xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 110e6f26)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/uio.h>
27 #include <asm/unaligned.h>
28 
29 #include <linux/usb/composite.h>
30 #include <linux/usb/functionfs.h>
31 
32 #include <linux/aio.h>
33 #include <linux/mmu_context.h>
34 #include <linux/poll.h>
35 #include <linux/eventfd.h>
36 
37 #include "u_fs.h"
38 #include "u_f.h"
39 #include "u_os_desc.h"
40 #include "configfs.h"
41 
42 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
43 
44 /* Reference counter handling */
45 static void ffs_data_get(struct ffs_data *ffs);
46 static void ffs_data_put(struct ffs_data *ffs);
47 /* Creates new ffs_data object. */
48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
49 
50 /* Opened counter handling. */
51 static void ffs_data_opened(struct ffs_data *ffs);
52 static void ffs_data_closed(struct ffs_data *ffs);
53 
54 /* Called with ffs->mutex held; take over ownership of data. */
55 static int __must_check
56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
57 static int __must_check
58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
59 
60 
61 /* The function structure ***************************************************/
62 
63 struct ffs_ep;
64 
65 struct ffs_function {
66 	struct usb_configuration	*conf;
67 	struct usb_gadget		*gadget;
68 	struct ffs_data			*ffs;
69 
70 	struct ffs_ep			*eps;
71 	u8				eps_revmap[16];
72 	short				*interfaces_nums;
73 
74 	struct usb_function		function;
75 };
76 
77 
78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
79 {
80 	return container_of(f, struct ffs_function, function);
81 }
82 
83 
84 static inline enum ffs_setup_state
85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
86 {
87 	return (enum ffs_setup_state)
88 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
89 }
90 
91 
92 static void ffs_func_eps_disable(struct ffs_function *func);
93 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
94 
95 static int ffs_func_bind(struct usb_configuration *,
96 			 struct usb_function *);
97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
98 static void ffs_func_disable(struct usb_function *);
99 static int ffs_func_setup(struct usb_function *,
100 			  const struct usb_ctrlrequest *);
101 static void ffs_func_suspend(struct usb_function *);
102 static void ffs_func_resume(struct usb_function *);
103 
104 
105 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
106 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
107 
108 
109 /* The endpoints structures *************************************************/
110 
111 struct ffs_ep {
112 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
113 	struct usb_request		*req;	/* P: epfile->mutex */
114 
115 	/* [0]: full speed, [1]: high speed, [2]: super speed */
116 	struct usb_endpoint_descriptor	*descs[3];
117 
118 	u8				num;
119 
120 	int				status;	/* P: epfile->mutex */
121 };
122 
123 struct ffs_epfile {
124 	/* Protects ep->ep and ep->req. */
125 	struct mutex			mutex;
126 	wait_queue_head_t		wait;
127 
128 	struct ffs_data			*ffs;
129 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
130 
131 	struct dentry			*dentry;
132 
133 	char				name[5];
134 
135 	unsigned char			in;	/* P: ffs->eps_lock */
136 	unsigned char			isoc;	/* P: ffs->eps_lock */
137 
138 	unsigned char			_pad;
139 };
140 
141 /*  ffs_io_data structure ***************************************************/
142 
143 struct ffs_io_data {
144 	bool aio;
145 	bool read;
146 
147 	struct kiocb *kiocb;
148 	struct iov_iter data;
149 	const void *to_free;
150 	char *buf;
151 
152 	struct mm_struct *mm;
153 	struct work_struct work;
154 
155 	struct usb_ep *ep;
156 	struct usb_request *req;
157 
158 	struct ffs_data *ffs;
159 };
160 
161 struct ffs_desc_helper {
162 	struct ffs_data *ffs;
163 	unsigned interfaces_count;
164 	unsigned eps_count;
165 };
166 
167 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
168 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
169 
170 static struct dentry *
171 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
172 		   const struct file_operations *fops);
173 
174 /* Devices management *******************************************************/
175 
176 DEFINE_MUTEX(ffs_lock);
177 EXPORT_SYMBOL_GPL(ffs_lock);
178 
179 static struct ffs_dev *_ffs_find_dev(const char *name);
180 static struct ffs_dev *_ffs_alloc_dev(void);
181 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
182 static void _ffs_free_dev(struct ffs_dev *dev);
183 static void *ffs_acquire_dev(const char *dev_name);
184 static void ffs_release_dev(struct ffs_data *ffs_data);
185 static int ffs_ready(struct ffs_data *ffs);
186 static void ffs_closed(struct ffs_data *ffs);
187 
188 /* Misc helper functions ****************************************************/
189 
190 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
191 	__attribute__((warn_unused_result, nonnull));
192 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
193 	__attribute__((warn_unused_result, nonnull));
194 
195 
196 /* Control file aka ep0 *****************************************************/
197 
198 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
199 {
200 	struct ffs_data *ffs = req->context;
201 
202 	complete_all(&ffs->ep0req_completion);
203 }
204 
205 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
206 {
207 	struct usb_request *req = ffs->ep0req;
208 	int ret;
209 
210 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
211 
212 	spin_unlock_irq(&ffs->ev.waitq.lock);
213 
214 	req->buf      = data;
215 	req->length   = len;
216 
217 	/*
218 	 * UDC layer requires to provide a buffer even for ZLP, but should
219 	 * not use it at all. Let's provide some poisoned pointer to catch
220 	 * possible bug in the driver.
221 	 */
222 	if (req->buf == NULL)
223 		req->buf = (void *)0xDEADBABE;
224 
225 	reinit_completion(&ffs->ep0req_completion);
226 
227 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
228 	if (unlikely(ret < 0))
229 		return ret;
230 
231 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
232 	if (unlikely(ret)) {
233 		usb_ep_dequeue(ffs->gadget->ep0, req);
234 		return -EINTR;
235 	}
236 
237 	ffs->setup_state = FFS_NO_SETUP;
238 	return req->status ? req->status : req->actual;
239 }
240 
241 static int __ffs_ep0_stall(struct ffs_data *ffs)
242 {
243 	if (ffs->ev.can_stall) {
244 		pr_vdebug("ep0 stall\n");
245 		usb_ep_set_halt(ffs->gadget->ep0);
246 		ffs->setup_state = FFS_NO_SETUP;
247 		return -EL2HLT;
248 	} else {
249 		pr_debug("bogus ep0 stall!\n");
250 		return -ESRCH;
251 	}
252 }
253 
254 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
255 			     size_t len, loff_t *ptr)
256 {
257 	struct ffs_data *ffs = file->private_data;
258 	ssize_t ret;
259 	char *data;
260 
261 	ENTER();
262 
263 	/* Fast check if setup was canceled */
264 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
265 		return -EIDRM;
266 
267 	/* Acquire mutex */
268 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
269 	if (unlikely(ret < 0))
270 		return ret;
271 
272 	/* Check state */
273 	switch (ffs->state) {
274 	case FFS_READ_DESCRIPTORS:
275 	case FFS_READ_STRINGS:
276 		/* Copy data */
277 		if (unlikely(len < 16)) {
278 			ret = -EINVAL;
279 			break;
280 		}
281 
282 		data = ffs_prepare_buffer(buf, len);
283 		if (IS_ERR(data)) {
284 			ret = PTR_ERR(data);
285 			break;
286 		}
287 
288 		/* Handle data */
289 		if (ffs->state == FFS_READ_DESCRIPTORS) {
290 			pr_info("read descriptors\n");
291 			ret = __ffs_data_got_descs(ffs, data, len);
292 			if (unlikely(ret < 0))
293 				break;
294 
295 			ffs->state = FFS_READ_STRINGS;
296 			ret = len;
297 		} else {
298 			pr_info("read strings\n");
299 			ret = __ffs_data_got_strings(ffs, data, len);
300 			if (unlikely(ret < 0))
301 				break;
302 
303 			ret = ffs_epfiles_create(ffs);
304 			if (unlikely(ret)) {
305 				ffs->state = FFS_CLOSING;
306 				break;
307 			}
308 
309 			ffs->state = FFS_ACTIVE;
310 			mutex_unlock(&ffs->mutex);
311 
312 			ret = ffs_ready(ffs);
313 			if (unlikely(ret < 0)) {
314 				ffs->state = FFS_CLOSING;
315 				return ret;
316 			}
317 
318 			return len;
319 		}
320 		break;
321 
322 	case FFS_ACTIVE:
323 		data = NULL;
324 		/*
325 		 * We're called from user space, we can use _irq
326 		 * rather then _irqsave
327 		 */
328 		spin_lock_irq(&ffs->ev.waitq.lock);
329 		switch (ffs_setup_state_clear_cancelled(ffs)) {
330 		case FFS_SETUP_CANCELLED:
331 			ret = -EIDRM;
332 			goto done_spin;
333 
334 		case FFS_NO_SETUP:
335 			ret = -ESRCH;
336 			goto done_spin;
337 
338 		case FFS_SETUP_PENDING:
339 			break;
340 		}
341 
342 		/* FFS_SETUP_PENDING */
343 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
344 			spin_unlock_irq(&ffs->ev.waitq.lock);
345 			ret = __ffs_ep0_stall(ffs);
346 			break;
347 		}
348 
349 		/* FFS_SETUP_PENDING and not stall */
350 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
351 
352 		spin_unlock_irq(&ffs->ev.waitq.lock);
353 
354 		data = ffs_prepare_buffer(buf, len);
355 		if (IS_ERR(data)) {
356 			ret = PTR_ERR(data);
357 			break;
358 		}
359 
360 		spin_lock_irq(&ffs->ev.waitq.lock);
361 
362 		/*
363 		 * We are guaranteed to be still in FFS_ACTIVE state
364 		 * but the state of setup could have changed from
365 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
366 		 * to check for that.  If that happened we copied data
367 		 * from user space in vain but it's unlikely.
368 		 *
369 		 * For sure we are not in FFS_NO_SETUP since this is
370 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
371 		 * transition can be performed and it's protected by
372 		 * mutex.
373 		 */
374 		if (ffs_setup_state_clear_cancelled(ffs) ==
375 		    FFS_SETUP_CANCELLED) {
376 			ret = -EIDRM;
377 done_spin:
378 			spin_unlock_irq(&ffs->ev.waitq.lock);
379 		} else {
380 			/* unlocks spinlock */
381 			ret = __ffs_ep0_queue_wait(ffs, data, len);
382 		}
383 		kfree(data);
384 		break;
385 
386 	default:
387 		ret = -EBADFD;
388 		break;
389 	}
390 
391 	mutex_unlock(&ffs->mutex);
392 	return ret;
393 }
394 
395 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
396 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
397 				     size_t n)
398 {
399 	/*
400 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
401 	 * size of ffs->ev.types array (which is four) so that's how much space
402 	 * we reserve.
403 	 */
404 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
405 	const size_t size = n * sizeof *events;
406 	unsigned i = 0;
407 
408 	memset(events, 0, size);
409 
410 	do {
411 		events[i].type = ffs->ev.types[i];
412 		if (events[i].type == FUNCTIONFS_SETUP) {
413 			events[i].u.setup = ffs->ev.setup;
414 			ffs->setup_state = FFS_SETUP_PENDING;
415 		}
416 	} while (++i < n);
417 
418 	ffs->ev.count -= n;
419 	if (ffs->ev.count)
420 		memmove(ffs->ev.types, ffs->ev.types + n,
421 			ffs->ev.count * sizeof *ffs->ev.types);
422 
423 	spin_unlock_irq(&ffs->ev.waitq.lock);
424 	mutex_unlock(&ffs->mutex);
425 
426 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
427 }
428 
429 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
430 			    size_t len, loff_t *ptr)
431 {
432 	struct ffs_data *ffs = file->private_data;
433 	char *data = NULL;
434 	size_t n;
435 	int ret;
436 
437 	ENTER();
438 
439 	/* Fast check if setup was canceled */
440 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
441 		return -EIDRM;
442 
443 	/* Acquire mutex */
444 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
445 	if (unlikely(ret < 0))
446 		return ret;
447 
448 	/* Check state */
449 	if (ffs->state != FFS_ACTIVE) {
450 		ret = -EBADFD;
451 		goto done_mutex;
452 	}
453 
454 	/*
455 	 * We're called from user space, we can use _irq rather then
456 	 * _irqsave
457 	 */
458 	spin_lock_irq(&ffs->ev.waitq.lock);
459 
460 	switch (ffs_setup_state_clear_cancelled(ffs)) {
461 	case FFS_SETUP_CANCELLED:
462 		ret = -EIDRM;
463 		break;
464 
465 	case FFS_NO_SETUP:
466 		n = len / sizeof(struct usb_functionfs_event);
467 		if (unlikely(!n)) {
468 			ret = -EINVAL;
469 			break;
470 		}
471 
472 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
473 			ret = -EAGAIN;
474 			break;
475 		}
476 
477 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
478 							ffs->ev.count)) {
479 			ret = -EINTR;
480 			break;
481 		}
482 
483 		return __ffs_ep0_read_events(ffs, buf,
484 					     min(n, (size_t)ffs->ev.count));
485 
486 	case FFS_SETUP_PENDING:
487 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
488 			spin_unlock_irq(&ffs->ev.waitq.lock);
489 			ret = __ffs_ep0_stall(ffs);
490 			goto done_mutex;
491 		}
492 
493 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
494 
495 		spin_unlock_irq(&ffs->ev.waitq.lock);
496 
497 		if (likely(len)) {
498 			data = kmalloc(len, GFP_KERNEL);
499 			if (unlikely(!data)) {
500 				ret = -ENOMEM;
501 				goto done_mutex;
502 			}
503 		}
504 
505 		spin_lock_irq(&ffs->ev.waitq.lock);
506 
507 		/* See ffs_ep0_write() */
508 		if (ffs_setup_state_clear_cancelled(ffs) ==
509 		    FFS_SETUP_CANCELLED) {
510 			ret = -EIDRM;
511 			break;
512 		}
513 
514 		/* unlocks spinlock */
515 		ret = __ffs_ep0_queue_wait(ffs, data, len);
516 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
517 			ret = -EFAULT;
518 		goto done_mutex;
519 
520 	default:
521 		ret = -EBADFD;
522 		break;
523 	}
524 
525 	spin_unlock_irq(&ffs->ev.waitq.lock);
526 done_mutex:
527 	mutex_unlock(&ffs->mutex);
528 	kfree(data);
529 	return ret;
530 }
531 
532 static int ffs_ep0_open(struct inode *inode, struct file *file)
533 {
534 	struct ffs_data *ffs = inode->i_private;
535 
536 	ENTER();
537 
538 	if (unlikely(ffs->state == FFS_CLOSING))
539 		return -EBUSY;
540 
541 	file->private_data = ffs;
542 	ffs_data_opened(ffs);
543 
544 	return 0;
545 }
546 
547 static int ffs_ep0_release(struct inode *inode, struct file *file)
548 {
549 	struct ffs_data *ffs = file->private_data;
550 
551 	ENTER();
552 
553 	ffs_data_closed(ffs);
554 
555 	return 0;
556 }
557 
558 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
559 {
560 	struct ffs_data *ffs = file->private_data;
561 	struct usb_gadget *gadget = ffs->gadget;
562 	long ret;
563 
564 	ENTER();
565 
566 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
567 		struct ffs_function *func = ffs->func;
568 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
569 	} else if (gadget && gadget->ops->ioctl) {
570 		ret = gadget->ops->ioctl(gadget, code, value);
571 	} else {
572 		ret = -ENOTTY;
573 	}
574 
575 	return ret;
576 }
577 
578 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
579 {
580 	struct ffs_data *ffs = file->private_data;
581 	unsigned int mask = POLLWRNORM;
582 	int ret;
583 
584 	poll_wait(file, &ffs->ev.waitq, wait);
585 
586 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
587 	if (unlikely(ret < 0))
588 		return mask;
589 
590 	switch (ffs->state) {
591 	case FFS_READ_DESCRIPTORS:
592 	case FFS_READ_STRINGS:
593 		mask |= POLLOUT;
594 		break;
595 
596 	case FFS_ACTIVE:
597 		switch (ffs->setup_state) {
598 		case FFS_NO_SETUP:
599 			if (ffs->ev.count)
600 				mask |= POLLIN;
601 			break;
602 
603 		case FFS_SETUP_PENDING:
604 		case FFS_SETUP_CANCELLED:
605 			mask |= (POLLIN | POLLOUT);
606 			break;
607 		}
608 	case FFS_CLOSING:
609 		break;
610 	case FFS_DEACTIVATED:
611 		break;
612 	}
613 
614 	mutex_unlock(&ffs->mutex);
615 
616 	return mask;
617 }
618 
619 static const struct file_operations ffs_ep0_operations = {
620 	.llseek =	no_llseek,
621 
622 	.open =		ffs_ep0_open,
623 	.write =	ffs_ep0_write,
624 	.read =		ffs_ep0_read,
625 	.release =	ffs_ep0_release,
626 	.unlocked_ioctl =	ffs_ep0_ioctl,
627 	.poll =		ffs_ep0_poll,
628 };
629 
630 
631 /* "Normal" endpoints operations ********************************************/
632 
633 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
634 {
635 	ENTER();
636 	if (likely(req->context)) {
637 		struct ffs_ep *ep = _ep->driver_data;
638 		ep->status = req->status ? req->status : req->actual;
639 		complete(req->context);
640 	}
641 }
642 
643 static void ffs_user_copy_worker(struct work_struct *work)
644 {
645 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
646 						   work);
647 	int ret = io_data->req->status ? io_data->req->status :
648 					 io_data->req->actual;
649 
650 	if (io_data->read && ret > 0) {
651 		use_mm(io_data->mm);
652 		ret = copy_to_iter(io_data->buf, ret, &io_data->data);
653 		if (iov_iter_count(&io_data->data))
654 			ret = -EFAULT;
655 		unuse_mm(io_data->mm);
656 	}
657 
658 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
659 
660 	if (io_data->ffs->ffs_eventfd &&
661 	    !(io_data->kiocb->ki_flags & IOCB_EVENTFD))
662 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
663 
664 	usb_ep_free_request(io_data->ep, io_data->req);
665 
666 	io_data->kiocb->private = NULL;
667 	if (io_data->read)
668 		kfree(io_data->to_free);
669 	kfree(io_data->buf);
670 	kfree(io_data);
671 }
672 
673 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
674 					 struct usb_request *req)
675 {
676 	struct ffs_io_data *io_data = req->context;
677 
678 	ENTER();
679 
680 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
681 	schedule_work(&io_data->work);
682 }
683 
684 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
685 {
686 	struct ffs_epfile *epfile = file->private_data;
687 	struct usb_request *req;
688 	struct ffs_ep *ep;
689 	char *data = NULL;
690 	ssize_t ret, data_len = -EINVAL;
691 	int halt;
692 
693 	/* Are we still active? */
694 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
695 		return -ENODEV;
696 
697 	/* Wait for endpoint to be enabled */
698 	ep = epfile->ep;
699 	if (!ep) {
700 		if (file->f_flags & O_NONBLOCK)
701 			return -EAGAIN;
702 
703 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
704 		if (ret)
705 			return -EINTR;
706 	}
707 
708 	/* Do we halt? */
709 	halt = (!io_data->read == !epfile->in);
710 	if (halt && epfile->isoc)
711 		return -EINVAL;
712 
713 	/* Allocate & copy */
714 	if (!halt) {
715 		/*
716 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
717 		 * before the waiting completes, so do not assign to 'gadget'
718 		 * earlier
719 		 */
720 		struct usb_gadget *gadget = epfile->ffs->gadget;
721 		size_t copied;
722 
723 		spin_lock_irq(&epfile->ffs->eps_lock);
724 		/* In the meantime, endpoint got disabled or changed. */
725 		if (epfile->ep != ep) {
726 			spin_unlock_irq(&epfile->ffs->eps_lock);
727 			return -ESHUTDOWN;
728 		}
729 		data_len = iov_iter_count(&io_data->data);
730 		/*
731 		 * Controller may require buffer size to be aligned to
732 		 * maxpacketsize of an out endpoint.
733 		 */
734 		if (io_data->read)
735 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
736 		spin_unlock_irq(&epfile->ffs->eps_lock);
737 
738 		data = kmalloc(data_len, GFP_KERNEL);
739 		if (unlikely(!data))
740 			return -ENOMEM;
741 		if (!io_data->read) {
742 			copied = copy_from_iter(data, data_len, &io_data->data);
743 			if (copied != data_len) {
744 				ret = -EFAULT;
745 				goto error;
746 			}
747 		}
748 	}
749 
750 	/* We will be using request */
751 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
752 	if (unlikely(ret))
753 		goto error;
754 
755 	spin_lock_irq(&epfile->ffs->eps_lock);
756 
757 	if (epfile->ep != ep) {
758 		/* In the meantime, endpoint got disabled or changed. */
759 		ret = -ESHUTDOWN;
760 	} else if (halt) {
761 		/* Halt */
762 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
763 			usb_ep_set_halt(ep->ep);
764 		ret = -EBADMSG;
765 	} else if (unlikely(data_len == -EINVAL)) {
766 		/*
767 		 * Sanity Check: even though data_len can't be used
768 		 * uninitialized at the time I write this comment, some
769 		 * compilers complain about this situation.
770 		 * In order to keep the code clean from warnings, data_len is
771 		 * being initialized to -EINVAL during its declaration, which
772 		 * means we can't rely on compiler anymore to warn no future
773 		 * changes won't result in data_len being used uninitialized.
774 		 * For such reason, we're adding this redundant sanity check
775 		 * here.
776 		 */
777 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
778 		ret = -EINVAL;
779 	} else if (!io_data->aio) {
780 		DECLARE_COMPLETION_ONSTACK(done);
781 		bool interrupted = false;
782 
783 		req = ep->req;
784 		req->buf      = data;
785 		req->length   = data_len;
786 
787 		req->context  = &done;
788 		req->complete = ffs_epfile_io_complete;
789 
790 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
791 		if (unlikely(ret < 0))
792 			goto error_lock;
793 
794 		spin_unlock_irq(&epfile->ffs->eps_lock);
795 
796 		if (unlikely(wait_for_completion_interruptible(&done))) {
797 			/*
798 			 * To avoid race condition with ffs_epfile_io_complete,
799 			 * dequeue the request first then check
800 			 * status. usb_ep_dequeue API should guarantee no race
801 			 * condition with req->complete callback.
802 			 */
803 			usb_ep_dequeue(ep->ep, req);
804 			interrupted = ep->status < 0;
805 		}
806 
807 		/*
808 		 * XXX We may end up silently droping data here.  Since data_len
809 		 * (i.e. req->length) may be bigger than len (after being
810 		 * rounded up to maxpacketsize), we may end up with more data
811 		 * then user space has space for.
812 		 */
813 		ret = interrupted ? -EINTR : ep->status;
814 		if (io_data->read && ret > 0) {
815 			ret = copy_to_iter(data, ret, &io_data->data);
816 			if (!ret)
817 				ret = -EFAULT;
818 		}
819 		goto error_mutex;
820 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
821 		ret = -ENOMEM;
822 	} else {
823 		req->buf      = data;
824 		req->length   = data_len;
825 
826 		io_data->buf = data;
827 		io_data->ep = ep->ep;
828 		io_data->req = req;
829 		io_data->ffs = epfile->ffs;
830 
831 		req->context  = io_data;
832 		req->complete = ffs_epfile_async_io_complete;
833 
834 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
835 		if (unlikely(ret)) {
836 			usb_ep_free_request(ep->ep, req);
837 			goto error_lock;
838 		}
839 
840 		ret = -EIOCBQUEUED;
841 		/*
842 		 * Do not kfree the buffer in this function.  It will be freed
843 		 * by ffs_user_copy_worker.
844 		 */
845 		data = NULL;
846 	}
847 
848 error_lock:
849 	spin_unlock_irq(&epfile->ffs->eps_lock);
850 error_mutex:
851 	mutex_unlock(&epfile->mutex);
852 error:
853 	kfree(data);
854 	return ret;
855 }
856 
857 static int
858 ffs_epfile_open(struct inode *inode, struct file *file)
859 {
860 	struct ffs_epfile *epfile = inode->i_private;
861 
862 	ENTER();
863 
864 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
865 		return -ENODEV;
866 
867 	file->private_data = epfile;
868 	ffs_data_opened(epfile->ffs);
869 
870 	return 0;
871 }
872 
873 static int ffs_aio_cancel(struct kiocb *kiocb)
874 {
875 	struct ffs_io_data *io_data = kiocb->private;
876 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
877 	int value;
878 
879 	ENTER();
880 
881 	spin_lock_irq(&epfile->ffs->eps_lock);
882 
883 	if (likely(io_data && io_data->ep && io_data->req))
884 		value = usb_ep_dequeue(io_data->ep, io_data->req);
885 	else
886 		value = -EINVAL;
887 
888 	spin_unlock_irq(&epfile->ffs->eps_lock);
889 
890 	return value;
891 }
892 
893 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
894 {
895 	struct ffs_io_data io_data, *p = &io_data;
896 	ssize_t res;
897 
898 	ENTER();
899 
900 	if (!is_sync_kiocb(kiocb)) {
901 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
902 		if (unlikely(!p))
903 			return -ENOMEM;
904 		p->aio = true;
905 	} else {
906 		p->aio = false;
907 	}
908 
909 	p->read = false;
910 	p->kiocb = kiocb;
911 	p->data = *from;
912 	p->mm = current->mm;
913 
914 	kiocb->private = p;
915 
916 	if (p->aio)
917 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
918 
919 	res = ffs_epfile_io(kiocb->ki_filp, p);
920 	if (res == -EIOCBQUEUED)
921 		return res;
922 	if (p->aio)
923 		kfree(p);
924 	else
925 		*from = p->data;
926 	return res;
927 }
928 
929 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
930 {
931 	struct ffs_io_data io_data, *p = &io_data;
932 	ssize_t res;
933 
934 	ENTER();
935 
936 	if (!is_sync_kiocb(kiocb)) {
937 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
938 		if (unlikely(!p))
939 			return -ENOMEM;
940 		p->aio = true;
941 	} else {
942 		p->aio = false;
943 	}
944 
945 	p->read = true;
946 	p->kiocb = kiocb;
947 	if (p->aio) {
948 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
949 		if (!p->to_free) {
950 			kfree(p);
951 			return -ENOMEM;
952 		}
953 	} else {
954 		p->data = *to;
955 		p->to_free = NULL;
956 	}
957 	p->mm = current->mm;
958 
959 	kiocb->private = p;
960 
961 	if (p->aio)
962 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
963 
964 	res = ffs_epfile_io(kiocb->ki_filp, p);
965 	if (res == -EIOCBQUEUED)
966 		return res;
967 
968 	if (p->aio) {
969 		kfree(p->to_free);
970 		kfree(p);
971 	} else {
972 		*to = p->data;
973 	}
974 	return res;
975 }
976 
977 static int
978 ffs_epfile_release(struct inode *inode, struct file *file)
979 {
980 	struct ffs_epfile *epfile = inode->i_private;
981 
982 	ENTER();
983 
984 	ffs_data_closed(epfile->ffs);
985 
986 	return 0;
987 }
988 
989 static long ffs_epfile_ioctl(struct file *file, unsigned code,
990 			     unsigned long value)
991 {
992 	struct ffs_epfile *epfile = file->private_data;
993 	int ret;
994 
995 	ENTER();
996 
997 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
998 		return -ENODEV;
999 
1000 	spin_lock_irq(&epfile->ffs->eps_lock);
1001 	if (likely(epfile->ep)) {
1002 		switch (code) {
1003 		case FUNCTIONFS_FIFO_STATUS:
1004 			ret = usb_ep_fifo_status(epfile->ep->ep);
1005 			break;
1006 		case FUNCTIONFS_FIFO_FLUSH:
1007 			usb_ep_fifo_flush(epfile->ep->ep);
1008 			ret = 0;
1009 			break;
1010 		case FUNCTIONFS_CLEAR_HALT:
1011 			ret = usb_ep_clear_halt(epfile->ep->ep);
1012 			break;
1013 		case FUNCTIONFS_ENDPOINT_REVMAP:
1014 			ret = epfile->ep->num;
1015 			break;
1016 		case FUNCTIONFS_ENDPOINT_DESC:
1017 		{
1018 			int desc_idx;
1019 			struct usb_endpoint_descriptor *desc;
1020 
1021 			switch (epfile->ffs->gadget->speed) {
1022 			case USB_SPEED_SUPER:
1023 				desc_idx = 2;
1024 				break;
1025 			case USB_SPEED_HIGH:
1026 				desc_idx = 1;
1027 				break;
1028 			default:
1029 				desc_idx = 0;
1030 			}
1031 			desc = epfile->ep->descs[desc_idx];
1032 
1033 			spin_unlock_irq(&epfile->ffs->eps_lock);
1034 			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1035 			if (ret)
1036 				ret = -EFAULT;
1037 			return ret;
1038 		}
1039 		default:
1040 			ret = -ENOTTY;
1041 		}
1042 	} else {
1043 		ret = -ENODEV;
1044 	}
1045 	spin_unlock_irq(&epfile->ffs->eps_lock);
1046 
1047 	return ret;
1048 }
1049 
1050 static const struct file_operations ffs_epfile_operations = {
1051 	.llseek =	no_llseek,
1052 
1053 	.open =		ffs_epfile_open,
1054 	.write_iter =	ffs_epfile_write_iter,
1055 	.read_iter =	ffs_epfile_read_iter,
1056 	.release =	ffs_epfile_release,
1057 	.unlocked_ioctl =	ffs_epfile_ioctl,
1058 };
1059 
1060 
1061 /* File system and super block operations ***********************************/
1062 
1063 /*
1064  * Mounting the file system creates a controller file, used first for
1065  * function configuration then later for event monitoring.
1066  */
1067 
1068 static struct inode *__must_check
1069 ffs_sb_make_inode(struct super_block *sb, void *data,
1070 		  const struct file_operations *fops,
1071 		  const struct inode_operations *iops,
1072 		  struct ffs_file_perms *perms)
1073 {
1074 	struct inode *inode;
1075 
1076 	ENTER();
1077 
1078 	inode = new_inode(sb);
1079 
1080 	if (likely(inode)) {
1081 		struct timespec current_time = CURRENT_TIME;
1082 
1083 		inode->i_ino	 = get_next_ino();
1084 		inode->i_mode    = perms->mode;
1085 		inode->i_uid     = perms->uid;
1086 		inode->i_gid     = perms->gid;
1087 		inode->i_atime   = current_time;
1088 		inode->i_mtime   = current_time;
1089 		inode->i_ctime   = current_time;
1090 		inode->i_private = data;
1091 		if (fops)
1092 			inode->i_fop = fops;
1093 		if (iops)
1094 			inode->i_op  = iops;
1095 	}
1096 
1097 	return inode;
1098 }
1099 
1100 /* Create "regular" file */
1101 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1102 					const char *name, void *data,
1103 					const struct file_operations *fops)
1104 {
1105 	struct ffs_data	*ffs = sb->s_fs_info;
1106 	struct dentry	*dentry;
1107 	struct inode	*inode;
1108 
1109 	ENTER();
1110 
1111 	dentry = d_alloc_name(sb->s_root, name);
1112 	if (unlikely(!dentry))
1113 		return NULL;
1114 
1115 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1116 	if (unlikely(!inode)) {
1117 		dput(dentry);
1118 		return NULL;
1119 	}
1120 
1121 	d_add(dentry, inode);
1122 	return dentry;
1123 }
1124 
1125 /* Super block */
1126 static const struct super_operations ffs_sb_operations = {
1127 	.statfs =	simple_statfs,
1128 	.drop_inode =	generic_delete_inode,
1129 };
1130 
1131 struct ffs_sb_fill_data {
1132 	struct ffs_file_perms perms;
1133 	umode_t root_mode;
1134 	const char *dev_name;
1135 	bool no_disconnect;
1136 	struct ffs_data *ffs_data;
1137 };
1138 
1139 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1140 {
1141 	struct ffs_sb_fill_data *data = _data;
1142 	struct inode	*inode;
1143 	struct ffs_data	*ffs = data->ffs_data;
1144 
1145 	ENTER();
1146 
1147 	ffs->sb              = sb;
1148 	data->ffs_data       = NULL;
1149 	sb->s_fs_info        = ffs;
1150 	sb->s_blocksize      = PAGE_SIZE;
1151 	sb->s_blocksize_bits = PAGE_SHIFT;
1152 	sb->s_magic          = FUNCTIONFS_MAGIC;
1153 	sb->s_op             = &ffs_sb_operations;
1154 	sb->s_time_gran      = 1;
1155 
1156 	/* Root inode */
1157 	data->perms.mode = data->root_mode;
1158 	inode = ffs_sb_make_inode(sb, NULL,
1159 				  &simple_dir_operations,
1160 				  &simple_dir_inode_operations,
1161 				  &data->perms);
1162 	sb->s_root = d_make_root(inode);
1163 	if (unlikely(!sb->s_root))
1164 		return -ENOMEM;
1165 
1166 	/* EP0 file */
1167 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1168 					 &ffs_ep0_operations)))
1169 		return -ENOMEM;
1170 
1171 	return 0;
1172 }
1173 
1174 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1175 {
1176 	ENTER();
1177 
1178 	if (!opts || !*opts)
1179 		return 0;
1180 
1181 	for (;;) {
1182 		unsigned long value;
1183 		char *eq, *comma;
1184 
1185 		/* Option limit */
1186 		comma = strchr(opts, ',');
1187 		if (comma)
1188 			*comma = 0;
1189 
1190 		/* Value limit */
1191 		eq = strchr(opts, '=');
1192 		if (unlikely(!eq)) {
1193 			pr_err("'=' missing in %s\n", opts);
1194 			return -EINVAL;
1195 		}
1196 		*eq = 0;
1197 
1198 		/* Parse value */
1199 		if (kstrtoul(eq + 1, 0, &value)) {
1200 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1201 			return -EINVAL;
1202 		}
1203 
1204 		/* Interpret option */
1205 		switch (eq - opts) {
1206 		case 13:
1207 			if (!memcmp(opts, "no_disconnect", 13))
1208 				data->no_disconnect = !!value;
1209 			else
1210 				goto invalid;
1211 			break;
1212 		case 5:
1213 			if (!memcmp(opts, "rmode", 5))
1214 				data->root_mode  = (value & 0555) | S_IFDIR;
1215 			else if (!memcmp(opts, "fmode", 5))
1216 				data->perms.mode = (value & 0666) | S_IFREG;
1217 			else
1218 				goto invalid;
1219 			break;
1220 
1221 		case 4:
1222 			if (!memcmp(opts, "mode", 4)) {
1223 				data->root_mode  = (value & 0555) | S_IFDIR;
1224 				data->perms.mode = (value & 0666) | S_IFREG;
1225 			} else {
1226 				goto invalid;
1227 			}
1228 			break;
1229 
1230 		case 3:
1231 			if (!memcmp(opts, "uid", 3)) {
1232 				data->perms.uid = make_kuid(current_user_ns(), value);
1233 				if (!uid_valid(data->perms.uid)) {
1234 					pr_err("%s: unmapped value: %lu\n", opts, value);
1235 					return -EINVAL;
1236 				}
1237 			} else if (!memcmp(opts, "gid", 3)) {
1238 				data->perms.gid = make_kgid(current_user_ns(), value);
1239 				if (!gid_valid(data->perms.gid)) {
1240 					pr_err("%s: unmapped value: %lu\n", opts, value);
1241 					return -EINVAL;
1242 				}
1243 			} else {
1244 				goto invalid;
1245 			}
1246 			break;
1247 
1248 		default:
1249 invalid:
1250 			pr_err("%s: invalid option\n", opts);
1251 			return -EINVAL;
1252 		}
1253 
1254 		/* Next iteration */
1255 		if (!comma)
1256 			break;
1257 		opts = comma + 1;
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 /* "mount -t functionfs dev_name /dev/function" ends up here */
1264 
1265 static struct dentry *
1266 ffs_fs_mount(struct file_system_type *t, int flags,
1267 	      const char *dev_name, void *opts)
1268 {
1269 	struct ffs_sb_fill_data data = {
1270 		.perms = {
1271 			.mode = S_IFREG | 0600,
1272 			.uid = GLOBAL_ROOT_UID,
1273 			.gid = GLOBAL_ROOT_GID,
1274 		},
1275 		.root_mode = S_IFDIR | 0500,
1276 		.no_disconnect = false,
1277 	};
1278 	struct dentry *rv;
1279 	int ret;
1280 	void *ffs_dev;
1281 	struct ffs_data	*ffs;
1282 
1283 	ENTER();
1284 
1285 	ret = ffs_fs_parse_opts(&data, opts);
1286 	if (unlikely(ret < 0))
1287 		return ERR_PTR(ret);
1288 
1289 	ffs = ffs_data_new();
1290 	if (unlikely(!ffs))
1291 		return ERR_PTR(-ENOMEM);
1292 	ffs->file_perms = data.perms;
1293 	ffs->no_disconnect = data.no_disconnect;
1294 
1295 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1296 	if (unlikely(!ffs->dev_name)) {
1297 		ffs_data_put(ffs);
1298 		return ERR_PTR(-ENOMEM);
1299 	}
1300 
1301 	ffs_dev = ffs_acquire_dev(dev_name);
1302 	if (IS_ERR(ffs_dev)) {
1303 		ffs_data_put(ffs);
1304 		return ERR_CAST(ffs_dev);
1305 	}
1306 	ffs->private_data = ffs_dev;
1307 	data.ffs_data = ffs;
1308 
1309 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1310 	if (IS_ERR(rv) && data.ffs_data) {
1311 		ffs_release_dev(data.ffs_data);
1312 		ffs_data_put(data.ffs_data);
1313 	}
1314 	return rv;
1315 }
1316 
1317 static void
1318 ffs_fs_kill_sb(struct super_block *sb)
1319 {
1320 	ENTER();
1321 
1322 	kill_litter_super(sb);
1323 	if (sb->s_fs_info) {
1324 		ffs_release_dev(sb->s_fs_info);
1325 		ffs_data_closed(sb->s_fs_info);
1326 		ffs_data_put(sb->s_fs_info);
1327 	}
1328 }
1329 
1330 static struct file_system_type ffs_fs_type = {
1331 	.owner		= THIS_MODULE,
1332 	.name		= "functionfs",
1333 	.mount		= ffs_fs_mount,
1334 	.kill_sb	= ffs_fs_kill_sb,
1335 };
1336 MODULE_ALIAS_FS("functionfs");
1337 
1338 
1339 /* Driver's main init/cleanup functions *************************************/
1340 
1341 static int functionfs_init(void)
1342 {
1343 	int ret;
1344 
1345 	ENTER();
1346 
1347 	ret = register_filesystem(&ffs_fs_type);
1348 	if (likely(!ret))
1349 		pr_info("file system registered\n");
1350 	else
1351 		pr_err("failed registering file system (%d)\n", ret);
1352 
1353 	return ret;
1354 }
1355 
1356 static void functionfs_cleanup(void)
1357 {
1358 	ENTER();
1359 
1360 	pr_info("unloading\n");
1361 	unregister_filesystem(&ffs_fs_type);
1362 }
1363 
1364 
1365 /* ffs_data and ffs_function construction and destruction code **************/
1366 
1367 static void ffs_data_clear(struct ffs_data *ffs);
1368 static void ffs_data_reset(struct ffs_data *ffs);
1369 
1370 static void ffs_data_get(struct ffs_data *ffs)
1371 {
1372 	ENTER();
1373 
1374 	atomic_inc(&ffs->ref);
1375 }
1376 
1377 static void ffs_data_opened(struct ffs_data *ffs)
1378 {
1379 	ENTER();
1380 
1381 	atomic_inc(&ffs->ref);
1382 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1383 			ffs->state == FFS_DEACTIVATED) {
1384 		ffs->state = FFS_CLOSING;
1385 		ffs_data_reset(ffs);
1386 	}
1387 }
1388 
1389 static void ffs_data_put(struct ffs_data *ffs)
1390 {
1391 	ENTER();
1392 
1393 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1394 		pr_info("%s(): freeing\n", __func__);
1395 		ffs_data_clear(ffs);
1396 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1397 		       waitqueue_active(&ffs->ep0req_completion.wait));
1398 		kfree(ffs->dev_name);
1399 		kfree(ffs);
1400 	}
1401 }
1402 
1403 static void ffs_data_closed(struct ffs_data *ffs)
1404 {
1405 	ENTER();
1406 
1407 	if (atomic_dec_and_test(&ffs->opened)) {
1408 		if (ffs->no_disconnect) {
1409 			ffs->state = FFS_DEACTIVATED;
1410 			if (ffs->epfiles) {
1411 				ffs_epfiles_destroy(ffs->epfiles,
1412 						   ffs->eps_count);
1413 				ffs->epfiles = NULL;
1414 			}
1415 			if (ffs->setup_state == FFS_SETUP_PENDING)
1416 				__ffs_ep0_stall(ffs);
1417 		} else {
1418 			ffs->state = FFS_CLOSING;
1419 			ffs_data_reset(ffs);
1420 		}
1421 	}
1422 	if (atomic_read(&ffs->opened) < 0) {
1423 		ffs->state = FFS_CLOSING;
1424 		ffs_data_reset(ffs);
1425 	}
1426 
1427 	ffs_data_put(ffs);
1428 }
1429 
1430 static struct ffs_data *ffs_data_new(void)
1431 {
1432 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1433 	if (unlikely(!ffs))
1434 		return NULL;
1435 
1436 	ENTER();
1437 
1438 	atomic_set(&ffs->ref, 1);
1439 	atomic_set(&ffs->opened, 0);
1440 	ffs->state = FFS_READ_DESCRIPTORS;
1441 	mutex_init(&ffs->mutex);
1442 	spin_lock_init(&ffs->eps_lock);
1443 	init_waitqueue_head(&ffs->ev.waitq);
1444 	init_completion(&ffs->ep0req_completion);
1445 
1446 	/* XXX REVISIT need to update it in some places, or do we? */
1447 	ffs->ev.can_stall = 1;
1448 
1449 	return ffs;
1450 }
1451 
1452 static void ffs_data_clear(struct ffs_data *ffs)
1453 {
1454 	ENTER();
1455 
1456 	ffs_closed(ffs);
1457 
1458 	BUG_ON(ffs->gadget);
1459 
1460 	if (ffs->epfiles)
1461 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1462 
1463 	if (ffs->ffs_eventfd)
1464 		eventfd_ctx_put(ffs->ffs_eventfd);
1465 
1466 	kfree(ffs->raw_descs_data);
1467 	kfree(ffs->raw_strings);
1468 	kfree(ffs->stringtabs);
1469 }
1470 
1471 static void ffs_data_reset(struct ffs_data *ffs)
1472 {
1473 	ENTER();
1474 
1475 	ffs_data_clear(ffs);
1476 
1477 	ffs->epfiles = NULL;
1478 	ffs->raw_descs_data = NULL;
1479 	ffs->raw_descs = NULL;
1480 	ffs->raw_strings = NULL;
1481 	ffs->stringtabs = NULL;
1482 
1483 	ffs->raw_descs_length = 0;
1484 	ffs->fs_descs_count = 0;
1485 	ffs->hs_descs_count = 0;
1486 	ffs->ss_descs_count = 0;
1487 
1488 	ffs->strings_count = 0;
1489 	ffs->interfaces_count = 0;
1490 	ffs->eps_count = 0;
1491 
1492 	ffs->ev.count = 0;
1493 
1494 	ffs->state = FFS_READ_DESCRIPTORS;
1495 	ffs->setup_state = FFS_NO_SETUP;
1496 	ffs->flags = 0;
1497 }
1498 
1499 
1500 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1501 {
1502 	struct usb_gadget_strings **lang;
1503 	int first_id;
1504 
1505 	ENTER();
1506 
1507 	if (WARN_ON(ffs->state != FFS_ACTIVE
1508 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1509 		return -EBADFD;
1510 
1511 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1512 	if (unlikely(first_id < 0))
1513 		return first_id;
1514 
1515 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1516 	if (unlikely(!ffs->ep0req))
1517 		return -ENOMEM;
1518 	ffs->ep0req->complete = ffs_ep0_complete;
1519 	ffs->ep0req->context = ffs;
1520 
1521 	lang = ffs->stringtabs;
1522 	if (lang) {
1523 		for (; *lang; ++lang) {
1524 			struct usb_string *str = (*lang)->strings;
1525 			int id = first_id;
1526 			for (; str->s; ++id, ++str)
1527 				str->id = id;
1528 		}
1529 	}
1530 
1531 	ffs->gadget = cdev->gadget;
1532 	ffs_data_get(ffs);
1533 	return 0;
1534 }
1535 
1536 static void functionfs_unbind(struct ffs_data *ffs)
1537 {
1538 	ENTER();
1539 
1540 	if (!WARN_ON(!ffs->gadget)) {
1541 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1542 		ffs->ep0req = NULL;
1543 		ffs->gadget = NULL;
1544 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1545 		ffs_data_put(ffs);
1546 	}
1547 }
1548 
1549 static int ffs_epfiles_create(struct ffs_data *ffs)
1550 {
1551 	struct ffs_epfile *epfile, *epfiles;
1552 	unsigned i, count;
1553 
1554 	ENTER();
1555 
1556 	count = ffs->eps_count;
1557 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1558 	if (!epfiles)
1559 		return -ENOMEM;
1560 
1561 	epfile = epfiles;
1562 	for (i = 1; i <= count; ++i, ++epfile) {
1563 		epfile->ffs = ffs;
1564 		mutex_init(&epfile->mutex);
1565 		init_waitqueue_head(&epfile->wait);
1566 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1567 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1568 		else
1569 			sprintf(epfile->name, "ep%u", i);
1570 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1571 						 epfile,
1572 						 &ffs_epfile_operations);
1573 		if (unlikely(!epfile->dentry)) {
1574 			ffs_epfiles_destroy(epfiles, i - 1);
1575 			return -ENOMEM;
1576 		}
1577 	}
1578 
1579 	ffs->epfiles = epfiles;
1580 	return 0;
1581 }
1582 
1583 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1584 {
1585 	struct ffs_epfile *epfile = epfiles;
1586 
1587 	ENTER();
1588 
1589 	for (; count; --count, ++epfile) {
1590 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1591 		       waitqueue_active(&epfile->wait));
1592 		if (epfile->dentry) {
1593 			d_delete(epfile->dentry);
1594 			dput(epfile->dentry);
1595 			epfile->dentry = NULL;
1596 		}
1597 	}
1598 
1599 	kfree(epfiles);
1600 }
1601 
1602 static void ffs_func_eps_disable(struct ffs_function *func)
1603 {
1604 	struct ffs_ep *ep         = func->eps;
1605 	struct ffs_epfile *epfile = func->ffs->epfiles;
1606 	unsigned count            = func->ffs->eps_count;
1607 	unsigned long flags;
1608 
1609 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1610 	do {
1611 		/* pending requests get nuked */
1612 		if (likely(ep->ep))
1613 			usb_ep_disable(ep->ep);
1614 		++ep;
1615 
1616 		if (epfile) {
1617 			epfile->ep = NULL;
1618 			++epfile;
1619 		}
1620 	} while (--count);
1621 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1622 }
1623 
1624 static int ffs_func_eps_enable(struct ffs_function *func)
1625 {
1626 	struct ffs_data *ffs      = func->ffs;
1627 	struct ffs_ep *ep         = func->eps;
1628 	struct ffs_epfile *epfile = ffs->epfiles;
1629 	unsigned count            = ffs->eps_count;
1630 	unsigned long flags;
1631 	int ret = 0;
1632 
1633 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1634 	do {
1635 		struct usb_endpoint_descriptor *ds;
1636 		int desc_idx;
1637 
1638 		if (ffs->gadget->speed == USB_SPEED_SUPER)
1639 			desc_idx = 2;
1640 		else if (ffs->gadget->speed == USB_SPEED_HIGH)
1641 			desc_idx = 1;
1642 		else
1643 			desc_idx = 0;
1644 
1645 		/* fall-back to lower speed if desc missing for current speed */
1646 		do {
1647 			ds = ep->descs[desc_idx];
1648 		} while (!ds && --desc_idx >= 0);
1649 
1650 		if (!ds) {
1651 			ret = -EINVAL;
1652 			break;
1653 		}
1654 
1655 		ep->ep->driver_data = ep;
1656 		ep->ep->desc = ds;
1657 		ret = usb_ep_enable(ep->ep);
1658 		if (likely(!ret)) {
1659 			epfile->ep = ep;
1660 			epfile->in = usb_endpoint_dir_in(ds);
1661 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1662 		} else {
1663 			break;
1664 		}
1665 
1666 		wake_up(&epfile->wait);
1667 
1668 		++ep;
1669 		++epfile;
1670 	} while (--count);
1671 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1672 
1673 	return ret;
1674 }
1675 
1676 
1677 /* Parsing and building descriptors and strings *****************************/
1678 
1679 /*
1680  * This validates if data pointed by data is a valid USB descriptor as
1681  * well as record how many interfaces, endpoints and strings are
1682  * required by given configuration.  Returns address after the
1683  * descriptor or NULL if data is invalid.
1684  */
1685 
1686 enum ffs_entity_type {
1687 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1688 };
1689 
1690 enum ffs_os_desc_type {
1691 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1692 };
1693 
1694 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1695 				   u8 *valuep,
1696 				   struct usb_descriptor_header *desc,
1697 				   void *priv);
1698 
1699 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1700 				    struct usb_os_desc_header *h, void *data,
1701 				    unsigned len, void *priv);
1702 
1703 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1704 					   ffs_entity_callback entity,
1705 					   void *priv)
1706 {
1707 	struct usb_descriptor_header *_ds = (void *)data;
1708 	u8 length;
1709 	int ret;
1710 
1711 	ENTER();
1712 
1713 	/* At least two bytes are required: length and type */
1714 	if (len < 2) {
1715 		pr_vdebug("descriptor too short\n");
1716 		return -EINVAL;
1717 	}
1718 
1719 	/* If we have at least as many bytes as the descriptor takes? */
1720 	length = _ds->bLength;
1721 	if (len < length) {
1722 		pr_vdebug("descriptor longer then available data\n");
1723 		return -EINVAL;
1724 	}
1725 
1726 #define __entity_check_INTERFACE(val)  1
1727 #define __entity_check_STRING(val)     (val)
1728 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1729 #define __entity(type, val) do {					\
1730 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1731 		if (unlikely(!__entity_check_ ##type(val))) {		\
1732 			pr_vdebug("invalid entity's value\n");		\
1733 			return -EINVAL;					\
1734 		}							\
1735 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1736 		if (unlikely(ret < 0)) {				\
1737 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1738 				 (val), ret);				\
1739 			return ret;					\
1740 		}							\
1741 	} while (0)
1742 
1743 	/* Parse descriptor depending on type. */
1744 	switch (_ds->bDescriptorType) {
1745 	case USB_DT_DEVICE:
1746 	case USB_DT_CONFIG:
1747 	case USB_DT_STRING:
1748 	case USB_DT_DEVICE_QUALIFIER:
1749 		/* function can't have any of those */
1750 		pr_vdebug("descriptor reserved for gadget: %d\n",
1751 		      _ds->bDescriptorType);
1752 		return -EINVAL;
1753 
1754 	case USB_DT_INTERFACE: {
1755 		struct usb_interface_descriptor *ds = (void *)_ds;
1756 		pr_vdebug("interface descriptor\n");
1757 		if (length != sizeof *ds)
1758 			goto inv_length;
1759 
1760 		__entity(INTERFACE, ds->bInterfaceNumber);
1761 		if (ds->iInterface)
1762 			__entity(STRING, ds->iInterface);
1763 	}
1764 		break;
1765 
1766 	case USB_DT_ENDPOINT: {
1767 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1768 		pr_vdebug("endpoint descriptor\n");
1769 		if (length != USB_DT_ENDPOINT_SIZE &&
1770 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1771 			goto inv_length;
1772 		__entity(ENDPOINT, ds->bEndpointAddress);
1773 	}
1774 		break;
1775 
1776 	case HID_DT_HID:
1777 		pr_vdebug("hid descriptor\n");
1778 		if (length != sizeof(struct hid_descriptor))
1779 			goto inv_length;
1780 		break;
1781 
1782 	case USB_DT_OTG:
1783 		if (length != sizeof(struct usb_otg_descriptor))
1784 			goto inv_length;
1785 		break;
1786 
1787 	case USB_DT_INTERFACE_ASSOCIATION: {
1788 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1789 		pr_vdebug("interface association descriptor\n");
1790 		if (length != sizeof *ds)
1791 			goto inv_length;
1792 		if (ds->iFunction)
1793 			__entity(STRING, ds->iFunction);
1794 	}
1795 		break;
1796 
1797 	case USB_DT_SS_ENDPOINT_COMP:
1798 		pr_vdebug("EP SS companion descriptor\n");
1799 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1800 			goto inv_length;
1801 		break;
1802 
1803 	case USB_DT_OTHER_SPEED_CONFIG:
1804 	case USB_DT_INTERFACE_POWER:
1805 	case USB_DT_DEBUG:
1806 	case USB_DT_SECURITY:
1807 	case USB_DT_CS_RADIO_CONTROL:
1808 		/* TODO */
1809 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1810 		return -EINVAL;
1811 
1812 	default:
1813 		/* We should never be here */
1814 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1815 		return -EINVAL;
1816 
1817 inv_length:
1818 		pr_vdebug("invalid length: %d (descriptor %d)\n",
1819 			  _ds->bLength, _ds->bDescriptorType);
1820 		return -EINVAL;
1821 	}
1822 
1823 #undef __entity
1824 #undef __entity_check_DESCRIPTOR
1825 #undef __entity_check_INTERFACE
1826 #undef __entity_check_STRING
1827 #undef __entity_check_ENDPOINT
1828 
1829 	return length;
1830 }
1831 
1832 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1833 				     ffs_entity_callback entity, void *priv)
1834 {
1835 	const unsigned _len = len;
1836 	unsigned long num = 0;
1837 
1838 	ENTER();
1839 
1840 	for (;;) {
1841 		int ret;
1842 
1843 		if (num == count)
1844 			data = NULL;
1845 
1846 		/* Record "descriptor" entity */
1847 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1848 		if (unlikely(ret < 0)) {
1849 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1850 				 num, ret);
1851 			return ret;
1852 		}
1853 
1854 		if (!data)
1855 			return _len - len;
1856 
1857 		ret = ffs_do_single_desc(data, len, entity, priv);
1858 		if (unlikely(ret < 0)) {
1859 			pr_debug("%s returns %d\n", __func__, ret);
1860 			return ret;
1861 		}
1862 
1863 		len -= ret;
1864 		data += ret;
1865 		++num;
1866 	}
1867 }
1868 
1869 static int __ffs_data_do_entity(enum ffs_entity_type type,
1870 				u8 *valuep, struct usb_descriptor_header *desc,
1871 				void *priv)
1872 {
1873 	struct ffs_desc_helper *helper = priv;
1874 	struct usb_endpoint_descriptor *d;
1875 
1876 	ENTER();
1877 
1878 	switch (type) {
1879 	case FFS_DESCRIPTOR:
1880 		break;
1881 
1882 	case FFS_INTERFACE:
1883 		/*
1884 		 * Interfaces are indexed from zero so if we
1885 		 * encountered interface "n" then there are at least
1886 		 * "n+1" interfaces.
1887 		 */
1888 		if (*valuep >= helper->interfaces_count)
1889 			helper->interfaces_count = *valuep + 1;
1890 		break;
1891 
1892 	case FFS_STRING:
1893 		/*
1894 		 * Strings are indexed from 1 (0 is magic ;) reserved
1895 		 * for languages list or some such)
1896 		 */
1897 		if (*valuep > helper->ffs->strings_count)
1898 			helper->ffs->strings_count = *valuep;
1899 		break;
1900 
1901 	case FFS_ENDPOINT:
1902 		d = (void *)desc;
1903 		helper->eps_count++;
1904 		if (helper->eps_count >= 15)
1905 			return -EINVAL;
1906 		/* Check if descriptors for any speed were already parsed */
1907 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1908 			helper->ffs->eps_addrmap[helper->eps_count] =
1909 				d->bEndpointAddress;
1910 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1911 				d->bEndpointAddress)
1912 			return -EINVAL;
1913 		break;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1920 				   struct usb_os_desc_header *desc)
1921 {
1922 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1923 	u16 w_index = le16_to_cpu(desc->wIndex);
1924 
1925 	if (bcd_version != 1) {
1926 		pr_vdebug("unsupported os descriptors version: %d",
1927 			  bcd_version);
1928 		return -EINVAL;
1929 	}
1930 	switch (w_index) {
1931 	case 0x4:
1932 		*next_type = FFS_OS_DESC_EXT_COMPAT;
1933 		break;
1934 	case 0x5:
1935 		*next_type = FFS_OS_DESC_EXT_PROP;
1936 		break;
1937 	default:
1938 		pr_vdebug("unsupported os descriptor type: %d", w_index);
1939 		return -EINVAL;
1940 	}
1941 
1942 	return sizeof(*desc);
1943 }
1944 
1945 /*
1946  * Process all extended compatibility/extended property descriptors
1947  * of a feature descriptor
1948  */
1949 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
1950 					      enum ffs_os_desc_type type,
1951 					      u16 feature_count,
1952 					      ffs_os_desc_callback entity,
1953 					      void *priv,
1954 					      struct usb_os_desc_header *h)
1955 {
1956 	int ret;
1957 	const unsigned _len = len;
1958 
1959 	ENTER();
1960 
1961 	/* loop over all ext compat/ext prop descriptors */
1962 	while (feature_count--) {
1963 		ret = entity(type, h, data, len, priv);
1964 		if (unlikely(ret < 0)) {
1965 			pr_debug("bad OS descriptor, type: %d\n", type);
1966 			return ret;
1967 		}
1968 		data += ret;
1969 		len -= ret;
1970 	}
1971 	return _len - len;
1972 }
1973 
1974 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
1975 static int __must_check ffs_do_os_descs(unsigned count,
1976 					char *data, unsigned len,
1977 					ffs_os_desc_callback entity, void *priv)
1978 {
1979 	const unsigned _len = len;
1980 	unsigned long num = 0;
1981 
1982 	ENTER();
1983 
1984 	for (num = 0; num < count; ++num) {
1985 		int ret;
1986 		enum ffs_os_desc_type type;
1987 		u16 feature_count;
1988 		struct usb_os_desc_header *desc = (void *)data;
1989 
1990 		if (len < sizeof(*desc))
1991 			return -EINVAL;
1992 
1993 		/*
1994 		 * Record "descriptor" entity.
1995 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
1996 		 * Move the data pointer to the beginning of extended
1997 		 * compatibilities proper or extended properties proper
1998 		 * portions of the data
1999 		 */
2000 		if (le32_to_cpu(desc->dwLength) > len)
2001 			return -EINVAL;
2002 
2003 		ret = __ffs_do_os_desc_header(&type, desc);
2004 		if (unlikely(ret < 0)) {
2005 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2006 				 num, ret);
2007 			return ret;
2008 		}
2009 		/*
2010 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2011 		 */
2012 		feature_count = le16_to_cpu(desc->wCount);
2013 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2014 		    (feature_count > 255 || desc->Reserved))
2015 				return -EINVAL;
2016 		len -= ret;
2017 		data += ret;
2018 
2019 		/*
2020 		 * Process all function/property descriptors
2021 		 * of this Feature Descriptor
2022 		 */
2023 		ret = ffs_do_single_os_desc(data, len, type,
2024 					    feature_count, entity, priv, desc);
2025 		if (unlikely(ret < 0)) {
2026 			pr_debug("%s returns %d\n", __func__, ret);
2027 			return ret;
2028 		}
2029 
2030 		len -= ret;
2031 		data += ret;
2032 	}
2033 	return _len - len;
2034 }
2035 
2036 /**
2037  * Validate contents of the buffer from userspace related to OS descriptors.
2038  */
2039 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2040 				 struct usb_os_desc_header *h, void *data,
2041 				 unsigned len, void *priv)
2042 {
2043 	struct ffs_data *ffs = priv;
2044 	u8 length;
2045 
2046 	ENTER();
2047 
2048 	switch (type) {
2049 	case FFS_OS_DESC_EXT_COMPAT: {
2050 		struct usb_ext_compat_desc *d = data;
2051 		int i;
2052 
2053 		if (len < sizeof(*d) ||
2054 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2055 		    d->Reserved1)
2056 			return -EINVAL;
2057 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2058 			if (d->Reserved2[i])
2059 				return -EINVAL;
2060 
2061 		length = sizeof(struct usb_ext_compat_desc);
2062 	}
2063 		break;
2064 	case FFS_OS_DESC_EXT_PROP: {
2065 		struct usb_ext_prop_desc *d = data;
2066 		u32 type, pdl;
2067 		u16 pnl;
2068 
2069 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2070 			return -EINVAL;
2071 		length = le32_to_cpu(d->dwSize);
2072 		type = le32_to_cpu(d->dwPropertyDataType);
2073 		if (type < USB_EXT_PROP_UNICODE ||
2074 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2075 			pr_vdebug("unsupported os descriptor property type: %d",
2076 				  type);
2077 			return -EINVAL;
2078 		}
2079 		pnl = le16_to_cpu(d->wPropertyNameLength);
2080 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2081 		if (length != 14 + pnl + pdl) {
2082 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2083 				  length, pnl, pdl, type);
2084 			return -EINVAL;
2085 		}
2086 		++ffs->ms_os_descs_ext_prop_count;
2087 		/* property name reported to the host as "WCHAR"s */
2088 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2089 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2090 	}
2091 		break;
2092 	default:
2093 		pr_vdebug("unknown descriptor: %d\n", type);
2094 		return -EINVAL;
2095 	}
2096 	return length;
2097 }
2098 
2099 static int __ffs_data_got_descs(struct ffs_data *ffs,
2100 				char *const _data, size_t len)
2101 {
2102 	char *data = _data, *raw_descs;
2103 	unsigned os_descs_count = 0, counts[3], flags;
2104 	int ret = -EINVAL, i;
2105 	struct ffs_desc_helper helper;
2106 
2107 	ENTER();
2108 
2109 	if (get_unaligned_le32(data + 4) != len)
2110 		goto error;
2111 
2112 	switch (get_unaligned_le32(data)) {
2113 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2114 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2115 		data += 8;
2116 		len  -= 8;
2117 		break;
2118 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2119 		flags = get_unaligned_le32(data + 8);
2120 		ffs->user_flags = flags;
2121 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2122 			      FUNCTIONFS_HAS_HS_DESC |
2123 			      FUNCTIONFS_HAS_SS_DESC |
2124 			      FUNCTIONFS_HAS_MS_OS_DESC |
2125 			      FUNCTIONFS_VIRTUAL_ADDR |
2126 			      FUNCTIONFS_EVENTFD)) {
2127 			ret = -ENOSYS;
2128 			goto error;
2129 		}
2130 		data += 12;
2131 		len  -= 12;
2132 		break;
2133 	default:
2134 		goto error;
2135 	}
2136 
2137 	if (flags & FUNCTIONFS_EVENTFD) {
2138 		if (len < 4)
2139 			goto error;
2140 		ffs->ffs_eventfd =
2141 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2142 		if (IS_ERR(ffs->ffs_eventfd)) {
2143 			ret = PTR_ERR(ffs->ffs_eventfd);
2144 			ffs->ffs_eventfd = NULL;
2145 			goto error;
2146 		}
2147 		data += 4;
2148 		len  -= 4;
2149 	}
2150 
2151 	/* Read fs_count, hs_count and ss_count (if present) */
2152 	for (i = 0; i < 3; ++i) {
2153 		if (!(flags & (1 << i))) {
2154 			counts[i] = 0;
2155 		} else if (len < 4) {
2156 			goto error;
2157 		} else {
2158 			counts[i] = get_unaligned_le32(data);
2159 			data += 4;
2160 			len  -= 4;
2161 		}
2162 	}
2163 	if (flags & (1 << i)) {
2164 		os_descs_count = get_unaligned_le32(data);
2165 		data += 4;
2166 		len -= 4;
2167 	};
2168 
2169 	/* Read descriptors */
2170 	raw_descs = data;
2171 	helper.ffs = ffs;
2172 	for (i = 0; i < 3; ++i) {
2173 		if (!counts[i])
2174 			continue;
2175 		helper.interfaces_count = 0;
2176 		helper.eps_count = 0;
2177 		ret = ffs_do_descs(counts[i], data, len,
2178 				   __ffs_data_do_entity, &helper);
2179 		if (ret < 0)
2180 			goto error;
2181 		if (!ffs->eps_count && !ffs->interfaces_count) {
2182 			ffs->eps_count = helper.eps_count;
2183 			ffs->interfaces_count = helper.interfaces_count;
2184 		} else {
2185 			if (ffs->eps_count != helper.eps_count) {
2186 				ret = -EINVAL;
2187 				goto error;
2188 			}
2189 			if (ffs->interfaces_count != helper.interfaces_count) {
2190 				ret = -EINVAL;
2191 				goto error;
2192 			}
2193 		}
2194 		data += ret;
2195 		len  -= ret;
2196 	}
2197 	if (os_descs_count) {
2198 		ret = ffs_do_os_descs(os_descs_count, data, len,
2199 				      __ffs_data_do_os_desc, ffs);
2200 		if (ret < 0)
2201 			goto error;
2202 		data += ret;
2203 		len -= ret;
2204 	}
2205 
2206 	if (raw_descs == data || len) {
2207 		ret = -EINVAL;
2208 		goto error;
2209 	}
2210 
2211 	ffs->raw_descs_data	= _data;
2212 	ffs->raw_descs		= raw_descs;
2213 	ffs->raw_descs_length	= data - raw_descs;
2214 	ffs->fs_descs_count	= counts[0];
2215 	ffs->hs_descs_count	= counts[1];
2216 	ffs->ss_descs_count	= counts[2];
2217 	ffs->ms_os_descs_count	= os_descs_count;
2218 
2219 	return 0;
2220 
2221 error:
2222 	kfree(_data);
2223 	return ret;
2224 }
2225 
2226 static int __ffs_data_got_strings(struct ffs_data *ffs,
2227 				  char *const _data, size_t len)
2228 {
2229 	u32 str_count, needed_count, lang_count;
2230 	struct usb_gadget_strings **stringtabs, *t;
2231 	struct usb_string *strings, *s;
2232 	const char *data = _data;
2233 
2234 	ENTER();
2235 
2236 	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2237 		     get_unaligned_le32(data + 4) != len))
2238 		goto error;
2239 	str_count  = get_unaligned_le32(data + 8);
2240 	lang_count = get_unaligned_le32(data + 12);
2241 
2242 	/* if one is zero the other must be zero */
2243 	if (unlikely(!str_count != !lang_count))
2244 		goto error;
2245 
2246 	/* Do we have at least as many strings as descriptors need? */
2247 	needed_count = ffs->strings_count;
2248 	if (unlikely(str_count < needed_count))
2249 		goto error;
2250 
2251 	/*
2252 	 * If we don't need any strings just return and free all
2253 	 * memory.
2254 	 */
2255 	if (!needed_count) {
2256 		kfree(_data);
2257 		return 0;
2258 	}
2259 
2260 	/* Allocate everything in one chunk so there's less maintenance. */
2261 	{
2262 		unsigned i = 0;
2263 		vla_group(d);
2264 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2265 			lang_count + 1);
2266 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2267 		vla_item(d, struct usb_string, strings,
2268 			lang_count*(needed_count+1));
2269 
2270 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2271 
2272 		if (unlikely(!vlabuf)) {
2273 			kfree(_data);
2274 			return -ENOMEM;
2275 		}
2276 
2277 		/* Initialize the VLA pointers */
2278 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2279 		t = vla_ptr(vlabuf, d, stringtab);
2280 		i = lang_count;
2281 		do {
2282 			*stringtabs++ = t++;
2283 		} while (--i);
2284 		*stringtabs = NULL;
2285 
2286 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2287 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2288 		t = vla_ptr(vlabuf, d, stringtab);
2289 		s = vla_ptr(vlabuf, d, strings);
2290 		strings = s;
2291 	}
2292 
2293 	/* For each language */
2294 	data += 16;
2295 	len -= 16;
2296 
2297 	do { /* lang_count > 0 so we can use do-while */
2298 		unsigned needed = needed_count;
2299 
2300 		if (unlikely(len < 3))
2301 			goto error_free;
2302 		t->language = get_unaligned_le16(data);
2303 		t->strings  = s;
2304 		++t;
2305 
2306 		data += 2;
2307 		len -= 2;
2308 
2309 		/* For each string */
2310 		do { /* str_count > 0 so we can use do-while */
2311 			size_t length = strnlen(data, len);
2312 
2313 			if (unlikely(length == len))
2314 				goto error_free;
2315 
2316 			/*
2317 			 * User may provide more strings then we need,
2318 			 * if that's the case we simply ignore the
2319 			 * rest
2320 			 */
2321 			if (likely(needed)) {
2322 				/*
2323 				 * s->id will be set while adding
2324 				 * function to configuration so for
2325 				 * now just leave garbage here.
2326 				 */
2327 				s->s = data;
2328 				--needed;
2329 				++s;
2330 			}
2331 
2332 			data += length + 1;
2333 			len -= length + 1;
2334 		} while (--str_count);
2335 
2336 		s->id = 0;   /* terminator */
2337 		s->s = NULL;
2338 		++s;
2339 
2340 	} while (--lang_count);
2341 
2342 	/* Some garbage left? */
2343 	if (unlikely(len))
2344 		goto error_free;
2345 
2346 	/* Done! */
2347 	ffs->stringtabs = stringtabs;
2348 	ffs->raw_strings = _data;
2349 
2350 	return 0;
2351 
2352 error_free:
2353 	kfree(stringtabs);
2354 error:
2355 	kfree(_data);
2356 	return -EINVAL;
2357 }
2358 
2359 
2360 /* Events handling and management *******************************************/
2361 
2362 static void __ffs_event_add(struct ffs_data *ffs,
2363 			    enum usb_functionfs_event_type type)
2364 {
2365 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2366 	int neg = 0;
2367 
2368 	/*
2369 	 * Abort any unhandled setup
2370 	 *
2371 	 * We do not need to worry about some cmpxchg() changing value
2372 	 * of ffs->setup_state without holding the lock because when
2373 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2374 	 * the source does nothing.
2375 	 */
2376 	if (ffs->setup_state == FFS_SETUP_PENDING)
2377 		ffs->setup_state = FFS_SETUP_CANCELLED;
2378 
2379 	/*
2380 	 * Logic of this function guarantees that there are at most four pending
2381 	 * evens on ffs->ev.types queue.  This is important because the queue
2382 	 * has space for four elements only and __ffs_ep0_read_events function
2383 	 * depends on that limit as well.  If more event types are added, those
2384 	 * limits have to be revisited or guaranteed to still hold.
2385 	 */
2386 	switch (type) {
2387 	case FUNCTIONFS_RESUME:
2388 		rem_type2 = FUNCTIONFS_SUSPEND;
2389 		/* FALL THROUGH */
2390 	case FUNCTIONFS_SUSPEND:
2391 	case FUNCTIONFS_SETUP:
2392 		rem_type1 = type;
2393 		/* Discard all similar events */
2394 		break;
2395 
2396 	case FUNCTIONFS_BIND:
2397 	case FUNCTIONFS_UNBIND:
2398 	case FUNCTIONFS_DISABLE:
2399 	case FUNCTIONFS_ENABLE:
2400 		/* Discard everything other then power management. */
2401 		rem_type1 = FUNCTIONFS_SUSPEND;
2402 		rem_type2 = FUNCTIONFS_RESUME;
2403 		neg = 1;
2404 		break;
2405 
2406 	default:
2407 		WARN(1, "%d: unknown event, this should not happen\n", type);
2408 		return;
2409 	}
2410 
2411 	{
2412 		u8 *ev  = ffs->ev.types, *out = ev;
2413 		unsigned n = ffs->ev.count;
2414 		for (; n; --n, ++ev)
2415 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2416 				*out++ = *ev;
2417 			else
2418 				pr_vdebug("purging event %d\n", *ev);
2419 		ffs->ev.count = out - ffs->ev.types;
2420 	}
2421 
2422 	pr_vdebug("adding event %d\n", type);
2423 	ffs->ev.types[ffs->ev.count++] = type;
2424 	wake_up_locked(&ffs->ev.waitq);
2425 	if (ffs->ffs_eventfd)
2426 		eventfd_signal(ffs->ffs_eventfd, 1);
2427 }
2428 
2429 static void ffs_event_add(struct ffs_data *ffs,
2430 			  enum usb_functionfs_event_type type)
2431 {
2432 	unsigned long flags;
2433 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2434 	__ffs_event_add(ffs, type);
2435 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2436 }
2437 
2438 /* Bind/unbind USB function hooks *******************************************/
2439 
2440 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2441 {
2442 	int i;
2443 
2444 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2445 		if (ffs->eps_addrmap[i] == endpoint_address)
2446 			return i;
2447 	return -ENOENT;
2448 }
2449 
2450 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2451 				    struct usb_descriptor_header *desc,
2452 				    void *priv)
2453 {
2454 	struct usb_endpoint_descriptor *ds = (void *)desc;
2455 	struct ffs_function *func = priv;
2456 	struct ffs_ep *ffs_ep;
2457 	unsigned ep_desc_id;
2458 	int idx;
2459 	static const char *speed_names[] = { "full", "high", "super" };
2460 
2461 	if (type != FFS_DESCRIPTOR)
2462 		return 0;
2463 
2464 	/*
2465 	 * If ss_descriptors is not NULL, we are reading super speed
2466 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2467 	 * speed descriptors; otherwise, we are reading full speed
2468 	 * descriptors.
2469 	 */
2470 	if (func->function.ss_descriptors) {
2471 		ep_desc_id = 2;
2472 		func->function.ss_descriptors[(long)valuep] = desc;
2473 	} else if (func->function.hs_descriptors) {
2474 		ep_desc_id = 1;
2475 		func->function.hs_descriptors[(long)valuep] = desc;
2476 	} else {
2477 		ep_desc_id = 0;
2478 		func->function.fs_descriptors[(long)valuep]    = desc;
2479 	}
2480 
2481 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2482 		return 0;
2483 
2484 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2485 	if (idx < 0)
2486 		return idx;
2487 
2488 	ffs_ep = func->eps + idx;
2489 
2490 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2491 		pr_err("two %sspeed descriptors for EP %d\n",
2492 			  speed_names[ep_desc_id],
2493 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2494 		return -EINVAL;
2495 	}
2496 	ffs_ep->descs[ep_desc_id] = ds;
2497 
2498 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2499 	if (ffs_ep->ep) {
2500 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2501 		if (!ds->wMaxPacketSize)
2502 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2503 	} else {
2504 		struct usb_request *req;
2505 		struct usb_ep *ep;
2506 		u8 bEndpointAddress;
2507 
2508 		/*
2509 		 * We back up bEndpointAddress because autoconfig overwrites
2510 		 * it with physical endpoint address.
2511 		 */
2512 		bEndpointAddress = ds->bEndpointAddress;
2513 		pr_vdebug("autoconfig\n");
2514 		ep = usb_ep_autoconfig(func->gadget, ds);
2515 		if (unlikely(!ep))
2516 			return -ENOTSUPP;
2517 		ep->driver_data = func->eps + idx;
2518 
2519 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2520 		if (unlikely(!req))
2521 			return -ENOMEM;
2522 
2523 		ffs_ep->ep  = ep;
2524 		ffs_ep->req = req;
2525 		func->eps_revmap[ds->bEndpointAddress &
2526 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2527 		/*
2528 		 * If we use virtual address mapping, we restore
2529 		 * original bEndpointAddress value.
2530 		 */
2531 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2532 			ds->bEndpointAddress = bEndpointAddress;
2533 	}
2534 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2535 
2536 	return 0;
2537 }
2538 
2539 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2540 				   struct usb_descriptor_header *desc,
2541 				   void *priv)
2542 {
2543 	struct ffs_function *func = priv;
2544 	unsigned idx;
2545 	u8 newValue;
2546 
2547 	switch (type) {
2548 	default:
2549 	case FFS_DESCRIPTOR:
2550 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2551 		return 0;
2552 
2553 	case FFS_INTERFACE:
2554 		idx = *valuep;
2555 		if (func->interfaces_nums[idx] < 0) {
2556 			int id = usb_interface_id(func->conf, &func->function);
2557 			if (unlikely(id < 0))
2558 				return id;
2559 			func->interfaces_nums[idx] = id;
2560 		}
2561 		newValue = func->interfaces_nums[idx];
2562 		break;
2563 
2564 	case FFS_STRING:
2565 		/* String' IDs are allocated when fsf_data is bound to cdev */
2566 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2567 		break;
2568 
2569 	case FFS_ENDPOINT:
2570 		/*
2571 		 * USB_DT_ENDPOINT are handled in
2572 		 * __ffs_func_bind_do_descs().
2573 		 */
2574 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2575 			return 0;
2576 
2577 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2578 		if (unlikely(!func->eps[idx].ep))
2579 			return -EINVAL;
2580 
2581 		{
2582 			struct usb_endpoint_descriptor **descs;
2583 			descs = func->eps[idx].descs;
2584 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2585 		}
2586 		break;
2587 	}
2588 
2589 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2590 	*valuep = newValue;
2591 	return 0;
2592 }
2593 
2594 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2595 				      struct usb_os_desc_header *h, void *data,
2596 				      unsigned len, void *priv)
2597 {
2598 	struct ffs_function *func = priv;
2599 	u8 length = 0;
2600 
2601 	switch (type) {
2602 	case FFS_OS_DESC_EXT_COMPAT: {
2603 		struct usb_ext_compat_desc *desc = data;
2604 		struct usb_os_desc_table *t;
2605 
2606 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2607 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2608 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2609 		       ARRAY_SIZE(desc->CompatibleID) +
2610 		       ARRAY_SIZE(desc->SubCompatibleID));
2611 		length = sizeof(*desc);
2612 	}
2613 		break;
2614 	case FFS_OS_DESC_EXT_PROP: {
2615 		struct usb_ext_prop_desc *desc = data;
2616 		struct usb_os_desc_table *t;
2617 		struct usb_os_desc_ext_prop *ext_prop;
2618 		char *ext_prop_name;
2619 		char *ext_prop_data;
2620 
2621 		t = &func->function.os_desc_table[h->interface];
2622 		t->if_id = func->interfaces_nums[h->interface];
2623 
2624 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2625 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2626 
2627 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2628 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2629 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2630 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2631 		length = ext_prop->name_len + ext_prop->data_len + 14;
2632 
2633 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2634 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2635 			ext_prop->name_len;
2636 
2637 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2638 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2639 			ext_prop->data_len;
2640 		memcpy(ext_prop_data,
2641 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2642 		       ext_prop->data_len);
2643 		/* unicode data reported to the host as "WCHAR"s */
2644 		switch (ext_prop->type) {
2645 		case USB_EXT_PROP_UNICODE:
2646 		case USB_EXT_PROP_UNICODE_ENV:
2647 		case USB_EXT_PROP_UNICODE_LINK:
2648 		case USB_EXT_PROP_UNICODE_MULTI:
2649 			ext_prop->data_len *= 2;
2650 			break;
2651 		}
2652 		ext_prop->data = ext_prop_data;
2653 
2654 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2655 		       ext_prop->name_len);
2656 		/* property name reported to the host as "WCHAR"s */
2657 		ext_prop->name_len *= 2;
2658 		ext_prop->name = ext_prop_name;
2659 
2660 		t->os_desc->ext_prop_len +=
2661 			ext_prop->name_len + ext_prop->data_len + 14;
2662 		++t->os_desc->ext_prop_count;
2663 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2664 	}
2665 		break;
2666 	default:
2667 		pr_vdebug("unknown descriptor: %d\n", type);
2668 	}
2669 
2670 	return length;
2671 }
2672 
2673 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2674 						struct usb_configuration *c)
2675 {
2676 	struct ffs_function *func = ffs_func_from_usb(f);
2677 	struct f_fs_opts *ffs_opts =
2678 		container_of(f->fi, struct f_fs_opts, func_inst);
2679 	int ret;
2680 
2681 	ENTER();
2682 
2683 	/*
2684 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2685 	 * which already uses locking; taking the same lock here would
2686 	 * cause a deadlock.
2687 	 *
2688 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2689 	 */
2690 	if (!ffs_opts->no_configfs)
2691 		ffs_dev_lock();
2692 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2693 	func->ffs = ffs_opts->dev->ffs_data;
2694 	if (!ffs_opts->no_configfs)
2695 		ffs_dev_unlock();
2696 	if (ret)
2697 		return ERR_PTR(ret);
2698 
2699 	func->conf = c;
2700 	func->gadget = c->cdev->gadget;
2701 
2702 	/*
2703 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2704 	 * configurations are bound in sequence with list_for_each_entry,
2705 	 * in each configuration its functions are bound in sequence
2706 	 * with list_for_each_entry, so we assume no race condition
2707 	 * with regard to ffs_opts->bound access
2708 	 */
2709 	if (!ffs_opts->refcnt) {
2710 		ret = functionfs_bind(func->ffs, c->cdev);
2711 		if (ret)
2712 			return ERR_PTR(ret);
2713 	}
2714 	ffs_opts->refcnt++;
2715 	func->function.strings = func->ffs->stringtabs;
2716 
2717 	return ffs_opts;
2718 }
2719 
2720 static int _ffs_func_bind(struct usb_configuration *c,
2721 			  struct usb_function *f)
2722 {
2723 	struct ffs_function *func = ffs_func_from_usb(f);
2724 	struct ffs_data *ffs = func->ffs;
2725 
2726 	const int full = !!func->ffs->fs_descs_count;
2727 	const int high = gadget_is_dualspeed(func->gadget) &&
2728 		func->ffs->hs_descs_count;
2729 	const int super = gadget_is_superspeed(func->gadget) &&
2730 		func->ffs->ss_descs_count;
2731 
2732 	int fs_len, hs_len, ss_len, ret, i;
2733 
2734 	/* Make it a single chunk, less management later on */
2735 	vla_group(d);
2736 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2737 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2738 		full ? ffs->fs_descs_count + 1 : 0);
2739 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2740 		high ? ffs->hs_descs_count + 1 : 0);
2741 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2742 		super ? ffs->ss_descs_count + 1 : 0);
2743 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2744 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2745 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2746 	vla_item_with_sz(d, char[16], ext_compat,
2747 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2748 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2749 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2750 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2751 			 ffs->ms_os_descs_ext_prop_count);
2752 	vla_item_with_sz(d, char, ext_prop_name,
2753 			 ffs->ms_os_descs_ext_prop_name_len);
2754 	vla_item_with_sz(d, char, ext_prop_data,
2755 			 ffs->ms_os_descs_ext_prop_data_len);
2756 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2757 	char *vlabuf;
2758 
2759 	ENTER();
2760 
2761 	/* Has descriptors only for speeds gadget does not support */
2762 	if (unlikely(!(full | high | super)))
2763 		return -ENOTSUPP;
2764 
2765 	/* Allocate a single chunk, less management later on */
2766 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2767 	if (unlikely(!vlabuf))
2768 		return -ENOMEM;
2769 
2770 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2771 	ffs->ms_os_descs_ext_prop_name_avail =
2772 		vla_ptr(vlabuf, d, ext_prop_name);
2773 	ffs->ms_os_descs_ext_prop_data_avail =
2774 		vla_ptr(vlabuf, d, ext_prop_data);
2775 
2776 	/* Copy descriptors  */
2777 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2778 	       ffs->raw_descs_length);
2779 
2780 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2781 	for (ret = ffs->eps_count; ret; --ret) {
2782 		struct ffs_ep *ptr;
2783 
2784 		ptr = vla_ptr(vlabuf, d, eps);
2785 		ptr[ret].num = -1;
2786 	}
2787 
2788 	/* Save pointers
2789 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2790 	*/
2791 	func->eps             = vla_ptr(vlabuf, d, eps);
2792 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2793 
2794 	/*
2795 	 * Go through all the endpoint descriptors and allocate
2796 	 * endpoints first, so that later we can rewrite the endpoint
2797 	 * numbers without worrying that it may be described later on.
2798 	 */
2799 	if (likely(full)) {
2800 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2801 		fs_len = ffs_do_descs(ffs->fs_descs_count,
2802 				      vla_ptr(vlabuf, d, raw_descs),
2803 				      d_raw_descs__sz,
2804 				      __ffs_func_bind_do_descs, func);
2805 		if (unlikely(fs_len < 0)) {
2806 			ret = fs_len;
2807 			goto error;
2808 		}
2809 	} else {
2810 		fs_len = 0;
2811 	}
2812 
2813 	if (likely(high)) {
2814 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2815 		hs_len = ffs_do_descs(ffs->hs_descs_count,
2816 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2817 				      d_raw_descs__sz - fs_len,
2818 				      __ffs_func_bind_do_descs, func);
2819 		if (unlikely(hs_len < 0)) {
2820 			ret = hs_len;
2821 			goto error;
2822 		}
2823 	} else {
2824 		hs_len = 0;
2825 	}
2826 
2827 	if (likely(super)) {
2828 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2829 		ss_len = ffs_do_descs(ffs->ss_descs_count,
2830 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2831 				d_raw_descs__sz - fs_len - hs_len,
2832 				__ffs_func_bind_do_descs, func);
2833 		if (unlikely(ss_len < 0)) {
2834 			ret = ss_len;
2835 			goto error;
2836 		}
2837 	} else {
2838 		ss_len = 0;
2839 	}
2840 
2841 	/*
2842 	 * Now handle interface numbers allocation and interface and
2843 	 * endpoint numbers rewriting.  We can do that in one go
2844 	 * now.
2845 	 */
2846 	ret = ffs_do_descs(ffs->fs_descs_count +
2847 			   (high ? ffs->hs_descs_count : 0) +
2848 			   (super ? ffs->ss_descs_count : 0),
2849 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2850 			   __ffs_func_bind_do_nums, func);
2851 	if (unlikely(ret < 0))
2852 		goto error;
2853 
2854 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2855 	if (c->cdev->use_os_string)
2856 		for (i = 0; i < ffs->interfaces_count; ++i) {
2857 			struct usb_os_desc *desc;
2858 
2859 			desc = func->function.os_desc_table[i].os_desc =
2860 				vla_ptr(vlabuf, d, os_desc) +
2861 				i * sizeof(struct usb_os_desc);
2862 			desc->ext_compat_id =
2863 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2864 			INIT_LIST_HEAD(&desc->ext_prop);
2865 		}
2866 	ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2867 			      vla_ptr(vlabuf, d, raw_descs) +
2868 			      fs_len + hs_len + ss_len,
2869 			      d_raw_descs__sz - fs_len - hs_len - ss_len,
2870 			      __ffs_func_bind_do_os_desc, func);
2871 	if (unlikely(ret < 0))
2872 		goto error;
2873 	func->function.os_desc_n =
2874 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2875 
2876 	/* And we're done */
2877 	ffs_event_add(ffs, FUNCTIONFS_BIND);
2878 	return 0;
2879 
2880 error:
2881 	/* XXX Do we need to release all claimed endpoints here? */
2882 	return ret;
2883 }
2884 
2885 static int ffs_func_bind(struct usb_configuration *c,
2886 			 struct usb_function *f)
2887 {
2888 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2889 	struct ffs_function *func = ffs_func_from_usb(f);
2890 	int ret;
2891 
2892 	if (IS_ERR(ffs_opts))
2893 		return PTR_ERR(ffs_opts);
2894 
2895 	ret = _ffs_func_bind(c, f);
2896 	if (ret && !--ffs_opts->refcnt)
2897 		functionfs_unbind(func->ffs);
2898 
2899 	return ret;
2900 }
2901 
2902 
2903 /* Other USB function hooks *************************************************/
2904 
2905 static void ffs_reset_work(struct work_struct *work)
2906 {
2907 	struct ffs_data *ffs = container_of(work,
2908 		struct ffs_data, reset_work);
2909 	ffs_data_reset(ffs);
2910 }
2911 
2912 static int ffs_func_set_alt(struct usb_function *f,
2913 			    unsigned interface, unsigned alt)
2914 {
2915 	struct ffs_function *func = ffs_func_from_usb(f);
2916 	struct ffs_data *ffs = func->ffs;
2917 	int ret = 0, intf;
2918 
2919 	if (alt != (unsigned)-1) {
2920 		intf = ffs_func_revmap_intf(func, interface);
2921 		if (unlikely(intf < 0))
2922 			return intf;
2923 	}
2924 
2925 	if (ffs->func)
2926 		ffs_func_eps_disable(ffs->func);
2927 
2928 	if (ffs->state == FFS_DEACTIVATED) {
2929 		ffs->state = FFS_CLOSING;
2930 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
2931 		schedule_work(&ffs->reset_work);
2932 		return -ENODEV;
2933 	}
2934 
2935 	if (ffs->state != FFS_ACTIVE)
2936 		return -ENODEV;
2937 
2938 	if (alt == (unsigned)-1) {
2939 		ffs->func = NULL;
2940 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2941 		return 0;
2942 	}
2943 
2944 	ffs->func = func;
2945 	ret = ffs_func_eps_enable(func);
2946 	if (likely(ret >= 0))
2947 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2948 	return ret;
2949 }
2950 
2951 static void ffs_func_disable(struct usb_function *f)
2952 {
2953 	ffs_func_set_alt(f, 0, (unsigned)-1);
2954 }
2955 
2956 static int ffs_func_setup(struct usb_function *f,
2957 			  const struct usb_ctrlrequest *creq)
2958 {
2959 	struct ffs_function *func = ffs_func_from_usb(f);
2960 	struct ffs_data *ffs = func->ffs;
2961 	unsigned long flags;
2962 	int ret;
2963 
2964 	ENTER();
2965 
2966 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2967 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
2968 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
2969 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
2970 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
2971 
2972 	/*
2973 	 * Most requests directed to interface go through here
2974 	 * (notable exceptions are set/get interface) so we need to
2975 	 * handle them.  All other either handled by composite or
2976 	 * passed to usb_configuration->setup() (if one is set).  No
2977 	 * matter, we will handle requests directed to endpoint here
2978 	 * as well (as it's straightforward) but what to do with any
2979 	 * other request?
2980 	 */
2981 	if (ffs->state != FFS_ACTIVE)
2982 		return -ENODEV;
2983 
2984 	switch (creq->bRequestType & USB_RECIP_MASK) {
2985 	case USB_RECIP_INTERFACE:
2986 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2987 		if (unlikely(ret < 0))
2988 			return ret;
2989 		break;
2990 
2991 	case USB_RECIP_ENDPOINT:
2992 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
2993 		if (unlikely(ret < 0))
2994 			return ret;
2995 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2996 			ret = func->ffs->eps_addrmap[ret];
2997 		break;
2998 
2999 	default:
3000 		return -EOPNOTSUPP;
3001 	}
3002 
3003 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3004 	ffs->ev.setup = *creq;
3005 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3006 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3007 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3008 
3009 	return 0;
3010 }
3011 
3012 static void ffs_func_suspend(struct usb_function *f)
3013 {
3014 	ENTER();
3015 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3016 }
3017 
3018 static void ffs_func_resume(struct usb_function *f)
3019 {
3020 	ENTER();
3021 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3022 }
3023 
3024 
3025 /* Endpoint and interface numbers reverse mapping ***************************/
3026 
3027 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3028 {
3029 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3030 	return num ? num : -EDOM;
3031 }
3032 
3033 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3034 {
3035 	short *nums = func->interfaces_nums;
3036 	unsigned count = func->ffs->interfaces_count;
3037 
3038 	for (; count; --count, ++nums) {
3039 		if (*nums >= 0 && *nums == intf)
3040 			return nums - func->interfaces_nums;
3041 	}
3042 
3043 	return -EDOM;
3044 }
3045 
3046 
3047 /* Devices management *******************************************************/
3048 
3049 static LIST_HEAD(ffs_devices);
3050 
3051 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3052 {
3053 	struct ffs_dev *dev;
3054 
3055 	list_for_each_entry(dev, &ffs_devices, entry) {
3056 		if (!dev->name || !name)
3057 			continue;
3058 		if (strcmp(dev->name, name) == 0)
3059 			return dev;
3060 	}
3061 
3062 	return NULL;
3063 }
3064 
3065 /*
3066  * ffs_lock must be taken by the caller of this function
3067  */
3068 static struct ffs_dev *_ffs_get_single_dev(void)
3069 {
3070 	struct ffs_dev *dev;
3071 
3072 	if (list_is_singular(&ffs_devices)) {
3073 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3074 		if (dev->single)
3075 			return dev;
3076 	}
3077 
3078 	return NULL;
3079 }
3080 
3081 /*
3082  * ffs_lock must be taken by the caller of this function
3083  */
3084 static struct ffs_dev *_ffs_find_dev(const char *name)
3085 {
3086 	struct ffs_dev *dev;
3087 
3088 	dev = _ffs_get_single_dev();
3089 	if (dev)
3090 		return dev;
3091 
3092 	return _ffs_do_find_dev(name);
3093 }
3094 
3095 /* Configfs support *********************************************************/
3096 
3097 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3098 {
3099 	return container_of(to_config_group(item), struct f_fs_opts,
3100 			    func_inst.group);
3101 }
3102 
3103 static void ffs_attr_release(struct config_item *item)
3104 {
3105 	struct f_fs_opts *opts = to_ffs_opts(item);
3106 
3107 	usb_put_function_instance(&opts->func_inst);
3108 }
3109 
3110 static struct configfs_item_operations ffs_item_ops = {
3111 	.release	= ffs_attr_release,
3112 };
3113 
3114 static struct config_item_type ffs_func_type = {
3115 	.ct_item_ops	= &ffs_item_ops,
3116 	.ct_owner	= THIS_MODULE,
3117 };
3118 
3119 
3120 /* Function registration interface ******************************************/
3121 
3122 static void ffs_free_inst(struct usb_function_instance *f)
3123 {
3124 	struct f_fs_opts *opts;
3125 
3126 	opts = to_f_fs_opts(f);
3127 	ffs_dev_lock();
3128 	_ffs_free_dev(opts->dev);
3129 	ffs_dev_unlock();
3130 	kfree(opts);
3131 }
3132 
3133 #define MAX_INST_NAME_LEN	40
3134 
3135 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3136 {
3137 	struct f_fs_opts *opts;
3138 	char *ptr;
3139 	const char *tmp;
3140 	int name_len, ret;
3141 
3142 	name_len = strlen(name) + 1;
3143 	if (name_len > MAX_INST_NAME_LEN)
3144 		return -ENAMETOOLONG;
3145 
3146 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3147 	if (!ptr)
3148 		return -ENOMEM;
3149 
3150 	opts = to_f_fs_opts(fi);
3151 	tmp = NULL;
3152 
3153 	ffs_dev_lock();
3154 
3155 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3156 	ret = _ffs_name_dev(opts->dev, ptr);
3157 	if (ret) {
3158 		kfree(ptr);
3159 		ffs_dev_unlock();
3160 		return ret;
3161 	}
3162 	opts->dev->name_allocated = true;
3163 
3164 	ffs_dev_unlock();
3165 
3166 	kfree(tmp);
3167 
3168 	return 0;
3169 }
3170 
3171 static struct usb_function_instance *ffs_alloc_inst(void)
3172 {
3173 	struct f_fs_opts *opts;
3174 	struct ffs_dev *dev;
3175 
3176 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3177 	if (!opts)
3178 		return ERR_PTR(-ENOMEM);
3179 
3180 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3181 	opts->func_inst.free_func_inst = ffs_free_inst;
3182 	ffs_dev_lock();
3183 	dev = _ffs_alloc_dev();
3184 	ffs_dev_unlock();
3185 	if (IS_ERR(dev)) {
3186 		kfree(opts);
3187 		return ERR_CAST(dev);
3188 	}
3189 	opts->dev = dev;
3190 	dev->opts = opts;
3191 
3192 	config_group_init_type_name(&opts->func_inst.group, "",
3193 				    &ffs_func_type);
3194 	return &opts->func_inst;
3195 }
3196 
3197 static void ffs_free(struct usb_function *f)
3198 {
3199 	kfree(ffs_func_from_usb(f));
3200 }
3201 
3202 static void ffs_func_unbind(struct usb_configuration *c,
3203 			    struct usb_function *f)
3204 {
3205 	struct ffs_function *func = ffs_func_from_usb(f);
3206 	struct ffs_data *ffs = func->ffs;
3207 	struct f_fs_opts *opts =
3208 		container_of(f->fi, struct f_fs_opts, func_inst);
3209 	struct ffs_ep *ep = func->eps;
3210 	unsigned count = ffs->eps_count;
3211 	unsigned long flags;
3212 
3213 	ENTER();
3214 	if (ffs->func == func) {
3215 		ffs_func_eps_disable(func);
3216 		ffs->func = NULL;
3217 	}
3218 
3219 	if (!--opts->refcnt)
3220 		functionfs_unbind(ffs);
3221 
3222 	/* cleanup after autoconfig */
3223 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3224 	do {
3225 		if (ep->ep && ep->req)
3226 			usb_ep_free_request(ep->ep, ep->req);
3227 		ep->req = NULL;
3228 		++ep;
3229 	} while (--count);
3230 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3231 	kfree(func->eps);
3232 	func->eps = NULL;
3233 	/*
3234 	 * eps, descriptors and interfaces_nums are allocated in the
3235 	 * same chunk so only one free is required.
3236 	 */
3237 	func->function.fs_descriptors = NULL;
3238 	func->function.hs_descriptors = NULL;
3239 	func->function.ss_descriptors = NULL;
3240 	func->interfaces_nums = NULL;
3241 
3242 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3243 }
3244 
3245 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3246 {
3247 	struct ffs_function *func;
3248 
3249 	ENTER();
3250 
3251 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3252 	if (unlikely(!func))
3253 		return ERR_PTR(-ENOMEM);
3254 
3255 	func->function.name    = "Function FS Gadget";
3256 
3257 	func->function.bind    = ffs_func_bind;
3258 	func->function.unbind  = ffs_func_unbind;
3259 	func->function.set_alt = ffs_func_set_alt;
3260 	func->function.disable = ffs_func_disable;
3261 	func->function.setup   = ffs_func_setup;
3262 	func->function.suspend = ffs_func_suspend;
3263 	func->function.resume  = ffs_func_resume;
3264 	func->function.free_func = ffs_free;
3265 
3266 	return &func->function;
3267 }
3268 
3269 /*
3270  * ffs_lock must be taken by the caller of this function
3271  */
3272 static struct ffs_dev *_ffs_alloc_dev(void)
3273 {
3274 	struct ffs_dev *dev;
3275 	int ret;
3276 
3277 	if (_ffs_get_single_dev())
3278 			return ERR_PTR(-EBUSY);
3279 
3280 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3281 	if (!dev)
3282 		return ERR_PTR(-ENOMEM);
3283 
3284 	if (list_empty(&ffs_devices)) {
3285 		ret = functionfs_init();
3286 		if (ret) {
3287 			kfree(dev);
3288 			return ERR_PTR(ret);
3289 		}
3290 	}
3291 
3292 	list_add(&dev->entry, &ffs_devices);
3293 
3294 	return dev;
3295 }
3296 
3297 /*
3298  * ffs_lock must be taken by the caller of this function
3299  * The caller is responsible for "name" being available whenever f_fs needs it
3300  */
3301 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3302 {
3303 	struct ffs_dev *existing;
3304 
3305 	existing = _ffs_do_find_dev(name);
3306 	if (existing)
3307 		return -EBUSY;
3308 
3309 	dev->name = name;
3310 
3311 	return 0;
3312 }
3313 
3314 /*
3315  * The caller is responsible for "name" being available whenever f_fs needs it
3316  */
3317 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3318 {
3319 	int ret;
3320 
3321 	ffs_dev_lock();
3322 	ret = _ffs_name_dev(dev, name);
3323 	ffs_dev_unlock();
3324 
3325 	return ret;
3326 }
3327 EXPORT_SYMBOL_GPL(ffs_name_dev);
3328 
3329 int ffs_single_dev(struct ffs_dev *dev)
3330 {
3331 	int ret;
3332 
3333 	ret = 0;
3334 	ffs_dev_lock();
3335 
3336 	if (!list_is_singular(&ffs_devices))
3337 		ret = -EBUSY;
3338 	else
3339 		dev->single = true;
3340 
3341 	ffs_dev_unlock();
3342 	return ret;
3343 }
3344 EXPORT_SYMBOL_GPL(ffs_single_dev);
3345 
3346 /*
3347  * ffs_lock must be taken by the caller of this function
3348  */
3349 static void _ffs_free_dev(struct ffs_dev *dev)
3350 {
3351 	list_del(&dev->entry);
3352 	if (dev->name_allocated)
3353 		kfree(dev->name);
3354 	kfree(dev);
3355 	if (list_empty(&ffs_devices))
3356 		functionfs_cleanup();
3357 }
3358 
3359 static void *ffs_acquire_dev(const char *dev_name)
3360 {
3361 	struct ffs_dev *ffs_dev;
3362 
3363 	ENTER();
3364 	ffs_dev_lock();
3365 
3366 	ffs_dev = _ffs_find_dev(dev_name);
3367 	if (!ffs_dev)
3368 		ffs_dev = ERR_PTR(-ENOENT);
3369 	else if (ffs_dev->mounted)
3370 		ffs_dev = ERR_PTR(-EBUSY);
3371 	else if (ffs_dev->ffs_acquire_dev_callback &&
3372 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3373 		ffs_dev = ERR_PTR(-ENOENT);
3374 	else
3375 		ffs_dev->mounted = true;
3376 
3377 	ffs_dev_unlock();
3378 	return ffs_dev;
3379 }
3380 
3381 static void ffs_release_dev(struct ffs_data *ffs_data)
3382 {
3383 	struct ffs_dev *ffs_dev;
3384 
3385 	ENTER();
3386 	ffs_dev_lock();
3387 
3388 	ffs_dev = ffs_data->private_data;
3389 	if (ffs_dev) {
3390 		ffs_dev->mounted = false;
3391 
3392 		if (ffs_dev->ffs_release_dev_callback)
3393 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3394 	}
3395 
3396 	ffs_dev_unlock();
3397 }
3398 
3399 static int ffs_ready(struct ffs_data *ffs)
3400 {
3401 	struct ffs_dev *ffs_obj;
3402 	int ret = 0;
3403 
3404 	ENTER();
3405 	ffs_dev_lock();
3406 
3407 	ffs_obj = ffs->private_data;
3408 	if (!ffs_obj) {
3409 		ret = -EINVAL;
3410 		goto done;
3411 	}
3412 	if (WARN_ON(ffs_obj->desc_ready)) {
3413 		ret = -EBUSY;
3414 		goto done;
3415 	}
3416 
3417 	ffs_obj->desc_ready = true;
3418 	ffs_obj->ffs_data = ffs;
3419 
3420 	if (ffs_obj->ffs_ready_callback) {
3421 		ret = ffs_obj->ffs_ready_callback(ffs);
3422 		if (ret)
3423 			goto done;
3424 	}
3425 
3426 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3427 done:
3428 	ffs_dev_unlock();
3429 	return ret;
3430 }
3431 
3432 static void ffs_closed(struct ffs_data *ffs)
3433 {
3434 	struct ffs_dev *ffs_obj;
3435 	struct f_fs_opts *opts;
3436 
3437 	ENTER();
3438 	ffs_dev_lock();
3439 
3440 	ffs_obj = ffs->private_data;
3441 	if (!ffs_obj)
3442 		goto done;
3443 
3444 	ffs_obj->desc_ready = false;
3445 
3446 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3447 	    ffs_obj->ffs_closed_callback)
3448 		ffs_obj->ffs_closed_callback(ffs);
3449 
3450 	if (ffs_obj->opts)
3451 		opts = ffs_obj->opts;
3452 	else
3453 		goto done;
3454 
3455 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3456 	    || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3457 		goto done;
3458 
3459 	unregister_gadget_item(ffs_obj->opts->
3460 			       func_inst.group.cg_item.ci_parent->ci_parent);
3461 done:
3462 	ffs_dev_unlock();
3463 }
3464 
3465 /* Misc helper functions ****************************************************/
3466 
3467 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3468 {
3469 	return nonblock
3470 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3471 		: mutex_lock_interruptible(mutex);
3472 }
3473 
3474 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3475 {
3476 	char *data;
3477 
3478 	if (unlikely(!len))
3479 		return NULL;
3480 
3481 	data = kmalloc(len, GFP_KERNEL);
3482 	if (unlikely(!data))
3483 		return ERR_PTR(-ENOMEM);
3484 
3485 	if (unlikely(copy_from_user(data, buf, len))) {
3486 		kfree(data);
3487 		return ERR_PTR(-EFAULT);
3488 	}
3489 
3490 	pr_vdebug("Buffer from user space:\n");
3491 	ffs_dump_mem("", data, len);
3492 
3493 	return data;
3494 }
3495 
3496 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3497 MODULE_LICENSE("GPL");
3498 MODULE_AUTHOR("Michal Nazarewicz");
3499