) 1518 data->no_disconnect = !!value; 1519 else 1520 goto invalid; 1521 break; 1522 case 5: 1523 if (!memcmp(opts, "rmode", 5)) 1524 data->root_mode = (value & 0555) | S_IFDIR; 1525 else if (!memcmp(opts, "fmode", 5)) 1526 data->perms.mode = (value & 0666) | S_IFREG; 1527 else 1528 goto invalid; 1529 break; 1530 1531 case 4: 1532 if (!memcmp(opts, "mode", 4)) { 1533 data->root_mode = (value & 0555) | S_IFDIR; 1534 data->perms.mode = (value & 0666) | S_IFREG; 1535 } else { 1536 goto invalid; 1537 } 1538 break; 1539 1540 case 3: 1541 if (!memcmp(opts, "uid", 3)) { 1542 data->perms.uid = make_kuid(current_user_ns(), value); 1543 if (!uid_valid(data->perms.uid)) { 1544 pr_err("%s: unmapped value: %lu\n", opts, value); 1545 return -EINVAL; 1546 } 1547 } else if (!memcmp(opts, "gid", 3)) { 1548 data->perms.gid = make_kgid(current_user_ns(), value); 1549 if (!gid_valid(data->perms.gid)) { 1550 pr_err("%s: unmapped value: %lu\n", opts, value); 1551 return -EINVAL; 1552 } 1553 } else { 1554 goto invalid; 1555 } 1556 break; 1557 1558 default: 1559 invalid: 1560 pr_err("%s: invalid option\n", opts); 1561 return -EINVAL; 1562 } 1563 1564 /* Next iteration */ 1565 if (!comma) 1566 break; 1567 opts = comma + 1; 1568 } 1569 1570 return 0; 1571 } 1572 1573 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1574 1575 static struct dentry * 1576 ffs_fs_mount(struct file_system_type *t, int flags, 1577 const char *dev_name, void *opts) 1578 { 1579 struct ffs_sb_fill_data data = { 1580 .perms = { 1581 .mode = S_IFREG | 0600, 1582 .uid = GLOBAL_ROOT_UID, 1583 .gid = GLOBAL_ROOT_GID, 1584 }, 1585 .root_mode = S_IFDIR | 0500, 1586 .no_disconnect = false, 1587 }; 1588 struct dentry *rv; 1589 int ret; 1590 void *ffs_dev; 1591 struct ffs_data *ffs; 1592 1593 ENTER(); 1594 1595 ret = ffs_fs_parse_opts(&data, opts); 1596 if (unlikely(ret < 0)) 1597 return ERR_PTR(ret); 1598 1599 ffs = ffs_data_new(dev_name); 1600 if (unlikely(!ffs)) 1601 return ERR_PTR(-ENOMEM); 1602 ffs->file_perms = data.perms; 1603 ffs->no_disconnect = data.no_disconnect; 1604 1605 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1606 if (unlikely(!ffs->dev_name)) { 1607 ffs_data_put(ffs); 1608 return ERR_PTR(-ENOMEM); 1609 } 1610 1611 ffs_dev = ffs_acquire_dev(dev_name); 1612 if (IS_ERR(ffs_dev)) { 1613 ffs_data_put(ffs); 1614 return ERR_CAST(ffs_dev); 1615 } 1616 ffs->private_data = ffs_dev; 1617 data.ffs_data = ffs; 1618 1619 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1620 if (IS_ERR(rv) && data.ffs_data) { 1621 ffs_release_dev(data.ffs_data); 1622 ffs_data_put(data.ffs_data); 1623 } 1624 return rv; 1625 } 1626 1627 static void 1628 ffs_fs_kill_sb(struct super_block *sb) 1629 { 1630 ENTER(); 1631 1632 kill_litter_super(sb); 1633 if (sb->s_fs_info) { 1634 ffs_release_dev(sb->s_fs_info); 1635 ffs_data_closed(sb->s_fs_info); 1636 } 1637 } 1638 1639 static struct file_system_type ffs_fs_type = { 1640 .owner = THIS_MODULE, 1641 .name = "functionfs", 1642 .mount = ffs_fs_mount, 1643 .kill_sb = ffs_fs_kill_sb, 1644 }; 1645 MODULE_ALIAS_FS("functionfs"); 1646 1647 1648 /* Driver's main init/cleanup functions *************************************/ 1649 1650 static int functionfs_init(void) 1651 { 1652 int ret; 1653 1654 ENTER(); 1655 1656 ret = register_filesystem(&ffs_fs_type); 1657 if (likely(!ret)) 1658 pr_info("file system registered\n"); 1659 else 1660 pr_err("failed registering file system (%d)\n", ret); 1661 1662 return ret; 1663 } 1664 1665 static void functionfs_cleanup(void) 1666 { 1667 ENTER(); 1668 1669 pr_info("unloading\n"); 1670 unregister_filesystem(&ffs_fs_type); 1671 } 1672 1673 1674 /* ffs_data and ffs_function construction and destruction code **************/ 1675 1676 static void ffs_data_clear(struct ffs_data *ffs); 1677 static void ffs_data_reset(struct ffs_data *ffs); 1678 1679 static void ffs_data_get(struct ffs_data *ffs) 1680 { 1681 ENTER(); 1682 1683 refcount_inc(&ffs->ref); 1684 } 1685 1686 static void ffs_data_opened(struct ffs_data *ffs) 1687 { 1688 ENTER(); 1689 1690 refcount_inc(&ffs->ref); 1691 if (atomic_add_return(1, &ffs->opened) == 1 && 1692 ffs->state == FFS_DEACTIVATED) { 1693 ffs->state = FFS_CLOSING; 1694 ffs_data_reset(ffs); 1695 } 1696 } 1697 1698 static void ffs_data_put(struct ffs_data *ffs) 1699 { 1700 ENTER(); 1701 1702 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1703 pr_info("%s(): freeing\n", __func__); 1704 ffs_data_clear(ffs); 1705 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1706 waitqueue_active(&ffs->ep0req_completion.wait) || 1707 waitqueue_active(&ffs->wait)); 1708 destroy_workqueue(ffs->io_completion_wq); 1709 kfree(ffs->dev_name); 1710 kfree(ffs); 1711 } 1712 } 1713 1714 static void ffs_data_closed(struct ffs_data *ffs) 1715 { 1716 ENTER(); 1717 1718 if (atomic_dec_and_test(&ffs->opened)) { 1719 if (ffs->no_disconnect) { 1720 ffs->state = FFS_DEACTIVATED; 1721 if (ffs->epfiles) { 1722 ffs_epfiles_destroy(ffs->epfiles, 1723 ffs->eps_count); 1724 ffs->epfiles = NULL; 1725 } 1726 if (ffs->setup_state == FFS_SETUP_PENDING) 1727 __ffs_ep0_stall(ffs); 1728 } else { 1729 ffs->state = FFS_CLOSING; 1730 ffs_data_reset(ffs); 1731 } 1732 } 1733 if (atomic_read(&ffs->opened) < 0) { 1734 ffs->state = FFS_CLOSING; 1735 ffs_data_reset(ffs); 1736 } 1737 1738 ffs_data_put(ffs); 1739 } 1740 1741 static struct ffs_data *ffs_data_new(const char *dev_name) 1742 { 1743 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1744 if (unlikely(!ffs)) 1745 return NULL; 1746 1747 ENTER(); 1748 1749 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1750 if (!ffs->io_completion_wq) { 1751 kfree(ffs); 1752 return NULL; 1753 } 1754 1755 refcount_set(&ffs->ref, 1); 1756 atomic_set(&ffs->opened, 0); 1757 ffs->state = FFS_READ_DESCRIPTORS; 1758 mutex_init(&ffs->mutex); 1759 spin_lock_init(&ffs->eps_lock); 1760 init_waitqueue_head(&ffs->ev.waitq); 1761 init_waitqueue_head(&ffs->wait); 1762 init_completion(&ffs->ep0req_completion); 1763 1764 /* XXX REVISIT need to update it in some places, or do we? */ 1765 ffs->ev.can_stall = 1; 1766 1767 return ffs; 1768 } 1769 1770 static void ffs_data_clear(struct ffs_data *ffs) 1771 { 1772 ENTER(); 1773 1774 ffs_closed(ffs); 1775 1776 BUG_ON(ffs->gadget); 1777 1778 if (ffs->epfiles) 1779 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1780 1781 if (ffs->ffs_eventfd) 1782 eventfd_ctx_put(ffs->ffs_eventfd); 1783 1784 kfree(ffs->raw_descs_data); 1785 kfree(ffs->raw_strings); 1786 kfree(ffs->stringtabs); 1787 } 1788 1789 static void ffs_data_reset(struct ffs_data *ffs) 1790 { 1791 ENTER(); 1792 1793 ffs_data_clear(ffs); 1794 1795 ffs->epfiles = NULL; 1796 ffs->raw_descs_data = NULL; 1797 ffs->raw_descs = NULL; 1798 ffs->raw_strings = NULL; 1799 ffs->stringtabs = NULL; 1800 1801 ffs->raw_descs_length = 0; 1802 ffs->fs_descs_count = 0; 1803 ffs->hs_descs_count = 0; 1804 ffs->ss_descs_count = 0; 1805 1806 ffs->strings_count = 0; 1807 ffs->interfaces_count = 0; 1808 ffs->eps_count = 0; 1809 1810 ffs->ev.count = 0; 1811 1812 ffs->state = FFS_READ_DESCRIPTORS; 1813 ffs->setup_state = FFS_NO_SETUP; 1814 ffs->flags = 0; 1815 } 1816 1817 1818 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1819 { 1820 struct usb_gadget_strings **lang; 1821 int first_id; 1822 1823 ENTER(); 1824 1825 if (WARN_ON(ffs->state != FFS_ACTIVE 1826 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1827 return -EBADFD; 1828 1829 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1830 if (unlikely(first_id < 0)) 1831 return first_id; 1832 1833 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1834 if (unlikely(!ffs->ep0req)) 1835 return -ENOMEM; 1836 ffs->ep0req->complete = ffs_ep0_complete; 1837 ffs->ep0req->context = ffs; 1838 1839 lang = ffs->stringtabs; 1840 if (lang) { 1841 for (; *lang; ++lang) { 1842 struct usb_string *str = (*lang)->strings; 1843 int id = first_id; 1844 for (; str->s; ++id, ++str) 1845 str->id = id; 1846 } 1847 } 1848 1849 ffs->gadget = cdev->gadget; 1850 ffs_data_get(ffs); 1851 return 0; 1852 } 1853 1854 static void functionfs_unbind(struct ffs_data *ffs) 1855 { 1856 ENTER(); 1857 1858 if (!WARN_ON(!ffs->gadget)) { 1859 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1860 ffs->ep0req = NULL; 1861 ffs->gadget = NULL; 1862 clear_bit(FFS_FL_BOUND, &ffs->flags); 1863 ffs_data_put(ffs); 1864 } 1865 } 1866 1867 static int ffs_epfiles_create(struct ffs_data *ffs) 1868 { 1869 struct ffs_epfile *epfile, *epfiles; 1870 unsigned i, count; 1871 1872 ENTER(); 1873 1874 count = ffs->eps_count; 1875 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1876 if (!epfiles) 1877 return -ENOMEM; 1878 1879 epfile = epfiles; 1880 for (i = 1; i <= count; ++i, ++epfile) { 1881 epfile->ffs = ffs; 1882 mutex_init(&epfile->mutex); 1883 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1884 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1885 else 1886 sprintf(epfile->name, "ep%u", i); 1887 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1888 epfile, 1889 &ffs_epfile_operations); 1890 if (unlikely(!epfile->dentry)) { 1891 ffs_epfiles_destroy(epfiles, i - 1); 1892 return -ENOMEM; 1893 } 1894 } 1895 1896 ffs->epfiles = epfiles; 1897 return 0; 1898 } 1899 1900 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1901 { 1902 struct ffs_epfile *epfile = epfiles; 1903 1904 ENTER(); 1905 1906 for (; count; --count, ++epfile) { 1907 BUG_ON(mutex_is_locked(&epfile->mutex)); 1908 if (epfile->dentry) { 1909 d_delete(epfile->dentry); 1910 dput(epfile->dentry); 1911 epfile->dentry = NULL; 1912 } 1913 } 1914 1915 kfree(epfiles); 1916 } 1917 1918 static void ffs_func_eps_disable(struct ffs_function *func) 1919 { 1920 struct ffs_ep *ep = func->eps; 1921 struct ffs_epfile *epfile = func->ffs->epfiles; 1922 unsigned count = func->ffs->eps_count; 1923 unsigned long flags; 1924 1925 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1926 while (count--) { 1927 /* pending requests get nuked */ 1928 if (likely(ep->ep)) 1929 usb_ep_disable(ep->ep); 1930 ++ep; 1931 1932 if (epfile) { 1933 epfile->ep = NULL; 1934 __ffs_epfile_read_buffer_free(epfile); 1935 ++epfile; 1936 } 1937 } 1938 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1939 } 1940 1941 static int ffs_func_eps_enable(struct ffs_function *func) 1942 { 1943 struct ffs_data *ffs = func->ffs; 1944 struct ffs_ep *ep = func->eps; 1945 struct ffs_epfile *epfile = ffs->epfiles; 1946 unsigned count = ffs->eps_count; 1947 unsigned long flags; 1948 int ret = 0; 1949 1950 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1951 while(count--) { 1952 ep->ep->driver_data = ep; 1953 1954 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1955 if (ret) { 1956 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1957 __func__, ep->ep->name, ret); 1958 break; 1959 } 1960 1961 ret = usb_ep_enable(ep->ep); 1962 if (likely(!ret)) { 1963 epfile->ep = ep; 1964 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1965 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1966 } else { 1967 break; 1968 } 1969 1970 ++ep; 1971 ++epfile; 1972 } 1973 1974 wake_up_interruptible(&ffs->wait); 1975 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1976 1977 return ret; 1978 } 1979 1980 1981 /* Parsing and building descriptors and strings *****************************/ 1982 1983 /* 1984 * This validates if data pointed by data is a valid USB descriptor as 1985 * well as record how many interfaces, endpoints and strings are 1986 * required by given configuration. Returns address after the 1987 * descriptor or NULL if data is invalid. 1988 */ 1989 1990 enum ffs_entity_type { 1991 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1992 }; 1993 1994 enum ffs_os_desc_type { 1995 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1996 }; 1997 1998 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1999 u8 *valuep, 2000 struct usb_descriptor_header *desc, 2001 void *priv); 2002 2003 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2004 struct usb_os_desc_header *h, void *data, 2005 unsigned len, void *priv); 2006 2007 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2008 ffs_entity_callback entity, 2009 void *priv, int *current_class) 2010 { 2011 struct usb_descriptor_header *_ds = (void *)data; 2012 u8 length; 2013 int ret; 2014 2015 ENTER(); 2016 2017 /* At least two bytes are required: length and type */ 2018 if (len < 2) { 2019 pr_vdebug("descriptor too short\n"); 2020 return -EINVAL; 2021 } 2022 2023 /* If we have at least as many bytes as the descriptor takes? */ 2024 length = _ds->bLength; 2025 if (len < length) { 2026 pr_vdebug("descriptor longer then available data\n"); 2027 return -EINVAL; 2028 } 2029 2030 #define __entity_check_INTERFACE(val) 1 2031 #define __entity_check_STRING(val) (val) 2032 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2033 #define __entity(type, val) do { \ 2034 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2035 if (unlikely(!__entity_check_ ##type(val))) { \ 2036 pr_vdebug("invalid entity's value\n"); \ 2037 return -EINVAL; \ 2038 } \ 2039 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2040 if (unlikely(ret < 0)) { \ 2041 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2042 (val), ret); \ 2043 return ret; \ 2044 } \ 2045 } while (0) 2046 2047 /* Parse descriptor depending on type. */ 2048 switch (_ds->bDescriptorType) { 2049 case USB_DT_DEVICE: 2050 case USB_DT_CONFIG: 2051 case USB_DT_STRING: 2052 case USB_DT_DEVICE_QUALIFIER: 2053 /* function can't have any of those */ 2054 pr_vdebug("descriptor reserved for gadget: %d\n", 2055 _ds->bDescriptorType); 2056 return -EINVAL; 2057 2058 case USB_DT_INTERFACE: { 2059 struct usb_interface_descriptor *ds = (void *)_ds; 2060 pr_vdebug("interface descriptor\n"); 2061 if (length != sizeof *ds) 2062 goto inv_length; 2063 2064 __entity(INTERFACE, ds->bInterfaceNumber); 2065 if (ds->iInterface) 2066 __entity(STRING, ds->iInterface); 2067 *current_class = ds->bInterfaceClass; 2068 } 2069 break; 2070 2071 case USB_DT_ENDPOINT: { 2072 struct usb_endpoint_descriptor *ds = (void *)_ds; 2073 pr_vdebug("endpoint descriptor\n"); 2074 if (length != USB_DT_ENDPOINT_SIZE && 2075 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2076 goto inv_length; 2077 __entity(ENDPOINT, ds->bEndpointAddress); 2078 } 2079 break; 2080 2081 case USB_TYPE_CLASS | 0x01: 2082 if (*current_class == USB_INTERFACE_CLASS_HID) { 2083 pr_vdebug("hid descriptor\n"); 2084 if (length != sizeof(struct hid_descriptor)) 2085 goto inv_length; 2086 break; 2087 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2088 pr_vdebug("ccid descriptor\n"); 2089 if (length != sizeof(struct ccid_descriptor)) 2090 goto inv_length; 2091 break; 2092 } else { 2093 pr_vdebug("unknown descriptor: %d for class %d\n", 2094 _ds->bDescriptorType, *current_class); 2095 return -EINVAL; 2096 } 2097 2098 case USB_DT_OTG: 2099 if (length != sizeof(struct usb_otg_descriptor)) 2100 goto inv_length; 2101 break; 2102 2103 case USB_DT_INTERFACE_ASSOCIATION: { 2104 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2105 pr_vdebug("interface association descriptor\n"); 2106 if (length != sizeof *ds) 2107 goto inv_length; 2108 if (ds->iFunction) 2109 __entity(STRING, ds->iFunction); 2110 } 2111 break; 2112 2113 case USB_DT_SS_ENDPOINT_COMP: 2114 pr_vdebug("EP SS companion descriptor\n"); 2115 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2116 goto inv_length; 2117 break; 2118 2119 case USB_DT_OTHER_SPEED_CONFIG: 2120 case USB_DT_INTERFACE_POWER: 2121 case USB_DT_DEBUG: 2122 case USB_DT_SECURITY: 2123 case USB_DT_CS_RADIO_CONTROL: 2124 /* TODO */ 2125 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2126 return -EINVAL; 2127 2128 default: 2129 /* We should never be here */ 2130 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2131 return -EINVAL; 2132 2133 inv_length: 2134 pr_vdebug("invalid length: %d (descriptor %d)\n", 2135 _ds->bLength, _ds->bDescriptorType); 2136 return -EINVAL; 2137 } 2138 2139 #undef __entity 2140 #undef __entity_check_DESCRIPTOR 2141 #undef __entity_check_INTERFACE 2142 #undef __entity_check_STRING 2143 #undef __entity_check_ENDPOINT 2144 2145 return length; 2146 } 2147 2148 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2149 ffs_entity_callback entity, void *priv) 2150 { 2151 const unsigned _len = len; 2152 unsigned long num = 0; 2153 int current_class = -1; 2154 2155 ENTER(); 2156 2157 for (;;) { 2158 int ret; 2159 2160 if (num == count) 2161 data = NULL; 2162 2163 /* Record "descriptor" entity */ 2164 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2165 if (unlikely(ret < 0)) { 2166 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2167 num, ret); 2168 return ret; 2169 } 2170 2171 if (!data) 2172 return _len - len; 2173 2174 ret = ffs_do_single_desc(data, len, entity, priv, 2175 ¤t_class); 2176 if (unlikely(ret < 0)) { 2177 pr_debug("%s returns %d\n", __func__, ret); 2178 return ret; 2179 } 2180 2181 len -= ret; 2182 data += ret; 2183 ++num; 2184 } 2185 } 2186 2187 static int __ffs_data_do_entity(enum ffs_entity_type type, 2188 u8 *valuep, struct usb_descriptor_header *desc, 2189 void *priv) 2190 { 2191 struct ffs_desc_helper *helper = priv; 2192 struct usb_endpoint_descriptor *d; 2193 2194 ENTER(); 2195 2196 switch (type) { 2197 case FFS_DESCRIPTOR: 2198 break; 2199 2200 case FFS_INTERFACE: 2201 /* 2202 * Interfaces are indexed from zero so if we 2203 * encountered interface "n" then there are at least 2204 * "n+1" interfaces. 2205 */ 2206 if (*valuep >= helper->interfaces_count) 2207 helper->interfaces_count = *valuep + 1; 2208 break; 2209 2210 case FFS_STRING: 2211 /* 2212 * Strings are indexed from 1 (0 is reserved 2213 * for languages list) 2214 */ 2215 if (*valuep > helper->ffs->strings_count) 2216 helper->ffs->strings_count = *valuep; 2217 break; 2218 2219 case FFS_ENDPOINT: 2220 d = (void *)desc; 2221 helper->eps_count++; 2222 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2223 return -EINVAL; 2224 /* Check if descriptors for any speed were already parsed */ 2225 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2226 helper->ffs->eps_addrmap[helper->eps_count] = 2227 d->bEndpointAddress; 2228 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2229 d->bEndpointAddress) 2230 return -EINVAL; 2231 break; 2232 } 2233 2234 return 0; 2235 } 2236 2237 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2238 struct usb_os_desc_header *desc) 2239 { 2240 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2241 u16 w_index = le16_to_cpu(desc->wIndex); 2242 2243 if (bcd_version != 1) { 2244 pr_vdebug("unsupported os descriptors version: %d", 2245 bcd_version); 2246 return -EINVAL; 2247 } 2248 switch (w_index) { 2249 case 0x4: 2250 *next_type = FFS_OS_DESC_EXT_COMPAT; 2251 break; 2252 case 0x5: 2253 *next_type = FFS_OS_DESC_EXT_PROP; 2254 break; 2255 default: 2256 pr_vdebug("unsupported os descriptor type: %d", w_index); 2257 return -EINVAL; 2258 } 2259 2260 return sizeof(*desc); 2261 } 2262 2263 /* 2264 * Process all extended compatibility/extended property descriptors 2265 * of a feature descriptor 2266 */ 2267 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2268 enum ffs_os_desc_type type, 2269 u16 feature_count, 2270 ffs_os_desc_callback entity, 2271 void *priv, 2272 struct usb_os_desc_header *h) 2273 { 2274 int ret; 2275 const unsigned _len = len; 2276 2277 ENTER(); 2278 2279 /* loop over all ext compat/ext prop descriptors */ 2280 while (feature_count--) { 2281 ret = entity(type, h, data, len, priv); 2282 if (unlikely(ret < 0)) { 2283 pr_debug("bad OS descriptor, type: %d\n", type); 2284 return ret; 2285 } 2286 data += ret; 2287 len -= ret; 2288 } 2289 return _len - len; 2290 } 2291 2292 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2293 static int __must_check ffs_do_os_descs(unsigned count, 2294 char *data, unsigned len, 2295 ffs_os_desc_callback entity, void *priv) 2296 { 2297 const unsigned _len = len; 2298 unsigned long num = 0; 2299 2300 ENTER(); 2301 2302 for (num = 0; num < count; ++num) { 2303 int ret; 2304 enum ffs_os_desc_type type; 2305 u16 feature_count; 2306 struct usb_os_desc_header *desc = (void *)data; 2307 2308 if (len < sizeof(*desc)) 2309 return -EINVAL; 2310 2311 /* 2312 * Record "descriptor" entity. 2313 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2314 * Move the data pointer to the beginning of extended 2315 * compatibilities proper or extended properties proper 2316 * portions of the data 2317 */ 2318 if (le32_to_cpu(desc->dwLength) > len) 2319 return -EINVAL; 2320 2321 ret = __ffs_do_os_desc_header(&type, desc); 2322 if (unlikely(ret < 0)) { 2323 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2324 num, ret); 2325 return ret; 2326 } 2327 /* 2328 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2329 */ 2330 feature_count = le16_to_cpu(desc->wCount); 2331 if (type == FFS_OS_DESC_EXT_COMPAT && 2332 (feature_count > 255 || desc->Reserved)) 2333 return -EINVAL; 2334 len -= ret; 2335 data += ret; 2336 2337 /* 2338 * Process all function/property descriptors 2339 * of this Feature Descriptor 2340 */ 2341 ret = ffs_do_single_os_desc(data, len, type, 2342 feature_count, entity, priv, desc); 2343 if (unlikely(ret < 0)) { 2344 pr_debug("%s returns %d\n", __func__, ret); 2345 return ret; 2346 } 2347 2348 len -= ret; 2349 data += ret; 2350 } 2351 return _len - len; 2352 } 2353 2354 /** 2355 * Validate contents of the buffer from userspace related to OS descriptors. 2356 */ 2357 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2358 struct usb_os_desc_header *h, void *data, 2359 unsigned len, void *priv) 2360 { 2361 struct ffs_data *ffs = priv; 2362 u8 length; 2363 2364 ENTER(); 2365 2366 switch (type) { 2367 case FFS_OS_DESC_EXT_COMPAT: { 2368 struct usb_ext_compat_desc *d = data; 2369 int i; 2370 2371 if (len < sizeof(*d) || 2372 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2373 return -EINVAL; 2374 if (d->Reserved1 != 1) { 2375 /* 2376 * According to the spec, Reserved1 must be set to 1 2377 * but older kernels incorrectly rejected non-zero 2378 * values. We fix it here to avoid returning EINVAL 2379 * in response to values we used to accept. 2380 */ 2381 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2382 d->Reserved1 = 1; 2383 } 2384 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2385 if (d->Reserved2[i]) 2386 return -EINVAL; 2387 2388 length = sizeof(struct usb_ext_compat_desc); 2389 } 2390 break; 2391 case FFS_OS_DESC_EXT_PROP: { 2392 struct usb_ext_prop_desc *d = data; 2393 u32 type, pdl; 2394 u16 pnl; 2395 2396 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2397 return -EINVAL; 2398 length = le32_to_cpu(d->dwSize); 2399 if (len < length) 2400 return -EINVAL; 2401 type = le32_to_cpu(d->dwPropertyDataType); 2402 if (type < USB_EXT_PROP_UNICODE || 2403 type > USB_EXT_PROP_UNICODE_MULTI) { 2404 pr_vdebug("unsupported os descriptor property type: %d", 2405 type); 2406 return -EINVAL; 2407 } 2408 pnl = le16_to_cpu(d->wPropertyNameLength); 2409 if (length < 14 + pnl) { 2410 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2411 length, pnl, type); 2412 return -EINVAL; 2413 } 2414 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2415 if (length != 14 + pnl + pdl) { 2416 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2417 length, pnl, pdl, type); 2418 return -EINVAL; 2419 } 2420 ++ffs->ms_os_descs_ext_prop_count; 2421 /* property name reported to the host as "WCHAR"s */ 2422 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2423 ffs->ms_os_descs_ext_prop_data_len += pdl; 2424 } 2425 break; 2426 default: 2427 pr_vdebug("unknown descriptor: %d\n", type); 2428 return -EINVAL; 2429 } 2430 return length; 2431 } 2432 2433 static int __ffs_data_got_descs(struct ffs_data *ffs, 2434 char *const _data, size_t len) 2435 { 2436 char *data = _data, *raw_descs; 2437 unsigned os_descs_count = 0, counts[3], flags; 2438 int ret = -EINVAL, i; 2439 struct ffs_desc_helper helper; 2440 2441 ENTER(); 2442 2443 if (get_unaligned_le32(data + 4) != len) 2444 goto error; 2445 2446 switch (get_unaligned_le32(data)) { 2447 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2448 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2449 data += 8; 2450 len -= 8; 2451 break; 2452 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2453 flags = get_unaligned_le32(data + 8); 2454 ffs->user_flags = flags; 2455 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2456 FUNCTIONFS_HAS_HS_DESC | 2457 FUNCTIONFS_HAS_SS_DESC | 2458 FUNCTIONFS_HAS_MS_OS_DESC | 2459 FUNCTIONFS_VIRTUAL_ADDR | 2460 FUNCTIONFS_EVENTFD | 2461 FUNCTIONFS_ALL_CTRL_RECIP | 2462 FUNCTIONFS_CONFIG0_SETUP)) { 2463 ret = -ENOSYS; 2464 goto error; 2465 } 2466 data += 12; 2467 len -= 12; 2468 break; 2469 default: 2470 goto error; 2471 } 2472 2473 if (flags & FUNCTIONFS_EVENTFD) { 2474 if (len < 4) 2475 goto error; 2476 ffs->ffs_eventfd = 2477 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2478 if (IS_ERR(ffs->ffs_eventfd)) { 2479 ret = PTR_ERR(ffs->ffs_eventfd); 2480 ffs->ffs_eventfd = NULL; 2481 goto error; 2482 } 2483 data += 4; 2484 len -= 4; 2485 } 2486 2487 /* Read fs_count, hs_count and ss_count (if present) */ 2488 for (i = 0; i < 3; ++i) { 2489 if (!(flags & (1 << i))) { 2490 counts[i] = 0; 2491 } else if (len < 4) { 2492 goto error; 2493 } else { 2494 counts[i] = get_unaligned_le32(data); 2495 data += 4; 2496 len -= 4; 2497 } 2498 } 2499 if (flags & (1 << i)) { 2500 if (len < 4) { 2501 goto error; 2502 } 2503 os_descs_count = get_unaligned_le32(data); 2504 data += 4; 2505 len -= 4; 2506 }; 2507 2508 /* Read descriptors */ 2509 raw_descs = data; 2510 helper.ffs = ffs; 2511 for (i = 0; i < 3; ++i) { 2512 if (!counts[i]) 2513 continue; 2514 helper.interfaces_count = 0; 2515 helper.eps_count = 0; 2516 ret = ffs_do_descs(counts[i], data, len, 2517 __ffs_data_do_entity, &helper); 2518 if (ret < 0) 2519 goto error; 2520 if (!ffs->eps_count && !ffs->interfaces_count) { 2521 ffs->eps_count = helper.eps_count; 2522 ffs->interfaces_count = helper.interfaces_count; 2523 } else { 2524 if (ffs->eps_count != helper.eps_count) { 2525 ret = -EINVAL; 2526 goto error; 2527 } 2528 if (ffs->interfaces_count != helper.interfaces_count) { 2529 ret = -EINVAL; 2530 goto error; 2531 } 2532 } 2533 data += ret; 2534 len -= ret; 2535 } 2536 if (os_descs_count) { 2537 ret = ffs_do_os_descs(os_descs_count, data, len, 2538 __ffs_data_do_os_desc, ffs); 2539 if (ret < 0) 2540 goto error; 2541 data += ret; 2542 len -= ret; 2543 } 2544 2545 if (raw_descs == data || len) { 2546 ret = -EINVAL; 2547 goto error; 2548 } 2549 2550 ffs->raw_descs_data = _data; 2551 ffs->raw_descs = raw_descs; 2552 ffs->raw_descs_length = data - raw_descs; 2553 ffs->fs_descs_count = counts[0]; 2554 ffs->hs_descs_count = counts[1]; 2555 ffs->ss_descs_count = counts[2]; 2556 ffs->ms_os_descs_count = os_descs_count; 2557 2558 return 0; 2559 2560 error: 2561 kfree(_data); 2562 return ret; 2563 } 2564 2565 static int __ffs_data_got_strings(struct ffs_data *ffs, 2566 char *const _data, size_t len) 2567 { 2568 u32 str_count, needed_count, lang_count; 2569 struct usb_gadget_strings **stringtabs, *t; 2570 const char *data = _data; 2571 struct usb_string *s; 2572 2573 ENTER(); 2574 2575 if (unlikely(len < 16 || 2576 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2577 get_unaligned_le32(data + 4) != len)) 2578 goto error; 2579 str_count = get_unaligned_le32(data + 8); 2580 lang_count = get_unaligned_le32(data + 12); 2581 2582 /* if one is zero the other must be zero */ 2583 if (unlikely(!str_count != !lang_count)) 2584 goto error; 2585 2586 /* Do we have at least as many strings as descriptors need? */ 2587 needed_count = ffs->strings_count; 2588 if (unlikely(str_count < needed_count)) 2589 goto error; 2590 2591 /* 2592 * If we don't need any strings just return and free all 2593 * memory. 2594 */ 2595 if (!needed_count) { 2596 kfree(_data); 2597 return 0; 2598 } 2599 2600 /* Allocate everything in one chunk so there's less maintenance. */ 2601 { 2602 unsigned i = 0; 2603 vla_group(d); 2604 vla_item(d, struct usb_gadget_strings *, stringtabs, 2605 lang_count + 1); 2606 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2607 vla_item(d, struct usb_string, strings, 2608 lang_count*(needed_count+1)); 2609 2610 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2611 2612 if (unlikely(!vlabuf)) { 2613 kfree(_data); 2614 return -ENOMEM; 2615 } 2616 2617 /* Initialize the VLA pointers */ 2618 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2619 t = vla_ptr(vlabuf, d, stringtab); 2620 i = lang_count; 2621 do { 2622 *stringtabs++ = t++; 2623 } while (--i); 2624 *stringtabs = NULL; 2625 2626 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2627 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2628 t = vla_ptr(vlabuf, d, stringtab); 2629 s = vla_ptr(vlabuf, d, strings); 2630 } 2631 2632 /* For each language */ 2633 data += 16; 2634 len -= 16; 2635 2636 do { /* lang_count > 0 so we can use do-while */ 2637 unsigned needed = needed_count; 2638 2639 if (unlikely(len < 3)) 2640 goto error_free; 2641 t->language = get_unaligned_le16(data); 2642 t->strings = s; 2643 ++t; 2644 2645 data += 2; 2646 len -= 2; 2647 2648 /* For each string */ 2649 do { /* str_count > 0 so we can use do-while */ 2650 size_t length = strnlen(data, len); 2651 2652 if (unlikely(length == len)) 2653 goto error_free; 2654 2655 /* 2656 * User may provide more strings then we need, 2657 * if that's the case we simply ignore the 2658 * rest 2659 */ 2660 if (likely(needed)) { 2661 /* 2662 * s->id will be set while adding 2663 * function to configuration so for 2664 * now just leave garbage here. 2665 */ 2666 s->s = data; 2667 --needed; 2668 ++s; 2669 } 2670 2671 data += length + 1; 2672 len -= length + 1; 2673 } while (--str_count); 2674 2675 s->id = 0; /* terminator */ 2676 s->s = NULL; 2677 ++s; 2678 2679 } while (--lang_count); 2680 2681 /* Some garbage left? */ 2682 if (unlikely(len)) 2683 goto error_free; 2684 2685 /* Done! */ 2686 ffs->stringtabs = stringtabs; 2687 ffs->raw_strings = _data; 2688 2689 return 0; 2690 2691 error_free: 2692 kfree(stringtabs); 2693 error: 2694 kfree(_data); 2695 return -EINVAL; 2696 } 2697 2698 2699 /* Events handling and management *******************************************/ 2700 2701 static void __ffs_event_add(struct ffs_data *ffs, 2702 enum usb_functionfs_event_type type) 2703 { 2704 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2705 int neg = 0; 2706 2707 /* 2708 * Abort any unhandled setup 2709 * 2710 * We do not need to worry about some cmpxchg() changing value 2711 * of ffs->setup_state without holding the lock because when 2712 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2713 * the source does nothing. 2714 */ 2715 if (ffs->setup_state == FFS_SETUP_PENDING) 2716 ffs->setup_state = FFS_SETUP_CANCELLED; 2717 2718 /* 2719 * Logic of this function guarantees that there are at most four pending 2720 * evens on ffs->ev.types queue. This is important because the queue 2721 * has space for four elements only and __ffs_ep0_read_events function 2722 * depends on that limit as well. If more event types are added, those 2723 * limits have to be revisited or guaranteed to still hold. 2724 */ 2725 switch (type) { 2726 case FUNCTIONFS_RESUME: 2727 rem_type2 = FUNCTIONFS_SUSPEND; 2728 /* FALL THROUGH */ 2729 case FUNCTIONFS_SUSPEND: 2730 case FUNCTIONFS_SETUP: 2731 rem_type1 = type; 2732 /* Discard all similar events */ 2733 break; 2734 2735 case FUNCTIONFS_BIND: 2736 case FUNCTIONFS_UNBIND: 2737 case FUNCTIONFS_DISABLE: 2738 case FUNCTIONFS_ENABLE: 2739 /* Discard everything other then power management. */ 2740 rem_type1 = FUNCTIONFS_SUSPEND; 2741 rem_type2 = FUNCTIONFS_RESUME; 2742 neg = 1; 2743 break; 2744 2745 default: 2746 WARN(1, "%d: unknown event, this should not happen\n", type); 2747 return; 2748 } 2749 2750 { 2751 u8 *ev = ffs->ev.types, *out = ev; 2752 unsigned n = ffs->ev.count; 2753 for (; n; --n, ++ev) 2754 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2755 *out++ = *ev; 2756 else 2757 pr_vdebug("purging event %d\n", *ev); 2758 ffs->ev.count = out - ffs->ev.types; 2759 } 2760 2761 pr_vdebug("adding event %d\n", type); 2762 ffs->ev.types[ffs->ev.count++] = type; 2763 wake_up_locked(&ffs->ev.waitq); 2764 if (ffs->ffs_eventfd) 2765 eventfd_signal(ffs->ffs_eventfd, 1); 2766 } 2767 2768 static void ffs_event_add(struct ffs_data *ffs, 2769 enum usb_functionfs_event_type type) 2770 { 2771 unsigned long flags; 2772 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2773 __ffs_event_add(ffs, type); 2774 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2775 } 2776 2777 /* Bind/unbind USB function hooks *******************************************/ 2778 2779 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2780 { 2781 int i; 2782 2783 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2784 if (ffs->eps_addrmap[i] == endpoint_address) 2785 return i; 2786 return -ENOENT; 2787 } 2788 2789 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2790 struct usb_descriptor_header *desc, 2791 void *priv) 2792 { 2793 struct usb_endpoint_descriptor *ds = (void *)desc; 2794 struct ffs_function *func = priv; 2795 struct ffs_ep *ffs_ep; 2796 unsigned ep_desc_id; 2797 int idx; 2798 static const char *speed_names[] = { "full", "high", "super" }; 2799 2800 if (type != FFS_DESCRIPTOR) 2801 return 0; 2802 2803 /* 2804 * If ss_descriptors is not NULL, we are reading super speed 2805 * descriptors; if hs_descriptors is not NULL, we are reading high 2806 * speed descriptors; otherwise, we are reading full speed 2807 * descriptors. 2808 */ 2809 if (func->function.ss_descriptors) { 2810 ep_desc_id = 2; 2811 func->function.ss_descriptors[(long)valuep] = desc; 2812 } else if (func->function.hs_descriptors) { 2813 ep_desc_id = 1; 2814 func->function.hs_descriptors[(long)valuep] = desc; 2815 } else { 2816 ep_desc_id = 0; 2817 func->function.fs_descriptors[(long)valuep] = desc; 2818 } 2819 2820 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2821 return 0; 2822 2823 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2824 if (idx < 0) 2825 return idx; 2826 2827 ffs_ep = func->eps + idx; 2828 2829 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2830 pr_err("two %sspeed descriptors for EP %d\n", 2831 speed_names[ep_desc_id], 2832 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2833 return -EINVAL; 2834 } 2835 ffs_ep->descs[ep_desc_id] = ds; 2836 2837 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2838 if (ffs_ep->ep) { 2839 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2840 if (!ds->wMaxPacketSize) 2841 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2842 } else { 2843 struct usb_request *req; 2844 struct usb_ep *ep; 2845 u8 bEndpointAddress; 2846 2847 /* 2848 * We back up bEndpointAddress because autoconfig overwrites 2849 * it with physical endpoint address. 2850 */ 2851 bEndpointAddress = ds->bEndpointAddress; 2852 pr_vdebug("autoconfig\n"); 2853 ep = usb_ep_autoconfig(func->gadget, ds); 2854 if (unlikely(!ep)) 2855 return -ENOTSUPP; 2856 ep->driver_data = func->eps + idx; 2857 2858 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2859 if (unlikely(!req)) 2860 return -ENOMEM; 2861 2862 ffs_ep->ep = ep; 2863 ffs_ep->req = req; 2864 func->eps_revmap[ds->bEndpointAddress & 2865 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2866 /* 2867 * If we use virtual address mapping, we restore 2868 * original bEndpointAddress value. 2869 */ 2870 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2871 ds->bEndpointAddress = bEndpointAddress; 2872 } 2873 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2874 2875 return 0; 2876 } 2877 2878 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2879 struct usb_descriptor_header *desc, 2880 void *priv) 2881 { 2882 struct ffs_function *func = priv; 2883 unsigned idx; 2884 u8 newValue; 2885 2886 switch (type) { 2887 default: 2888 case FFS_DESCRIPTOR: 2889 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2890 return 0; 2891 2892 case FFS_INTERFACE: 2893 idx = *valuep; 2894 if (func->interfaces_nums[idx] < 0) { 2895 int id = usb_interface_id(func->conf, &func->function); 2896 if (unlikely(id < 0)) 2897 return id; 2898 func->interfaces_nums[idx] = id; 2899 } 2900 newValue = func->interfaces_nums[idx]; 2901 break; 2902 2903 case FFS_STRING: 2904 /* String' IDs are allocated when fsf_data is bound to cdev */ 2905 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2906 break; 2907 2908 case FFS_ENDPOINT: 2909 /* 2910 * USB_DT_ENDPOINT are handled in 2911 * __ffs_func_bind_do_descs(). 2912 */ 2913 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2914 return 0; 2915 2916 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2917 if (unlikely(!func->eps[idx].ep)) 2918 return -EINVAL; 2919 2920 { 2921 struct usb_endpoint_descriptor **descs; 2922 descs = func->eps[idx].descs; 2923 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2924 } 2925 break; 2926 } 2927 2928 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2929 *valuep = newValue; 2930 return 0; 2931 } 2932 2933 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2934 struct usb_os_desc_header *h, void *data, 2935 unsigned len, void *priv) 2936 { 2937 struct ffs_function *func = priv; 2938 u8 length = 0; 2939 2940 switch (type) { 2941 case FFS_OS_DESC_EXT_COMPAT: { 2942 struct usb_ext_compat_desc *desc = data; 2943 struct usb_os_desc_table *t; 2944 2945 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2946 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2947 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2948 ARRAY_SIZE(desc->CompatibleID) + 2949 ARRAY_SIZE(desc->SubCompatibleID)); 2950 length = sizeof(*desc); 2951 } 2952 break; 2953 case FFS_OS_DESC_EXT_PROP: { 2954 struct usb_ext_prop_desc *desc = data; 2955 struct usb_os_desc_table *t; 2956 struct usb_os_desc_ext_prop *ext_prop; 2957 char *ext_prop_name; 2958 char *ext_prop_data; 2959 2960 t = &func->function.os_desc_table[h->interface]; 2961 t->if_id = func->interfaces_nums[h->interface]; 2962 2963 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2964 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2965 2966 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2967 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2968 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2969 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2970 length = ext_prop->name_len + ext_prop->data_len + 14; 2971 2972 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2973 func->ffs->ms_os_descs_ext_prop_name_avail += 2974 ext_prop->name_len; 2975 2976 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2977 func->ffs->ms_os_descs_ext_prop_data_avail += 2978 ext_prop->data_len; 2979 memcpy(ext_prop_data, 2980 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2981 ext_prop->data_len); 2982 /* unicode data reported to the host as "WCHAR"s */ 2983 switch (ext_prop->type) { 2984 case USB_EXT_PROP_UNICODE: 2985 case USB_EXT_PROP_UNICODE_ENV: 2986 case USB_EXT_PROP_UNICODE_LINK: 2987 case USB_EXT_PROP_UNICODE_MULTI: 2988 ext_prop->data_len *= 2; 2989 break; 2990 } 2991 ext_prop->data = ext_prop_data; 2992 2993 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2994 ext_prop->name_len); 2995 /* property name reported to the host as "WCHAR"s */ 2996 ext_prop->name_len *= 2; 2997 ext_prop->name = ext_prop_name; 2998 2999 t->os_desc->ext_prop_len += 3000 ext_prop->name_len + ext_prop->data_len + 14; 3001 ++t->os_desc->ext_prop_count; 3002 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3003 } 3004 break; 3005 default: 3006 pr_vdebug("unknown descriptor: %d\n", type); 3007 } 3008 3009 return length; 3010 } 3011 3012 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3013 struct usb_configuration *c) 3014 { 3015 struct ffs_function *func = ffs_func_from_usb(f); 3016 struct f_fs_opts *ffs_opts = 3017 container_of(f->fi, struct f_fs_opts, func_inst); 3018 int ret; 3019 3020 ENTER(); 3021 3022 /* 3023 * Legacy gadget triggers binding in functionfs_ready_callback, 3024 * which already uses locking; taking the same lock here would 3025 * cause a deadlock. 3026 * 3027 * Configfs-enabled gadgets however do need ffs_dev_lock. 3028 */ 3029 if (!ffs_opts->no_configfs) 3030 ffs_dev_lock(); 3031 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3032 func->ffs = ffs_opts->dev->ffs_data; 3033 if (!ffs_opts->no_configfs) 3034 ffs_dev_unlock(); 3035 if (ret) 3036 return ERR_PTR(ret); 3037 3038 func->conf = c; 3039 func->gadget = c->cdev->gadget; 3040 3041 /* 3042 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3043 * configurations are bound in sequence with list_for_each_entry, 3044 * in each configuration its functions are bound in sequence 3045 * with list_for_each_entry, so we assume no race condition 3046 * with regard to ffs_opts->bound access 3047 */ 3048 if (!ffs_opts->refcnt) { 3049 ret = functionfs_bind(func->ffs, c->cdev); 3050 if (ret) 3051 return ERR_PTR(ret); 3052 } 3053 ffs_opts->refcnt++; 3054 func->function.strings = func->ffs->stringtabs; 3055 3056 return ffs_opts; 3057 } 3058 3059 static int _ffs_func_bind(struct usb_configuration *c, 3060 struct usb_function *f) 3061 { 3062 struct ffs_function *func = ffs_func_from_usb(f); 3063 struct ffs_data *ffs = func->ffs; 3064 3065 const int full = !!func->ffs->fs_descs_count; 3066 const int high = !!func->ffs->hs_descs_count; 3067 const int super = !!func->ffs->ss_descs_count; 3068 3069 int fs_len, hs_len, ss_len, ret, i; 3070 struct ffs_ep *eps_ptr; 3071 3072 /* Make it a single chunk, less management later on */ 3073 vla_group(d); 3074 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3075 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3076 full ? ffs->fs_descs_count + 1 : 0); 3077 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3078 high ? ffs->hs_descs_count + 1 : 0); 3079 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3080 super ? ffs->ss_descs_count + 1 : 0); 3081 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3082 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3083 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3084 vla_item_with_sz(d, char[16], ext_compat, 3085 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3086 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3087 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3088 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3089 ffs->ms_os_descs_ext_prop_count); 3090 vla_item_with_sz(d, char, ext_prop_name, 3091 ffs->ms_os_descs_ext_prop_name_len); 3092 vla_item_with_sz(d, char, ext_prop_data, 3093 ffs->ms_os_descs_ext_prop_data_len); 3094 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3095 char *vlabuf; 3096 3097 ENTER(); 3098 3099 /* Has descriptors only for speeds gadget does not support */ 3100 if (unlikely(!(full | high | super))) 3101 return -ENOTSUPP; 3102 3103 /* Allocate a single chunk, less management later on */ 3104 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3105 if (unlikely(!vlabuf)) 3106 return -ENOMEM; 3107 3108 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3109 ffs->ms_os_descs_ext_prop_name_avail = 3110 vla_ptr(vlabuf, d, ext_prop_name); 3111 ffs->ms_os_descs_ext_prop_data_avail = 3112 vla_ptr(vlabuf, d, ext_prop_data); 3113 3114 /* Copy descriptors */ 3115 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3116 ffs->raw_descs_length); 3117 3118 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3119 eps_ptr = vla_ptr(vlabuf, d, eps); 3120 for (i = 0; i < ffs->eps_count; i++) 3121 eps_ptr[i].num = -1; 3122 3123 /* Save pointers 3124 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3125 */ 3126 func->eps = vla_ptr(vlabuf, d, eps); 3127 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3128 3129 /* 3130 * Go through all the endpoint descriptors and allocate 3131 * endpoints first, so that later we can rewrite the endpoint 3132 * numbers without worrying that it may be described later on. 3133 */ 3134 if (likely(full)) { 3135 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3136 fs_len = ffs_do_descs(ffs->fs_descs_count, 3137 vla_ptr(vlabuf, d, raw_descs), 3138 d_raw_descs__sz, 3139 __ffs_func_bind_do_descs, func); 3140 if (unlikely(fs_len < 0)) { 3141 ret = fs_len; 3142 goto error; 3143 } 3144 } else { 3145 fs_len = 0; 3146 } 3147 3148 if (likely(high)) { 3149 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3150 hs_len = ffs_do_descs(ffs->hs_descs_count, 3151 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3152 d_raw_descs__sz - fs_len, 3153 __ffs_func_bind_do_descs, func); 3154 if (unlikely(hs_len < 0)) { 3155 ret = hs_len; 3156 goto error; 3157 } 3158 } else { 3159 hs_len = 0; 3160 } 3161 3162 if (likely(super)) { 3163 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3164 ss_len = ffs_do_descs(ffs->ss_descs_count, 3165 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3166 d_raw_descs__sz - fs_len - hs_len, 3167 __ffs_func_bind_do_descs, func); 3168 if (unlikely(ss_len < 0)) { 3169 ret = ss_len; 3170 goto error; 3171 } 3172 } else { 3173 ss_len = 0; 3174 } 3175 3176 /* 3177 * Now handle interface numbers allocation and interface and 3178 * endpoint numbers rewriting. We can do that in one go 3179 * now. 3180 */ 3181 ret = ffs_do_descs(ffs->fs_descs_count + 3182 (high ? ffs->hs_descs_count : 0) + 3183 (super ? ffs->ss_descs_count : 0), 3184 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3185 __ffs_func_bind_do_nums, func); 3186 if (unlikely(ret < 0)) 3187 goto error; 3188 3189 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3190 if (c->cdev->use_os_string) { 3191 for (i = 0; i < ffs->interfaces_count; ++i) { 3192 struct usb_os_desc *desc; 3193 3194 desc = func->function.os_desc_table[i].os_desc = 3195 vla_ptr(vlabuf, d, os_desc) + 3196 i * sizeof(struct usb_os_desc); 3197 desc->ext_compat_id = 3198 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3199 INIT_LIST_HEAD(&desc->ext_prop); 3200 } 3201 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3202 vla_ptr(vlabuf, d, raw_descs) + 3203 fs_len + hs_len + ss_len, 3204 d_raw_descs__sz - fs_len - hs_len - 3205 ss_len, 3206 __ffs_func_bind_do_os_desc, func); 3207 if (unlikely(ret < 0)) 3208 goto error; 3209 } 3210 func->function.os_desc_n = 3211 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3212 3213 /* And we're done */ 3214 ffs_event_add(ffs, FUNCTIONFS_BIND); 3215 return 0; 3216 3217 error: 3218 /* XXX Do we need to release all claimed endpoints here? */ 3219 return ret; 3220 } 3221 3222 static int ffs_func_bind(struct usb_configuration *c, 3223 struct usb_function *f) 3224 { 3225 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3226 struct ffs_function *func = ffs_func_from_usb(f); 3227 int ret; 3228 3229 if (IS_ERR(ffs_opts)) 3230 return PTR_ERR(ffs_opts); 3231 3232 ret = _ffs_func_bind(c, f); 3233 if (ret && !--ffs_opts->refcnt) 3234 functionfs_unbind(func->ffs); 3235 3236 return ret; 3237 } 3238 3239 3240 /* Other USB function hooks *************************************************/ 3241 3242 static void ffs_reset_work(struct work_struct *work) 3243 { 3244 struct ffs_data *ffs = container_of(work, 3245 struct ffs_data, reset_work); 3246 ffs_data_reset(ffs); 3247 } 3248 3249 static int ffs_func_set_alt(struct usb_function *f, 3250 unsigned interface, unsigned alt) 3251 { 3252 struct ffs_function *func = ffs_func_from_usb(f); 3253 struct ffs_data *ffs = func->ffs; 3254 int ret = 0, intf; 3255 3256 if (alt != (unsigned)-1) { 3257 intf = ffs_func_revmap_intf(func, interface); 3258 if (unlikely(intf < 0)) 3259 return intf; 3260 } 3261 3262 if (ffs->func) 3263 ffs_func_eps_disable(ffs->func); 3264 3265 if (ffs->state == FFS_DEACTIVATED) { 3266 ffs->state = FFS_CLOSING; 3267 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3268 schedule_work(&ffs->reset_work); 3269 return -ENODEV; 3270 } 3271 3272 if (ffs->state != FFS_ACTIVE) 3273 return -ENODEV; 3274 3275 if (alt == (unsigned)-1) { 3276 ffs->func = NULL; 3277 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3278 return 0; 3279 } 3280 3281 ffs->func = func; 3282 ret = ffs_func_eps_enable(func); 3283 if (likely(ret >= 0)) 3284 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3285 return ret; 3286 } 3287 3288 static void ffs_func_disable(struct usb_function *f) 3289 { 3290 ffs_func_set_alt(f, 0, (unsigned)-1); 3291 } 3292 3293 static int ffs_func_setup(struct usb_function *f, 3294 const struct usb_ctrlrequest *creq) 3295 { 3296 struct ffs_function *func = ffs_func_from_usb(f); 3297 struct ffs_data *ffs = func->ffs; 3298 unsigned long flags; 3299 int ret; 3300 3301 ENTER(); 3302 3303 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3304 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3305 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3306 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3307 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3308 3309 /* 3310 * Most requests directed to interface go through here 3311 * (notable exceptions are set/get interface) so we need to 3312 * handle them. All other either handled by composite or 3313 * passed to usb_configuration->setup() (if one is set). No 3314 * matter, we will handle requests directed to endpoint here 3315 * as well (as it's straightforward). Other request recipient 3316 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3317 * is being used. 3318 */ 3319 if (ffs->state != FFS_ACTIVE) 3320 return -ENODEV; 3321 3322 switch (creq->bRequestType & USB_RECIP_MASK) { 3323 case USB_RECIP_INTERFACE: 3324 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3325 if (unlikely(ret < 0)) 3326 return ret; 3327 break; 3328 3329 case USB_RECIP_ENDPOINT: 3330 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3331 if (unlikely(ret < 0)) 3332 return ret; 3333 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3334 ret = func->ffs->eps_addrmap[ret]; 3335 break; 3336 3337 default: 3338 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3339 ret = le16_to_cpu(creq->wIndex); 3340 else 3341 return -EOPNOTSUPP; 3342 } 3343 3344 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3345 ffs->ev.setup = *creq; 3346 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3347 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3348 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3349 3350 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3351 } 3352 3353 static bool ffs_func_req_match(struct usb_function *f, 3354 const struct usb_ctrlrequest *creq, 3355 bool config0) 3356 { 3357 struct ffs_function *func = ffs_func_from_usb(f); 3358 3359 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3360 return false; 3361 3362 switch (creq->bRequestType & USB_RECIP_MASK) { 3363 case USB_RECIP_INTERFACE: 3364 return (ffs_func_revmap_intf(func, 3365 le16_to_cpu(creq->wIndex)) >= 0); 3366 case USB_RECIP_ENDPOINT: 3367 return (ffs_func_revmap_ep(func, 3368 le16_to_cpu(creq->wIndex)) >= 0); 3369 default: 3370 return (bool) (func->ffs->user_flags & 3371 FUNCTIONFS_ALL_CTRL_RECIP); 3372 } 3373 } 3374 3375 static void ffs_func_suspend(struct usb_function *f) 3376 { 3377 ENTER(); 3378 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3379 } 3380 3381 static void ffs_func_resume(struct usb_function *f) 3382 { 3383 ENTER(); 3384 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3385 } 3386 3387 3388 /* Endpoint and interface numbers reverse mapping ***************************/ 3389 3390 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3391 { 3392 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3393 return num ? num : -EDOM; 3394 } 3395 3396 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3397 { 3398 short *nums = func->interfaces_nums; 3399 unsigned count = func->ffs->interfaces_count; 3400 3401 for (; count; --count, ++nums) { 3402 if (*nums >= 0 && *nums == intf) 3403 return nums - func->interfaces_nums; 3404 } 3405 3406 return -EDOM; 3407 } 3408 3409 3410 /* Devices management *******************************************************/ 3411 3412 static LIST_HEAD(ffs_devices); 3413 3414 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3415 { 3416 struct ffs_dev *dev; 3417 3418 if (!name) 3419 return NULL; 3420 3421 list_for_each_entry(dev, &ffs_devices, entry) { 3422 if (strcmp(dev->name, name) == 0) 3423 return dev; 3424 } 3425 3426 return NULL; 3427 } 3428 3429 /* 3430 * ffs_lock must be taken by the caller of this function 3431 */ 3432 static struct ffs_dev *_ffs_get_single_dev(void) 3433 { 3434 struct ffs_dev *dev; 3435 3436 if (list_is_singular(&ffs_devices)) { 3437 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3438 if (dev->single) 3439 return dev; 3440 } 3441 3442 return NULL; 3443 } 3444 3445 /* 3446 * ffs_lock must be taken by the caller of this function 3447 */ 3448 static struct ffs_dev *_ffs_find_dev(const char *name) 3449 { 3450 struct ffs_dev *dev; 3451 3452 dev = _ffs_get_single_dev(); 3453 if (dev) 3454 return dev; 3455 3456 return _ffs_do_find_dev(name); 3457 } 3458 3459 /* Configfs support *********************************************************/ 3460 3461 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3462 { 3463 return container_of(to_config_group(item), struct f_fs_opts, 3464 func_inst.group); 3465 } 3466 3467 static void ffs_attr_release(struct config_item *item) 3468 { 3469 struct f_fs_opts *opts = to_ffs_opts(item); 3470 3471 usb_put_function_instance(&opts->func_inst); 3472 } 3473 3474 static struct configfs_item_operations ffs_item_ops = { 3475 .release = ffs_attr_release, 3476 }; 3477 3478 static const struct config_item_type ffs_func_type = { 3479 .ct_item_ops = &ffs_item_ops, 3480 .ct_owner = THIS_MODULE, 3481 }; 3482 3483 3484 /* Function registration interface ******************************************/ 3485 3486 static void ffs_free_inst(struct usb_function_instance *f) 3487 { 3488 struct f_fs_opts *opts; 3489 3490 opts = to_f_fs_opts(f); 3491 ffs_dev_lock(); 3492 _ffs_free_dev(opts->dev); 3493 ffs_dev_unlock(); 3494 kfree(opts); 3495 } 3496 3497 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3498 { 3499 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3500 return -ENAMETOOLONG; 3501 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3502 } 3503 3504 static struct usb_function_instance *ffs_alloc_inst(void) 3505 { 3506 struct f_fs_opts *opts; 3507 struct ffs_dev *dev; 3508 3509 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3510 if (!opts) 3511 return ERR_PTR(-ENOMEM); 3512 3513 opts->func_inst.set_inst_name = ffs_set_inst_name; 3514 opts->func_inst.free_func_inst = ffs_free_inst; 3515 ffs_dev_lock(); 3516 dev = _ffs_alloc_dev(); 3517 ffs_dev_unlock(); 3518 if (IS_ERR(dev)) { 3519 kfree(opts); 3520 return ERR_CAST(dev); 3521 } 3522 opts->dev = dev; 3523 dev->opts = opts; 3524 3525 config_group_init_type_name(&opts->func_inst.group, "", 3526 &ffs_func_type); 3527 return &opts->func_inst; 3528 } 3529 3530 static void ffs_free(struct usb_function *f) 3531 { 3532 kfree(ffs_func_from_usb(f)); 3533 } 3534 3535 static void ffs_func_unbind(struct usb_configuration *c, 3536 struct usb_function *f) 3537 { 3538 struct ffs_function *func = ffs_func_from_usb(f); 3539 struct ffs_data *ffs = func->ffs; 3540 struct f_fs_opts *opts = 3541 container_of(f->fi, struct f_fs_opts, func_inst); 3542 struct ffs_ep *ep = func->eps; 3543 unsigned count = ffs->eps_count; 3544 unsigned long flags; 3545 3546 ENTER(); 3547 if (ffs->func == func) { 3548 ffs_func_eps_disable(func); 3549 ffs->func = NULL; 3550 } 3551 3552 if (!--opts->refcnt) 3553 functionfs_unbind(ffs); 3554 3555 /* cleanup after autoconfig */ 3556 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3557 while (count--) { 3558 if (ep->ep && ep->req) 3559 usb_ep_free_request(ep->ep, ep->req); 3560 ep->req = NULL; 3561 ++ep; 3562 } 3563 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3564 kfree(func->eps); 3565 func->eps = NULL; 3566 /* 3567 * eps, descriptors and interfaces_nums are allocated in the 3568 * same chunk so only one free is required. 3569 */ 3570 func->function.fs_descriptors = NULL; 3571 func->function.hs_descriptors = NULL; 3572 func->function.ss_descriptors = NULL; 3573 func->interfaces_nums = NULL; 3574 3575 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3576 } 3577 3578 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3579 { 3580 struct ffs_function *func; 3581 3582 ENTER(); 3583 3584 func = kzalloc(sizeof(*func), GFP_KERNEL); 3585 if (unlikely(!func)) 3586 return ERR_PTR(-ENOMEM); 3587 3588 func->function.name = "Function FS Gadget"; 3589 3590 func->function.bind = ffs_func_bind; 3591 func->function.unbind = ffs_func_unbind; 3592 func->function.set_alt = ffs_func_set_alt; 3593 func->function.disable = ffs_func_disable; 3594 func->function.setup = ffs_func_setup; 3595 func->function.req_match = ffs_func_req_match; 3596 func->function.suspend = ffs_func_suspend; 3597 func->function.resume = ffs_func_resume; 3598 func->function.free_func = ffs_free; 3599 3600 return &func->function; 3601 } 3602 3603 /* 3604 * ffs_lock must be taken by the caller of this function 3605 */ 3606 static struct ffs_dev *_ffs_alloc_dev(void) 3607 { 3608 struct ffs_dev *dev; 3609 int ret; 3610 3611 if (_ffs_get_single_dev()) 3612 return ERR_PTR(-EBUSY); 3613 3614 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3615 if (!dev) 3616 return ERR_PTR(-ENOMEM); 3617 3618 if (list_empty(&ffs_devices)) { 3619 ret = functionfs_init(); 3620 if (ret) { 3621 kfree(dev); 3622 return ERR_PTR(ret); 3623 } 3624 } 3625 3626 list_add(&dev->entry, &ffs_devices); 3627 3628 return dev; 3629 } 3630 3631 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3632 { 3633 struct ffs_dev *existing; 3634 int ret = 0; 3635 3636 ffs_dev_lock(); 3637 3638 existing = _ffs_do_find_dev(name); 3639 if (!existing) 3640 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3641 else if (existing != dev) 3642 ret = -EBUSY; 3643 3644 ffs_dev_unlock(); 3645 3646 return ret; 3647 } 3648 EXPORT_SYMBOL_GPL(ffs_name_dev); 3649 3650 int ffs_single_dev(struct ffs_dev *dev) 3651 { 3652 int ret; 3653 3654 ret = 0; 3655 ffs_dev_lock(); 3656 3657 if (!list_is_singular(&ffs_devices)) 3658 ret = -EBUSY; 3659 else 3660 dev->single = true; 3661 3662 ffs_dev_unlock(); 3663 return ret; 3664 } 3665 EXPORT_SYMBOL_GPL(ffs_single_dev); 3666 3667 /* 3668 * ffs_lock must be taken by the caller of this function 3669 */ 3670 static void _ffs_free_dev(struct ffs_dev *dev) 3671 { 3672 list_del(&dev->entry); 3673 3674 /* Clear the private_data pointer to stop incorrect dev access */ 3675 if (dev->ffs_data) 3676 dev->ffs_data->private_data = NULL; 3677 3678 kfree(dev); 3679 if (list_empty(&ffs_devices)) 3680 functionfs_cleanup(); 3681 } 3682 3683 static void *ffs_acquire_dev(const char *dev_name) 3684 { 3685 struct ffs_dev *ffs_dev; 3686 3687 ENTER(); 3688 ffs_dev_lock(); 3689 3690 ffs_dev = _ffs_find_dev(dev_name); 3691 if (!ffs_dev) 3692 ffs_dev = ERR_PTR(-ENOENT); 3693 else if (ffs_dev->mounted) 3694 ffs_dev = ERR_PTR(-EBUSY); 3695 else if (ffs_dev->ffs_acquire_dev_callback && 3696 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3697 ffs_dev = ERR_PTR(-ENOENT); 3698 else 3699 ffs_dev->mounted = true; 3700 3701 ffs_dev_unlock(); 3702 return ffs_dev; 3703 } 3704 3705 static void ffs_release_dev(struct ffs_data *ffs_data) 3706 { 3707 struct ffs_dev *ffs_dev; 3708 3709 ENTER(); 3710 ffs_dev_lock(); 3711 3712 ffs_dev = ffs_data->private_data; 3713 if (ffs_dev) { 3714 ffs_dev->mounted = false; 3715 3716 if (ffs_dev->ffs_release_dev_callback) 3717 ffs_dev->ffs_release_dev_callback(ffs_dev); 3718 } 3719 3720 ffs_dev_unlock(); 3721 } 3722 3723 static int ffs_ready(struct ffs_data *ffs) 3724 { 3725 struct ffs_dev *ffs_obj; 3726 int ret = 0; 3727 3728 ENTER(); 3729 ffs_dev_lock(); 3730 3731 ffs_obj = ffs->private_data; 3732 if (!ffs_obj) { 3733 ret = -EINVAL; 3734 goto done; 3735 } 3736 if (WARN_ON(ffs_obj->desc_ready)) { 3737 ret = -EBUSY; 3738 goto done; 3739 } 3740 3741 ffs_obj->desc_ready = true; 3742 ffs_obj->ffs_data = ffs; 3743 3744 if (ffs_obj->ffs_ready_callback) { 3745 ret = ffs_obj->ffs_ready_callback(ffs); 3746 if (ret) 3747 goto done; 3748 } 3749 3750 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3751 done: 3752 ffs_dev_unlock(); 3753 return ret; 3754 } 3755 3756 static void ffs_closed(struct ffs_data *ffs) 3757 { 3758 struct ffs_dev *ffs_obj; 3759 struct f_fs_opts *opts; 3760 struct config_item *ci; 3761 3762 ENTER(); 3763 ffs_dev_lock(); 3764 3765 ffs_obj = ffs->private_data; 3766 if (!ffs_obj) 3767 goto done; 3768 3769 ffs_obj->desc_ready = false; 3770 ffs_obj->ffs_data = NULL; 3771 3772 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3773 ffs_obj->ffs_closed_callback) 3774 ffs_obj->ffs_closed_callback(ffs); 3775 3776 if (ffs_obj->opts) 3777 opts = ffs_obj->opts; 3778 else 3779 goto done; 3780 3781 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3782 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3783 goto done; 3784 3785 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3786 ffs_dev_unlock(); 3787 3788 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3789 unregister_gadget_item(ci); 3790 return; 3791 done: 3792 ffs_dev_unlock(); 3793 } 3794 3795 /* Misc helper functions ****************************************************/ 3796 3797 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3798 { 3799 return nonblock 3800 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3801 : mutex_lock_interruptible(mutex); 3802 } 3803 3804 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3805 { 3806 char *data; 3807 3808 if (unlikely(!len)) 3809 return NULL; 3810 3811 data = kmalloc(len, GFP_KERNEL); 3812 if (unlikely(!data)) 3813 return ERR_PTR(-ENOMEM); 3814 3815 if (unlikely(copy_from_user(data, buf, len))) { 3816 kfree(data); 3817 return ERR_PTR(-EFAULT); 3818 } 3819 3820 pr_vdebug("Buffer from user space:\n"); 3821 ffs_dump_mem("", data, len); 3822 3823 return data; 3824 } 3825 3826 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3827 MODULE_LICENSE("GPL"); 3828 MODULE_AUTHOR("Michal Nazarewicz"); 3829