xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 176f011b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/hid.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/scatterlist.h>
24 #include <linux/sched/signal.h>
25 #include <linux/uio.h>
26 #include <linux/vmalloc.h>
27 #include <asm/unaligned.h>
28 
29 #include <linux/usb/ccid.h>
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32 
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37 
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42 
43 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
44 
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
50 	__attribute__((malloc));
51 
52 /* Opened counter handling. */
53 static void ffs_data_opened(struct ffs_data *ffs);
54 static void ffs_data_closed(struct ffs_data *ffs);
55 
56 /* Called with ffs->mutex held; take over ownership of data. */
57 static int __must_check
58 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
59 static int __must_check
60 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
61 
62 
63 /* The function structure ***************************************************/
64 
65 struct ffs_ep;
66 
67 struct ffs_function {
68 	struct usb_configuration	*conf;
69 	struct usb_gadget		*gadget;
70 	struct ffs_data			*ffs;
71 
72 	struct ffs_ep			*eps;
73 	u8				eps_revmap[16];
74 	short				*interfaces_nums;
75 
76 	struct usb_function		function;
77 };
78 
79 
80 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
81 {
82 	return container_of(f, struct ffs_function, function);
83 }
84 
85 
86 static inline enum ffs_setup_state
87 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
88 {
89 	return (enum ffs_setup_state)
90 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
91 }
92 
93 
94 static void ffs_func_eps_disable(struct ffs_function *func);
95 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
96 
97 static int ffs_func_bind(struct usb_configuration *,
98 			 struct usb_function *);
99 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
100 static void ffs_func_disable(struct usb_function *);
101 static int ffs_func_setup(struct usb_function *,
102 			  const struct usb_ctrlrequest *);
103 static bool ffs_func_req_match(struct usb_function *,
104 			       const struct usb_ctrlrequest *,
105 			       bool config0);
106 static void ffs_func_suspend(struct usb_function *);
107 static void ffs_func_resume(struct usb_function *);
108 
109 
110 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
111 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
112 
113 
114 /* The endpoints structures *************************************************/
115 
116 struct ffs_ep {
117 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
118 	struct usb_request		*req;	/* P: epfile->mutex */
119 
120 	/* [0]: full speed, [1]: high speed, [2]: super speed */
121 	struct usb_endpoint_descriptor	*descs[3];
122 
123 	u8				num;
124 
125 	int				status;	/* P: epfile->mutex */
126 };
127 
128 struct ffs_epfile {
129 	/* Protects ep->ep and ep->req. */
130 	struct mutex			mutex;
131 
132 	struct ffs_data			*ffs;
133 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
134 
135 	struct dentry			*dentry;
136 
137 	/*
138 	 * Buffer for holding data from partial reads which may happen since
139 	 * we’re rounding user read requests to a multiple of a max packet size.
140 	 *
141 	 * The pointer is initialised with NULL value and may be set by
142 	 * __ffs_epfile_read_data function to point to a temporary buffer.
143 	 *
144 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
145 	 * data from said buffer and eventually free it.  Importantly, while the
146 	 * function is using the buffer, it sets the pointer to NULL.  This is
147 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148 	 * can never run concurrently (they are synchronised by epfile->mutex)
149 	 * so the latter will not assign a new value to the pointer.
150 	 *
151 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
153 	 * value is crux of the synchronisation between ffs_func_eps_disable and
154 	 * __ffs_epfile_read_data.
155 	 *
156 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
157 	 * pointer back to its old value (as described above), but seeing as the
158 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159 	 * the buffer.
160 	 *
161 	 * == State transitions ==
162 	 *
163 	 * • ptr == NULL:  (initial state)
164 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165 	 *   ◦ __ffs_epfile_read_buffered:    nop
166 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
168 	 * • ptr == DROP:
169 	 *   ◦ __ffs_epfile_read_buffer_free: nop
170 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
171 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
173 	 * • ptr == buf:
174 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
176 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
177 	 *                                    is always called first
178 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
179 	 * • ptr == NULL and reading:
180 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
182 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
183 	 *   ◦ reading finishes and …
184 	 *     … all data read:               free buf, go to ptr == NULL
185 	 *     … otherwise:                   go to ptr == buf and reading
186 	 * • ptr == DROP and reading:
187 	 *   ◦ __ffs_epfile_read_buffer_free: nop
188 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
189 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
190 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
191 	 */
192 	struct ffs_buffer		*read_buffer;
193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194 
195 	char				name[5];
196 
197 	unsigned char			in;	/* P: ffs->eps_lock */
198 	unsigned char			isoc;	/* P: ffs->eps_lock */
199 
200 	unsigned char			_pad;
201 };
202 
203 struct ffs_buffer {
204 	size_t length;
205 	char *data;
206 	char storage[];
207 };
208 
209 /*  ffs_io_data structure ***************************************************/
210 
211 struct ffs_io_data {
212 	bool aio;
213 	bool read;
214 
215 	struct kiocb *kiocb;
216 	struct iov_iter data;
217 	const void *to_free;
218 	char *buf;
219 
220 	struct mm_struct *mm;
221 	struct work_struct work;
222 
223 	struct usb_ep *ep;
224 	struct usb_request *req;
225 	struct sg_table sgt;
226 	bool use_sg;
227 
228 	struct ffs_data *ffs;
229 };
230 
231 struct ffs_desc_helper {
232 	struct ffs_data *ffs;
233 	unsigned interfaces_count;
234 	unsigned eps_count;
235 };
236 
237 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
238 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
239 
240 static struct dentry *
241 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
242 		   const struct file_operations *fops);
243 
244 /* Devices management *******************************************************/
245 
246 DEFINE_MUTEX(ffs_lock);
247 EXPORT_SYMBOL_GPL(ffs_lock);
248 
249 static struct ffs_dev *_ffs_find_dev(const char *name);
250 static struct ffs_dev *_ffs_alloc_dev(void);
251 static void _ffs_free_dev(struct ffs_dev *dev);
252 static void *ffs_acquire_dev(const char *dev_name);
253 static void ffs_release_dev(struct ffs_data *ffs_data);
254 static int ffs_ready(struct ffs_data *ffs);
255 static void ffs_closed(struct ffs_data *ffs);
256 
257 /* Misc helper functions ****************************************************/
258 
259 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
260 	__attribute__((warn_unused_result, nonnull));
261 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
262 	__attribute__((warn_unused_result, nonnull));
263 
264 
265 /* Control file aka ep0 *****************************************************/
266 
267 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
268 {
269 	struct ffs_data *ffs = req->context;
270 
271 	complete(&ffs->ep0req_completion);
272 }
273 
274 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
275 	__releases(&ffs->ev.waitq.lock)
276 {
277 	struct usb_request *req = ffs->ep0req;
278 	int ret;
279 
280 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
281 
282 	spin_unlock_irq(&ffs->ev.waitq.lock);
283 
284 	req->buf      = data;
285 	req->length   = len;
286 
287 	/*
288 	 * UDC layer requires to provide a buffer even for ZLP, but should
289 	 * not use it at all. Let's provide some poisoned pointer to catch
290 	 * possible bug in the driver.
291 	 */
292 	if (req->buf == NULL)
293 		req->buf = (void *)0xDEADBABE;
294 
295 	reinit_completion(&ffs->ep0req_completion);
296 
297 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
298 	if (unlikely(ret < 0))
299 		return ret;
300 
301 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
302 	if (unlikely(ret)) {
303 		usb_ep_dequeue(ffs->gadget->ep0, req);
304 		return -EINTR;
305 	}
306 
307 	ffs->setup_state = FFS_NO_SETUP;
308 	return req->status ? req->status : req->actual;
309 }
310 
311 static int __ffs_ep0_stall(struct ffs_data *ffs)
312 {
313 	if (ffs->ev.can_stall) {
314 		pr_vdebug("ep0 stall\n");
315 		usb_ep_set_halt(ffs->gadget->ep0);
316 		ffs->setup_state = FFS_NO_SETUP;
317 		return -EL2HLT;
318 	} else {
319 		pr_debug("bogus ep0 stall!\n");
320 		return -ESRCH;
321 	}
322 }
323 
324 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
325 			     size_t len, loff_t *ptr)
326 {
327 	struct ffs_data *ffs = file->private_data;
328 	ssize_t ret;
329 	char *data;
330 
331 	ENTER();
332 
333 	/* Fast check if setup was canceled */
334 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
335 		return -EIDRM;
336 
337 	/* Acquire mutex */
338 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
339 	if (unlikely(ret < 0))
340 		return ret;
341 
342 	/* Check state */
343 	switch (ffs->state) {
344 	case FFS_READ_DESCRIPTORS:
345 	case FFS_READ_STRINGS:
346 		/* Copy data */
347 		if (unlikely(len < 16)) {
348 			ret = -EINVAL;
349 			break;
350 		}
351 
352 		data = ffs_prepare_buffer(buf, len);
353 		if (IS_ERR(data)) {
354 			ret = PTR_ERR(data);
355 			break;
356 		}
357 
358 		/* Handle data */
359 		if (ffs->state == FFS_READ_DESCRIPTORS) {
360 			pr_info("read descriptors\n");
361 			ret = __ffs_data_got_descs(ffs, data, len);
362 			if (unlikely(ret < 0))
363 				break;
364 
365 			ffs->state = FFS_READ_STRINGS;
366 			ret = len;
367 		} else {
368 			pr_info("read strings\n");
369 			ret = __ffs_data_got_strings(ffs, data, len);
370 			if (unlikely(ret < 0))
371 				break;
372 
373 			ret = ffs_epfiles_create(ffs);
374 			if (unlikely(ret)) {
375 				ffs->state = FFS_CLOSING;
376 				break;
377 			}
378 
379 			ffs->state = FFS_ACTIVE;
380 			mutex_unlock(&ffs->mutex);
381 
382 			ret = ffs_ready(ffs);
383 			if (unlikely(ret < 0)) {
384 				ffs->state = FFS_CLOSING;
385 				return ret;
386 			}
387 
388 			return len;
389 		}
390 		break;
391 
392 	case FFS_ACTIVE:
393 		data = NULL;
394 		/*
395 		 * We're called from user space, we can use _irq
396 		 * rather then _irqsave
397 		 */
398 		spin_lock_irq(&ffs->ev.waitq.lock);
399 		switch (ffs_setup_state_clear_cancelled(ffs)) {
400 		case FFS_SETUP_CANCELLED:
401 			ret = -EIDRM;
402 			goto done_spin;
403 
404 		case FFS_NO_SETUP:
405 			ret = -ESRCH;
406 			goto done_spin;
407 
408 		case FFS_SETUP_PENDING:
409 			break;
410 		}
411 
412 		/* FFS_SETUP_PENDING */
413 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
414 			spin_unlock_irq(&ffs->ev.waitq.lock);
415 			ret = __ffs_ep0_stall(ffs);
416 			break;
417 		}
418 
419 		/* FFS_SETUP_PENDING and not stall */
420 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
421 
422 		spin_unlock_irq(&ffs->ev.waitq.lock);
423 
424 		data = ffs_prepare_buffer(buf, len);
425 		if (IS_ERR(data)) {
426 			ret = PTR_ERR(data);
427 			break;
428 		}
429 
430 		spin_lock_irq(&ffs->ev.waitq.lock);
431 
432 		/*
433 		 * We are guaranteed to be still in FFS_ACTIVE state
434 		 * but the state of setup could have changed from
435 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
436 		 * to check for that.  If that happened we copied data
437 		 * from user space in vain but it's unlikely.
438 		 *
439 		 * For sure we are not in FFS_NO_SETUP since this is
440 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
441 		 * transition can be performed and it's protected by
442 		 * mutex.
443 		 */
444 		if (ffs_setup_state_clear_cancelled(ffs) ==
445 		    FFS_SETUP_CANCELLED) {
446 			ret = -EIDRM;
447 done_spin:
448 			spin_unlock_irq(&ffs->ev.waitq.lock);
449 		} else {
450 			/* unlocks spinlock */
451 			ret = __ffs_ep0_queue_wait(ffs, data, len);
452 		}
453 		kfree(data);
454 		break;
455 
456 	default:
457 		ret = -EBADFD;
458 		break;
459 	}
460 
461 	mutex_unlock(&ffs->mutex);
462 	return ret;
463 }
464 
465 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
466 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
467 				     size_t n)
468 	__releases(&ffs->ev.waitq.lock)
469 {
470 	/*
471 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
472 	 * size of ffs->ev.types array (which is four) so that's how much space
473 	 * we reserve.
474 	 */
475 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
476 	const size_t size = n * sizeof *events;
477 	unsigned i = 0;
478 
479 	memset(events, 0, size);
480 
481 	do {
482 		events[i].type = ffs->ev.types[i];
483 		if (events[i].type == FUNCTIONFS_SETUP) {
484 			events[i].u.setup = ffs->ev.setup;
485 			ffs->setup_state = FFS_SETUP_PENDING;
486 		}
487 	} while (++i < n);
488 
489 	ffs->ev.count -= n;
490 	if (ffs->ev.count)
491 		memmove(ffs->ev.types, ffs->ev.types + n,
492 			ffs->ev.count * sizeof *ffs->ev.types);
493 
494 	spin_unlock_irq(&ffs->ev.waitq.lock);
495 	mutex_unlock(&ffs->mutex);
496 
497 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
498 }
499 
500 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
501 			    size_t len, loff_t *ptr)
502 {
503 	struct ffs_data *ffs = file->private_data;
504 	char *data = NULL;
505 	size_t n;
506 	int ret;
507 
508 	ENTER();
509 
510 	/* Fast check if setup was canceled */
511 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
512 		return -EIDRM;
513 
514 	/* Acquire mutex */
515 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
516 	if (unlikely(ret < 0))
517 		return ret;
518 
519 	/* Check state */
520 	if (ffs->state != FFS_ACTIVE) {
521 		ret = -EBADFD;
522 		goto done_mutex;
523 	}
524 
525 	/*
526 	 * We're called from user space, we can use _irq rather then
527 	 * _irqsave
528 	 */
529 	spin_lock_irq(&ffs->ev.waitq.lock);
530 
531 	switch (ffs_setup_state_clear_cancelled(ffs)) {
532 	case FFS_SETUP_CANCELLED:
533 		ret = -EIDRM;
534 		break;
535 
536 	case FFS_NO_SETUP:
537 		n = len / sizeof(struct usb_functionfs_event);
538 		if (unlikely(!n)) {
539 			ret = -EINVAL;
540 			break;
541 		}
542 
543 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
544 			ret = -EAGAIN;
545 			break;
546 		}
547 
548 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
549 							ffs->ev.count)) {
550 			ret = -EINTR;
551 			break;
552 		}
553 
554 		/* unlocks spinlock */
555 		return __ffs_ep0_read_events(ffs, buf,
556 					     min(n, (size_t)ffs->ev.count));
557 
558 	case FFS_SETUP_PENDING:
559 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
560 			spin_unlock_irq(&ffs->ev.waitq.lock);
561 			ret = __ffs_ep0_stall(ffs);
562 			goto done_mutex;
563 		}
564 
565 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
566 
567 		spin_unlock_irq(&ffs->ev.waitq.lock);
568 
569 		if (likely(len)) {
570 			data = kmalloc(len, GFP_KERNEL);
571 			if (unlikely(!data)) {
572 				ret = -ENOMEM;
573 				goto done_mutex;
574 			}
575 		}
576 
577 		spin_lock_irq(&ffs->ev.waitq.lock);
578 
579 		/* See ffs_ep0_write() */
580 		if (ffs_setup_state_clear_cancelled(ffs) ==
581 		    FFS_SETUP_CANCELLED) {
582 			ret = -EIDRM;
583 			break;
584 		}
585 
586 		/* unlocks spinlock */
587 		ret = __ffs_ep0_queue_wait(ffs, data, len);
588 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
589 			ret = -EFAULT;
590 		goto done_mutex;
591 
592 	default:
593 		ret = -EBADFD;
594 		break;
595 	}
596 
597 	spin_unlock_irq(&ffs->ev.waitq.lock);
598 done_mutex:
599 	mutex_unlock(&ffs->mutex);
600 	kfree(data);
601 	return ret;
602 }
603 
604 static int ffs_ep0_open(struct inode *inode, struct file *file)
605 {
606 	struct ffs_data *ffs = inode->i_private;
607 
608 	ENTER();
609 
610 	if (unlikely(ffs->state == FFS_CLOSING))
611 		return -EBUSY;
612 
613 	file->private_data = ffs;
614 	ffs_data_opened(ffs);
615 
616 	return 0;
617 }
618 
619 static int ffs_ep0_release(struct inode *inode, struct file *file)
620 {
621 	struct ffs_data *ffs = file->private_data;
622 
623 	ENTER();
624 
625 	ffs_data_closed(ffs);
626 
627 	return 0;
628 }
629 
630 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
631 {
632 	struct ffs_data *ffs = file->private_data;
633 	struct usb_gadget *gadget = ffs->gadget;
634 	long ret;
635 
636 	ENTER();
637 
638 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
639 		struct ffs_function *func = ffs->func;
640 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
641 	} else if (gadget && gadget->ops->ioctl) {
642 		ret = gadget->ops->ioctl(gadget, code, value);
643 	} else {
644 		ret = -ENOTTY;
645 	}
646 
647 	return ret;
648 }
649 
650 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
651 {
652 	struct ffs_data *ffs = file->private_data;
653 	__poll_t mask = EPOLLWRNORM;
654 	int ret;
655 
656 	poll_wait(file, &ffs->ev.waitq, wait);
657 
658 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
659 	if (unlikely(ret < 0))
660 		return mask;
661 
662 	switch (ffs->state) {
663 	case FFS_READ_DESCRIPTORS:
664 	case FFS_READ_STRINGS:
665 		mask |= EPOLLOUT;
666 		break;
667 
668 	case FFS_ACTIVE:
669 		switch (ffs->setup_state) {
670 		case FFS_NO_SETUP:
671 			if (ffs->ev.count)
672 				mask |= EPOLLIN;
673 			break;
674 
675 		case FFS_SETUP_PENDING:
676 		case FFS_SETUP_CANCELLED:
677 			mask |= (EPOLLIN | EPOLLOUT);
678 			break;
679 		}
680 	case FFS_CLOSING:
681 		break;
682 	case FFS_DEACTIVATED:
683 		break;
684 	}
685 
686 	mutex_unlock(&ffs->mutex);
687 
688 	return mask;
689 }
690 
691 static const struct file_operations ffs_ep0_operations = {
692 	.llseek =	no_llseek,
693 
694 	.open =		ffs_ep0_open,
695 	.write =	ffs_ep0_write,
696 	.read =		ffs_ep0_read,
697 	.release =	ffs_ep0_release,
698 	.unlocked_ioctl =	ffs_ep0_ioctl,
699 	.poll =		ffs_ep0_poll,
700 };
701 
702 
703 /* "Normal" endpoints operations ********************************************/
704 
705 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
706 {
707 	ENTER();
708 	if (likely(req->context)) {
709 		struct ffs_ep *ep = _ep->driver_data;
710 		ep->status = req->status ? req->status : req->actual;
711 		complete(req->context);
712 	}
713 }
714 
715 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
716 {
717 	ssize_t ret = copy_to_iter(data, data_len, iter);
718 	if (likely(ret == data_len))
719 		return ret;
720 
721 	if (unlikely(iov_iter_count(iter)))
722 		return -EFAULT;
723 
724 	/*
725 	 * Dear user space developer!
726 	 *
727 	 * TL;DR: To stop getting below error message in your kernel log, change
728 	 * user space code using functionfs to align read buffers to a max
729 	 * packet size.
730 	 *
731 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
732 	 * packet size.  When unaligned buffer is passed to functionfs, it
733 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
734 	 *
735 	 * Unfortunately, this means that host may send more data than was
736 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
737 	 * that excess data so it simply drops it.
738 	 *
739 	 * Was the buffer aligned in the first place, no such problem would
740 	 * happen.
741 	 *
742 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
743 	 * by splitting a request into multiple parts.  This splitting may still
744 	 * be a problem though so it’s likely best to align the buffer
745 	 * regardless of it being AIO or not..
746 	 *
747 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
748 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
749 	 * affected.
750 	 */
751 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
752 	       "Align read buffer size to max packet size to avoid the problem.\n",
753 	       data_len, ret);
754 
755 	return ret;
756 }
757 
758 /*
759  * allocate a virtually contiguous buffer and create a scatterlist describing it
760  * @sg_table	- pointer to a place to be filled with sg_table contents
761  * @size	- required buffer size
762  */
763 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
764 {
765 	struct page **pages;
766 	void *vaddr, *ptr;
767 	unsigned int n_pages;
768 	int i;
769 
770 	vaddr = vmalloc(sz);
771 	if (!vaddr)
772 		return NULL;
773 
774 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
775 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
776 	if (!pages) {
777 		vfree(vaddr);
778 
779 		return NULL;
780 	}
781 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
782 		pages[i] = vmalloc_to_page(ptr);
783 
784 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
785 		kvfree(pages);
786 		vfree(vaddr);
787 
788 		return NULL;
789 	}
790 	kvfree(pages);
791 
792 	return vaddr;
793 }
794 
795 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
796 	size_t data_len)
797 {
798 	if (io_data->use_sg)
799 		return ffs_build_sg_list(&io_data->sgt, data_len);
800 
801 	return kmalloc(data_len, GFP_KERNEL);
802 }
803 
804 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
805 {
806 	if (!io_data->buf)
807 		return;
808 
809 	if (io_data->use_sg) {
810 		sg_free_table(&io_data->sgt);
811 		vfree(io_data->buf);
812 	} else {
813 		kfree(io_data->buf);
814 	}
815 }
816 
817 static void ffs_user_copy_worker(struct work_struct *work)
818 {
819 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
820 						   work);
821 	int ret = io_data->req->status ? io_data->req->status :
822 					 io_data->req->actual;
823 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
824 
825 	if (io_data->read && ret > 0) {
826 		mm_segment_t oldfs = get_fs();
827 
828 		set_fs(USER_DS);
829 		use_mm(io_data->mm);
830 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
831 		unuse_mm(io_data->mm);
832 		set_fs(oldfs);
833 	}
834 
835 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
836 
837 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
838 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
839 
840 	usb_ep_free_request(io_data->ep, io_data->req);
841 
842 	if (io_data->read)
843 		kfree(io_data->to_free);
844 	ffs_free_buffer(io_data);
845 	kfree(io_data);
846 }
847 
848 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
849 					 struct usb_request *req)
850 {
851 	struct ffs_io_data *io_data = req->context;
852 	struct ffs_data *ffs = io_data->ffs;
853 
854 	ENTER();
855 
856 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
857 	queue_work(ffs->io_completion_wq, &io_data->work);
858 }
859 
860 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
861 {
862 	/*
863 	 * See comment in struct ffs_epfile for full read_buffer pointer
864 	 * synchronisation story.
865 	 */
866 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
867 	if (buf && buf != READ_BUFFER_DROP)
868 		kfree(buf);
869 }
870 
871 /* Assumes epfile->mutex is held. */
872 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
873 					  struct iov_iter *iter)
874 {
875 	/*
876 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
877 	 * the buffer while we are using it.  See comment in struct ffs_epfile
878 	 * for full read_buffer pointer synchronisation story.
879 	 */
880 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
881 	ssize_t ret;
882 	if (!buf || buf == READ_BUFFER_DROP)
883 		return 0;
884 
885 	ret = copy_to_iter(buf->data, buf->length, iter);
886 	if (buf->length == ret) {
887 		kfree(buf);
888 		return ret;
889 	}
890 
891 	if (unlikely(iov_iter_count(iter))) {
892 		ret = -EFAULT;
893 	} else {
894 		buf->length -= ret;
895 		buf->data += ret;
896 	}
897 
898 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
899 		kfree(buf);
900 
901 	return ret;
902 }
903 
904 /* Assumes epfile->mutex is held. */
905 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
906 				      void *data, int data_len,
907 				      struct iov_iter *iter)
908 {
909 	struct ffs_buffer *buf;
910 
911 	ssize_t ret = copy_to_iter(data, data_len, iter);
912 	if (likely(data_len == ret))
913 		return ret;
914 
915 	if (unlikely(iov_iter_count(iter)))
916 		return -EFAULT;
917 
918 	/* See ffs_copy_to_iter for more context. */
919 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
920 		data_len, ret);
921 
922 	data_len -= ret;
923 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
924 	if (!buf)
925 		return -ENOMEM;
926 	buf->length = data_len;
927 	buf->data = buf->storage;
928 	memcpy(buf->storage, data + ret, data_len);
929 
930 	/*
931 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
932 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
933 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
934 	 * story.
935 	 */
936 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
937 		kfree(buf);
938 
939 	return ret;
940 }
941 
942 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
943 {
944 	struct ffs_epfile *epfile = file->private_data;
945 	struct usb_request *req;
946 	struct ffs_ep *ep;
947 	char *data = NULL;
948 	ssize_t ret, data_len = -EINVAL;
949 	int halt;
950 
951 	/* Are we still active? */
952 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
953 		return -ENODEV;
954 
955 	/* Wait for endpoint to be enabled */
956 	ep = epfile->ep;
957 	if (!ep) {
958 		if (file->f_flags & O_NONBLOCK)
959 			return -EAGAIN;
960 
961 		ret = wait_event_interruptible(
962 				epfile->ffs->wait, (ep = epfile->ep));
963 		if (ret)
964 			return -EINTR;
965 	}
966 
967 	/* Do we halt? */
968 	halt = (!io_data->read == !epfile->in);
969 	if (halt && epfile->isoc)
970 		return -EINVAL;
971 
972 	/* We will be using request and read_buffer */
973 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
974 	if (unlikely(ret))
975 		goto error;
976 
977 	/* Allocate & copy */
978 	if (!halt) {
979 		struct usb_gadget *gadget;
980 
981 		/*
982 		 * Do we have buffered data from previous partial read?  Check
983 		 * that for synchronous case only because we do not have
984 		 * facility to ‘wake up’ a pending asynchronous read and push
985 		 * buffered data to it which we would need to make things behave
986 		 * consistently.
987 		 */
988 		if (!io_data->aio && io_data->read) {
989 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
990 			if (ret)
991 				goto error_mutex;
992 		}
993 
994 		/*
995 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
996 		 * before the waiting completes, so do not assign to 'gadget'
997 		 * earlier
998 		 */
999 		gadget = epfile->ffs->gadget;
1000 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1001 
1002 		spin_lock_irq(&epfile->ffs->eps_lock);
1003 		/* In the meantime, endpoint got disabled or changed. */
1004 		if (epfile->ep != ep) {
1005 			ret = -ESHUTDOWN;
1006 			goto error_lock;
1007 		}
1008 		data_len = iov_iter_count(&io_data->data);
1009 		/*
1010 		 * Controller may require buffer size to be aligned to
1011 		 * maxpacketsize of an out endpoint.
1012 		 */
1013 		if (io_data->read)
1014 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015 		spin_unlock_irq(&epfile->ffs->eps_lock);
1016 
1017 		data = ffs_alloc_buffer(io_data, data_len);
1018 		if (unlikely(!data)) {
1019 			ret = -ENOMEM;
1020 			goto error_mutex;
1021 		}
1022 		if (!io_data->read &&
1023 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1024 			ret = -EFAULT;
1025 			goto error_mutex;
1026 		}
1027 	}
1028 
1029 	spin_lock_irq(&epfile->ffs->eps_lock);
1030 
1031 	if (epfile->ep != ep) {
1032 		/* In the meantime, endpoint got disabled or changed. */
1033 		ret = -ESHUTDOWN;
1034 	} else if (halt) {
1035 		ret = usb_ep_set_halt(ep->ep);
1036 		if (!ret)
1037 			ret = -EBADMSG;
1038 	} else if (unlikely(data_len == -EINVAL)) {
1039 		/*
1040 		 * Sanity Check: even though data_len can't be used
1041 		 * uninitialized at the time I write this comment, some
1042 		 * compilers complain about this situation.
1043 		 * In order to keep the code clean from warnings, data_len is
1044 		 * being initialized to -EINVAL during its declaration, which
1045 		 * means we can't rely on compiler anymore to warn no future
1046 		 * changes won't result in data_len being used uninitialized.
1047 		 * For such reason, we're adding this redundant sanity check
1048 		 * here.
1049 		 */
1050 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1051 		ret = -EINVAL;
1052 	} else if (!io_data->aio) {
1053 		DECLARE_COMPLETION_ONSTACK(done);
1054 		bool interrupted = false;
1055 
1056 		req = ep->req;
1057 		if (io_data->use_sg) {
1058 			req->buf = NULL;
1059 			req->sg	= io_data->sgt.sgl;
1060 			req->num_sgs = io_data->sgt.nents;
1061 		} else {
1062 			req->buf = data;
1063 		}
1064 		req->length = data_len;
1065 
1066 		io_data->buf = data;
1067 
1068 		req->context  = &done;
1069 		req->complete = ffs_epfile_io_complete;
1070 
1071 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1072 		if (unlikely(ret < 0))
1073 			goto error_lock;
1074 
1075 		spin_unlock_irq(&epfile->ffs->eps_lock);
1076 
1077 		if (unlikely(wait_for_completion_interruptible(&done))) {
1078 			/*
1079 			 * To avoid race condition with ffs_epfile_io_complete,
1080 			 * dequeue the request first then check
1081 			 * status. usb_ep_dequeue API should guarantee no race
1082 			 * condition with req->complete callback.
1083 			 */
1084 			usb_ep_dequeue(ep->ep, req);
1085 			interrupted = ep->status < 0;
1086 		}
1087 
1088 		if (interrupted)
1089 			ret = -EINTR;
1090 		else if (io_data->read && ep->status > 0)
1091 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1092 						     &io_data->data);
1093 		else
1094 			ret = ep->status;
1095 		goto error_mutex;
1096 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1097 		ret = -ENOMEM;
1098 	} else {
1099 		if (io_data->use_sg) {
1100 			req->buf = NULL;
1101 			req->sg	= io_data->sgt.sgl;
1102 			req->num_sgs = io_data->sgt.nents;
1103 		} else {
1104 			req->buf = data;
1105 		}
1106 		req->length = data_len;
1107 
1108 		io_data->buf = data;
1109 		io_data->ep = ep->ep;
1110 		io_data->req = req;
1111 		io_data->ffs = epfile->ffs;
1112 
1113 		req->context  = io_data;
1114 		req->complete = ffs_epfile_async_io_complete;
1115 
1116 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1117 		if (unlikely(ret)) {
1118 			usb_ep_free_request(ep->ep, req);
1119 			goto error_lock;
1120 		}
1121 
1122 		ret = -EIOCBQUEUED;
1123 		/*
1124 		 * Do not kfree the buffer in this function.  It will be freed
1125 		 * by ffs_user_copy_worker.
1126 		 */
1127 		data = NULL;
1128 	}
1129 
1130 error_lock:
1131 	spin_unlock_irq(&epfile->ffs->eps_lock);
1132 error_mutex:
1133 	mutex_unlock(&epfile->mutex);
1134 error:
1135 	ffs_free_buffer(io_data);
1136 	return ret;
1137 }
1138 
1139 static int
1140 ffs_epfile_open(struct inode *inode, struct file *file)
1141 {
1142 	struct ffs_epfile *epfile = inode->i_private;
1143 
1144 	ENTER();
1145 
1146 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1147 		return -ENODEV;
1148 
1149 	file->private_data = epfile;
1150 	ffs_data_opened(epfile->ffs);
1151 
1152 	return 0;
1153 }
1154 
1155 static int ffs_aio_cancel(struct kiocb *kiocb)
1156 {
1157 	struct ffs_io_data *io_data = kiocb->private;
1158 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1159 	int value;
1160 
1161 	ENTER();
1162 
1163 	spin_lock_irq(&epfile->ffs->eps_lock);
1164 
1165 	if (likely(io_data && io_data->ep && io_data->req))
1166 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1167 	else
1168 		value = -EINVAL;
1169 
1170 	spin_unlock_irq(&epfile->ffs->eps_lock);
1171 
1172 	return value;
1173 }
1174 
1175 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1176 {
1177 	struct ffs_io_data io_data, *p = &io_data;
1178 	ssize_t res;
1179 
1180 	ENTER();
1181 
1182 	if (!is_sync_kiocb(kiocb)) {
1183 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1184 		if (unlikely(!p))
1185 			return -ENOMEM;
1186 		p->aio = true;
1187 	} else {
1188 		p->aio = false;
1189 	}
1190 
1191 	p->read = false;
1192 	p->kiocb = kiocb;
1193 	p->data = *from;
1194 	p->mm = current->mm;
1195 
1196 	kiocb->private = p;
1197 
1198 	if (p->aio)
1199 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1200 
1201 	res = ffs_epfile_io(kiocb->ki_filp, p);
1202 	if (res == -EIOCBQUEUED)
1203 		return res;
1204 	if (p->aio)
1205 		kfree(p);
1206 	else
1207 		*from = p->data;
1208 	return res;
1209 }
1210 
1211 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1212 {
1213 	struct ffs_io_data io_data, *p = &io_data;
1214 	ssize_t res;
1215 
1216 	ENTER();
1217 
1218 	if (!is_sync_kiocb(kiocb)) {
1219 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1220 		if (unlikely(!p))
1221 			return -ENOMEM;
1222 		p->aio = true;
1223 	} else {
1224 		p->aio = false;
1225 	}
1226 
1227 	p->read = true;
1228 	p->kiocb = kiocb;
1229 	if (p->aio) {
1230 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1231 		if (!p->to_free) {
1232 			kfree(p);
1233 			return -ENOMEM;
1234 		}
1235 	} else {
1236 		p->data = *to;
1237 		p->to_free = NULL;
1238 	}
1239 	p->mm = current->mm;
1240 
1241 	kiocb->private = p;
1242 
1243 	if (p->aio)
1244 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1245 
1246 	res = ffs_epfile_io(kiocb->ki_filp, p);
1247 	if (res == -EIOCBQUEUED)
1248 		return res;
1249 
1250 	if (p->aio) {
1251 		kfree(p->to_free);
1252 		kfree(p);
1253 	} else {
1254 		*to = p->data;
1255 	}
1256 	return res;
1257 }
1258 
1259 static int
1260 ffs_epfile_release(struct inode *inode, struct file *file)
1261 {
1262 	struct ffs_epfile *epfile = inode->i_private;
1263 
1264 	ENTER();
1265 
1266 	__ffs_epfile_read_buffer_free(epfile);
1267 	ffs_data_closed(epfile->ffs);
1268 
1269 	return 0;
1270 }
1271 
1272 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1273 			     unsigned long value)
1274 {
1275 	struct ffs_epfile *epfile = file->private_data;
1276 	struct ffs_ep *ep;
1277 	int ret;
1278 
1279 	ENTER();
1280 
1281 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1282 		return -ENODEV;
1283 
1284 	/* Wait for endpoint to be enabled */
1285 	ep = epfile->ep;
1286 	if (!ep) {
1287 		if (file->f_flags & O_NONBLOCK)
1288 			return -EAGAIN;
1289 
1290 		ret = wait_event_interruptible(
1291 				epfile->ffs->wait, (ep = epfile->ep));
1292 		if (ret)
1293 			return -EINTR;
1294 	}
1295 
1296 	spin_lock_irq(&epfile->ffs->eps_lock);
1297 
1298 	/* In the meantime, endpoint got disabled or changed. */
1299 	if (epfile->ep != ep) {
1300 		spin_unlock_irq(&epfile->ffs->eps_lock);
1301 		return -ESHUTDOWN;
1302 	}
1303 
1304 	switch (code) {
1305 	case FUNCTIONFS_FIFO_STATUS:
1306 		ret = usb_ep_fifo_status(epfile->ep->ep);
1307 		break;
1308 	case FUNCTIONFS_FIFO_FLUSH:
1309 		usb_ep_fifo_flush(epfile->ep->ep);
1310 		ret = 0;
1311 		break;
1312 	case FUNCTIONFS_CLEAR_HALT:
1313 		ret = usb_ep_clear_halt(epfile->ep->ep);
1314 		break;
1315 	case FUNCTIONFS_ENDPOINT_REVMAP:
1316 		ret = epfile->ep->num;
1317 		break;
1318 	case FUNCTIONFS_ENDPOINT_DESC:
1319 	{
1320 		int desc_idx;
1321 		struct usb_endpoint_descriptor *desc;
1322 
1323 		switch (epfile->ffs->gadget->speed) {
1324 		case USB_SPEED_SUPER:
1325 			desc_idx = 2;
1326 			break;
1327 		case USB_SPEED_HIGH:
1328 			desc_idx = 1;
1329 			break;
1330 		default:
1331 			desc_idx = 0;
1332 		}
1333 		desc = epfile->ep->descs[desc_idx];
1334 
1335 		spin_unlock_irq(&epfile->ffs->eps_lock);
1336 		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1337 		if (ret)
1338 			ret = -EFAULT;
1339 		return ret;
1340 	}
1341 	default:
1342 		ret = -ENOTTY;
1343 	}
1344 	spin_unlock_irq(&epfile->ffs->eps_lock);
1345 
1346 	return ret;
1347 }
1348 
1349 #ifdef CONFIG_COMPAT
1350 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
1351 		unsigned long value)
1352 {
1353 	return ffs_epfile_ioctl(file, code, value);
1354 }
1355 #endif
1356 
1357 static const struct file_operations ffs_epfile_operations = {
1358 	.llseek =	no_llseek,
1359 
1360 	.open =		ffs_epfile_open,
1361 	.write_iter =	ffs_epfile_write_iter,
1362 	.read_iter =	ffs_epfile_read_iter,
1363 	.release =	ffs_epfile_release,
1364 	.unlocked_ioctl =	ffs_epfile_ioctl,
1365 #ifdef CONFIG_COMPAT
1366 	.compat_ioctl = ffs_epfile_compat_ioctl,
1367 #endif
1368 };
1369 
1370 
1371 /* File system and super block operations ***********************************/
1372 
1373 /*
1374  * Mounting the file system creates a controller file, used first for
1375  * function configuration then later for event monitoring.
1376  */
1377 
1378 static struct inode *__must_check
1379 ffs_sb_make_inode(struct super_block *sb, void *data,
1380 		  const struct file_operations *fops,
1381 		  const struct inode_operations *iops,
1382 		  struct ffs_file_perms *perms)
1383 {
1384 	struct inode *inode;
1385 
1386 	ENTER();
1387 
1388 	inode = new_inode(sb);
1389 
1390 	if (likely(inode)) {
1391 		struct timespec64 ts = current_time(inode);
1392 
1393 		inode->i_ino	 = get_next_ino();
1394 		inode->i_mode    = perms->mode;
1395 		inode->i_uid     = perms->uid;
1396 		inode->i_gid     = perms->gid;
1397 		inode->i_atime   = ts;
1398 		inode->i_mtime   = ts;
1399 		inode->i_ctime   = ts;
1400 		inode->i_private = data;
1401 		if (fops)
1402 			inode->i_fop = fops;
1403 		if (iops)
1404 			inode->i_op  = iops;
1405 	}
1406 
1407 	return inode;
1408 }
1409 
1410 /* Create "regular" file */
1411 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1412 					const char *name, void *data,
1413 					const struct file_operations *fops)
1414 {
1415 	struct ffs_data	*ffs = sb->s_fs_info;
1416 	struct dentry	*dentry;
1417 	struct inode	*inode;
1418 
1419 	ENTER();
1420 
1421 	dentry = d_alloc_name(sb->s_root, name);
1422 	if (unlikely(!dentry))
1423 		return NULL;
1424 
1425 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1426 	if (unlikely(!inode)) {
1427 		dput(dentry);
1428 		return NULL;
1429 	}
1430 
1431 	d_add(dentry, inode);
1432 	return dentry;
1433 }
1434 
1435 /* Super block */
1436 static const struct super_operations ffs_sb_operations = {
1437 	.statfs =	simple_statfs,
1438 	.drop_inode =	generic_delete_inode,
1439 };
1440 
1441 struct ffs_sb_fill_data {
1442 	struct ffs_file_perms perms;
1443 	umode_t root_mode;
1444 	const char *dev_name;
1445 	bool no_disconnect;
1446 	struct ffs_data *ffs_data;
1447 };
1448 
1449 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1450 {
1451 	struct ffs_sb_fill_data *data = _data;
1452 	struct inode	*inode;
1453 	struct ffs_data	*ffs = data->ffs_data;
1454 
1455 	ENTER();
1456 
1457 	ffs->sb              = sb;
1458 	data->ffs_data       = NULL;
1459 	sb->s_fs_info        = ffs;
1460 	sb->s_blocksize      = PAGE_SIZE;
1461 	sb->s_blocksize_bits = PAGE_SHIFT;
1462 	sb->s_magic          = FUNCTIONFS_MAGIC;
1463 	sb->s_op             = &ffs_sb_operations;
1464 	sb->s_time_gran      = 1;
1465 
1466 	/* Root inode */
1467 	data->perms.mode = data->root_mode;
1468 	inode = ffs_sb_make_inode(sb, NULL,
1469 				  &simple_dir_operations,
1470 				  &simple_dir_inode_operations,
1471 				  &data->perms);
1472 	sb->s_root = d_make_root(inode);
1473 	if (unlikely(!sb->s_root))
1474 		return -ENOMEM;
1475 
1476 	/* EP0 file */
1477 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1478 					 &ffs_ep0_operations)))
1479 		return -ENOMEM;
1480 
1481 	return 0;
1482 }
1483 
1484 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1485 {
1486 	ENTER();
1487 
1488 	if (!opts || !*opts)
1489 		return 0;
1490 
1491 	for (;;) {
1492 		unsigned long value;
1493 		char *eq, *comma;
1494 
1495 		/* Option limit */
1496 		comma = strchr(opts, ',');
1497 		if (comma)
1498 			*comma = 0;
1499 
1500 		/* Value limit */
1501 		eq = strchr(opts, '=');
1502 		if (unlikely(!eq)) {
1503 			pr_err("'=' missing in %s\n", opts);
1504 			return -EINVAL;
1505 		}
1506 		*eq = 0;
1507 
1508 		/* Parse value */
1509 		if (kstrtoul(eq + 1, 0, &value)) {
1510 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1511 			return -EINVAL;
1512 		}
1513 
1514 		/* Interpret option */
1515 		switch (eq - opts) {
1516 		case 13:
1517 			if (!memcmp(opts, "no_disconnect", 13))
1518 				data->no_disconnect = !!value;
1519 			else
1520 				goto invalid;
1521 			break;
1522 		case 5:
1523 			if (!memcmp(opts, "rmode", 5))
1524 				data->root_mode  = (value & 0555) | S_IFDIR;
1525 			else if (!memcmp(opts, "fmode", 5))
1526 				data->perms.mode = (value & 0666) | S_IFREG;
1527 			else
1528 				goto invalid;
1529 			break;
1530 
1531 		case 4:
1532 			if (!memcmp(opts, "mode", 4)) {
1533 				data->root_mode  = (value & 0555) | S_IFDIR;
1534 				data->perms.mode = (value & 0666) | S_IFREG;
1535 			} else {
1536 				goto invalid;
1537 			}
1538 			break;
1539 
1540 		case 3:
1541 			if (!memcmp(opts, "uid", 3)) {
1542 				data->perms.uid = make_kuid(current_user_ns(), value);
1543 				if (!uid_valid(data->perms.uid)) {
1544 					pr_err("%s: unmapped value: %lu\n", opts, value);
1545 					return -EINVAL;
1546 				}
1547 			} else if (!memcmp(opts, "gid", 3)) {
1548 				data->perms.gid = make_kgid(current_user_ns(), value);
1549 				if (!gid_valid(data->perms.gid)) {
1550 					pr_err("%s: unmapped value: %lu\n", opts, value);
1551 					return -EINVAL;
1552 				}
1553 			} else {
1554 				goto invalid;
1555 			}
1556 			break;
1557 
1558 		default:
1559 invalid:
1560 			pr_err("%s: invalid option\n", opts);
1561 			return -EINVAL;
1562 		}
1563 
1564 		/* Next iteration */
1565 		if (!comma)
1566 			break;
1567 		opts = comma + 1;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 /* "mount -t functionfs dev_name /dev/function" ends up here */
1574 
1575 static struct dentry *
1576 ffs_fs_mount(struct file_system_type *t, int flags,
1577 	      const char *dev_name, void *opts)
1578 {
1579 	struct ffs_sb_fill_data data = {
1580 		.perms = {
1581 			.mode = S_IFREG | 0600,
1582 			.uid = GLOBAL_ROOT_UID,
1583 			.gid = GLOBAL_ROOT_GID,
1584 		},
1585 		.root_mode = S_IFDIR | 0500,
1586 		.no_disconnect = false,
1587 	};
1588 	struct dentry *rv;
1589 	int ret;
1590 	void *ffs_dev;
1591 	struct ffs_data	*ffs;
1592 
1593 	ENTER();
1594 
1595 	ret = ffs_fs_parse_opts(&data, opts);
1596 	if (unlikely(ret < 0))
1597 		return ERR_PTR(ret);
1598 
1599 	ffs = ffs_data_new(dev_name);
1600 	if (unlikely(!ffs))
1601 		return ERR_PTR(-ENOMEM);
1602 	ffs->file_perms = data.perms;
1603 	ffs->no_disconnect = data.no_disconnect;
1604 
1605 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1606 	if (unlikely(!ffs->dev_name)) {
1607 		ffs_data_put(ffs);
1608 		return ERR_PTR(-ENOMEM);
1609 	}
1610 
1611 	ffs_dev = ffs_acquire_dev(dev_name);
1612 	if (IS_ERR(ffs_dev)) {
1613 		ffs_data_put(ffs);
1614 		return ERR_CAST(ffs_dev);
1615 	}
1616 	ffs->private_data = ffs_dev;
1617 	data.ffs_data = ffs;
1618 
1619 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1620 	if (IS_ERR(rv) && data.ffs_data) {
1621 		ffs_release_dev(data.ffs_data);
1622 		ffs_data_put(data.ffs_data);
1623 	}
1624 	return rv;
1625 }
1626 
1627 static void
1628 ffs_fs_kill_sb(struct super_block *sb)
1629 {
1630 	ENTER();
1631 
1632 	kill_litter_super(sb);
1633 	if (sb->s_fs_info) {
1634 		ffs_release_dev(sb->s_fs_info);
1635 		ffs_data_closed(sb->s_fs_info);
1636 	}
1637 }
1638 
1639 static struct file_system_type ffs_fs_type = {
1640 	.owner		= THIS_MODULE,
1641 	.name		= "functionfs",
1642 	.mount		= ffs_fs_mount,
1643 	.kill_sb	= ffs_fs_kill_sb,
1644 };
1645 MODULE_ALIAS_FS("functionfs");
1646 
1647 
1648 /* Driver's main init/cleanup functions *************************************/
1649 
1650 static int functionfs_init(void)
1651 {
1652 	int ret;
1653 
1654 	ENTER();
1655 
1656 	ret = register_filesystem(&ffs_fs_type);
1657 	if (likely(!ret))
1658 		pr_info("file system registered\n");
1659 	else
1660 		pr_err("failed registering file system (%d)\n", ret);
1661 
1662 	return ret;
1663 }
1664 
1665 static void functionfs_cleanup(void)
1666 {
1667 	ENTER();
1668 
1669 	pr_info("unloading\n");
1670 	unregister_filesystem(&ffs_fs_type);
1671 }
1672 
1673 
1674 /* ffs_data and ffs_function construction and destruction code **************/
1675 
1676 static void ffs_data_clear(struct ffs_data *ffs);
1677 static void ffs_data_reset(struct ffs_data *ffs);
1678 
1679 static void ffs_data_get(struct ffs_data *ffs)
1680 {
1681 	ENTER();
1682 
1683 	refcount_inc(&ffs->ref);
1684 }
1685 
1686 static void ffs_data_opened(struct ffs_data *ffs)
1687 {
1688 	ENTER();
1689 
1690 	refcount_inc(&ffs->ref);
1691 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1692 			ffs->state == FFS_DEACTIVATED) {
1693 		ffs->state = FFS_CLOSING;
1694 		ffs_data_reset(ffs);
1695 	}
1696 }
1697 
1698 static void ffs_data_put(struct ffs_data *ffs)
1699 {
1700 	ENTER();
1701 
1702 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1703 		pr_info("%s(): freeing\n", __func__);
1704 		ffs_data_clear(ffs);
1705 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1706 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1707 		       waitqueue_active(&ffs->wait));
1708 		destroy_workqueue(ffs->io_completion_wq);
1709 		kfree(ffs->dev_name);
1710 		kfree(ffs);
1711 	}
1712 }
1713 
1714 static void ffs_data_closed(struct ffs_data *ffs)
1715 {
1716 	ENTER();
1717 
1718 	if (atomic_dec_and_test(&ffs->opened)) {
1719 		if (ffs->no_disconnect) {
1720 			ffs->state = FFS_DEACTIVATED;
1721 			if (ffs->epfiles) {
1722 				ffs_epfiles_destroy(ffs->epfiles,
1723 						   ffs->eps_count);
1724 				ffs->epfiles = NULL;
1725 			}
1726 			if (ffs->setup_state == FFS_SETUP_PENDING)
1727 				__ffs_ep0_stall(ffs);
1728 		} else {
1729 			ffs->state = FFS_CLOSING;
1730 			ffs_data_reset(ffs);
1731 		}
1732 	}
1733 	if (atomic_read(&ffs->opened) < 0) {
1734 		ffs->state = FFS_CLOSING;
1735 		ffs_data_reset(ffs);
1736 	}
1737 
1738 	ffs_data_put(ffs);
1739 }
1740 
1741 static struct ffs_data *ffs_data_new(const char *dev_name)
1742 {
1743 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1744 	if (unlikely(!ffs))
1745 		return NULL;
1746 
1747 	ENTER();
1748 
1749 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1750 	if (!ffs->io_completion_wq) {
1751 		kfree(ffs);
1752 		return NULL;
1753 	}
1754 
1755 	refcount_set(&ffs->ref, 1);
1756 	atomic_set(&ffs->opened, 0);
1757 	ffs->state = FFS_READ_DESCRIPTORS;
1758 	mutex_init(&ffs->mutex);
1759 	spin_lock_init(&ffs->eps_lock);
1760 	init_waitqueue_head(&ffs->ev.waitq);
1761 	init_waitqueue_head(&ffs->wait);
1762 	init_completion(&ffs->ep0req_completion);
1763 
1764 	/* XXX REVISIT need to update it in some places, or do we? */
1765 	ffs->ev.can_stall = 1;
1766 
1767 	return ffs;
1768 }
1769 
1770 static void ffs_data_clear(struct ffs_data *ffs)
1771 {
1772 	ENTER();
1773 
1774 	ffs_closed(ffs);
1775 
1776 	BUG_ON(ffs->gadget);
1777 
1778 	if (ffs->epfiles)
1779 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1780 
1781 	if (ffs->ffs_eventfd)
1782 		eventfd_ctx_put(ffs->ffs_eventfd);
1783 
1784 	kfree(ffs->raw_descs_data);
1785 	kfree(ffs->raw_strings);
1786 	kfree(ffs->stringtabs);
1787 }
1788 
1789 static void ffs_data_reset(struct ffs_data *ffs)
1790 {
1791 	ENTER();
1792 
1793 	ffs_data_clear(ffs);
1794 
1795 	ffs->epfiles = NULL;
1796 	ffs->raw_descs_data = NULL;
1797 	ffs->raw_descs = NULL;
1798 	ffs->raw_strings = NULL;
1799 	ffs->stringtabs = NULL;
1800 
1801 	ffs->raw_descs_length = 0;
1802 	ffs->fs_descs_count = 0;
1803 	ffs->hs_descs_count = 0;
1804 	ffs->ss_descs_count = 0;
1805 
1806 	ffs->strings_count = 0;
1807 	ffs->interfaces_count = 0;
1808 	ffs->eps_count = 0;
1809 
1810 	ffs->ev.count = 0;
1811 
1812 	ffs->state = FFS_READ_DESCRIPTORS;
1813 	ffs->setup_state = FFS_NO_SETUP;
1814 	ffs->flags = 0;
1815 }
1816 
1817 
1818 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1819 {
1820 	struct usb_gadget_strings **lang;
1821 	int first_id;
1822 
1823 	ENTER();
1824 
1825 	if (WARN_ON(ffs->state != FFS_ACTIVE
1826 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1827 		return -EBADFD;
1828 
1829 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1830 	if (unlikely(first_id < 0))
1831 		return first_id;
1832 
1833 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1834 	if (unlikely(!ffs->ep0req))
1835 		return -ENOMEM;
1836 	ffs->ep0req->complete = ffs_ep0_complete;
1837 	ffs->ep0req->context = ffs;
1838 
1839 	lang = ffs->stringtabs;
1840 	if (lang) {
1841 		for (; *lang; ++lang) {
1842 			struct usb_string *str = (*lang)->strings;
1843 			int id = first_id;
1844 			for (; str->s; ++id, ++str)
1845 				str->id = id;
1846 		}
1847 	}
1848 
1849 	ffs->gadget = cdev->gadget;
1850 	ffs_data_get(ffs);
1851 	return 0;
1852 }
1853 
1854 static void functionfs_unbind(struct ffs_data *ffs)
1855 {
1856 	ENTER();
1857 
1858 	if (!WARN_ON(!ffs->gadget)) {
1859 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1860 		ffs->ep0req = NULL;
1861 		ffs->gadget = NULL;
1862 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1863 		ffs_data_put(ffs);
1864 	}
1865 }
1866 
1867 static int ffs_epfiles_create(struct ffs_data *ffs)
1868 {
1869 	struct ffs_epfile *epfile, *epfiles;
1870 	unsigned i, count;
1871 
1872 	ENTER();
1873 
1874 	count = ffs->eps_count;
1875 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1876 	if (!epfiles)
1877 		return -ENOMEM;
1878 
1879 	epfile = epfiles;
1880 	for (i = 1; i <= count; ++i, ++epfile) {
1881 		epfile->ffs = ffs;
1882 		mutex_init(&epfile->mutex);
1883 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1884 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1885 		else
1886 			sprintf(epfile->name, "ep%u", i);
1887 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1888 						 epfile,
1889 						 &ffs_epfile_operations);
1890 		if (unlikely(!epfile->dentry)) {
1891 			ffs_epfiles_destroy(epfiles, i - 1);
1892 			return -ENOMEM;
1893 		}
1894 	}
1895 
1896 	ffs->epfiles = epfiles;
1897 	return 0;
1898 }
1899 
1900 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1901 {
1902 	struct ffs_epfile *epfile = epfiles;
1903 
1904 	ENTER();
1905 
1906 	for (; count; --count, ++epfile) {
1907 		BUG_ON(mutex_is_locked(&epfile->mutex));
1908 		if (epfile->dentry) {
1909 			d_delete(epfile->dentry);
1910 			dput(epfile->dentry);
1911 			epfile->dentry = NULL;
1912 		}
1913 	}
1914 
1915 	kfree(epfiles);
1916 }
1917 
1918 static void ffs_func_eps_disable(struct ffs_function *func)
1919 {
1920 	struct ffs_ep *ep         = func->eps;
1921 	struct ffs_epfile *epfile = func->ffs->epfiles;
1922 	unsigned count            = func->ffs->eps_count;
1923 	unsigned long flags;
1924 
1925 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1926 	while (count--) {
1927 		/* pending requests get nuked */
1928 		if (likely(ep->ep))
1929 			usb_ep_disable(ep->ep);
1930 		++ep;
1931 
1932 		if (epfile) {
1933 			epfile->ep = NULL;
1934 			__ffs_epfile_read_buffer_free(epfile);
1935 			++epfile;
1936 		}
1937 	}
1938 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1939 }
1940 
1941 static int ffs_func_eps_enable(struct ffs_function *func)
1942 {
1943 	struct ffs_data *ffs      = func->ffs;
1944 	struct ffs_ep *ep         = func->eps;
1945 	struct ffs_epfile *epfile = ffs->epfiles;
1946 	unsigned count            = ffs->eps_count;
1947 	unsigned long flags;
1948 	int ret = 0;
1949 
1950 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1951 	while(count--) {
1952 		ep->ep->driver_data = ep;
1953 
1954 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1955 		if (ret) {
1956 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1957 					__func__, ep->ep->name, ret);
1958 			break;
1959 		}
1960 
1961 		ret = usb_ep_enable(ep->ep);
1962 		if (likely(!ret)) {
1963 			epfile->ep = ep;
1964 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1965 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1966 		} else {
1967 			break;
1968 		}
1969 
1970 		++ep;
1971 		++epfile;
1972 	}
1973 
1974 	wake_up_interruptible(&ffs->wait);
1975 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1976 
1977 	return ret;
1978 }
1979 
1980 
1981 /* Parsing and building descriptors and strings *****************************/
1982 
1983 /*
1984  * This validates if data pointed by data is a valid USB descriptor as
1985  * well as record how many interfaces, endpoints and strings are
1986  * required by given configuration.  Returns address after the
1987  * descriptor or NULL if data is invalid.
1988  */
1989 
1990 enum ffs_entity_type {
1991 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1992 };
1993 
1994 enum ffs_os_desc_type {
1995 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1996 };
1997 
1998 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1999 				   u8 *valuep,
2000 				   struct usb_descriptor_header *desc,
2001 				   void *priv);
2002 
2003 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2004 				    struct usb_os_desc_header *h, void *data,
2005 				    unsigned len, void *priv);
2006 
2007 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2008 					   ffs_entity_callback entity,
2009 					   void *priv, int *current_class)
2010 {
2011 	struct usb_descriptor_header *_ds = (void *)data;
2012 	u8 length;
2013 	int ret;
2014 
2015 	ENTER();
2016 
2017 	/* At least two bytes are required: length and type */
2018 	if (len < 2) {
2019 		pr_vdebug("descriptor too short\n");
2020 		return -EINVAL;
2021 	}
2022 
2023 	/* If we have at least as many bytes as the descriptor takes? */
2024 	length = _ds->bLength;
2025 	if (len < length) {
2026 		pr_vdebug("descriptor longer then available data\n");
2027 		return -EINVAL;
2028 	}
2029 
2030 #define __entity_check_INTERFACE(val)  1
2031 #define __entity_check_STRING(val)     (val)
2032 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2033 #define __entity(type, val) do {					\
2034 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2035 		if (unlikely(!__entity_check_ ##type(val))) {		\
2036 			pr_vdebug("invalid entity's value\n");		\
2037 			return -EINVAL;					\
2038 		}							\
2039 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2040 		if (unlikely(ret < 0)) {				\
2041 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2042 				 (val), ret);				\
2043 			return ret;					\
2044 		}							\
2045 	} while (0)
2046 
2047 	/* Parse descriptor depending on type. */
2048 	switch (_ds->bDescriptorType) {
2049 	case USB_DT_DEVICE:
2050 	case USB_DT_CONFIG:
2051 	case USB_DT_STRING:
2052 	case USB_DT_DEVICE_QUALIFIER:
2053 		/* function can't have any of those */
2054 		pr_vdebug("descriptor reserved for gadget: %d\n",
2055 		      _ds->bDescriptorType);
2056 		return -EINVAL;
2057 
2058 	case USB_DT_INTERFACE: {
2059 		struct usb_interface_descriptor *ds = (void *)_ds;
2060 		pr_vdebug("interface descriptor\n");
2061 		if (length != sizeof *ds)
2062 			goto inv_length;
2063 
2064 		__entity(INTERFACE, ds->bInterfaceNumber);
2065 		if (ds->iInterface)
2066 			__entity(STRING, ds->iInterface);
2067 		*current_class = ds->bInterfaceClass;
2068 	}
2069 		break;
2070 
2071 	case USB_DT_ENDPOINT: {
2072 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2073 		pr_vdebug("endpoint descriptor\n");
2074 		if (length != USB_DT_ENDPOINT_SIZE &&
2075 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2076 			goto inv_length;
2077 		__entity(ENDPOINT, ds->bEndpointAddress);
2078 	}
2079 		break;
2080 
2081 	case USB_TYPE_CLASS | 0x01:
2082                 if (*current_class == USB_INTERFACE_CLASS_HID) {
2083 			pr_vdebug("hid descriptor\n");
2084 			if (length != sizeof(struct hid_descriptor))
2085 				goto inv_length;
2086 			break;
2087 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2088 			pr_vdebug("ccid descriptor\n");
2089 			if (length != sizeof(struct ccid_descriptor))
2090 				goto inv_length;
2091 			break;
2092 		} else {
2093 			pr_vdebug("unknown descriptor: %d for class %d\n",
2094 			      _ds->bDescriptorType, *current_class);
2095 			return -EINVAL;
2096 		}
2097 
2098 	case USB_DT_OTG:
2099 		if (length != sizeof(struct usb_otg_descriptor))
2100 			goto inv_length;
2101 		break;
2102 
2103 	case USB_DT_INTERFACE_ASSOCIATION: {
2104 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2105 		pr_vdebug("interface association descriptor\n");
2106 		if (length != sizeof *ds)
2107 			goto inv_length;
2108 		if (ds->iFunction)
2109 			__entity(STRING, ds->iFunction);
2110 	}
2111 		break;
2112 
2113 	case USB_DT_SS_ENDPOINT_COMP:
2114 		pr_vdebug("EP SS companion descriptor\n");
2115 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2116 			goto inv_length;
2117 		break;
2118 
2119 	case USB_DT_OTHER_SPEED_CONFIG:
2120 	case USB_DT_INTERFACE_POWER:
2121 	case USB_DT_DEBUG:
2122 	case USB_DT_SECURITY:
2123 	case USB_DT_CS_RADIO_CONTROL:
2124 		/* TODO */
2125 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2126 		return -EINVAL;
2127 
2128 	default:
2129 		/* We should never be here */
2130 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2131 		return -EINVAL;
2132 
2133 inv_length:
2134 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2135 			  _ds->bLength, _ds->bDescriptorType);
2136 		return -EINVAL;
2137 	}
2138 
2139 #undef __entity
2140 #undef __entity_check_DESCRIPTOR
2141 #undef __entity_check_INTERFACE
2142 #undef __entity_check_STRING
2143 #undef __entity_check_ENDPOINT
2144 
2145 	return length;
2146 }
2147 
2148 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2149 				     ffs_entity_callback entity, void *priv)
2150 {
2151 	const unsigned _len = len;
2152 	unsigned long num = 0;
2153 	int current_class = -1;
2154 
2155 	ENTER();
2156 
2157 	for (;;) {
2158 		int ret;
2159 
2160 		if (num == count)
2161 			data = NULL;
2162 
2163 		/* Record "descriptor" entity */
2164 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2165 		if (unlikely(ret < 0)) {
2166 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2167 				 num, ret);
2168 			return ret;
2169 		}
2170 
2171 		if (!data)
2172 			return _len - len;
2173 
2174 		ret = ffs_do_single_desc(data, len, entity, priv,
2175 			&current_class);
2176 		if (unlikely(ret < 0)) {
2177 			pr_debug("%s returns %d\n", __func__, ret);
2178 			return ret;
2179 		}
2180 
2181 		len -= ret;
2182 		data += ret;
2183 		++num;
2184 	}
2185 }
2186 
2187 static int __ffs_data_do_entity(enum ffs_entity_type type,
2188 				u8 *valuep, struct usb_descriptor_header *desc,
2189 				void *priv)
2190 {
2191 	struct ffs_desc_helper *helper = priv;
2192 	struct usb_endpoint_descriptor *d;
2193 
2194 	ENTER();
2195 
2196 	switch (type) {
2197 	case FFS_DESCRIPTOR:
2198 		break;
2199 
2200 	case FFS_INTERFACE:
2201 		/*
2202 		 * Interfaces are indexed from zero so if we
2203 		 * encountered interface "n" then there are at least
2204 		 * "n+1" interfaces.
2205 		 */
2206 		if (*valuep >= helper->interfaces_count)
2207 			helper->interfaces_count = *valuep + 1;
2208 		break;
2209 
2210 	case FFS_STRING:
2211 		/*
2212 		 * Strings are indexed from 1 (0 is reserved
2213 		 * for languages list)
2214 		 */
2215 		if (*valuep > helper->ffs->strings_count)
2216 			helper->ffs->strings_count = *valuep;
2217 		break;
2218 
2219 	case FFS_ENDPOINT:
2220 		d = (void *)desc;
2221 		helper->eps_count++;
2222 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2223 			return -EINVAL;
2224 		/* Check if descriptors for any speed were already parsed */
2225 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2226 			helper->ffs->eps_addrmap[helper->eps_count] =
2227 				d->bEndpointAddress;
2228 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2229 				d->bEndpointAddress)
2230 			return -EINVAL;
2231 		break;
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2238 				   struct usb_os_desc_header *desc)
2239 {
2240 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2241 	u16 w_index = le16_to_cpu(desc->wIndex);
2242 
2243 	if (bcd_version != 1) {
2244 		pr_vdebug("unsupported os descriptors version: %d",
2245 			  bcd_version);
2246 		return -EINVAL;
2247 	}
2248 	switch (w_index) {
2249 	case 0x4:
2250 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2251 		break;
2252 	case 0x5:
2253 		*next_type = FFS_OS_DESC_EXT_PROP;
2254 		break;
2255 	default:
2256 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2257 		return -EINVAL;
2258 	}
2259 
2260 	return sizeof(*desc);
2261 }
2262 
2263 /*
2264  * Process all extended compatibility/extended property descriptors
2265  * of a feature descriptor
2266  */
2267 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2268 					      enum ffs_os_desc_type type,
2269 					      u16 feature_count,
2270 					      ffs_os_desc_callback entity,
2271 					      void *priv,
2272 					      struct usb_os_desc_header *h)
2273 {
2274 	int ret;
2275 	const unsigned _len = len;
2276 
2277 	ENTER();
2278 
2279 	/* loop over all ext compat/ext prop descriptors */
2280 	while (feature_count--) {
2281 		ret = entity(type, h, data, len, priv);
2282 		if (unlikely(ret < 0)) {
2283 			pr_debug("bad OS descriptor, type: %d\n", type);
2284 			return ret;
2285 		}
2286 		data += ret;
2287 		len -= ret;
2288 	}
2289 	return _len - len;
2290 }
2291 
2292 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2293 static int __must_check ffs_do_os_descs(unsigned count,
2294 					char *data, unsigned len,
2295 					ffs_os_desc_callback entity, void *priv)
2296 {
2297 	const unsigned _len = len;
2298 	unsigned long num = 0;
2299 
2300 	ENTER();
2301 
2302 	for (num = 0; num < count; ++num) {
2303 		int ret;
2304 		enum ffs_os_desc_type type;
2305 		u16 feature_count;
2306 		struct usb_os_desc_header *desc = (void *)data;
2307 
2308 		if (len < sizeof(*desc))
2309 			return -EINVAL;
2310 
2311 		/*
2312 		 * Record "descriptor" entity.
2313 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2314 		 * Move the data pointer to the beginning of extended
2315 		 * compatibilities proper or extended properties proper
2316 		 * portions of the data
2317 		 */
2318 		if (le32_to_cpu(desc->dwLength) > len)
2319 			return -EINVAL;
2320 
2321 		ret = __ffs_do_os_desc_header(&type, desc);
2322 		if (unlikely(ret < 0)) {
2323 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2324 				 num, ret);
2325 			return ret;
2326 		}
2327 		/*
2328 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2329 		 */
2330 		feature_count = le16_to_cpu(desc->wCount);
2331 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2332 		    (feature_count > 255 || desc->Reserved))
2333 				return -EINVAL;
2334 		len -= ret;
2335 		data += ret;
2336 
2337 		/*
2338 		 * Process all function/property descriptors
2339 		 * of this Feature Descriptor
2340 		 */
2341 		ret = ffs_do_single_os_desc(data, len, type,
2342 					    feature_count, entity, priv, desc);
2343 		if (unlikely(ret < 0)) {
2344 			pr_debug("%s returns %d\n", __func__, ret);
2345 			return ret;
2346 		}
2347 
2348 		len -= ret;
2349 		data += ret;
2350 	}
2351 	return _len - len;
2352 }
2353 
2354 /**
2355  * Validate contents of the buffer from userspace related to OS descriptors.
2356  */
2357 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2358 				 struct usb_os_desc_header *h, void *data,
2359 				 unsigned len, void *priv)
2360 {
2361 	struct ffs_data *ffs = priv;
2362 	u8 length;
2363 
2364 	ENTER();
2365 
2366 	switch (type) {
2367 	case FFS_OS_DESC_EXT_COMPAT: {
2368 		struct usb_ext_compat_desc *d = data;
2369 		int i;
2370 
2371 		if (len < sizeof(*d) ||
2372 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2373 			return -EINVAL;
2374 		if (d->Reserved1 != 1) {
2375 			/*
2376 			 * According to the spec, Reserved1 must be set to 1
2377 			 * but older kernels incorrectly rejected non-zero
2378 			 * values.  We fix it here to avoid returning EINVAL
2379 			 * in response to values we used to accept.
2380 			 */
2381 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2382 			d->Reserved1 = 1;
2383 		}
2384 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2385 			if (d->Reserved2[i])
2386 				return -EINVAL;
2387 
2388 		length = sizeof(struct usb_ext_compat_desc);
2389 	}
2390 		break;
2391 	case FFS_OS_DESC_EXT_PROP: {
2392 		struct usb_ext_prop_desc *d = data;
2393 		u32 type, pdl;
2394 		u16 pnl;
2395 
2396 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2397 			return -EINVAL;
2398 		length = le32_to_cpu(d->dwSize);
2399 		if (len < length)
2400 			return -EINVAL;
2401 		type = le32_to_cpu(d->dwPropertyDataType);
2402 		if (type < USB_EXT_PROP_UNICODE ||
2403 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2404 			pr_vdebug("unsupported os descriptor property type: %d",
2405 				  type);
2406 			return -EINVAL;
2407 		}
2408 		pnl = le16_to_cpu(d->wPropertyNameLength);
2409 		if (length < 14 + pnl) {
2410 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2411 				  length, pnl, type);
2412 			return -EINVAL;
2413 		}
2414 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2415 		if (length != 14 + pnl + pdl) {
2416 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2417 				  length, pnl, pdl, type);
2418 			return -EINVAL;
2419 		}
2420 		++ffs->ms_os_descs_ext_prop_count;
2421 		/* property name reported to the host as "WCHAR"s */
2422 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2423 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2424 	}
2425 		break;
2426 	default:
2427 		pr_vdebug("unknown descriptor: %d\n", type);
2428 		return -EINVAL;
2429 	}
2430 	return length;
2431 }
2432 
2433 static int __ffs_data_got_descs(struct ffs_data *ffs,
2434 				char *const _data, size_t len)
2435 {
2436 	char *data = _data, *raw_descs;
2437 	unsigned os_descs_count = 0, counts[3], flags;
2438 	int ret = -EINVAL, i;
2439 	struct ffs_desc_helper helper;
2440 
2441 	ENTER();
2442 
2443 	if (get_unaligned_le32(data + 4) != len)
2444 		goto error;
2445 
2446 	switch (get_unaligned_le32(data)) {
2447 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2448 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2449 		data += 8;
2450 		len  -= 8;
2451 		break;
2452 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2453 		flags = get_unaligned_le32(data + 8);
2454 		ffs->user_flags = flags;
2455 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2456 			      FUNCTIONFS_HAS_HS_DESC |
2457 			      FUNCTIONFS_HAS_SS_DESC |
2458 			      FUNCTIONFS_HAS_MS_OS_DESC |
2459 			      FUNCTIONFS_VIRTUAL_ADDR |
2460 			      FUNCTIONFS_EVENTFD |
2461 			      FUNCTIONFS_ALL_CTRL_RECIP |
2462 			      FUNCTIONFS_CONFIG0_SETUP)) {
2463 			ret = -ENOSYS;
2464 			goto error;
2465 		}
2466 		data += 12;
2467 		len  -= 12;
2468 		break;
2469 	default:
2470 		goto error;
2471 	}
2472 
2473 	if (flags & FUNCTIONFS_EVENTFD) {
2474 		if (len < 4)
2475 			goto error;
2476 		ffs->ffs_eventfd =
2477 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2478 		if (IS_ERR(ffs->ffs_eventfd)) {
2479 			ret = PTR_ERR(ffs->ffs_eventfd);
2480 			ffs->ffs_eventfd = NULL;
2481 			goto error;
2482 		}
2483 		data += 4;
2484 		len  -= 4;
2485 	}
2486 
2487 	/* Read fs_count, hs_count and ss_count (if present) */
2488 	for (i = 0; i < 3; ++i) {
2489 		if (!(flags & (1 << i))) {
2490 			counts[i] = 0;
2491 		} else if (len < 4) {
2492 			goto error;
2493 		} else {
2494 			counts[i] = get_unaligned_le32(data);
2495 			data += 4;
2496 			len  -= 4;
2497 		}
2498 	}
2499 	if (flags & (1 << i)) {
2500 		if (len < 4) {
2501 			goto error;
2502 		}
2503 		os_descs_count = get_unaligned_le32(data);
2504 		data += 4;
2505 		len -= 4;
2506 	};
2507 
2508 	/* Read descriptors */
2509 	raw_descs = data;
2510 	helper.ffs = ffs;
2511 	for (i = 0; i < 3; ++i) {
2512 		if (!counts[i])
2513 			continue;
2514 		helper.interfaces_count = 0;
2515 		helper.eps_count = 0;
2516 		ret = ffs_do_descs(counts[i], data, len,
2517 				   __ffs_data_do_entity, &helper);
2518 		if (ret < 0)
2519 			goto error;
2520 		if (!ffs->eps_count && !ffs->interfaces_count) {
2521 			ffs->eps_count = helper.eps_count;
2522 			ffs->interfaces_count = helper.interfaces_count;
2523 		} else {
2524 			if (ffs->eps_count != helper.eps_count) {
2525 				ret = -EINVAL;
2526 				goto error;
2527 			}
2528 			if (ffs->interfaces_count != helper.interfaces_count) {
2529 				ret = -EINVAL;
2530 				goto error;
2531 			}
2532 		}
2533 		data += ret;
2534 		len  -= ret;
2535 	}
2536 	if (os_descs_count) {
2537 		ret = ffs_do_os_descs(os_descs_count, data, len,
2538 				      __ffs_data_do_os_desc, ffs);
2539 		if (ret < 0)
2540 			goto error;
2541 		data += ret;
2542 		len -= ret;
2543 	}
2544 
2545 	if (raw_descs == data || len) {
2546 		ret = -EINVAL;
2547 		goto error;
2548 	}
2549 
2550 	ffs->raw_descs_data	= _data;
2551 	ffs->raw_descs		= raw_descs;
2552 	ffs->raw_descs_length	= data - raw_descs;
2553 	ffs->fs_descs_count	= counts[0];
2554 	ffs->hs_descs_count	= counts[1];
2555 	ffs->ss_descs_count	= counts[2];
2556 	ffs->ms_os_descs_count	= os_descs_count;
2557 
2558 	return 0;
2559 
2560 error:
2561 	kfree(_data);
2562 	return ret;
2563 }
2564 
2565 static int __ffs_data_got_strings(struct ffs_data *ffs,
2566 				  char *const _data, size_t len)
2567 {
2568 	u32 str_count, needed_count, lang_count;
2569 	struct usb_gadget_strings **stringtabs, *t;
2570 	const char *data = _data;
2571 	struct usb_string *s;
2572 
2573 	ENTER();
2574 
2575 	if (unlikely(len < 16 ||
2576 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2577 		     get_unaligned_le32(data + 4) != len))
2578 		goto error;
2579 	str_count  = get_unaligned_le32(data + 8);
2580 	lang_count = get_unaligned_le32(data + 12);
2581 
2582 	/* if one is zero the other must be zero */
2583 	if (unlikely(!str_count != !lang_count))
2584 		goto error;
2585 
2586 	/* Do we have at least as many strings as descriptors need? */
2587 	needed_count = ffs->strings_count;
2588 	if (unlikely(str_count < needed_count))
2589 		goto error;
2590 
2591 	/*
2592 	 * If we don't need any strings just return and free all
2593 	 * memory.
2594 	 */
2595 	if (!needed_count) {
2596 		kfree(_data);
2597 		return 0;
2598 	}
2599 
2600 	/* Allocate everything in one chunk so there's less maintenance. */
2601 	{
2602 		unsigned i = 0;
2603 		vla_group(d);
2604 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2605 			lang_count + 1);
2606 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2607 		vla_item(d, struct usb_string, strings,
2608 			lang_count*(needed_count+1));
2609 
2610 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2611 
2612 		if (unlikely(!vlabuf)) {
2613 			kfree(_data);
2614 			return -ENOMEM;
2615 		}
2616 
2617 		/* Initialize the VLA pointers */
2618 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2619 		t = vla_ptr(vlabuf, d, stringtab);
2620 		i = lang_count;
2621 		do {
2622 			*stringtabs++ = t++;
2623 		} while (--i);
2624 		*stringtabs = NULL;
2625 
2626 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2627 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2628 		t = vla_ptr(vlabuf, d, stringtab);
2629 		s = vla_ptr(vlabuf, d, strings);
2630 	}
2631 
2632 	/* For each language */
2633 	data += 16;
2634 	len -= 16;
2635 
2636 	do { /* lang_count > 0 so we can use do-while */
2637 		unsigned needed = needed_count;
2638 
2639 		if (unlikely(len < 3))
2640 			goto error_free;
2641 		t->language = get_unaligned_le16(data);
2642 		t->strings  = s;
2643 		++t;
2644 
2645 		data += 2;
2646 		len -= 2;
2647 
2648 		/* For each string */
2649 		do { /* str_count > 0 so we can use do-while */
2650 			size_t length = strnlen(data, len);
2651 
2652 			if (unlikely(length == len))
2653 				goto error_free;
2654 
2655 			/*
2656 			 * User may provide more strings then we need,
2657 			 * if that's the case we simply ignore the
2658 			 * rest
2659 			 */
2660 			if (likely(needed)) {
2661 				/*
2662 				 * s->id will be set while adding
2663 				 * function to configuration so for
2664 				 * now just leave garbage here.
2665 				 */
2666 				s->s = data;
2667 				--needed;
2668 				++s;
2669 			}
2670 
2671 			data += length + 1;
2672 			len -= length + 1;
2673 		} while (--str_count);
2674 
2675 		s->id = 0;   /* terminator */
2676 		s->s = NULL;
2677 		++s;
2678 
2679 	} while (--lang_count);
2680 
2681 	/* Some garbage left? */
2682 	if (unlikely(len))
2683 		goto error_free;
2684 
2685 	/* Done! */
2686 	ffs->stringtabs = stringtabs;
2687 	ffs->raw_strings = _data;
2688 
2689 	return 0;
2690 
2691 error_free:
2692 	kfree(stringtabs);
2693 error:
2694 	kfree(_data);
2695 	return -EINVAL;
2696 }
2697 
2698 
2699 /* Events handling and management *******************************************/
2700 
2701 static void __ffs_event_add(struct ffs_data *ffs,
2702 			    enum usb_functionfs_event_type type)
2703 {
2704 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2705 	int neg = 0;
2706 
2707 	/*
2708 	 * Abort any unhandled setup
2709 	 *
2710 	 * We do not need to worry about some cmpxchg() changing value
2711 	 * of ffs->setup_state without holding the lock because when
2712 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2713 	 * the source does nothing.
2714 	 */
2715 	if (ffs->setup_state == FFS_SETUP_PENDING)
2716 		ffs->setup_state = FFS_SETUP_CANCELLED;
2717 
2718 	/*
2719 	 * Logic of this function guarantees that there are at most four pending
2720 	 * evens on ffs->ev.types queue.  This is important because the queue
2721 	 * has space for four elements only and __ffs_ep0_read_events function
2722 	 * depends on that limit as well.  If more event types are added, those
2723 	 * limits have to be revisited or guaranteed to still hold.
2724 	 */
2725 	switch (type) {
2726 	case FUNCTIONFS_RESUME:
2727 		rem_type2 = FUNCTIONFS_SUSPEND;
2728 		/* FALL THROUGH */
2729 	case FUNCTIONFS_SUSPEND:
2730 	case FUNCTIONFS_SETUP:
2731 		rem_type1 = type;
2732 		/* Discard all similar events */
2733 		break;
2734 
2735 	case FUNCTIONFS_BIND:
2736 	case FUNCTIONFS_UNBIND:
2737 	case FUNCTIONFS_DISABLE:
2738 	case FUNCTIONFS_ENABLE:
2739 		/* Discard everything other then power management. */
2740 		rem_type1 = FUNCTIONFS_SUSPEND;
2741 		rem_type2 = FUNCTIONFS_RESUME;
2742 		neg = 1;
2743 		break;
2744 
2745 	default:
2746 		WARN(1, "%d: unknown event, this should not happen\n", type);
2747 		return;
2748 	}
2749 
2750 	{
2751 		u8 *ev  = ffs->ev.types, *out = ev;
2752 		unsigned n = ffs->ev.count;
2753 		for (; n; --n, ++ev)
2754 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2755 				*out++ = *ev;
2756 			else
2757 				pr_vdebug("purging event %d\n", *ev);
2758 		ffs->ev.count = out - ffs->ev.types;
2759 	}
2760 
2761 	pr_vdebug("adding event %d\n", type);
2762 	ffs->ev.types[ffs->ev.count++] = type;
2763 	wake_up_locked(&ffs->ev.waitq);
2764 	if (ffs->ffs_eventfd)
2765 		eventfd_signal(ffs->ffs_eventfd, 1);
2766 }
2767 
2768 static void ffs_event_add(struct ffs_data *ffs,
2769 			  enum usb_functionfs_event_type type)
2770 {
2771 	unsigned long flags;
2772 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2773 	__ffs_event_add(ffs, type);
2774 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2775 }
2776 
2777 /* Bind/unbind USB function hooks *******************************************/
2778 
2779 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2780 {
2781 	int i;
2782 
2783 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2784 		if (ffs->eps_addrmap[i] == endpoint_address)
2785 			return i;
2786 	return -ENOENT;
2787 }
2788 
2789 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2790 				    struct usb_descriptor_header *desc,
2791 				    void *priv)
2792 {
2793 	struct usb_endpoint_descriptor *ds = (void *)desc;
2794 	struct ffs_function *func = priv;
2795 	struct ffs_ep *ffs_ep;
2796 	unsigned ep_desc_id;
2797 	int idx;
2798 	static const char *speed_names[] = { "full", "high", "super" };
2799 
2800 	if (type != FFS_DESCRIPTOR)
2801 		return 0;
2802 
2803 	/*
2804 	 * If ss_descriptors is not NULL, we are reading super speed
2805 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2806 	 * speed descriptors; otherwise, we are reading full speed
2807 	 * descriptors.
2808 	 */
2809 	if (func->function.ss_descriptors) {
2810 		ep_desc_id = 2;
2811 		func->function.ss_descriptors[(long)valuep] = desc;
2812 	} else if (func->function.hs_descriptors) {
2813 		ep_desc_id = 1;
2814 		func->function.hs_descriptors[(long)valuep] = desc;
2815 	} else {
2816 		ep_desc_id = 0;
2817 		func->function.fs_descriptors[(long)valuep]    = desc;
2818 	}
2819 
2820 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2821 		return 0;
2822 
2823 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2824 	if (idx < 0)
2825 		return idx;
2826 
2827 	ffs_ep = func->eps + idx;
2828 
2829 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2830 		pr_err("two %sspeed descriptors for EP %d\n",
2831 			  speed_names[ep_desc_id],
2832 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2833 		return -EINVAL;
2834 	}
2835 	ffs_ep->descs[ep_desc_id] = ds;
2836 
2837 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2838 	if (ffs_ep->ep) {
2839 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2840 		if (!ds->wMaxPacketSize)
2841 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2842 	} else {
2843 		struct usb_request *req;
2844 		struct usb_ep *ep;
2845 		u8 bEndpointAddress;
2846 
2847 		/*
2848 		 * We back up bEndpointAddress because autoconfig overwrites
2849 		 * it with physical endpoint address.
2850 		 */
2851 		bEndpointAddress = ds->bEndpointAddress;
2852 		pr_vdebug("autoconfig\n");
2853 		ep = usb_ep_autoconfig(func->gadget, ds);
2854 		if (unlikely(!ep))
2855 			return -ENOTSUPP;
2856 		ep->driver_data = func->eps + idx;
2857 
2858 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2859 		if (unlikely(!req))
2860 			return -ENOMEM;
2861 
2862 		ffs_ep->ep  = ep;
2863 		ffs_ep->req = req;
2864 		func->eps_revmap[ds->bEndpointAddress &
2865 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2866 		/*
2867 		 * If we use virtual address mapping, we restore
2868 		 * original bEndpointAddress value.
2869 		 */
2870 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2871 			ds->bEndpointAddress = bEndpointAddress;
2872 	}
2873 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2874 
2875 	return 0;
2876 }
2877 
2878 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2879 				   struct usb_descriptor_header *desc,
2880 				   void *priv)
2881 {
2882 	struct ffs_function *func = priv;
2883 	unsigned idx;
2884 	u8 newValue;
2885 
2886 	switch (type) {
2887 	default:
2888 	case FFS_DESCRIPTOR:
2889 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2890 		return 0;
2891 
2892 	case FFS_INTERFACE:
2893 		idx = *valuep;
2894 		if (func->interfaces_nums[idx] < 0) {
2895 			int id = usb_interface_id(func->conf, &func->function);
2896 			if (unlikely(id < 0))
2897 				return id;
2898 			func->interfaces_nums[idx] = id;
2899 		}
2900 		newValue = func->interfaces_nums[idx];
2901 		break;
2902 
2903 	case FFS_STRING:
2904 		/* String' IDs are allocated when fsf_data is bound to cdev */
2905 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2906 		break;
2907 
2908 	case FFS_ENDPOINT:
2909 		/*
2910 		 * USB_DT_ENDPOINT are handled in
2911 		 * __ffs_func_bind_do_descs().
2912 		 */
2913 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2914 			return 0;
2915 
2916 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2917 		if (unlikely(!func->eps[idx].ep))
2918 			return -EINVAL;
2919 
2920 		{
2921 			struct usb_endpoint_descriptor **descs;
2922 			descs = func->eps[idx].descs;
2923 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2924 		}
2925 		break;
2926 	}
2927 
2928 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2929 	*valuep = newValue;
2930 	return 0;
2931 }
2932 
2933 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2934 				      struct usb_os_desc_header *h, void *data,
2935 				      unsigned len, void *priv)
2936 {
2937 	struct ffs_function *func = priv;
2938 	u8 length = 0;
2939 
2940 	switch (type) {
2941 	case FFS_OS_DESC_EXT_COMPAT: {
2942 		struct usb_ext_compat_desc *desc = data;
2943 		struct usb_os_desc_table *t;
2944 
2945 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2946 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2947 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2948 		       ARRAY_SIZE(desc->CompatibleID) +
2949 		       ARRAY_SIZE(desc->SubCompatibleID));
2950 		length = sizeof(*desc);
2951 	}
2952 		break;
2953 	case FFS_OS_DESC_EXT_PROP: {
2954 		struct usb_ext_prop_desc *desc = data;
2955 		struct usb_os_desc_table *t;
2956 		struct usb_os_desc_ext_prop *ext_prop;
2957 		char *ext_prop_name;
2958 		char *ext_prop_data;
2959 
2960 		t = &func->function.os_desc_table[h->interface];
2961 		t->if_id = func->interfaces_nums[h->interface];
2962 
2963 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2964 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2965 
2966 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2967 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2968 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2969 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2970 		length = ext_prop->name_len + ext_prop->data_len + 14;
2971 
2972 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2973 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2974 			ext_prop->name_len;
2975 
2976 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2977 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2978 			ext_prop->data_len;
2979 		memcpy(ext_prop_data,
2980 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2981 		       ext_prop->data_len);
2982 		/* unicode data reported to the host as "WCHAR"s */
2983 		switch (ext_prop->type) {
2984 		case USB_EXT_PROP_UNICODE:
2985 		case USB_EXT_PROP_UNICODE_ENV:
2986 		case USB_EXT_PROP_UNICODE_LINK:
2987 		case USB_EXT_PROP_UNICODE_MULTI:
2988 			ext_prop->data_len *= 2;
2989 			break;
2990 		}
2991 		ext_prop->data = ext_prop_data;
2992 
2993 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2994 		       ext_prop->name_len);
2995 		/* property name reported to the host as "WCHAR"s */
2996 		ext_prop->name_len *= 2;
2997 		ext_prop->name = ext_prop_name;
2998 
2999 		t->os_desc->ext_prop_len +=
3000 			ext_prop->name_len + ext_prop->data_len + 14;
3001 		++t->os_desc->ext_prop_count;
3002 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3003 	}
3004 		break;
3005 	default:
3006 		pr_vdebug("unknown descriptor: %d\n", type);
3007 	}
3008 
3009 	return length;
3010 }
3011 
3012 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3013 						struct usb_configuration *c)
3014 {
3015 	struct ffs_function *func = ffs_func_from_usb(f);
3016 	struct f_fs_opts *ffs_opts =
3017 		container_of(f->fi, struct f_fs_opts, func_inst);
3018 	int ret;
3019 
3020 	ENTER();
3021 
3022 	/*
3023 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3024 	 * which already uses locking; taking the same lock here would
3025 	 * cause a deadlock.
3026 	 *
3027 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3028 	 */
3029 	if (!ffs_opts->no_configfs)
3030 		ffs_dev_lock();
3031 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3032 	func->ffs = ffs_opts->dev->ffs_data;
3033 	if (!ffs_opts->no_configfs)
3034 		ffs_dev_unlock();
3035 	if (ret)
3036 		return ERR_PTR(ret);
3037 
3038 	func->conf = c;
3039 	func->gadget = c->cdev->gadget;
3040 
3041 	/*
3042 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3043 	 * configurations are bound in sequence with list_for_each_entry,
3044 	 * in each configuration its functions are bound in sequence
3045 	 * with list_for_each_entry, so we assume no race condition
3046 	 * with regard to ffs_opts->bound access
3047 	 */
3048 	if (!ffs_opts->refcnt) {
3049 		ret = functionfs_bind(func->ffs, c->cdev);
3050 		if (ret)
3051 			return ERR_PTR(ret);
3052 	}
3053 	ffs_opts->refcnt++;
3054 	func->function.strings = func->ffs->stringtabs;
3055 
3056 	return ffs_opts;
3057 }
3058 
3059 static int _ffs_func_bind(struct usb_configuration *c,
3060 			  struct usb_function *f)
3061 {
3062 	struct ffs_function *func = ffs_func_from_usb(f);
3063 	struct ffs_data *ffs = func->ffs;
3064 
3065 	const int full = !!func->ffs->fs_descs_count;
3066 	const int high = !!func->ffs->hs_descs_count;
3067 	const int super = !!func->ffs->ss_descs_count;
3068 
3069 	int fs_len, hs_len, ss_len, ret, i;
3070 	struct ffs_ep *eps_ptr;
3071 
3072 	/* Make it a single chunk, less management later on */
3073 	vla_group(d);
3074 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3075 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3076 		full ? ffs->fs_descs_count + 1 : 0);
3077 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3078 		high ? ffs->hs_descs_count + 1 : 0);
3079 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3080 		super ? ffs->ss_descs_count + 1 : 0);
3081 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3082 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3083 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3084 	vla_item_with_sz(d, char[16], ext_compat,
3085 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3086 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3087 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3088 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3089 			 ffs->ms_os_descs_ext_prop_count);
3090 	vla_item_with_sz(d, char, ext_prop_name,
3091 			 ffs->ms_os_descs_ext_prop_name_len);
3092 	vla_item_with_sz(d, char, ext_prop_data,
3093 			 ffs->ms_os_descs_ext_prop_data_len);
3094 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3095 	char *vlabuf;
3096 
3097 	ENTER();
3098 
3099 	/* Has descriptors only for speeds gadget does not support */
3100 	if (unlikely(!(full | high | super)))
3101 		return -ENOTSUPP;
3102 
3103 	/* Allocate a single chunk, less management later on */
3104 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3105 	if (unlikely(!vlabuf))
3106 		return -ENOMEM;
3107 
3108 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3109 	ffs->ms_os_descs_ext_prop_name_avail =
3110 		vla_ptr(vlabuf, d, ext_prop_name);
3111 	ffs->ms_os_descs_ext_prop_data_avail =
3112 		vla_ptr(vlabuf, d, ext_prop_data);
3113 
3114 	/* Copy descriptors  */
3115 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3116 	       ffs->raw_descs_length);
3117 
3118 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3119 	eps_ptr = vla_ptr(vlabuf, d, eps);
3120 	for (i = 0; i < ffs->eps_count; i++)
3121 		eps_ptr[i].num = -1;
3122 
3123 	/* Save pointers
3124 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3125 	*/
3126 	func->eps             = vla_ptr(vlabuf, d, eps);
3127 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3128 
3129 	/*
3130 	 * Go through all the endpoint descriptors and allocate
3131 	 * endpoints first, so that later we can rewrite the endpoint
3132 	 * numbers without worrying that it may be described later on.
3133 	 */
3134 	if (likely(full)) {
3135 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3136 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3137 				      vla_ptr(vlabuf, d, raw_descs),
3138 				      d_raw_descs__sz,
3139 				      __ffs_func_bind_do_descs, func);
3140 		if (unlikely(fs_len < 0)) {
3141 			ret = fs_len;
3142 			goto error;
3143 		}
3144 	} else {
3145 		fs_len = 0;
3146 	}
3147 
3148 	if (likely(high)) {
3149 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3150 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3151 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3152 				      d_raw_descs__sz - fs_len,
3153 				      __ffs_func_bind_do_descs, func);
3154 		if (unlikely(hs_len < 0)) {
3155 			ret = hs_len;
3156 			goto error;
3157 		}
3158 	} else {
3159 		hs_len = 0;
3160 	}
3161 
3162 	if (likely(super)) {
3163 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3164 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3165 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3166 				d_raw_descs__sz - fs_len - hs_len,
3167 				__ffs_func_bind_do_descs, func);
3168 		if (unlikely(ss_len < 0)) {
3169 			ret = ss_len;
3170 			goto error;
3171 		}
3172 	} else {
3173 		ss_len = 0;
3174 	}
3175 
3176 	/*
3177 	 * Now handle interface numbers allocation and interface and
3178 	 * endpoint numbers rewriting.  We can do that in one go
3179 	 * now.
3180 	 */
3181 	ret = ffs_do_descs(ffs->fs_descs_count +
3182 			   (high ? ffs->hs_descs_count : 0) +
3183 			   (super ? ffs->ss_descs_count : 0),
3184 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3185 			   __ffs_func_bind_do_nums, func);
3186 	if (unlikely(ret < 0))
3187 		goto error;
3188 
3189 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3190 	if (c->cdev->use_os_string) {
3191 		for (i = 0; i < ffs->interfaces_count; ++i) {
3192 			struct usb_os_desc *desc;
3193 
3194 			desc = func->function.os_desc_table[i].os_desc =
3195 				vla_ptr(vlabuf, d, os_desc) +
3196 				i * sizeof(struct usb_os_desc);
3197 			desc->ext_compat_id =
3198 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3199 			INIT_LIST_HEAD(&desc->ext_prop);
3200 		}
3201 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3202 				      vla_ptr(vlabuf, d, raw_descs) +
3203 				      fs_len + hs_len + ss_len,
3204 				      d_raw_descs__sz - fs_len - hs_len -
3205 				      ss_len,
3206 				      __ffs_func_bind_do_os_desc, func);
3207 		if (unlikely(ret < 0))
3208 			goto error;
3209 	}
3210 	func->function.os_desc_n =
3211 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3212 
3213 	/* And we're done */
3214 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3215 	return 0;
3216 
3217 error:
3218 	/* XXX Do we need to release all claimed endpoints here? */
3219 	return ret;
3220 }
3221 
3222 static int ffs_func_bind(struct usb_configuration *c,
3223 			 struct usb_function *f)
3224 {
3225 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3226 	struct ffs_function *func = ffs_func_from_usb(f);
3227 	int ret;
3228 
3229 	if (IS_ERR(ffs_opts))
3230 		return PTR_ERR(ffs_opts);
3231 
3232 	ret = _ffs_func_bind(c, f);
3233 	if (ret && !--ffs_opts->refcnt)
3234 		functionfs_unbind(func->ffs);
3235 
3236 	return ret;
3237 }
3238 
3239 
3240 /* Other USB function hooks *************************************************/
3241 
3242 static void ffs_reset_work(struct work_struct *work)
3243 {
3244 	struct ffs_data *ffs = container_of(work,
3245 		struct ffs_data, reset_work);
3246 	ffs_data_reset(ffs);
3247 }
3248 
3249 static int ffs_func_set_alt(struct usb_function *f,
3250 			    unsigned interface, unsigned alt)
3251 {
3252 	struct ffs_function *func = ffs_func_from_usb(f);
3253 	struct ffs_data *ffs = func->ffs;
3254 	int ret = 0, intf;
3255 
3256 	if (alt != (unsigned)-1) {
3257 		intf = ffs_func_revmap_intf(func, interface);
3258 		if (unlikely(intf < 0))
3259 			return intf;
3260 	}
3261 
3262 	if (ffs->func)
3263 		ffs_func_eps_disable(ffs->func);
3264 
3265 	if (ffs->state == FFS_DEACTIVATED) {
3266 		ffs->state = FFS_CLOSING;
3267 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3268 		schedule_work(&ffs->reset_work);
3269 		return -ENODEV;
3270 	}
3271 
3272 	if (ffs->state != FFS_ACTIVE)
3273 		return -ENODEV;
3274 
3275 	if (alt == (unsigned)-1) {
3276 		ffs->func = NULL;
3277 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3278 		return 0;
3279 	}
3280 
3281 	ffs->func = func;
3282 	ret = ffs_func_eps_enable(func);
3283 	if (likely(ret >= 0))
3284 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3285 	return ret;
3286 }
3287 
3288 static void ffs_func_disable(struct usb_function *f)
3289 {
3290 	ffs_func_set_alt(f, 0, (unsigned)-1);
3291 }
3292 
3293 static int ffs_func_setup(struct usb_function *f,
3294 			  const struct usb_ctrlrequest *creq)
3295 {
3296 	struct ffs_function *func = ffs_func_from_usb(f);
3297 	struct ffs_data *ffs = func->ffs;
3298 	unsigned long flags;
3299 	int ret;
3300 
3301 	ENTER();
3302 
3303 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3304 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3305 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3306 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3307 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3308 
3309 	/*
3310 	 * Most requests directed to interface go through here
3311 	 * (notable exceptions are set/get interface) so we need to
3312 	 * handle them.  All other either handled by composite or
3313 	 * passed to usb_configuration->setup() (if one is set).  No
3314 	 * matter, we will handle requests directed to endpoint here
3315 	 * as well (as it's straightforward).  Other request recipient
3316 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3317 	 * is being used.
3318 	 */
3319 	if (ffs->state != FFS_ACTIVE)
3320 		return -ENODEV;
3321 
3322 	switch (creq->bRequestType & USB_RECIP_MASK) {
3323 	case USB_RECIP_INTERFACE:
3324 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3325 		if (unlikely(ret < 0))
3326 			return ret;
3327 		break;
3328 
3329 	case USB_RECIP_ENDPOINT:
3330 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3331 		if (unlikely(ret < 0))
3332 			return ret;
3333 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3334 			ret = func->ffs->eps_addrmap[ret];
3335 		break;
3336 
3337 	default:
3338 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3339 			ret = le16_to_cpu(creq->wIndex);
3340 		else
3341 			return -EOPNOTSUPP;
3342 	}
3343 
3344 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3345 	ffs->ev.setup = *creq;
3346 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3347 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3348 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3349 
3350 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3351 }
3352 
3353 static bool ffs_func_req_match(struct usb_function *f,
3354 			       const struct usb_ctrlrequest *creq,
3355 			       bool config0)
3356 {
3357 	struct ffs_function *func = ffs_func_from_usb(f);
3358 
3359 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3360 		return false;
3361 
3362 	switch (creq->bRequestType & USB_RECIP_MASK) {
3363 	case USB_RECIP_INTERFACE:
3364 		return (ffs_func_revmap_intf(func,
3365 					     le16_to_cpu(creq->wIndex)) >= 0);
3366 	case USB_RECIP_ENDPOINT:
3367 		return (ffs_func_revmap_ep(func,
3368 					   le16_to_cpu(creq->wIndex)) >= 0);
3369 	default:
3370 		return (bool) (func->ffs->user_flags &
3371 			       FUNCTIONFS_ALL_CTRL_RECIP);
3372 	}
3373 }
3374 
3375 static void ffs_func_suspend(struct usb_function *f)
3376 {
3377 	ENTER();
3378 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3379 }
3380 
3381 static void ffs_func_resume(struct usb_function *f)
3382 {
3383 	ENTER();
3384 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3385 }
3386 
3387 
3388 /* Endpoint and interface numbers reverse mapping ***************************/
3389 
3390 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3391 {
3392 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3393 	return num ? num : -EDOM;
3394 }
3395 
3396 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3397 {
3398 	short *nums = func->interfaces_nums;
3399 	unsigned count = func->ffs->interfaces_count;
3400 
3401 	for (; count; --count, ++nums) {
3402 		if (*nums >= 0 && *nums == intf)
3403 			return nums - func->interfaces_nums;
3404 	}
3405 
3406 	return -EDOM;
3407 }
3408 
3409 
3410 /* Devices management *******************************************************/
3411 
3412 static LIST_HEAD(ffs_devices);
3413 
3414 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3415 {
3416 	struct ffs_dev *dev;
3417 
3418 	if (!name)
3419 		return NULL;
3420 
3421 	list_for_each_entry(dev, &ffs_devices, entry) {
3422 		if (strcmp(dev->name, name) == 0)
3423 			return dev;
3424 	}
3425 
3426 	return NULL;
3427 }
3428 
3429 /*
3430  * ffs_lock must be taken by the caller of this function
3431  */
3432 static struct ffs_dev *_ffs_get_single_dev(void)
3433 {
3434 	struct ffs_dev *dev;
3435 
3436 	if (list_is_singular(&ffs_devices)) {
3437 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3438 		if (dev->single)
3439 			return dev;
3440 	}
3441 
3442 	return NULL;
3443 }
3444 
3445 /*
3446  * ffs_lock must be taken by the caller of this function
3447  */
3448 static struct ffs_dev *_ffs_find_dev(const char *name)
3449 {
3450 	struct ffs_dev *dev;
3451 
3452 	dev = _ffs_get_single_dev();
3453 	if (dev)
3454 		return dev;
3455 
3456 	return _ffs_do_find_dev(name);
3457 }
3458 
3459 /* Configfs support *********************************************************/
3460 
3461 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3462 {
3463 	return container_of(to_config_group(item), struct f_fs_opts,
3464 			    func_inst.group);
3465 }
3466 
3467 static void ffs_attr_release(struct config_item *item)
3468 {
3469 	struct f_fs_opts *opts = to_ffs_opts(item);
3470 
3471 	usb_put_function_instance(&opts->func_inst);
3472 }
3473 
3474 static struct configfs_item_operations ffs_item_ops = {
3475 	.release	= ffs_attr_release,
3476 };
3477 
3478 static const struct config_item_type ffs_func_type = {
3479 	.ct_item_ops	= &ffs_item_ops,
3480 	.ct_owner	= THIS_MODULE,
3481 };
3482 
3483 
3484 /* Function registration interface ******************************************/
3485 
3486 static void ffs_free_inst(struct usb_function_instance *f)
3487 {
3488 	struct f_fs_opts *opts;
3489 
3490 	opts = to_f_fs_opts(f);
3491 	ffs_dev_lock();
3492 	_ffs_free_dev(opts->dev);
3493 	ffs_dev_unlock();
3494 	kfree(opts);
3495 }
3496 
3497 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3498 {
3499 	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3500 		return -ENAMETOOLONG;
3501 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3502 }
3503 
3504 static struct usb_function_instance *ffs_alloc_inst(void)
3505 {
3506 	struct f_fs_opts *opts;
3507 	struct ffs_dev *dev;
3508 
3509 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3510 	if (!opts)
3511 		return ERR_PTR(-ENOMEM);
3512 
3513 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3514 	opts->func_inst.free_func_inst = ffs_free_inst;
3515 	ffs_dev_lock();
3516 	dev = _ffs_alloc_dev();
3517 	ffs_dev_unlock();
3518 	if (IS_ERR(dev)) {
3519 		kfree(opts);
3520 		return ERR_CAST(dev);
3521 	}
3522 	opts->dev = dev;
3523 	dev->opts = opts;
3524 
3525 	config_group_init_type_name(&opts->func_inst.group, "",
3526 				    &ffs_func_type);
3527 	return &opts->func_inst;
3528 }
3529 
3530 static void ffs_free(struct usb_function *f)
3531 {
3532 	kfree(ffs_func_from_usb(f));
3533 }
3534 
3535 static void ffs_func_unbind(struct usb_configuration *c,
3536 			    struct usb_function *f)
3537 {
3538 	struct ffs_function *func = ffs_func_from_usb(f);
3539 	struct ffs_data *ffs = func->ffs;
3540 	struct f_fs_opts *opts =
3541 		container_of(f->fi, struct f_fs_opts, func_inst);
3542 	struct ffs_ep *ep = func->eps;
3543 	unsigned count = ffs->eps_count;
3544 	unsigned long flags;
3545 
3546 	ENTER();
3547 	if (ffs->func == func) {
3548 		ffs_func_eps_disable(func);
3549 		ffs->func = NULL;
3550 	}
3551 
3552 	if (!--opts->refcnt)
3553 		functionfs_unbind(ffs);
3554 
3555 	/* cleanup after autoconfig */
3556 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3557 	while (count--) {
3558 		if (ep->ep && ep->req)
3559 			usb_ep_free_request(ep->ep, ep->req);
3560 		ep->req = NULL;
3561 		++ep;
3562 	}
3563 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3564 	kfree(func->eps);
3565 	func->eps = NULL;
3566 	/*
3567 	 * eps, descriptors and interfaces_nums are allocated in the
3568 	 * same chunk so only one free is required.
3569 	 */
3570 	func->function.fs_descriptors = NULL;
3571 	func->function.hs_descriptors = NULL;
3572 	func->function.ss_descriptors = NULL;
3573 	func->interfaces_nums = NULL;
3574 
3575 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3576 }
3577 
3578 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3579 {
3580 	struct ffs_function *func;
3581 
3582 	ENTER();
3583 
3584 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3585 	if (unlikely(!func))
3586 		return ERR_PTR(-ENOMEM);
3587 
3588 	func->function.name    = "Function FS Gadget";
3589 
3590 	func->function.bind    = ffs_func_bind;
3591 	func->function.unbind  = ffs_func_unbind;
3592 	func->function.set_alt = ffs_func_set_alt;
3593 	func->function.disable = ffs_func_disable;
3594 	func->function.setup   = ffs_func_setup;
3595 	func->function.req_match = ffs_func_req_match;
3596 	func->function.suspend = ffs_func_suspend;
3597 	func->function.resume  = ffs_func_resume;
3598 	func->function.free_func = ffs_free;
3599 
3600 	return &func->function;
3601 }
3602 
3603 /*
3604  * ffs_lock must be taken by the caller of this function
3605  */
3606 static struct ffs_dev *_ffs_alloc_dev(void)
3607 {
3608 	struct ffs_dev *dev;
3609 	int ret;
3610 
3611 	if (_ffs_get_single_dev())
3612 			return ERR_PTR(-EBUSY);
3613 
3614 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3615 	if (!dev)
3616 		return ERR_PTR(-ENOMEM);
3617 
3618 	if (list_empty(&ffs_devices)) {
3619 		ret = functionfs_init();
3620 		if (ret) {
3621 			kfree(dev);
3622 			return ERR_PTR(ret);
3623 		}
3624 	}
3625 
3626 	list_add(&dev->entry, &ffs_devices);
3627 
3628 	return dev;
3629 }
3630 
3631 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3632 {
3633 	struct ffs_dev *existing;
3634 	int ret = 0;
3635 
3636 	ffs_dev_lock();
3637 
3638 	existing = _ffs_do_find_dev(name);
3639 	if (!existing)
3640 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3641 	else if (existing != dev)
3642 		ret = -EBUSY;
3643 
3644 	ffs_dev_unlock();
3645 
3646 	return ret;
3647 }
3648 EXPORT_SYMBOL_GPL(ffs_name_dev);
3649 
3650 int ffs_single_dev(struct ffs_dev *dev)
3651 {
3652 	int ret;
3653 
3654 	ret = 0;
3655 	ffs_dev_lock();
3656 
3657 	if (!list_is_singular(&ffs_devices))
3658 		ret = -EBUSY;
3659 	else
3660 		dev->single = true;
3661 
3662 	ffs_dev_unlock();
3663 	return ret;
3664 }
3665 EXPORT_SYMBOL_GPL(ffs_single_dev);
3666 
3667 /*
3668  * ffs_lock must be taken by the caller of this function
3669  */
3670 static void _ffs_free_dev(struct ffs_dev *dev)
3671 {
3672 	list_del(&dev->entry);
3673 
3674 	/* Clear the private_data pointer to stop incorrect dev access */
3675 	if (dev->ffs_data)
3676 		dev->ffs_data->private_data = NULL;
3677 
3678 	kfree(dev);
3679 	if (list_empty(&ffs_devices))
3680 		functionfs_cleanup();
3681 }
3682 
3683 static void *ffs_acquire_dev(const char *dev_name)
3684 {
3685 	struct ffs_dev *ffs_dev;
3686 
3687 	ENTER();
3688 	ffs_dev_lock();
3689 
3690 	ffs_dev = _ffs_find_dev(dev_name);
3691 	if (!ffs_dev)
3692 		ffs_dev = ERR_PTR(-ENOENT);
3693 	else if (ffs_dev->mounted)
3694 		ffs_dev = ERR_PTR(-EBUSY);
3695 	else if (ffs_dev->ffs_acquire_dev_callback &&
3696 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3697 		ffs_dev = ERR_PTR(-ENOENT);
3698 	else
3699 		ffs_dev->mounted = true;
3700 
3701 	ffs_dev_unlock();
3702 	return ffs_dev;
3703 }
3704 
3705 static void ffs_release_dev(struct ffs_data *ffs_data)
3706 {
3707 	struct ffs_dev *ffs_dev;
3708 
3709 	ENTER();
3710 	ffs_dev_lock();
3711 
3712 	ffs_dev = ffs_data->private_data;
3713 	if (ffs_dev) {
3714 		ffs_dev->mounted = false;
3715 
3716 		if (ffs_dev->ffs_release_dev_callback)
3717 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3718 	}
3719 
3720 	ffs_dev_unlock();
3721 }
3722 
3723 static int ffs_ready(struct ffs_data *ffs)
3724 {
3725 	struct ffs_dev *ffs_obj;
3726 	int ret = 0;
3727 
3728 	ENTER();
3729 	ffs_dev_lock();
3730 
3731 	ffs_obj = ffs->private_data;
3732 	if (!ffs_obj) {
3733 		ret = -EINVAL;
3734 		goto done;
3735 	}
3736 	if (WARN_ON(ffs_obj->desc_ready)) {
3737 		ret = -EBUSY;
3738 		goto done;
3739 	}
3740 
3741 	ffs_obj->desc_ready = true;
3742 	ffs_obj->ffs_data = ffs;
3743 
3744 	if (ffs_obj->ffs_ready_callback) {
3745 		ret = ffs_obj->ffs_ready_callback(ffs);
3746 		if (ret)
3747 			goto done;
3748 	}
3749 
3750 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3751 done:
3752 	ffs_dev_unlock();
3753 	return ret;
3754 }
3755 
3756 static void ffs_closed(struct ffs_data *ffs)
3757 {
3758 	struct ffs_dev *ffs_obj;
3759 	struct f_fs_opts *opts;
3760 	struct config_item *ci;
3761 
3762 	ENTER();
3763 	ffs_dev_lock();
3764 
3765 	ffs_obj = ffs->private_data;
3766 	if (!ffs_obj)
3767 		goto done;
3768 
3769 	ffs_obj->desc_ready = false;
3770 	ffs_obj->ffs_data = NULL;
3771 
3772 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3773 	    ffs_obj->ffs_closed_callback)
3774 		ffs_obj->ffs_closed_callback(ffs);
3775 
3776 	if (ffs_obj->opts)
3777 		opts = ffs_obj->opts;
3778 	else
3779 		goto done;
3780 
3781 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3782 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3783 		goto done;
3784 
3785 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3786 	ffs_dev_unlock();
3787 
3788 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3789 		unregister_gadget_item(ci);
3790 	return;
3791 done:
3792 	ffs_dev_unlock();
3793 }
3794 
3795 /* Misc helper functions ****************************************************/
3796 
3797 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3798 {
3799 	return nonblock
3800 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3801 		: mutex_lock_interruptible(mutex);
3802 }
3803 
3804 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3805 {
3806 	char *data;
3807 
3808 	if (unlikely(!len))
3809 		return NULL;
3810 
3811 	data = kmalloc(len, GFP_KERNEL);
3812 	if (unlikely(!data))
3813 		return ERR_PTR(-ENOMEM);
3814 
3815 	if (unlikely(copy_from_user(data, buf, len))) {
3816 		kfree(data);
3817 		return ERR_PTR(-EFAULT);
3818 	}
3819 
3820 	pr_vdebug("Buffer from user space:\n");
3821 	ffs_dump_mem("", data, len);
3822 
3823 	return data;
3824 }
3825 
3826 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3827 MODULE_LICENSE("GPL");
3828 MODULE_AUTHOR("Michal Nazarewicz");
3829