1 /* 2 * f_fs.c -- user mode file system API for USB composite function controllers 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * Author: Michal Nazarewicz <mina86@mina86.com> 6 * 7 * Based on inode.c (GadgetFS) which was: 8 * Copyright (C) 2003-2004 David Brownell 9 * Copyright (C) 2003 Agilent Technologies 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 */ 16 17 18 /* #define DEBUG */ 19 /* #define VERBOSE_DEBUG */ 20 21 #include <linux/blkdev.h> 22 #include <linux/pagemap.h> 23 #include <linux/export.h> 24 #include <linux/hid.h> 25 #include <linux/module.h> 26 #include <linux/sched/signal.h> 27 #include <linux/uio.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/composite.h> 31 #include <linux/usb/functionfs.h> 32 33 #include <linux/aio.h> 34 #include <linux/mmu_context.h> 35 #include <linux/poll.h> 36 #include <linux/eventfd.h> 37 38 #include "u_fs.h" 39 #include "u_f.h" 40 #include "u_os_desc.h" 41 #include "configfs.h" 42 43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 44 45 /* Reference counter handling */ 46 static void ffs_data_get(struct ffs_data *ffs); 47 static void ffs_data_put(struct ffs_data *ffs); 48 /* Creates new ffs_data object. */ 49 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc)); 50 51 /* Opened counter handling. */ 52 static void ffs_data_opened(struct ffs_data *ffs); 53 static void ffs_data_closed(struct ffs_data *ffs); 54 55 /* Called with ffs->mutex held; take over ownership of data. */ 56 static int __must_check 57 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 58 static int __must_check 59 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 60 61 62 /* The function structure ***************************************************/ 63 64 struct ffs_ep; 65 66 struct ffs_function { 67 struct usb_configuration *conf; 68 struct usb_gadget *gadget; 69 struct ffs_data *ffs; 70 71 struct ffs_ep *eps; 72 u8 eps_revmap[16]; 73 short *interfaces_nums; 74 75 struct usb_function function; 76 }; 77 78 79 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 80 { 81 return container_of(f, struct ffs_function, function); 82 } 83 84 85 static inline enum ffs_setup_state 86 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 87 { 88 return (enum ffs_setup_state) 89 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 90 } 91 92 93 static void ffs_func_eps_disable(struct ffs_function *func); 94 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 95 96 static int ffs_func_bind(struct usb_configuration *, 97 struct usb_function *); 98 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 99 static void ffs_func_disable(struct usb_function *); 100 static int ffs_func_setup(struct usb_function *, 101 const struct usb_ctrlrequest *); 102 static bool ffs_func_req_match(struct usb_function *, 103 const struct usb_ctrlrequest *, 104 bool config0); 105 static void ffs_func_suspend(struct usb_function *); 106 static void ffs_func_resume(struct usb_function *); 107 108 109 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 110 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 111 112 113 /* The endpoints structures *************************************************/ 114 115 struct ffs_ep { 116 struct usb_ep *ep; /* P: ffs->eps_lock */ 117 struct usb_request *req; /* P: epfile->mutex */ 118 119 /* [0]: full speed, [1]: high speed, [2]: super speed */ 120 struct usb_endpoint_descriptor *descs[3]; 121 122 u8 num; 123 124 int status; /* P: epfile->mutex */ 125 }; 126 127 struct ffs_epfile { 128 /* Protects ep->ep and ep->req. */ 129 struct mutex mutex; 130 wait_queue_head_t wait; 131 132 struct ffs_data *ffs; 133 struct ffs_ep *ep; /* P: ffs->eps_lock */ 134 135 struct dentry *dentry; 136 137 /* 138 * Buffer for holding data from partial reads which may happen since 139 * we’re rounding user read requests to a multiple of a max packet size. 140 * 141 * The pointer is initialised with NULL value and may be set by 142 * __ffs_epfile_read_data function to point to a temporary buffer. 143 * 144 * In normal operation, calls to __ffs_epfile_read_buffered will consume 145 * data from said buffer and eventually free it. Importantly, while the 146 * function is using the buffer, it sets the pointer to NULL. This is 147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 148 * can never run concurrently (they are synchronised by epfile->mutex) 149 * so the latter will not assign a new value to the pointer. 150 * 151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 153 * value is crux of the synchronisation between ffs_func_eps_disable and 154 * __ffs_epfile_read_data. 155 * 156 * Once __ffs_epfile_read_data is about to finish it will try to set the 157 * pointer back to its old value (as described above), but seeing as the 158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 159 * the buffer. 160 * 161 * == State transitions == 162 * 163 * • ptr == NULL: (initial state) 164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 165 * ◦ __ffs_epfile_read_buffered: nop 166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 167 * ◦ reading finishes: n/a, not in ‘and reading’ state 168 * • ptr == DROP: 169 * ◦ __ffs_epfile_read_buffer_free: nop 170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 172 * ◦ reading finishes: n/a, not in ‘and reading’ state 173 * • ptr == buf: 174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 177 * is always called first 178 * ◦ reading finishes: n/a, not in ‘and reading’ state 179 * • ptr == NULL and reading: 180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 182 * ◦ __ffs_epfile_read_data: n/a, mutex is held 183 * ◦ reading finishes and … 184 * … all data read: free buf, go to ptr == NULL 185 * … otherwise: go to ptr == buf and reading 186 * • ptr == DROP and reading: 187 * ◦ __ffs_epfile_read_buffer_free: nop 188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 189 * ◦ __ffs_epfile_read_data: n/a, mutex is held 190 * ◦ reading finishes: free buf, go to ptr == DROP 191 */ 192 struct ffs_buffer *read_buffer; 193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 194 195 char name[5]; 196 197 unsigned char in; /* P: ffs->eps_lock */ 198 unsigned char isoc; /* P: ffs->eps_lock */ 199 200 unsigned char _pad; 201 }; 202 203 struct ffs_buffer { 204 size_t length; 205 char *data; 206 char storage[]; 207 }; 208 209 /* ffs_io_data structure ***************************************************/ 210 211 struct ffs_io_data { 212 bool aio; 213 bool read; 214 215 struct kiocb *kiocb; 216 struct iov_iter data; 217 const void *to_free; 218 char *buf; 219 220 struct mm_struct *mm; 221 struct work_struct work; 222 223 struct usb_ep *ep; 224 struct usb_request *req; 225 226 struct ffs_data *ffs; 227 }; 228 229 struct ffs_desc_helper { 230 struct ffs_data *ffs; 231 unsigned interfaces_count; 232 unsigned eps_count; 233 }; 234 235 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 237 238 static struct dentry * 239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 240 const struct file_operations *fops); 241 242 /* Devices management *******************************************************/ 243 244 DEFINE_MUTEX(ffs_lock); 245 EXPORT_SYMBOL_GPL(ffs_lock); 246 247 static struct ffs_dev *_ffs_find_dev(const char *name); 248 static struct ffs_dev *_ffs_alloc_dev(void); 249 static int _ffs_name_dev(struct ffs_dev *dev, const char *name); 250 static void _ffs_free_dev(struct ffs_dev *dev); 251 static void *ffs_acquire_dev(const char *dev_name); 252 static void ffs_release_dev(struct ffs_data *ffs_data); 253 static int ffs_ready(struct ffs_data *ffs); 254 static void ffs_closed(struct ffs_data *ffs); 255 256 /* Misc helper functions ****************************************************/ 257 258 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 259 __attribute__((warn_unused_result, nonnull)); 260 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 261 __attribute__((warn_unused_result, nonnull)); 262 263 264 /* Control file aka ep0 *****************************************************/ 265 266 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 267 { 268 struct ffs_data *ffs = req->context; 269 270 complete(&ffs->ep0req_completion); 271 } 272 273 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 274 { 275 struct usb_request *req = ffs->ep0req; 276 int ret; 277 278 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 279 280 spin_unlock_irq(&ffs->ev.waitq.lock); 281 282 req->buf = data; 283 req->length = len; 284 285 /* 286 * UDC layer requires to provide a buffer even for ZLP, but should 287 * not use it at all. Let's provide some poisoned pointer to catch 288 * possible bug in the driver. 289 */ 290 if (req->buf == NULL) 291 req->buf = (void *)0xDEADBABE; 292 293 reinit_completion(&ffs->ep0req_completion); 294 295 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 296 if (unlikely(ret < 0)) 297 return ret; 298 299 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 300 if (unlikely(ret)) { 301 usb_ep_dequeue(ffs->gadget->ep0, req); 302 return -EINTR; 303 } 304 305 ffs->setup_state = FFS_NO_SETUP; 306 return req->status ? req->status : req->actual; 307 } 308 309 static int __ffs_ep0_stall(struct ffs_data *ffs) 310 { 311 if (ffs->ev.can_stall) { 312 pr_vdebug("ep0 stall\n"); 313 usb_ep_set_halt(ffs->gadget->ep0); 314 ffs->setup_state = FFS_NO_SETUP; 315 return -EL2HLT; 316 } else { 317 pr_debug("bogus ep0 stall!\n"); 318 return -ESRCH; 319 } 320 } 321 322 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 323 size_t len, loff_t *ptr) 324 { 325 struct ffs_data *ffs = file->private_data; 326 ssize_t ret; 327 char *data; 328 329 ENTER(); 330 331 /* Fast check if setup was canceled */ 332 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 333 return -EIDRM; 334 335 /* Acquire mutex */ 336 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 337 if (unlikely(ret < 0)) 338 return ret; 339 340 /* Check state */ 341 switch (ffs->state) { 342 case FFS_READ_DESCRIPTORS: 343 case FFS_READ_STRINGS: 344 /* Copy data */ 345 if (unlikely(len < 16)) { 346 ret = -EINVAL; 347 break; 348 } 349 350 data = ffs_prepare_buffer(buf, len); 351 if (IS_ERR(data)) { 352 ret = PTR_ERR(data); 353 break; 354 } 355 356 /* Handle data */ 357 if (ffs->state == FFS_READ_DESCRIPTORS) { 358 pr_info("read descriptors\n"); 359 ret = __ffs_data_got_descs(ffs, data, len); 360 if (unlikely(ret < 0)) 361 break; 362 363 ffs->state = FFS_READ_STRINGS; 364 ret = len; 365 } else { 366 pr_info("read strings\n"); 367 ret = __ffs_data_got_strings(ffs, data, len); 368 if (unlikely(ret < 0)) 369 break; 370 371 ret = ffs_epfiles_create(ffs); 372 if (unlikely(ret)) { 373 ffs->state = FFS_CLOSING; 374 break; 375 } 376 377 ffs->state = FFS_ACTIVE; 378 mutex_unlock(&ffs->mutex); 379 380 ret = ffs_ready(ffs); 381 if (unlikely(ret < 0)) { 382 ffs->state = FFS_CLOSING; 383 return ret; 384 } 385 386 return len; 387 } 388 break; 389 390 case FFS_ACTIVE: 391 data = NULL; 392 /* 393 * We're called from user space, we can use _irq 394 * rather then _irqsave 395 */ 396 spin_lock_irq(&ffs->ev.waitq.lock); 397 switch (ffs_setup_state_clear_cancelled(ffs)) { 398 case FFS_SETUP_CANCELLED: 399 ret = -EIDRM; 400 goto done_spin; 401 402 case FFS_NO_SETUP: 403 ret = -ESRCH; 404 goto done_spin; 405 406 case FFS_SETUP_PENDING: 407 break; 408 } 409 410 /* FFS_SETUP_PENDING */ 411 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 412 spin_unlock_irq(&ffs->ev.waitq.lock); 413 ret = __ffs_ep0_stall(ffs); 414 break; 415 } 416 417 /* FFS_SETUP_PENDING and not stall */ 418 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 419 420 spin_unlock_irq(&ffs->ev.waitq.lock); 421 422 data = ffs_prepare_buffer(buf, len); 423 if (IS_ERR(data)) { 424 ret = PTR_ERR(data); 425 break; 426 } 427 428 spin_lock_irq(&ffs->ev.waitq.lock); 429 430 /* 431 * We are guaranteed to be still in FFS_ACTIVE state 432 * but the state of setup could have changed from 433 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 434 * to check for that. If that happened we copied data 435 * from user space in vain but it's unlikely. 436 * 437 * For sure we are not in FFS_NO_SETUP since this is 438 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 439 * transition can be performed and it's protected by 440 * mutex. 441 */ 442 if (ffs_setup_state_clear_cancelled(ffs) == 443 FFS_SETUP_CANCELLED) { 444 ret = -EIDRM; 445 done_spin: 446 spin_unlock_irq(&ffs->ev.waitq.lock); 447 } else { 448 /* unlocks spinlock */ 449 ret = __ffs_ep0_queue_wait(ffs, data, len); 450 } 451 kfree(data); 452 break; 453 454 default: 455 ret = -EBADFD; 456 break; 457 } 458 459 mutex_unlock(&ffs->mutex); 460 return ret; 461 } 462 463 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 464 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 465 size_t n) 466 { 467 /* 468 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 469 * size of ffs->ev.types array (which is four) so that's how much space 470 * we reserve. 471 */ 472 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 473 const size_t size = n * sizeof *events; 474 unsigned i = 0; 475 476 memset(events, 0, size); 477 478 do { 479 events[i].type = ffs->ev.types[i]; 480 if (events[i].type == FUNCTIONFS_SETUP) { 481 events[i].u.setup = ffs->ev.setup; 482 ffs->setup_state = FFS_SETUP_PENDING; 483 } 484 } while (++i < n); 485 486 ffs->ev.count -= n; 487 if (ffs->ev.count) 488 memmove(ffs->ev.types, ffs->ev.types + n, 489 ffs->ev.count * sizeof *ffs->ev.types); 490 491 spin_unlock_irq(&ffs->ev.waitq.lock); 492 mutex_unlock(&ffs->mutex); 493 494 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 495 } 496 497 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 498 size_t len, loff_t *ptr) 499 { 500 struct ffs_data *ffs = file->private_data; 501 char *data = NULL; 502 size_t n; 503 int ret; 504 505 ENTER(); 506 507 /* Fast check if setup was canceled */ 508 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 509 return -EIDRM; 510 511 /* Acquire mutex */ 512 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 513 if (unlikely(ret < 0)) 514 return ret; 515 516 /* Check state */ 517 if (ffs->state != FFS_ACTIVE) { 518 ret = -EBADFD; 519 goto done_mutex; 520 } 521 522 /* 523 * We're called from user space, we can use _irq rather then 524 * _irqsave 525 */ 526 spin_lock_irq(&ffs->ev.waitq.lock); 527 528 switch (ffs_setup_state_clear_cancelled(ffs)) { 529 case FFS_SETUP_CANCELLED: 530 ret = -EIDRM; 531 break; 532 533 case FFS_NO_SETUP: 534 n = len / sizeof(struct usb_functionfs_event); 535 if (unlikely(!n)) { 536 ret = -EINVAL; 537 break; 538 } 539 540 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 541 ret = -EAGAIN; 542 break; 543 } 544 545 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 546 ffs->ev.count)) { 547 ret = -EINTR; 548 break; 549 } 550 551 return __ffs_ep0_read_events(ffs, buf, 552 min(n, (size_t)ffs->ev.count)); 553 554 case FFS_SETUP_PENDING: 555 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 556 spin_unlock_irq(&ffs->ev.waitq.lock); 557 ret = __ffs_ep0_stall(ffs); 558 goto done_mutex; 559 } 560 561 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 562 563 spin_unlock_irq(&ffs->ev.waitq.lock); 564 565 if (likely(len)) { 566 data = kmalloc(len, GFP_KERNEL); 567 if (unlikely(!data)) { 568 ret = -ENOMEM; 569 goto done_mutex; 570 } 571 } 572 573 spin_lock_irq(&ffs->ev.waitq.lock); 574 575 /* See ffs_ep0_write() */ 576 if (ffs_setup_state_clear_cancelled(ffs) == 577 FFS_SETUP_CANCELLED) { 578 ret = -EIDRM; 579 break; 580 } 581 582 /* unlocks spinlock */ 583 ret = __ffs_ep0_queue_wait(ffs, data, len); 584 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 585 ret = -EFAULT; 586 goto done_mutex; 587 588 default: 589 ret = -EBADFD; 590 break; 591 } 592 593 spin_unlock_irq(&ffs->ev.waitq.lock); 594 done_mutex: 595 mutex_unlock(&ffs->mutex); 596 kfree(data); 597 return ret; 598 } 599 600 static int ffs_ep0_open(struct inode *inode, struct file *file) 601 { 602 struct ffs_data *ffs = inode->i_private; 603 604 ENTER(); 605 606 if (unlikely(ffs->state == FFS_CLOSING)) 607 return -EBUSY; 608 609 file->private_data = ffs; 610 ffs_data_opened(ffs); 611 612 return 0; 613 } 614 615 static int ffs_ep0_release(struct inode *inode, struct file *file) 616 { 617 struct ffs_data *ffs = file->private_data; 618 619 ENTER(); 620 621 ffs_data_closed(ffs); 622 623 return 0; 624 } 625 626 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 627 { 628 struct ffs_data *ffs = file->private_data; 629 struct usb_gadget *gadget = ffs->gadget; 630 long ret; 631 632 ENTER(); 633 634 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 635 struct ffs_function *func = ffs->func; 636 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 637 } else if (gadget && gadget->ops->ioctl) { 638 ret = gadget->ops->ioctl(gadget, code, value); 639 } else { 640 ret = -ENOTTY; 641 } 642 643 return ret; 644 } 645 646 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait) 647 { 648 struct ffs_data *ffs = file->private_data; 649 unsigned int mask = POLLWRNORM; 650 int ret; 651 652 poll_wait(file, &ffs->ev.waitq, wait); 653 654 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 655 if (unlikely(ret < 0)) 656 return mask; 657 658 switch (ffs->state) { 659 case FFS_READ_DESCRIPTORS: 660 case FFS_READ_STRINGS: 661 mask |= POLLOUT; 662 break; 663 664 case FFS_ACTIVE: 665 switch (ffs->setup_state) { 666 case FFS_NO_SETUP: 667 if (ffs->ev.count) 668 mask |= POLLIN; 669 break; 670 671 case FFS_SETUP_PENDING: 672 case FFS_SETUP_CANCELLED: 673 mask |= (POLLIN | POLLOUT); 674 break; 675 } 676 case FFS_CLOSING: 677 break; 678 case FFS_DEACTIVATED: 679 break; 680 } 681 682 mutex_unlock(&ffs->mutex); 683 684 return mask; 685 } 686 687 static const struct file_operations ffs_ep0_operations = { 688 .llseek = no_llseek, 689 690 .open = ffs_ep0_open, 691 .write = ffs_ep0_write, 692 .read = ffs_ep0_read, 693 .release = ffs_ep0_release, 694 .unlocked_ioctl = ffs_ep0_ioctl, 695 .poll = ffs_ep0_poll, 696 }; 697 698 699 /* "Normal" endpoints operations ********************************************/ 700 701 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 702 { 703 ENTER(); 704 if (likely(req->context)) { 705 struct ffs_ep *ep = _ep->driver_data; 706 ep->status = req->status ? req->status : req->actual; 707 complete(req->context); 708 } 709 } 710 711 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 712 { 713 ssize_t ret = copy_to_iter(data, data_len, iter); 714 if (likely(ret == data_len)) 715 return ret; 716 717 if (unlikely(iov_iter_count(iter))) 718 return -EFAULT; 719 720 /* 721 * Dear user space developer! 722 * 723 * TL;DR: To stop getting below error message in your kernel log, change 724 * user space code using functionfs to align read buffers to a max 725 * packet size. 726 * 727 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 728 * packet size. When unaligned buffer is passed to functionfs, it 729 * internally uses a larger, aligned buffer so that such UDCs are happy. 730 * 731 * Unfortunately, this means that host may send more data than was 732 * requested in read(2) system call. f_fs doesn’t know what to do with 733 * that excess data so it simply drops it. 734 * 735 * Was the buffer aligned in the first place, no such problem would 736 * happen. 737 * 738 * Data may be dropped only in AIO reads. Synchronous reads are handled 739 * by splitting a request into multiple parts. This splitting may still 740 * be a problem though so it’s likely best to align the buffer 741 * regardless of it being AIO or not.. 742 * 743 * This only affects OUT endpoints, i.e. reading data with a read(2), 744 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 745 * affected. 746 */ 747 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 748 "Align read buffer size to max packet size to avoid the problem.\n", 749 data_len, ret); 750 751 return ret; 752 } 753 754 static void ffs_user_copy_worker(struct work_struct *work) 755 { 756 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 757 work); 758 int ret = io_data->req->status ? io_data->req->status : 759 io_data->req->actual; 760 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 761 762 if (io_data->read && ret > 0) { 763 use_mm(io_data->mm); 764 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 765 unuse_mm(io_data->mm); 766 } 767 768 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 769 770 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 771 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 772 773 usb_ep_free_request(io_data->ep, io_data->req); 774 775 if (io_data->read) 776 kfree(io_data->to_free); 777 kfree(io_data->buf); 778 kfree(io_data); 779 } 780 781 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 782 struct usb_request *req) 783 { 784 struct ffs_io_data *io_data = req->context; 785 786 ENTER(); 787 788 INIT_WORK(&io_data->work, ffs_user_copy_worker); 789 schedule_work(&io_data->work); 790 } 791 792 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 793 { 794 /* 795 * See comment in struct ffs_epfile for full read_buffer pointer 796 * synchronisation story. 797 */ 798 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 799 if (buf && buf != READ_BUFFER_DROP) 800 kfree(buf); 801 } 802 803 /* Assumes epfile->mutex is held. */ 804 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 805 struct iov_iter *iter) 806 { 807 /* 808 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 809 * the buffer while we are using it. See comment in struct ffs_epfile 810 * for full read_buffer pointer synchronisation story. 811 */ 812 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 813 ssize_t ret; 814 if (!buf || buf == READ_BUFFER_DROP) 815 return 0; 816 817 ret = copy_to_iter(buf->data, buf->length, iter); 818 if (buf->length == ret) { 819 kfree(buf); 820 return ret; 821 } 822 823 if (unlikely(iov_iter_count(iter))) { 824 ret = -EFAULT; 825 } else { 826 buf->length -= ret; 827 buf->data += ret; 828 } 829 830 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 831 kfree(buf); 832 833 return ret; 834 } 835 836 /* Assumes epfile->mutex is held. */ 837 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 838 void *data, int data_len, 839 struct iov_iter *iter) 840 { 841 struct ffs_buffer *buf; 842 843 ssize_t ret = copy_to_iter(data, data_len, iter); 844 if (likely(data_len == ret)) 845 return ret; 846 847 if (unlikely(iov_iter_count(iter))) 848 return -EFAULT; 849 850 /* See ffs_copy_to_iter for more context. */ 851 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 852 data_len, ret); 853 854 data_len -= ret; 855 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 856 if (!buf) 857 return -ENOMEM; 858 buf->length = data_len; 859 buf->data = buf->storage; 860 memcpy(buf->storage, data + ret, data_len); 861 862 /* 863 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 864 * ffs_func_eps_disable has been called in the meanwhile). See comment 865 * in struct ffs_epfile for full read_buffer pointer synchronisation 866 * story. 867 */ 868 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 869 kfree(buf); 870 871 return ret; 872 } 873 874 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 875 { 876 struct ffs_epfile *epfile = file->private_data; 877 struct usb_request *req; 878 struct ffs_ep *ep; 879 char *data = NULL; 880 ssize_t ret, data_len = -EINVAL; 881 int halt; 882 883 /* Are we still active? */ 884 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 885 return -ENODEV; 886 887 /* Wait for endpoint to be enabled */ 888 ep = epfile->ep; 889 if (!ep) { 890 if (file->f_flags & O_NONBLOCK) 891 return -EAGAIN; 892 893 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep)); 894 if (ret) 895 return -EINTR; 896 } 897 898 /* Do we halt? */ 899 halt = (!io_data->read == !epfile->in); 900 if (halt && epfile->isoc) 901 return -EINVAL; 902 903 /* We will be using request and read_buffer */ 904 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 905 if (unlikely(ret)) 906 goto error; 907 908 /* Allocate & copy */ 909 if (!halt) { 910 struct usb_gadget *gadget; 911 912 /* 913 * Do we have buffered data from previous partial read? Check 914 * that for synchronous case only because we do not have 915 * facility to ‘wake up’ a pending asynchronous read and push 916 * buffered data to it which we would need to make things behave 917 * consistently. 918 */ 919 if (!io_data->aio && io_data->read) { 920 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 921 if (ret) 922 goto error_mutex; 923 } 924 925 /* 926 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 927 * before the waiting completes, so do not assign to 'gadget' 928 * earlier 929 */ 930 gadget = epfile->ffs->gadget; 931 932 spin_lock_irq(&epfile->ffs->eps_lock); 933 /* In the meantime, endpoint got disabled or changed. */ 934 if (epfile->ep != ep) { 935 ret = -ESHUTDOWN; 936 goto error_lock; 937 } 938 data_len = iov_iter_count(&io_data->data); 939 /* 940 * Controller may require buffer size to be aligned to 941 * maxpacketsize of an out endpoint. 942 */ 943 if (io_data->read) 944 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 945 spin_unlock_irq(&epfile->ffs->eps_lock); 946 947 data = kmalloc(data_len, GFP_KERNEL); 948 if (unlikely(!data)) { 949 ret = -ENOMEM; 950 goto error_mutex; 951 } 952 if (!io_data->read && 953 !copy_from_iter_full(data, data_len, &io_data->data)) { 954 ret = -EFAULT; 955 goto error_mutex; 956 } 957 } 958 959 spin_lock_irq(&epfile->ffs->eps_lock); 960 961 if (epfile->ep != ep) { 962 /* In the meantime, endpoint got disabled or changed. */ 963 ret = -ESHUTDOWN; 964 } else if (halt) { 965 /* Halt */ 966 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep)) 967 usb_ep_set_halt(ep->ep); 968 ret = -EBADMSG; 969 } else if (unlikely(data_len == -EINVAL)) { 970 /* 971 * Sanity Check: even though data_len can't be used 972 * uninitialized at the time I write this comment, some 973 * compilers complain about this situation. 974 * In order to keep the code clean from warnings, data_len is 975 * being initialized to -EINVAL during its declaration, which 976 * means we can't rely on compiler anymore to warn no future 977 * changes won't result in data_len being used uninitialized. 978 * For such reason, we're adding this redundant sanity check 979 * here. 980 */ 981 WARN(1, "%s: data_len == -EINVAL\n", __func__); 982 ret = -EINVAL; 983 } else if (!io_data->aio) { 984 DECLARE_COMPLETION_ONSTACK(done); 985 bool interrupted = false; 986 987 req = ep->req; 988 req->buf = data; 989 req->length = data_len; 990 991 req->context = &done; 992 req->complete = ffs_epfile_io_complete; 993 994 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 995 if (unlikely(ret < 0)) 996 goto error_lock; 997 998 spin_unlock_irq(&epfile->ffs->eps_lock); 999 1000 if (unlikely(wait_for_completion_interruptible(&done))) { 1001 /* 1002 * To avoid race condition with ffs_epfile_io_complete, 1003 * dequeue the request first then check 1004 * status. usb_ep_dequeue API should guarantee no race 1005 * condition with req->complete callback. 1006 */ 1007 usb_ep_dequeue(ep->ep, req); 1008 interrupted = ep->status < 0; 1009 } 1010 1011 if (interrupted) 1012 ret = -EINTR; 1013 else if (io_data->read && ep->status > 0) 1014 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1015 &io_data->data); 1016 else 1017 ret = ep->status; 1018 goto error_mutex; 1019 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) { 1020 ret = -ENOMEM; 1021 } else { 1022 req->buf = data; 1023 req->length = data_len; 1024 1025 io_data->buf = data; 1026 io_data->ep = ep->ep; 1027 io_data->req = req; 1028 io_data->ffs = epfile->ffs; 1029 1030 req->context = io_data; 1031 req->complete = ffs_epfile_async_io_complete; 1032 1033 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1034 if (unlikely(ret)) { 1035 usb_ep_free_request(ep->ep, req); 1036 goto error_lock; 1037 } 1038 1039 ret = -EIOCBQUEUED; 1040 /* 1041 * Do not kfree the buffer in this function. It will be freed 1042 * by ffs_user_copy_worker. 1043 */ 1044 data = NULL; 1045 } 1046 1047 error_lock: 1048 spin_unlock_irq(&epfile->ffs->eps_lock); 1049 error_mutex: 1050 mutex_unlock(&epfile->mutex); 1051 error: 1052 kfree(data); 1053 return ret; 1054 } 1055 1056 static int 1057 ffs_epfile_open(struct inode *inode, struct file *file) 1058 { 1059 struct ffs_epfile *epfile = inode->i_private; 1060 1061 ENTER(); 1062 1063 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1064 return -ENODEV; 1065 1066 file->private_data = epfile; 1067 ffs_data_opened(epfile->ffs); 1068 1069 return 0; 1070 } 1071 1072 static int ffs_aio_cancel(struct kiocb *kiocb) 1073 { 1074 struct ffs_io_data *io_data = kiocb->private; 1075 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1076 int value; 1077 1078 ENTER(); 1079 1080 spin_lock_irq(&epfile->ffs->eps_lock); 1081 1082 if (likely(io_data && io_data->ep && io_data->req)) 1083 value = usb_ep_dequeue(io_data->ep, io_data->req); 1084 else 1085 value = -EINVAL; 1086 1087 spin_unlock_irq(&epfile->ffs->eps_lock); 1088 1089 return value; 1090 } 1091 1092 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1093 { 1094 struct ffs_io_data io_data, *p = &io_data; 1095 ssize_t res; 1096 1097 ENTER(); 1098 1099 if (!is_sync_kiocb(kiocb)) { 1100 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1101 if (unlikely(!p)) 1102 return -ENOMEM; 1103 p->aio = true; 1104 } else { 1105 p->aio = false; 1106 } 1107 1108 p->read = false; 1109 p->kiocb = kiocb; 1110 p->data = *from; 1111 p->mm = current->mm; 1112 1113 kiocb->private = p; 1114 1115 if (p->aio) 1116 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1117 1118 res = ffs_epfile_io(kiocb->ki_filp, p); 1119 if (res == -EIOCBQUEUED) 1120 return res; 1121 if (p->aio) 1122 kfree(p); 1123 else 1124 *from = p->data; 1125 return res; 1126 } 1127 1128 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1129 { 1130 struct ffs_io_data io_data, *p = &io_data; 1131 ssize_t res; 1132 1133 ENTER(); 1134 1135 if (!is_sync_kiocb(kiocb)) { 1136 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1137 if (unlikely(!p)) 1138 return -ENOMEM; 1139 p->aio = true; 1140 } else { 1141 p->aio = false; 1142 } 1143 1144 p->read = true; 1145 p->kiocb = kiocb; 1146 if (p->aio) { 1147 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1148 if (!p->to_free) { 1149 kfree(p); 1150 return -ENOMEM; 1151 } 1152 } else { 1153 p->data = *to; 1154 p->to_free = NULL; 1155 } 1156 p->mm = current->mm; 1157 1158 kiocb->private = p; 1159 1160 if (p->aio) 1161 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1162 1163 res = ffs_epfile_io(kiocb->ki_filp, p); 1164 if (res == -EIOCBQUEUED) 1165 return res; 1166 1167 if (p->aio) { 1168 kfree(p->to_free); 1169 kfree(p); 1170 } else { 1171 *to = p->data; 1172 } 1173 return res; 1174 } 1175 1176 static int 1177 ffs_epfile_release(struct inode *inode, struct file *file) 1178 { 1179 struct ffs_epfile *epfile = inode->i_private; 1180 1181 ENTER(); 1182 1183 __ffs_epfile_read_buffer_free(epfile); 1184 ffs_data_closed(epfile->ffs); 1185 1186 return 0; 1187 } 1188 1189 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1190 unsigned long value) 1191 { 1192 struct ffs_epfile *epfile = file->private_data; 1193 int ret; 1194 1195 ENTER(); 1196 1197 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1198 return -ENODEV; 1199 1200 spin_lock_irq(&epfile->ffs->eps_lock); 1201 if (likely(epfile->ep)) { 1202 switch (code) { 1203 case FUNCTIONFS_FIFO_STATUS: 1204 ret = usb_ep_fifo_status(epfile->ep->ep); 1205 break; 1206 case FUNCTIONFS_FIFO_FLUSH: 1207 usb_ep_fifo_flush(epfile->ep->ep); 1208 ret = 0; 1209 break; 1210 case FUNCTIONFS_CLEAR_HALT: 1211 ret = usb_ep_clear_halt(epfile->ep->ep); 1212 break; 1213 case FUNCTIONFS_ENDPOINT_REVMAP: 1214 ret = epfile->ep->num; 1215 break; 1216 case FUNCTIONFS_ENDPOINT_DESC: 1217 { 1218 int desc_idx; 1219 struct usb_endpoint_descriptor *desc; 1220 1221 switch (epfile->ffs->gadget->speed) { 1222 case USB_SPEED_SUPER: 1223 desc_idx = 2; 1224 break; 1225 case USB_SPEED_HIGH: 1226 desc_idx = 1; 1227 break; 1228 default: 1229 desc_idx = 0; 1230 } 1231 desc = epfile->ep->descs[desc_idx]; 1232 1233 spin_unlock_irq(&epfile->ffs->eps_lock); 1234 ret = copy_to_user((void *)value, desc, desc->bLength); 1235 if (ret) 1236 ret = -EFAULT; 1237 return ret; 1238 } 1239 default: 1240 ret = -ENOTTY; 1241 } 1242 } else { 1243 ret = -ENODEV; 1244 } 1245 spin_unlock_irq(&epfile->ffs->eps_lock); 1246 1247 return ret; 1248 } 1249 1250 static const struct file_operations ffs_epfile_operations = { 1251 .llseek = no_llseek, 1252 1253 .open = ffs_epfile_open, 1254 .write_iter = ffs_epfile_write_iter, 1255 .read_iter = ffs_epfile_read_iter, 1256 .release = ffs_epfile_release, 1257 .unlocked_ioctl = ffs_epfile_ioctl, 1258 }; 1259 1260 1261 /* File system and super block operations ***********************************/ 1262 1263 /* 1264 * Mounting the file system creates a controller file, used first for 1265 * function configuration then later for event monitoring. 1266 */ 1267 1268 static struct inode *__must_check 1269 ffs_sb_make_inode(struct super_block *sb, void *data, 1270 const struct file_operations *fops, 1271 const struct inode_operations *iops, 1272 struct ffs_file_perms *perms) 1273 { 1274 struct inode *inode; 1275 1276 ENTER(); 1277 1278 inode = new_inode(sb); 1279 1280 if (likely(inode)) { 1281 struct timespec ts = current_time(inode); 1282 1283 inode->i_ino = get_next_ino(); 1284 inode->i_mode = perms->mode; 1285 inode->i_uid = perms->uid; 1286 inode->i_gid = perms->gid; 1287 inode->i_atime = ts; 1288 inode->i_mtime = ts; 1289 inode->i_ctime = ts; 1290 inode->i_private = data; 1291 if (fops) 1292 inode->i_fop = fops; 1293 if (iops) 1294 inode->i_op = iops; 1295 } 1296 1297 return inode; 1298 } 1299 1300 /* Create "regular" file */ 1301 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1302 const char *name, void *data, 1303 const struct file_operations *fops) 1304 { 1305 struct ffs_data *ffs = sb->s_fs_info; 1306 struct dentry *dentry; 1307 struct inode *inode; 1308 1309 ENTER(); 1310 1311 dentry = d_alloc_name(sb->s_root, name); 1312 if (unlikely(!dentry)) 1313 return NULL; 1314 1315 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1316 if (unlikely(!inode)) { 1317 dput(dentry); 1318 return NULL; 1319 } 1320 1321 d_add(dentry, inode); 1322 return dentry; 1323 } 1324 1325 /* Super block */ 1326 static const struct super_operations ffs_sb_operations = { 1327 .statfs = simple_statfs, 1328 .drop_inode = generic_delete_inode, 1329 }; 1330 1331 struct ffs_sb_fill_data { 1332 struct ffs_file_perms perms; 1333 umode_t root_mode; 1334 const char *dev_name; 1335 bool no_disconnect; 1336 struct ffs_data *ffs_data; 1337 }; 1338 1339 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1340 { 1341 struct ffs_sb_fill_data *data = _data; 1342 struct inode *inode; 1343 struct ffs_data *ffs = data->ffs_data; 1344 1345 ENTER(); 1346 1347 ffs->sb = sb; 1348 data->ffs_data = NULL; 1349 sb->s_fs_info = ffs; 1350 sb->s_blocksize = PAGE_SIZE; 1351 sb->s_blocksize_bits = PAGE_SHIFT; 1352 sb->s_magic = FUNCTIONFS_MAGIC; 1353 sb->s_op = &ffs_sb_operations; 1354 sb->s_time_gran = 1; 1355 1356 /* Root inode */ 1357 data->perms.mode = data->root_mode; 1358 inode = ffs_sb_make_inode(sb, NULL, 1359 &simple_dir_operations, 1360 &simple_dir_inode_operations, 1361 &data->perms); 1362 sb->s_root = d_make_root(inode); 1363 if (unlikely(!sb->s_root)) 1364 return -ENOMEM; 1365 1366 /* EP0 file */ 1367 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1368 &ffs_ep0_operations))) 1369 return -ENOMEM; 1370 1371 return 0; 1372 } 1373 1374 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1375 { 1376 ENTER(); 1377 1378 if (!opts || !*opts) 1379 return 0; 1380 1381 for (;;) { 1382 unsigned long value; 1383 char *eq, *comma; 1384 1385 /* Option limit */ 1386 comma = strchr(opts, ','); 1387 if (comma) 1388 *comma = 0; 1389 1390 /* Value limit */ 1391 eq = strchr(opts, '='); 1392 if (unlikely(!eq)) { 1393 pr_err("'=' missing in %s\n", opts); 1394 return -EINVAL; 1395 } 1396 *eq = 0; 1397 1398 /* Parse value */ 1399 if (kstrtoul(eq + 1, 0, &value)) { 1400 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1401 return -EINVAL; 1402 } 1403 1404 /* Interpret option */ 1405 switch (eq - opts) { 1406 case 13: 1407 if (!memcmp(opts, "no_disconnect", 13)) 1408 data->no_disconnect = !!value; 1409 else 1410 goto invalid; 1411 break; 1412 case 5: 1413 if (!memcmp(opts, "rmode", 5)) 1414 data->root_mode = (value & 0555) | S_IFDIR; 1415 else if (!memcmp(opts, "fmode", 5)) 1416 data->perms.mode = (value & 0666) | S_IFREG; 1417 else 1418 goto invalid; 1419 break; 1420 1421 case 4: 1422 if (!memcmp(opts, "mode", 4)) { 1423 data->root_mode = (value & 0555) | S_IFDIR; 1424 data->perms.mode = (value & 0666) | S_IFREG; 1425 } else { 1426 goto invalid; 1427 } 1428 break; 1429 1430 case 3: 1431 if (!memcmp(opts, "uid", 3)) { 1432 data->perms.uid = make_kuid(current_user_ns(), value); 1433 if (!uid_valid(data->perms.uid)) { 1434 pr_err("%s: unmapped value: %lu\n", opts, value); 1435 return -EINVAL; 1436 } 1437 } else if (!memcmp(opts, "gid", 3)) { 1438 data->perms.gid = make_kgid(current_user_ns(), value); 1439 if (!gid_valid(data->perms.gid)) { 1440 pr_err("%s: unmapped value: %lu\n", opts, value); 1441 return -EINVAL; 1442 } 1443 } else { 1444 goto invalid; 1445 } 1446 break; 1447 1448 default: 1449 invalid: 1450 pr_err("%s: invalid option\n", opts); 1451 return -EINVAL; 1452 } 1453 1454 /* Next iteration */ 1455 if (!comma) 1456 break; 1457 opts = comma + 1; 1458 } 1459 1460 return 0; 1461 } 1462 1463 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1464 1465 static struct dentry * 1466 ffs_fs_mount(struct file_system_type *t, int flags, 1467 const char *dev_name, void *opts) 1468 { 1469 struct ffs_sb_fill_data data = { 1470 .perms = { 1471 .mode = S_IFREG | 0600, 1472 .uid = GLOBAL_ROOT_UID, 1473 .gid = GLOBAL_ROOT_GID, 1474 }, 1475 .root_mode = S_IFDIR | 0500, 1476 .no_disconnect = false, 1477 }; 1478 struct dentry *rv; 1479 int ret; 1480 void *ffs_dev; 1481 struct ffs_data *ffs; 1482 1483 ENTER(); 1484 1485 ret = ffs_fs_parse_opts(&data, opts); 1486 if (unlikely(ret < 0)) 1487 return ERR_PTR(ret); 1488 1489 ffs = ffs_data_new(); 1490 if (unlikely(!ffs)) 1491 return ERR_PTR(-ENOMEM); 1492 ffs->file_perms = data.perms; 1493 ffs->no_disconnect = data.no_disconnect; 1494 1495 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1496 if (unlikely(!ffs->dev_name)) { 1497 ffs_data_put(ffs); 1498 return ERR_PTR(-ENOMEM); 1499 } 1500 1501 ffs_dev = ffs_acquire_dev(dev_name); 1502 if (IS_ERR(ffs_dev)) { 1503 ffs_data_put(ffs); 1504 return ERR_CAST(ffs_dev); 1505 } 1506 ffs->private_data = ffs_dev; 1507 data.ffs_data = ffs; 1508 1509 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1510 if (IS_ERR(rv) && data.ffs_data) { 1511 ffs_release_dev(data.ffs_data); 1512 ffs_data_put(data.ffs_data); 1513 } 1514 return rv; 1515 } 1516 1517 static void 1518 ffs_fs_kill_sb(struct super_block *sb) 1519 { 1520 ENTER(); 1521 1522 kill_litter_super(sb); 1523 if (sb->s_fs_info) { 1524 ffs_release_dev(sb->s_fs_info); 1525 ffs_data_closed(sb->s_fs_info); 1526 ffs_data_put(sb->s_fs_info); 1527 } 1528 } 1529 1530 static struct file_system_type ffs_fs_type = { 1531 .owner = THIS_MODULE, 1532 .name = "functionfs", 1533 .mount = ffs_fs_mount, 1534 .kill_sb = ffs_fs_kill_sb, 1535 }; 1536 MODULE_ALIAS_FS("functionfs"); 1537 1538 1539 /* Driver's main init/cleanup functions *************************************/ 1540 1541 static int functionfs_init(void) 1542 { 1543 int ret; 1544 1545 ENTER(); 1546 1547 ret = register_filesystem(&ffs_fs_type); 1548 if (likely(!ret)) 1549 pr_info("file system registered\n"); 1550 else 1551 pr_err("failed registering file system (%d)\n", ret); 1552 1553 return ret; 1554 } 1555 1556 static void functionfs_cleanup(void) 1557 { 1558 ENTER(); 1559 1560 pr_info("unloading\n"); 1561 unregister_filesystem(&ffs_fs_type); 1562 } 1563 1564 1565 /* ffs_data and ffs_function construction and destruction code **************/ 1566 1567 static void ffs_data_clear(struct ffs_data *ffs); 1568 static void ffs_data_reset(struct ffs_data *ffs); 1569 1570 static void ffs_data_get(struct ffs_data *ffs) 1571 { 1572 ENTER(); 1573 1574 atomic_inc(&ffs->ref); 1575 } 1576 1577 static void ffs_data_opened(struct ffs_data *ffs) 1578 { 1579 ENTER(); 1580 1581 atomic_inc(&ffs->ref); 1582 if (atomic_add_return(1, &ffs->opened) == 1 && 1583 ffs->state == FFS_DEACTIVATED) { 1584 ffs->state = FFS_CLOSING; 1585 ffs_data_reset(ffs); 1586 } 1587 } 1588 1589 static void ffs_data_put(struct ffs_data *ffs) 1590 { 1591 ENTER(); 1592 1593 if (unlikely(atomic_dec_and_test(&ffs->ref))) { 1594 pr_info("%s(): freeing\n", __func__); 1595 ffs_data_clear(ffs); 1596 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1597 waitqueue_active(&ffs->ep0req_completion.wait)); 1598 kfree(ffs->dev_name); 1599 kfree(ffs); 1600 } 1601 } 1602 1603 static void ffs_data_closed(struct ffs_data *ffs) 1604 { 1605 ENTER(); 1606 1607 if (atomic_dec_and_test(&ffs->opened)) { 1608 if (ffs->no_disconnect) { 1609 ffs->state = FFS_DEACTIVATED; 1610 if (ffs->epfiles) { 1611 ffs_epfiles_destroy(ffs->epfiles, 1612 ffs->eps_count); 1613 ffs->epfiles = NULL; 1614 } 1615 if (ffs->setup_state == FFS_SETUP_PENDING) 1616 __ffs_ep0_stall(ffs); 1617 } else { 1618 ffs->state = FFS_CLOSING; 1619 ffs_data_reset(ffs); 1620 } 1621 } 1622 if (atomic_read(&ffs->opened) < 0) { 1623 ffs->state = FFS_CLOSING; 1624 ffs_data_reset(ffs); 1625 } 1626 1627 ffs_data_put(ffs); 1628 } 1629 1630 static struct ffs_data *ffs_data_new(void) 1631 { 1632 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1633 if (unlikely(!ffs)) 1634 return NULL; 1635 1636 ENTER(); 1637 1638 atomic_set(&ffs->ref, 1); 1639 atomic_set(&ffs->opened, 0); 1640 ffs->state = FFS_READ_DESCRIPTORS; 1641 mutex_init(&ffs->mutex); 1642 spin_lock_init(&ffs->eps_lock); 1643 init_waitqueue_head(&ffs->ev.waitq); 1644 init_completion(&ffs->ep0req_completion); 1645 1646 /* XXX REVISIT need to update it in some places, or do we? */ 1647 ffs->ev.can_stall = 1; 1648 1649 return ffs; 1650 } 1651 1652 static void ffs_data_clear(struct ffs_data *ffs) 1653 { 1654 ENTER(); 1655 1656 ffs_closed(ffs); 1657 1658 BUG_ON(ffs->gadget); 1659 1660 if (ffs->epfiles) 1661 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1662 1663 if (ffs->ffs_eventfd) 1664 eventfd_ctx_put(ffs->ffs_eventfd); 1665 1666 kfree(ffs->raw_descs_data); 1667 kfree(ffs->raw_strings); 1668 kfree(ffs->stringtabs); 1669 } 1670 1671 static void ffs_data_reset(struct ffs_data *ffs) 1672 { 1673 ENTER(); 1674 1675 ffs_data_clear(ffs); 1676 1677 ffs->epfiles = NULL; 1678 ffs->raw_descs_data = NULL; 1679 ffs->raw_descs = NULL; 1680 ffs->raw_strings = NULL; 1681 ffs->stringtabs = NULL; 1682 1683 ffs->raw_descs_length = 0; 1684 ffs->fs_descs_count = 0; 1685 ffs->hs_descs_count = 0; 1686 ffs->ss_descs_count = 0; 1687 1688 ffs->strings_count = 0; 1689 ffs->interfaces_count = 0; 1690 ffs->eps_count = 0; 1691 1692 ffs->ev.count = 0; 1693 1694 ffs->state = FFS_READ_DESCRIPTORS; 1695 ffs->setup_state = FFS_NO_SETUP; 1696 ffs->flags = 0; 1697 } 1698 1699 1700 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1701 { 1702 struct usb_gadget_strings **lang; 1703 int first_id; 1704 1705 ENTER(); 1706 1707 if (WARN_ON(ffs->state != FFS_ACTIVE 1708 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1709 return -EBADFD; 1710 1711 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1712 if (unlikely(first_id < 0)) 1713 return first_id; 1714 1715 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1716 if (unlikely(!ffs->ep0req)) 1717 return -ENOMEM; 1718 ffs->ep0req->complete = ffs_ep0_complete; 1719 ffs->ep0req->context = ffs; 1720 1721 lang = ffs->stringtabs; 1722 if (lang) { 1723 for (; *lang; ++lang) { 1724 struct usb_string *str = (*lang)->strings; 1725 int id = first_id; 1726 for (; str->s; ++id, ++str) 1727 str->id = id; 1728 } 1729 } 1730 1731 ffs->gadget = cdev->gadget; 1732 ffs_data_get(ffs); 1733 return 0; 1734 } 1735 1736 static void functionfs_unbind(struct ffs_data *ffs) 1737 { 1738 ENTER(); 1739 1740 if (!WARN_ON(!ffs->gadget)) { 1741 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1742 ffs->ep0req = NULL; 1743 ffs->gadget = NULL; 1744 clear_bit(FFS_FL_BOUND, &ffs->flags); 1745 ffs_data_put(ffs); 1746 } 1747 } 1748 1749 static int ffs_epfiles_create(struct ffs_data *ffs) 1750 { 1751 struct ffs_epfile *epfile, *epfiles; 1752 unsigned i, count; 1753 1754 ENTER(); 1755 1756 count = ffs->eps_count; 1757 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1758 if (!epfiles) 1759 return -ENOMEM; 1760 1761 epfile = epfiles; 1762 for (i = 1; i <= count; ++i, ++epfile) { 1763 epfile->ffs = ffs; 1764 mutex_init(&epfile->mutex); 1765 init_waitqueue_head(&epfile->wait); 1766 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1767 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1768 else 1769 sprintf(epfile->name, "ep%u", i); 1770 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1771 epfile, 1772 &ffs_epfile_operations); 1773 if (unlikely(!epfile->dentry)) { 1774 ffs_epfiles_destroy(epfiles, i - 1); 1775 return -ENOMEM; 1776 } 1777 } 1778 1779 ffs->epfiles = epfiles; 1780 return 0; 1781 } 1782 1783 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1784 { 1785 struct ffs_epfile *epfile = epfiles; 1786 1787 ENTER(); 1788 1789 for (; count; --count, ++epfile) { 1790 BUG_ON(mutex_is_locked(&epfile->mutex) || 1791 waitqueue_active(&epfile->wait)); 1792 if (epfile->dentry) { 1793 d_delete(epfile->dentry); 1794 dput(epfile->dentry); 1795 epfile->dentry = NULL; 1796 } 1797 } 1798 1799 kfree(epfiles); 1800 } 1801 1802 static void ffs_func_eps_disable(struct ffs_function *func) 1803 { 1804 struct ffs_ep *ep = func->eps; 1805 struct ffs_epfile *epfile = func->ffs->epfiles; 1806 unsigned count = func->ffs->eps_count; 1807 unsigned long flags; 1808 1809 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1810 while (count--) { 1811 /* pending requests get nuked */ 1812 if (likely(ep->ep)) 1813 usb_ep_disable(ep->ep); 1814 ++ep; 1815 1816 if (epfile) { 1817 epfile->ep = NULL; 1818 __ffs_epfile_read_buffer_free(epfile); 1819 ++epfile; 1820 } 1821 } 1822 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1823 } 1824 1825 static int ffs_func_eps_enable(struct ffs_function *func) 1826 { 1827 struct ffs_data *ffs = func->ffs; 1828 struct ffs_ep *ep = func->eps; 1829 struct ffs_epfile *epfile = ffs->epfiles; 1830 unsigned count = ffs->eps_count; 1831 unsigned long flags; 1832 int ret = 0; 1833 1834 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1835 while(count--) { 1836 struct usb_endpoint_descriptor *ds; 1837 int desc_idx; 1838 1839 if (ffs->gadget->speed == USB_SPEED_SUPER) 1840 desc_idx = 2; 1841 else if (ffs->gadget->speed == USB_SPEED_HIGH) 1842 desc_idx = 1; 1843 else 1844 desc_idx = 0; 1845 1846 /* fall-back to lower speed if desc missing for current speed */ 1847 do { 1848 ds = ep->descs[desc_idx]; 1849 } while (!ds && --desc_idx >= 0); 1850 1851 if (!ds) { 1852 ret = -EINVAL; 1853 break; 1854 } 1855 1856 ep->ep->driver_data = ep; 1857 ep->ep->desc = ds; 1858 ret = usb_ep_enable(ep->ep); 1859 if (likely(!ret)) { 1860 epfile->ep = ep; 1861 epfile->in = usb_endpoint_dir_in(ds); 1862 epfile->isoc = usb_endpoint_xfer_isoc(ds); 1863 } else { 1864 break; 1865 } 1866 1867 wake_up(&epfile->wait); 1868 1869 ++ep; 1870 ++epfile; 1871 } 1872 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1873 1874 return ret; 1875 } 1876 1877 1878 /* Parsing and building descriptors and strings *****************************/ 1879 1880 /* 1881 * This validates if data pointed by data is a valid USB descriptor as 1882 * well as record how many interfaces, endpoints and strings are 1883 * required by given configuration. Returns address after the 1884 * descriptor or NULL if data is invalid. 1885 */ 1886 1887 enum ffs_entity_type { 1888 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1889 }; 1890 1891 enum ffs_os_desc_type { 1892 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1893 }; 1894 1895 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1896 u8 *valuep, 1897 struct usb_descriptor_header *desc, 1898 void *priv); 1899 1900 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1901 struct usb_os_desc_header *h, void *data, 1902 unsigned len, void *priv); 1903 1904 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1905 ffs_entity_callback entity, 1906 void *priv) 1907 { 1908 struct usb_descriptor_header *_ds = (void *)data; 1909 u8 length; 1910 int ret; 1911 1912 ENTER(); 1913 1914 /* At least two bytes are required: length and type */ 1915 if (len < 2) { 1916 pr_vdebug("descriptor too short\n"); 1917 return -EINVAL; 1918 } 1919 1920 /* If we have at least as many bytes as the descriptor takes? */ 1921 length = _ds->bLength; 1922 if (len < length) { 1923 pr_vdebug("descriptor longer then available data\n"); 1924 return -EINVAL; 1925 } 1926 1927 #define __entity_check_INTERFACE(val) 1 1928 #define __entity_check_STRING(val) (val) 1929 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1930 #define __entity(type, val) do { \ 1931 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1932 if (unlikely(!__entity_check_ ##type(val))) { \ 1933 pr_vdebug("invalid entity's value\n"); \ 1934 return -EINVAL; \ 1935 } \ 1936 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1937 if (unlikely(ret < 0)) { \ 1938 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1939 (val), ret); \ 1940 return ret; \ 1941 } \ 1942 } while (0) 1943 1944 /* Parse descriptor depending on type. */ 1945 switch (_ds->bDescriptorType) { 1946 case USB_DT_DEVICE: 1947 case USB_DT_CONFIG: 1948 case USB_DT_STRING: 1949 case USB_DT_DEVICE_QUALIFIER: 1950 /* function can't have any of those */ 1951 pr_vdebug("descriptor reserved for gadget: %d\n", 1952 _ds->bDescriptorType); 1953 return -EINVAL; 1954 1955 case USB_DT_INTERFACE: { 1956 struct usb_interface_descriptor *ds = (void *)_ds; 1957 pr_vdebug("interface descriptor\n"); 1958 if (length != sizeof *ds) 1959 goto inv_length; 1960 1961 __entity(INTERFACE, ds->bInterfaceNumber); 1962 if (ds->iInterface) 1963 __entity(STRING, ds->iInterface); 1964 } 1965 break; 1966 1967 case USB_DT_ENDPOINT: { 1968 struct usb_endpoint_descriptor *ds = (void *)_ds; 1969 pr_vdebug("endpoint descriptor\n"); 1970 if (length != USB_DT_ENDPOINT_SIZE && 1971 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1972 goto inv_length; 1973 __entity(ENDPOINT, ds->bEndpointAddress); 1974 } 1975 break; 1976 1977 case HID_DT_HID: 1978 pr_vdebug("hid descriptor\n"); 1979 if (length != sizeof(struct hid_descriptor)) 1980 goto inv_length; 1981 break; 1982 1983 case USB_DT_OTG: 1984 if (length != sizeof(struct usb_otg_descriptor)) 1985 goto inv_length; 1986 break; 1987 1988 case USB_DT_INTERFACE_ASSOCIATION: { 1989 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 1990 pr_vdebug("interface association descriptor\n"); 1991 if (length != sizeof *ds) 1992 goto inv_length; 1993 if (ds->iFunction) 1994 __entity(STRING, ds->iFunction); 1995 } 1996 break; 1997 1998 case USB_DT_SS_ENDPOINT_COMP: 1999 pr_vdebug("EP SS companion descriptor\n"); 2000 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2001 goto inv_length; 2002 break; 2003 2004 case USB_DT_OTHER_SPEED_CONFIG: 2005 case USB_DT_INTERFACE_POWER: 2006 case USB_DT_DEBUG: 2007 case USB_DT_SECURITY: 2008 case USB_DT_CS_RADIO_CONTROL: 2009 /* TODO */ 2010 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2011 return -EINVAL; 2012 2013 default: 2014 /* We should never be here */ 2015 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2016 return -EINVAL; 2017 2018 inv_length: 2019 pr_vdebug("invalid length: %d (descriptor %d)\n", 2020 _ds->bLength, _ds->bDescriptorType); 2021 return -EINVAL; 2022 } 2023 2024 #undef __entity 2025 #undef __entity_check_DESCRIPTOR 2026 #undef __entity_check_INTERFACE 2027 #undef __entity_check_STRING 2028 #undef __entity_check_ENDPOINT 2029 2030 return length; 2031 } 2032 2033 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2034 ffs_entity_callback entity, void *priv) 2035 { 2036 const unsigned _len = len; 2037 unsigned long num = 0; 2038 2039 ENTER(); 2040 2041 for (;;) { 2042 int ret; 2043 2044 if (num == count) 2045 data = NULL; 2046 2047 /* Record "descriptor" entity */ 2048 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2049 if (unlikely(ret < 0)) { 2050 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2051 num, ret); 2052 return ret; 2053 } 2054 2055 if (!data) 2056 return _len - len; 2057 2058 ret = ffs_do_single_desc(data, len, entity, priv); 2059 if (unlikely(ret < 0)) { 2060 pr_debug("%s returns %d\n", __func__, ret); 2061 return ret; 2062 } 2063 2064 len -= ret; 2065 data += ret; 2066 ++num; 2067 } 2068 } 2069 2070 static int __ffs_data_do_entity(enum ffs_entity_type type, 2071 u8 *valuep, struct usb_descriptor_header *desc, 2072 void *priv) 2073 { 2074 struct ffs_desc_helper *helper = priv; 2075 struct usb_endpoint_descriptor *d; 2076 2077 ENTER(); 2078 2079 switch (type) { 2080 case FFS_DESCRIPTOR: 2081 break; 2082 2083 case FFS_INTERFACE: 2084 /* 2085 * Interfaces are indexed from zero so if we 2086 * encountered interface "n" then there are at least 2087 * "n+1" interfaces. 2088 */ 2089 if (*valuep >= helper->interfaces_count) 2090 helper->interfaces_count = *valuep + 1; 2091 break; 2092 2093 case FFS_STRING: 2094 /* 2095 * Strings are indexed from 1 (0 is reserved 2096 * for languages list) 2097 */ 2098 if (*valuep > helper->ffs->strings_count) 2099 helper->ffs->strings_count = *valuep; 2100 break; 2101 2102 case FFS_ENDPOINT: 2103 d = (void *)desc; 2104 helper->eps_count++; 2105 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2106 return -EINVAL; 2107 /* Check if descriptors for any speed were already parsed */ 2108 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2109 helper->ffs->eps_addrmap[helper->eps_count] = 2110 d->bEndpointAddress; 2111 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2112 d->bEndpointAddress) 2113 return -EINVAL; 2114 break; 2115 } 2116 2117 return 0; 2118 } 2119 2120 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2121 struct usb_os_desc_header *desc) 2122 { 2123 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2124 u16 w_index = le16_to_cpu(desc->wIndex); 2125 2126 if (bcd_version != 1) { 2127 pr_vdebug("unsupported os descriptors version: %d", 2128 bcd_version); 2129 return -EINVAL; 2130 } 2131 switch (w_index) { 2132 case 0x4: 2133 *next_type = FFS_OS_DESC_EXT_COMPAT; 2134 break; 2135 case 0x5: 2136 *next_type = FFS_OS_DESC_EXT_PROP; 2137 break; 2138 default: 2139 pr_vdebug("unsupported os descriptor type: %d", w_index); 2140 return -EINVAL; 2141 } 2142 2143 return sizeof(*desc); 2144 } 2145 2146 /* 2147 * Process all extended compatibility/extended property descriptors 2148 * of a feature descriptor 2149 */ 2150 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2151 enum ffs_os_desc_type type, 2152 u16 feature_count, 2153 ffs_os_desc_callback entity, 2154 void *priv, 2155 struct usb_os_desc_header *h) 2156 { 2157 int ret; 2158 const unsigned _len = len; 2159 2160 ENTER(); 2161 2162 /* loop over all ext compat/ext prop descriptors */ 2163 while (feature_count--) { 2164 ret = entity(type, h, data, len, priv); 2165 if (unlikely(ret < 0)) { 2166 pr_debug("bad OS descriptor, type: %d\n", type); 2167 return ret; 2168 } 2169 data += ret; 2170 len -= ret; 2171 } 2172 return _len - len; 2173 } 2174 2175 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2176 static int __must_check ffs_do_os_descs(unsigned count, 2177 char *data, unsigned len, 2178 ffs_os_desc_callback entity, void *priv) 2179 { 2180 const unsigned _len = len; 2181 unsigned long num = 0; 2182 2183 ENTER(); 2184 2185 for (num = 0; num < count; ++num) { 2186 int ret; 2187 enum ffs_os_desc_type type; 2188 u16 feature_count; 2189 struct usb_os_desc_header *desc = (void *)data; 2190 2191 if (len < sizeof(*desc)) 2192 return -EINVAL; 2193 2194 /* 2195 * Record "descriptor" entity. 2196 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2197 * Move the data pointer to the beginning of extended 2198 * compatibilities proper or extended properties proper 2199 * portions of the data 2200 */ 2201 if (le32_to_cpu(desc->dwLength) > len) 2202 return -EINVAL; 2203 2204 ret = __ffs_do_os_desc_header(&type, desc); 2205 if (unlikely(ret < 0)) { 2206 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2207 num, ret); 2208 return ret; 2209 } 2210 /* 2211 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2212 */ 2213 feature_count = le16_to_cpu(desc->wCount); 2214 if (type == FFS_OS_DESC_EXT_COMPAT && 2215 (feature_count > 255 || desc->Reserved)) 2216 return -EINVAL; 2217 len -= ret; 2218 data += ret; 2219 2220 /* 2221 * Process all function/property descriptors 2222 * of this Feature Descriptor 2223 */ 2224 ret = ffs_do_single_os_desc(data, len, type, 2225 feature_count, entity, priv, desc); 2226 if (unlikely(ret < 0)) { 2227 pr_debug("%s returns %d\n", __func__, ret); 2228 return ret; 2229 } 2230 2231 len -= ret; 2232 data += ret; 2233 } 2234 return _len - len; 2235 } 2236 2237 /** 2238 * Validate contents of the buffer from userspace related to OS descriptors. 2239 */ 2240 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2241 struct usb_os_desc_header *h, void *data, 2242 unsigned len, void *priv) 2243 { 2244 struct ffs_data *ffs = priv; 2245 u8 length; 2246 2247 ENTER(); 2248 2249 switch (type) { 2250 case FFS_OS_DESC_EXT_COMPAT: { 2251 struct usb_ext_compat_desc *d = data; 2252 int i; 2253 2254 if (len < sizeof(*d) || 2255 d->bFirstInterfaceNumber >= ffs->interfaces_count || 2256 d->Reserved1) 2257 return -EINVAL; 2258 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2259 if (d->Reserved2[i]) 2260 return -EINVAL; 2261 2262 length = sizeof(struct usb_ext_compat_desc); 2263 } 2264 break; 2265 case FFS_OS_DESC_EXT_PROP: { 2266 struct usb_ext_prop_desc *d = data; 2267 u32 type, pdl; 2268 u16 pnl; 2269 2270 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2271 return -EINVAL; 2272 length = le32_to_cpu(d->dwSize); 2273 if (len < length) 2274 return -EINVAL; 2275 type = le32_to_cpu(d->dwPropertyDataType); 2276 if (type < USB_EXT_PROP_UNICODE || 2277 type > USB_EXT_PROP_UNICODE_MULTI) { 2278 pr_vdebug("unsupported os descriptor property type: %d", 2279 type); 2280 return -EINVAL; 2281 } 2282 pnl = le16_to_cpu(d->wPropertyNameLength); 2283 if (length < 14 + pnl) { 2284 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2285 length, pnl, type); 2286 return -EINVAL; 2287 } 2288 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl)); 2289 if (length != 14 + pnl + pdl) { 2290 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2291 length, pnl, pdl, type); 2292 return -EINVAL; 2293 } 2294 ++ffs->ms_os_descs_ext_prop_count; 2295 /* property name reported to the host as "WCHAR"s */ 2296 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2297 ffs->ms_os_descs_ext_prop_data_len += pdl; 2298 } 2299 break; 2300 default: 2301 pr_vdebug("unknown descriptor: %d\n", type); 2302 return -EINVAL; 2303 } 2304 return length; 2305 } 2306 2307 static int __ffs_data_got_descs(struct ffs_data *ffs, 2308 char *const _data, size_t len) 2309 { 2310 char *data = _data, *raw_descs; 2311 unsigned os_descs_count = 0, counts[3], flags; 2312 int ret = -EINVAL, i; 2313 struct ffs_desc_helper helper; 2314 2315 ENTER(); 2316 2317 if (get_unaligned_le32(data + 4) != len) 2318 goto error; 2319 2320 switch (get_unaligned_le32(data)) { 2321 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2322 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2323 data += 8; 2324 len -= 8; 2325 break; 2326 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2327 flags = get_unaligned_le32(data + 8); 2328 ffs->user_flags = flags; 2329 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2330 FUNCTIONFS_HAS_HS_DESC | 2331 FUNCTIONFS_HAS_SS_DESC | 2332 FUNCTIONFS_HAS_MS_OS_DESC | 2333 FUNCTIONFS_VIRTUAL_ADDR | 2334 FUNCTIONFS_EVENTFD | 2335 FUNCTIONFS_ALL_CTRL_RECIP | 2336 FUNCTIONFS_CONFIG0_SETUP)) { 2337 ret = -ENOSYS; 2338 goto error; 2339 } 2340 data += 12; 2341 len -= 12; 2342 break; 2343 default: 2344 goto error; 2345 } 2346 2347 if (flags & FUNCTIONFS_EVENTFD) { 2348 if (len < 4) 2349 goto error; 2350 ffs->ffs_eventfd = 2351 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2352 if (IS_ERR(ffs->ffs_eventfd)) { 2353 ret = PTR_ERR(ffs->ffs_eventfd); 2354 ffs->ffs_eventfd = NULL; 2355 goto error; 2356 } 2357 data += 4; 2358 len -= 4; 2359 } 2360 2361 /* Read fs_count, hs_count and ss_count (if present) */ 2362 for (i = 0; i < 3; ++i) { 2363 if (!(flags & (1 << i))) { 2364 counts[i] = 0; 2365 } else if (len < 4) { 2366 goto error; 2367 } else { 2368 counts[i] = get_unaligned_le32(data); 2369 data += 4; 2370 len -= 4; 2371 } 2372 } 2373 if (flags & (1 << i)) { 2374 if (len < 4) { 2375 goto error; 2376 } 2377 os_descs_count = get_unaligned_le32(data); 2378 data += 4; 2379 len -= 4; 2380 }; 2381 2382 /* Read descriptors */ 2383 raw_descs = data; 2384 helper.ffs = ffs; 2385 for (i = 0; i < 3; ++i) { 2386 if (!counts[i]) 2387 continue; 2388 helper.interfaces_count = 0; 2389 helper.eps_count = 0; 2390 ret = ffs_do_descs(counts[i], data, len, 2391 __ffs_data_do_entity, &helper); 2392 if (ret < 0) 2393 goto error; 2394 if (!ffs->eps_count && !ffs->interfaces_count) { 2395 ffs->eps_count = helper.eps_count; 2396 ffs->interfaces_count = helper.interfaces_count; 2397 } else { 2398 if (ffs->eps_count != helper.eps_count) { 2399 ret = -EINVAL; 2400 goto error; 2401 } 2402 if (ffs->interfaces_count != helper.interfaces_count) { 2403 ret = -EINVAL; 2404 goto error; 2405 } 2406 } 2407 data += ret; 2408 len -= ret; 2409 } 2410 if (os_descs_count) { 2411 ret = ffs_do_os_descs(os_descs_count, data, len, 2412 __ffs_data_do_os_desc, ffs); 2413 if (ret < 0) 2414 goto error; 2415 data += ret; 2416 len -= ret; 2417 } 2418 2419 if (raw_descs == data || len) { 2420 ret = -EINVAL; 2421 goto error; 2422 } 2423 2424 ffs->raw_descs_data = _data; 2425 ffs->raw_descs = raw_descs; 2426 ffs->raw_descs_length = data - raw_descs; 2427 ffs->fs_descs_count = counts[0]; 2428 ffs->hs_descs_count = counts[1]; 2429 ffs->ss_descs_count = counts[2]; 2430 ffs->ms_os_descs_count = os_descs_count; 2431 2432 return 0; 2433 2434 error: 2435 kfree(_data); 2436 return ret; 2437 } 2438 2439 static int __ffs_data_got_strings(struct ffs_data *ffs, 2440 char *const _data, size_t len) 2441 { 2442 u32 str_count, needed_count, lang_count; 2443 struct usb_gadget_strings **stringtabs, *t; 2444 const char *data = _data; 2445 struct usb_string *s; 2446 2447 ENTER(); 2448 2449 if (unlikely(len < 16 || 2450 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2451 get_unaligned_le32(data + 4) != len)) 2452 goto error; 2453 str_count = get_unaligned_le32(data + 8); 2454 lang_count = get_unaligned_le32(data + 12); 2455 2456 /* if one is zero the other must be zero */ 2457 if (unlikely(!str_count != !lang_count)) 2458 goto error; 2459 2460 /* Do we have at least as many strings as descriptors need? */ 2461 needed_count = ffs->strings_count; 2462 if (unlikely(str_count < needed_count)) 2463 goto error; 2464 2465 /* 2466 * If we don't need any strings just return and free all 2467 * memory. 2468 */ 2469 if (!needed_count) { 2470 kfree(_data); 2471 return 0; 2472 } 2473 2474 /* Allocate everything in one chunk so there's less maintenance. */ 2475 { 2476 unsigned i = 0; 2477 vla_group(d); 2478 vla_item(d, struct usb_gadget_strings *, stringtabs, 2479 lang_count + 1); 2480 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2481 vla_item(d, struct usb_string, strings, 2482 lang_count*(needed_count+1)); 2483 2484 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2485 2486 if (unlikely(!vlabuf)) { 2487 kfree(_data); 2488 return -ENOMEM; 2489 } 2490 2491 /* Initialize the VLA pointers */ 2492 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2493 t = vla_ptr(vlabuf, d, stringtab); 2494 i = lang_count; 2495 do { 2496 *stringtabs++ = t++; 2497 } while (--i); 2498 *stringtabs = NULL; 2499 2500 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2501 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2502 t = vla_ptr(vlabuf, d, stringtab); 2503 s = vla_ptr(vlabuf, d, strings); 2504 } 2505 2506 /* For each language */ 2507 data += 16; 2508 len -= 16; 2509 2510 do { /* lang_count > 0 so we can use do-while */ 2511 unsigned needed = needed_count; 2512 2513 if (unlikely(len < 3)) 2514 goto error_free; 2515 t->language = get_unaligned_le16(data); 2516 t->strings = s; 2517 ++t; 2518 2519 data += 2; 2520 len -= 2; 2521 2522 /* For each string */ 2523 do { /* str_count > 0 so we can use do-while */ 2524 size_t length = strnlen(data, len); 2525 2526 if (unlikely(length == len)) 2527 goto error_free; 2528 2529 /* 2530 * User may provide more strings then we need, 2531 * if that's the case we simply ignore the 2532 * rest 2533 */ 2534 if (likely(needed)) { 2535 /* 2536 * s->id will be set while adding 2537 * function to configuration so for 2538 * now just leave garbage here. 2539 */ 2540 s->s = data; 2541 --needed; 2542 ++s; 2543 } 2544 2545 data += length + 1; 2546 len -= length + 1; 2547 } while (--str_count); 2548 2549 s->id = 0; /* terminator */ 2550 s->s = NULL; 2551 ++s; 2552 2553 } while (--lang_count); 2554 2555 /* Some garbage left? */ 2556 if (unlikely(len)) 2557 goto error_free; 2558 2559 /* Done! */ 2560 ffs->stringtabs = stringtabs; 2561 ffs->raw_strings = _data; 2562 2563 return 0; 2564 2565 error_free: 2566 kfree(stringtabs); 2567 error: 2568 kfree(_data); 2569 return -EINVAL; 2570 } 2571 2572 2573 /* Events handling and management *******************************************/ 2574 2575 static void __ffs_event_add(struct ffs_data *ffs, 2576 enum usb_functionfs_event_type type) 2577 { 2578 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2579 int neg = 0; 2580 2581 /* 2582 * Abort any unhandled setup 2583 * 2584 * We do not need to worry about some cmpxchg() changing value 2585 * of ffs->setup_state without holding the lock because when 2586 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2587 * the source does nothing. 2588 */ 2589 if (ffs->setup_state == FFS_SETUP_PENDING) 2590 ffs->setup_state = FFS_SETUP_CANCELLED; 2591 2592 /* 2593 * Logic of this function guarantees that there are at most four pending 2594 * evens on ffs->ev.types queue. This is important because the queue 2595 * has space for four elements only and __ffs_ep0_read_events function 2596 * depends on that limit as well. If more event types are added, those 2597 * limits have to be revisited or guaranteed to still hold. 2598 */ 2599 switch (type) { 2600 case FUNCTIONFS_RESUME: 2601 rem_type2 = FUNCTIONFS_SUSPEND; 2602 /* FALL THROUGH */ 2603 case FUNCTIONFS_SUSPEND: 2604 case FUNCTIONFS_SETUP: 2605 rem_type1 = type; 2606 /* Discard all similar events */ 2607 break; 2608 2609 case FUNCTIONFS_BIND: 2610 case FUNCTIONFS_UNBIND: 2611 case FUNCTIONFS_DISABLE: 2612 case FUNCTIONFS_ENABLE: 2613 /* Discard everything other then power management. */ 2614 rem_type1 = FUNCTIONFS_SUSPEND; 2615 rem_type2 = FUNCTIONFS_RESUME; 2616 neg = 1; 2617 break; 2618 2619 default: 2620 WARN(1, "%d: unknown event, this should not happen\n", type); 2621 return; 2622 } 2623 2624 { 2625 u8 *ev = ffs->ev.types, *out = ev; 2626 unsigned n = ffs->ev.count; 2627 for (; n; --n, ++ev) 2628 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2629 *out++ = *ev; 2630 else 2631 pr_vdebug("purging event %d\n", *ev); 2632 ffs->ev.count = out - ffs->ev.types; 2633 } 2634 2635 pr_vdebug("adding event %d\n", type); 2636 ffs->ev.types[ffs->ev.count++] = type; 2637 wake_up_locked(&ffs->ev.waitq); 2638 if (ffs->ffs_eventfd) 2639 eventfd_signal(ffs->ffs_eventfd, 1); 2640 } 2641 2642 static void ffs_event_add(struct ffs_data *ffs, 2643 enum usb_functionfs_event_type type) 2644 { 2645 unsigned long flags; 2646 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2647 __ffs_event_add(ffs, type); 2648 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2649 } 2650 2651 /* Bind/unbind USB function hooks *******************************************/ 2652 2653 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2654 { 2655 int i; 2656 2657 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2658 if (ffs->eps_addrmap[i] == endpoint_address) 2659 return i; 2660 return -ENOENT; 2661 } 2662 2663 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2664 struct usb_descriptor_header *desc, 2665 void *priv) 2666 { 2667 struct usb_endpoint_descriptor *ds = (void *)desc; 2668 struct ffs_function *func = priv; 2669 struct ffs_ep *ffs_ep; 2670 unsigned ep_desc_id; 2671 int idx; 2672 static const char *speed_names[] = { "full", "high", "super" }; 2673 2674 if (type != FFS_DESCRIPTOR) 2675 return 0; 2676 2677 /* 2678 * If ss_descriptors is not NULL, we are reading super speed 2679 * descriptors; if hs_descriptors is not NULL, we are reading high 2680 * speed descriptors; otherwise, we are reading full speed 2681 * descriptors. 2682 */ 2683 if (func->function.ss_descriptors) { 2684 ep_desc_id = 2; 2685 func->function.ss_descriptors[(long)valuep] = desc; 2686 } else if (func->function.hs_descriptors) { 2687 ep_desc_id = 1; 2688 func->function.hs_descriptors[(long)valuep] = desc; 2689 } else { 2690 ep_desc_id = 0; 2691 func->function.fs_descriptors[(long)valuep] = desc; 2692 } 2693 2694 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2695 return 0; 2696 2697 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2698 if (idx < 0) 2699 return idx; 2700 2701 ffs_ep = func->eps + idx; 2702 2703 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2704 pr_err("two %sspeed descriptors for EP %d\n", 2705 speed_names[ep_desc_id], 2706 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2707 return -EINVAL; 2708 } 2709 ffs_ep->descs[ep_desc_id] = ds; 2710 2711 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2712 if (ffs_ep->ep) { 2713 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2714 if (!ds->wMaxPacketSize) 2715 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2716 } else { 2717 struct usb_request *req; 2718 struct usb_ep *ep; 2719 u8 bEndpointAddress; 2720 2721 /* 2722 * We back up bEndpointAddress because autoconfig overwrites 2723 * it with physical endpoint address. 2724 */ 2725 bEndpointAddress = ds->bEndpointAddress; 2726 pr_vdebug("autoconfig\n"); 2727 ep = usb_ep_autoconfig(func->gadget, ds); 2728 if (unlikely(!ep)) 2729 return -ENOTSUPP; 2730 ep->driver_data = func->eps + idx; 2731 2732 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2733 if (unlikely(!req)) 2734 return -ENOMEM; 2735 2736 ffs_ep->ep = ep; 2737 ffs_ep->req = req; 2738 func->eps_revmap[ds->bEndpointAddress & 2739 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2740 /* 2741 * If we use virtual address mapping, we restore 2742 * original bEndpointAddress value. 2743 */ 2744 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2745 ds->bEndpointAddress = bEndpointAddress; 2746 } 2747 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2748 2749 return 0; 2750 } 2751 2752 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2753 struct usb_descriptor_header *desc, 2754 void *priv) 2755 { 2756 struct ffs_function *func = priv; 2757 unsigned idx; 2758 u8 newValue; 2759 2760 switch (type) { 2761 default: 2762 case FFS_DESCRIPTOR: 2763 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2764 return 0; 2765 2766 case FFS_INTERFACE: 2767 idx = *valuep; 2768 if (func->interfaces_nums[idx] < 0) { 2769 int id = usb_interface_id(func->conf, &func->function); 2770 if (unlikely(id < 0)) 2771 return id; 2772 func->interfaces_nums[idx] = id; 2773 } 2774 newValue = func->interfaces_nums[idx]; 2775 break; 2776 2777 case FFS_STRING: 2778 /* String' IDs are allocated when fsf_data is bound to cdev */ 2779 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2780 break; 2781 2782 case FFS_ENDPOINT: 2783 /* 2784 * USB_DT_ENDPOINT are handled in 2785 * __ffs_func_bind_do_descs(). 2786 */ 2787 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2788 return 0; 2789 2790 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2791 if (unlikely(!func->eps[idx].ep)) 2792 return -EINVAL; 2793 2794 { 2795 struct usb_endpoint_descriptor **descs; 2796 descs = func->eps[idx].descs; 2797 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2798 } 2799 break; 2800 } 2801 2802 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2803 *valuep = newValue; 2804 return 0; 2805 } 2806 2807 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2808 struct usb_os_desc_header *h, void *data, 2809 unsigned len, void *priv) 2810 { 2811 struct ffs_function *func = priv; 2812 u8 length = 0; 2813 2814 switch (type) { 2815 case FFS_OS_DESC_EXT_COMPAT: { 2816 struct usb_ext_compat_desc *desc = data; 2817 struct usb_os_desc_table *t; 2818 2819 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2820 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2821 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2822 ARRAY_SIZE(desc->CompatibleID) + 2823 ARRAY_SIZE(desc->SubCompatibleID)); 2824 length = sizeof(*desc); 2825 } 2826 break; 2827 case FFS_OS_DESC_EXT_PROP: { 2828 struct usb_ext_prop_desc *desc = data; 2829 struct usb_os_desc_table *t; 2830 struct usb_os_desc_ext_prop *ext_prop; 2831 char *ext_prop_name; 2832 char *ext_prop_data; 2833 2834 t = &func->function.os_desc_table[h->interface]; 2835 t->if_id = func->interfaces_nums[h->interface]; 2836 2837 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2838 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2839 2840 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2841 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2842 ext_prop->data_len = le32_to_cpu(*(u32 *) 2843 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2844 length = ext_prop->name_len + ext_prop->data_len + 14; 2845 2846 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2847 func->ffs->ms_os_descs_ext_prop_name_avail += 2848 ext_prop->name_len; 2849 2850 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2851 func->ffs->ms_os_descs_ext_prop_data_avail += 2852 ext_prop->data_len; 2853 memcpy(ext_prop_data, 2854 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2855 ext_prop->data_len); 2856 /* unicode data reported to the host as "WCHAR"s */ 2857 switch (ext_prop->type) { 2858 case USB_EXT_PROP_UNICODE: 2859 case USB_EXT_PROP_UNICODE_ENV: 2860 case USB_EXT_PROP_UNICODE_LINK: 2861 case USB_EXT_PROP_UNICODE_MULTI: 2862 ext_prop->data_len *= 2; 2863 break; 2864 } 2865 ext_prop->data = ext_prop_data; 2866 2867 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2868 ext_prop->name_len); 2869 /* property name reported to the host as "WCHAR"s */ 2870 ext_prop->name_len *= 2; 2871 ext_prop->name = ext_prop_name; 2872 2873 t->os_desc->ext_prop_len += 2874 ext_prop->name_len + ext_prop->data_len + 14; 2875 ++t->os_desc->ext_prop_count; 2876 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2877 } 2878 break; 2879 default: 2880 pr_vdebug("unknown descriptor: %d\n", type); 2881 } 2882 2883 return length; 2884 } 2885 2886 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2887 struct usb_configuration *c) 2888 { 2889 struct ffs_function *func = ffs_func_from_usb(f); 2890 struct f_fs_opts *ffs_opts = 2891 container_of(f->fi, struct f_fs_opts, func_inst); 2892 int ret; 2893 2894 ENTER(); 2895 2896 /* 2897 * Legacy gadget triggers binding in functionfs_ready_callback, 2898 * which already uses locking; taking the same lock here would 2899 * cause a deadlock. 2900 * 2901 * Configfs-enabled gadgets however do need ffs_dev_lock. 2902 */ 2903 if (!ffs_opts->no_configfs) 2904 ffs_dev_lock(); 2905 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2906 func->ffs = ffs_opts->dev->ffs_data; 2907 if (!ffs_opts->no_configfs) 2908 ffs_dev_unlock(); 2909 if (ret) 2910 return ERR_PTR(ret); 2911 2912 func->conf = c; 2913 func->gadget = c->cdev->gadget; 2914 2915 /* 2916 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2917 * configurations are bound in sequence with list_for_each_entry, 2918 * in each configuration its functions are bound in sequence 2919 * with list_for_each_entry, so we assume no race condition 2920 * with regard to ffs_opts->bound access 2921 */ 2922 if (!ffs_opts->refcnt) { 2923 ret = functionfs_bind(func->ffs, c->cdev); 2924 if (ret) 2925 return ERR_PTR(ret); 2926 } 2927 ffs_opts->refcnt++; 2928 func->function.strings = func->ffs->stringtabs; 2929 2930 return ffs_opts; 2931 } 2932 2933 static int _ffs_func_bind(struct usb_configuration *c, 2934 struct usb_function *f) 2935 { 2936 struct ffs_function *func = ffs_func_from_usb(f); 2937 struct ffs_data *ffs = func->ffs; 2938 2939 const int full = !!func->ffs->fs_descs_count; 2940 const int high = gadget_is_dualspeed(func->gadget) && 2941 func->ffs->hs_descs_count; 2942 const int super = gadget_is_superspeed(func->gadget) && 2943 func->ffs->ss_descs_count; 2944 2945 int fs_len, hs_len, ss_len, ret, i; 2946 struct ffs_ep *eps_ptr; 2947 2948 /* Make it a single chunk, less management later on */ 2949 vla_group(d); 2950 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2951 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2952 full ? ffs->fs_descs_count + 1 : 0); 2953 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2954 high ? ffs->hs_descs_count + 1 : 0); 2955 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2956 super ? ffs->ss_descs_count + 1 : 0); 2957 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2958 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2959 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2960 vla_item_with_sz(d, char[16], ext_compat, 2961 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2962 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2963 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2964 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2965 ffs->ms_os_descs_ext_prop_count); 2966 vla_item_with_sz(d, char, ext_prop_name, 2967 ffs->ms_os_descs_ext_prop_name_len); 2968 vla_item_with_sz(d, char, ext_prop_data, 2969 ffs->ms_os_descs_ext_prop_data_len); 2970 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 2971 char *vlabuf; 2972 2973 ENTER(); 2974 2975 /* Has descriptors only for speeds gadget does not support */ 2976 if (unlikely(!(full | high | super))) 2977 return -ENOTSUPP; 2978 2979 /* Allocate a single chunk, less management later on */ 2980 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 2981 if (unlikely(!vlabuf)) 2982 return -ENOMEM; 2983 2984 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 2985 ffs->ms_os_descs_ext_prop_name_avail = 2986 vla_ptr(vlabuf, d, ext_prop_name); 2987 ffs->ms_os_descs_ext_prop_data_avail = 2988 vla_ptr(vlabuf, d, ext_prop_data); 2989 2990 /* Copy descriptors */ 2991 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 2992 ffs->raw_descs_length); 2993 2994 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 2995 eps_ptr = vla_ptr(vlabuf, d, eps); 2996 for (i = 0; i < ffs->eps_count; i++) 2997 eps_ptr[i].num = -1; 2998 2999 /* Save pointers 3000 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3001 */ 3002 func->eps = vla_ptr(vlabuf, d, eps); 3003 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3004 3005 /* 3006 * Go through all the endpoint descriptors and allocate 3007 * endpoints first, so that later we can rewrite the endpoint 3008 * numbers without worrying that it may be described later on. 3009 */ 3010 if (likely(full)) { 3011 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3012 fs_len = ffs_do_descs(ffs->fs_descs_count, 3013 vla_ptr(vlabuf, d, raw_descs), 3014 d_raw_descs__sz, 3015 __ffs_func_bind_do_descs, func); 3016 if (unlikely(fs_len < 0)) { 3017 ret = fs_len; 3018 goto error; 3019 } 3020 } else { 3021 fs_len = 0; 3022 } 3023 3024 if (likely(high)) { 3025 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3026 hs_len = ffs_do_descs(ffs->hs_descs_count, 3027 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3028 d_raw_descs__sz - fs_len, 3029 __ffs_func_bind_do_descs, func); 3030 if (unlikely(hs_len < 0)) { 3031 ret = hs_len; 3032 goto error; 3033 } 3034 } else { 3035 hs_len = 0; 3036 } 3037 3038 if (likely(super)) { 3039 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3040 ss_len = ffs_do_descs(ffs->ss_descs_count, 3041 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3042 d_raw_descs__sz - fs_len - hs_len, 3043 __ffs_func_bind_do_descs, func); 3044 if (unlikely(ss_len < 0)) { 3045 ret = ss_len; 3046 goto error; 3047 } 3048 } else { 3049 ss_len = 0; 3050 } 3051 3052 /* 3053 * Now handle interface numbers allocation and interface and 3054 * endpoint numbers rewriting. We can do that in one go 3055 * now. 3056 */ 3057 ret = ffs_do_descs(ffs->fs_descs_count + 3058 (high ? ffs->hs_descs_count : 0) + 3059 (super ? ffs->ss_descs_count : 0), 3060 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3061 __ffs_func_bind_do_nums, func); 3062 if (unlikely(ret < 0)) 3063 goto error; 3064 3065 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3066 if (c->cdev->use_os_string) { 3067 for (i = 0; i < ffs->interfaces_count; ++i) { 3068 struct usb_os_desc *desc; 3069 3070 desc = func->function.os_desc_table[i].os_desc = 3071 vla_ptr(vlabuf, d, os_desc) + 3072 i * sizeof(struct usb_os_desc); 3073 desc->ext_compat_id = 3074 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3075 INIT_LIST_HEAD(&desc->ext_prop); 3076 } 3077 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3078 vla_ptr(vlabuf, d, raw_descs) + 3079 fs_len + hs_len + ss_len, 3080 d_raw_descs__sz - fs_len - hs_len - 3081 ss_len, 3082 __ffs_func_bind_do_os_desc, func); 3083 if (unlikely(ret < 0)) 3084 goto error; 3085 } 3086 func->function.os_desc_n = 3087 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3088 3089 /* And we're done */ 3090 ffs_event_add(ffs, FUNCTIONFS_BIND); 3091 return 0; 3092 3093 error: 3094 /* XXX Do we need to release all claimed endpoints here? */ 3095 return ret; 3096 } 3097 3098 static int ffs_func_bind(struct usb_configuration *c, 3099 struct usb_function *f) 3100 { 3101 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3102 struct ffs_function *func = ffs_func_from_usb(f); 3103 int ret; 3104 3105 if (IS_ERR(ffs_opts)) 3106 return PTR_ERR(ffs_opts); 3107 3108 ret = _ffs_func_bind(c, f); 3109 if (ret && !--ffs_opts->refcnt) 3110 functionfs_unbind(func->ffs); 3111 3112 return ret; 3113 } 3114 3115 3116 /* Other USB function hooks *************************************************/ 3117 3118 static void ffs_reset_work(struct work_struct *work) 3119 { 3120 struct ffs_data *ffs = container_of(work, 3121 struct ffs_data, reset_work); 3122 ffs_data_reset(ffs); 3123 } 3124 3125 static int ffs_func_set_alt(struct usb_function *f, 3126 unsigned interface, unsigned alt) 3127 { 3128 struct ffs_function *func = ffs_func_from_usb(f); 3129 struct ffs_data *ffs = func->ffs; 3130 int ret = 0, intf; 3131 3132 if (alt != (unsigned)-1) { 3133 intf = ffs_func_revmap_intf(func, interface); 3134 if (unlikely(intf < 0)) 3135 return intf; 3136 } 3137 3138 if (ffs->func) 3139 ffs_func_eps_disable(ffs->func); 3140 3141 if (ffs->state == FFS_DEACTIVATED) { 3142 ffs->state = FFS_CLOSING; 3143 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3144 schedule_work(&ffs->reset_work); 3145 return -ENODEV; 3146 } 3147 3148 if (ffs->state != FFS_ACTIVE) 3149 return -ENODEV; 3150 3151 if (alt == (unsigned)-1) { 3152 ffs->func = NULL; 3153 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3154 return 0; 3155 } 3156 3157 ffs->func = func; 3158 ret = ffs_func_eps_enable(func); 3159 if (likely(ret >= 0)) 3160 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3161 return ret; 3162 } 3163 3164 static void ffs_func_disable(struct usb_function *f) 3165 { 3166 ffs_func_set_alt(f, 0, (unsigned)-1); 3167 } 3168 3169 static int ffs_func_setup(struct usb_function *f, 3170 const struct usb_ctrlrequest *creq) 3171 { 3172 struct ffs_function *func = ffs_func_from_usb(f); 3173 struct ffs_data *ffs = func->ffs; 3174 unsigned long flags; 3175 int ret; 3176 3177 ENTER(); 3178 3179 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3180 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3181 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3182 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3183 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3184 3185 /* 3186 * Most requests directed to interface go through here 3187 * (notable exceptions are set/get interface) so we need to 3188 * handle them. All other either handled by composite or 3189 * passed to usb_configuration->setup() (if one is set). No 3190 * matter, we will handle requests directed to endpoint here 3191 * as well (as it's straightforward). Other request recipient 3192 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3193 * is being used. 3194 */ 3195 if (ffs->state != FFS_ACTIVE) 3196 return -ENODEV; 3197 3198 switch (creq->bRequestType & USB_RECIP_MASK) { 3199 case USB_RECIP_INTERFACE: 3200 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3201 if (unlikely(ret < 0)) 3202 return ret; 3203 break; 3204 3205 case USB_RECIP_ENDPOINT: 3206 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3207 if (unlikely(ret < 0)) 3208 return ret; 3209 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3210 ret = func->ffs->eps_addrmap[ret]; 3211 break; 3212 3213 default: 3214 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3215 ret = le16_to_cpu(creq->wIndex); 3216 else 3217 return -EOPNOTSUPP; 3218 } 3219 3220 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3221 ffs->ev.setup = *creq; 3222 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3223 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3224 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3225 3226 return 0; 3227 } 3228 3229 static bool ffs_func_req_match(struct usb_function *f, 3230 const struct usb_ctrlrequest *creq, 3231 bool config0) 3232 { 3233 struct ffs_function *func = ffs_func_from_usb(f); 3234 3235 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3236 return false; 3237 3238 switch (creq->bRequestType & USB_RECIP_MASK) { 3239 case USB_RECIP_INTERFACE: 3240 return (ffs_func_revmap_intf(func, 3241 le16_to_cpu(creq->wIndex)) >= 0); 3242 case USB_RECIP_ENDPOINT: 3243 return (ffs_func_revmap_ep(func, 3244 le16_to_cpu(creq->wIndex)) >= 0); 3245 default: 3246 return (bool) (func->ffs->user_flags & 3247 FUNCTIONFS_ALL_CTRL_RECIP); 3248 } 3249 } 3250 3251 static void ffs_func_suspend(struct usb_function *f) 3252 { 3253 ENTER(); 3254 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3255 } 3256 3257 static void ffs_func_resume(struct usb_function *f) 3258 { 3259 ENTER(); 3260 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3261 } 3262 3263 3264 /* Endpoint and interface numbers reverse mapping ***************************/ 3265 3266 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3267 { 3268 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3269 return num ? num : -EDOM; 3270 } 3271 3272 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3273 { 3274 short *nums = func->interfaces_nums; 3275 unsigned count = func->ffs->interfaces_count; 3276 3277 for (; count; --count, ++nums) { 3278 if (*nums >= 0 && *nums == intf) 3279 return nums - func->interfaces_nums; 3280 } 3281 3282 return -EDOM; 3283 } 3284 3285 3286 /* Devices management *******************************************************/ 3287 3288 static LIST_HEAD(ffs_devices); 3289 3290 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3291 { 3292 struct ffs_dev *dev; 3293 3294 list_for_each_entry(dev, &ffs_devices, entry) { 3295 if (!dev->name || !name) 3296 continue; 3297 if (strcmp(dev->name, name) == 0) 3298 return dev; 3299 } 3300 3301 return NULL; 3302 } 3303 3304 /* 3305 * ffs_lock must be taken by the caller of this function 3306 */ 3307 static struct ffs_dev *_ffs_get_single_dev(void) 3308 { 3309 struct ffs_dev *dev; 3310 3311 if (list_is_singular(&ffs_devices)) { 3312 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3313 if (dev->single) 3314 return dev; 3315 } 3316 3317 return NULL; 3318 } 3319 3320 /* 3321 * ffs_lock must be taken by the caller of this function 3322 */ 3323 static struct ffs_dev *_ffs_find_dev(const char *name) 3324 { 3325 struct ffs_dev *dev; 3326 3327 dev = _ffs_get_single_dev(); 3328 if (dev) 3329 return dev; 3330 3331 return _ffs_do_find_dev(name); 3332 } 3333 3334 /* Configfs support *********************************************************/ 3335 3336 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3337 { 3338 return container_of(to_config_group(item), struct f_fs_opts, 3339 func_inst.group); 3340 } 3341 3342 static void ffs_attr_release(struct config_item *item) 3343 { 3344 struct f_fs_opts *opts = to_ffs_opts(item); 3345 3346 usb_put_function_instance(&opts->func_inst); 3347 } 3348 3349 static struct configfs_item_operations ffs_item_ops = { 3350 .release = ffs_attr_release, 3351 }; 3352 3353 static struct config_item_type ffs_func_type = { 3354 .ct_item_ops = &ffs_item_ops, 3355 .ct_owner = THIS_MODULE, 3356 }; 3357 3358 3359 /* Function registration interface ******************************************/ 3360 3361 static void ffs_free_inst(struct usb_function_instance *f) 3362 { 3363 struct f_fs_opts *opts; 3364 3365 opts = to_f_fs_opts(f); 3366 ffs_dev_lock(); 3367 _ffs_free_dev(opts->dev); 3368 ffs_dev_unlock(); 3369 kfree(opts); 3370 } 3371 3372 #define MAX_INST_NAME_LEN 40 3373 3374 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3375 { 3376 struct f_fs_opts *opts; 3377 char *ptr; 3378 const char *tmp; 3379 int name_len, ret; 3380 3381 name_len = strlen(name) + 1; 3382 if (name_len > MAX_INST_NAME_LEN) 3383 return -ENAMETOOLONG; 3384 3385 ptr = kstrndup(name, name_len, GFP_KERNEL); 3386 if (!ptr) 3387 return -ENOMEM; 3388 3389 opts = to_f_fs_opts(fi); 3390 tmp = NULL; 3391 3392 ffs_dev_lock(); 3393 3394 tmp = opts->dev->name_allocated ? opts->dev->name : NULL; 3395 ret = _ffs_name_dev(opts->dev, ptr); 3396 if (ret) { 3397 kfree(ptr); 3398 ffs_dev_unlock(); 3399 return ret; 3400 } 3401 opts->dev->name_allocated = true; 3402 3403 ffs_dev_unlock(); 3404 3405 kfree(tmp); 3406 3407 return 0; 3408 } 3409 3410 static struct usb_function_instance *ffs_alloc_inst(void) 3411 { 3412 struct f_fs_opts *opts; 3413 struct ffs_dev *dev; 3414 3415 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3416 if (!opts) 3417 return ERR_PTR(-ENOMEM); 3418 3419 opts->func_inst.set_inst_name = ffs_set_inst_name; 3420 opts->func_inst.free_func_inst = ffs_free_inst; 3421 ffs_dev_lock(); 3422 dev = _ffs_alloc_dev(); 3423 ffs_dev_unlock(); 3424 if (IS_ERR(dev)) { 3425 kfree(opts); 3426 return ERR_CAST(dev); 3427 } 3428 opts->dev = dev; 3429 dev->opts = opts; 3430 3431 config_group_init_type_name(&opts->func_inst.group, "", 3432 &ffs_func_type); 3433 return &opts->func_inst; 3434 } 3435 3436 static void ffs_free(struct usb_function *f) 3437 { 3438 kfree(ffs_func_from_usb(f)); 3439 } 3440 3441 static void ffs_func_unbind(struct usb_configuration *c, 3442 struct usb_function *f) 3443 { 3444 struct ffs_function *func = ffs_func_from_usb(f); 3445 struct ffs_data *ffs = func->ffs; 3446 struct f_fs_opts *opts = 3447 container_of(f->fi, struct f_fs_opts, func_inst); 3448 struct ffs_ep *ep = func->eps; 3449 unsigned count = ffs->eps_count; 3450 unsigned long flags; 3451 3452 ENTER(); 3453 if (ffs->func == func) { 3454 ffs_func_eps_disable(func); 3455 ffs->func = NULL; 3456 } 3457 3458 if (!--opts->refcnt) 3459 functionfs_unbind(ffs); 3460 3461 /* cleanup after autoconfig */ 3462 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3463 while (count--) { 3464 if (ep->ep && ep->req) 3465 usb_ep_free_request(ep->ep, ep->req); 3466 ep->req = NULL; 3467 ++ep; 3468 } 3469 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3470 kfree(func->eps); 3471 func->eps = NULL; 3472 /* 3473 * eps, descriptors and interfaces_nums are allocated in the 3474 * same chunk so only one free is required. 3475 */ 3476 func->function.fs_descriptors = NULL; 3477 func->function.hs_descriptors = NULL; 3478 func->function.ss_descriptors = NULL; 3479 func->interfaces_nums = NULL; 3480 3481 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3482 } 3483 3484 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3485 { 3486 struct ffs_function *func; 3487 3488 ENTER(); 3489 3490 func = kzalloc(sizeof(*func), GFP_KERNEL); 3491 if (unlikely(!func)) 3492 return ERR_PTR(-ENOMEM); 3493 3494 func->function.name = "Function FS Gadget"; 3495 3496 func->function.bind = ffs_func_bind; 3497 func->function.unbind = ffs_func_unbind; 3498 func->function.set_alt = ffs_func_set_alt; 3499 func->function.disable = ffs_func_disable; 3500 func->function.setup = ffs_func_setup; 3501 func->function.req_match = ffs_func_req_match; 3502 func->function.suspend = ffs_func_suspend; 3503 func->function.resume = ffs_func_resume; 3504 func->function.free_func = ffs_free; 3505 3506 return &func->function; 3507 } 3508 3509 /* 3510 * ffs_lock must be taken by the caller of this function 3511 */ 3512 static struct ffs_dev *_ffs_alloc_dev(void) 3513 { 3514 struct ffs_dev *dev; 3515 int ret; 3516 3517 if (_ffs_get_single_dev()) 3518 return ERR_PTR(-EBUSY); 3519 3520 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3521 if (!dev) 3522 return ERR_PTR(-ENOMEM); 3523 3524 if (list_empty(&ffs_devices)) { 3525 ret = functionfs_init(); 3526 if (ret) { 3527 kfree(dev); 3528 return ERR_PTR(ret); 3529 } 3530 } 3531 3532 list_add(&dev->entry, &ffs_devices); 3533 3534 return dev; 3535 } 3536 3537 /* 3538 * ffs_lock must be taken by the caller of this function 3539 * The caller is responsible for "name" being available whenever f_fs needs it 3540 */ 3541 static int _ffs_name_dev(struct ffs_dev *dev, const char *name) 3542 { 3543 struct ffs_dev *existing; 3544 3545 existing = _ffs_do_find_dev(name); 3546 if (existing) 3547 return -EBUSY; 3548 3549 dev->name = name; 3550 3551 return 0; 3552 } 3553 3554 /* 3555 * The caller is responsible for "name" being available whenever f_fs needs it 3556 */ 3557 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3558 { 3559 int ret; 3560 3561 ffs_dev_lock(); 3562 ret = _ffs_name_dev(dev, name); 3563 ffs_dev_unlock(); 3564 3565 return ret; 3566 } 3567 EXPORT_SYMBOL_GPL(ffs_name_dev); 3568 3569 int ffs_single_dev(struct ffs_dev *dev) 3570 { 3571 int ret; 3572 3573 ret = 0; 3574 ffs_dev_lock(); 3575 3576 if (!list_is_singular(&ffs_devices)) 3577 ret = -EBUSY; 3578 else 3579 dev->single = true; 3580 3581 ffs_dev_unlock(); 3582 return ret; 3583 } 3584 EXPORT_SYMBOL_GPL(ffs_single_dev); 3585 3586 /* 3587 * ffs_lock must be taken by the caller of this function 3588 */ 3589 static void _ffs_free_dev(struct ffs_dev *dev) 3590 { 3591 list_del(&dev->entry); 3592 if (dev->name_allocated) 3593 kfree(dev->name); 3594 3595 /* Clear the private_data pointer to stop incorrect dev access */ 3596 if (dev->ffs_data) 3597 dev->ffs_data->private_data = NULL; 3598 3599 kfree(dev); 3600 if (list_empty(&ffs_devices)) 3601 functionfs_cleanup(); 3602 } 3603 3604 static void *ffs_acquire_dev(const char *dev_name) 3605 { 3606 struct ffs_dev *ffs_dev; 3607 3608 ENTER(); 3609 ffs_dev_lock(); 3610 3611 ffs_dev = _ffs_find_dev(dev_name); 3612 if (!ffs_dev) 3613 ffs_dev = ERR_PTR(-ENOENT); 3614 else if (ffs_dev->mounted) 3615 ffs_dev = ERR_PTR(-EBUSY); 3616 else if (ffs_dev->ffs_acquire_dev_callback && 3617 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3618 ffs_dev = ERR_PTR(-ENOENT); 3619 else 3620 ffs_dev->mounted = true; 3621 3622 ffs_dev_unlock(); 3623 return ffs_dev; 3624 } 3625 3626 static void ffs_release_dev(struct ffs_data *ffs_data) 3627 { 3628 struct ffs_dev *ffs_dev; 3629 3630 ENTER(); 3631 ffs_dev_lock(); 3632 3633 ffs_dev = ffs_data->private_data; 3634 if (ffs_dev) { 3635 ffs_dev->mounted = false; 3636 3637 if (ffs_dev->ffs_release_dev_callback) 3638 ffs_dev->ffs_release_dev_callback(ffs_dev); 3639 } 3640 3641 ffs_dev_unlock(); 3642 } 3643 3644 static int ffs_ready(struct ffs_data *ffs) 3645 { 3646 struct ffs_dev *ffs_obj; 3647 int ret = 0; 3648 3649 ENTER(); 3650 ffs_dev_lock(); 3651 3652 ffs_obj = ffs->private_data; 3653 if (!ffs_obj) { 3654 ret = -EINVAL; 3655 goto done; 3656 } 3657 if (WARN_ON(ffs_obj->desc_ready)) { 3658 ret = -EBUSY; 3659 goto done; 3660 } 3661 3662 ffs_obj->desc_ready = true; 3663 ffs_obj->ffs_data = ffs; 3664 3665 if (ffs_obj->ffs_ready_callback) { 3666 ret = ffs_obj->ffs_ready_callback(ffs); 3667 if (ret) 3668 goto done; 3669 } 3670 3671 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3672 done: 3673 ffs_dev_unlock(); 3674 return ret; 3675 } 3676 3677 static void ffs_closed(struct ffs_data *ffs) 3678 { 3679 struct ffs_dev *ffs_obj; 3680 struct f_fs_opts *opts; 3681 struct config_item *ci; 3682 3683 ENTER(); 3684 ffs_dev_lock(); 3685 3686 ffs_obj = ffs->private_data; 3687 if (!ffs_obj) 3688 goto done; 3689 3690 ffs_obj->desc_ready = false; 3691 3692 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3693 ffs_obj->ffs_closed_callback) 3694 ffs_obj->ffs_closed_callback(ffs); 3695 3696 if (ffs_obj->opts) 3697 opts = ffs_obj->opts; 3698 else 3699 goto done; 3700 3701 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3702 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3703 goto done; 3704 3705 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3706 ffs_dev_unlock(); 3707 3708 unregister_gadget_item(ci); 3709 return; 3710 done: 3711 ffs_dev_unlock(); 3712 } 3713 3714 /* Misc helper functions ****************************************************/ 3715 3716 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3717 { 3718 return nonblock 3719 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3720 : mutex_lock_interruptible(mutex); 3721 } 3722 3723 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3724 { 3725 char *data; 3726 3727 if (unlikely(!len)) 3728 return NULL; 3729 3730 data = kmalloc(len, GFP_KERNEL); 3731 if (unlikely(!data)) 3732 return ERR_PTR(-ENOMEM); 3733 3734 if (unlikely(copy_from_user(data, buf, len))) { 3735 kfree(data); 3736 return ERR_PTR(-EFAULT); 3737 } 3738 3739 pr_vdebug("Buffer from user space:\n"); 3740 ffs_dump_mem("", data, len); 3741 3742 return data; 3743 } 3744 3745 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3746 MODULE_LICENSE("GPL"); 3747 MODULE_AUTHOR("Michal Nazarewicz"); 3748