xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 09de5cd2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[16];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 
126 	int				status;	/* P: epfile->mutex */
127 };
128 
129 struct ffs_epfile {
130 	/* Protects ep->ep and ep->req. */
131 	struct mutex			mutex;
132 
133 	struct ffs_data			*ffs;
134 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
135 
136 	struct dentry			*dentry;
137 
138 	/*
139 	 * Buffer for holding data from partial reads which may happen since
140 	 * we’re rounding user read requests to a multiple of a max packet size.
141 	 *
142 	 * The pointer is initialised with NULL value and may be set by
143 	 * __ffs_epfile_read_data function to point to a temporary buffer.
144 	 *
145 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 	 * data from said buffer and eventually free it.  Importantly, while the
147 	 * function is using the buffer, it sets the pointer to NULL.  This is
148 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 	 * can never run concurrently (they are synchronised by epfile->mutex)
150 	 * so the latter will not assign a new value to the pointer.
151 	 *
152 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
154 	 * value is crux of the synchronisation between ffs_func_eps_disable and
155 	 * __ffs_epfile_read_data.
156 	 *
157 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 	 * pointer back to its old value (as described above), but seeing as the
159 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 	 * the buffer.
161 	 *
162 	 * == State transitions ==
163 	 *
164 	 * • ptr == NULL:  (initial state)
165 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 	 *   ◦ __ffs_epfile_read_buffered:    nop
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == DROP:
170 	 *   ◦ __ffs_epfile_read_buffer_free: nop
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
172 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
174 	 * • ptr == buf:
175 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
177 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
178 	 *                                    is always called first
179 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
180 	 * • ptr == NULL and reading:
181 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
183 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
184 	 *   ◦ reading finishes and …
185 	 *     … all data read:               free buf, go to ptr == NULL
186 	 *     … otherwise:                   go to ptr == buf and reading
187 	 * • ptr == DROP and reading:
188 	 *   ◦ __ffs_epfile_read_buffer_free: nop
189 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
190 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
191 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
192 	 */
193 	struct ffs_buffer		*read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195 
196 	char				name[5];
197 
198 	unsigned char			in;	/* P: ffs->eps_lock */
199 	unsigned char			isoc;	/* P: ffs->eps_lock */
200 
201 	unsigned char			_pad;
202 };
203 
204 struct ffs_buffer {
205 	size_t length;
206 	char *data;
207 	char storage[];
208 };
209 
210 /*  ffs_io_data structure ***************************************************/
211 
212 struct ffs_io_data {
213 	bool aio;
214 	bool read;
215 
216 	struct kiocb *kiocb;
217 	struct iov_iter data;
218 	const void *to_free;
219 	char *buf;
220 
221 	struct mm_struct *mm;
222 	struct work_struct work;
223 
224 	struct usb_ep *ep;
225 	struct usb_request *req;
226 	struct sg_table sgt;
227 	bool use_sg;
228 
229 	struct ffs_data *ffs;
230 };
231 
232 struct ffs_desc_helper {
233 	struct ffs_data *ffs;
234 	unsigned interfaces_count;
235 	unsigned eps_count;
236 };
237 
238 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240 
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 		   const struct file_operations *fops);
244 
245 /* Devices management *******************************************************/
246 
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249 
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
254 static void ffs_release_dev(struct ffs_dev *ffs_dev);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257 
258 /* Misc helper functions ****************************************************/
259 
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 	__attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 	__attribute__((warn_unused_result, nonnull));
264 
265 
266 /* Control file aka ep0 *****************************************************/
267 
268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 	struct ffs_data *ffs = req->context;
271 
272 	complete(&ffs->ep0req_completion);
273 }
274 
275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 	__releases(&ffs->ev.waitq.lock)
277 {
278 	struct usb_request *req = ffs->ep0req;
279 	int ret;
280 
281 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
282 
283 	spin_unlock_irq(&ffs->ev.waitq.lock);
284 
285 	req->buf      = data;
286 	req->length   = len;
287 
288 	/*
289 	 * UDC layer requires to provide a buffer even for ZLP, but should
290 	 * not use it at all. Let's provide some poisoned pointer to catch
291 	 * possible bug in the driver.
292 	 */
293 	if (req->buf == NULL)
294 		req->buf = (void *)0xDEADBABE;
295 
296 	reinit_completion(&ffs->ep0req_completion);
297 
298 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
299 	if (ret < 0)
300 		return ret;
301 
302 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
303 	if (ret) {
304 		usb_ep_dequeue(ffs->gadget->ep0, req);
305 		return -EINTR;
306 	}
307 
308 	ffs->setup_state = FFS_NO_SETUP;
309 	return req->status ? req->status : req->actual;
310 }
311 
312 static int __ffs_ep0_stall(struct ffs_data *ffs)
313 {
314 	if (ffs->ev.can_stall) {
315 		pr_vdebug("ep0 stall\n");
316 		usb_ep_set_halt(ffs->gadget->ep0);
317 		ffs->setup_state = FFS_NO_SETUP;
318 		return -EL2HLT;
319 	} else {
320 		pr_debug("bogus ep0 stall!\n");
321 		return -ESRCH;
322 	}
323 }
324 
325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
326 			     size_t len, loff_t *ptr)
327 {
328 	struct ffs_data *ffs = file->private_data;
329 	ssize_t ret;
330 	char *data;
331 
332 	ENTER();
333 
334 	/* Fast check if setup was canceled */
335 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336 		return -EIDRM;
337 
338 	/* Acquire mutex */
339 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
340 	if (ret < 0)
341 		return ret;
342 
343 	/* Check state */
344 	switch (ffs->state) {
345 	case FFS_READ_DESCRIPTORS:
346 	case FFS_READ_STRINGS:
347 		/* Copy data */
348 		if (len < 16) {
349 			ret = -EINVAL;
350 			break;
351 		}
352 
353 		data = ffs_prepare_buffer(buf, len);
354 		if (IS_ERR(data)) {
355 			ret = PTR_ERR(data);
356 			break;
357 		}
358 
359 		/* Handle data */
360 		if (ffs->state == FFS_READ_DESCRIPTORS) {
361 			pr_info("read descriptors\n");
362 			ret = __ffs_data_got_descs(ffs, data, len);
363 			if (ret < 0)
364 				break;
365 
366 			ffs->state = FFS_READ_STRINGS;
367 			ret = len;
368 		} else {
369 			pr_info("read strings\n");
370 			ret = __ffs_data_got_strings(ffs, data, len);
371 			if (ret < 0)
372 				break;
373 
374 			ret = ffs_epfiles_create(ffs);
375 			if (ret) {
376 				ffs->state = FFS_CLOSING;
377 				break;
378 			}
379 
380 			ffs->state = FFS_ACTIVE;
381 			mutex_unlock(&ffs->mutex);
382 
383 			ret = ffs_ready(ffs);
384 			if (ret < 0) {
385 				ffs->state = FFS_CLOSING;
386 				return ret;
387 			}
388 
389 			return len;
390 		}
391 		break;
392 
393 	case FFS_ACTIVE:
394 		data = NULL;
395 		/*
396 		 * We're called from user space, we can use _irq
397 		 * rather then _irqsave
398 		 */
399 		spin_lock_irq(&ffs->ev.waitq.lock);
400 		switch (ffs_setup_state_clear_cancelled(ffs)) {
401 		case FFS_SETUP_CANCELLED:
402 			ret = -EIDRM;
403 			goto done_spin;
404 
405 		case FFS_NO_SETUP:
406 			ret = -ESRCH;
407 			goto done_spin;
408 
409 		case FFS_SETUP_PENDING:
410 			break;
411 		}
412 
413 		/* FFS_SETUP_PENDING */
414 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
415 			spin_unlock_irq(&ffs->ev.waitq.lock);
416 			ret = __ffs_ep0_stall(ffs);
417 			break;
418 		}
419 
420 		/* FFS_SETUP_PENDING and not stall */
421 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
422 
423 		spin_unlock_irq(&ffs->ev.waitq.lock);
424 
425 		data = ffs_prepare_buffer(buf, len);
426 		if (IS_ERR(data)) {
427 			ret = PTR_ERR(data);
428 			break;
429 		}
430 
431 		spin_lock_irq(&ffs->ev.waitq.lock);
432 
433 		/*
434 		 * We are guaranteed to be still in FFS_ACTIVE state
435 		 * but the state of setup could have changed from
436 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437 		 * to check for that.  If that happened we copied data
438 		 * from user space in vain but it's unlikely.
439 		 *
440 		 * For sure we are not in FFS_NO_SETUP since this is
441 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
442 		 * transition can be performed and it's protected by
443 		 * mutex.
444 		 */
445 		if (ffs_setup_state_clear_cancelled(ffs) ==
446 		    FFS_SETUP_CANCELLED) {
447 			ret = -EIDRM;
448 done_spin:
449 			spin_unlock_irq(&ffs->ev.waitq.lock);
450 		} else {
451 			/* unlocks spinlock */
452 			ret = __ffs_ep0_queue_wait(ffs, data, len);
453 		}
454 		kfree(data);
455 		break;
456 
457 	default:
458 		ret = -EBADFD;
459 		break;
460 	}
461 
462 	mutex_unlock(&ffs->mutex);
463 	return ret;
464 }
465 
466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
468 				     size_t n)
469 	__releases(&ffs->ev.waitq.lock)
470 {
471 	/*
472 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
473 	 * size of ffs->ev.types array (which is four) so that's how much space
474 	 * we reserve.
475 	 */
476 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
477 	const size_t size = n * sizeof *events;
478 	unsigned i = 0;
479 
480 	memset(events, 0, size);
481 
482 	do {
483 		events[i].type = ffs->ev.types[i];
484 		if (events[i].type == FUNCTIONFS_SETUP) {
485 			events[i].u.setup = ffs->ev.setup;
486 			ffs->setup_state = FFS_SETUP_PENDING;
487 		}
488 	} while (++i < n);
489 
490 	ffs->ev.count -= n;
491 	if (ffs->ev.count)
492 		memmove(ffs->ev.types, ffs->ev.types + n,
493 			ffs->ev.count * sizeof *ffs->ev.types);
494 
495 	spin_unlock_irq(&ffs->ev.waitq.lock);
496 	mutex_unlock(&ffs->mutex);
497 
498 	return copy_to_user(buf, events, size) ? -EFAULT : size;
499 }
500 
501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
502 			    size_t len, loff_t *ptr)
503 {
504 	struct ffs_data *ffs = file->private_data;
505 	char *data = NULL;
506 	size_t n;
507 	int ret;
508 
509 	ENTER();
510 
511 	/* Fast check if setup was canceled */
512 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513 		return -EIDRM;
514 
515 	/* Acquire mutex */
516 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
517 	if (ret < 0)
518 		return ret;
519 
520 	/* Check state */
521 	if (ffs->state != FFS_ACTIVE) {
522 		ret = -EBADFD;
523 		goto done_mutex;
524 	}
525 
526 	/*
527 	 * We're called from user space, we can use _irq rather then
528 	 * _irqsave
529 	 */
530 	spin_lock_irq(&ffs->ev.waitq.lock);
531 
532 	switch (ffs_setup_state_clear_cancelled(ffs)) {
533 	case FFS_SETUP_CANCELLED:
534 		ret = -EIDRM;
535 		break;
536 
537 	case FFS_NO_SETUP:
538 		n = len / sizeof(struct usb_functionfs_event);
539 		if (!n) {
540 			ret = -EINVAL;
541 			break;
542 		}
543 
544 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
545 			ret = -EAGAIN;
546 			break;
547 		}
548 
549 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
550 							ffs->ev.count)) {
551 			ret = -EINTR;
552 			break;
553 		}
554 
555 		/* unlocks spinlock */
556 		return __ffs_ep0_read_events(ffs, buf,
557 					     min(n, (size_t)ffs->ev.count));
558 
559 	case FFS_SETUP_PENDING:
560 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
561 			spin_unlock_irq(&ffs->ev.waitq.lock);
562 			ret = __ffs_ep0_stall(ffs);
563 			goto done_mutex;
564 		}
565 
566 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
567 
568 		spin_unlock_irq(&ffs->ev.waitq.lock);
569 
570 		if (len) {
571 			data = kmalloc(len, GFP_KERNEL);
572 			if (!data) {
573 				ret = -ENOMEM;
574 				goto done_mutex;
575 			}
576 		}
577 
578 		spin_lock_irq(&ffs->ev.waitq.lock);
579 
580 		/* See ffs_ep0_write() */
581 		if (ffs_setup_state_clear_cancelled(ffs) ==
582 		    FFS_SETUP_CANCELLED) {
583 			ret = -EIDRM;
584 			break;
585 		}
586 
587 		/* unlocks spinlock */
588 		ret = __ffs_ep0_queue_wait(ffs, data, len);
589 		if ((ret > 0) && (copy_to_user(buf, data, len)))
590 			ret = -EFAULT;
591 		goto done_mutex;
592 
593 	default:
594 		ret = -EBADFD;
595 		break;
596 	}
597 
598 	spin_unlock_irq(&ffs->ev.waitq.lock);
599 done_mutex:
600 	mutex_unlock(&ffs->mutex);
601 	kfree(data);
602 	return ret;
603 }
604 
605 static int ffs_ep0_open(struct inode *inode, struct file *file)
606 {
607 	struct ffs_data *ffs = inode->i_private;
608 
609 	ENTER();
610 
611 	if (ffs->state == FFS_CLOSING)
612 		return -EBUSY;
613 
614 	file->private_data = ffs;
615 	ffs_data_opened(ffs);
616 
617 	return stream_open(inode, file);
618 }
619 
620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622 	struct ffs_data *ffs = file->private_data;
623 
624 	ENTER();
625 
626 	ffs_data_closed(ffs);
627 
628 	return 0;
629 }
630 
631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
632 {
633 	struct ffs_data *ffs = file->private_data;
634 	struct usb_gadget *gadget = ffs->gadget;
635 	long ret;
636 
637 	ENTER();
638 
639 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
640 		struct ffs_function *func = ffs->func;
641 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642 	} else if (gadget && gadget->ops->ioctl) {
643 		ret = gadget->ops->ioctl(gadget, code, value);
644 	} else {
645 		ret = -ENOTTY;
646 	}
647 
648 	return ret;
649 }
650 
651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 {
653 	struct ffs_data *ffs = file->private_data;
654 	__poll_t mask = EPOLLWRNORM;
655 	int ret;
656 
657 	poll_wait(file, &ffs->ev.waitq, wait);
658 
659 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
660 	if (ret < 0)
661 		return mask;
662 
663 	switch (ffs->state) {
664 	case FFS_READ_DESCRIPTORS:
665 	case FFS_READ_STRINGS:
666 		mask |= EPOLLOUT;
667 		break;
668 
669 	case FFS_ACTIVE:
670 		switch (ffs->setup_state) {
671 		case FFS_NO_SETUP:
672 			if (ffs->ev.count)
673 				mask |= EPOLLIN;
674 			break;
675 
676 		case FFS_SETUP_PENDING:
677 		case FFS_SETUP_CANCELLED:
678 			mask |= (EPOLLIN | EPOLLOUT);
679 			break;
680 		}
681 		break;
682 
683 	case FFS_CLOSING:
684 		break;
685 	case FFS_DEACTIVATED:
686 		break;
687 	}
688 
689 	mutex_unlock(&ffs->mutex);
690 
691 	return mask;
692 }
693 
694 static const struct file_operations ffs_ep0_operations = {
695 	.llseek =	no_llseek,
696 
697 	.open =		ffs_ep0_open,
698 	.write =	ffs_ep0_write,
699 	.read =		ffs_ep0_read,
700 	.release =	ffs_ep0_release,
701 	.unlocked_ioctl =	ffs_ep0_ioctl,
702 	.poll =		ffs_ep0_poll,
703 };
704 
705 
706 /* "Normal" endpoints operations ********************************************/
707 
708 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
709 {
710 	ENTER();
711 	if (req->context) {
712 		struct ffs_ep *ep = _ep->driver_data;
713 		ep->status = req->status ? req->status : req->actual;
714 		complete(req->context);
715 	}
716 }
717 
718 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
719 {
720 	ssize_t ret = copy_to_iter(data, data_len, iter);
721 	if (ret == data_len)
722 		return ret;
723 
724 	if (iov_iter_count(iter))
725 		return -EFAULT;
726 
727 	/*
728 	 * Dear user space developer!
729 	 *
730 	 * TL;DR: To stop getting below error message in your kernel log, change
731 	 * user space code using functionfs to align read buffers to a max
732 	 * packet size.
733 	 *
734 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
735 	 * packet size.  When unaligned buffer is passed to functionfs, it
736 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
737 	 *
738 	 * Unfortunately, this means that host may send more data than was
739 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
740 	 * that excess data so it simply drops it.
741 	 *
742 	 * Was the buffer aligned in the first place, no such problem would
743 	 * happen.
744 	 *
745 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
746 	 * by splitting a request into multiple parts.  This splitting may still
747 	 * be a problem though so it’s likely best to align the buffer
748 	 * regardless of it being AIO or not..
749 	 *
750 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
751 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
752 	 * affected.
753 	 */
754 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
755 	       "Align read buffer size to max packet size to avoid the problem.\n",
756 	       data_len, ret);
757 
758 	return ret;
759 }
760 
761 /*
762  * allocate a virtually contiguous buffer and create a scatterlist describing it
763  * @sg_table	- pointer to a place to be filled with sg_table contents
764  * @size	- required buffer size
765  */
766 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
767 {
768 	struct page **pages;
769 	void *vaddr, *ptr;
770 	unsigned int n_pages;
771 	int i;
772 
773 	vaddr = vmalloc(sz);
774 	if (!vaddr)
775 		return NULL;
776 
777 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
778 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
779 	if (!pages) {
780 		vfree(vaddr);
781 
782 		return NULL;
783 	}
784 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
785 		pages[i] = vmalloc_to_page(ptr);
786 
787 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
788 		kvfree(pages);
789 		vfree(vaddr);
790 
791 		return NULL;
792 	}
793 	kvfree(pages);
794 
795 	return vaddr;
796 }
797 
798 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
799 	size_t data_len)
800 {
801 	if (io_data->use_sg)
802 		return ffs_build_sg_list(&io_data->sgt, data_len);
803 
804 	return kmalloc(data_len, GFP_KERNEL);
805 }
806 
807 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
808 {
809 	if (!io_data->buf)
810 		return;
811 
812 	if (io_data->use_sg) {
813 		sg_free_table(&io_data->sgt);
814 		vfree(io_data->buf);
815 	} else {
816 		kfree(io_data->buf);
817 	}
818 }
819 
820 static void ffs_user_copy_worker(struct work_struct *work)
821 {
822 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
823 						   work);
824 	int ret = io_data->req->status ? io_data->req->status :
825 					 io_data->req->actual;
826 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
827 
828 	if (io_data->read && ret > 0) {
829 		kthread_use_mm(io_data->mm);
830 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
831 		kthread_unuse_mm(io_data->mm);
832 	}
833 
834 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
835 
836 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
837 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
838 
839 	usb_ep_free_request(io_data->ep, io_data->req);
840 
841 	if (io_data->read)
842 		kfree(io_data->to_free);
843 	ffs_free_buffer(io_data);
844 	kfree(io_data);
845 }
846 
847 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
848 					 struct usb_request *req)
849 {
850 	struct ffs_io_data *io_data = req->context;
851 	struct ffs_data *ffs = io_data->ffs;
852 
853 	ENTER();
854 
855 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
856 	queue_work(ffs->io_completion_wq, &io_data->work);
857 }
858 
859 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
860 {
861 	/*
862 	 * See comment in struct ffs_epfile for full read_buffer pointer
863 	 * synchronisation story.
864 	 */
865 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
866 	if (buf && buf != READ_BUFFER_DROP)
867 		kfree(buf);
868 }
869 
870 /* Assumes epfile->mutex is held. */
871 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
872 					  struct iov_iter *iter)
873 {
874 	/*
875 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
876 	 * the buffer while we are using it.  See comment in struct ffs_epfile
877 	 * for full read_buffer pointer synchronisation story.
878 	 */
879 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
880 	ssize_t ret;
881 	if (!buf || buf == READ_BUFFER_DROP)
882 		return 0;
883 
884 	ret = copy_to_iter(buf->data, buf->length, iter);
885 	if (buf->length == ret) {
886 		kfree(buf);
887 		return ret;
888 	}
889 
890 	if (iov_iter_count(iter)) {
891 		ret = -EFAULT;
892 	} else {
893 		buf->length -= ret;
894 		buf->data += ret;
895 	}
896 
897 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
898 		kfree(buf);
899 
900 	return ret;
901 }
902 
903 /* Assumes epfile->mutex is held. */
904 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
905 				      void *data, int data_len,
906 				      struct iov_iter *iter)
907 {
908 	struct ffs_buffer *buf;
909 
910 	ssize_t ret = copy_to_iter(data, data_len, iter);
911 	if (data_len == ret)
912 		return ret;
913 
914 	if (iov_iter_count(iter))
915 		return -EFAULT;
916 
917 	/* See ffs_copy_to_iter for more context. */
918 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
919 		data_len, ret);
920 
921 	data_len -= ret;
922 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
923 	if (!buf)
924 		return -ENOMEM;
925 	buf->length = data_len;
926 	buf->data = buf->storage;
927 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
928 
929 	/*
930 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
931 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
932 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
933 	 * story.
934 	 */
935 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
936 		kfree(buf);
937 
938 	return ret;
939 }
940 
941 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
942 {
943 	struct ffs_epfile *epfile = file->private_data;
944 	struct usb_request *req;
945 	struct ffs_ep *ep;
946 	char *data = NULL;
947 	ssize_t ret, data_len = -EINVAL;
948 	int halt;
949 
950 	/* Are we still active? */
951 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
952 		return -ENODEV;
953 
954 	/* Wait for endpoint to be enabled */
955 	ep = epfile->ep;
956 	if (!ep) {
957 		if (file->f_flags & O_NONBLOCK)
958 			return -EAGAIN;
959 
960 		ret = wait_event_interruptible(
961 				epfile->ffs->wait, (ep = epfile->ep));
962 		if (ret)
963 			return -EINTR;
964 	}
965 
966 	/* Do we halt? */
967 	halt = (!io_data->read == !epfile->in);
968 	if (halt && epfile->isoc)
969 		return -EINVAL;
970 
971 	/* We will be using request and read_buffer */
972 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
973 	if (ret)
974 		goto error;
975 
976 	/* Allocate & copy */
977 	if (!halt) {
978 		struct usb_gadget *gadget;
979 
980 		/*
981 		 * Do we have buffered data from previous partial read?  Check
982 		 * that for synchronous case only because we do not have
983 		 * facility to ‘wake up’ a pending asynchronous read and push
984 		 * buffered data to it which we would need to make things behave
985 		 * consistently.
986 		 */
987 		if (!io_data->aio && io_data->read) {
988 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
989 			if (ret)
990 				goto error_mutex;
991 		}
992 
993 		/*
994 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
995 		 * before the waiting completes, so do not assign to 'gadget'
996 		 * earlier
997 		 */
998 		gadget = epfile->ffs->gadget;
999 
1000 		spin_lock_irq(&epfile->ffs->eps_lock);
1001 		/* In the meantime, endpoint got disabled or changed. */
1002 		if (epfile->ep != ep) {
1003 			ret = -ESHUTDOWN;
1004 			goto error_lock;
1005 		}
1006 		data_len = iov_iter_count(&io_data->data);
1007 		/*
1008 		 * Controller may require buffer size to be aligned to
1009 		 * maxpacketsize of an out endpoint.
1010 		 */
1011 		if (io_data->read)
1012 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1013 
1014 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1015 		spin_unlock_irq(&epfile->ffs->eps_lock);
1016 
1017 		data = ffs_alloc_buffer(io_data, data_len);
1018 		if (!data) {
1019 			ret = -ENOMEM;
1020 			goto error_mutex;
1021 		}
1022 		if (!io_data->read &&
1023 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1024 			ret = -EFAULT;
1025 			goto error_mutex;
1026 		}
1027 	}
1028 
1029 	spin_lock_irq(&epfile->ffs->eps_lock);
1030 
1031 	if (epfile->ep != ep) {
1032 		/* In the meantime, endpoint got disabled or changed. */
1033 		ret = -ESHUTDOWN;
1034 	} else if (halt) {
1035 		ret = usb_ep_set_halt(ep->ep);
1036 		if (!ret)
1037 			ret = -EBADMSG;
1038 	} else if (data_len == -EINVAL) {
1039 		/*
1040 		 * Sanity Check: even though data_len can't be used
1041 		 * uninitialized at the time I write this comment, some
1042 		 * compilers complain about this situation.
1043 		 * In order to keep the code clean from warnings, data_len is
1044 		 * being initialized to -EINVAL during its declaration, which
1045 		 * means we can't rely on compiler anymore to warn no future
1046 		 * changes won't result in data_len being used uninitialized.
1047 		 * For such reason, we're adding this redundant sanity check
1048 		 * here.
1049 		 */
1050 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1051 		ret = -EINVAL;
1052 	} else if (!io_data->aio) {
1053 		DECLARE_COMPLETION_ONSTACK(done);
1054 		bool interrupted = false;
1055 
1056 		req = ep->req;
1057 		if (io_data->use_sg) {
1058 			req->buf = NULL;
1059 			req->sg	= io_data->sgt.sgl;
1060 			req->num_sgs = io_data->sgt.nents;
1061 		} else {
1062 			req->buf = data;
1063 			req->num_sgs = 0;
1064 		}
1065 		req->length = data_len;
1066 
1067 		io_data->buf = data;
1068 
1069 		req->context  = &done;
1070 		req->complete = ffs_epfile_io_complete;
1071 
1072 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1073 		if (ret < 0)
1074 			goto error_lock;
1075 
1076 		spin_unlock_irq(&epfile->ffs->eps_lock);
1077 
1078 		if (wait_for_completion_interruptible(&done)) {
1079 			/*
1080 			 * To avoid race condition with ffs_epfile_io_complete,
1081 			 * dequeue the request first then check
1082 			 * status. usb_ep_dequeue API should guarantee no race
1083 			 * condition with req->complete callback.
1084 			 */
1085 			usb_ep_dequeue(ep->ep, req);
1086 			wait_for_completion(&done);
1087 			interrupted = ep->status < 0;
1088 		}
1089 
1090 		if (interrupted)
1091 			ret = -EINTR;
1092 		else if (io_data->read && ep->status > 0)
1093 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1094 						     &io_data->data);
1095 		else
1096 			ret = ep->status;
1097 		goto error_mutex;
1098 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1099 		ret = -ENOMEM;
1100 	} else {
1101 		if (io_data->use_sg) {
1102 			req->buf = NULL;
1103 			req->sg	= io_data->sgt.sgl;
1104 			req->num_sgs = io_data->sgt.nents;
1105 		} else {
1106 			req->buf = data;
1107 			req->num_sgs = 0;
1108 		}
1109 		req->length = data_len;
1110 
1111 		io_data->buf = data;
1112 		io_data->ep = ep->ep;
1113 		io_data->req = req;
1114 		io_data->ffs = epfile->ffs;
1115 
1116 		req->context  = io_data;
1117 		req->complete = ffs_epfile_async_io_complete;
1118 
1119 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120 		if (ret) {
1121 			io_data->req = NULL;
1122 			usb_ep_free_request(ep->ep, req);
1123 			goto error_lock;
1124 		}
1125 
1126 		ret = -EIOCBQUEUED;
1127 		/*
1128 		 * Do not kfree the buffer in this function.  It will be freed
1129 		 * by ffs_user_copy_worker.
1130 		 */
1131 		data = NULL;
1132 	}
1133 
1134 error_lock:
1135 	spin_unlock_irq(&epfile->ffs->eps_lock);
1136 error_mutex:
1137 	mutex_unlock(&epfile->mutex);
1138 error:
1139 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1140 		ffs_free_buffer(io_data);
1141 	return ret;
1142 }
1143 
1144 static int
1145 ffs_epfile_open(struct inode *inode, struct file *file)
1146 {
1147 	struct ffs_epfile *epfile = inode->i_private;
1148 
1149 	ENTER();
1150 
1151 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1152 		return -ENODEV;
1153 
1154 	file->private_data = epfile;
1155 	ffs_data_opened(epfile->ffs);
1156 
1157 	return stream_open(inode, file);
1158 }
1159 
1160 static int ffs_aio_cancel(struct kiocb *kiocb)
1161 {
1162 	struct ffs_io_data *io_data = kiocb->private;
1163 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1164 	unsigned long flags;
1165 	int value;
1166 
1167 	ENTER();
1168 
1169 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1170 
1171 	if (io_data && io_data->ep && io_data->req)
1172 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1173 	else
1174 		value = -EINVAL;
1175 
1176 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1177 
1178 	return value;
1179 }
1180 
1181 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1182 {
1183 	struct ffs_io_data io_data, *p = &io_data;
1184 	ssize_t res;
1185 
1186 	ENTER();
1187 
1188 	if (!is_sync_kiocb(kiocb)) {
1189 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1190 		if (!p)
1191 			return -ENOMEM;
1192 		p->aio = true;
1193 	} else {
1194 		memset(p, 0, sizeof(*p));
1195 		p->aio = false;
1196 	}
1197 
1198 	p->read = false;
1199 	p->kiocb = kiocb;
1200 	p->data = *from;
1201 	p->mm = current->mm;
1202 
1203 	kiocb->private = p;
1204 
1205 	if (p->aio)
1206 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1207 
1208 	res = ffs_epfile_io(kiocb->ki_filp, p);
1209 	if (res == -EIOCBQUEUED)
1210 		return res;
1211 	if (p->aio)
1212 		kfree(p);
1213 	else
1214 		*from = p->data;
1215 	return res;
1216 }
1217 
1218 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1219 {
1220 	struct ffs_io_data io_data, *p = &io_data;
1221 	ssize_t res;
1222 
1223 	ENTER();
1224 
1225 	if (!is_sync_kiocb(kiocb)) {
1226 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1227 		if (!p)
1228 			return -ENOMEM;
1229 		p->aio = true;
1230 	} else {
1231 		memset(p, 0, sizeof(*p));
1232 		p->aio = false;
1233 	}
1234 
1235 	p->read = true;
1236 	p->kiocb = kiocb;
1237 	if (p->aio) {
1238 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1239 		if (!p->to_free) {
1240 			kfree(p);
1241 			return -ENOMEM;
1242 		}
1243 	} else {
1244 		p->data = *to;
1245 		p->to_free = NULL;
1246 	}
1247 	p->mm = current->mm;
1248 
1249 	kiocb->private = p;
1250 
1251 	if (p->aio)
1252 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1253 
1254 	res = ffs_epfile_io(kiocb->ki_filp, p);
1255 	if (res == -EIOCBQUEUED)
1256 		return res;
1257 
1258 	if (p->aio) {
1259 		kfree(p->to_free);
1260 		kfree(p);
1261 	} else {
1262 		*to = p->data;
1263 	}
1264 	return res;
1265 }
1266 
1267 static int
1268 ffs_epfile_release(struct inode *inode, struct file *file)
1269 {
1270 	struct ffs_epfile *epfile = inode->i_private;
1271 
1272 	ENTER();
1273 
1274 	__ffs_epfile_read_buffer_free(epfile);
1275 	ffs_data_closed(epfile->ffs);
1276 
1277 	return 0;
1278 }
1279 
1280 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1281 			     unsigned long value)
1282 {
1283 	struct ffs_epfile *epfile = file->private_data;
1284 	struct ffs_ep *ep;
1285 	int ret;
1286 
1287 	ENTER();
1288 
1289 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1290 		return -ENODEV;
1291 
1292 	/* Wait for endpoint to be enabled */
1293 	ep = epfile->ep;
1294 	if (!ep) {
1295 		if (file->f_flags & O_NONBLOCK)
1296 			return -EAGAIN;
1297 
1298 		ret = wait_event_interruptible(
1299 				epfile->ffs->wait, (ep = epfile->ep));
1300 		if (ret)
1301 			return -EINTR;
1302 	}
1303 
1304 	spin_lock_irq(&epfile->ffs->eps_lock);
1305 
1306 	/* In the meantime, endpoint got disabled or changed. */
1307 	if (epfile->ep != ep) {
1308 		spin_unlock_irq(&epfile->ffs->eps_lock);
1309 		return -ESHUTDOWN;
1310 	}
1311 
1312 	switch (code) {
1313 	case FUNCTIONFS_FIFO_STATUS:
1314 		ret = usb_ep_fifo_status(epfile->ep->ep);
1315 		break;
1316 	case FUNCTIONFS_FIFO_FLUSH:
1317 		usb_ep_fifo_flush(epfile->ep->ep);
1318 		ret = 0;
1319 		break;
1320 	case FUNCTIONFS_CLEAR_HALT:
1321 		ret = usb_ep_clear_halt(epfile->ep->ep);
1322 		break;
1323 	case FUNCTIONFS_ENDPOINT_REVMAP:
1324 		ret = epfile->ep->num;
1325 		break;
1326 	case FUNCTIONFS_ENDPOINT_DESC:
1327 	{
1328 		int desc_idx;
1329 		struct usb_endpoint_descriptor desc1, *desc;
1330 
1331 		switch (epfile->ffs->gadget->speed) {
1332 		case USB_SPEED_SUPER:
1333 		case USB_SPEED_SUPER_PLUS:
1334 			desc_idx = 2;
1335 			break;
1336 		case USB_SPEED_HIGH:
1337 			desc_idx = 1;
1338 			break;
1339 		default:
1340 			desc_idx = 0;
1341 		}
1342 
1343 		desc = epfile->ep->descs[desc_idx];
1344 		memcpy(&desc1, desc, desc->bLength);
1345 
1346 		spin_unlock_irq(&epfile->ffs->eps_lock);
1347 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1348 		if (ret)
1349 			ret = -EFAULT;
1350 		return ret;
1351 	}
1352 	default:
1353 		ret = -ENOTTY;
1354 	}
1355 	spin_unlock_irq(&epfile->ffs->eps_lock);
1356 
1357 	return ret;
1358 }
1359 
1360 static const struct file_operations ffs_epfile_operations = {
1361 	.llseek =	no_llseek,
1362 
1363 	.open =		ffs_epfile_open,
1364 	.write_iter =	ffs_epfile_write_iter,
1365 	.read_iter =	ffs_epfile_read_iter,
1366 	.release =	ffs_epfile_release,
1367 	.unlocked_ioctl =	ffs_epfile_ioctl,
1368 	.compat_ioctl = compat_ptr_ioctl,
1369 };
1370 
1371 
1372 /* File system and super block operations ***********************************/
1373 
1374 /*
1375  * Mounting the file system creates a controller file, used first for
1376  * function configuration then later for event monitoring.
1377  */
1378 
1379 static struct inode *__must_check
1380 ffs_sb_make_inode(struct super_block *sb, void *data,
1381 		  const struct file_operations *fops,
1382 		  const struct inode_operations *iops,
1383 		  struct ffs_file_perms *perms)
1384 {
1385 	struct inode *inode;
1386 
1387 	ENTER();
1388 
1389 	inode = new_inode(sb);
1390 
1391 	if (inode) {
1392 		struct timespec64 ts = current_time(inode);
1393 
1394 		inode->i_ino	 = get_next_ino();
1395 		inode->i_mode    = perms->mode;
1396 		inode->i_uid     = perms->uid;
1397 		inode->i_gid     = perms->gid;
1398 		inode->i_atime   = ts;
1399 		inode->i_mtime   = ts;
1400 		inode->i_ctime   = ts;
1401 		inode->i_private = data;
1402 		if (fops)
1403 			inode->i_fop = fops;
1404 		if (iops)
1405 			inode->i_op  = iops;
1406 	}
1407 
1408 	return inode;
1409 }
1410 
1411 /* Create "regular" file */
1412 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1413 					const char *name, void *data,
1414 					const struct file_operations *fops)
1415 {
1416 	struct ffs_data	*ffs = sb->s_fs_info;
1417 	struct dentry	*dentry;
1418 	struct inode	*inode;
1419 
1420 	ENTER();
1421 
1422 	dentry = d_alloc_name(sb->s_root, name);
1423 	if (!dentry)
1424 		return NULL;
1425 
1426 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1427 	if (!inode) {
1428 		dput(dentry);
1429 		return NULL;
1430 	}
1431 
1432 	d_add(dentry, inode);
1433 	return dentry;
1434 }
1435 
1436 /* Super block */
1437 static const struct super_operations ffs_sb_operations = {
1438 	.statfs =	simple_statfs,
1439 	.drop_inode =	generic_delete_inode,
1440 };
1441 
1442 struct ffs_sb_fill_data {
1443 	struct ffs_file_perms perms;
1444 	umode_t root_mode;
1445 	const char *dev_name;
1446 	bool no_disconnect;
1447 	struct ffs_data *ffs_data;
1448 };
1449 
1450 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1451 {
1452 	struct ffs_sb_fill_data *data = fc->fs_private;
1453 	struct inode	*inode;
1454 	struct ffs_data	*ffs = data->ffs_data;
1455 
1456 	ENTER();
1457 
1458 	ffs->sb              = sb;
1459 	data->ffs_data       = NULL;
1460 	sb->s_fs_info        = ffs;
1461 	sb->s_blocksize      = PAGE_SIZE;
1462 	sb->s_blocksize_bits = PAGE_SHIFT;
1463 	sb->s_magic          = FUNCTIONFS_MAGIC;
1464 	sb->s_op             = &ffs_sb_operations;
1465 	sb->s_time_gran      = 1;
1466 
1467 	/* Root inode */
1468 	data->perms.mode = data->root_mode;
1469 	inode = ffs_sb_make_inode(sb, NULL,
1470 				  &simple_dir_operations,
1471 				  &simple_dir_inode_operations,
1472 				  &data->perms);
1473 	sb->s_root = d_make_root(inode);
1474 	if (!sb->s_root)
1475 		return -ENOMEM;
1476 
1477 	/* EP0 file */
1478 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1479 		return -ENOMEM;
1480 
1481 	return 0;
1482 }
1483 
1484 enum {
1485 	Opt_no_disconnect,
1486 	Opt_rmode,
1487 	Opt_fmode,
1488 	Opt_mode,
1489 	Opt_uid,
1490 	Opt_gid,
1491 };
1492 
1493 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1494 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1495 	fsparam_u32	("rmode",		Opt_rmode),
1496 	fsparam_u32	("fmode",		Opt_fmode),
1497 	fsparam_u32	("mode",		Opt_mode),
1498 	fsparam_u32	("uid",			Opt_uid),
1499 	fsparam_u32	("gid",			Opt_gid),
1500 	{}
1501 };
1502 
1503 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1504 {
1505 	struct ffs_sb_fill_data *data = fc->fs_private;
1506 	struct fs_parse_result result;
1507 	int opt;
1508 
1509 	ENTER();
1510 
1511 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1512 	if (opt < 0)
1513 		return opt;
1514 
1515 	switch (opt) {
1516 	case Opt_no_disconnect:
1517 		data->no_disconnect = result.boolean;
1518 		break;
1519 	case Opt_rmode:
1520 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1521 		break;
1522 	case Opt_fmode:
1523 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1524 		break;
1525 	case Opt_mode:
1526 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1527 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1528 		break;
1529 
1530 	case Opt_uid:
1531 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1532 		if (!uid_valid(data->perms.uid))
1533 			goto unmapped_value;
1534 		break;
1535 	case Opt_gid:
1536 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1537 		if (!gid_valid(data->perms.gid))
1538 			goto unmapped_value;
1539 		break;
1540 
1541 	default:
1542 		return -ENOPARAM;
1543 	}
1544 
1545 	return 0;
1546 
1547 unmapped_value:
1548 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1549 }
1550 
1551 /*
1552  * Set up the superblock for a mount.
1553  */
1554 static int ffs_fs_get_tree(struct fs_context *fc)
1555 {
1556 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1557 	struct ffs_data	*ffs;
1558 	int ret;
1559 
1560 	ENTER();
1561 
1562 	if (!fc->source)
1563 		return invalf(fc, "No source specified");
1564 
1565 	ffs = ffs_data_new(fc->source);
1566 	if (!ffs)
1567 		return -ENOMEM;
1568 	ffs->file_perms = ctx->perms;
1569 	ffs->no_disconnect = ctx->no_disconnect;
1570 
1571 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1572 	if (!ffs->dev_name) {
1573 		ffs_data_put(ffs);
1574 		return -ENOMEM;
1575 	}
1576 
1577 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
1578 	if (ret) {
1579 		ffs_data_put(ffs);
1580 		return ret;
1581 	}
1582 
1583 	ctx->ffs_data = ffs;
1584 	return get_tree_nodev(fc, ffs_sb_fill);
1585 }
1586 
1587 static void ffs_fs_free_fc(struct fs_context *fc)
1588 {
1589 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1590 
1591 	if (ctx) {
1592 		if (ctx->ffs_data) {
1593 			ffs_data_put(ctx->ffs_data);
1594 		}
1595 
1596 		kfree(ctx);
1597 	}
1598 }
1599 
1600 static const struct fs_context_operations ffs_fs_context_ops = {
1601 	.free		= ffs_fs_free_fc,
1602 	.parse_param	= ffs_fs_parse_param,
1603 	.get_tree	= ffs_fs_get_tree,
1604 };
1605 
1606 static int ffs_fs_init_fs_context(struct fs_context *fc)
1607 {
1608 	struct ffs_sb_fill_data *ctx;
1609 
1610 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1611 	if (!ctx)
1612 		return -ENOMEM;
1613 
1614 	ctx->perms.mode = S_IFREG | 0600;
1615 	ctx->perms.uid = GLOBAL_ROOT_UID;
1616 	ctx->perms.gid = GLOBAL_ROOT_GID;
1617 	ctx->root_mode = S_IFDIR | 0500;
1618 	ctx->no_disconnect = false;
1619 
1620 	fc->fs_private = ctx;
1621 	fc->ops = &ffs_fs_context_ops;
1622 	return 0;
1623 }
1624 
1625 static void
1626 ffs_fs_kill_sb(struct super_block *sb)
1627 {
1628 	ENTER();
1629 
1630 	kill_litter_super(sb);
1631 	if (sb->s_fs_info)
1632 		ffs_data_closed(sb->s_fs_info);
1633 }
1634 
1635 static struct file_system_type ffs_fs_type = {
1636 	.owner		= THIS_MODULE,
1637 	.name		= "functionfs",
1638 	.init_fs_context = ffs_fs_init_fs_context,
1639 	.parameters	= ffs_fs_fs_parameters,
1640 	.kill_sb	= ffs_fs_kill_sb,
1641 };
1642 MODULE_ALIAS_FS("functionfs");
1643 
1644 
1645 /* Driver's main init/cleanup functions *************************************/
1646 
1647 static int functionfs_init(void)
1648 {
1649 	int ret;
1650 
1651 	ENTER();
1652 
1653 	ret = register_filesystem(&ffs_fs_type);
1654 	if (!ret)
1655 		pr_info("file system registered\n");
1656 	else
1657 		pr_err("failed registering file system (%d)\n", ret);
1658 
1659 	return ret;
1660 }
1661 
1662 static void functionfs_cleanup(void)
1663 {
1664 	ENTER();
1665 
1666 	pr_info("unloading\n");
1667 	unregister_filesystem(&ffs_fs_type);
1668 }
1669 
1670 
1671 /* ffs_data and ffs_function construction and destruction code **************/
1672 
1673 static void ffs_data_clear(struct ffs_data *ffs);
1674 static void ffs_data_reset(struct ffs_data *ffs);
1675 
1676 static void ffs_data_get(struct ffs_data *ffs)
1677 {
1678 	ENTER();
1679 
1680 	refcount_inc(&ffs->ref);
1681 }
1682 
1683 static void ffs_data_opened(struct ffs_data *ffs)
1684 {
1685 	ENTER();
1686 
1687 	refcount_inc(&ffs->ref);
1688 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1689 			ffs->state == FFS_DEACTIVATED) {
1690 		ffs->state = FFS_CLOSING;
1691 		ffs_data_reset(ffs);
1692 	}
1693 }
1694 
1695 static void ffs_data_put(struct ffs_data *ffs)
1696 {
1697 	ENTER();
1698 
1699 	if (refcount_dec_and_test(&ffs->ref)) {
1700 		pr_info("%s(): freeing\n", __func__);
1701 		ffs_data_clear(ffs);
1702 		ffs_release_dev(ffs->private_data);
1703 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1704 		       swait_active(&ffs->ep0req_completion.wait) ||
1705 		       waitqueue_active(&ffs->wait));
1706 		destroy_workqueue(ffs->io_completion_wq);
1707 		kfree(ffs->dev_name);
1708 		kfree(ffs);
1709 	}
1710 }
1711 
1712 static void ffs_data_closed(struct ffs_data *ffs)
1713 {
1714 	struct ffs_epfile *epfiles;
1715 	unsigned long flags;
1716 
1717 	ENTER();
1718 
1719 	if (atomic_dec_and_test(&ffs->opened)) {
1720 		if (ffs->no_disconnect) {
1721 			ffs->state = FFS_DEACTIVATED;
1722 			spin_lock_irqsave(&ffs->eps_lock, flags);
1723 			epfiles = ffs->epfiles;
1724 			ffs->epfiles = NULL;
1725 			spin_unlock_irqrestore(&ffs->eps_lock,
1726 							flags);
1727 
1728 			if (epfiles)
1729 				ffs_epfiles_destroy(epfiles,
1730 						 ffs->eps_count);
1731 
1732 			if (ffs->setup_state == FFS_SETUP_PENDING)
1733 				__ffs_ep0_stall(ffs);
1734 		} else {
1735 			ffs->state = FFS_CLOSING;
1736 			ffs_data_reset(ffs);
1737 		}
1738 	}
1739 	if (atomic_read(&ffs->opened) < 0) {
1740 		ffs->state = FFS_CLOSING;
1741 		ffs_data_reset(ffs);
1742 	}
1743 
1744 	ffs_data_put(ffs);
1745 }
1746 
1747 static struct ffs_data *ffs_data_new(const char *dev_name)
1748 {
1749 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1750 	if (!ffs)
1751 		return NULL;
1752 
1753 	ENTER();
1754 
1755 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1756 	if (!ffs->io_completion_wq) {
1757 		kfree(ffs);
1758 		return NULL;
1759 	}
1760 
1761 	refcount_set(&ffs->ref, 1);
1762 	atomic_set(&ffs->opened, 0);
1763 	ffs->state = FFS_READ_DESCRIPTORS;
1764 	mutex_init(&ffs->mutex);
1765 	spin_lock_init(&ffs->eps_lock);
1766 	init_waitqueue_head(&ffs->ev.waitq);
1767 	init_waitqueue_head(&ffs->wait);
1768 	init_completion(&ffs->ep0req_completion);
1769 
1770 	/* XXX REVISIT need to update it in some places, or do we? */
1771 	ffs->ev.can_stall = 1;
1772 
1773 	return ffs;
1774 }
1775 
1776 static void ffs_data_clear(struct ffs_data *ffs)
1777 {
1778 	struct ffs_epfile *epfiles;
1779 	unsigned long flags;
1780 
1781 	ENTER();
1782 
1783 	ffs_closed(ffs);
1784 
1785 	BUG_ON(ffs->gadget);
1786 
1787 	spin_lock_irqsave(&ffs->eps_lock, flags);
1788 	epfiles = ffs->epfiles;
1789 	ffs->epfiles = NULL;
1790 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
1791 
1792 	/*
1793 	 * potential race possible between ffs_func_eps_disable
1794 	 * & ffs_epfile_release therefore maintaining a local
1795 	 * copy of epfile will save us from use-after-free.
1796 	 */
1797 	if (epfiles) {
1798 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
1799 		ffs->epfiles = NULL;
1800 	}
1801 
1802 	if (ffs->ffs_eventfd) {
1803 		eventfd_ctx_put(ffs->ffs_eventfd);
1804 		ffs->ffs_eventfd = NULL;
1805 	}
1806 
1807 	kfree(ffs->raw_descs_data);
1808 	kfree(ffs->raw_strings);
1809 	kfree(ffs->stringtabs);
1810 }
1811 
1812 static void ffs_data_reset(struct ffs_data *ffs)
1813 {
1814 	ENTER();
1815 
1816 	ffs_data_clear(ffs);
1817 
1818 	ffs->raw_descs_data = NULL;
1819 	ffs->raw_descs = NULL;
1820 	ffs->raw_strings = NULL;
1821 	ffs->stringtabs = NULL;
1822 
1823 	ffs->raw_descs_length = 0;
1824 	ffs->fs_descs_count = 0;
1825 	ffs->hs_descs_count = 0;
1826 	ffs->ss_descs_count = 0;
1827 
1828 	ffs->strings_count = 0;
1829 	ffs->interfaces_count = 0;
1830 	ffs->eps_count = 0;
1831 
1832 	ffs->ev.count = 0;
1833 
1834 	ffs->state = FFS_READ_DESCRIPTORS;
1835 	ffs->setup_state = FFS_NO_SETUP;
1836 	ffs->flags = 0;
1837 
1838 	ffs->ms_os_descs_ext_prop_count = 0;
1839 	ffs->ms_os_descs_ext_prop_name_len = 0;
1840 	ffs->ms_os_descs_ext_prop_data_len = 0;
1841 }
1842 
1843 
1844 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1845 {
1846 	struct usb_gadget_strings **lang;
1847 	int first_id;
1848 
1849 	ENTER();
1850 
1851 	if (WARN_ON(ffs->state != FFS_ACTIVE
1852 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1853 		return -EBADFD;
1854 
1855 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1856 	if (first_id < 0)
1857 		return first_id;
1858 
1859 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1860 	if (!ffs->ep0req)
1861 		return -ENOMEM;
1862 	ffs->ep0req->complete = ffs_ep0_complete;
1863 	ffs->ep0req->context = ffs;
1864 
1865 	lang = ffs->stringtabs;
1866 	if (lang) {
1867 		for (; *lang; ++lang) {
1868 			struct usb_string *str = (*lang)->strings;
1869 			int id = first_id;
1870 			for (; str->s; ++id, ++str)
1871 				str->id = id;
1872 		}
1873 	}
1874 
1875 	ffs->gadget = cdev->gadget;
1876 	ffs_data_get(ffs);
1877 	return 0;
1878 }
1879 
1880 static void functionfs_unbind(struct ffs_data *ffs)
1881 {
1882 	ENTER();
1883 
1884 	if (!WARN_ON(!ffs->gadget)) {
1885 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1886 		ffs->ep0req = NULL;
1887 		ffs->gadget = NULL;
1888 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1889 		ffs_data_put(ffs);
1890 	}
1891 }
1892 
1893 static int ffs_epfiles_create(struct ffs_data *ffs)
1894 {
1895 	struct ffs_epfile *epfile, *epfiles;
1896 	unsigned i, count;
1897 
1898 	ENTER();
1899 
1900 	count = ffs->eps_count;
1901 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1902 	if (!epfiles)
1903 		return -ENOMEM;
1904 
1905 	epfile = epfiles;
1906 	for (i = 1; i <= count; ++i, ++epfile) {
1907 		epfile->ffs = ffs;
1908 		mutex_init(&epfile->mutex);
1909 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1910 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1911 		else
1912 			sprintf(epfile->name, "ep%u", i);
1913 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1914 						 epfile,
1915 						 &ffs_epfile_operations);
1916 		if (!epfile->dentry) {
1917 			ffs_epfiles_destroy(epfiles, i - 1);
1918 			return -ENOMEM;
1919 		}
1920 	}
1921 
1922 	ffs->epfiles = epfiles;
1923 	return 0;
1924 }
1925 
1926 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1927 {
1928 	struct ffs_epfile *epfile = epfiles;
1929 
1930 	ENTER();
1931 
1932 	for (; count; --count, ++epfile) {
1933 		BUG_ON(mutex_is_locked(&epfile->mutex));
1934 		if (epfile->dentry) {
1935 			d_delete(epfile->dentry);
1936 			dput(epfile->dentry);
1937 			epfile->dentry = NULL;
1938 		}
1939 	}
1940 
1941 	kfree(epfiles);
1942 }
1943 
1944 static void ffs_func_eps_disable(struct ffs_function *func)
1945 {
1946 	struct ffs_ep *ep;
1947 	struct ffs_epfile *epfile;
1948 	unsigned short count;
1949 	unsigned long flags;
1950 
1951 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1952 	count = func->ffs->eps_count;
1953 	epfile = func->ffs->epfiles;
1954 	ep = func->eps;
1955 	while (count--) {
1956 		/* pending requests get nuked */
1957 		if (ep->ep)
1958 			usb_ep_disable(ep->ep);
1959 		++ep;
1960 
1961 		if (epfile) {
1962 			epfile->ep = NULL;
1963 			__ffs_epfile_read_buffer_free(epfile);
1964 			++epfile;
1965 		}
1966 	}
1967 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1968 }
1969 
1970 static int ffs_func_eps_enable(struct ffs_function *func)
1971 {
1972 	struct ffs_data *ffs;
1973 	struct ffs_ep *ep;
1974 	struct ffs_epfile *epfile;
1975 	unsigned short count;
1976 	unsigned long flags;
1977 	int ret = 0;
1978 
1979 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1980 	ffs = func->ffs;
1981 	ep = func->eps;
1982 	epfile = ffs->epfiles;
1983 	count = ffs->eps_count;
1984 	while(count--) {
1985 		ep->ep->driver_data = ep;
1986 
1987 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1988 		if (ret) {
1989 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1990 					__func__, ep->ep->name, ret);
1991 			break;
1992 		}
1993 
1994 		ret = usb_ep_enable(ep->ep);
1995 		if (!ret) {
1996 			epfile->ep = ep;
1997 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1998 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1999 		} else {
2000 			break;
2001 		}
2002 
2003 		++ep;
2004 		++epfile;
2005 	}
2006 
2007 	wake_up_interruptible(&ffs->wait);
2008 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2009 
2010 	return ret;
2011 }
2012 
2013 
2014 /* Parsing and building descriptors and strings *****************************/
2015 
2016 /*
2017  * This validates if data pointed by data is a valid USB descriptor as
2018  * well as record how many interfaces, endpoints and strings are
2019  * required by given configuration.  Returns address after the
2020  * descriptor or NULL if data is invalid.
2021  */
2022 
2023 enum ffs_entity_type {
2024 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2025 };
2026 
2027 enum ffs_os_desc_type {
2028 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2029 };
2030 
2031 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2032 				   u8 *valuep,
2033 				   struct usb_descriptor_header *desc,
2034 				   void *priv);
2035 
2036 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2037 				    struct usb_os_desc_header *h, void *data,
2038 				    unsigned len, void *priv);
2039 
2040 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2041 					   ffs_entity_callback entity,
2042 					   void *priv, int *current_class)
2043 {
2044 	struct usb_descriptor_header *_ds = (void *)data;
2045 	u8 length;
2046 	int ret;
2047 
2048 	ENTER();
2049 
2050 	/* At least two bytes are required: length and type */
2051 	if (len < 2) {
2052 		pr_vdebug("descriptor too short\n");
2053 		return -EINVAL;
2054 	}
2055 
2056 	/* If we have at least as many bytes as the descriptor takes? */
2057 	length = _ds->bLength;
2058 	if (len < length) {
2059 		pr_vdebug("descriptor longer then available data\n");
2060 		return -EINVAL;
2061 	}
2062 
2063 #define __entity_check_INTERFACE(val)  1
2064 #define __entity_check_STRING(val)     (val)
2065 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2066 #define __entity(type, val) do {					\
2067 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2068 		if (!__entity_check_ ##type(val)) {			\
2069 			pr_vdebug("invalid entity's value\n");		\
2070 			return -EINVAL;					\
2071 		}							\
2072 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2073 		if (ret < 0) {						\
2074 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2075 				 (val), ret);				\
2076 			return ret;					\
2077 		}							\
2078 	} while (0)
2079 
2080 	/* Parse descriptor depending on type. */
2081 	switch (_ds->bDescriptorType) {
2082 	case USB_DT_DEVICE:
2083 	case USB_DT_CONFIG:
2084 	case USB_DT_STRING:
2085 	case USB_DT_DEVICE_QUALIFIER:
2086 		/* function can't have any of those */
2087 		pr_vdebug("descriptor reserved for gadget: %d\n",
2088 		      _ds->bDescriptorType);
2089 		return -EINVAL;
2090 
2091 	case USB_DT_INTERFACE: {
2092 		struct usb_interface_descriptor *ds = (void *)_ds;
2093 		pr_vdebug("interface descriptor\n");
2094 		if (length != sizeof *ds)
2095 			goto inv_length;
2096 
2097 		__entity(INTERFACE, ds->bInterfaceNumber);
2098 		if (ds->iInterface)
2099 			__entity(STRING, ds->iInterface);
2100 		*current_class = ds->bInterfaceClass;
2101 	}
2102 		break;
2103 
2104 	case USB_DT_ENDPOINT: {
2105 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2106 		pr_vdebug("endpoint descriptor\n");
2107 		if (length != USB_DT_ENDPOINT_SIZE &&
2108 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2109 			goto inv_length;
2110 		__entity(ENDPOINT, ds->bEndpointAddress);
2111 	}
2112 		break;
2113 
2114 	case USB_TYPE_CLASS | 0x01:
2115 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2116 			pr_vdebug("hid descriptor\n");
2117 			if (length != sizeof(struct hid_descriptor))
2118 				goto inv_length;
2119 			break;
2120 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2121 			pr_vdebug("ccid descriptor\n");
2122 			if (length != sizeof(struct ccid_descriptor))
2123 				goto inv_length;
2124 			break;
2125 		} else {
2126 			pr_vdebug("unknown descriptor: %d for class %d\n",
2127 			      _ds->bDescriptorType, *current_class);
2128 			return -EINVAL;
2129 		}
2130 
2131 	case USB_DT_OTG:
2132 		if (length != sizeof(struct usb_otg_descriptor))
2133 			goto inv_length;
2134 		break;
2135 
2136 	case USB_DT_INTERFACE_ASSOCIATION: {
2137 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2138 		pr_vdebug("interface association descriptor\n");
2139 		if (length != sizeof *ds)
2140 			goto inv_length;
2141 		if (ds->iFunction)
2142 			__entity(STRING, ds->iFunction);
2143 	}
2144 		break;
2145 
2146 	case USB_DT_SS_ENDPOINT_COMP:
2147 		pr_vdebug("EP SS companion descriptor\n");
2148 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2149 			goto inv_length;
2150 		break;
2151 
2152 	case USB_DT_OTHER_SPEED_CONFIG:
2153 	case USB_DT_INTERFACE_POWER:
2154 	case USB_DT_DEBUG:
2155 	case USB_DT_SECURITY:
2156 	case USB_DT_CS_RADIO_CONTROL:
2157 		/* TODO */
2158 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2159 		return -EINVAL;
2160 
2161 	default:
2162 		/* We should never be here */
2163 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2164 		return -EINVAL;
2165 
2166 inv_length:
2167 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2168 			  _ds->bLength, _ds->bDescriptorType);
2169 		return -EINVAL;
2170 	}
2171 
2172 #undef __entity
2173 #undef __entity_check_DESCRIPTOR
2174 #undef __entity_check_INTERFACE
2175 #undef __entity_check_STRING
2176 #undef __entity_check_ENDPOINT
2177 
2178 	return length;
2179 }
2180 
2181 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2182 				     ffs_entity_callback entity, void *priv)
2183 {
2184 	const unsigned _len = len;
2185 	unsigned long num = 0;
2186 	int current_class = -1;
2187 
2188 	ENTER();
2189 
2190 	for (;;) {
2191 		int ret;
2192 
2193 		if (num == count)
2194 			data = NULL;
2195 
2196 		/* Record "descriptor" entity */
2197 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2198 		if (ret < 0) {
2199 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2200 				 num, ret);
2201 			return ret;
2202 		}
2203 
2204 		if (!data)
2205 			return _len - len;
2206 
2207 		ret = ffs_do_single_desc(data, len, entity, priv,
2208 			&current_class);
2209 		if (ret < 0) {
2210 			pr_debug("%s returns %d\n", __func__, ret);
2211 			return ret;
2212 		}
2213 
2214 		len -= ret;
2215 		data += ret;
2216 		++num;
2217 	}
2218 }
2219 
2220 static int __ffs_data_do_entity(enum ffs_entity_type type,
2221 				u8 *valuep, struct usb_descriptor_header *desc,
2222 				void *priv)
2223 {
2224 	struct ffs_desc_helper *helper = priv;
2225 	struct usb_endpoint_descriptor *d;
2226 
2227 	ENTER();
2228 
2229 	switch (type) {
2230 	case FFS_DESCRIPTOR:
2231 		break;
2232 
2233 	case FFS_INTERFACE:
2234 		/*
2235 		 * Interfaces are indexed from zero so if we
2236 		 * encountered interface "n" then there are at least
2237 		 * "n+1" interfaces.
2238 		 */
2239 		if (*valuep >= helper->interfaces_count)
2240 			helper->interfaces_count = *valuep + 1;
2241 		break;
2242 
2243 	case FFS_STRING:
2244 		/*
2245 		 * Strings are indexed from 1 (0 is reserved
2246 		 * for languages list)
2247 		 */
2248 		if (*valuep > helper->ffs->strings_count)
2249 			helper->ffs->strings_count = *valuep;
2250 		break;
2251 
2252 	case FFS_ENDPOINT:
2253 		d = (void *)desc;
2254 		helper->eps_count++;
2255 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2256 			return -EINVAL;
2257 		/* Check if descriptors for any speed were already parsed */
2258 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2259 			helper->ffs->eps_addrmap[helper->eps_count] =
2260 				d->bEndpointAddress;
2261 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2262 				d->bEndpointAddress)
2263 			return -EINVAL;
2264 		break;
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2271 				   struct usb_os_desc_header *desc)
2272 {
2273 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2274 	u16 w_index = le16_to_cpu(desc->wIndex);
2275 
2276 	if (bcd_version != 1) {
2277 		pr_vdebug("unsupported os descriptors version: %d",
2278 			  bcd_version);
2279 		return -EINVAL;
2280 	}
2281 	switch (w_index) {
2282 	case 0x4:
2283 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2284 		break;
2285 	case 0x5:
2286 		*next_type = FFS_OS_DESC_EXT_PROP;
2287 		break;
2288 	default:
2289 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2290 		return -EINVAL;
2291 	}
2292 
2293 	return sizeof(*desc);
2294 }
2295 
2296 /*
2297  * Process all extended compatibility/extended property descriptors
2298  * of a feature descriptor
2299  */
2300 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2301 					      enum ffs_os_desc_type type,
2302 					      u16 feature_count,
2303 					      ffs_os_desc_callback entity,
2304 					      void *priv,
2305 					      struct usb_os_desc_header *h)
2306 {
2307 	int ret;
2308 	const unsigned _len = len;
2309 
2310 	ENTER();
2311 
2312 	/* loop over all ext compat/ext prop descriptors */
2313 	while (feature_count--) {
2314 		ret = entity(type, h, data, len, priv);
2315 		if (ret < 0) {
2316 			pr_debug("bad OS descriptor, type: %d\n", type);
2317 			return ret;
2318 		}
2319 		data += ret;
2320 		len -= ret;
2321 	}
2322 	return _len - len;
2323 }
2324 
2325 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2326 static int __must_check ffs_do_os_descs(unsigned count,
2327 					char *data, unsigned len,
2328 					ffs_os_desc_callback entity, void *priv)
2329 {
2330 	const unsigned _len = len;
2331 	unsigned long num = 0;
2332 
2333 	ENTER();
2334 
2335 	for (num = 0; num < count; ++num) {
2336 		int ret;
2337 		enum ffs_os_desc_type type;
2338 		u16 feature_count;
2339 		struct usb_os_desc_header *desc = (void *)data;
2340 
2341 		if (len < sizeof(*desc))
2342 			return -EINVAL;
2343 
2344 		/*
2345 		 * Record "descriptor" entity.
2346 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2347 		 * Move the data pointer to the beginning of extended
2348 		 * compatibilities proper or extended properties proper
2349 		 * portions of the data
2350 		 */
2351 		if (le32_to_cpu(desc->dwLength) > len)
2352 			return -EINVAL;
2353 
2354 		ret = __ffs_do_os_desc_header(&type, desc);
2355 		if (ret < 0) {
2356 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2357 				 num, ret);
2358 			return ret;
2359 		}
2360 		/*
2361 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2362 		 */
2363 		feature_count = le16_to_cpu(desc->wCount);
2364 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2365 		    (feature_count > 255 || desc->Reserved))
2366 				return -EINVAL;
2367 		len -= ret;
2368 		data += ret;
2369 
2370 		/*
2371 		 * Process all function/property descriptors
2372 		 * of this Feature Descriptor
2373 		 */
2374 		ret = ffs_do_single_os_desc(data, len, type,
2375 					    feature_count, entity, priv, desc);
2376 		if (ret < 0) {
2377 			pr_debug("%s returns %d\n", __func__, ret);
2378 			return ret;
2379 		}
2380 
2381 		len -= ret;
2382 		data += ret;
2383 	}
2384 	return _len - len;
2385 }
2386 
2387 /*
2388  * Validate contents of the buffer from userspace related to OS descriptors.
2389  */
2390 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2391 				 struct usb_os_desc_header *h, void *data,
2392 				 unsigned len, void *priv)
2393 {
2394 	struct ffs_data *ffs = priv;
2395 	u8 length;
2396 
2397 	ENTER();
2398 
2399 	switch (type) {
2400 	case FFS_OS_DESC_EXT_COMPAT: {
2401 		struct usb_ext_compat_desc *d = data;
2402 		int i;
2403 
2404 		if (len < sizeof(*d) ||
2405 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2406 			return -EINVAL;
2407 		if (d->Reserved1 != 1) {
2408 			/*
2409 			 * According to the spec, Reserved1 must be set to 1
2410 			 * but older kernels incorrectly rejected non-zero
2411 			 * values.  We fix it here to avoid returning EINVAL
2412 			 * in response to values we used to accept.
2413 			 */
2414 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2415 			d->Reserved1 = 1;
2416 		}
2417 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2418 			if (d->Reserved2[i])
2419 				return -EINVAL;
2420 
2421 		length = sizeof(struct usb_ext_compat_desc);
2422 	}
2423 		break;
2424 	case FFS_OS_DESC_EXT_PROP: {
2425 		struct usb_ext_prop_desc *d = data;
2426 		u32 type, pdl;
2427 		u16 pnl;
2428 
2429 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2430 			return -EINVAL;
2431 		length = le32_to_cpu(d->dwSize);
2432 		if (len < length)
2433 			return -EINVAL;
2434 		type = le32_to_cpu(d->dwPropertyDataType);
2435 		if (type < USB_EXT_PROP_UNICODE ||
2436 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2437 			pr_vdebug("unsupported os descriptor property type: %d",
2438 				  type);
2439 			return -EINVAL;
2440 		}
2441 		pnl = le16_to_cpu(d->wPropertyNameLength);
2442 		if (length < 14 + pnl) {
2443 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2444 				  length, pnl, type);
2445 			return -EINVAL;
2446 		}
2447 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2448 		if (length != 14 + pnl + pdl) {
2449 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2450 				  length, pnl, pdl, type);
2451 			return -EINVAL;
2452 		}
2453 		++ffs->ms_os_descs_ext_prop_count;
2454 		/* property name reported to the host as "WCHAR"s */
2455 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2456 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2457 	}
2458 		break;
2459 	default:
2460 		pr_vdebug("unknown descriptor: %d\n", type);
2461 		return -EINVAL;
2462 	}
2463 	return length;
2464 }
2465 
2466 static int __ffs_data_got_descs(struct ffs_data *ffs,
2467 				char *const _data, size_t len)
2468 {
2469 	char *data = _data, *raw_descs;
2470 	unsigned os_descs_count = 0, counts[3], flags;
2471 	int ret = -EINVAL, i;
2472 	struct ffs_desc_helper helper;
2473 
2474 	ENTER();
2475 
2476 	if (get_unaligned_le32(data + 4) != len)
2477 		goto error;
2478 
2479 	switch (get_unaligned_le32(data)) {
2480 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2481 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2482 		data += 8;
2483 		len  -= 8;
2484 		break;
2485 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2486 		flags = get_unaligned_le32(data + 8);
2487 		ffs->user_flags = flags;
2488 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2489 			      FUNCTIONFS_HAS_HS_DESC |
2490 			      FUNCTIONFS_HAS_SS_DESC |
2491 			      FUNCTIONFS_HAS_MS_OS_DESC |
2492 			      FUNCTIONFS_VIRTUAL_ADDR |
2493 			      FUNCTIONFS_EVENTFD |
2494 			      FUNCTIONFS_ALL_CTRL_RECIP |
2495 			      FUNCTIONFS_CONFIG0_SETUP)) {
2496 			ret = -ENOSYS;
2497 			goto error;
2498 		}
2499 		data += 12;
2500 		len  -= 12;
2501 		break;
2502 	default:
2503 		goto error;
2504 	}
2505 
2506 	if (flags & FUNCTIONFS_EVENTFD) {
2507 		if (len < 4)
2508 			goto error;
2509 		ffs->ffs_eventfd =
2510 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2511 		if (IS_ERR(ffs->ffs_eventfd)) {
2512 			ret = PTR_ERR(ffs->ffs_eventfd);
2513 			ffs->ffs_eventfd = NULL;
2514 			goto error;
2515 		}
2516 		data += 4;
2517 		len  -= 4;
2518 	}
2519 
2520 	/* Read fs_count, hs_count and ss_count (if present) */
2521 	for (i = 0; i < 3; ++i) {
2522 		if (!(flags & (1 << i))) {
2523 			counts[i] = 0;
2524 		} else if (len < 4) {
2525 			goto error;
2526 		} else {
2527 			counts[i] = get_unaligned_le32(data);
2528 			data += 4;
2529 			len  -= 4;
2530 		}
2531 	}
2532 	if (flags & (1 << i)) {
2533 		if (len < 4) {
2534 			goto error;
2535 		}
2536 		os_descs_count = get_unaligned_le32(data);
2537 		data += 4;
2538 		len -= 4;
2539 	}
2540 
2541 	/* Read descriptors */
2542 	raw_descs = data;
2543 	helper.ffs = ffs;
2544 	for (i = 0; i < 3; ++i) {
2545 		if (!counts[i])
2546 			continue;
2547 		helper.interfaces_count = 0;
2548 		helper.eps_count = 0;
2549 		ret = ffs_do_descs(counts[i], data, len,
2550 				   __ffs_data_do_entity, &helper);
2551 		if (ret < 0)
2552 			goto error;
2553 		if (!ffs->eps_count && !ffs->interfaces_count) {
2554 			ffs->eps_count = helper.eps_count;
2555 			ffs->interfaces_count = helper.interfaces_count;
2556 		} else {
2557 			if (ffs->eps_count != helper.eps_count) {
2558 				ret = -EINVAL;
2559 				goto error;
2560 			}
2561 			if (ffs->interfaces_count != helper.interfaces_count) {
2562 				ret = -EINVAL;
2563 				goto error;
2564 			}
2565 		}
2566 		data += ret;
2567 		len  -= ret;
2568 	}
2569 	if (os_descs_count) {
2570 		ret = ffs_do_os_descs(os_descs_count, data, len,
2571 				      __ffs_data_do_os_desc, ffs);
2572 		if (ret < 0)
2573 			goto error;
2574 		data += ret;
2575 		len -= ret;
2576 	}
2577 
2578 	if (raw_descs == data || len) {
2579 		ret = -EINVAL;
2580 		goto error;
2581 	}
2582 
2583 	ffs->raw_descs_data	= _data;
2584 	ffs->raw_descs		= raw_descs;
2585 	ffs->raw_descs_length	= data - raw_descs;
2586 	ffs->fs_descs_count	= counts[0];
2587 	ffs->hs_descs_count	= counts[1];
2588 	ffs->ss_descs_count	= counts[2];
2589 	ffs->ms_os_descs_count	= os_descs_count;
2590 
2591 	return 0;
2592 
2593 error:
2594 	kfree(_data);
2595 	return ret;
2596 }
2597 
2598 static int __ffs_data_got_strings(struct ffs_data *ffs,
2599 				  char *const _data, size_t len)
2600 {
2601 	u32 str_count, needed_count, lang_count;
2602 	struct usb_gadget_strings **stringtabs, *t;
2603 	const char *data = _data;
2604 	struct usb_string *s;
2605 
2606 	ENTER();
2607 
2608 	if (len < 16 ||
2609 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2610 	    get_unaligned_le32(data + 4) != len)
2611 		goto error;
2612 	str_count  = get_unaligned_le32(data + 8);
2613 	lang_count = get_unaligned_le32(data + 12);
2614 
2615 	/* if one is zero the other must be zero */
2616 	if (!str_count != !lang_count)
2617 		goto error;
2618 
2619 	/* Do we have at least as many strings as descriptors need? */
2620 	needed_count = ffs->strings_count;
2621 	if (str_count < needed_count)
2622 		goto error;
2623 
2624 	/*
2625 	 * If we don't need any strings just return and free all
2626 	 * memory.
2627 	 */
2628 	if (!needed_count) {
2629 		kfree(_data);
2630 		return 0;
2631 	}
2632 
2633 	/* Allocate everything in one chunk so there's less maintenance. */
2634 	{
2635 		unsigned i = 0;
2636 		vla_group(d);
2637 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2638 			lang_count + 1);
2639 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2640 		vla_item(d, struct usb_string, strings,
2641 			lang_count*(needed_count+1));
2642 
2643 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2644 
2645 		if (!vlabuf) {
2646 			kfree(_data);
2647 			return -ENOMEM;
2648 		}
2649 
2650 		/* Initialize the VLA pointers */
2651 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2652 		t = vla_ptr(vlabuf, d, stringtab);
2653 		i = lang_count;
2654 		do {
2655 			*stringtabs++ = t++;
2656 		} while (--i);
2657 		*stringtabs = NULL;
2658 
2659 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2660 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2661 		t = vla_ptr(vlabuf, d, stringtab);
2662 		s = vla_ptr(vlabuf, d, strings);
2663 	}
2664 
2665 	/* For each language */
2666 	data += 16;
2667 	len -= 16;
2668 
2669 	do { /* lang_count > 0 so we can use do-while */
2670 		unsigned needed = needed_count;
2671 		u32 str_per_lang = str_count;
2672 
2673 		if (len < 3)
2674 			goto error_free;
2675 		t->language = get_unaligned_le16(data);
2676 		t->strings  = s;
2677 		++t;
2678 
2679 		data += 2;
2680 		len -= 2;
2681 
2682 		/* For each string */
2683 		do { /* str_count > 0 so we can use do-while */
2684 			size_t length = strnlen(data, len);
2685 
2686 			if (length == len)
2687 				goto error_free;
2688 
2689 			/*
2690 			 * User may provide more strings then we need,
2691 			 * if that's the case we simply ignore the
2692 			 * rest
2693 			 */
2694 			if (needed) {
2695 				/*
2696 				 * s->id will be set while adding
2697 				 * function to configuration so for
2698 				 * now just leave garbage here.
2699 				 */
2700 				s->s = data;
2701 				--needed;
2702 				++s;
2703 			}
2704 
2705 			data += length + 1;
2706 			len -= length + 1;
2707 		} while (--str_per_lang);
2708 
2709 		s->id = 0;   /* terminator */
2710 		s->s = NULL;
2711 		++s;
2712 
2713 	} while (--lang_count);
2714 
2715 	/* Some garbage left? */
2716 	if (len)
2717 		goto error_free;
2718 
2719 	/* Done! */
2720 	ffs->stringtabs = stringtabs;
2721 	ffs->raw_strings = _data;
2722 
2723 	return 0;
2724 
2725 error_free:
2726 	kfree(stringtabs);
2727 error:
2728 	kfree(_data);
2729 	return -EINVAL;
2730 }
2731 
2732 
2733 /* Events handling and management *******************************************/
2734 
2735 static void __ffs_event_add(struct ffs_data *ffs,
2736 			    enum usb_functionfs_event_type type)
2737 {
2738 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2739 	int neg = 0;
2740 
2741 	/*
2742 	 * Abort any unhandled setup
2743 	 *
2744 	 * We do not need to worry about some cmpxchg() changing value
2745 	 * of ffs->setup_state without holding the lock because when
2746 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2747 	 * the source does nothing.
2748 	 */
2749 	if (ffs->setup_state == FFS_SETUP_PENDING)
2750 		ffs->setup_state = FFS_SETUP_CANCELLED;
2751 
2752 	/*
2753 	 * Logic of this function guarantees that there are at most four pending
2754 	 * evens on ffs->ev.types queue.  This is important because the queue
2755 	 * has space for four elements only and __ffs_ep0_read_events function
2756 	 * depends on that limit as well.  If more event types are added, those
2757 	 * limits have to be revisited or guaranteed to still hold.
2758 	 */
2759 	switch (type) {
2760 	case FUNCTIONFS_RESUME:
2761 		rem_type2 = FUNCTIONFS_SUSPEND;
2762 		fallthrough;
2763 	case FUNCTIONFS_SUSPEND:
2764 	case FUNCTIONFS_SETUP:
2765 		rem_type1 = type;
2766 		/* Discard all similar events */
2767 		break;
2768 
2769 	case FUNCTIONFS_BIND:
2770 	case FUNCTIONFS_UNBIND:
2771 	case FUNCTIONFS_DISABLE:
2772 	case FUNCTIONFS_ENABLE:
2773 		/* Discard everything other then power management. */
2774 		rem_type1 = FUNCTIONFS_SUSPEND;
2775 		rem_type2 = FUNCTIONFS_RESUME;
2776 		neg = 1;
2777 		break;
2778 
2779 	default:
2780 		WARN(1, "%d: unknown event, this should not happen\n", type);
2781 		return;
2782 	}
2783 
2784 	{
2785 		u8 *ev  = ffs->ev.types, *out = ev;
2786 		unsigned n = ffs->ev.count;
2787 		for (; n; --n, ++ev)
2788 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2789 				*out++ = *ev;
2790 			else
2791 				pr_vdebug("purging event %d\n", *ev);
2792 		ffs->ev.count = out - ffs->ev.types;
2793 	}
2794 
2795 	pr_vdebug("adding event %d\n", type);
2796 	ffs->ev.types[ffs->ev.count++] = type;
2797 	wake_up_locked(&ffs->ev.waitq);
2798 	if (ffs->ffs_eventfd)
2799 		eventfd_signal(ffs->ffs_eventfd, 1);
2800 }
2801 
2802 static void ffs_event_add(struct ffs_data *ffs,
2803 			  enum usb_functionfs_event_type type)
2804 {
2805 	unsigned long flags;
2806 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2807 	__ffs_event_add(ffs, type);
2808 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2809 }
2810 
2811 /* Bind/unbind USB function hooks *******************************************/
2812 
2813 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2814 {
2815 	int i;
2816 
2817 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2818 		if (ffs->eps_addrmap[i] == endpoint_address)
2819 			return i;
2820 	return -ENOENT;
2821 }
2822 
2823 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2824 				    struct usb_descriptor_header *desc,
2825 				    void *priv)
2826 {
2827 	struct usb_endpoint_descriptor *ds = (void *)desc;
2828 	struct ffs_function *func = priv;
2829 	struct ffs_ep *ffs_ep;
2830 	unsigned ep_desc_id;
2831 	int idx;
2832 	static const char *speed_names[] = { "full", "high", "super" };
2833 
2834 	if (type != FFS_DESCRIPTOR)
2835 		return 0;
2836 
2837 	/*
2838 	 * If ss_descriptors is not NULL, we are reading super speed
2839 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2840 	 * speed descriptors; otherwise, we are reading full speed
2841 	 * descriptors.
2842 	 */
2843 	if (func->function.ss_descriptors) {
2844 		ep_desc_id = 2;
2845 		func->function.ss_descriptors[(long)valuep] = desc;
2846 	} else if (func->function.hs_descriptors) {
2847 		ep_desc_id = 1;
2848 		func->function.hs_descriptors[(long)valuep] = desc;
2849 	} else {
2850 		ep_desc_id = 0;
2851 		func->function.fs_descriptors[(long)valuep]    = desc;
2852 	}
2853 
2854 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2855 		return 0;
2856 
2857 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2858 	if (idx < 0)
2859 		return idx;
2860 
2861 	ffs_ep = func->eps + idx;
2862 
2863 	if (ffs_ep->descs[ep_desc_id]) {
2864 		pr_err("two %sspeed descriptors for EP %d\n",
2865 			  speed_names[ep_desc_id],
2866 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2867 		return -EINVAL;
2868 	}
2869 	ffs_ep->descs[ep_desc_id] = ds;
2870 
2871 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2872 	if (ffs_ep->ep) {
2873 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2874 		if (!ds->wMaxPacketSize)
2875 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2876 	} else {
2877 		struct usb_request *req;
2878 		struct usb_ep *ep;
2879 		u8 bEndpointAddress;
2880 		u16 wMaxPacketSize;
2881 
2882 		/*
2883 		 * We back up bEndpointAddress because autoconfig overwrites
2884 		 * it with physical endpoint address.
2885 		 */
2886 		bEndpointAddress = ds->bEndpointAddress;
2887 		/*
2888 		 * We back up wMaxPacketSize because autoconfig treats
2889 		 * endpoint descriptors as if they were full speed.
2890 		 */
2891 		wMaxPacketSize = ds->wMaxPacketSize;
2892 		pr_vdebug("autoconfig\n");
2893 		ep = usb_ep_autoconfig(func->gadget, ds);
2894 		if (!ep)
2895 			return -ENOTSUPP;
2896 		ep->driver_data = func->eps + idx;
2897 
2898 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2899 		if (!req)
2900 			return -ENOMEM;
2901 
2902 		ffs_ep->ep  = ep;
2903 		ffs_ep->req = req;
2904 		func->eps_revmap[ds->bEndpointAddress &
2905 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2906 		/*
2907 		 * If we use virtual address mapping, we restore
2908 		 * original bEndpointAddress value.
2909 		 */
2910 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2911 			ds->bEndpointAddress = bEndpointAddress;
2912 		/*
2913 		 * Restore wMaxPacketSize which was potentially
2914 		 * overwritten by autoconfig.
2915 		 */
2916 		ds->wMaxPacketSize = wMaxPacketSize;
2917 	}
2918 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2919 
2920 	return 0;
2921 }
2922 
2923 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2924 				   struct usb_descriptor_header *desc,
2925 				   void *priv)
2926 {
2927 	struct ffs_function *func = priv;
2928 	unsigned idx;
2929 	u8 newValue;
2930 
2931 	switch (type) {
2932 	default:
2933 	case FFS_DESCRIPTOR:
2934 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2935 		return 0;
2936 
2937 	case FFS_INTERFACE:
2938 		idx = *valuep;
2939 		if (func->interfaces_nums[idx] < 0) {
2940 			int id = usb_interface_id(func->conf, &func->function);
2941 			if (id < 0)
2942 				return id;
2943 			func->interfaces_nums[idx] = id;
2944 		}
2945 		newValue = func->interfaces_nums[idx];
2946 		break;
2947 
2948 	case FFS_STRING:
2949 		/* String' IDs are allocated when fsf_data is bound to cdev */
2950 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2951 		break;
2952 
2953 	case FFS_ENDPOINT:
2954 		/*
2955 		 * USB_DT_ENDPOINT are handled in
2956 		 * __ffs_func_bind_do_descs().
2957 		 */
2958 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2959 			return 0;
2960 
2961 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2962 		if (!func->eps[idx].ep)
2963 			return -EINVAL;
2964 
2965 		{
2966 			struct usb_endpoint_descriptor **descs;
2967 			descs = func->eps[idx].descs;
2968 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2969 		}
2970 		break;
2971 	}
2972 
2973 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2974 	*valuep = newValue;
2975 	return 0;
2976 }
2977 
2978 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2979 				      struct usb_os_desc_header *h, void *data,
2980 				      unsigned len, void *priv)
2981 {
2982 	struct ffs_function *func = priv;
2983 	u8 length = 0;
2984 
2985 	switch (type) {
2986 	case FFS_OS_DESC_EXT_COMPAT: {
2987 		struct usb_ext_compat_desc *desc = data;
2988 		struct usb_os_desc_table *t;
2989 
2990 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2991 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2992 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2993 		       ARRAY_SIZE(desc->CompatibleID) +
2994 		       ARRAY_SIZE(desc->SubCompatibleID));
2995 		length = sizeof(*desc);
2996 	}
2997 		break;
2998 	case FFS_OS_DESC_EXT_PROP: {
2999 		struct usb_ext_prop_desc *desc = data;
3000 		struct usb_os_desc_table *t;
3001 		struct usb_os_desc_ext_prop *ext_prop;
3002 		char *ext_prop_name;
3003 		char *ext_prop_data;
3004 
3005 		t = &func->function.os_desc_table[h->interface];
3006 		t->if_id = func->interfaces_nums[h->interface];
3007 
3008 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3009 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3010 
3011 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3012 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3013 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3014 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3015 		length = ext_prop->name_len + ext_prop->data_len + 14;
3016 
3017 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3018 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3019 			ext_prop->name_len;
3020 
3021 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3022 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3023 			ext_prop->data_len;
3024 		memcpy(ext_prop_data,
3025 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3026 		       ext_prop->data_len);
3027 		/* unicode data reported to the host as "WCHAR"s */
3028 		switch (ext_prop->type) {
3029 		case USB_EXT_PROP_UNICODE:
3030 		case USB_EXT_PROP_UNICODE_ENV:
3031 		case USB_EXT_PROP_UNICODE_LINK:
3032 		case USB_EXT_PROP_UNICODE_MULTI:
3033 			ext_prop->data_len *= 2;
3034 			break;
3035 		}
3036 		ext_prop->data = ext_prop_data;
3037 
3038 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3039 		       ext_prop->name_len);
3040 		/* property name reported to the host as "WCHAR"s */
3041 		ext_prop->name_len *= 2;
3042 		ext_prop->name = ext_prop_name;
3043 
3044 		t->os_desc->ext_prop_len +=
3045 			ext_prop->name_len + ext_prop->data_len + 14;
3046 		++t->os_desc->ext_prop_count;
3047 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3048 	}
3049 		break;
3050 	default:
3051 		pr_vdebug("unknown descriptor: %d\n", type);
3052 	}
3053 
3054 	return length;
3055 }
3056 
3057 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3058 						struct usb_configuration *c)
3059 {
3060 	struct ffs_function *func = ffs_func_from_usb(f);
3061 	struct f_fs_opts *ffs_opts =
3062 		container_of(f->fi, struct f_fs_opts, func_inst);
3063 	struct ffs_data *ffs_data;
3064 	int ret;
3065 
3066 	ENTER();
3067 
3068 	/*
3069 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3070 	 * which already uses locking; taking the same lock here would
3071 	 * cause a deadlock.
3072 	 *
3073 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3074 	 */
3075 	if (!ffs_opts->no_configfs)
3076 		ffs_dev_lock();
3077 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3078 	ffs_data = ffs_opts->dev->ffs_data;
3079 	if (!ffs_opts->no_configfs)
3080 		ffs_dev_unlock();
3081 	if (ret)
3082 		return ERR_PTR(ret);
3083 
3084 	func->ffs = ffs_data;
3085 	func->conf = c;
3086 	func->gadget = c->cdev->gadget;
3087 
3088 	/*
3089 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3090 	 * configurations are bound in sequence with list_for_each_entry,
3091 	 * in each configuration its functions are bound in sequence
3092 	 * with list_for_each_entry, so we assume no race condition
3093 	 * with regard to ffs_opts->bound access
3094 	 */
3095 	if (!ffs_opts->refcnt) {
3096 		ret = functionfs_bind(func->ffs, c->cdev);
3097 		if (ret)
3098 			return ERR_PTR(ret);
3099 	}
3100 	ffs_opts->refcnt++;
3101 	func->function.strings = func->ffs->stringtabs;
3102 
3103 	return ffs_opts;
3104 }
3105 
3106 static int _ffs_func_bind(struct usb_configuration *c,
3107 			  struct usb_function *f)
3108 {
3109 	struct ffs_function *func = ffs_func_from_usb(f);
3110 	struct ffs_data *ffs = func->ffs;
3111 
3112 	const int full = !!func->ffs->fs_descs_count;
3113 	const int high = !!func->ffs->hs_descs_count;
3114 	const int super = !!func->ffs->ss_descs_count;
3115 
3116 	int fs_len, hs_len, ss_len, ret, i;
3117 	struct ffs_ep *eps_ptr;
3118 
3119 	/* Make it a single chunk, less management later on */
3120 	vla_group(d);
3121 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3122 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3123 		full ? ffs->fs_descs_count + 1 : 0);
3124 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3125 		high ? ffs->hs_descs_count + 1 : 0);
3126 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3127 		super ? ffs->ss_descs_count + 1 : 0);
3128 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3129 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3130 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3131 	vla_item_with_sz(d, char[16], ext_compat,
3132 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3133 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3134 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3135 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3136 			 ffs->ms_os_descs_ext_prop_count);
3137 	vla_item_with_sz(d, char, ext_prop_name,
3138 			 ffs->ms_os_descs_ext_prop_name_len);
3139 	vla_item_with_sz(d, char, ext_prop_data,
3140 			 ffs->ms_os_descs_ext_prop_data_len);
3141 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3142 	char *vlabuf;
3143 
3144 	ENTER();
3145 
3146 	/* Has descriptors only for speeds gadget does not support */
3147 	if (!(full | high | super))
3148 		return -ENOTSUPP;
3149 
3150 	/* Allocate a single chunk, less management later on */
3151 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3152 	if (!vlabuf)
3153 		return -ENOMEM;
3154 
3155 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3156 	ffs->ms_os_descs_ext_prop_name_avail =
3157 		vla_ptr(vlabuf, d, ext_prop_name);
3158 	ffs->ms_os_descs_ext_prop_data_avail =
3159 		vla_ptr(vlabuf, d, ext_prop_data);
3160 
3161 	/* Copy descriptors  */
3162 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3163 	       ffs->raw_descs_length);
3164 
3165 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3166 	eps_ptr = vla_ptr(vlabuf, d, eps);
3167 	for (i = 0; i < ffs->eps_count; i++)
3168 		eps_ptr[i].num = -1;
3169 
3170 	/* Save pointers
3171 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3172 	*/
3173 	func->eps             = vla_ptr(vlabuf, d, eps);
3174 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3175 
3176 	/*
3177 	 * Go through all the endpoint descriptors and allocate
3178 	 * endpoints first, so that later we can rewrite the endpoint
3179 	 * numbers without worrying that it may be described later on.
3180 	 */
3181 	if (full) {
3182 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3183 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3184 				      vla_ptr(vlabuf, d, raw_descs),
3185 				      d_raw_descs__sz,
3186 				      __ffs_func_bind_do_descs, func);
3187 		if (fs_len < 0) {
3188 			ret = fs_len;
3189 			goto error;
3190 		}
3191 	} else {
3192 		fs_len = 0;
3193 	}
3194 
3195 	if (high) {
3196 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3197 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3198 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3199 				      d_raw_descs__sz - fs_len,
3200 				      __ffs_func_bind_do_descs, func);
3201 		if (hs_len < 0) {
3202 			ret = hs_len;
3203 			goto error;
3204 		}
3205 	} else {
3206 		hs_len = 0;
3207 	}
3208 
3209 	if (super) {
3210 		func->function.ss_descriptors = func->function.ssp_descriptors =
3211 			vla_ptr(vlabuf, d, ss_descs);
3212 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3213 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3214 				d_raw_descs__sz - fs_len - hs_len,
3215 				__ffs_func_bind_do_descs, func);
3216 		if (ss_len < 0) {
3217 			ret = ss_len;
3218 			goto error;
3219 		}
3220 	} else {
3221 		ss_len = 0;
3222 	}
3223 
3224 	/*
3225 	 * Now handle interface numbers allocation and interface and
3226 	 * endpoint numbers rewriting.  We can do that in one go
3227 	 * now.
3228 	 */
3229 	ret = ffs_do_descs(ffs->fs_descs_count +
3230 			   (high ? ffs->hs_descs_count : 0) +
3231 			   (super ? ffs->ss_descs_count : 0),
3232 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3233 			   __ffs_func_bind_do_nums, func);
3234 	if (ret < 0)
3235 		goto error;
3236 
3237 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3238 	if (c->cdev->use_os_string) {
3239 		for (i = 0; i < ffs->interfaces_count; ++i) {
3240 			struct usb_os_desc *desc;
3241 
3242 			desc = func->function.os_desc_table[i].os_desc =
3243 				vla_ptr(vlabuf, d, os_desc) +
3244 				i * sizeof(struct usb_os_desc);
3245 			desc->ext_compat_id =
3246 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3247 			INIT_LIST_HEAD(&desc->ext_prop);
3248 		}
3249 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3250 				      vla_ptr(vlabuf, d, raw_descs) +
3251 				      fs_len + hs_len + ss_len,
3252 				      d_raw_descs__sz - fs_len - hs_len -
3253 				      ss_len,
3254 				      __ffs_func_bind_do_os_desc, func);
3255 		if (ret < 0)
3256 			goto error;
3257 	}
3258 	func->function.os_desc_n =
3259 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3260 
3261 	/* And we're done */
3262 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3263 	return 0;
3264 
3265 error:
3266 	/* XXX Do we need to release all claimed endpoints here? */
3267 	return ret;
3268 }
3269 
3270 static int ffs_func_bind(struct usb_configuration *c,
3271 			 struct usb_function *f)
3272 {
3273 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3274 	struct ffs_function *func = ffs_func_from_usb(f);
3275 	int ret;
3276 
3277 	if (IS_ERR(ffs_opts))
3278 		return PTR_ERR(ffs_opts);
3279 
3280 	ret = _ffs_func_bind(c, f);
3281 	if (ret && !--ffs_opts->refcnt)
3282 		functionfs_unbind(func->ffs);
3283 
3284 	return ret;
3285 }
3286 
3287 
3288 /* Other USB function hooks *************************************************/
3289 
3290 static void ffs_reset_work(struct work_struct *work)
3291 {
3292 	struct ffs_data *ffs = container_of(work,
3293 		struct ffs_data, reset_work);
3294 	ffs_data_reset(ffs);
3295 }
3296 
3297 static int ffs_func_set_alt(struct usb_function *f,
3298 			    unsigned interface, unsigned alt)
3299 {
3300 	struct ffs_function *func = ffs_func_from_usb(f);
3301 	struct ffs_data *ffs = func->ffs;
3302 	int ret = 0, intf;
3303 
3304 	if (alt != (unsigned)-1) {
3305 		intf = ffs_func_revmap_intf(func, interface);
3306 		if (intf < 0)
3307 			return intf;
3308 	}
3309 
3310 	if (ffs->func)
3311 		ffs_func_eps_disable(ffs->func);
3312 
3313 	if (ffs->state == FFS_DEACTIVATED) {
3314 		ffs->state = FFS_CLOSING;
3315 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3316 		schedule_work(&ffs->reset_work);
3317 		return -ENODEV;
3318 	}
3319 
3320 	if (ffs->state != FFS_ACTIVE)
3321 		return -ENODEV;
3322 
3323 	if (alt == (unsigned)-1) {
3324 		ffs->func = NULL;
3325 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3326 		return 0;
3327 	}
3328 
3329 	ffs->func = func;
3330 	ret = ffs_func_eps_enable(func);
3331 	if (ret >= 0)
3332 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3333 	return ret;
3334 }
3335 
3336 static void ffs_func_disable(struct usb_function *f)
3337 {
3338 	ffs_func_set_alt(f, 0, (unsigned)-1);
3339 }
3340 
3341 static int ffs_func_setup(struct usb_function *f,
3342 			  const struct usb_ctrlrequest *creq)
3343 {
3344 	struct ffs_function *func = ffs_func_from_usb(f);
3345 	struct ffs_data *ffs = func->ffs;
3346 	unsigned long flags;
3347 	int ret;
3348 
3349 	ENTER();
3350 
3351 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3352 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3353 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3354 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3355 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3356 
3357 	/*
3358 	 * Most requests directed to interface go through here
3359 	 * (notable exceptions are set/get interface) so we need to
3360 	 * handle them.  All other either handled by composite or
3361 	 * passed to usb_configuration->setup() (if one is set).  No
3362 	 * matter, we will handle requests directed to endpoint here
3363 	 * as well (as it's straightforward).  Other request recipient
3364 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3365 	 * is being used.
3366 	 */
3367 	if (ffs->state != FFS_ACTIVE)
3368 		return -ENODEV;
3369 
3370 	switch (creq->bRequestType & USB_RECIP_MASK) {
3371 	case USB_RECIP_INTERFACE:
3372 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3373 		if (ret < 0)
3374 			return ret;
3375 		break;
3376 
3377 	case USB_RECIP_ENDPOINT:
3378 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3379 		if (ret < 0)
3380 			return ret;
3381 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3382 			ret = func->ffs->eps_addrmap[ret];
3383 		break;
3384 
3385 	default:
3386 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3387 			ret = le16_to_cpu(creq->wIndex);
3388 		else
3389 			return -EOPNOTSUPP;
3390 	}
3391 
3392 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3393 	ffs->ev.setup = *creq;
3394 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3395 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3396 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3397 
3398 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3399 }
3400 
3401 static bool ffs_func_req_match(struct usb_function *f,
3402 			       const struct usb_ctrlrequest *creq,
3403 			       bool config0)
3404 {
3405 	struct ffs_function *func = ffs_func_from_usb(f);
3406 
3407 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3408 		return false;
3409 
3410 	switch (creq->bRequestType & USB_RECIP_MASK) {
3411 	case USB_RECIP_INTERFACE:
3412 		return (ffs_func_revmap_intf(func,
3413 					     le16_to_cpu(creq->wIndex)) >= 0);
3414 	case USB_RECIP_ENDPOINT:
3415 		return (ffs_func_revmap_ep(func,
3416 					   le16_to_cpu(creq->wIndex)) >= 0);
3417 	default:
3418 		return (bool) (func->ffs->user_flags &
3419 			       FUNCTIONFS_ALL_CTRL_RECIP);
3420 	}
3421 }
3422 
3423 static void ffs_func_suspend(struct usb_function *f)
3424 {
3425 	ENTER();
3426 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3427 }
3428 
3429 static void ffs_func_resume(struct usb_function *f)
3430 {
3431 	ENTER();
3432 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3433 }
3434 
3435 
3436 /* Endpoint and interface numbers reverse mapping ***************************/
3437 
3438 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3439 {
3440 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3441 	return num ? num : -EDOM;
3442 }
3443 
3444 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3445 {
3446 	short *nums = func->interfaces_nums;
3447 	unsigned count = func->ffs->interfaces_count;
3448 
3449 	for (; count; --count, ++nums) {
3450 		if (*nums >= 0 && *nums == intf)
3451 			return nums - func->interfaces_nums;
3452 	}
3453 
3454 	return -EDOM;
3455 }
3456 
3457 
3458 /* Devices management *******************************************************/
3459 
3460 static LIST_HEAD(ffs_devices);
3461 
3462 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3463 {
3464 	struct ffs_dev *dev;
3465 
3466 	if (!name)
3467 		return NULL;
3468 
3469 	list_for_each_entry(dev, &ffs_devices, entry) {
3470 		if (strcmp(dev->name, name) == 0)
3471 			return dev;
3472 	}
3473 
3474 	return NULL;
3475 }
3476 
3477 /*
3478  * ffs_lock must be taken by the caller of this function
3479  */
3480 static struct ffs_dev *_ffs_get_single_dev(void)
3481 {
3482 	struct ffs_dev *dev;
3483 
3484 	if (list_is_singular(&ffs_devices)) {
3485 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3486 		if (dev->single)
3487 			return dev;
3488 	}
3489 
3490 	return NULL;
3491 }
3492 
3493 /*
3494  * ffs_lock must be taken by the caller of this function
3495  */
3496 static struct ffs_dev *_ffs_find_dev(const char *name)
3497 {
3498 	struct ffs_dev *dev;
3499 
3500 	dev = _ffs_get_single_dev();
3501 	if (dev)
3502 		return dev;
3503 
3504 	return _ffs_do_find_dev(name);
3505 }
3506 
3507 /* Configfs support *********************************************************/
3508 
3509 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3510 {
3511 	return container_of(to_config_group(item), struct f_fs_opts,
3512 			    func_inst.group);
3513 }
3514 
3515 static void ffs_attr_release(struct config_item *item)
3516 {
3517 	struct f_fs_opts *opts = to_ffs_opts(item);
3518 
3519 	usb_put_function_instance(&opts->func_inst);
3520 }
3521 
3522 static struct configfs_item_operations ffs_item_ops = {
3523 	.release	= ffs_attr_release,
3524 };
3525 
3526 static const struct config_item_type ffs_func_type = {
3527 	.ct_item_ops	= &ffs_item_ops,
3528 	.ct_owner	= THIS_MODULE,
3529 };
3530 
3531 
3532 /* Function registration interface ******************************************/
3533 
3534 static void ffs_free_inst(struct usb_function_instance *f)
3535 {
3536 	struct f_fs_opts *opts;
3537 
3538 	opts = to_f_fs_opts(f);
3539 	ffs_release_dev(opts->dev);
3540 	ffs_dev_lock();
3541 	_ffs_free_dev(opts->dev);
3542 	ffs_dev_unlock();
3543 	kfree(opts);
3544 }
3545 
3546 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3547 {
3548 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3549 		return -ENAMETOOLONG;
3550 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3551 }
3552 
3553 static struct usb_function_instance *ffs_alloc_inst(void)
3554 {
3555 	struct f_fs_opts *opts;
3556 	struct ffs_dev *dev;
3557 
3558 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3559 	if (!opts)
3560 		return ERR_PTR(-ENOMEM);
3561 
3562 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3563 	opts->func_inst.free_func_inst = ffs_free_inst;
3564 	ffs_dev_lock();
3565 	dev = _ffs_alloc_dev();
3566 	ffs_dev_unlock();
3567 	if (IS_ERR(dev)) {
3568 		kfree(opts);
3569 		return ERR_CAST(dev);
3570 	}
3571 	opts->dev = dev;
3572 	dev->opts = opts;
3573 
3574 	config_group_init_type_name(&opts->func_inst.group, "",
3575 				    &ffs_func_type);
3576 	return &opts->func_inst;
3577 }
3578 
3579 static void ffs_free(struct usb_function *f)
3580 {
3581 	kfree(ffs_func_from_usb(f));
3582 }
3583 
3584 static void ffs_func_unbind(struct usb_configuration *c,
3585 			    struct usb_function *f)
3586 {
3587 	struct ffs_function *func = ffs_func_from_usb(f);
3588 	struct ffs_data *ffs = func->ffs;
3589 	struct f_fs_opts *opts =
3590 		container_of(f->fi, struct f_fs_opts, func_inst);
3591 	struct ffs_ep *ep = func->eps;
3592 	unsigned count = ffs->eps_count;
3593 	unsigned long flags;
3594 
3595 	ENTER();
3596 	if (ffs->func == func) {
3597 		ffs_func_eps_disable(func);
3598 		ffs->func = NULL;
3599 	}
3600 
3601 	/* Drain any pending AIO completions */
3602 	drain_workqueue(ffs->io_completion_wq);
3603 
3604 	if (!--opts->refcnt)
3605 		functionfs_unbind(ffs);
3606 
3607 	/* cleanup after autoconfig */
3608 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3609 	while (count--) {
3610 		if (ep->ep && ep->req)
3611 			usb_ep_free_request(ep->ep, ep->req);
3612 		ep->req = NULL;
3613 		++ep;
3614 	}
3615 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3616 	kfree(func->eps);
3617 	func->eps = NULL;
3618 	/*
3619 	 * eps, descriptors and interfaces_nums are allocated in the
3620 	 * same chunk so only one free is required.
3621 	 */
3622 	func->function.fs_descriptors = NULL;
3623 	func->function.hs_descriptors = NULL;
3624 	func->function.ss_descriptors = NULL;
3625 	func->function.ssp_descriptors = NULL;
3626 	func->interfaces_nums = NULL;
3627 
3628 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3629 }
3630 
3631 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3632 {
3633 	struct ffs_function *func;
3634 
3635 	ENTER();
3636 
3637 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3638 	if (!func)
3639 		return ERR_PTR(-ENOMEM);
3640 
3641 	func->function.name    = "Function FS Gadget";
3642 
3643 	func->function.bind    = ffs_func_bind;
3644 	func->function.unbind  = ffs_func_unbind;
3645 	func->function.set_alt = ffs_func_set_alt;
3646 	func->function.disable = ffs_func_disable;
3647 	func->function.setup   = ffs_func_setup;
3648 	func->function.req_match = ffs_func_req_match;
3649 	func->function.suspend = ffs_func_suspend;
3650 	func->function.resume  = ffs_func_resume;
3651 	func->function.free_func = ffs_free;
3652 
3653 	return &func->function;
3654 }
3655 
3656 /*
3657  * ffs_lock must be taken by the caller of this function
3658  */
3659 static struct ffs_dev *_ffs_alloc_dev(void)
3660 {
3661 	struct ffs_dev *dev;
3662 	int ret;
3663 
3664 	if (_ffs_get_single_dev())
3665 			return ERR_PTR(-EBUSY);
3666 
3667 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3668 	if (!dev)
3669 		return ERR_PTR(-ENOMEM);
3670 
3671 	if (list_empty(&ffs_devices)) {
3672 		ret = functionfs_init();
3673 		if (ret) {
3674 			kfree(dev);
3675 			return ERR_PTR(ret);
3676 		}
3677 	}
3678 
3679 	list_add(&dev->entry, &ffs_devices);
3680 
3681 	return dev;
3682 }
3683 
3684 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3685 {
3686 	struct ffs_dev *existing;
3687 	int ret = 0;
3688 
3689 	ffs_dev_lock();
3690 
3691 	existing = _ffs_do_find_dev(name);
3692 	if (!existing)
3693 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3694 	else if (existing != dev)
3695 		ret = -EBUSY;
3696 
3697 	ffs_dev_unlock();
3698 
3699 	return ret;
3700 }
3701 EXPORT_SYMBOL_GPL(ffs_name_dev);
3702 
3703 int ffs_single_dev(struct ffs_dev *dev)
3704 {
3705 	int ret;
3706 
3707 	ret = 0;
3708 	ffs_dev_lock();
3709 
3710 	if (!list_is_singular(&ffs_devices))
3711 		ret = -EBUSY;
3712 	else
3713 		dev->single = true;
3714 
3715 	ffs_dev_unlock();
3716 	return ret;
3717 }
3718 EXPORT_SYMBOL_GPL(ffs_single_dev);
3719 
3720 /*
3721  * ffs_lock must be taken by the caller of this function
3722  */
3723 static void _ffs_free_dev(struct ffs_dev *dev)
3724 {
3725 	list_del(&dev->entry);
3726 
3727 	kfree(dev);
3728 	if (list_empty(&ffs_devices))
3729 		functionfs_cleanup();
3730 }
3731 
3732 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3733 {
3734 	int ret = 0;
3735 	struct ffs_dev *ffs_dev;
3736 
3737 	ENTER();
3738 	ffs_dev_lock();
3739 
3740 	ffs_dev = _ffs_find_dev(dev_name);
3741 	if (!ffs_dev) {
3742 		ret = -ENOENT;
3743 	} else if (ffs_dev->mounted) {
3744 		ret = -EBUSY;
3745 	} else if (ffs_dev->ffs_acquire_dev_callback &&
3746 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3747 		ret = -ENOENT;
3748 	} else {
3749 		ffs_dev->mounted = true;
3750 		ffs_dev->ffs_data = ffs_data;
3751 		ffs_data->private_data = ffs_dev;
3752 	}
3753 
3754 	ffs_dev_unlock();
3755 	return ret;
3756 }
3757 
3758 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3759 {
3760 	ENTER();
3761 	ffs_dev_lock();
3762 
3763 	if (ffs_dev && ffs_dev->mounted) {
3764 		ffs_dev->mounted = false;
3765 		if (ffs_dev->ffs_data) {
3766 			ffs_dev->ffs_data->private_data = NULL;
3767 			ffs_dev->ffs_data = NULL;
3768 		}
3769 
3770 		if (ffs_dev->ffs_release_dev_callback)
3771 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3772 	}
3773 
3774 	ffs_dev_unlock();
3775 }
3776 
3777 static int ffs_ready(struct ffs_data *ffs)
3778 {
3779 	struct ffs_dev *ffs_obj;
3780 	int ret = 0;
3781 
3782 	ENTER();
3783 	ffs_dev_lock();
3784 
3785 	ffs_obj = ffs->private_data;
3786 	if (!ffs_obj) {
3787 		ret = -EINVAL;
3788 		goto done;
3789 	}
3790 	if (WARN_ON(ffs_obj->desc_ready)) {
3791 		ret = -EBUSY;
3792 		goto done;
3793 	}
3794 
3795 	ffs_obj->desc_ready = true;
3796 
3797 	if (ffs_obj->ffs_ready_callback) {
3798 		ret = ffs_obj->ffs_ready_callback(ffs);
3799 		if (ret)
3800 			goto done;
3801 	}
3802 
3803 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3804 done:
3805 	ffs_dev_unlock();
3806 	return ret;
3807 }
3808 
3809 static void ffs_closed(struct ffs_data *ffs)
3810 {
3811 	struct ffs_dev *ffs_obj;
3812 	struct f_fs_opts *opts;
3813 	struct config_item *ci;
3814 
3815 	ENTER();
3816 	ffs_dev_lock();
3817 
3818 	ffs_obj = ffs->private_data;
3819 	if (!ffs_obj)
3820 		goto done;
3821 
3822 	ffs_obj->desc_ready = false;
3823 
3824 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3825 	    ffs_obj->ffs_closed_callback)
3826 		ffs_obj->ffs_closed_callback(ffs);
3827 
3828 	if (ffs_obj->opts)
3829 		opts = ffs_obj->opts;
3830 	else
3831 		goto done;
3832 
3833 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3834 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3835 		goto done;
3836 
3837 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3838 	ffs_dev_unlock();
3839 
3840 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3841 		unregister_gadget_item(ci);
3842 	return;
3843 done:
3844 	ffs_dev_unlock();
3845 }
3846 
3847 /* Misc helper functions ****************************************************/
3848 
3849 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3850 {
3851 	return nonblock
3852 		? mutex_trylock(mutex) ? 0 : -EAGAIN
3853 		: mutex_lock_interruptible(mutex);
3854 }
3855 
3856 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3857 {
3858 	char *data;
3859 
3860 	if (!len)
3861 		return NULL;
3862 
3863 	data = memdup_user(buf, len);
3864 	if (IS_ERR(data))
3865 		return data;
3866 
3867 	pr_vdebug("Buffer from user space:\n");
3868 	ffs_dump_mem("", data, len);
3869 
3870 	return data;
3871 }
3872 
3873 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3874 MODULE_LICENSE("GPL");
3875 MODULE_AUTHOR("Michal Nazarewicz");
3876