1 /* 2 * f_fs.c -- user mode file system API for USB composite function controllers 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * Author: Michal Nazarewicz <mina86@mina86.com> 6 * 7 * Based on inode.c (GadgetFS) which was: 8 * Copyright (C) 2003-2004 David Brownell 9 * Copyright (C) 2003 Agilent Technologies 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 */ 16 17 18 /* #define DEBUG */ 19 /* #define VERBOSE_DEBUG */ 20 21 #include <linux/blkdev.h> 22 #include <linux/pagemap.h> 23 #include <linux/export.h> 24 #include <linux/hid.h> 25 #include <linux/module.h> 26 #include <linux/uio.h> 27 #include <asm/unaligned.h> 28 29 #include <linux/usb/composite.h> 30 #include <linux/usb/functionfs.h> 31 32 #include <linux/aio.h> 33 #include <linux/mmu_context.h> 34 #include <linux/poll.h> 35 #include <linux/eventfd.h> 36 37 #include "u_fs.h" 38 #include "u_f.h" 39 #include "u_os_desc.h" 40 #include "configfs.h" 41 42 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 43 44 /* Reference counter handling */ 45 static void ffs_data_get(struct ffs_data *ffs); 46 static void ffs_data_put(struct ffs_data *ffs); 47 /* Creates new ffs_data object. */ 48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc)); 49 50 /* Opened counter handling. */ 51 static void ffs_data_opened(struct ffs_data *ffs); 52 static void ffs_data_closed(struct ffs_data *ffs); 53 54 /* Called with ffs->mutex held; take over ownership of data. */ 55 static int __must_check 56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 57 static int __must_check 58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 59 60 61 /* The function structure ***************************************************/ 62 63 struct ffs_ep; 64 65 struct ffs_function { 66 struct usb_configuration *conf; 67 struct usb_gadget *gadget; 68 struct ffs_data *ffs; 69 70 struct ffs_ep *eps; 71 u8 eps_revmap[16]; 72 short *interfaces_nums; 73 74 struct usb_function function; 75 }; 76 77 78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 79 { 80 return container_of(f, struct ffs_function, function); 81 } 82 83 84 static inline enum ffs_setup_state 85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 86 { 87 return (enum ffs_setup_state) 88 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 89 } 90 91 92 static void ffs_func_eps_disable(struct ffs_function *func); 93 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 94 95 static int ffs_func_bind(struct usb_configuration *, 96 struct usb_function *); 97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 98 static void ffs_func_disable(struct usb_function *); 99 static int ffs_func_setup(struct usb_function *, 100 const struct usb_ctrlrequest *); 101 static void ffs_func_suspend(struct usb_function *); 102 static void ffs_func_resume(struct usb_function *); 103 104 105 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 106 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 107 108 109 /* The endpoints structures *************************************************/ 110 111 struct ffs_ep { 112 struct usb_ep *ep; /* P: ffs->eps_lock */ 113 struct usb_request *req; /* P: epfile->mutex */ 114 115 /* [0]: full speed, [1]: high speed, [2]: super speed */ 116 struct usb_endpoint_descriptor *descs[3]; 117 118 u8 num; 119 120 int status; /* P: epfile->mutex */ 121 }; 122 123 struct ffs_epfile { 124 /* Protects ep->ep and ep->req. */ 125 struct mutex mutex; 126 wait_queue_head_t wait; 127 128 struct ffs_data *ffs; 129 struct ffs_ep *ep; /* P: ffs->eps_lock */ 130 131 struct dentry *dentry; 132 133 char name[5]; 134 135 unsigned char in; /* P: ffs->eps_lock */ 136 unsigned char isoc; /* P: ffs->eps_lock */ 137 138 unsigned char _pad; 139 }; 140 141 /* ffs_io_data structure ***************************************************/ 142 143 struct ffs_io_data { 144 bool aio; 145 bool read; 146 147 struct kiocb *kiocb; 148 struct iov_iter data; 149 const void *to_free; 150 char *buf; 151 152 struct mm_struct *mm; 153 struct work_struct work; 154 155 struct usb_ep *ep; 156 struct usb_request *req; 157 158 struct ffs_data *ffs; 159 }; 160 161 struct ffs_desc_helper { 162 struct ffs_data *ffs; 163 unsigned interfaces_count; 164 unsigned eps_count; 165 }; 166 167 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 168 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 169 170 static struct dentry * 171 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 172 const struct file_operations *fops); 173 174 /* Devices management *******************************************************/ 175 176 DEFINE_MUTEX(ffs_lock); 177 EXPORT_SYMBOL_GPL(ffs_lock); 178 179 static struct ffs_dev *_ffs_find_dev(const char *name); 180 static struct ffs_dev *_ffs_alloc_dev(void); 181 static int _ffs_name_dev(struct ffs_dev *dev, const char *name); 182 static void _ffs_free_dev(struct ffs_dev *dev); 183 static void *ffs_acquire_dev(const char *dev_name); 184 static void ffs_release_dev(struct ffs_data *ffs_data); 185 static int ffs_ready(struct ffs_data *ffs); 186 static void ffs_closed(struct ffs_data *ffs); 187 188 /* Misc helper functions ****************************************************/ 189 190 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 191 __attribute__((warn_unused_result, nonnull)); 192 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 193 __attribute__((warn_unused_result, nonnull)); 194 195 196 /* Control file aka ep0 *****************************************************/ 197 198 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 199 { 200 struct ffs_data *ffs = req->context; 201 202 complete_all(&ffs->ep0req_completion); 203 } 204 205 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 206 { 207 struct usb_request *req = ffs->ep0req; 208 int ret; 209 210 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 211 212 spin_unlock_irq(&ffs->ev.waitq.lock); 213 214 req->buf = data; 215 req->length = len; 216 217 /* 218 * UDC layer requires to provide a buffer even for ZLP, but should 219 * not use it at all. Let's provide some poisoned pointer to catch 220 * possible bug in the driver. 221 */ 222 if (req->buf == NULL) 223 req->buf = (void *)0xDEADBABE; 224 225 reinit_completion(&ffs->ep0req_completion); 226 227 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 228 if (unlikely(ret < 0)) 229 return ret; 230 231 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 232 if (unlikely(ret)) { 233 usb_ep_dequeue(ffs->gadget->ep0, req); 234 return -EINTR; 235 } 236 237 ffs->setup_state = FFS_NO_SETUP; 238 return req->status ? req->status : req->actual; 239 } 240 241 static int __ffs_ep0_stall(struct ffs_data *ffs) 242 { 243 if (ffs->ev.can_stall) { 244 pr_vdebug("ep0 stall\n"); 245 usb_ep_set_halt(ffs->gadget->ep0); 246 ffs->setup_state = FFS_NO_SETUP; 247 return -EL2HLT; 248 } else { 249 pr_debug("bogus ep0 stall!\n"); 250 return -ESRCH; 251 } 252 } 253 254 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 255 size_t len, loff_t *ptr) 256 { 257 struct ffs_data *ffs = file->private_data; 258 ssize_t ret; 259 char *data; 260 261 ENTER(); 262 263 /* Fast check if setup was canceled */ 264 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 265 return -EIDRM; 266 267 /* Acquire mutex */ 268 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 269 if (unlikely(ret < 0)) 270 return ret; 271 272 /* Check state */ 273 switch (ffs->state) { 274 case FFS_READ_DESCRIPTORS: 275 case FFS_READ_STRINGS: 276 /* Copy data */ 277 if (unlikely(len < 16)) { 278 ret = -EINVAL; 279 break; 280 } 281 282 data = ffs_prepare_buffer(buf, len); 283 if (IS_ERR(data)) { 284 ret = PTR_ERR(data); 285 break; 286 } 287 288 /* Handle data */ 289 if (ffs->state == FFS_READ_DESCRIPTORS) { 290 pr_info("read descriptors\n"); 291 ret = __ffs_data_got_descs(ffs, data, len); 292 if (unlikely(ret < 0)) 293 break; 294 295 ffs->state = FFS_READ_STRINGS; 296 ret = len; 297 } else { 298 pr_info("read strings\n"); 299 ret = __ffs_data_got_strings(ffs, data, len); 300 if (unlikely(ret < 0)) 301 break; 302 303 ret = ffs_epfiles_create(ffs); 304 if (unlikely(ret)) { 305 ffs->state = FFS_CLOSING; 306 break; 307 } 308 309 ffs->state = FFS_ACTIVE; 310 mutex_unlock(&ffs->mutex); 311 312 ret = ffs_ready(ffs); 313 if (unlikely(ret < 0)) { 314 ffs->state = FFS_CLOSING; 315 return ret; 316 } 317 318 return len; 319 } 320 break; 321 322 case FFS_ACTIVE: 323 data = NULL; 324 /* 325 * We're called from user space, we can use _irq 326 * rather then _irqsave 327 */ 328 spin_lock_irq(&ffs->ev.waitq.lock); 329 switch (ffs_setup_state_clear_cancelled(ffs)) { 330 case FFS_SETUP_CANCELLED: 331 ret = -EIDRM; 332 goto done_spin; 333 334 case FFS_NO_SETUP: 335 ret = -ESRCH; 336 goto done_spin; 337 338 case FFS_SETUP_PENDING: 339 break; 340 } 341 342 /* FFS_SETUP_PENDING */ 343 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 344 spin_unlock_irq(&ffs->ev.waitq.lock); 345 ret = __ffs_ep0_stall(ffs); 346 break; 347 } 348 349 /* FFS_SETUP_PENDING and not stall */ 350 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 351 352 spin_unlock_irq(&ffs->ev.waitq.lock); 353 354 data = ffs_prepare_buffer(buf, len); 355 if (IS_ERR(data)) { 356 ret = PTR_ERR(data); 357 break; 358 } 359 360 spin_lock_irq(&ffs->ev.waitq.lock); 361 362 /* 363 * We are guaranteed to be still in FFS_ACTIVE state 364 * but the state of setup could have changed from 365 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 366 * to check for that. If that happened we copied data 367 * from user space in vain but it's unlikely. 368 * 369 * For sure we are not in FFS_NO_SETUP since this is 370 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 371 * transition can be performed and it's protected by 372 * mutex. 373 */ 374 if (ffs_setup_state_clear_cancelled(ffs) == 375 FFS_SETUP_CANCELLED) { 376 ret = -EIDRM; 377 done_spin: 378 spin_unlock_irq(&ffs->ev.waitq.lock); 379 } else { 380 /* unlocks spinlock */ 381 ret = __ffs_ep0_queue_wait(ffs, data, len); 382 } 383 kfree(data); 384 break; 385 386 default: 387 ret = -EBADFD; 388 break; 389 } 390 391 mutex_unlock(&ffs->mutex); 392 return ret; 393 } 394 395 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 396 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 397 size_t n) 398 { 399 /* 400 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 401 * size of ffs->ev.types array (which is four) so that's how much space 402 * we reserve. 403 */ 404 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 405 const size_t size = n * sizeof *events; 406 unsigned i = 0; 407 408 memset(events, 0, size); 409 410 do { 411 events[i].type = ffs->ev.types[i]; 412 if (events[i].type == FUNCTIONFS_SETUP) { 413 events[i].u.setup = ffs->ev.setup; 414 ffs->setup_state = FFS_SETUP_PENDING; 415 } 416 } while (++i < n); 417 418 ffs->ev.count -= n; 419 if (ffs->ev.count) 420 memmove(ffs->ev.types, ffs->ev.types + n, 421 ffs->ev.count * sizeof *ffs->ev.types); 422 423 spin_unlock_irq(&ffs->ev.waitq.lock); 424 mutex_unlock(&ffs->mutex); 425 426 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 427 } 428 429 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 430 size_t len, loff_t *ptr) 431 { 432 struct ffs_data *ffs = file->private_data; 433 char *data = NULL; 434 size_t n; 435 int ret; 436 437 ENTER(); 438 439 /* Fast check if setup was canceled */ 440 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 441 return -EIDRM; 442 443 /* Acquire mutex */ 444 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 445 if (unlikely(ret < 0)) 446 return ret; 447 448 /* Check state */ 449 if (ffs->state != FFS_ACTIVE) { 450 ret = -EBADFD; 451 goto done_mutex; 452 } 453 454 /* 455 * We're called from user space, we can use _irq rather then 456 * _irqsave 457 */ 458 spin_lock_irq(&ffs->ev.waitq.lock); 459 460 switch (ffs_setup_state_clear_cancelled(ffs)) { 461 case FFS_SETUP_CANCELLED: 462 ret = -EIDRM; 463 break; 464 465 case FFS_NO_SETUP: 466 n = len / sizeof(struct usb_functionfs_event); 467 if (unlikely(!n)) { 468 ret = -EINVAL; 469 break; 470 } 471 472 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 473 ret = -EAGAIN; 474 break; 475 } 476 477 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 478 ffs->ev.count)) { 479 ret = -EINTR; 480 break; 481 } 482 483 return __ffs_ep0_read_events(ffs, buf, 484 min(n, (size_t)ffs->ev.count)); 485 486 case FFS_SETUP_PENDING: 487 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 488 spin_unlock_irq(&ffs->ev.waitq.lock); 489 ret = __ffs_ep0_stall(ffs); 490 goto done_mutex; 491 } 492 493 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 494 495 spin_unlock_irq(&ffs->ev.waitq.lock); 496 497 if (likely(len)) { 498 data = kmalloc(len, GFP_KERNEL); 499 if (unlikely(!data)) { 500 ret = -ENOMEM; 501 goto done_mutex; 502 } 503 } 504 505 spin_lock_irq(&ffs->ev.waitq.lock); 506 507 /* See ffs_ep0_write() */ 508 if (ffs_setup_state_clear_cancelled(ffs) == 509 FFS_SETUP_CANCELLED) { 510 ret = -EIDRM; 511 break; 512 } 513 514 /* unlocks spinlock */ 515 ret = __ffs_ep0_queue_wait(ffs, data, len); 516 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 517 ret = -EFAULT; 518 goto done_mutex; 519 520 default: 521 ret = -EBADFD; 522 break; 523 } 524 525 spin_unlock_irq(&ffs->ev.waitq.lock); 526 done_mutex: 527 mutex_unlock(&ffs->mutex); 528 kfree(data); 529 return ret; 530 } 531 532 static int ffs_ep0_open(struct inode *inode, struct file *file) 533 { 534 struct ffs_data *ffs = inode->i_private; 535 536 ENTER(); 537 538 if (unlikely(ffs->state == FFS_CLOSING)) 539 return -EBUSY; 540 541 file->private_data = ffs; 542 ffs_data_opened(ffs); 543 544 return 0; 545 } 546 547 static int ffs_ep0_release(struct inode *inode, struct file *file) 548 { 549 struct ffs_data *ffs = file->private_data; 550 551 ENTER(); 552 553 ffs_data_closed(ffs); 554 555 return 0; 556 } 557 558 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 559 { 560 struct ffs_data *ffs = file->private_data; 561 struct usb_gadget *gadget = ffs->gadget; 562 long ret; 563 564 ENTER(); 565 566 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 567 struct ffs_function *func = ffs->func; 568 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 569 } else if (gadget && gadget->ops->ioctl) { 570 ret = gadget->ops->ioctl(gadget, code, value); 571 } else { 572 ret = -ENOTTY; 573 } 574 575 return ret; 576 } 577 578 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait) 579 { 580 struct ffs_data *ffs = file->private_data; 581 unsigned int mask = POLLWRNORM; 582 int ret; 583 584 poll_wait(file, &ffs->ev.waitq, wait); 585 586 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 587 if (unlikely(ret < 0)) 588 return mask; 589 590 switch (ffs->state) { 591 case FFS_READ_DESCRIPTORS: 592 case FFS_READ_STRINGS: 593 mask |= POLLOUT; 594 break; 595 596 case FFS_ACTIVE: 597 switch (ffs->setup_state) { 598 case FFS_NO_SETUP: 599 if (ffs->ev.count) 600 mask |= POLLIN; 601 break; 602 603 case FFS_SETUP_PENDING: 604 case FFS_SETUP_CANCELLED: 605 mask |= (POLLIN | POLLOUT); 606 break; 607 } 608 case FFS_CLOSING: 609 break; 610 case FFS_DEACTIVATED: 611 break; 612 } 613 614 mutex_unlock(&ffs->mutex); 615 616 return mask; 617 } 618 619 static const struct file_operations ffs_ep0_operations = { 620 .llseek = no_llseek, 621 622 .open = ffs_ep0_open, 623 .write = ffs_ep0_write, 624 .read = ffs_ep0_read, 625 .release = ffs_ep0_release, 626 .unlocked_ioctl = ffs_ep0_ioctl, 627 .poll = ffs_ep0_poll, 628 }; 629 630 631 /* "Normal" endpoints operations ********************************************/ 632 633 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 634 { 635 ENTER(); 636 if (likely(req->context)) { 637 struct ffs_ep *ep = _ep->driver_data; 638 ep->status = req->status ? req->status : req->actual; 639 complete(req->context); 640 } 641 } 642 643 static void ffs_user_copy_worker(struct work_struct *work) 644 { 645 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 646 work); 647 int ret = io_data->req->status ? io_data->req->status : 648 io_data->req->actual; 649 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 650 651 if (io_data->read && ret > 0) { 652 use_mm(io_data->mm); 653 ret = copy_to_iter(io_data->buf, ret, &io_data->data); 654 if (ret != io_data->req->actual && iov_iter_count(&io_data->data)) 655 ret = -EFAULT; 656 unuse_mm(io_data->mm); 657 } 658 659 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 660 661 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 662 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 663 664 usb_ep_free_request(io_data->ep, io_data->req); 665 666 if (io_data->read) 667 kfree(io_data->to_free); 668 kfree(io_data->buf); 669 kfree(io_data); 670 } 671 672 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 673 struct usb_request *req) 674 { 675 struct ffs_io_data *io_data = req->context; 676 677 ENTER(); 678 679 INIT_WORK(&io_data->work, ffs_user_copy_worker); 680 schedule_work(&io_data->work); 681 } 682 683 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 684 { 685 struct ffs_epfile *epfile = file->private_data; 686 struct usb_request *req; 687 struct ffs_ep *ep; 688 char *data = NULL; 689 ssize_t ret, data_len = -EINVAL; 690 int halt; 691 692 /* Are we still active? */ 693 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 694 return -ENODEV; 695 696 /* Wait for endpoint to be enabled */ 697 ep = epfile->ep; 698 if (!ep) { 699 if (file->f_flags & O_NONBLOCK) 700 return -EAGAIN; 701 702 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep)); 703 if (ret) 704 return -EINTR; 705 } 706 707 /* Do we halt? */ 708 halt = (!io_data->read == !epfile->in); 709 if (halt && epfile->isoc) 710 return -EINVAL; 711 712 /* Allocate & copy */ 713 if (!halt) { 714 /* 715 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 716 * before the waiting completes, so do not assign to 'gadget' 717 * earlier 718 */ 719 struct usb_gadget *gadget = epfile->ffs->gadget; 720 size_t copied; 721 722 spin_lock_irq(&epfile->ffs->eps_lock); 723 /* In the meantime, endpoint got disabled or changed. */ 724 if (epfile->ep != ep) { 725 spin_unlock_irq(&epfile->ffs->eps_lock); 726 return -ESHUTDOWN; 727 } 728 data_len = iov_iter_count(&io_data->data); 729 /* 730 * Controller may require buffer size to be aligned to 731 * maxpacketsize of an out endpoint. 732 */ 733 if (io_data->read) 734 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 735 spin_unlock_irq(&epfile->ffs->eps_lock); 736 737 data = kmalloc(data_len, GFP_KERNEL); 738 if (unlikely(!data)) 739 return -ENOMEM; 740 if (!io_data->read) { 741 copied = copy_from_iter(data, data_len, &io_data->data); 742 if (copied != data_len) { 743 ret = -EFAULT; 744 goto error; 745 } 746 } 747 } 748 749 /* We will be using request */ 750 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 751 if (unlikely(ret)) 752 goto error; 753 754 spin_lock_irq(&epfile->ffs->eps_lock); 755 756 if (epfile->ep != ep) { 757 /* In the meantime, endpoint got disabled or changed. */ 758 ret = -ESHUTDOWN; 759 } else if (halt) { 760 /* Halt */ 761 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep)) 762 usb_ep_set_halt(ep->ep); 763 ret = -EBADMSG; 764 } else if (unlikely(data_len == -EINVAL)) { 765 /* 766 * Sanity Check: even though data_len can't be used 767 * uninitialized at the time I write this comment, some 768 * compilers complain about this situation. 769 * In order to keep the code clean from warnings, data_len is 770 * being initialized to -EINVAL during its declaration, which 771 * means we can't rely on compiler anymore to warn no future 772 * changes won't result in data_len being used uninitialized. 773 * For such reason, we're adding this redundant sanity check 774 * here. 775 */ 776 WARN(1, "%s: data_len == -EINVAL\n", __func__); 777 ret = -EINVAL; 778 } else if (!io_data->aio) { 779 DECLARE_COMPLETION_ONSTACK(done); 780 bool interrupted = false; 781 782 req = ep->req; 783 req->buf = data; 784 req->length = data_len; 785 786 req->context = &done; 787 req->complete = ffs_epfile_io_complete; 788 789 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 790 if (unlikely(ret < 0)) 791 goto error_lock; 792 793 spin_unlock_irq(&epfile->ffs->eps_lock); 794 795 if (unlikely(wait_for_completion_interruptible(&done))) { 796 /* 797 * To avoid race condition with ffs_epfile_io_complete, 798 * dequeue the request first then check 799 * status. usb_ep_dequeue API should guarantee no race 800 * condition with req->complete callback. 801 */ 802 usb_ep_dequeue(ep->ep, req); 803 interrupted = ep->status < 0; 804 } 805 806 /* 807 * XXX We may end up silently droping data here. Since data_len 808 * (i.e. req->length) may be bigger than len (after being 809 * rounded up to maxpacketsize), we may end up with more data 810 * then user space has space for. 811 */ 812 ret = interrupted ? -EINTR : ep->status; 813 if (io_data->read && ret > 0) { 814 ret = copy_to_iter(data, ret, &io_data->data); 815 if (!ret) 816 ret = -EFAULT; 817 } 818 goto error_mutex; 819 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) { 820 ret = -ENOMEM; 821 } else { 822 req->buf = data; 823 req->length = data_len; 824 825 io_data->buf = data; 826 io_data->ep = ep->ep; 827 io_data->req = req; 828 io_data->ffs = epfile->ffs; 829 830 req->context = io_data; 831 req->complete = ffs_epfile_async_io_complete; 832 833 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 834 if (unlikely(ret)) { 835 usb_ep_free_request(ep->ep, req); 836 goto error_lock; 837 } 838 839 ret = -EIOCBQUEUED; 840 /* 841 * Do not kfree the buffer in this function. It will be freed 842 * by ffs_user_copy_worker. 843 */ 844 data = NULL; 845 } 846 847 error_lock: 848 spin_unlock_irq(&epfile->ffs->eps_lock); 849 error_mutex: 850 mutex_unlock(&epfile->mutex); 851 error: 852 kfree(data); 853 return ret; 854 } 855 856 static int 857 ffs_epfile_open(struct inode *inode, struct file *file) 858 { 859 struct ffs_epfile *epfile = inode->i_private; 860 861 ENTER(); 862 863 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 864 return -ENODEV; 865 866 file->private_data = epfile; 867 ffs_data_opened(epfile->ffs); 868 869 return 0; 870 } 871 872 static int ffs_aio_cancel(struct kiocb *kiocb) 873 { 874 struct ffs_io_data *io_data = kiocb->private; 875 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 876 int value; 877 878 ENTER(); 879 880 spin_lock_irq(&epfile->ffs->eps_lock); 881 882 if (likely(io_data && io_data->ep && io_data->req)) 883 value = usb_ep_dequeue(io_data->ep, io_data->req); 884 else 885 value = -EINVAL; 886 887 spin_unlock_irq(&epfile->ffs->eps_lock); 888 889 return value; 890 } 891 892 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 893 { 894 struct ffs_io_data io_data, *p = &io_data; 895 ssize_t res; 896 897 ENTER(); 898 899 if (!is_sync_kiocb(kiocb)) { 900 p = kmalloc(sizeof(io_data), GFP_KERNEL); 901 if (unlikely(!p)) 902 return -ENOMEM; 903 p->aio = true; 904 } else { 905 p->aio = false; 906 } 907 908 p->read = false; 909 p->kiocb = kiocb; 910 p->data = *from; 911 p->mm = current->mm; 912 913 kiocb->private = p; 914 915 if (p->aio) 916 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 917 918 res = ffs_epfile_io(kiocb->ki_filp, p); 919 if (res == -EIOCBQUEUED) 920 return res; 921 if (p->aio) 922 kfree(p); 923 else 924 *from = p->data; 925 return res; 926 } 927 928 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 929 { 930 struct ffs_io_data io_data, *p = &io_data; 931 ssize_t res; 932 933 ENTER(); 934 935 if (!is_sync_kiocb(kiocb)) { 936 p = kmalloc(sizeof(io_data), GFP_KERNEL); 937 if (unlikely(!p)) 938 return -ENOMEM; 939 p->aio = true; 940 } else { 941 p->aio = false; 942 } 943 944 p->read = true; 945 p->kiocb = kiocb; 946 if (p->aio) { 947 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 948 if (!p->to_free) { 949 kfree(p); 950 return -ENOMEM; 951 } 952 } else { 953 p->data = *to; 954 p->to_free = NULL; 955 } 956 p->mm = current->mm; 957 958 kiocb->private = p; 959 960 if (p->aio) 961 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 962 963 res = ffs_epfile_io(kiocb->ki_filp, p); 964 if (res == -EIOCBQUEUED) 965 return res; 966 967 if (p->aio) { 968 kfree(p->to_free); 969 kfree(p); 970 } else { 971 *to = p->data; 972 } 973 return res; 974 } 975 976 static int 977 ffs_epfile_release(struct inode *inode, struct file *file) 978 { 979 struct ffs_epfile *epfile = inode->i_private; 980 981 ENTER(); 982 983 ffs_data_closed(epfile->ffs); 984 985 return 0; 986 } 987 988 static long ffs_epfile_ioctl(struct file *file, unsigned code, 989 unsigned long value) 990 { 991 struct ffs_epfile *epfile = file->private_data; 992 int ret; 993 994 ENTER(); 995 996 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 997 return -ENODEV; 998 999 spin_lock_irq(&epfile->ffs->eps_lock); 1000 if (likely(epfile->ep)) { 1001 switch (code) { 1002 case FUNCTIONFS_FIFO_STATUS: 1003 ret = usb_ep_fifo_status(epfile->ep->ep); 1004 break; 1005 case FUNCTIONFS_FIFO_FLUSH: 1006 usb_ep_fifo_flush(epfile->ep->ep); 1007 ret = 0; 1008 break; 1009 case FUNCTIONFS_CLEAR_HALT: 1010 ret = usb_ep_clear_halt(epfile->ep->ep); 1011 break; 1012 case FUNCTIONFS_ENDPOINT_REVMAP: 1013 ret = epfile->ep->num; 1014 break; 1015 case FUNCTIONFS_ENDPOINT_DESC: 1016 { 1017 int desc_idx; 1018 struct usb_endpoint_descriptor *desc; 1019 1020 switch (epfile->ffs->gadget->speed) { 1021 case USB_SPEED_SUPER: 1022 desc_idx = 2; 1023 break; 1024 case USB_SPEED_HIGH: 1025 desc_idx = 1; 1026 break; 1027 default: 1028 desc_idx = 0; 1029 } 1030 desc = epfile->ep->descs[desc_idx]; 1031 1032 spin_unlock_irq(&epfile->ffs->eps_lock); 1033 ret = copy_to_user((void *)value, desc, sizeof(*desc)); 1034 if (ret) 1035 ret = -EFAULT; 1036 return ret; 1037 } 1038 default: 1039 ret = -ENOTTY; 1040 } 1041 } else { 1042 ret = -ENODEV; 1043 } 1044 spin_unlock_irq(&epfile->ffs->eps_lock); 1045 1046 return ret; 1047 } 1048 1049 static const struct file_operations ffs_epfile_operations = { 1050 .llseek = no_llseek, 1051 1052 .open = ffs_epfile_open, 1053 .write_iter = ffs_epfile_write_iter, 1054 .read_iter = ffs_epfile_read_iter, 1055 .release = ffs_epfile_release, 1056 .unlocked_ioctl = ffs_epfile_ioctl, 1057 }; 1058 1059 1060 /* File system and super block operations ***********************************/ 1061 1062 /* 1063 * Mounting the file system creates a controller file, used first for 1064 * function configuration then later for event monitoring. 1065 */ 1066 1067 static struct inode *__must_check 1068 ffs_sb_make_inode(struct super_block *sb, void *data, 1069 const struct file_operations *fops, 1070 const struct inode_operations *iops, 1071 struct ffs_file_perms *perms) 1072 { 1073 struct inode *inode; 1074 1075 ENTER(); 1076 1077 inode = new_inode(sb); 1078 1079 if (likely(inode)) { 1080 struct timespec current_time = CURRENT_TIME; 1081 1082 inode->i_ino = get_next_ino(); 1083 inode->i_mode = perms->mode; 1084 inode->i_uid = perms->uid; 1085 inode->i_gid = perms->gid; 1086 inode->i_atime = current_time; 1087 inode->i_mtime = current_time; 1088 inode->i_ctime = current_time; 1089 inode->i_private = data; 1090 if (fops) 1091 inode->i_fop = fops; 1092 if (iops) 1093 inode->i_op = iops; 1094 } 1095 1096 return inode; 1097 } 1098 1099 /* Create "regular" file */ 1100 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1101 const char *name, void *data, 1102 const struct file_operations *fops) 1103 { 1104 struct ffs_data *ffs = sb->s_fs_info; 1105 struct dentry *dentry; 1106 struct inode *inode; 1107 1108 ENTER(); 1109 1110 dentry = d_alloc_name(sb->s_root, name); 1111 if (unlikely(!dentry)) 1112 return NULL; 1113 1114 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1115 if (unlikely(!inode)) { 1116 dput(dentry); 1117 return NULL; 1118 } 1119 1120 d_add(dentry, inode); 1121 return dentry; 1122 } 1123 1124 /* Super block */ 1125 static const struct super_operations ffs_sb_operations = { 1126 .statfs = simple_statfs, 1127 .drop_inode = generic_delete_inode, 1128 }; 1129 1130 struct ffs_sb_fill_data { 1131 struct ffs_file_perms perms; 1132 umode_t root_mode; 1133 const char *dev_name; 1134 bool no_disconnect; 1135 struct ffs_data *ffs_data; 1136 }; 1137 1138 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1139 { 1140 struct ffs_sb_fill_data *data = _data; 1141 struct inode *inode; 1142 struct ffs_data *ffs = data->ffs_data; 1143 1144 ENTER(); 1145 1146 ffs->sb = sb; 1147 data->ffs_data = NULL; 1148 sb->s_fs_info = ffs; 1149 sb->s_blocksize = PAGE_SIZE; 1150 sb->s_blocksize_bits = PAGE_SHIFT; 1151 sb->s_magic = FUNCTIONFS_MAGIC; 1152 sb->s_op = &ffs_sb_operations; 1153 sb->s_time_gran = 1; 1154 1155 /* Root inode */ 1156 data->perms.mode = data->root_mode; 1157 inode = ffs_sb_make_inode(sb, NULL, 1158 &simple_dir_operations, 1159 &simple_dir_inode_operations, 1160 &data->perms); 1161 sb->s_root = d_make_root(inode); 1162 if (unlikely(!sb->s_root)) 1163 return -ENOMEM; 1164 1165 /* EP0 file */ 1166 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1167 &ffs_ep0_operations))) 1168 return -ENOMEM; 1169 1170 return 0; 1171 } 1172 1173 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1174 { 1175 ENTER(); 1176 1177 if (!opts || !*opts) 1178 return 0; 1179 1180 for (;;) { 1181 unsigned long value; 1182 char *eq, *comma; 1183 1184 /* Option limit */ 1185 comma = strchr(opts, ','); 1186 if (comma) 1187 *comma = 0; 1188 1189 /* Value limit */ 1190 eq = strchr(opts, '='); 1191 if (unlikely(!eq)) { 1192 pr_err("'=' missing in %s\n", opts); 1193 return -EINVAL; 1194 } 1195 *eq = 0; 1196 1197 /* Parse value */ 1198 if (kstrtoul(eq + 1, 0, &value)) { 1199 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1200 return -EINVAL; 1201 } 1202 1203 /* Interpret option */ 1204 switch (eq - opts) { 1205 case 13: 1206 if (!memcmp(opts, "no_disconnect", 13)) 1207 data->no_disconnect = !!value; 1208 else 1209 goto invalid; 1210 break; 1211 case 5: 1212 if (!memcmp(opts, "rmode", 5)) 1213 data->root_mode = (value & 0555) | S_IFDIR; 1214 else if (!memcmp(opts, "fmode", 5)) 1215 data->perms.mode = (value & 0666) | S_IFREG; 1216 else 1217 goto invalid; 1218 break; 1219 1220 case 4: 1221 if (!memcmp(opts, "mode", 4)) { 1222 data->root_mode = (value & 0555) | S_IFDIR; 1223 data->perms.mode = (value & 0666) | S_IFREG; 1224 } else { 1225 goto invalid; 1226 } 1227 break; 1228 1229 case 3: 1230 if (!memcmp(opts, "uid", 3)) { 1231 data->perms.uid = make_kuid(current_user_ns(), value); 1232 if (!uid_valid(data->perms.uid)) { 1233 pr_err("%s: unmapped value: %lu\n", opts, value); 1234 return -EINVAL; 1235 } 1236 } else if (!memcmp(opts, "gid", 3)) { 1237 data->perms.gid = make_kgid(current_user_ns(), value); 1238 if (!gid_valid(data->perms.gid)) { 1239 pr_err("%s: unmapped value: %lu\n", opts, value); 1240 return -EINVAL; 1241 } 1242 } else { 1243 goto invalid; 1244 } 1245 break; 1246 1247 default: 1248 invalid: 1249 pr_err("%s: invalid option\n", opts); 1250 return -EINVAL; 1251 } 1252 1253 /* Next iteration */ 1254 if (!comma) 1255 break; 1256 opts = comma + 1; 1257 } 1258 1259 return 0; 1260 } 1261 1262 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1263 1264 static struct dentry * 1265 ffs_fs_mount(struct file_system_type *t, int flags, 1266 const char *dev_name, void *opts) 1267 { 1268 struct ffs_sb_fill_data data = { 1269 .perms = { 1270 .mode = S_IFREG | 0600, 1271 .uid = GLOBAL_ROOT_UID, 1272 .gid = GLOBAL_ROOT_GID, 1273 }, 1274 .root_mode = S_IFDIR | 0500, 1275 .no_disconnect = false, 1276 }; 1277 struct dentry *rv; 1278 int ret; 1279 void *ffs_dev; 1280 struct ffs_data *ffs; 1281 1282 ENTER(); 1283 1284 ret = ffs_fs_parse_opts(&data, opts); 1285 if (unlikely(ret < 0)) 1286 return ERR_PTR(ret); 1287 1288 ffs = ffs_data_new(); 1289 if (unlikely(!ffs)) 1290 return ERR_PTR(-ENOMEM); 1291 ffs->file_perms = data.perms; 1292 ffs->no_disconnect = data.no_disconnect; 1293 1294 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1295 if (unlikely(!ffs->dev_name)) { 1296 ffs_data_put(ffs); 1297 return ERR_PTR(-ENOMEM); 1298 } 1299 1300 ffs_dev = ffs_acquire_dev(dev_name); 1301 if (IS_ERR(ffs_dev)) { 1302 ffs_data_put(ffs); 1303 return ERR_CAST(ffs_dev); 1304 } 1305 ffs->private_data = ffs_dev; 1306 data.ffs_data = ffs; 1307 1308 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1309 if (IS_ERR(rv) && data.ffs_data) { 1310 ffs_release_dev(data.ffs_data); 1311 ffs_data_put(data.ffs_data); 1312 } 1313 return rv; 1314 } 1315 1316 static void 1317 ffs_fs_kill_sb(struct super_block *sb) 1318 { 1319 ENTER(); 1320 1321 kill_litter_super(sb); 1322 if (sb->s_fs_info) { 1323 ffs_release_dev(sb->s_fs_info); 1324 ffs_data_closed(sb->s_fs_info); 1325 ffs_data_put(sb->s_fs_info); 1326 } 1327 } 1328 1329 static struct file_system_type ffs_fs_type = { 1330 .owner = THIS_MODULE, 1331 .name = "functionfs", 1332 .mount = ffs_fs_mount, 1333 .kill_sb = ffs_fs_kill_sb, 1334 }; 1335 MODULE_ALIAS_FS("functionfs"); 1336 1337 1338 /* Driver's main init/cleanup functions *************************************/ 1339 1340 static int functionfs_init(void) 1341 { 1342 int ret; 1343 1344 ENTER(); 1345 1346 ret = register_filesystem(&ffs_fs_type); 1347 if (likely(!ret)) 1348 pr_info("file system registered\n"); 1349 else 1350 pr_err("failed registering file system (%d)\n", ret); 1351 1352 return ret; 1353 } 1354 1355 static void functionfs_cleanup(void) 1356 { 1357 ENTER(); 1358 1359 pr_info("unloading\n"); 1360 unregister_filesystem(&ffs_fs_type); 1361 } 1362 1363 1364 /* ffs_data and ffs_function construction and destruction code **************/ 1365 1366 static void ffs_data_clear(struct ffs_data *ffs); 1367 static void ffs_data_reset(struct ffs_data *ffs); 1368 1369 static void ffs_data_get(struct ffs_data *ffs) 1370 { 1371 ENTER(); 1372 1373 atomic_inc(&ffs->ref); 1374 } 1375 1376 static void ffs_data_opened(struct ffs_data *ffs) 1377 { 1378 ENTER(); 1379 1380 atomic_inc(&ffs->ref); 1381 if (atomic_add_return(1, &ffs->opened) == 1 && 1382 ffs->state == FFS_DEACTIVATED) { 1383 ffs->state = FFS_CLOSING; 1384 ffs_data_reset(ffs); 1385 } 1386 } 1387 1388 static void ffs_data_put(struct ffs_data *ffs) 1389 { 1390 ENTER(); 1391 1392 if (unlikely(atomic_dec_and_test(&ffs->ref))) { 1393 pr_info("%s(): freeing\n", __func__); 1394 ffs_data_clear(ffs); 1395 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1396 waitqueue_active(&ffs->ep0req_completion.wait)); 1397 kfree(ffs->dev_name); 1398 kfree(ffs); 1399 } 1400 } 1401 1402 static void ffs_data_closed(struct ffs_data *ffs) 1403 { 1404 ENTER(); 1405 1406 if (atomic_dec_and_test(&ffs->opened)) { 1407 if (ffs->no_disconnect) { 1408 ffs->state = FFS_DEACTIVATED; 1409 if (ffs->epfiles) { 1410 ffs_epfiles_destroy(ffs->epfiles, 1411 ffs->eps_count); 1412 ffs->epfiles = NULL; 1413 } 1414 if (ffs->setup_state == FFS_SETUP_PENDING) 1415 __ffs_ep0_stall(ffs); 1416 } else { 1417 ffs->state = FFS_CLOSING; 1418 ffs_data_reset(ffs); 1419 } 1420 } 1421 if (atomic_read(&ffs->opened) < 0) { 1422 ffs->state = FFS_CLOSING; 1423 ffs_data_reset(ffs); 1424 } 1425 1426 ffs_data_put(ffs); 1427 } 1428 1429 static struct ffs_data *ffs_data_new(void) 1430 { 1431 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1432 if (unlikely(!ffs)) 1433 return NULL; 1434 1435 ENTER(); 1436 1437 atomic_set(&ffs->ref, 1); 1438 atomic_set(&ffs->opened, 0); 1439 ffs->state = FFS_READ_DESCRIPTORS; 1440 mutex_init(&ffs->mutex); 1441 spin_lock_init(&ffs->eps_lock); 1442 init_waitqueue_head(&ffs->ev.waitq); 1443 init_completion(&ffs->ep0req_completion); 1444 1445 /* XXX REVISIT need to update it in some places, or do we? */ 1446 ffs->ev.can_stall = 1; 1447 1448 return ffs; 1449 } 1450 1451 static void ffs_data_clear(struct ffs_data *ffs) 1452 { 1453 ENTER(); 1454 1455 ffs_closed(ffs); 1456 1457 BUG_ON(ffs->gadget); 1458 1459 if (ffs->epfiles) 1460 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1461 1462 if (ffs->ffs_eventfd) 1463 eventfd_ctx_put(ffs->ffs_eventfd); 1464 1465 kfree(ffs->raw_descs_data); 1466 kfree(ffs->raw_strings); 1467 kfree(ffs->stringtabs); 1468 } 1469 1470 static void ffs_data_reset(struct ffs_data *ffs) 1471 { 1472 ENTER(); 1473 1474 ffs_data_clear(ffs); 1475 1476 ffs->epfiles = NULL; 1477 ffs->raw_descs_data = NULL; 1478 ffs->raw_descs = NULL; 1479 ffs->raw_strings = NULL; 1480 ffs->stringtabs = NULL; 1481 1482 ffs->raw_descs_length = 0; 1483 ffs->fs_descs_count = 0; 1484 ffs->hs_descs_count = 0; 1485 ffs->ss_descs_count = 0; 1486 1487 ffs->strings_count = 0; 1488 ffs->interfaces_count = 0; 1489 ffs->eps_count = 0; 1490 1491 ffs->ev.count = 0; 1492 1493 ffs->state = FFS_READ_DESCRIPTORS; 1494 ffs->setup_state = FFS_NO_SETUP; 1495 ffs->flags = 0; 1496 } 1497 1498 1499 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1500 { 1501 struct usb_gadget_strings **lang; 1502 int first_id; 1503 1504 ENTER(); 1505 1506 if (WARN_ON(ffs->state != FFS_ACTIVE 1507 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1508 return -EBADFD; 1509 1510 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1511 if (unlikely(first_id < 0)) 1512 return first_id; 1513 1514 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1515 if (unlikely(!ffs->ep0req)) 1516 return -ENOMEM; 1517 ffs->ep0req->complete = ffs_ep0_complete; 1518 ffs->ep0req->context = ffs; 1519 1520 lang = ffs->stringtabs; 1521 if (lang) { 1522 for (; *lang; ++lang) { 1523 struct usb_string *str = (*lang)->strings; 1524 int id = first_id; 1525 for (; str->s; ++id, ++str) 1526 str->id = id; 1527 } 1528 } 1529 1530 ffs->gadget = cdev->gadget; 1531 ffs_data_get(ffs); 1532 return 0; 1533 } 1534 1535 static void functionfs_unbind(struct ffs_data *ffs) 1536 { 1537 ENTER(); 1538 1539 if (!WARN_ON(!ffs->gadget)) { 1540 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1541 ffs->ep0req = NULL; 1542 ffs->gadget = NULL; 1543 clear_bit(FFS_FL_BOUND, &ffs->flags); 1544 ffs_data_put(ffs); 1545 } 1546 } 1547 1548 static int ffs_epfiles_create(struct ffs_data *ffs) 1549 { 1550 struct ffs_epfile *epfile, *epfiles; 1551 unsigned i, count; 1552 1553 ENTER(); 1554 1555 count = ffs->eps_count; 1556 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1557 if (!epfiles) 1558 return -ENOMEM; 1559 1560 epfile = epfiles; 1561 for (i = 1; i <= count; ++i, ++epfile) { 1562 epfile->ffs = ffs; 1563 mutex_init(&epfile->mutex); 1564 init_waitqueue_head(&epfile->wait); 1565 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1566 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1567 else 1568 sprintf(epfile->name, "ep%u", i); 1569 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1570 epfile, 1571 &ffs_epfile_operations); 1572 if (unlikely(!epfile->dentry)) { 1573 ffs_epfiles_destroy(epfiles, i - 1); 1574 return -ENOMEM; 1575 } 1576 } 1577 1578 ffs->epfiles = epfiles; 1579 return 0; 1580 } 1581 1582 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1583 { 1584 struct ffs_epfile *epfile = epfiles; 1585 1586 ENTER(); 1587 1588 for (; count; --count, ++epfile) { 1589 BUG_ON(mutex_is_locked(&epfile->mutex) || 1590 waitqueue_active(&epfile->wait)); 1591 if (epfile->dentry) { 1592 d_delete(epfile->dentry); 1593 dput(epfile->dentry); 1594 epfile->dentry = NULL; 1595 } 1596 } 1597 1598 kfree(epfiles); 1599 } 1600 1601 static void ffs_func_eps_disable(struct ffs_function *func) 1602 { 1603 struct ffs_ep *ep = func->eps; 1604 struct ffs_epfile *epfile = func->ffs->epfiles; 1605 unsigned count = func->ffs->eps_count; 1606 unsigned long flags; 1607 1608 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1609 do { 1610 /* pending requests get nuked */ 1611 if (likely(ep->ep)) 1612 usb_ep_disable(ep->ep); 1613 ++ep; 1614 1615 if (epfile) { 1616 epfile->ep = NULL; 1617 ++epfile; 1618 } 1619 } while (--count); 1620 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1621 } 1622 1623 static int ffs_func_eps_enable(struct ffs_function *func) 1624 { 1625 struct ffs_data *ffs = func->ffs; 1626 struct ffs_ep *ep = func->eps; 1627 struct ffs_epfile *epfile = ffs->epfiles; 1628 unsigned count = ffs->eps_count; 1629 unsigned long flags; 1630 int ret = 0; 1631 1632 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1633 do { 1634 struct usb_endpoint_descriptor *ds; 1635 int desc_idx; 1636 1637 if (ffs->gadget->speed == USB_SPEED_SUPER) 1638 desc_idx = 2; 1639 else if (ffs->gadget->speed == USB_SPEED_HIGH) 1640 desc_idx = 1; 1641 else 1642 desc_idx = 0; 1643 1644 /* fall-back to lower speed if desc missing for current speed */ 1645 do { 1646 ds = ep->descs[desc_idx]; 1647 } while (!ds && --desc_idx >= 0); 1648 1649 if (!ds) { 1650 ret = -EINVAL; 1651 break; 1652 } 1653 1654 ep->ep->driver_data = ep; 1655 ep->ep->desc = ds; 1656 ret = usb_ep_enable(ep->ep); 1657 if (likely(!ret)) { 1658 epfile->ep = ep; 1659 epfile->in = usb_endpoint_dir_in(ds); 1660 epfile->isoc = usb_endpoint_xfer_isoc(ds); 1661 } else { 1662 break; 1663 } 1664 1665 wake_up(&epfile->wait); 1666 1667 ++ep; 1668 ++epfile; 1669 } while (--count); 1670 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1671 1672 return ret; 1673 } 1674 1675 1676 /* Parsing and building descriptors and strings *****************************/ 1677 1678 /* 1679 * This validates if data pointed by data is a valid USB descriptor as 1680 * well as record how many interfaces, endpoints and strings are 1681 * required by given configuration. Returns address after the 1682 * descriptor or NULL if data is invalid. 1683 */ 1684 1685 enum ffs_entity_type { 1686 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1687 }; 1688 1689 enum ffs_os_desc_type { 1690 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1691 }; 1692 1693 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1694 u8 *valuep, 1695 struct usb_descriptor_header *desc, 1696 void *priv); 1697 1698 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1699 struct usb_os_desc_header *h, void *data, 1700 unsigned len, void *priv); 1701 1702 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1703 ffs_entity_callback entity, 1704 void *priv) 1705 { 1706 struct usb_descriptor_header *_ds = (void *)data; 1707 u8 length; 1708 int ret; 1709 1710 ENTER(); 1711 1712 /* At least two bytes are required: length and type */ 1713 if (len < 2) { 1714 pr_vdebug("descriptor too short\n"); 1715 return -EINVAL; 1716 } 1717 1718 /* If we have at least as many bytes as the descriptor takes? */ 1719 length = _ds->bLength; 1720 if (len < length) { 1721 pr_vdebug("descriptor longer then available data\n"); 1722 return -EINVAL; 1723 } 1724 1725 #define __entity_check_INTERFACE(val) 1 1726 #define __entity_check_STRING(val) (val) 1727 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1728 #define __entity(type, val) do { \ 1729 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1730 if (unlikely(!__entity_check_ ##type(val))) { \ 1731 pr_vdebug("invalid entity's value\n"); \ 1732 return -EINVAL; \ 1733 } \ 1734 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1735 if (unlikely(ret < 0)) { \ 1736 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1737 (val), ret); \ 1738 return ret; \ 1739 } \ 1740 } while (0) 1741 1742 /* Parse descriptor depending on type. */ 1743 switch (_ds->bDescriptorType) { 1744 case USB_DT_DEVICE: 1745 case USB_DT_CONFIG: 1746 case USB_DT_STRING: 1747 case USB_DT_DEVICE_QUALIFIER: 1748 /* function can't have any of those */ 1749 pr_vdebug("descriptor reserved for gadget: %d\n", 1750 _ds->bDescriptorType); 1751 return -EINVAL; 1752 1753 case USB_DT_INTERFACE: { 1754 struct usb_interface_descriptor *ds = (void *)_ds; 1755 pr_vdebug("interface descriptor\n"); 1756 if (length != sizeof *ds) 1757 goto inv_length; 1758 1759 __entity(INTERFACE, ds->bInterfaceNumber); 1760 if (ds->iInterface) 1761 __entity(STRING, ds->iInterface); 1762 } 1763 break; 1764 1765 case USB_DT_ENDPOINT: { 1766 struct usb_endpoint_descriptor *ds = (void *)_ds; 1767 pr_vdebug("endpoint descriptor\n"); 1768 if (length != USB_DT_ENDPOINT_SIZE && 1769 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1770 goto inv_length; 1771 __entity(ENDPOINT, ds->bEndpointAddress); 1772 } 1773 break; 1774 1775 case HID_DT_HID: 1776 pr_vdebug("hid descriptor\n"); 1777 if (length != sizeof(struct hid_descriptor)) 1778 goto inv_length; 1779 break; 1780 1781 case USB_DT_OTG: 1782 if (length != sizeof(struct usb_otg_descriptor)) 1783 goto inv_length; 1784 break; 1785 1786 case USB_DT_INTERFACE_ASSOCIATION: { 1787 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 1788 pr_vdebug("interface association descriptor\n"); 1789 if (length != sizeof *ds) 1790 goto inv_length; 1791 if (ds->iFunction) 1792 __entity(STRING, ds->iFunction); 1793 } 1794 break; 1795 1796 case USB_DT_SS_ENDPOINT_COMP: 1797 pr_vdebug("EP SS companion descriptor\n"); 1798 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 1799 goto inv_length; 1800 break; 1801 1802 case USB_DT_OTHER_SPEED_CONFIG: 1803 case USB_DT_INTERFACE_POWER: 1804 case USB_DT_DEBUG: 1805 case USB_DT_SECURITY: 1806 case USB_DT_CS_RADIO_CONTROL: 1807 /* TODO */ 1808 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 1809 return -EINVAL; 1810 1811 default: 1812 /* We should never be here */ 1813 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 1814 return -EINVAL; 1815 1816 inv_length: 1817 pr_vdebug("invalid length: %d (descriptor %d)\n", 1818 _ds->bLength, _ds->bDescriptorType); 1819 return -EINVAL; 1820 } 1821 1822 #undef __entity 1823 #undef __entity_check_DESCRIPTOR 1824 #undef __entity_check_INTERFACE 1825 #undef __entity_check_STRING 1826 #undef __entity_check_ENDPOINT 1827 1828 return length; 1829 } 1830 1831 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 1832 ffs_entity_callback entity, void *priv) 1833 { 1834 const unsigned _len = len; 1835 unsigned long num = 0; 1836 1837 ENTER(); 1838 1839 for (;;) { 1840 int ret; 1841 1842 if (num == count) 1843 data = NULL; 1844 1845 /* Record "descriptor" entity */ 1846 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 1847 if (unlikely(ret < 0)) { 1848 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 1849 num, ret); 1850 return ret; 1851 } 1852 1853 if (!data) 1854 return _len - len; 1855 1856 ret = ffs_do_single_desc(data, len, entity, priv); 1857 if (unlikely(ret < 0)) { 1858 pr_debug("%s returns %d\n", __func__, ret); 1859 return ret; 1860 } 1861 1862 len -= ret; 1863 data += ret; 1864 ++num; 1865 } 1866 } 1867 1868 static int __ffs_data_do_entity(enum ffs_entity_type type, 1869 u8 *valuep, struct usb_descriptor_header *desc, 1870 void *priv) 1871 { 1872 struct ffs_desc_helper *helper = priv; 1873 struct usb_endpoint_descriptor *d; 1874 1875 ENTER(); 1876 1877 switch (type) { 1878 case FFS_DESCRIPTOR: 1879 break; 1880 1881 case FFS_INTERFACE: 1882 /* 1883 * Interfaces are indexed from zero so if we 1884 * encountered interface "n" then there are at least 1885 * "n+1" interfaces. 1886 */ 1887 if (*valuep >= helper->interfaces_count) 1888 helper->interfaces_count = *valuep + 1; 1889 break; 1890 1891 case FFS_STRING: 1892 /* 1893 * Strings are indexed from 1 (0 is magic ;) reserved 1894 * for languages list or some such) 1895 */ 1896 if (*valuep > helper->ffs->strings_count) 1897 helper->ffs->strings_count = *valuep; 1898 break; 1899 1900 case FFS_ENDPOINT: 1901 d = (void *)desc; 1902 helper->eps_count++; 1903 if (helper->eps_count >= 15) 1904 return -EINVAL; 1905 /* Check if descriptors for any speed were already parsed */ 1906 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 1907 helper->ffs->eps_addrmap[helper->eps_count] = 1908 d->bEndpointAddress; 1909 else if (helper->ffs->eps_addrmap[helper->eps_count] != 1910 d->bEndpointAddress) 1911 return -EINVAL; 1912 break; 1913 } 1914 1915 return 0; 1916 } 1917 1918 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 1919 struct usb_os_desc_header *desc) 1920 { 1921 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 1922 u16 w_index = le16_to_cpu(desc->wIndex); 1923 1924 if (bcd_version != 1) { 1925 pr_vdebug("unsupported os descriptors version: %d", 1926 bcd_version); 1927 return -EINVAL; 1928 } 1929 switch (w_index) { 1930 case 0x4: 1931 *next_type = FFS_OS_DESC_EXT_COMPAT; 1932 break; 1933 case 0x5: 1934 *next_type = FFS_OS_DESC_EXT_PROP; 1935 break; 1936 default: 1937 pr_vdebug("unsupported os descriptor type: %d", w_index); 1938 return -EINVAL; 1939 } 1940 1941 return sizeof(*desc); 1942 } 1943 1944 /* 1945 * Process all extended compatibility/extended property descriptors 1946 * of a feature descriptor 1947 */ 1948 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 1949 enum ffs_os_desc_type type, 1950 u16 feature_count, 1951 ffs_os_desc_callback entity, 1952 void *priv, 1953 struct usb_os_desc_header *h) 1954 { 1955 int ret; 1956 const unsigned _len = len; 1957 1958 ENTER(); 1959 1960 /* loop over all ext compat/ext prop descriptors */ 1961 while (feature_count--) { 1962 ret = entity(type, h, data, len, priv); 1963 if (unlikely(ret < 0)) { 1964 pr_debug("bad OS descriptor, type: %d\n", type); 1965 return ret; 1966 } 1967 data += ret; 1968 len -= ret; 1969 } 1970 return _len - len; 1971 } 1972 1973 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 1974 static int __must_check ffs_do_os_descs(unsigned count, 1975 char *data, unsigned len, 1976 ffs_os_desc_callback entity, void *priv) 1977 { 1978 const unsigned _len = len; 1979 unsigned long num = 0; 1980 1981 ENTER(); 1982 1983 for (num = 0; num < count; ++num) { 1984 int ret; 1985 enum ffs_os_desc_type type; 1986 u16 feature_count; 1987 struct usb_os_desc_header *desc = (void *)data; 1988 1989 if (len < sizeof(*desc)) 1990 return -EINVAL; 1991 1992 /* 1993 * Record "descriptor" entity. 1994 * Process dwLength, bcdVersion, wIndex, get b/wCount. 1995 * Move the data pointer to the beginning of extended 1996 * compatibilities proper or extended properties proper 1997 * portions of the data 1998 */ 1999 if (le32_to_cpu(desc->dwLength) > len) 2000 return -EINVAL; 2001 2002 ret = __ffs_do_os_desc_header(&type, desc); 2003 if (unlikely(ret < 0)) { 2004 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2005 num, ret); 2006 return ret; 2007 } 2008 /* 2009 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2010 */ 2011 feature_count = le16_to_cpu(desc->wCount); 2012 if (type == FFS_OS_DESC_EXT_COMPAT && 2013 (feature_count > 255 || desc->Reserved)) 2014 return -EINVAL; 2015 len -= ret; 2016 data += ret; 2017 2018 /* 2019 * Process all function/property descriptors 2020 * of this Feature Descriptor 2021 */ 2022 ret = ffs_do_single_os_desc(data, len, type, 2023 feature_count, entity, priv, desc); 2024 if (unlikely(ret < 0)) { 2025 pr_debug("%s returns %d\n", __func__, ret); 2026 return ret; 2027 } 2028 2029 len -= ret; 2030 data += ret; 2031 } 2032 return _len - len; 2033 } 2034 2035 /** 2036 * Validate contents of the buffer from userspace related to OS descriptors. 2037 */ 2038 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2039 struct usb_os_desc_header *h, void *data, 2040 unsigned len, void *priv) 2041 { 2042 struct ffs_data *ffs = priv; 2043 u8 length; 2044 2045 ENTER(); 2046 2047 switch (type) { 2048 case FFS_OS_DESC_EXT_COMPAT: { 2049 struct usb_ext_compat_desc *d = data; 2050 int i; 2051 2052 if (len < sizeof(*d) || 2053 d->bFirstInterfaceNumber >= ffs->interfaces_count || 2054 !d->Reserved1) 2055 return -EINVAL; 2056 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2057 if (d->Reserved2[i]) 2058 return -EINVAL; 2059 2060 length = sizeof(struct usb_ext_compat_desc); 2061 } 2062 break; 2063 case FFS_OS_DESC_EXT_PROP: { 2064 struct usb_ext_prop_desc *d = data; 2065 u32 type, pdl; 2066 u16 pnl; 2067 2068 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2069 return -EINVAL; 2070 length = le32_to_cpu(d->dwSize); 2071 type = le32_to_cpu(d->dwPropertyDataType); 2072 if (type < USB_EXT_PROP_UNICODE || 2073 type > USB_EXT_PROP_UNICODE_MULTI) { 2074 pr_vdebug("unsupported os descriptor property type: %d", 2075 type); 2076 return -EINVAL; 2077 } 2078 pnl = le16_to_cpu(d->wPropertyNameLength); 2079 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl)); 2080 if (length != 14 + pnl + pdl) { 2081 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2082 length, pnl, pdl, type); 2083 return -EINVAL; 2084 } 2085 ++ffs->ms_os_descs_ext_prop_count; 2086 /* property name reported to the host as "WCHAR"s */ 2087 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2088 ffs->ms_os_descs_ext_prop_data_len += pdl; 2089 } 2090 break; 2091 default: 2092 pr_vdebug("unknown descriptor: %d\n", type); 2093 return -EINVAL; 2094 } 2095 return length; 2096 } 2097 2098 static int __ffs_data_got_descs(struct ffs_data *ffs, 2099 char *const _data, size_t len) 2100 { 2101 char *data = _data, *raw_descs; 2102 unsigned os_descs_count = 0, counts[3], flags; 2103 int ret = -EINVAL, i; 2104 struct ffs_desc_helper helper; 2105 2106 ENTER(); 2107 2108 if (get_unaligned_le32(data + 4) != len) 2109 goto error; 2110 2111 switch (get_unaligned_le32(data)) { 2112 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2113 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2114 data += 8; 2115 len -= 8; 2116 break; 2117 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2118 flags = get_unaligned_le32(data + 8); 2119 ffs->user_flags = flags; 2120 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2121 FUNCTIONFS_HAS_HS_DESC | 2122 FUNCTIONFS_HAS_SS_DESC | 2123 FUNCTIONFS_HAS_MS_OS_DESC | 2124 FUNCTIONFS_VIRTUAL_ADDR | 2125 FUNCTIONFS_EVENTFD)) { 2126 ret = -ENOSYS; 2127 goto error; 2128 } 2129 data += 12; 2130 len -= 12; 2131 break; 2132 default: 2133 goto error; 2134 } 2135 2136 if (flags & FUNCTIONFS_EVENTFD) { 2137 if (len < 4) 2138 goto error; 2139 ffs->ffs_eventfd = 2140 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2141 if (IS_ERR(ffs->ffs_eventfd)) { 2142 ret = PTR_ERR(ffs->ffs_eventfd); 2143 ffs->ffs_eventfd = NULL; 2144 goto error; 2145 } 2146 data += 4; 2147 len -= 4; 2148 } 2149 2150 /* Read fs_count, hs_count and ss_count (if present) */ 2151 for (i = 0; i < 3; ++i) { 2152 if (!(flags & (1 << i))) { 2153 counts[i] = 0; 2154 } else if (len < 4) { 2155 goto error; 2156 } else { 2157 counts[i] = get_unaligned_le32(data); 2158 data += 4; 2159 len -= 4; 2160 } 2161 } 2162 if (flags & (1 << i)) { 2163 os_descs_count = get_unaligned_le32(data); 2164 data += 4; 2165 len -= 4; 2166 }; 2167 2168 /* Read descriptors */ 2169 raw_descs = data; 2170 helper.ffs = ffs; 2171 for (i = 0; i < 3; ++i) { 2172 if (!counts[i]) 2173 continue; 2174 helper.interfaces_count = 0; 2175 helper.eps_count = 0; 2176 ret = ffs_do_descs(counts[i], data, len, 2177 __ffs_data_do_entity, &helper); 2178 if (ret < 0) 2179 goto error; 2180 if (!ffs->eps_count && !ffs->interfaces_count) { 2181 ffs->eps_count = helper.eps_count; 2182 ffs->interfaces_count = helper.interfaces_count; 2183 } else { 2184 if (ffs->eps_count != helper.eps_count) { 2185 ret = -EINVAL; 2186 goto error; 2187 } 2188 if (ffs->interfaces_count != helper.interfaces_count) { 2189 ret = -EINVAL; 2190 goto error; 2191 } 2192 } 2193 data += ret; 2194 len -= ret; 2195 } 2196 if (os_descs_count) { 2197 ret = ffs_do_os_descs(os_descs_count, data, len, 2198 __ffs_data_do_os_desc, ffs); 2199 if (ret < 0) 2200 goto error; 2201 data += ret; 2202 len -= ret; 2203 } 2204 2205 if (raw_descs == data || len) { 2206 ret = -EINVAL; 2207 goto error; 2208 } 2209 2210 ffs->raw_descs_data = _data; 2211 ffs->raw_descs = raw_descs; 2212 ffs->raw_descs_length = data - raw_descs; 2213 ffs->fs_descs_count = counts[0]; 2214 ffs->hs_descs_count = counts[1]; 2215 ffs->ss_descs_count = counts[2]; 2216 ffs->ms_os_descs_count = os_descs_count; 2217 2218 return 0; 2219 2220 error: 2221 kfree(_data); 2222 return ret; 2223 } 2224 2225 static int __ffs_data_got_strings(struct ffs_data *ffs, 2226 char *const _data, size_t len) 2227 { 2228 u32 str_count, needed_count, lang_count; 2229 struct usb_gadget_strings **stringtabs, *t; 2230 struct usb_string *strings, *s; 2231 const char *data = _data; 2232 2233 ENTER(); 2234 2235 if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2236 get_unaligned_le32(data + 4) != len)) 2237 goto error; 2238 str_count = get_unaligned_le32(data + 8); 2239 lang_count = get_unaligned_le32(data + 12); 2240 2241 /* if one is zero the other must be zero */ 2242 if (unlikely(!str_count != !lang_count)) 2243 goto error; 2244 2245 /* Do we have at least as many strings as descriptors need? */ 2246 needed_count = ffs->strings_count; 2247 if (unlikely(str_count < needed_count)) 2248 goto error; 2249 2250 /* 2251 * If we don't need any strings just return and free all 2252 * memory. 2253 */ 2254 if (!needed_count) { 2255 kfree(_data); 2256 return 0; 2257 } 2258 2259 /* Allocate everything in one chunk so there's less maintenance. */ 2260 { 2261 unsigned i = 0; 2262 vla_group(d); 2263 vla_item(d, struct usb_gadget_strings *, stringtabs, 2264 lang_count + 1); 2265 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2266 vla_item(d, struct usb_string, strings, 2267 lang_count*(needed_count+1)); 2268 2269 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2270 2271 if (unlikely(!vlabuf)) { 2272 kfree(_data); 2273 return -ENOMEM; 2274 } 2275 2276 /* Initialize the VLA pointers */ 2277 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2278 t = vla_ptr(vlabuf, d, stringtab); 2279 i = lang_count; 2280 do { 2281 *stringtabs++ = t++; 2282 } while (--i); 2283 *stringtabs = NULL; 2284 2285 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2286 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2287 t = vla_ptr(vlabuf, d, stringtab); 2288 s = vla_ptr(vlabuf, d, strings); 2289 strings = s; 2290 } 2291 2292 /* For each language */ 2293 data += 16; 2294 len -= 16; 2295 2296 do { /* lang_count > 0 so we can use do-while */ 2297 unsigned needed = needed_count; 2298 2299 if (unlikely(len < 3)) 2300 goto error_free; 2301 t->language = get_unaligned_le16(data); 2302 t->strings = s; 2303 ++t; 2304 2305 data += 2; 2306 len -= 2; 2307 2308 /* For each string */ 2309 do { /* str_count > 0 so we can use do-while */ 2310 size_t length = strnlen(data, len); 2311 2312 if (unlikely(length == len)) 2313 goto error_free; 2314 2315 /* 2316 * User may provide more strings then we need, 2317 * if that's the case we simply ignore the 2318 * rest 2319 */ 2320 if (likely(needed)) { 2321 /* 2322 * s->id will be set while adding 2323 * function to configuration so for 2324 * now just leave garbage here. 2325 */ 2326 s->s = data; 2327 --needed; 2328 ++s; 2329 } 2330 2331 data += length + 1; 2332 len -= length + 1; 2333 } while (--str_count); 2334 2335 s->id = 0; /* terminator */ 2336 s->s = NULL; 2337 ++s; 2338 2339 } while (--lang_count); 2340 2341 /* Some garbage left? */ 2342 if (unlikely(len)) 2343 goto error_free; 2344 2345 /* Done! */ 2346 ffs->stringtabs = stringtabs; 2347 ffs->raw_strings = _data; 2348 2349 return 0; 2350 2351 error_free: 2352 kfree(stringtabs); 2353 error: 2354 kfree(_data); 2355 return -EINVAL; 2356 } 2357 2358 2359 /* Events handling and management *******************************************/ 2360 2361 static void __ffs_event_add(struct ffs_data *ffs, 2362 enum usb_functionfs_event_type type) 2363 { 2364 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2365 int neg = 0; 2366 2367 /* 2368 * Abort any unhandled setup 2369 * 2370 * We do not need to worry about some cmpxchg() changing value 2371 * of ffs->setup_state without holding the lock because when 2372 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2373 * the source does nothing. 2374 */ 2375 if (ffs->setup_state == FFS_SETUP_PENDING) 2376 ffs->setup_state = FFS_SETUP_CANCELLED; 2377 2378 /* 2379 * Logic of this function guarantees that there are at most four pending 2380 * evens on ffs->ev.types queue. This is important because the queue 2381 * has space for four elements only and __ffs_ep0_read_events function 2382 * depends on that limit as well. If more event types are added, those 2383 * limits have to be revisited or guaranteed to still hold. 2384 */ 2385 switch (type) { 2386 case FUNCTIONFS_RESUME: 2387 rem_type2 = FUNCTIONFS_SUSPEND; 2388 /* FALL THROUGH */ 2389 case FUNCTIONFS_SUSPEND: 2390 case FUNCTIONFS_SETUP: 2391 rem_type1 = type; 2392 /* Discard all similar events */ 2393 break; 2394 2395 case FUNCTIONFS_BIND: 2396 case FUNCTIONFS_UNBIND: 2397 case FUNCTIONFS_DISABLE: 2398 case FUNCTIONFS_ENABLE: 2399 /* Discard everything other then power management. */ 2400 rem_type1 = FUNCTIONFS_SUSPEND; 2401 rem_type2 = FUNCTIONFS_RESUME; 2402 neg = 1; 2403 break; 2404 2405 default: 2406 WARN(1, "%d: unknown event, this should not happen\n", type); 2407 return; 2408 } 2409 2410 { 2411 u8 *ev = ffs->ev.types, *out = ev; 2412 unsigned n = ffs->ev.count; 2413 for (; n; --n, ++ev) 2414 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2415 *out++ = *ev; 2416 else 2417 pr_vdebug("purging event %d\n", *ev); 2418 ffs->ev.count = out - ffs->ev.types; 2419 } 2420 2421 pr_vdebug("adding event %d\n", type); 2422 ffs->ev.types[ffs->ev.count++] = type; 2423 wake_up_locked(&ffs->ev.waitq); 2424 if (ffs->ffs_eventfd) 2425 eventfd_signal(ffs->ffs_eventfd, 1); 2426 } 2427 2428 static void ffs_event_add(struct ffs_data *ffs, 2429 enum usb_functionfs_event_type type) 2430 { 2431 unsigned long flags; 2432 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2433 __ffs_event_add(ffs, type); 2434 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2435 } 2436 2437 /* Bind/unbind USB function hooks *******************************************/ 2438 2439 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2440 { 2441 int i; 2442 2443 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2444 if (ffs->eps_addrmap[i] == endpoint_address) 2445 return i; 2446 return -ENOENT; 2447 } 2448 2449 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2450 struct usb_descriptor_header *desc, 2451 void *priv) 2452 { 2453 struct usb_endpoint_descriptor *ds = (void *)desc; 2454 struct ffs_function *func = priv; 2455 struct ffs_ep *ffs_ep; 2456 unsigned ep_desc_id; 2457 int idx; 2458 static const char *speed_names[] = { "full", "high", "super" }; 2459 2460 if (type != FFS_DESCRIPTOR) 2461 return 0; 2462 2463 /* 2464 * If ss_descriptors is not NULL, we are reading super speed 2465 * descriptors; if hs_descriptors is not NULL, we are reading high 2466 * speed descriptors; otherwise, we are reading full speed 2467 * descriptors. 2468 */ 2469 if (func->function.ss_descriptors) { 2470 ep_desc_id = 2; 2471 func->function.ss_descriptors[(long)valuep] = desc; 2472 } else if (func->function.hs_descriptors) { 2473 ep_desc_id = 1; 2474 func->function.hs_descriptors[(long)valuep] = desc; 2475 } else { 2476 ep_desc_id = 0; 2477 func->function.fs_descriptors[(long)valuep] = desc; 2478 } 2479 2480 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2481 return 0; 2482 2483 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2484 if (idx < 0) 2485 return idx; 2486 2487 ffs_ep = func->eps + idx; 2488 2489 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2490 pr_err("two %sspeed descriptors for EP %d\n", 2491 speed_names[ep_desc_id], 2492 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2493 return -EINVAL; 2494 } 2495 ffs_ep->descs[ep_desc_id] = ds; 2496 2497 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2498 if (ffs_ep->ep) { 2499 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2500 if (!ds->wMaxPacketSize) 2501 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2502 } else { 2503 struct usb_request *req; 2504 struct usb_ep *ep; 2505 u8 bEndpointAddress; 2506 2507 /* 2508 * We back up bEndpointAddress because autoconfig overwrites 2509 * it with physical endpoint address. 2510 */ 2511 bEndpointAddress = ds->bEndpointAddress; 2512 pr_vdebug("autoconfig\n"); 2513 ep = usb_ep_autoconfig(func->gadget, ds); 2514 if (unlikely(!ep)) 2515 return -ENOTSUPP; 2516 ep->driver_data = func->eps + idx; 2517 2518 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2519 if (unlikely(!req)) 2520 return -ENOMEM; 2521 2522 ffs_ep->ep = ep; 2523 ffs_ep->req = req; 2524 func->eps_revmap[ds->bEndpointAddress & 2525 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2526 /* 2527 * If we use virtual address mapping, we restore 2528 * original bEndpointAddress value. 2529 */ 2530 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2531 ds->bEndpointAddress = bEndpointAddress; 2532 } 2533 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2534 2535 return 0; 2536 } 2537 2538 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2539 struct usb_descriptor_header *desc, 2540 void *priv) 2541 { 2542 struct ffs_function *func = priv; 2543 unsigned idx; 2544 u8 newValue; 2545 2546 switch (type) { 2547 default: 2548 case FFS_DESCRIPTOR: 2549 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2550 return 0; 2551 2552 case FFS_INTERFACE: 2553 idx = *valuep; 2554 if (func->interfaces_nums[idx] < 0) { 2555 int id = usb_interface_id(func->conf, &func->function); 2556 if (unlikely(id < 0)) 2557 return id; 2558 func->interfaces_nums[idx] = id; 2559 } 2560 newValue = func->interfaces_nums[idx]; 2561 break; 2562 2563 case FFS_STRING: 2564 /* String' IDs are allocated when fsf_data is bound to cdev */ 2565 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2566 break; 2567 2568 case FFS_ENDPOINT: 2569 /* 2570 * USB_DT_ENDPOINT are handled in 2571 * __ffs_func_bind_do_descs(). 2572 */ 2573 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2574 return 0; 2575 2576 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2577 if (unlikely(!func->eps[idx].ep)) 2578 return -EINVAL; 2579 2580 { 2581 struct usb_endpoint_descriptor **descs; 2582 descs = func->eps[idx].descs; 2583 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2584 } 2585 break; 2586 } 2587 2588 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2589 *valuep = newValue; 2590 return 0; 2591 } 2592 2593 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2594 struct usb_os_desc_header *h, void *data, 2595 unsigned len, void *priv) 2596 { 2597 struct ffs_function *func = priv; 2598 u8 length = 0; 2599 2600 switch (type) { 2601 case FFS_OS_DESC_EXT_COMPAT: { 2602 struct usb_ext_compat_desc *desc = data; 2603 struct usb_os_desc_table *t; 2604 2605 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2606 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2607 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2608 ARRAY_SIZE(desc->CompatibleID) + 2609 ARRAY_SIZE(desc->SubCompatibleID)); 2610 length = sizeof(*desc); 2611 } 2612 break; 2613 case FFS_OS_DESC_EXT_PROP: { 2614 struct usb_ext_prop_desc *desc = data; 2615 struct usb_os_desc_table *t; 2616 struct usb_os_desc_ext_prop *ext_prop; 2617 char *ext_prop_name; 2618 char *ext_prop_data; 2619 2620 t = &func->function.os_desc_table[h->interface]; 2621 t->if_id = func->interfaces_nums[h->interface]; 2622 2623 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2624 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2625 2626 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2627 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2628 ext_prop->data_len = le32_to_cpu(*(u32 *) 2629 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2630 length = ext_prop->name_len + ext_prop->data_len + 14; 2631 2632 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2633 func->ffs->ms_os_descs_ext_prop_name_avail += 2634 ext_prop->name_len; 2635 2636 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2637 func->ffs->ms_os_descs_ext_prop_data_avail += 2638 ext_prop->data_len; 2639 memcpy(ext_prop_data, 2640 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2641 ext_prop->data_len); 2642 /* unicode data reported to the host as "WCHAR"s */ 2643 switch (ext_prop->type) { 2644 case USB_EXT_PROP_UNICODE: 2645 case USB_EXT_PROP_UNICODE_ENV: 2646 case USB_EXT_PROP_UNICODE_LINK: 2647 case USB_EXT_PROP_UNICODE_MULTI: 2648 ext_prop->data_len *= 2; 2649 break; 2650 } 2651 ext_prop->data = ext_prop_data; 2652 2653 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2654 ext_prop->name_len); 2655 /* property name reported to the host as "WCHAR"s */ 2656 ext_prop->name_len *= 2; 2657 ext_prop->name = ext_prop_name; 2658 2659 t->os_desc->ext_prop_len += 2660 ext_prop->name_len + ext_prop->data_len + 14; 2661 ++t->os_desc->ext_prop_count; 2662 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2663 } 2664 break; 2665 default: 2666 pr_vdebug("unknown descriptor: %d\n", type); 2667 } 2668 2669 return length; 2670 } 2671 2672 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2673 struct usb_configuration *c) 2674 { 2675 struct ffs_function *func = ffs_func_from_usb(f); 2676 struct f_fs_opts *ffs_opts = 2677 container_of(f->fi, struct f_fs_opts, func_inst); 2678 int ret; 2679 2680 ENTER(); 2681 2682 /* 2683 * Legacy gadget triggers binding in functionfs_ready_callback, 2684 * which already uses locking; taking the same lock here would 2685 * cause a deadlock. 2686 * 2687 * Configfs-enabled gadgets however do need ffs_dev_lock. 2688 */ 2689 if (!ffs_opts->no_configfs) 2690 ffs_dev_lock(); 2691 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2692 func->ffs = ffs_opts->dev->ffs_data; 2693 if (!ffs_opts->no_configfs) 2694 ffs_dev_unlock(); 2695 if (ret) 2696 return ERR_PTR(ret); 2697 2698 func->conf = c; 2699 func->gadget = c->cdev->gadget; 2700 2701 /* 2702 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2703 * configurations are bound in sequence with list_for_each_entry, 2704 * in each configuration its functions are bound in sequence 2705 * with list_for_each_entry, so we assume no race condition 2706 * with regard to ffs_opts->bound access 2707 */ 2708 if (!ffs_opts->refcnt) { 2709 ret = functionfs_bind(func->ffs, c->cdev); 2710 if (ret) 2711 return ERR_PTR(ret); 2712 } 2713 ffs_opts->refcnt++; 2714 func->function.strings = func->ffs->stringtabs; 2715 2716 return ffs_opts; 2717 } 2718 2719 static int _ffs_func_bind(struct usb_configuration *c, 2720 struct usb_function *f) 2721 { 2722 struct ffs_function *func = ffs_func_from_usb(f); 2723 struct ffs_data *ffs = func->ffs; 2724 2725 const int full = !!func->ffs->fs_descs_count; 2726 const int high = gadget_is_dualspeed(func->gadget) && 2727 func->ffs->hs_descs_count; 2728 const int super = gadget_is_superspeed(func->gadget) && 2729 func->ffs->ss_descs_count; 2730 2731 int fs_len, hs_len, ss_len, ret, i; 2732 struct ffs_ep *eps_ptr; 2733 2734 /* Make it a single chunk, less management later on */ 2735 vla_group(d); 2736 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2737 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2738 full ? ffs->fs_descs_count + 1 : 0); 2739 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2740 high ? ffs->hs_descs_count + 1 : 0); 2741 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2742 super ? ffs->ss_descs_count + 1 : 0); 2743 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2744 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2745 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2746 vla_item_with_sz(d, char[16], ext_compat, 2747 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2748 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2749 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2750 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2751 ffs->ms_os_descs_ext_prop_count); 2752 vla_item_with_sz(d, char, ext_prop_name, 2753 ffs->ms_os_descs_ext_prop_name_len); 2754 vla_item_with_sz(d, char, ext_prop_data, 2755 ffs->ms_os_descs_ext_prop_data_len); 2756 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 2757 char *vlabuf; 2758 2759 ENTER(); 2760 2761 /* Has descriptors only for speeds gadget does not support */ 2762 if (unlikely(!(full | high | super))) 2763 return -ENOTSUPP; 2764 2765 /* Allocate a single chunk, less management later on */ 2766 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 2767 if (unlikely(!vlabuf)) 2768 return -ENOMEM; 2769 2770 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 2771 ffs->ms_os_descs_ext_prop_name_avail = 2772 vla_ptr(vlabuf, d, ext_prop_name); 2773 ffs->ms_os_descs_ext_prop_data_avail = 2774 vla_ptr(vlabuf, d, ext_prop_data); 2775 2776 /* Copy descriptors */ 2777 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 2778 ffs->raw_descs_length); 2779 2780 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 2781 eps_ptr = vla_ptr(vlabuf, d, eps); 2782 for (i = 0; i < ffs->eps_count; i++) 2783 eps_ptr[i].num = -1; 2784 2785 /* Save pointers 2786 * d_eps == vlabuf, func->eps used to kfree vlabuf later 2787 */ 2788 func->eps = vla_ptr(vlabuf, d, eps); 2789 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 2790 2791 /* 2792 * Go through all the endpoint descriptors and allocate 2793 * endpoints first, so that later we can rewrite the endpoint 2794 * numbers without worrying that it may be described later on. 2795 */ 2796 if (likely(full)) { 2797 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 2798 fs_len = ffs_do_descs(ffs->fs_descs_count, 2799 vla_ptr(vlabuf, d, raw_descs), 2800 d_raw_descs__sz, 2801 __ffs_func_bind_do_descs, func); 2802 if (unlikely(fs_len < 0)) { 2803 ret = fs_len; 2804 goto error; 2805 } 2806 } else { 2807 fs_len = 0; 2808 } 2809 2810 if (likely(high)) { 2811 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 2812 hs_len = ffs_do_descs(ffs->hs_descs_count, 2813 vla_ptr(vlabuf, d, raw_descs) + fs_len, 2814 d_raw_descs__sz - fs_len, 2815 __ffs_func_bind_do_descs, func); 2816 if (unlikely(hs_len < 0)) { 2817 ret = hs_len; 2818 goto error; 2819 } 2820 } else { 2821 hs_len = 0; 2822 } 2823 2824 if (likely(super)) { 2825 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 2826 ss_len = ffs_do_descs(ffs->ss_descs_count, 2827 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 2828 d_raw_descs__sz - fs_len - hs_len, 2829 __ffs_func_bind_do_descs, func); 2830 if (unlikely(ss_len < 0)) { 2831 ret = ss_len; 2832 goto error; 2833 } 2834 } else { 2835 ss_len = 0; 2836 } 2837 2838 /* 2839 * Now handle interface numbers allocation and interface and 2840 * endpoint numbers rewriting. We can do that in one go 2841 * now. 2842 */ 2843 ret = ffs_do_descs(ffs->fs_descs_count + 2844 (high ? ffs->hs_descs_count : 0) + 2845 (super ? ffs->ss_descs_count : 0), 2846 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 2847 __ffs_func_bind_do_nums, func); 2848 if (unlikely(ret < 0)) 2849 goto error; 2850 2851 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 2852 if (c->cdev->use_os_string) { 2853 for (i = 0; i < ffs->interfaces_count; ++i) { 2854 struct usb_os_desc *desc; 2855 2856 desc = func->function.os_desc_table[i].os_desc = 2857 vla_ptr(vlabuf, d, os_desc) + 2858 i * sizeof(struct usb_os_desc); 2859 desc->ext_compat_id = 2860 vla_ptr(vlabuf, d, ext_compat) + i * 16; 2861 INIT_LIST_HEAD(&desc->ext_prop); 2862 } 2863 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 2864 vla_ptr(vlabuf, d, raw_descs) + 2865 fs_len + hs_len + ss_len, 2866 d_raw_descs__sz - fs_len - hs_len - 2867 ss_len, 2868 __ffs_func_bind_do_os_desc, func); 2869 if (unlikely(ret < 0)) 2870 goto error; 2871 } 2872 func->function.os_desc_n = 2873 c->cdev->use_os_string ? ffs->interfaces_count : 0; 2874 2875 /* And we're done */ 2876 ffs_event_add(ffs, FUNCTIONFS_BIND); 2877 return 0; 2878 2879 error: 2880 /* XXX Do we need to release all claimed endpoints here? */ 2881 return ret; 2882 } 2883 2884 static int ffs_func_bind(struct usb_configuration *c, 2885 struct usb_function *f) 2886 { 2887 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 2888 struct ffs_function *func = ffs_func_from_usb(f); 2889 int ret; 2890 2891 if (IS_ERR(ffs_opts)) 2892 return PTR_ERR(ffs_opts); 2893 2894 ret = _ffs_func_bind(c, f); 2895 if (ret && !--ffs_opts->refcnt) 2896 functionfs_unbind(func->ffs); 2897 2898 return ret; 2899 } 2900 2901 2902 /* Other USB function hooks *************************************************/ 2903 2904 static void ffs_reset_work(struct work_struct *work) 2905 { 2906 struct ffs_data *ffs = container_of(work, 2907 struct ffs_data, reset_work); 2908 ffs_data_reset(ffs); 2909 } 2910 2911 static int ffs_func_set_alt(struct usb_function *f, 2912 unsigned interface, unsigned alt) 2913 { 2914 struct ffs_function *func = ffs_func_from_usb(f); 2915 struct ffs_data *ffs = func->ffs; 2916 int ret = 0, intf; 2917 2918 if (alt != (unsigned)-1) { 2919 intf = ffs_func_revmap_intf(func, interface); 2920 if (unlikely(intf < 0)) 2921 return intf; 2922 } 2923 2924 if (ffs->func) 2925 ffs_func_eps_disable(ffs->func); 2926 2927 if (ffs->state == FFS_DEACTIVATED) { 2928 ffs->state = FFS_CLOSING; 2929 INIT_WORK(&ffs->reset_work, ffs_reset_work); 2930 schedule_work(&ffs->reset_work); 2931 return -ENODEV; 2932 } 2933 2934 if (ffs->state != FFS_ACTIVE) 2935 return -ENODEV; 2936 2937 if (alt == (unsigned)-1) { 2938 ffs->func = NULL; 2939 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 2940 return 0; 2941 } 2942 2943 ffs->func = func; 2944 ret = ffs_func_eps_enable(func); 2945 if (likely(ret >= 0)) 2946 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 2947 return ret; 2948 } 2949 2950 static void ffs_func_disable(struct usb_function *f) 2951 { 2952 ffs_func_set_alt(f, 0, (unsigned)-1); 2953 } 2954 2955 static int ffs_func_setup(struct usb_function *f, 2956 const struct usb_ctrlrequest *creq) 2957 { 2958 struct ffs_function *func = ffs_func_from_usb(f); 2959 struct ffs_data *ffs = func->ffs; 2960 unsigned long flags; 2961 int ret; 2962 2963 ENTER(); 2964 2965 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 2966 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 2967 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 2968 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 2969 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 2970 2971 /* 2972 * Most requests directed to interface go through here 2973 * (notable exceptions are set/get interface) so we need to 2974 * handle them. All other either handled by composite or 2975 * passed to usb_configuration->setup() (if one is set). No 2976 * matter, we will handle requests directed to endpoint here 2977 * as well (as it's straightforward) but what to do with any 2978 * other request? 2979 */ 2980 if (ffs->state != FFS_ACTIVE) 2981 return -ENODEV; 2982 2983 switch (creq->bRequestType & USB_RECIP_MASK) { 2984 case USB_RECIP_INTERFACE: 2985 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 2986 if (unlikely(ret < 0)) 2987 return ret; 2988 break; 2989 2990 case USB_RECIP_ENDPOINT: 2991 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 2992 if (unlikely(ret < 0)) 2993 return ret; 2994 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2995 ret = func->ffs->eps_addrmap[ret]; 2996 break; 2997 2998 default: 2999 return -EOPNOTSUPP; 3000 } 3001 3002 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3003 ffs->ev.setup = *creq; 3004 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3005 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3006 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3007 3008 return 0; 3009 } 3010 3011 static void ffs_func_suspend(struct usb_function *f) 3012 { 3013 ENTER(); 3014 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3015 } 3016 3017 static void ffs_func_resume(struct usb_function *f) 3018 { 3019 ENTER(); 3020 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3021 } 3022 3023 3024 /* Endpoint and interface numbers reverse mapping ***************************/ 3025 3026 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3027 { 3028 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3029 return num ? num : -EDOM; 3030 } 3031 3032 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3033 { 3034 short *nums = func->interfaces_nums; 3035 unsigned count = func->ffs->interfaces_count; 3036 3037 for (; count; --count, ++nums) { 3038 if (*nums >= 0 && *nums == intf) 3039 return nums - func->interfaces_nums; 3040 } 3041 3042 return -EDOM; 3043 } 3044 3045 3046 /* Devices management *******************************************************/ 3047 3048 static LIST_HEAD(ffs_devices); 3049 3050 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3051 { 3052 struct ffs_dev *dev; 3053 3054 list_for_each_entry(dev, &ffs_devices, entry) { 3055 if (!dev->name || !name) 3056 continue; 3057 if (strcmp(dev->name, name) == 0) 3058 return dev; 3059 } 3060 3061 return NULL; 3062 } 3063 3064 /* 3065 * ffs_lock must be taken by the caller of this function 3066 */ 3067 static struct ffs_dev *_ffs_get_single_dev(void) 3068 { 3069 struct ffs_dev *dev; 3070 3071 if (list_is_singular(&ffs_devices)) { 3072 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3073 if (dev->single) 3074 return dev; 3075 } 3076 3077 return NULL; 3078 } 3079 3080 /* 3081 * ffs_lock must be taken by the caller of this function 3082 */ 3083 static struct ffs_dev *_ffs_find_dev(const char *name) 3084 { 3085 struct ffs_dev *dev; 3086 3087 dev = _ffs_get_single_dev(); 3088 if (dev) 3089 return dev; 3090 3091 return _ffs_do_find_dev(name); 3092 } 3093 3094 /* Configfs support *********************************************************/ 3095 3096 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3097 { 3098 return container_of(to_config_group(item), struct f_fs_opts, 3099 func_inst.group); 3100 } 3101 3102 static void ffs_attr_release(struct config_item *item) 3103 { 3104 struct f_fs_opts *opts = to_ffs_opts(item); 3105 3106 usb_put_function_instance(&opts->func_inst); 3107 } 3108 3109 static struct configfs_item_operations ffs_item_ops = { 3110 .release = ffs_attr_release, 3111 }; 3112 3113 static struct config_item_type ffs_func_type = { 3114 .ct_item_ops = &ffs_item_ops, 3115 .ct_owner = THIS_MODULE, 3116 }; 3117 3118 3119 /* Function registration interface ******************************************/ 3120 3121 static void ffs_free_inst(struct usb_function_instance *f) 3122 { 3123 struct f_fs_opts *opts; 3124 3125 opts = to_f_fs_opts(f); 3126 ffs_dev_lock(); 3127 _ffs_free_dev(opts->dev); 3128 ffs_dev_unlock(); 3129 kfree(opts); 3130 } 3131 3132 #define MAX_INST_NAME_LEN 40 3133 3134 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3135 { 3136 struct f_fs_opts *opts; 3137 char *ptr; 3138 const char *tmp; 3139 int name_len, ret; 3140 3141 name_len = strlen(name) + 1; 3142 if (name_len > MAX_INST_NAME_LEN) 3143 return -ENAMETOOLONG; 3144 3145 ptr = kstrndup(name, name_len, GFP_KERNEL); 3146 if (!ptr) 3147 return -ENOMEM; 3148 3149 opts = to_f_fs_opts(fi); 3150 tmp = NULL; 3151 3152 ffs_dev_lock(); 3153 3154 tmp = opts->dev->name_allocated ? opts->dev->name : NULL; 3155 ret = _ffs_name_dev(opts->dev, ptr); 3156 if (ret) { 3157 kfree(ptr); 3158 ffs_dev_unlock(); 3159 return ret; 3160 } 3161 opts->dev->name_allocated = true; 3162 3163 ffs_dev_unlock(); 3164 3165 kfree(tmp); 3166 3167 return 0; 3168 } 3169 3170 static struct usb_function_instance *ffs_alloc_inst(void) 3171 { 3172 struct f_fs_opts *opts; 3173 struct ffs_dev *dev; 3174 3175 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3176 if (!opts) 3177 return ERR_PTR(-ENOMEM); 3178 3179 opts->func_inst.set_inst_name = ffs_set_inst_name; 3180 opts->func_inst.free_func_inst = ffs_free_inst; 3181 ffs_dev_lock(); 3182 dev = _ffs_alloc_dev(); 3183 ffs_dev_unlock(); 3184 if (IS_ERR(dev)) { 3185 kfree(opts); 3186 return ERR_CAST(dev); 3187 } 3188 opts->dev = dev; 3189 dev->opts = opts; 3190 3191 config_group_init_type_name(&opts->func_inst.group, "", 3192 &ffs_func_type); 3193 return &opts->func_inst; 3194 } 3195 3196 static void ffs_free(struct usb_function *f) 3197 { 3198 kfree(ffs_func_from_usb(f)); 3199 } 3200 3201 static void ffs_func_unbind(struct usb_configuration *c, 3202 struct usb_function *f) 3203 { 3204 struct ffs_function *func = ffs_func_from_usb(f); 3205 struct ffs_data *ffs = func->ffs; 3206 struct f_fs_opts *opts = 3207 container_of(f->fi, struct f_fs_opts, func_inst); 3208 struct ffs_ep *ep = func->eps; 3209 unsigned count = ffs->eps_count; 3210 unsigned long flags; 3211 3212 ENTER(); 3213 if (ffs->func == func) { 3214 ffs_func_eps_disable(func); 3215 ffs->func = NULL; 3216 } 3217 3218 if (!--opts->refcnt) 3219 functionfs_unbind(ffs); 3220 3221 /* cleanup after autoconfig */ 3222 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3223 do { 3224 if (ep->ep && ep->req) 3225 usb_ep_free_request(ep->ep, ep->req); 3226 ep->req = NULL; 3227 ++ep; 3228 } while (--count); 3229 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3230 kfree(func->eps); 3231 func->eps = NULL; 3232 /* 3233 * eps, descriptors and interfaces_nums are allocated in the 3234 * same chunk so only one free is required. 3235 */ 3236 func->function.fs_descriptors = NULL; 3237 func->function.hs_descriptors = NULL; 3238 func->function.ss_descriptors = NULL; 3239 func->interfaces_nums = NULL; 3240 3241 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3242 } 3243 3244 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3245 { 3246 struct ffs_function *func; 3247 3248 ENTER(); 3249 3250 func = kzalloc(sizeof(*func), GFP_KERNEL); 3251 if (unlikely(!func)) 3252 return ERR_PTR(-ENOMEM); 3253 3254 func->function.name = "Function FS Gadget"; 3255 3256 func->function.bind = ffs_func_bind; 3257 func->function.unbind = ffs_func_unbind; 3258 func->function.set_alt = ffs_func_set_alt; 3259 func->function.disable = ffs_func_disable; 3260 func->function.setup = ffs_func_setup; 3261 func->function.suspend = ffs_func_suspend; 3262 func->function.resume = ffs_func_resume; 3263 func->function.free_func = ffs_free; 3264 3265 return &func->function; 3266 } 3267 3268 /* 3269 * ffs_lock must be taken by the caller of this function 3270 */ 3271 static struct ffs_dev *_ffs_alloc_dev(void) 3272 { 3273 struct ffs_dev *dev; 3274 int ret; 3275 3276 if (_ffs_get_single_dev()) 3277 return ERR_PTR(-EBUSY); 3278 3279 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3280 if (!dev) 3281 return ERR_PTR(-ENOMEM); 3282 3283 if (list_empty(&ffs_devices)) { 3284 ret = functionfs_init(); 3285 if (ret) { 3286 kfree(dev); 3287 return ERR_PTR(ret); 3288 } 3289 } 3290 3291 list_add(&dev->entry, &ffs_devices); 3292 3293 return dev; 3294 } 3295 3296 /* 3297 * ffs_lock must be taken by the caller of this function 3298 * The caller is responsible for "name" being available whenever f_fs needs it 3299 */ 3300 static int _ffs_name_dev(struct ffs_dev *dev, const char *name) 3301 { 3302 struct ffs_dev *existing; 3303 3304 existing = _ffs_do_find_dev(name); 3305 if (existing) 3306 return -EBUSY; 3307 3308 dev->name = name; 3309 3310 return 0; 3311 } 3312 3313 /* 3314 * The caller is responsible for "name" being available whenever f_fs needs it 3315 */ 3316 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3317 { 3318 int ret; 3319 3320 ffs_dev_lock(); 3321 ret = _ffs_name_dev(dev, name); 3322 ffs_dev_unlock(); 3323 3324 return ret; 3325 } 3326 EXPORT_SYMBOL_GPL(ffs_name_dev); 3327 3328 int ffs_single_dev(struct ffs_dev *dev) 3329 { 3330 int ret; 3331 3332 ret = 0; 3333 ffs_dev_lock(); 3334 3335 if (!list_is_singular(&ffs_devices)) 3336 ret = -EBUSY; 3337 else 3338 dev->single = true; 3339 3340 ffs_dev_unlock(); 3341 return ret; 3342 } 3343 EXPORT_SYMBOL_GPL(ffs_single_dev); 3344 3345 /* 3346 * ffs_lock must be taken by the caller of this function 3347 */ 3348 static void _ffs_free_dev(struct ffs_dev *dev) 3349 { 3350 list_del(&dev->entry); 3351 if (dev->name_allocated) 3352 kfree(dev->name); 3353 kfree(dev); 3354 if (list_empty(&ffs_devices)) 3355 functionfs_cleanup(); 3356 } 3357 3358 static void *ffs_acquire_dev(const char *dev_name) 3359 { 3360 struct ffs_dev *ffs_dev; 3361 3362 ENTER(); 3363 ffs_dev_lock(); 3364 3365 ffs_dev = _ffs_find_dev(dev_name); 3366 if (!ffs_dev) 3367 ffs_dev = ERR_PTR(-ENOENT); 3368 else if (ffs_dev->mounted) 3369 ffs_dev = ERR_PTR(-EBUSY); 3370 else if (ffs_dev->ffs_acquire_dev_callback && 3371 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3372 ffs_dev = ERR_PTR(-ENOENT); 3373 else 3374 ffs_dev->mounted = true; 3375 3376 ffs_dev_unlock(); 3377 return ffs_dev; 3378 } 3379 3380 static void ffs_release_dev(struct ffs_data *ffs_data) 3381 { 3382 struct ffs_dev *ffs_dev; 3383 3384 ENTER(); 3385 ffs_dev_lock(); 3386 3387 ffs_dev = ffs_data->private_data; 3388 if (ffs_dev) { 3389 ffs_dev->mounted = false; 3390 3391 if (ffs_dev->ffs_release_dev_callback) 3392 ffs_dev->ffs_release_dev_callback(ffs_dev); 3393 } 3394 3395 ffs_dev_unlock(); 3396 } 3397 3398 static int ffs_ready(struct ffs_data *ffs) 3399 { 3400 struct ffs_dev *ffs_obj; 3401 int ret = 0; 3402 3403 ENTER(); 3404 ffs_dev_lock(); 3405 3406 ffs_obj = ffs->private_data; 3407 if (!ffs_obj) { 3408 ret = -EINVAL; 3409 goto done; 3410 } 3411 if (WARN_ON(ffs_obj->desc_ready)) { 3412 ret = -EBUSY; 3413 goto done; 3414 } 3415 3416 ffs_obj->desc_ready = true; 3417 ffs_obj->ffs_data = ffs; 3418 3419 if (ffs_obj->ffs_ready_callback) { 3420 ret = ffs_obj->ffs_ready_callback(ffs); 3421 if (ret) 3422 goto done; 3423 } 3424 3425 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3426 done: 3427 ffs_dev_unlock(); 3428 return ret; 3429 } 3430 3431 static void ffs_closed(struct ffs_data *ffs) 3432 { 3433 struct ffs_dev *ffs_obj; 3434 struct f_fs_opts *opts; 3435 3436 ENTER(); 3437 ffs_dev_lock(); 3438 3439 ffs_obj = ffs->private_data; 3440 if (!ffs_obj) 3441 goto done; 3442 3443 ffs_obj->desc_ready = false; 3444 3445 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3446 ffs_obj->ffs_closed_callback) 3447 ffs_obj->ffs_closed_callback(ffs); 3448 3449 if (ffs_obj->opts) 3450 opts = ffs_obj->opts; 3451 else 3452 goto done; 3453 3454 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3455 || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount)) 3456 goto done; 3457 3458 unregister_gadget_item(ffs_obj->opts-> 3459 func_inst.group.cg_item.ci_parent->ci_parent); 3460 done: 3461 ffs_dev_unlock(); 3462 } 3463 3464 /* Misc helper functions ****************************************************/ 3465 3466 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3467 { 3468 return nonblock 3469 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3470 : mutex_lock_interruptible(mutex); 3471 } 3472 3473 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3474 { 3475 char *data; 3476 3477 if (unlikely(!len)) 3478 return NULL; 3479 3480 data = kmalloc(len, GFP_KERNEL); 3481 if (unlikely(!data)) 3482 return ERR_PTR(-ENOMEM); 3483 3484 if (unlikely(copy_from_user(data, buf, len))) { 3485 kfree(data); 3486 return ERR_PTR(-EFAULT); 3487 } 3488 3489 pr_vdebug("Buffer from user space:\n"); 3490 ffs_dump_mem("", data, len); 3491 3492 return data; 3493 } 3494 3495 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3496 MODULE_LICENSE("GPL"); 3497 MODULE_AUTHOR("Michal Nazarewicz"); 3498