1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/kthread.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 126 int status; /* P: epfile->mutex */ 127 }; 128 129 struct ffs_epfile { 130 /* Protects ep->ep and ep->req. */ 131 struct mutex mutex; 132 133 struct ffs_data *ffs; 134 struct ffs_ep *ep; /* P: ffs->eps_lock */ 135 136 struct dentry *dentry; 137 138 /* 139 * Buffer for holding data from partial reads which may happen since 140 * we’re rounding user read requests to a multiple of a max packet size. 141 * 142 * The pointer is initialised with NULL value and may be set by 143 * __ffs_epfile_read_data function to point to a temporary buffer. 144 * 145 * In normal operation, calls to __ffs_epfile_read_buffered will consume 146 * data from said buffer and eventually free it. Importantly, while the 147 * function is using the buffer, it sets the pointer to NULL. This is 148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 149 * can never run concurrently (they are synchronised by epfile->mutex) 150 * so the latter will not assign a new value to the pointer. 151 * 152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 154 * value is crux of the synchronisation between ffs_func_eps_disable and 155 * __ffs_epfile_read_data. 156 * 157 * Once __ffs_epfile_read_data is about to finish it will try to set the 158 * pointer back to its old value (as described above), but seeing as the 159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 160 * the buffer. 161 * 162 * == State transitions == 163 * 164 * • ptr == NULL: (initial state) 165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 166 * ◦ __ffs_epfile_read_buffered: nop 167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == DROP: 170 * ◦ __ffs_epfile_read_buffer_free: nop 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 173 * ◦ reading finishes: n/a, not in ‘and reading’ state 174 * • ptr == buf: 175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 178 * is always called first 179 * ◦ reading finishes: n/a, not in ‘and reading’ state 180 * • ptr == NULL and reading: 181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 183 * ◦ __ffs_epfile_read_data: n/a, mutex is held 184 * ◦ reading finishes and … 185 * … all data read: free buf, go to ptr == NULL 186 * … otherwise: go to ptr == buf and reading 187 * • ptr == DROP and reading: 188 * ◦ __ffs_epfile_read_buffer_free: nop 189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 190 * ◦ __ffs_epfile_read_data: n/a, mutex is held 191 * ◦ reading finishes: free buf, go to ptr == DROP 192 */ 193 struct ffs_buffer *read_buffer; 194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 195 196 char name[5]; 197 198 unsigned char in; /* P: ffs->eps_lock */ 199 unsigned char isoc; /* P: ffs->eps_lock */ 200 201 unsigned char _pad; 202 }; 203 204 struct ffs_buffer { 205 size_t length; 206 char *data; 207 char storage[]; 208 }; 209 210 /* ffs_io_data structure ***************************************************/ 211 212 struct ffs_io_data { 213 bool aio; 214 bool read; 215 216 struct kiocb *kiocb; 217 struct iov_iter data; 218 const void *to_free; 219 char *buf; 220 221 struct mm_struct *mm; 222 struct work_struct work; 223 224 struct usb_ep *ep; 225 struct usb_request *req; 226 struct sg_table sgt; 227 bool use_sg; 228 229 struct ffs_data *ffs; 230 }; 231 232 struct ffs_desc_helper { 233 struct ffs_data *ffs; 234 unsigned interfaces_count; 235 unsigned eps_count; 236 }; 237 238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 240 241 static struct dentry * 242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 243 const struct file_operations *fops); 244 245 /* Devices management *******************************************************/ 246 247 DEFINE_MUTEX(ffs_lock); 248 EXPORT_SYMBOL_GPL(ffs_lock); 249 250 static struct ffs_dev *_ffs_find_dev(const char *name); 251 static struct ffs_dev *_ffs_alloc_dev(void); 252 static void _ffs_free_dev(struct ffs_dev *dev); 253 static void *ffs_acquire_dev(const char *dev_name); 254 static void ffs_release_dev(struct ffs_data *ffs_data); 255 static int ffs_ready(struct ffs_data *ffs); 256 static void ffs_closed(struct ffs_data *ffs); 257 258 /* Misc helper functions ****************************************************/ 259 260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 261 __attribute__((warn_unused_result, nonnull)); 262 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 263 __attribute__((warn_unused_result, nonnull)); 264 265 266 /* Control file aka ep0 *****************************************************/ 267 268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 269 { 270 struct ffs_data *ffs = req->context; 271 272 complete(&ffs->ep0req_completion); 273 } 274 275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 276 __releases(&ffs->ev.waitq.lock) 277 { 278 struct usb_request *req = ffs->ep0req; 279 int ret; 280 281 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 282 283 spin_unlock_irq(&ffs->ev.waitq.lock); 284 285 req->buf = data; 286 req->length = len; 287 288 /* 289 * UDC layer requires to provide a buffer even for ZLP, but should 290 * not use it at all. Let's provide some poisoned pointer to catch 291 * possible bug in the driver. 292 */ 293 if (req->buf == NULL) 294 req->buf = (void *)0xDEADBABE; 295 296 reinit_completion(&ffs->ep0req_completion); 297 298 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 299 if (unlikely(ret < 0)) 300 return ret; 301 302 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 303 if (unlikely(ret)) { 304 usb_ep_dequeue(ffs->gadget->ep0, req); 305 return -EINTR; 306 } 307 308 ffs->setup_state = FFS_NO_SETUP; 309 return req->status ? req->status : req->actual; 310 } 311 312 static int __ffs_ep0_stall(struct ffs_data *ffs) 313 { 314 if (ffs->ev.can_stall) { 315 pr_vdebug("ep0 stall\n"); 316 usb_ep_set_halt(ffs->gadget->ep0); 317 ffs->setup_state = FFS_NO_SETUP; 318 return -EL2HLT; 319 } else { 320 pr_debug("bogus ep0 stall!\n"); 321 return -ESRCH; 322 } 323 } 324 325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 326 size_t len, loff_t *ptr) 327 { 328 struct ffs_data *ffs = file->private_data; 329 ssize_t ret; 330 char *data; 331 332 ENTER(); 333 334 /* Fast check if setup was canceled */ 335 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 336 return -EIDRM; 337 338 /* Acquire mutex */ 339 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 340 if (unlikely(ret < 0)) 341 return ret; 342 343 /* Check state */ 344 switch (ffs->state) { 345 case FFS_READ_DESCRIPTORS: 346 case FFS_READ_STRINGS: 347 /* Copy data */ 348 if (unlikely(len < 16)) { 349 ret = -EINVAL; 350 break; 351 } 352 353 data = ffs_prepare_buffer(buf, len); 354 if (IS_ERR(data)) { 355 ret = PTR_ERR(data); 356 break; 357 } 358 359 /* Handle data */ 360 if (ffs->state == FFS_READ_DESCRIPTORS) { 361 pr_info("read descriptors\n"); 362 ret = __ffs_data_got_descs(ffs, data, len); 363 if (unlikely(ret < 0)) 364 break; 365 366 ffs->state = FFS_READ_STRINGS; 367 ret = len; 368 } else { 369 pr_info("read strings\n"); 370 ret = __ffs_data_got_strings(ffs, data, len); 371 if (unlikely(ret < 0)) 372 break; 373 374 ret = ffs_epfiles_create(ffs); 375 if (unlikely(ret)) { 376 ffs->state = FFS_CLOSING; 377 break; 378 } 379 380 ffs->state = FFS_ACTIVE; 381 mutex_unlock(&ffs->mutex); 382 383 ret = ffs_ready(ffs); 384 if (unlikely(ret < 0)) { 385 ffs->state = FFS_CLOSING; 386 return ret; 387 } 388 389 return len; 390 } 391 break; 392 393 case FFS_ACTIVE: 394 data = NULL; 395 /* 396 * We're called from user space, we can use _irq 397 * rather then _irqsave 398 */ 399 spin_lock_irq(&ffs->ev.waitq.lock); 400 switch (ffs_setup_state_clear_cancelled(ffs)) { 401 case FFS_SETUP_CANCELLED: 402 ret = -EIDRM; 403 goto done_spin; 404 405 case FFS_NO_SETUP: 406 ret = -ESRCH; 407 goto done_spin; 408 409 case FFS_SETUP_PENDING: 410 break; 411 } 412 413 /* FFS_SETUP_PENDING */ 414 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 415 spin_unlock_irq(&ffs->ev.waitq.lock); 416 ret = __ffs_ep0_stall(ffs); 417 break; 418 } 419 420 /* FFS_SETUP_PENDING and not stall */ 421 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 422 423 spin_unlock_irq(&ffs->ev.waitq.lock); 424 425 data = ffs_prepare_buffer(buf, len); 426 if (IS_ERR(data)) { 427 ret = PTR_ERR(data); 428 break; 429 } 430 431 spin_lock_irq(&ffs->ev.waitq.lock); 432 433 /* 434 * We are guaranteed to be still in FFS_ACTIVE state 435 * but the state of setup could have changed from 436 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 437 * to check for that. If that happened we copied data 438 * from user space in vain but it's unlikely. 439 * 440 * For sure we are not in FFS_NO_SETUP since this is 441 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 442 * transition can be performed and it's protected by 443 * mutex. 444 */ 445 if (ffs_setup_state_clear_cancelled(ffs) == 446 FFS_SETUP_CANCELLED) { 447 ret = -EIDRM; 448 done_spin: 449 spin_unlock_irq(&ffs->ev.waitq.lock); 450 } else { 451 /* unlocks spinlock */ 452 ret = __ffs_ep0_queue_wait(ffs, data, len); 453 } 454 kfree(data); 455 break; 456 457 default: 458 ret = -EBADFD; 459 break; 460 } 461 462 mutex_unlock(&ffs->mutex); 463 return ret; 464 } 465 466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 468 size_t n) 469 __releases(&ffs->ev.waitq.lock) 470 { 471 /* 472 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 473 * size of ffs->ev.types array (which is four) so that's how much space 474 * we reserve. 475 */ 476 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 477 const size_t size = n * sizeof *events; 478 unsigned i = 0; 479 480 memset(events, 0, size); 481 482 do { 483 events[i].type = ffs->ev.types[i]; 484 if (events[i].type == FUNCTIONFS_SETUP) { 485 events[i].u.setup = ffs->ev.setup; 486 ffs->setup_state = FFS_SETUP_PENDING; 487 } 488 } while (++i < n); 489 490 ffs->ev.count -= n; 491 if (ffs->ev.count) 492 memmove(ffs->ev.types, ffs->ev.types + n, 493 ffs->ev.count * sizeof *ffs->ev.types); 494 495 spin_unlock_irq(&ffs->ev.waitq.lock); 496 mutex_unlock(&ffs->mutex); 497 498 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 499 } 500 501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 502 size_t len, loff_t *ptr) 503 { 504 struct ffs_data *ffs = file->private_data; 505 char *data = NULL; 506 size_t n; 507 int ret; 508 509 ENTER(); 510 511 /* Fast check if setup was canceled */ 512 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 513 return -EIDRM; 514 515 /* Acquire mutex */ 516 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 517 if (unlikely(ret < 0)) 518 return ret; 519 520 /* Check state */ 521 if (ffs->state != FFS_ACTIVE) { 522 ret = -EBADFD; 523 goto done_mutex; 524 } 525 526 /* 527 * We're called from user space, we can use _irq rather then 528 * _irqsave 529 */ 530 spin_lock_irq(&ffs->ev.waitq.lock); 531 532 switch (ffs_setup_state_clear_cancelled(ffs)) { 533 case FFS_SETUP_CANCELLED: 534 ret = -EIDRM; 535 break; 536 537 case FFS_NO_SETUP: 538 n = len / sizeof(struct usb_functionfs_event); 539 if (unlikely(!n)) { 540 ret = -EINVAL; 541 break; 542 } 543 544 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 545 ret = -EAGAIN; 546 break; 547 } 548 549 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 550 ffs->ev.count)) { 551 ret = -EINTR; 552 break; 553 } 554 555 /* unlocks spinlock */ 556 return __ffs_ep0_read_events(ffs, buf, 557 min(n, (size_t)ffs->ev.count)); 558 559 case FFS_SETUP_PENDING: 560 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 ret = __ffs_ep0_stall(ffs); 563 goto done_mutex; 564 } 565 566 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 567 568 spin_unlock_irq(&ffs->ev.waitq.lock); 569 570 if (likely(len)) { 571 data = kmalloc(len, GFP_KERNEL); 572 if (unlikely(!data)) { 573 ret = -ENOMEM; 574 goto done_mutex; 575 } 576 } 577 578 spin_lock_irq(&ffs->ev.waitq.lock); 579 580 /* See ffs_ep0_write() */ 581 if (ffs_setup_state_clear_cancelled(ffs) == 582 FFS_SETUP_CANCELLED) { 583 ret = -EIDRM; 584 break; 585 } 586 587 /* unlocks spinlock */ 588 ret = __ffs_ep0_queue_wait(ffs, data, len); 589 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 590 ret = -EFAULT; 591 goto done_mutex; 592 593 default: 594 ret = -EBADFD; 595 break; 596 } 597 598 spin_unlock_irq(&ffs->ev.waitq.lock); 599 done_mutex: 600 mutex_unlock(&ffs->mutex); 601 kfree(data); 602 return ret; 603 } 604 605 static int ffs_ep0_open(struct inode *inode, struct file *file) 606 { 607 struct ffs_data *ffs = inode->i_private; 608 609 ENTER(); 610 611 if (unlikely(ffs->state == FFS_CLOSING)) 612 return -EBUSY; 613 614 file->private_data = ffs; 615 ffs_data_opened(ffs); 616 617 return 0; 618 } 619 620 static int ffs_ep0_release(struct inode *inode, struct file *file) 621 { 622 struct ffs_data *ffs = file->private_data; 623 624 ENTER(); 625 626 ffs_data_closed(ffs); 627 628 return 0; 629 } 630 631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 632 { 633 struct ffs_data *ffs = file->private_data; 634 struct usb_gadget *gadget = ffs->gadget; 635 long ret; 636 637 ENTER(); 638 639 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 640 struct ffs_function *func = ffs->func; 641 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 642 } else if (gadget && gadget->ops->ioctl) { 643 ret = gadget->ops->ioctl(gadget, code, value); 644 } else { 645 ret = -ENOTTY; 646 } 647 648 return ret; 649 } 650 651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 652 { 653 struct ffs_data *ffs = file->private_data; 654 __poll_t mask = EPOLLWRNORM; 655 int ret; 656 657 poll_wait(file, &ffs->ev.waitq, wait); 658 659 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 660 if (unlikely(ret < 0)) 661 return mask; 662 663 switch (ffs->state) { 664 case FFS_READ_DESCRIPTORS: 665 case FFS_READ_STRINGS: 666 mask |= EPOLLOUT; 667 break; 668 669 case FFS_ACTIVE: 670 switch (ffs->setup_state) { 671 case FFS_NO_SETUP: 672 if (ffs->ev.count) 673 mask |= EPOLLIN; 674 break; 675 676 case FFS_SETUP_PENDING: 677 case FFS_SETUP_CANCELLED: 678 mask |= (EPOLLIN | EPOLLOUT); 679 break; 680 } 681 case FFS_CLOSING: 682 break; 683 case FFS_DEACTIVATED: 684 break; 685 } 686 687 mutex_unlock(&ffs->mutex); 688 689 return mask; 690 } 691 692 static const struct file_operations ffs_ep0_operations = { 693 .llseek = no_llseek, 694 695 .open = ffs_ep0_open, 696 .write = ffs_ep0_write, 697 .read = ffs_ep0_read, 698 .release = ffs_ep0_release, 699 .unlocked_ioctl = ffs_ep0_ioctl, 700 .poll = ffs_ep0_poll, 701 }; 702 703 704 /* "Normal" endpoints operations ********************************************/ 705 706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 707 { 708 ENTER(); 709 if (likely(req->context)) { 710 struct ffs_ep *ep = _ep->driver_data; 711 ep->status = req->status ? req->status : req->actual; 712 complete(req->context); 713 } 714 } 715 716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 717 { 718 ssize_t ret = copy_to_iter(data, data_len, iter); 719 if (likely(ret == data_len)) 720 return ret; 721 722 if (unlikely(iov_iter_count(iter))) 723 return -EFAULT; 724 725 /* 726 * Dear user space developer! 727 * 728 * TL;DR: To stop getting below error message in your kernel log, change 729 * user space code using functionfs to align read buffers to a max 730 * packet size. 731 * 732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 733 * packet size. When unaligned buffer is passed to functionfs, it 734 * internally uses a larger, aligned buffer so that such UDCs are happy. 735 * 736 * Unfortunately, this means that host may send more data than was 737 * requested in read(2) system call. f_fs doesn’t know what to do with 738 * that excess data so it simply drops it. 739 * 740 * Was the buffer aligned in the first place, no such problem would 741 * happen. 742 * 743 * Data may be dropped only in AIO reads. Synchronous reads are handled 744 * by splitting a request into multiple parts. This splitting may still 745 * be a problem though so it’s likely best to align the buffer 746 * regardless of it being AIO or not.. 747 * 748 * This only affects OUT endpoints, i.e. reading data with a read(2), 749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 750 * affected. 751 */ 752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 753 "Align read buffer size to max packet size to avoid the problem.\n", 754 data_len, ret); 755 756 return ret; 757 } 758 759 /* 760 * allocate a virtually contiguous buffer and create a scatterlist describing it 761 * @sg_table - pointer to a place to be filled with sg_table contents 762 * @size - required buffer size 763 */ 764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 765 { 766 struct page **pages; 767 void *vaddr, *ptr; 768 unsigned int n_pages; 769 int i; 770 771 vaddr = vmalloc(sz); 772 if (!vaddr) 773 return NULL; 774 775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 777 if (!pages) { 778 vfree(vaddr); 779 780 return NULL; 781 } 782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 783 pages[i] = vmalloc_to_page(ptr); 784 785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 786 kvfree(pages); 787 vfree(vaddr); 788 789 return NULL; 790 } 791 kvfree(pages); 792 793 return vaddr; 794 } 795 796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 797 size_t data_len) 798 { 799 if (io_data->use_sg) 800 return ffs_build_sg_list(&io_data->sgt, data_len); 801 802 return kmalloc(data_len, GFP_KERNEL); 803 } 804 805 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 806 { 807 if (!io_data->buf) 808 return; 809 810 if (io_data->use_sg) { 811 sg_free_table(&io_data->sgt); 812 vfree(io_data->buf); 813 } else { 814 kfree(io_data->buf); 815 } 816 } 817 818 static void ffs_user_copy_worker(struct work_struct *work) 819 { 820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 821 work); 822 int ret = io_data->req->status ? io_data->req->status : 823 io_data->req->actual; 824 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 825 826 if (io_data->read && ret > 0) { 827 kthread_use_mm(io_data->mm); 828 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 829 kthread_unuse_mm(io_data->mm); 830 } 831 832 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 833 834 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 835 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 836 837 usb_ep_free_request(io_data->ep, io_data->req); 838 839 if (io_data->read) 840 kfree(io_data->to_free); 841 ffs_free_buffer(io_data); 842 kfree(io_data); 843 } 844 845 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 846 struct usb_request *req) 847 { 848 struct ffs_io_data *io_data = req->context; 849 struct ffs_data *ffs = io_data->ffs; 850 851 ENTER(); 852 853 INIT_WORK(&io_data->work, ffs_user_copy_worker); 854 queue_work(ffs->io_completion_wq, &io_data->work); 855 } 856 857 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 858 { 859 /* 860 * See comment in struct ffs_epfile for full read_buffer pointer 861 * synchronisation story. 862 */ 863 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 864 if (buf && buf != READ_BUFFER_DROP) 865 kfree(buf); 866 } 867 868 /* Assumes epfile->mutex is held. */ 869 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 870 struct iov_iter *iter) 871 { 872 /* 873 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 874 * the buffer while we are using it. See comment in struct ffs_epfile 875 * for full read_buffer pointer synchronisation story. 876 */ 877 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 878 ssize_t ret; 879 if (!buf || buf == READ_BUFFER_DROP) 880 return 0; 881 882 ret = copy_to_iter(buf->data, buf->length, iter); 883 if (buf->length == ret) { 884 kfree(buf); 885 return ret; 886 } 887 888 if (unlikely(iov_iter_count(iter))) { 889 ret = -EFAULT; 890 } else { 891 buf->length -= ret; 892 buf->data += ret; 893 } 894 895 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 896 kfree(buf); 897 898 return ret; 899 } 900 901 /* Assumes epfile->mutex is held. */ 902 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 903 void *data, int data_len, 904 struct iov_iter *iter) 905 { 906 struct ffs_buffer *buf; 907 908 ssize_t ret = copy_to_iter(data, data_len, iter); 909 if (likely(data_len == ret)) 910 return ret; 911 912 if (unlikely(iov_iter_count(iter))) 913 return -EFAULT; 914 915 /* See ffs_copy_to_iter for more context. */ 916 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 917 data_len, ret); 918 919 data_len -= ret; 920 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 921 if (!buf) 922 return -ENOMEM; 923 buf->length = data_len; 924 buf->data = buf->storage; 925 memcpy(buf->storage, data + ret, data_len); 926 927 /* 928 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 929 * ffs_func_eps_disable has been called in the meanwhile). See comment 930 * in struct ffs_epfile for full read_buffer pointer synchronisation 931 * story. 932 */ 933 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 934 kfree(buf); 935 936 return ret; 937 } 938 939 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 940 { 941 struct ffs_epfile *epfile = file->private_data; 942 struct usb_request *req; 943 struct ffs_ep *ep; 944 char *data = NULL; 945 ssize_t ret, data_len = -EINVAL; 946 int halt; 947 948 /* Are we still active? */ 949 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 950 return -ENODEV; 951 952 /* Wait for endpoint to be enabled */ 953 ep = epfile->ep; 954 if (!ep) { 955 if (file->f_flags & O_NONBLOCK) 956 return -EAGAIN; 957 958 ret = wait_event_interruptible( 959 epfile->ffs->wait, (ep = epfile->ep)); 960 if (ret) 961 return -EINTR; 962 } 963 964 /* Do we halt? */ 965 halt = (!io_data->read == !epfile->in); 966 if (halt && epfile->isoc) 967 return -EINVAL; 968 969 /* We will be using request and read_buffer */ 970 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 971 if (unlikely(ret)) 972 goto error; 973 974 /* Allocate & copy */ 975 if (!halt) { 976 struct usb_gadget *gadget; 977 978 /* 979 * Do we have buffered data from previous partial read? Check 980 * that for synchronous case only because we do not have 981 * facility to ‘wake up’ a pending asynchronous read and push 982 * buffered data to it which we would need to make things behave 983 * consistently. 984 */ 985 if (!io_data->aio && io_data->read) { 986 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 987 if (ret) 988 goto error_mutex; 989 } 990 991 /* 992 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 993 * before the waiting completes, so do not assign to 'gadget' 994 * earlier 995 */ 996 gadget = epfile->ffs->gadget; 997 998 spin_lock_irq(&epfile->ffs->eps_lock); 999 /* In the meantime, endpoint got disabled or changed. */ 1000 if (epfile->ep != ep) { 1001 ret = -ESHUTDOWN; 1002 goto error_lock; 1003 } 1004 data_len = iov_iter_count(&io_data->data); 1005 /* 1006 * Controller may require buffer size to be aligned to 1007 * maxpacketsize of an out endpoint. 1008 */ 1009 if (io_data->read) 1010 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1011 1012 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1013 spin_unlock_irq(&epfile->ffs->eps_lock); 1014 1015 data = ffs_alloc_buffer(io_data, data_len); 1016 if (unlikely(!data)) { 1017 ret = -ENOMEM; 1018 goto error_mutex; 1019 } 1020 if (!io_data->read && 1021 !copy_from_iter_full(data, data_len, &io_data->data)) { 1022 ret = -EFAULT; 1023 goto error_mutex; 1024 } 1025 } 1026 1027 spin_lock_irq(&epfile->ffs->eps_lock); 1028 1029 if (epfile->ep != ep) { 1030 /* In the meantime, endpoint got disabled or changed. */ 1031 ret = -ESHUTDOWN; 1032 } else if (halt) { 1033 ret = usb_ep_set_halt(ep->ep); 1034 if (!ret) 1035 ret = -EBADMSG; 1036 } else if (unlikely(data_len == -EINVAL)) { 1037 /* 1038 * Sanity Check: even though data_len can't be used 1039 * uninitialized at the time I write this comment, some 1040 * compilers complain about this situation. 1041 * In order to keep the code clean from warnings, data_len is 1042 * being initialized to -EINVAL during its declaration, which 1043 * means we can't rely on compiler anymore to warn no future 1044 * changes won't result in data_len being used uninitialized. 1045 * For such reason, we're adding this redundant sanity check 1046 * here. 1047 */ 1048 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1049 ret = -EINVAL; 1050 } else if (!io_data->aio) { 1051 DECLARE_COMPLETION_ONSTACK(done); 1052 bool interrupted = false; 1053 1054 req = ep->req; 1055 if (io_data->use_sg) { 1056 req->buf = NULL; 1057 req->sg = io_data->sgt.sgl; 1058 req->num_sgs = io_data->sgt.nents; 1059 } else { 1060 req->buf = data; 1061 req->num_sgs = 0; 1062 } 1063 req->length = data_len; 1064 1065 io_data->buf = data; 1066 1067 req->context = &done; 1068 req->complete = ffs_epfile_io_complete; 1069 1070 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1071 if (unlikely(ret < 0)) 1072 goto error_lock; 1073 1074 spin_unlock_irq(&epfile->ffs->eps_lock); 1075 1076 if (unlikely(wait_for_completion_interruptible(&done))) { 1077 /* 1078 * To avoid race condition with ffs_epfile_io_complete, 1079 * dequeue the request first then check 1080 * status. usb_ep_dequeue API should guarantee no race 1081 * condition with req->complete callback. 1082 */ 1083 usb_ep_dequeue(ep->ep, req); 1084 wait_for_completion(&done); 1085 interrupted = ep->status < 0; 1086 } 1087 1088 if (interrupted) 1089 ret = -EINTR; 1090 else if (io_data->read && ep->status > 0) 1091 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1092 &io_data->data); 1093 else 1094 ret = ep->status; 1095 goto error_mutex; 1096 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1097 ret = -ENOMEM; 1098 } else { 1099 if (io_data->use_sg) { 1100 req->buf = NULL; 1101 req->sg = io_data->sgt.sgl; 1102 req->num_sgs = io_data->sgt.nents; 1103 } else { 1104 req->buf = data; 1105 req->num_sgs = 0; 1106 } 1107 req->length = data_len; 1108 1109 io_data->buf = data; 1110 io_data->ep = ep->ep; 1111 io_data->req = req; 1112 io_data->ffs = epfile->ffs; 1113 1114 req->context = io_data; 1115 req->complete = ffs_epfile_async_io_complete; 1116 1117 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1118 if (unlikely(ret)) { 1119 io_data->req = NULL; 1120 usb_ep_free_request(ep->ep, req); 1121 goto error_lock; 1122 } 1123 1124 ret = -EIOCBQUEUED; 1125 /* 1126 * Do not kfree the buffer in this function. It will be freed 1127 * by ffs_user_copy_worker. 1128 */ 1129 data = NULL; 1130 } 1131 1132 error_lock: 1133 spin_unlock_irq(&epfile->ffs->eps_lock); 1134 error_mutex: 1135 mutex_unlock(&epfile->mutex); 1136 error: 1137 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1138 ffs_free_buffer(io_data); 1139 return ret; 1140 } 1141 1142 static int 1143 ffs_epfile_open(struct inode *inode, struct file *file) 1144 { 1145 struct ffs_epfile *epfile = inode->i_private; 1146 1147 ENTER(); 1148 1149 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1150 return -ENODEV; 1151 1152 file->private_data = epfile; 1153 ffs_data_opened(epfile->ffs); 1154 1155 return 0; 1156 } 1157 1158 static int ffs_aio_cancel(struct kiocb *kiocb) 1159 { 1160 struct ffs_io_data *io_data = kiocb->private; 1161 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1162 unsigned long flags; 1163 int value; 1164 1165 ENTER(); 1166 1167 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1168 1169 if (likely(io_data && io_data->ep && io_data->req)) 1170 value = usb_ep_dequeue(io_data->ep, io_data->req); 1171 else 1172 value = -EINVAL; 1173 1174 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1175 1176 return value; 1177 } 1178 1179 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1180 { 1181 struct ffs_io_data io_data, *p = &io_data; 1182 ssize_t res; 1183 1184 ENTER(); 1185 1186 if (!is_sync_kiocb(kiocb)) { 1187 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1188 if (unlikely(!p)) 1189 return -ENOMEM; 1190 p->aio = true; 1191 } else { 1192 memset(p, 0, sizeof(*p)); 1193 p->aio = false; 1194 } 1195 1196 p->read = false; 1197 p->kiocb = kiocb; 1198 p->data = *from; 1199 p->mm = current->mm; 1200 1201 kiocb->private = p; 1202 1203 if (p->aio) 1204 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1205 1206 res = ffs_epfile_io(kiocb->ki_filp, p); 1207 if (res == -EIOCBQUEUED) 1208 return res; 1209 if (p->aio) 1210 kfree(p); 1211 else 1212 *from = p->data; 1213 return res; 1214 } 1215 1216 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1217 { 1218 struct ffs_io_data io_data, *p = &io_data; 1219 ssize_t res; 1220 1221 ENTER(); 1222 1223 if (!is_sync_kiocb(kiocb)) { 1224 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1225 if (unlikely(!p)) 1226 return -ENOMEM; 1227 p->aio = true; 1228 } else { 1229 memset(p, 0, sizeof(*p)); 1230 p->aio = false; 1231 } 1232 1233 p->read = true; 1234 p->kiocb = kiocb; 1235 if (p->aio) { 1236 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1237 if (!p->to_free) { 1238 kfree(p); 1239 return -ENOMEM; 1240 } 1241 } else { 1242 p->data = *to; 1243 p->to_free = NULL; 1244 } 1245 p->mm = current->mm; 1246 1247 kiocb->private = p; 1248 1249 if (p->aio) 1250 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1251 1252 res = ffs_epfile_io(kiocb->ki_filp, p); 1253 if (res == -EIOCBQUEUED) 1254 return res; 1255 1256 if (p->aio) { 1257 kfree(p->to_free); 1258 kfree(p); 1259 } else { 1260 *to = p->data; 1261 } 1262 return res; 1263 } 1264 1265 static int 1266 ffs_epfile_release(struct inode *inode, struct file *file) 1267 { 1268 struct ffs_epfile *epfile = inode->i_private; 1269 1270 ENTER(); 1271 1272 __ffs_epfile_read_buffer_free(epfile); 1273 ffs_data_closed(epfile->ffs); 1274 1275 return 0; 1276 } 1277 1278 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1279 unsigned long value) 1280 { 1281 struct ffs_epfile *epfile = file->private_data; 1282 struct ffs_ep *ep; 1283 int ret; 1284 1285 ENTER(); 1286 1287 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1288 return -ENODEV; 1289 1290 /* Wait for endpoint to be enabled */ 1291 ep = epfile->ep; 1292 if (!ep) { 1293 if (file->f_flags & O_NONBLOCK) 1294 return -EAGAIN; 1295 1296 ret = wait_event_interruptible( 1297 epfile->ffs->wait, (ep = epfile->ep)); 1298 if (ret) 1299 return -EINTR; 1300 } 1301 1302 spin_lock_irq(&epfile->ffs->eps_lock); 1303 1304 /* In the meantime, endpoint got disabled or changed. */ 1305 if (epfile->ep != ep) { 1306 spin_unlock_irq(&epfile->ffs->eps_lock); 1307 return -ESHUTDOWN; 1308 } 1309 1310 switch (code) { 1311 case FUNCTIONFS_FIFO_STATUS: 1312 ret = usb_ep_fifo_status(epfile->ep->ep); 1313 break; 1314 case FUNCTIONFS_FIFO_FLUSH: 1315 usb_ep_fifo_flush(epfile->ep->ep); 1316 ret = 0; 1317 break; 1318 case FUNCTIONFS_CLEAR_HALT: 1319 ret = usb_ep_clear_halt(epfile->ep->ep); 1320 break; 1321 case FUNCTIONFS_ENDPOINT_REVMAP: 1322 ret = epfile->ep->num; 1323 break; 1324 case FUNCTIONFS_ENDPOINT_DESC: 1325 { 1326 int desc_idx; 1327 struct usb_endpoint_descriptor desc1, *desc; 1328 1329 switch (epfile->ffs->gadget->speed) { 1330 case USB_SPEED_SUPER: 1331 desc_idx = 2; 1332 break; 1333 case USB_SPEED_HIGH: 1334 desc_idx = 1; 1335 break; 1336 default: 1337 desc_idx = 0; 1338 } 1339 1340 desc = epfile->ep->descs[desc_idx]; 1341 memcpy(&desc1, desc, desc->bLength); 1342 1343 spin_unlock_irq(&epfile->ffs->eps_lock); 1344 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1345 if (ret) 1346 ret = -EFAULT; 1347 return ret; 1348 } 1349 default: 1350 ret = -ENOTTY; 1351 } 1352 spin_unlock_irq(&epfile->ffs->eps_lock); 1353 1354 return ret; 1355 } 1356 1357 static const struct file_operations ffs_epfile_operations = { 1358 .llseek = no_llseek, 1359 1360 .open = ffs_epfile_open, 1361 .write_iter = ffs_epfile_write_iter, 1362 .read_iter = ffs_epfile_read_iter, 1363 .release = ffs_epfile_release, 1364 .unlocked_ioctl = ffs_epfile_ioctl, 1365 .compat_ioctl = compat_ptr_ioctl, 1366 }; 1367 1368 1369 /* File system and super block operations ***********************************/ 1370 1371 /* 1372 * Mounting the file system creates a controller file, used first for 1373 * function configuration then later for event monitoring. 1374 */ 1375 1376 static struct inode *__must_check 1377 ffs_sb_make_inode(struct super_block *sb, void *data, 1378 const struct file_operations *fops, 1379 const struct inode_operations *iops, 1380 struct ffs_file_perms *perms) 1381 { 1382 struct inode *inode; 1383 1384 ENTER(); 1385 1386 inode = new_inode(sb); 1387 1388 if (likely(inode)) { 1389 struct timespec64 ts = current_time(inode); 1390 1391 inode->i_ino = get_next_ino(); 1392 inode->i_mode = perms->mode; 1393 inode->i_uid = perms->uid; 1394 inode->i_gid = perms->gid; 1395 inode->i_atime = ts; 1396 inode->i_mtime = ts; 1397 inode->i_ctime = ts; 1398 inode->i_private = data; 1399 if (fops) 1400 inode->i_fop = fops; 1401 if (iops) 1402 inode->i_op = iops; 1403 } 1404 1405 return inode; 1406 } 1407 1408 /* Create "regular" file */ 1409 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1410 const char *name, void *data, 1411 const struct file_operations *fops) 1412 { 1413 struct ffs_data *ffs = sb->s_fs_info; 1414 struct dentry *dentry; 1415 struct inode *inode; 1416 1417 ENTER(); 1418 1419 dentry = d_alloc_name(sb->s_root, name); 1420 if (unlikely(!dentry)) 1421 return NULL; 1422 1423 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1424 if (unlikely(!inode)) { 1425 dput(dentry); 1426 return NULL; 1427 } 1428 1429 d_add(dentry, inode); 1430 return dentry; 1431 } 1432 1433 /* Super block */ 1434 static const struct super_operations ffs_sb_operations = { 1435 .statfs = simple_statfs, 1436 .drop_inode = generic_delete_inode, 1437 }; 1438 1439 struct ffs_sb_fill_data { 1440 struct ffs_file_perms perms; 1441 umode_t root_mode; 1442 const char *dev_name; 1443 bool no_disconnect; 1444 struct ffs_data *ffs_data; 1445 }; 1446 1447 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1448 { 1449 struct ffs_sb_fill_data *data = fc->fs_private; 1450 struct inode *inode; 1451 struct ffs_data *ffs = data->ffs_data; 1452 1453 ENTER(); 1454 1455 ffs->sb = sb; 1456 data->ffs_data = NULL; 1457 sb->s_fs_info = ffs; 1458 sb->s_blocksize = PAGE_SIZE; 1459 sb->s_blocksize_bits = PAGE_SHIFT; 1460 sb->s_magic = FUNCTIONFS_MAGIC; 1461 sb->s_op = &ffs_sb_operations; 1462 sb->s_time_gran = 1; 1463 1464 /* Root inode */ 1465 data->perms.mode = data->root_mode; 1466 inode = ffs_sb_make_inode(sb, NULL, 1467 &simple_dir_operations, 1468 &simple_dir_inode_operations, 1469 &data->perms); 1470 sb->s_root = d_make_root(inode); 1471 if (unlikely(!sb->s_root)) 1472 return -ENOMEM; 1473 1474 /* EP0 file */ 1475 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1476 &ffs_ep0_operations))) 1477 return -ENOMEM; 1478 1479 return 0; 1480 } 1481 1482 enum { 1483 Opt_no_disconnect, 1484 Opt_rmode, 1485 Opt_fmode, 1486 Opt_mode, 1487 Opt_uid, 1488 Opt_gid, 1489 }; 1490 1491 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1492 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1493 fsparam_u32 ("rmode", Opt_rmode), 1494 fsparam_u32 ("fmode", Opt_fmode), 1495 fsparam_u32 ("mode", Opt_mode), 1496 fsparam_u32 ("uid", Opt_uid), 1497 fsparam_u32 ("gid", Opt_gid), 1498 {} 1499 }; 1500 1501 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1502 { 1503 struct ffs_sb_fill_data *data = fc->fs_private; 1504 struct fs_parse_result result; 1505 int opt; 1506 1507 ENTER(); 1508 1509 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1510 if (opt < 0) 1511 return opt; 1512 1513 switch (opt) { 1514 case Opt_no_disconnect: 1515 data->no_disconnect = result.boolean; 1516 break; 1517 case Opt_rmode: 1518 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1519 break; 1520 case Opt_fmode: 1521 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1522 break; 1523 case Opt_mode: 1524 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1525 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1526 break; 1527 1528 case Opt_uid: 1529 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1530 if (!uid_valid(data->perms.uid)) 1531 goto unmapped_value; 1532 break; 1533 case Opt_gid: 1534 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1535 if (!gid_valid(data->perms.gid)) 1536 goto unmapped_value; 1537 break; 1538 1539 default: 1540 return -ENOPARAM; 1541 } 1542 1543 return 0; 1544 1545 unmapped_value: 1546 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1547 } 1548 1549 /* 1550 * Set up the superblock for a mount. 1551 */ 1552 static int ffs_fs_get_tree(struct fs_context *fc) 1553 { 1554 struct ffs_sb_fill_data *ctx = fc->fs_private; 1555 void *ffs_dev; 1556 struct ffs_data *ffs; 1557 1558 ENTER(); 1559 1560 if (!fc->source) 1561 return invalf(fc, "No source specified"); 1562 1563 ffs = ffs_data_new(fc->source); 1564 if (unlikely(!ffs)) 1565 return -ENOMEM; 1566 ffs->file_perms = ctx->perms; 1567 ffs->no_disconnect = ctx->no_disconnect; 1568 1569 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1570 if (unlikely(!ffs->dev_name)) { 1571 ffs_data_put(ffs); 1572 return -ENOMEM; 1573 } 1574 1575 ffs_dev = ffs_acquire_dev(ffs->dev_name); 1576 if (IS_ERR(ffs_dev)) { 1577 ffs_data_put(ffs); 1578 return PTR_ERR(ffs_dev); 1579 } 1580 1581 ffs->private_data = ffs_dev; 1582 ctx->ffs_data = ffs; 1583 return get_tree_nodev(fc, ffs_sb_fill); 1584 } 1585 1586 static void ffs_fs_free_fc(struct fs_context *fc) 1587 { 1588 struct ffs_sb_fill_data *ctx = fc->fs_private; 1589 1590 if (ctx) { 1591 if (ctx->ffs_data) { 1592 ffs_release_dev(ctx->ffs_data); 1593 ffs_data_put(ctx->ffs_data); 1594 } 1595 1596 kfree(ctx); 1597 } 1598 } 1599 1600 static const struct fs_context_operations ffs_fs_context_ops = { 1601 .free = ffs_fs_free_fc, 1602 .parse_param = ffs_fs_parse_param, 1603 .get_tree = ffs_fs_get_tree, 1604 }; 1605 1606 static int ffs_fs_init_fs_context(struct fs_context *fc) 1607 { 1608 struct ffs_sb_fill_data *ctx; 1609 1610 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1611 if (!ctx) 1612 return -ENOMEM; 1613 1614 ctx->perms.mode = S_IFREG | 0600; 1615 ctx->perms.uid = GLOBAL_ROOT_UID; 1616 ctx->perms.gid = GLOBAL_ROOT_GID; 1617 ctx->root_mode = S_IFDIR | 0500; 1618 ctx->no_disconnect = false; 1619 1620 fc->fs_private = ctx; 1621 fc->ops = &ffs_fs_context_ops; 1622 return 0; 1623 } 1624 1625 static void 1626 ffs_fs_kill_sb(struct super_block *sb) 1627 { 1628 ENTER(); 1629 1630 kill_litter_super(sb); 1631 if (sb->s_fs_info) { 1632 ffs_release_dev(sb->s_fs_info); 1633 ffs_data_closed(sb->s_fs_info); 1634 } 1635 } 1636 1637 static struct file_system_type ffs_fs_type = { 1638 .owner = THIS_MODULE, 1639 .name = "functionfs", 1640 .init_fs_context = ffs_fs_init_fs_context, 1641 .parameters = ffs_fs_fs_parameters, 1642 .kill_sb = ffs_fs_kill_sb, 1643 }; 1644 MODULE_ALIAS_FS("functionfs"); 1645 1646 1647 /* Driver's main init/cleanup functions *************************************/ 1648 1649 static int functionfs_init(void) 1650 { 1651 int ret; 1652 1653 ENTER(); 1654 1655 ret = register_filesystem(&ffs_fs_type); 1656 if (likely(!ret)) 1657 pr_info("file system registered\n"); 1658 else 1659 pr_err("failed registering file system (%d)\n", ret); 1660 1661 return ret; 1662 } 1663 1664 static void functionfs_cleanup(void) 1665 { 1666 ENTER(); 1667 1668 pr_info("unloading\n"); 1669 unregister_filesystem(&ffs_fs_type); 1670 } 1671 1672 1673 /* ffs_data and ffs_function construction and destruction code **************/ 1674 1675 static void ffs_data_clear(struct ffs_data *ffs); 1676 static void ffs_data_reset(struct ffs_data *ffs); 1677 1678 static void ffs_data_get(struct ffs_data *ffs) 1679 { 1680 ENTER(); 1681 1682 refcount_inc(&ffs->ref); 1683 } 1684 1685 static void ffs_data_opened(struct ffs_data *ffs) 1686 { 1687 ENTER(); 1688 1689 refcount_inc(&ffs->ref); 1690 if (atomic_add_return(1, &ffs->opened) == 1 && 1691 ffs->state == FFS_DEACTIVATED) { 1692 ffs->state = FFS_CLOSING; 1693 ffs_data_reset(ffs); 1694 } 1695 } 1696 1697 static void ffs_data_put(struct ffs_data *ffs) 1698 { 1699 ENTER(); 1700 1701 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1702 pr_info("%s(): freeing\n", __func__); 1703 ffs_data_clear(ffs); 1704 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1705 swait_active(&ffs->ep0req_completion.wait) || 1706 waitqueue_active(&ffs->wait)); 1707 destroy_workqueue(ffs->io_completion_wq); 1708 kfree(ffs->dev_name); 1709 kfree(ffs); 1710 } 1711 } 1712 1713 static void ffs_data_closed(struct ffs_data *ffs) 1714 { 1715 ENTER(); 1716 1717 if (atomic_dec_and_test(&ffs->opened)) { 1718 if (ffs->no_disconnect) { 1719 ffs->state = FFS_DEACTIVATED; 1720 if (ffs->epfiles) { 1721 ffs_epfiles_destroy(ffs->epfiles, 1722 ffs->eps_count); 1723 ffs->epfiles = NULL; 1724 } 1725 if (ffs->setup_state == FFS_SETUP_PENDING) 1726 __ffs_ep0_stall(ffs); 1727 } else { 1728 ffs->state = FFS_CLOSING; 1729 ffs_data_reset(ffs); 1730 } 1731 } 1732 if (atomic_read(&ffs->opened) < 0) { 1733 ffs->state = FFS_CLOSING; 1734 ffs_data_reset(ffs); 1735 } 1736 1737 ffs_data_put(ffs); 1738 } 1739 1740 static struct ffs_data *ffs_data_new(const char *dev_name) 1741 { 1742 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1743 if (unlikely(!ffs)) 1744 return NULL; 1745 1746 ENTER(); 1747 1748 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1749 if (!ffs->io_completion_wq) { 1750 kfree(ffs); 1751 return NULL; 1752 } 1753 1754 refcount_set(&ffs->ref, 1); 1755 atomic_set(&ffs->opened, 0); 1756 ffs->state = FFS_READ_DESCRIPTORS; 1757 mutex_init(&ffs->mutex); 1758 spin_lock_init(&ffs->eps_lock); 1759 init_waitqueue_head(&ffs->ev.waitq); 1760 init_waitqueue_head(&ffs->wait); 1761 init_completion(&ffs->ep0req_completion); 1762 1763 /* XXX REVISIT need to update it in some places, or do we? */ 1764 ffs->ev.can_stall = 1; 1765 1766 return ffs; 1767 } 1768 1769 static void ffs_data_clear(struct ffs_data *ffs) 1770 { 1771 ENTER(); 1772 1773 ffs_closed(ffs); 1774 1775 BUG_ON(ffs->gadget); 1776 1777 if (ffs->epfiles) 1778 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1779 1780 if (ffs->ffs_eventfd) 1781 eventfd_ctx_put(ffs->ffs_eventfd); 1782 1783 kfree(ffs->raw_descs_data); 1784 kfree(ffs->raw_strings); 1785 kfree(ffs->stringtabs); 1786 } 1787 1788 static void ffs_data_reset(struct ffs_data *ffs) 1789 { 1790 ENTER(); 1791 1792 ffs_data_clear(ffs); 1793 1794 ffs->epfiles = NULL; 1795 ffs->raw_descs_data = NULL; 1796 ffs->raw_descs = NULL; 1797 ffs->raw_strings = NULL; 1798 ffs->stringtabs = NULL; 1799 1800 ffs->raw_descs_length = 0; 1801 ffs->fs_descs_count = 0; 1802 ffs->hs_descs_count = 0; 1803 ffs->ss_descs_count = 0; 1804 1805 ffs->strings_count = 0; 1806 ffs->interfaces_count = 0; 1807 ffs->eps_count = 0; 1808 1809 ffs->ev.count = 0; 1810 1811 ffs->state = FFS_READ_DESCRIPTORS; 1812 ffs->setup_state = FFS_NO_SETUP; 1813 ffs->flags = 0; 1814 1815 ffs->ms_os_descs_ext_prop_count = 0; 1816 ffs->ms_os_descs_ext_prop_name_len = 0; 1817 ffs->ms_os_descs_ext_prop_data_len = 0; 1818 } 1819 1820 1821 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1822 { 1823 struct usb_gadget_strings **lang; 1824 int first_id; 1825 1826 ENTER(); 1827 1828 if (WARN_ON(ffs->state != FFS_ACTIVE 1829 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1830 return -EBADFD; 1831 1832 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1833 if (unlikely(first_id < 0)) 1834 return first_id; 1835 1836 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1837 if (unlikely(!ffs->ep0req)) 1838 return -ENOMEM; 1839 ffs->ep0req->complete = ffs_ep0_complete; 1840 ffs->ep0req->context = ffs; 1841 1842 lang = ffs->stringtabs; 1843 if (lang) { 1844 for (; *lang; ++lang) { 1845 struct usb_string *str = (*lang)->strings; 1846 int id = first_id; 1847 for (; str->s; ++id, ++str) 1848 str->id = id; 1849 } 1850 } 1851 1852 ffs->gadget = cdev->gadget; 1853 ffs_data_get(ffs); 1854 return 0; 1855 } 1856 1857 static void functionfs_unbind(struct ffs_data *ffs) 1858 { 1859 ENTER(); 1860 1861 if (!WARN_ON(!ffs->gadget)) { 1862 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1863 ffs->ep0req = NULL; 1864 ffs->gadget = NULL; 1865 clear_bit(FFS_FL_BOUND, &ffs->flags); 1866 ffs_data_put(ffs); 1867 } 1868 } 1869 1870 static int ffs_epfiles_create(struct ffs_data *ffs) 1871 { 1872 struct ffs_epfile *epfile, *epfiles; 1873 unsigned i, count; 1874 1875 ENTER(); 1876 1877 count = ffs->eps_count; 1878 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1879 if (!epfiles) 1880 return -ENOMEM; 1881 1882 epfile = epfiles; 1883 for (i = 1; i <= count; ++i, ++epfile) { 1884 epfile->ffs = ffs; 1885 mutex_init(&epfile->mutex); 1886 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1887 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1888 else 1889 sprintf(epfile->name, "ep%u", i); 1890 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1891 epfile, 1892 &ffs_epfile_operations); 1893 if (unlikely(!epfile->dentry)) { 1894 ffs_epfiles_destroy(epfiles, i - 1); 1895 return -ENOMEM; 1896 } 1897 } 1898 1899 ffs->epfiles = epfiles; 1900 return 0; 1901 } 1902 1903 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1904 { 1905 struct ffs_epfile *epfile = epfiles; 1906 1907 ENTER(); 1908 1909 for (; count; --count, ++epfile) { 1910 BUG_ON(mutex_is_locked(&epfile->mutex)); 1911 if (epfile->dentry) { 1912 d_delete(epfile->dentry); 1913 dput(epfile->dentry); 1914 epfile->dentry = NULL; 1915 } 1916 } 1917 1918 kfree(epfiles); 1919 } 1920 1921 static void ffs_func_eps_disable(struct ffs_function *func) 1922 { 1923 struct ffs_ep *ep = func->eps; 1924 struct ffs_epfile *epfile = func->ffs->epfiles; 1925 unsigned count = func->ffs->eps_count; 1926 unsigned long flags; 1927 1928 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1929 while (count--) { 1930 /* pending requests get nuked */ 1931 if (likely(ep->ep)) 1932 usb_ep_disable(ep->ep); 1933 ++ep; 1934 1935 if (epfile) { 1936 epfile->ep = NULL; 1937 __ffs_epfile_read_buffer_free(epfile); 1938 ++epfile; 1939 } 1940 } 1941 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1942 } 1943 1944 static int ffs_func_eps_enable(struct ffs_function *func) 1945 { 1946 struct ffs_data *ffs = func->ffs; 1947 struct ffs_ep *ep = func->eps; 1948 struct ffs_epfile *epfile = ffs->epfiles; 1949 unsigned count = ffs->eps_count; 1950 unsigned long flags; 1951 int ret = 0; 1952 1953 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1954 while(count--) { 1955 ep->ep->driver_data = ep; 1956 1957 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1958 if (ret) { 1959 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1960 __func__, ep->ep->name, ret); 1961 break; 1962 } 1963 1964 ret = usb_ep_enable(ep->ep); 1965 if (likely(!ret)) { 1966 epfile->ep = ep; 1967 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1968 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1969 } else { 1970 break; 1971 } 1972 1973 ++ep; 1974 ++epfile; 1975 } 1976 1977 wake_up_interruptible(&ffs->wait); 1978 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1979 1980 return ret; 1981 } 1982 1983 1984 /* Parsing and building descriptors and strings *****************************/ 1985 1986 /* 1987 * This validates if data pointed by data is a valid USB descriptor as 1988 * well as record how many interfaces, endpoints and strings are 1989 * required by given configuration. Returns address after the 1990 * descriptor or NULL if data is invalid. 1991 */ 1992 1993 enum ffs_entity_type { 1994 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1995 }; 1996 1997 enum ffs_os_desc_type { 1998 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1999 }; 2000 2001 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2002 u8 *valuep, 2003 struct usb_descriptor_header *desc, 2004 void *priv); 2005 2006 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2007 struct usb_os_desc_header *h, void *data, 2008 unsigned len, void *priv); 2009 2010 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2011 ffs_entity_callback entity, 2012 void *priv, int *current_class) 2013 { 2014 struct usb_descriptor_header *_ds = (void *)data; 2015 u8 length; 2016 int ret; 2017 2018 ENTER(); 2019 2020 /* At least two bytes are required: length and type */ 2021 if (len < 2) { 2022 pr_vdebug("descriptor too short\n"); 2023 return -EINVAL; 2024 } 2025 2026 /* If we have at least as many bytes as the descriptor takes? */ 2027 length = _ds->bLength; 2028 if (len < length) { 2029 pr_vdebug("descriptor longer then available data\n"); 2030 return -EINVAL; 2031 } 2032 2033 #define __entity_check_INTERFACE(val) 1 2034 #define __entity_check_STRING(val) (val) 2035 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2036 #define __entity(type, val) do { \ 2037 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2038 if (unlikely(!__entity_check_ ##type(val))) { \ 2039 pr_vdebug("invalid entity's value\n"); \ 2040 return -EINVAL; \ 2041 } \ 2042 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2043 if (unlikely(ret < 0)) { \ 2044 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2045 (val), ret); \ 2046 return ret; \ 2047 } \ 2048 } while (0) 2049 2050 /* Parse descriptor depending on type. */ 2051 switch (_ds->bDescriptorType) { 2052 case USB_DT_DEVICE: 2053 case USB_DT_CONFIG: 2054 case USB_DT_STRING: 2055 case USB_DT_DEVICE_QUALIFIER: 2056 /* function can't have any of those */ 2057 pr_vdebug("descriptor reserved for gadget: %d\n", 2058 _ds->bDescriptorType); 2059 return -EINVAL; 2060 2061 case USB_DT_INTERFACE: { 2062 struct usb_interface_descriptor *ds = (void *)_ds; 2063 pr_vdebug("interface descriptor\n"); 2064 if (length != sizeof *ds) 2065 goto inv_length; 2066 2067 __entity(INTERFACE, ds->bInterfaceNumber); 2068 if (ds->iInterface) 2069 __entity(STRING, ds->iInterface); 2070 *current_class = ds->bInterfaceClass; 2071 } 2072 break; 2073 2074 case USB_DT_ENDPOINT: { 2075 struct usb_endpoint_descriptor *ds = (void *)_ds; 2076 pr_vdebug("endpoint descriptor\n"); 2077 if (length != USB_DT_ENDPOINT_SIZE && 2078 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2079 goto inv_length; 2080 __entity(ENDPOINT, ds->bEndpointAddress); 2081 } 2082 break; 2083 2084 case USB_TYPE_CLASS | 0x01: 2085 if (*current_class == USB_INTERFACE_CLASS_HID) { 2086 pr_vdebug("hid descriptor\n"); 2087 if (length != sizeof(struct hid_descriptor)) 2088 goto inv_length; 2089 break; 2090 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2091 pr_vdebug("ccid descriptor\n"); 2092 if (length != sizeof(struct ccid_descriptor)) 2093 goto inv_length; 2094 break; 2095 } else { 2096 pr_vdebug("unknown descriptor: %d for class %d\n", 2097 _ds->bDescriptorType, *current_class); 2098 return -EINVAL; 2099 } 2100 2101 case USB_DT_OTG: 2102 if (length != sizeof(struct usb_otg_descriptor)) 2103 goto inv_length; 2104 break; 2105 2106 case USB_DT_INTERFACE_ASSOCIATION: { 2107 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2108 pr_vdebug("interface association descriptor\n"); 2109 if (length != sizeof *ds) 2110 goto inv_length; 2111 if (ds->iFunction) 2112 __entity(STRING, ds->iFunction); 2113 } 2114 break; 2115 2116 case USB_DT_SS_ENDPOINT_COMP: 2117 pr_vdebug("EP SS companion descriptor\n"); 2118 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2119 goto inv_length; 2120 break; 2121 2122 case USB_DT_OTHER_SPEED_CONFIG: 2123 case USB_DT_INTERFACE_POWER: 2124 case USB_DT_DEBUG: 2125 case USB_DT_SECURITY: 2126 case USB_DT_CS_RADIO_CONTROL: 2127 /* TODO */ 2128 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2129 return -EINVAL; 2130 2131 default: 2132 /* We should never be here */ 2133 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2134 return -EINVAL; 2135 2136 inv_length: 2137 pr_vdebug("invalid length: %d (descriptor %d)\n", 2138 _ds->bLength, _ds->bDescriptorType); 2139 return -EINVAL; 2140 } 2141 2142 #undef __entity 2143 #undef __entity_check_DESCRIPTOR 2144 #undef __entity_check_INTERFACE 2145 #undef __entity_check_STRING 2146 #undef __entity_check_ENDPOINT 2147 2148 return length; 2149 } 2150 2151 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2152 ffs_entity_callback entity, void *priv) 2153 { 2154 const unsigned _len = len; 2155 unsigned long num = 0; 2156 int current_class = -1; 2157 2158 ENTER(); 2159 2160 for (;;) { 2161 int ret; 2162 2163 if (num == count) 2164 data = NULL; 2165 2166 /* Record "descriptor" entity */ 2167 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2168 if (unlikely(ret < 0)) { 2169 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2170 num, ret); 2171 return ret; 2172 } 2173 2174 if (!data) 2175 return _len - len; 2176 2177 ret = ffs_do_single_desc(data, len, entity, priv, 2178 ¤t_class); 2179 if (unlikely(ret < 0)) { 2180 pr_debug("%s returns %d\n", __func__, ret); 2181 return ret; 2182 } 2183 2184 len -= ret; 2185 data += ret; 2186 ++num; 2187 } 2188 } 2189 2190 static int __ffs_data_do_entity(enum ffs_entity_type type, 2191 u8 *valuep, struct usb_descriptor_header *desc, 2192 void *priv) 2193 { 2194 struct ffs_desc_helper *helper = priv; 2195 struct usb_endpoint_descriptor *d; 2196 2197 ENTER(); 2198 2199 switch (type) { 2200 case FFS_DESCRIPTOR: 2201 break; 2202 2203 case FFS_INTERFACE: 2204 /* 2205 * Interfaces are indexed from zero so if we 2206 * encountered interface "n" then there are at least 2207 * "n+1" interfaces. 2208 */ 2209 if (*valuep >= helper->interfaces_count) 2210 helper->interfaces_count = *valuep + 1; 2211 break; 2212 2213 case FFS_STRING: 2214 /* 2215 * Strings are indexed from 1 (0 is reserved 2216 * for languages list) 2217 */ 2218 if (*valuep > helper->ffs->strings_count) 2219 helper->ffs->strings_count = *valuep; 2220 break; 2221 2222 case FFS_ENDPOINT: 2223 d = (void *)desc; 2224 helper->eps_count++; 2225 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2226 return -EINVAL; 2227 /* Check if descriptors for any speed were already parsed */ 2228 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2229 helper->ffs->eps_addrmap[helper->eps_count] = 2230 d->bEndpointAddress; 2231 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2232 d->bEndpointAddress) 2233 return -EINVAL; 2234 break; 2235 } 2236 2237 return 0; 2238 } 2239 2240 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2241 struct usb_os_desc_header *desc) 2242 { 2243 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2244 u16 w_index = le16_to_cpu(desc->wIndex); 2245 2246 if (bcd_version != 1) { 2247 pr_vdebug("unsupported os descriptors version: %d", 2248 bcd_version); 2249 return -EINVAL; 2250 } 2251 switch (w_index) { 2252 case 0x4: 2253 *next_type = FFS_OS_DESC_EXT_COMPAT; 2254 break; 2255 case 0x5: 2256 *next_type = FFS_OS_DESC_EXT_PROP; 2257 break; 2258 default: 2259 pr_vdebug("unsupported os descriptor type: %d", w_index); 2260 return -EINVAL; 2261 } 2262 2263 return sizeof(*desc); 2264 } 2265 2266 /* 2267 * Process all extended compatibility/extended property descriptors 2268 * of a feature descriptor 2269 */ 2270 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2271 enum ffs_os_desc_type type, 2272 u16 feature_count, 2273 ffs_os_desc_callback entity, 2274 void *priv, 2275 struct usb_os_desc_header *h) 2276 { 2277 int ret; 2278 const unsigned _len = len; 2279 2280 ENTER(); 2281 2282 /* loop over all ext compat/ext prop descriptors */ 2283 while (feature_count--) { 2284 ret = entity(type, h, data, len, priv); 2285 if (unlikely(ret < 0)) { 2286 pr_debug("bad OS descriptor, type: %d\n", type); 2287 return ret; 2288 } 2289 data += ret; 2290 len -= ret; 2291 } 2292 return _len - len; 2293 } 2294 2295 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2296 static int __must_check ffs_do_os_descs(unsigned count, 2297 char *data, unsigned len, 2298 ffs_os_desc_callback entity, void *priv) 2299 { 2300 const unsigned _len = len; 2301 unsigned long num = 0; 2302 2303 ENTER(); 2304 2305 for (num = 0; num < count; ++num) { 2306 int ret; 2307 enum ffs_os_desc_type type; 2308 u16 feature_count; 2309 struct usb_os_desc_header *desc = (void *)data; 2310 2311 if (len < sizeof(*desc)) 2312 return -EINVAL; 2313 2314 /* 2315 * Record "descriptor" entity. 2316 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2317 * Move the data pointer to the beginning of extended 2318 * compatibilities proper or extended properties proper 2319 * portions of the data 2320 */ 2321 if (le32_to_cpu(desc->dwLength) > len) 2322 return -EINVAL; 2323 2324 ret = __ffs_do_os_desc_header(&type, desc); 2325 if (unlikely(ret < 0)) { 2326 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2327 num, ret); 2328 return ret; 2329 } 2330 /* 2331 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2332 */ 2333 feature_count = le16_to_cpu(desc->wCount); 2334 if (type == FFS_OS_DESC_EXT_COMPAT && 2335 (feature_count > 255 || desc->Reserved)) 2336 return -EINVAL; 2337 len -= ret; 2338 data += ret; 2339 2340 /* 2341 * Process all function/property descriptors 2342 * of this Feature Descriptor 2343 */ 2344 ret = ffs_do_single_os_desc(data, len, type, 2345 feature_count, entity, priv, desc); 2346 if (unlikely(ret < 0)) { 2347 pr_debug("%s returns %d\n", __func__, ret); 2348 return ret; 2349 } 2350 2351 len -= ret; 2352 data += ret; 2353 } 2354 return _len - len; 2355 } 2356 2357 /* 2358 * Validate contents of the buffer from userspace related to OS descriptors. 2359 */ 2360 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2361 struct usb_os_desc_header *h, void *data, 2362 unsigned len, void *priv) 2363 { 2364 struct ffs_data *ffs = priv; 2365 u8 length; 2366 2367 ENTER(); 2368 2369 switch (type) { 2370 case FFS_OS_DESC_EXT_COMPAT: { 2371 struct usb_ext_compat_desc *d = data; 2372 int i; 2373 2374 if (len < sizeof(*d) || 2375 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2376 return -EINVAL; 2377 if (d->Reserved1 != 1) { 2378 /* 2379 * According to the spec, Reserved1 must be set to 1 2380 * but older kernels incorrectly rejected non-zero 2381 * values. We fix it here to avoid returning EINVAL 2382 * in response to values we used to accept. 2383 */ 2384 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2385 d->Reserved1 = 1; 2386 } 2387 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2388 if (d->Reserved2[i]) 2389 return -EINVAL; 2390 2391 length = sizeof(struct usb_ext_compat_desc); 2392 } 2393 break; 2394 case FFS_OS_DESC_EXT_PROP: { 2395 struct usb_ext_prop_desc *d = data; 2396 u32 type, pdl; 2397 u16 pnl; 2398 2399 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2400 return -EINVAL; 2401 length = le32_to_cpu(d->dwSize); 2402 if (len < length) 2403 return -EINVAL; 2404 type = le32_to_cpu(d->dwPropertyDataType); 2405 if (type < USB_EXT_PROP_UNICODE || 2406 type > USB_EXT_PROP_UNICODE_MULTI) { 2407 pr_vdebug("unsupported os descriptor property type: %d", 2408 type); 2409 return -EINVAL; 2410 } 2411 pnl = le16_to_cpu(d->wPropertyNameLength); 2412 if (length < 14 + pnl) { 2413 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2414 length, pnl, type); 2415 return -EINVAL; 2416 } 2417 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2418 if (length != 14 + pnl + pdl) { 2419 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2420 length, pnl, pdl, type); 2421 return -EINVAL; 2422 } 2423 ++ffs->ms_os_descs_ext_prop_count; 2424 /* property name reported to the host as "WCHAR"s */ 2425 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2426 ffs->ms_os_descs_ext_prop_data_len += pdl; 2427 } 2428 break; 2429 default: 2430 pr_vdebug("unknown descriptor: %d\n", type); 2431 return -EINVAL; 2432 } 2433 return length; 2434 } 2435 2436 static int __ffs_data_got_descs(struct ffs_data *ffs, 2437 char *const _data, size_t len) 2438 { 2439 char *data = _data, *raw_descs; 2440 unsigned os_descs_count = 0, counts[3], flags; 2441 int ret = -EINVAL, i; 2442 struct ffs_desc_helper helper; 2443 2444 ENTER(); 2445 2446 if (get_unaligned_le32(data + 4) != len) 2447 goto error; 2448 2449 switch (get_unaligned_le32(data)) { 2450 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2451 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2452 data += 8; 2453 len -= 8; 2454 break; 2455 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2456 flags = get_unaligned_le32(data + 8); 2457 ffs->user_flags = flags; 2458 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2459 FUNCTIONFS_HAS_HS_DESC | 2460 FUNCTIONFS_HAS_SS_DESC | 2461 FUNCTIONFS_HAS_MS_OS_DESC | 2462 FUNCTIONFS_VIRTUAL_ADDR | 2463 FUNCTIONFS_EVENTFD | 2464 FUNCTIONFS_ALL_CTRL_RECIP | 2465 FUNCTIONFS_CONFIG0_SETUP)) { 2466 ret = -ENOSYS; 2467 goto error; 2468 } 2469 data += 12; 2470 len -= 12; 2471 break; 2472 default: 2473 goto error; 2474 } 2475 2476 if (flags & FUNCTIONFS_EVENTFD) { 2477 if (len < 4) 2478 goto error; 2479 ffs->ffs_eventfd = 2480 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2481 if (IS_ERR(ffs->ffs_eventfd)) { 2482 ret = PTR_ERR(ffs->ffs_eventfd); 2483 ffs->ffs_eventfd = NULL; 2484 goto error; 2485 } 2486 data += 4; 2487 len -= 4; 2488 } 2489 2490 /* Read fs_count, hs_count and ss_count (if present) */ 2491 for (i = 0; i < 3; ++i) { 2492 if (!(flags & (1 << i))) { 2493 counts[i] = 0; 2494 } else if (len < 4) { 2495 goto error; 2496 } else { 2497 counts[i] = get_unaligned_le32(data); 2498 data += 4; 2499 len -= 4; 2500 } 2501 } 2502 if (flags & (1 << i)) { 2503 if (len < 4) { 2504 goto error; 2505 } 2506 os_descs_count = get_unaligned_le32(data); 2507 data += 4; 2508 len -= 4; 2509 } 2510 2511 /* Read descriptors */ 2512 raw_descs = data; 2513 helper.ffs = ffs; 2514 for (i = 0; i < 3; ++i) { 2515 if (!counts[i]) 2516 continue; 2517 helper.interfaces_count = 0; 2518 helper.eps_count = 0; 2519 ret = ffs_do_descs(counts[i], data, len, 2520 __ffs_data_do_entity, &helper); 2521 if (ret < 0) 2522 goto error; 2523 if (!ffs->eps_count && !ffs->interfaces_count) { 2524 ffs->eps_count = helper.eps_count; 2525 ffs->interfaces_count = helper.interfaces_count; 2526 } else { 2527 if (ffs->eps_count != helper.eps_count) { 2528 ret = -EINVAL; 2529 goto error; 2530 } 2531 if (ffs->interfaces_count != helper.interfaces_count) { 2532 ret = -EINVAL; 2533 goto error; 2534 } 2535 } 2536 data += ret; 2537 len -= ret; 2538 } 2539 if (os_descs_count) { 2540 ret = ffs_do_os_descs(os_descs_count, data, len, 2541 __ffs_data_do_os_desc, ffs); 2542 if (ret < 0) 2543 goto error; 2544 data += ret; 2545 len -= ret; 2546 } 2547 2548 if (raw_descs == data || len) { 2549 ret = -EINVAL; 2550 goto error; 2551 } 2552 2553 ffs->raw_descs_data = _data; 2554 ffs->raw_descs = raw_descs; 2555 ffs->raw_descs_length = data - raw_descs; 2556 ffs->fs_descs_count = counts[0]; 2557 ffs->hs_descs_count = counts[1]; 2558 ffs->ss_descs_count = counts[2]; 2559 ffs->ms_os_descs_count = os_descs_count; 2560 2561 return 0; 2562 2563 error: 2564 kfree(_data); 2565 return ret; 2566 } 2567 2568 static int __ffs_data_got_strings(struct ffs_data *ffs, 2569 char *const _data, size_t len) 2570 { 2571 u32 str_count, needed_count, lang_count; 2572 struct usb_gadget_strings **stringtabs, *t; 2573 const char *data = _data; 2574 struct usb_string *s; 2575 2576 ENTER(); 2577 2578 if (unlikely(len < 16 || 2579 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2580 get_unaligned_le32(data + 4) != len)) 2581 goto error; 2582 str_count = get_unaligned_le32(data + 8); 2583 lang_count = get_unaligned_le32(data + 12); 2584 2585 /* if one is zero the other must be zero */ 2586 if (unlikely(!str_count != !lang_count)) 2587 goto error; 2588 2589 /* Do we have at least as many strings as descriptors need? */ 2590 needed_count = ffs->strings_count; 2591 if (unlikely(str_count < needed_count)) 2592 goto error; 2593 2594 /* 2595 * If we don't need any strings just return and free all 2596 * memory. 2597 */ 2598 if (!needed_count) { 2599 kfree(_data); 2600 return 0; 2601 } 2602 2603 /* Allocate everything in one chunk so there's less maintenance. */ 2604 { 2605 unsigned i = 0; 2606 vla_group(d); 2607 vla_item(d, struct usb_gadget_strings *, stringtabs, 2608 lang_count + 1); 2609 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2610 vla_item(d, struct usb_string, strings, 2611 lang_count*(needed_count+1)); 2612 2613 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2614 2615 if (unlikely(!vlabuf)) { 2616 kfree(_data); 2617 return -ENOMEM; 2618 } 2619 2620 /* Initialize the VLA pointers */ 2621 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2622 t = vla_ptr(vlabuf, d, stringtab); 2623 i = lang_count; 2624 do { 2625 *stringtabs++ = t++; 2626 } while (--i); 2627 *stringtabs = NULL; 2628 2629 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2630 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2631 t = vla_ptr(vlabuf, d, stringtab); 2632 s = vla_ptr(vlabuf, d, strings); 2633 } 2634 2635 /* For each language */ 2636 data += 16; 2637 len -= 16; 2638 2639 do { /* lang_count > 0 so we can use do-while */ 2640 unsigned needed = needed_count; 2641 2642 if (unlikely(len < 3)) 2643 goto error_free; 2644 t->language = get_unaligned_le16(data); 2645 t->strings = s; 2646 ++t; 2647 2648 data += 2; 2649 len -= 2; 2650 2651 /* For each string */ 2652 do { /* str_count > 0 so we can use do-while */ 2653 size_t length = strnlen(data, len); 2654 2655 if (unlikely(length == len)) 2656 goto error_free; 2657 2658 /* 2659 * User may provide more strings then we need, 2660 * if that's the case we simply ignore the 2661 * rest 2662 */ 2663 if (likely(needed)) { 2664 /* 2665 * s->id will be set while adding 2666 * function to configuration so for 2667 * now just leave garbage here. 2668 */ 2669 s->s = data; 2670 --needed; 2671 ++s; 2672 } 2673 2674 data += length + 1; 2675 len -= length + 1; 2676 } while (--str_count); 2677 2678 s->id = 0; /* terminator */ 2679 s->s = NULL; 2680 ++s; 2681 2682 } while (--lang_count); 2683 2684 /* Some garbage left? */ 2685 if (unlikely(len)) 2686 goto error_free; 2687 2688 /* Done! */ 2689 ffs->stringtabs = stringtabs; 2690 ffs->raw_strings = _data; 2691 2692 return 0; 2693 2694 error_free: 2695 kfree(stringtabs); 2696 error: 2697 kfree(_data); 2698 return -EINVAL; 2699 } 2700 2701 2702 /* Events handling and management *******************************************/ 2703 2704 static void __ffs_event_add(struct ffs_data *ffs, 2705 enum usb_functionfs_event_type type) 2706 { 2707 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2708 int neg = 0; 2709 2710 /* 2711 * Abort any unhandled setup 2712 * 2713 * We do not need to worry about some cmpxchg() changing value 2714 * of ffs->setup_state without holding the lock because when 2715 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2716 * the source does nothing. 2717 */ 2718 if (ffs->setup_state == FFS_SETUP_PENDING) 2719 ffs->setup_state = FFS_SETUP_CANCELLED; 2720 2721 /* 2722 * Logic of this function guarantees that there are at most four pending 2723 * evens on ffs->ev.types queue. This is important because the queue 2724 * has space for four elements only and __ffs_ep0_read_events function 2725 * depends on that limit as well. If more event types are added, those 2726 * limits have to be revisited or guaranteed to still hold. 2727 */ 2728 switch (type) { 2729 case FUNCTIONFS_RESUME: 2730 rem_type2 = FUNCTIONFS_SUSPEND; 2731 fallthrough; 2732 case FUNCTIONFS_SUSPEND: 2733 case FUNCTIONFS_SETUP: 2734 rem_type1 = type; 2735 /* Discard all similar events */ 2736 break; 2737 2738 case FUNCTIONFS_BIND: 2739 case FUNCTIONFS_UNBIND: 2740 case FUNCTIONFS_DISABLE: 2741 case FUNCTIONFS_ENABLE: 2742 /* Discard everything other then power management. */ 2743 rem_type1 = FUNCTIONFS_SUSPEND; 2744 rem_type2 = FUNCTIONFS_RESUME; 2745 neg = 1; 2746 break; 2747 2748 default: 2749 WARN(1, "%d: unknown event, this should not happen\n", type); 2750 return; 2751 } 2752 2753 { 2754 u8 *ev = ffs->ev.types, *out = ev; 2755 unsigned n = ffs->ev.count; 2756 for (; n; --n, ++ev) 2757 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2758 *out++ = *ev; 2759 else 2760 pr_vdebug("purging event %d\n", *ev); 2761 ffs->ev.count = out - ffs->ev.types; 2762 } 2763 2764 pr_vdebug("adding event %d\n", type); 2765 ffs->ev.types[ffs->ev.count++] = type; 2766 wake_up_locked(&ffs->ev.waitq); 2767 if (ffs->ffs_eventfd) 2768 eventfd_signal(ffs->ffs_eventfd, 1); 2769 } 2770 2771 static void ffs_event_add(struct ffs_data *ffs, 2772 enum usb_functionfs_event_type type) 2773 { 2774 unsigned long flags; 2775 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2776 __ffs_event_add(ffs, type); 2777 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2778 } 2779 2780 /* Bind/unbind USB function hooks *******************************************/ 2781 2782 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2783 { 2784 int i; 2785 2786 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2787 if (ffs->eps_addrmap[i] == endpoint_address) 2788 return i; 2789 return -ENOENT; 2790 } 2791 2792 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2793 struct usb_descriptor_header *desc, 2794 void *priv) 2795 { 2796 struct usb_endpoint_descriptor *ds = (void *)desc; 2797 struct ffs_function *func = priv; 2798 struct ffs_ep *ffs_ep; 2799 unsigned ep_desc_id; 2800 int idx; 2801 static const char *speed_names[] = { "full", "high", "super" }; 2802 2803 if (type != FFS_DESCRIPTOR) 2804 return 0; 2805 2806 /* 2807 * If ss_descriptors is not NULL, we are reading super speed 2808 * descriptors; if hs_descriptors is not NULL, we are reading high 2809 * speed descriptors; otherwise, we are reading full speed 2810 * descriptors. 2811 */ 2812 if (func->function.ss_descriptors) { 2813 ep_desc_id = 2; 2814 func->function.ss_descriptors[(long)valuep] = desc; 2815 } else if (func->function.hs_descriptors) { 2816 ep_desc_id = 1; 2817 func->function.hs_descriptors[(long)valuep] = desc; 2818 } else { 2819 ep_desc_id = 0; 2820 func->function.fs_descriptors[(long)valuep] = desc; 2821 } 2822 2823 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2824 return 0; 2825 2826 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2827 if (idx < 0) 2828 return idx; 2829 2830 ffs_ep = func->eps + idx; 2831 2832 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2833 pr_err("two %sspeed descriptors for EP %d\n", 2834 speed_names[ep_desc_id], 2835 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2836 return -EINVAL; 2837 } 2838 ffs_ep->descs[ep_desc_id] = ds; 2839 2840 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2841 if (ffs_ep->ep) { 2842 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2843 if (!ds->wMaxPacketSize) 2844 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2845 } else { 2846 struct usb_request *req; 2847 struct usb_ep *ep; 2848 u8 bEndpointAddress; 2849 u16 wMaxPacketSize; 2850 2851 /* 2852 * We back up bEndpointAddress because autoconfig overwrites 2853 * it with physical endpoint address. 2854 */ 2855 bEndpointAddress = ds->bEndpointAddress; 2856 /* 2857 * We back up wMaxPacketSize because autoconfig treats 2858 * endpoint descriptors as if they were full speed. 2859 */ 2860 wMaxPacketSize = ds->wMaxPacketSize; 2861 pr_vdebug("autoconfig\n"); 2862 ep = usb_ep_autoconfig(func->gadget, ds); 2863 if (unlikely(!ep)) 2864 return -ENOTSUPP; 2865 ep->driver_data = func->eps + idx; 2866 2867 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2868 if (unlikely(!req)) 2869 return -ENOMEM; 2870 2871 ffs_ep->ep = ep; 2872 ffs_ep->req = req; 2873 func->eps_revmap[ds->bEndpointAddress & 2874 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2875 /* 2876 * If we use virtual address mapping, we restore 2877 * original bEndpointAddress value. 2878 */ 2879 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2880 ds->bEndpointAddress = bEndpointAddress; 2881 /* 2882 * Restore wMaxPacketSize which was potentially 2883 * overwritten by autoconfig. 2884 */ 2885 ds->wMaxPacketSize = wMaxPacketSize; 2886 } 2887 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2888 2889 return 0; 2890 } 2891 2892 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2893 struct usb_descriptor_header *desc, 2894 void *priv) 2895 { 2896 struct ffs_function *func = priv; 2897 unsigned idx; 2898 u8 newValue; 2899 2900 switch (type) { 2901 default: 2902 case FFS_DESCRIPTOR: 2903 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2904 return 0; 2905 2906 case FFS_INTERFACE: 2907 idx = *valuep; 2908 if (func->interfaces_nums[idx] < 0) { 2909 int id = usb_interface_id(func->conf, &func->function); 2910 if (unlikely(id < 0)) 2911 return id; 2912 func->interfaces_nums[idx] = id; 2913 } 2914 newValue = func->interfaces_nums[idx]; 2915 break; 2916 2917 case FFS_STRING: 2918 /* String' IDs are allocated when fsf_data is bound to cdev */ 2919 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2920 break; 2921 2922 case FFS_ENDPOINT: 2923 /* 2924 * USB_DT_ENDPOINT are handled in 2925 * __ffs_func_bind_do_descs(). 2926 */ 2927 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2928 return 0; 2929 2930 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2931 if (unlikely(!func->eps[idx].ep)) 2932 return -EINVAL; 2933 2934 { 2935 struct usb_endpoint_descriptor **descs; 2936 descs = func->eps[idx].descs; 2937 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2938 } 2939 break; 2940 } 2941 2942 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2943 *valuep = newValue; 2944 return 0; 2945 } 2946 2947 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2948 struct usb_os_desc_header *h, void *data, 2949 unsigned len, void *priv) 2950 { 2951 struct ffs_function *func = priv; 2952 u8 length = 0; 2953 2954 switch (type) { 2955 case FFS_OS_DESC_EXT_COMPAT: { 2956 struct usb_ext_compat_desc *desc = data; 2957 struct usb_os_desc_table *t; 2958 2959 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2960 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2961 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2962 ARRAY_SIZE(desc->CompatibleID) + 2963 ARRAY_SIZE(desc->SubCompatibleID)); 2964 length = sizeof(*desc); 2965 } 2966 break; 2967 case FFS_OS_DESC_EXT_PROP: { 2968 struct usb_ext_prop_desc *desc = data; 2969 struct usb_os_desc_table *t; 2970 struct usb_os_desc_ext_prop *ext_prop; 2971 char *ext_prop_name; 2972 char *ext_prop_data; 2973 2974 t = &func->function.os_desc_table[h->interface]; 2975 t->if_id = func->interfaces_nums[h->interface]; 2976 2977 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2978 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2979 2980 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2981 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2982 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2983 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2984 length = ext_prop->name_len + ext_prop->data_len + 14; 2985 2986 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2987 func->ffs->ms_os_descs_ext_prop_name_avail += 2988 ext_prop->name_len; 2989 2990 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2991 func->ffs->ms_os_descs_ext_prop_data_avail += 2992 ext_prop->data_len; 2993 memcpy(ext_prop_data, 2994 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2995 ext_prop->data_len); 2996 /* unicode data reported to the host as "WCHAR"s */ 2997 switch (ext_prop->type) { 2998 case USB_EXT_PROP_UNICODE: 2999 case USB_EXT_PROP_UNICODE_ENV: 3000 case USB_EXT_PROP_UNICODE_LINK: 3001 case USB_EXT_PROP_UNICODE_MULTI: 3002 ext_prop->data_len *= 2; 3003 break; 3004 } 3005 ext_prop->data = ext_prop_data; 3006 3007 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3008 ext_prop->name_len); 3009 /* property name reported to the host as "WCHAR"s */ 3010 ext_prop->name_len *= 2; 3011 ext_prop->name = ext_prop_name; 3012 3013 t->os_desc->ext_prop_len += 3014 ext_prop->name_len + ext_prop->data_len + 14; 3015 ++t->os_desc->ext_prop_count; 3016 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3017 } 3018 break; 3019 default: 3020 pr_vdebug("unknown descriptor: %d\n", type); 3021 } 3022 3023 return length; 3024 } 3025 3026 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3027 struct usb_configuration *c) 3028 { 3029 struct ffs_function *func = ffs_func_from_usb(f); 3030 struct f_fs_opts *ffs_opts = 3031 container_of(f->fi, struct f_fs_opts, func_inst); 3032 int ret; 3033 3034 ENTER(); 3035 3036 /* 3037 * Legacy gadget triggers binding in functionfs_ready_callback, 3038 * which already uses locking; taking the same lock here would 3039 * cause a deadlock. 3040 * 3041 * Configfs-enabled gadgets however do need ffs_dev_lock. 3042 */ 3043 if (!ffs_opts->no_configfs) 3044 ffs_dev_lock(); 3045 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3046 func->ffs = ffs_opts->dev->ffs_data; 3047 if (!ffs_opts->no_configfs) 3048 ffs_dev_unlock(); 3049 if (ret) 3050 return ERR_PTR(ret); 3051 3052 func->conf = c; 3053 func->gadget = c->cdev->gadget; 3054 3055 /* 3056 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3057 * configurations are bound in sequence with list_for_each_entry, 3058 * in each configuration its functions are bound in sequence 3059 * with list_for_each_entry, so we assume no race condition 3060 * with regard to ffs_opts->bound access 3061 */ 3062 if (!ffs_opts->refcnt) { 3063 ret = functionfs_bind(func->ffs, c->cdev); 3064 if (ret) 3065 return ERR_PTR(ret); 3066 } 3067 ffs_opts->refcnt++; 3068 func->function.strings = func->ffs->stringtabs; 3069 3070 return ffs_opts; 3071 } 3072 3073 static int _ffs_func_bind(struct usb_configuration *c, 3074 struct usb_function *f) 3075 { 3076 struct ffs_function *func = ffs_func_from_usb(f); 3077 struct ffs_data *ffs = func->ffs; 3078 3079 const int full = !!func->ffs->fs_descs_count; 3080 const int high = !!func->ffs->hs_descs_count; 3081 const int super = !!func->ffs->ss_descs_count; 3082 3083 int fs_len, hs_len, ss_len, ret, i; 3084 struct ffs_ep *eps_ptr; 3085 3086 /* Make it a single chunk, less management later on */ 3087 vla_group(d); 3088 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3089 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3090 full ? ffs->fs_descs_count + 1 : 0); 3091 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3092 high ? ffs->hs_descs_count + 1 : 0); 3093 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3094 super ? ffs->ss_descs_count + 1 : 0); 3095 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3096 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3097 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3098 vla_item_with_sz(d, char[16], ext_compat, 3099 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3100 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3101 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3102 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3103 ffs->ms_os_descs_ext_prop_count); 3104 vla_item_with_sz(d, char, ext_prop_name, 3105 ffs->ms_os_descs_ext_prop_name_len); 3106 vla_item_with_sz(d, char, ext_prop_data, 3107 ffs->ms_os_descs_ext_prop_data_len); 3108 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3109 char *vlabuf; 3110 3111 ENTER(); 3112 3113 /* Has descriptors only for speeds gadget does not support */ 3114 if (unlikely(!(full | high | super))) 3115 return -ENOTSUPP; 3116 3117 /* Allocate a single chunk, less management later on */ 3118 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3119 if (unlikely(!vlabuf)) 3120 return -ENOMEM; 3121 3122 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3123 ffs->ms_os_descs_ext_prop_name_avail = 3124 vla_ptr(vlabuf, d, ext_prop_name); 3125 ffs->ms_os_descs_ext_prop_data_avail = 3126 vla_ptr(vlabuf, d, ext_prop_data); 3127 3128 /* Copy descriptors */ 3129 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3130 ffs->raw_descs_length); 3131 3132 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3133 eps_ptr = vla_ptr(vlabuf, d, eps); 3134 for (i = 0; i < ffs->eps_count; i++) 3135 eps_ptr[i].num = -1; 3136 3137 /* Save pointers 3138 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3139 */ 3140 func->eps = vla_ptr(vlabuf, d, eps); 3141 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3142 3143 /* 3144 * Go through all the endpoint descriptors and allocate 3145 * endpoints first, so that later we can rewrite the endpoint 3146 * numbers without worrying that it may be described later on. 3147 */ 3148 if (likely(full)) { 3149 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3150 fs_len = ffs_do_descs(ffs->fs_descs_count, 3151 vla_ptr(vlabuf, d, raw_descs), 3152 d_raw_descs__sz, 3153 __ffs_func_bind_do_descs, func); 3154 if (unlikely(fs_len < 0)) { 3155 ret = fs_len; 3156 goto error; 3157 } 3158 } else { 3159 fs_len = 0; 3160 } 3161 3162 if (likely(high)) { 3163 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3164 hs_len = ffs_do_descs(ffs->hs_descs_count, 3165 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3166 d_raw_descs__sz - fs_len, 3167 __ffs_func_bind_do_descs, func); 3168 if (unlikely(hs_len < 0)) { 3169 ret = hs_len; 3170 goto error; 3171 } 3172 } else { 3173 hs_len = 0; 3174 } 3175 3176 if (likely(super)) { 3177 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3178 ss_len = ffs_do_descs(ffs->ss_descs_count, 3179 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3180 d_raw_descs__sz - fs_len - hs_len, 3181 __ffs_func_bind_do_descs, func); 3182 if (unlikely(ss_len < 0)) { 3183 ret = ss_len; 3184 goto error; 3185 } 3186 } else { 3187 ss_len = 0; 3188 } 3189 3190 /* 3191 * Now handle interface numbers allocation and interface and 3192 * endpoint numbers rewriting. We can do that in one go 3193 * now. 3194 */ 3195 ret = ffs_do_descs(ffs->fs_descs_count + 3196 (high ? ffs->hs_descs_count : 0) + 3197 (super ? ffs->ss_descs_count : 0), 3198 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3199 __ffs_func_bind_do_nums, func); 3200 if (unlikely(ret < 0)) 3201 goto error; 3202 3203 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3204 if (c->cdev->use_os_string) { 3205 for (i = 0; i < ffs->interfaces_count; ++i) { 3206 struct usb_os_desc *desc; 3207 3208 desc = func->function.os_desc_table[i].os_desc = 3209 vla_ptr(vlabuf, d, os_desc) + 3210 i * sizeof(struct usb_os_desc); 3211 desc->ext_compat_id = 3212 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3213 INIT_LIST_HEAD(&desc->ext_prop); 3214 } 3215 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3216 vla_ptr(vlabuf, d, raw_descs) + 3217 fs_len + hs_len + ss_len, 3218 d_raw_descs__sz - fs_len - hs_len - 3219 ss_len, 3220 __ffs_func_bind_do_os_desc, func); 3221 if (unlikely(ret < 0)) 3222 goto error; 3223 } 3224 func->function.os_desc_n = 3225 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3226 3227 /* And we're done */ 3228 ffs_event_add(ffs, FUNCTIONFS_BIND); 3229 return 0; 3230 3231 error: 3232 /* XXX Do we need to release all claimed endpoints here? */ 3233 return ret; 3234 } 3235 3236 static int ffs_func_bind(struct usb_configuration *c, 3237 struct usb_function *f) 3238 { 3239 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3240 struct ffs_function *func = ffs_func_from_usb(f); 3241 int ret; 3242 3243 if (IS_ERR(ffs_opts)) 3244 return PTR_ERR(ffs_opts); 3245 3246 ret = _ffs_func_bind(c, f); 3247 if (ret && !--ffs_opts->refcnt) 3248 functionfs_unbind(func->ffs); 3249 3250 return ret; 3251 } 3252 3253 3254 /* Other USB function hooks *************************************************/ 3255 3256 static void ffs_reset_work(struct work_struct *work) 3257 { 3258 struct ffs_data *ffs = container_of(work, 3259 struct ffs_data, reset_work); 3260 ffs_data_reset(ffs); 3261 } 3262 3263 static int ffs_func_set_alt(struct usb_function *f, 3264 unsigned interface, unsigned alt) 3265 { 3266 struct ffs_function *func = ffs_func_from_usb(f); 3267 struct ffs_data *ffs = func->ffs; 3268 int ret = 0, intf; 3269 3270 if (alt != (unsigned)-1) { 3271 intf = ffs_func_revmap_intf(func, interface); 3272 if (unlikely(intf < 0)) 3273 return intf; 3274 } 3275 3276 if (ffs->func) 3277 ffs_func_eps_disable(ffs->func); 3278 3279 if (ffs->state == FFS_DEACTIVATED) { 3280 ffs->state = FFS_CLOSING; 3281 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3282 schedule_work(&ffs->reset_work); 3283 return -ENODEV; 3284 } 3285 3286 if (ffs->state != FFS_ACTIVE) 3287 return -ENODEV; 3288 3289 if (alt == (unsigned)-1) { 3290 ffs->func = NULL; 3291 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3292 return 0; 3293 } 3294 3295 ffs->func = func; 3296 ret = ffs_func_eps_enable(func); 3297 if (likely(ret >= 0)) 3298 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3299 return ret; 3300 } 3301 3302 static void ffs_func_disable(struct usb_function *f) 3303 { 3304 ffs_func_set_alt(f, 0, (unsigned)-1); 3305 } 3306 3307 static int ffs_func_setup(struct usb_function *f, 3308 const struct usb_ctrlrequest *creq) 3309 { 3310 struct ffs_function *func = ffs_func_from_usb(f); 3311 struct ffs_data *ffs = func->ffs; 3312 unsigned long flags; 3313 int ret; 3314 3315 ENTER(); 3316 3317 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3318 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3319 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3320 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3321 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3322 3323 /* 3324 * Most requests directed to interface go through here 3325 * (notable exceptions are set/get interface) so we need to 3326 * handle them. All other either handled by composite or 3327 * passed to usb_configuration->setup() (if one is set). No 3328 * matter, we will handle requests directed to endpoint here 3329 * as well (as it's straightforward). Other request recipient 3330 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3331 * is being used. 3332 */ 3333 if (ffs->state != FFS_ACTIVE) 3334 return -ENODEV; 3335 3336 switch (creq->bRequestType & USB_RECIP_MASK) { 3337 case USB_RECIP_INTERFACE: 3338 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3339 if (unlikely(ret < 0)) 3340 return ret; 3341 break; 3342 3343 case USB_RECIP_ENDPOINT: 3344 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3345 if (unlikely(ret < 0)) 3346 return ret; 3347 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3348 ret = func->ffs->eps_addrmap[ret]; 3349 break; 3350 3351 default: 3352 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3353 ret = le16_to_cpu(creq->wIndex); 3354 else 3355 return -EOPNOTSUPP; 3356 } 3357 3358 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3359 ffs->ev.setup = *creq; 3360 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3361 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3362 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3363 3364 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3365 } 3366 3367 static bool ffs_func_req_match(struct usb_function *f, 3368 const struct usb_ctrlrequest *creq, 3369 bool config0) 3370 { 3371 struct ffs_function *func = ffs_func_from_usb(f); 3372 3373 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3374 return false; 3375 3376 switch (creq->bRequestType & USB_RECIP_MASK) { 3377 case USB_RECIP_INTERFACE: 3378 return (ffs_func_revmap_intf(func, 3379 le16_to_cpu(creq->wIndex)) >= 0); 3380 case USB_RECIP_ENDPOINT: 3381 return (ffs_func_revmap_ep(func, 3382 le16_to_cpu(creq->wIndex)) >= 0); 3383 default: 3384 return (bool) (func->ffs->user_flags & 3385 FUNCTIONFS_ALL_CTRL_RECIP); 3386 } 3387 } 3388 3389 static void ffs_func_suspend(struct usb_function *f) 3390 { 3391 ENTER(); 3392 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3393 } 3394 3395 static void ffs_func_resume(struct usb_function *f) 3396 { 3397 ENTER(); 3398 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3399 } 3400 3401 3402 /* Endpoint and interface numbers reverse mapping ***************************/ 3403 3404 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3405 { 3406 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3407 return num ? num : -EDOM; 3408 } 3409 3410 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3411 { 3412 short *nums = func->interfaces_nums; 3413 unsigned count = func->ffs->interfaces_count; 3414 3415 for (; count; --count, ++nums) { 3416 if (*nums >= 0 && *nums == intf) 3417 return nums - func->interfaces_nums; 3418 } 3419 3420 return -EDOM; 3421 } 3422 3423 3424 /* Devices management *******************************************************/ 3425 3426 static LIST_HEAD(ffs_devices); 3427 3428 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3429 { 3430 struct ffs_dev *dev; 3431 3432 if (!name) 3433 return NULL; 3434 3435 list_for_each_entry(dev, &ffs_devices, entry) { 3436 if (strcmp(dev->name, name) == 0) 3437 return dev; 3438 } 3439 3440 return NULL; 3441 } 3442 3443 /* 3444 * ffs_lock must be taken by the caller of this function 3445 */ 3446 static struct ffs_dev *_ffs_get_single_dev(void) 3447 { 3448 struct ffs_dev *dev; 3449 3450 if (list_is_singular(&ffs_devices)) { 3451 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3452 if (dev->single) 3453 return dev; 3454 } 3455 3456 return NULL; 3457 } 3458 3459 /* 3460 * ffs_lock must be taken by the caller of this function 3461 */ 3462 static struct ffs_dev *_ffs_find_dev(const char *name) 3463 { 3464 struct ffs_dev *dev; 3465 3466 dev = _ffs_get_single_dev(); 3467 if (dev) 3468 return dev; 3469 3470 return _ffs_do_find_dev(name); 3471 } 3472 3473 /* Configfs support *********************************************************/ 3474 3475 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3476 { 3477 return container_of(to_config_group(item), struct f_fs_opts, 3478 func_inst.group); 3479 } 3480 3481 static void ffs_attr_release(struct config_item *item) 3482 { 3483 struct f_fs_opts *opts = to_ffs_opts(item); 3484 3485 usb_put_function_instance(&opts->func_inst); 3486 } 3487 3488 static struct configfs_item_operations ffs_item_ops = { 3489 .release = ffs_attr_release, 3490 }; 3491 3492 static const struct config_item_type ffs_func_type = { 3493 .ct_item_ops = &ffs_item_ops, 3494 .ct_owner = THIS_MODULE, 3495 }; 3496 3497 3498 /* Function registration interface ******************************************/ 3499 3500 static void ffs_free_inst(struct usb_function_instance *f) 3501 { 3502 struct f_fs_opts *opts; 3503 3504 opts = to_f_fs_opts(f); 3505 ffs_dev_lock(); 3506 _ffs_free_dev(opts->dev); 3507 ffs_dev_unlock(); 3508 kfree(opts); 3509 } 3510 3511 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3512 { 3513 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3514 return -ENAMETOOLONG; 3515 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3516 } 3517 3518 static struct usb_function_instance *ffs_alloc_inst(void) 3519 { 3520 struct f_fs_opts *opts; 3521 struct ffs_dev *dev; 3522 3523 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3524 if (!opts) 3525 return ERR_PTR(-ENOMEM); 3526 3527 opts->func_inst.set_inst_name = ffs_set_inst_name; 3528 opts->func_inst.free_func_inst = ffs_free_inst; 3529 ffs_dev_lock(); 3530 dev = _ffs_alloc_dev(); 3531 ffs_dev_unlock(); 3532 if (IS_ERR(dev)) { 3533 kfree(opts); 3534 return ERR_CAST(dev); 3535 } 3536 opts->dev = dev; 3537 dev->opts = opts; 3538 3539 config_group_init_type_name(&opts->func_inst.group, "", 3540 &ffs_func_type); 3541 return &opts->func_inst; 3542 } 3543 3544 static void ffs_free(struct usb_function *f) 3545 { 3546 kfree(ffs_func_from_usb(f)); 3547 } 3548 3549 static void ffs_func_unbind(struct usb_configuration *c, 3550 struct usb_function *f) 3551 { 3552 struct ffs_function *func = ffs_func_from_usb(f); 3553 struct ffs_data *ffs = func->ffs; 3554 struct f_fs_opts *opts = 3555 container_of(f->fi, struct f_fs_opts, func_inst); 3556 struct ffs_ep *ep = func->eps; 3557 unsigned count = ffs->eps_count; 3558 unsigned long flags; 3559 3560 ENTER(); 3561 if (ffs->func == func) { 3562 ffs_func_eps_disable(func); 3563 ffs->func = NULL; 3564 } 3565 3566 if (!--opts->refcnt) 3567 functionfs_unbind(ffs); 3568 3569 /* cleanup after autoconfig */ 3570 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3571 while (count--) { 3572 if (ep->ep && ep->req) 3573 usb_ep_free_request(ep->ep, ep->req); 3574 ep->req = NULL; 3575 ++ep; 3576 } 3577 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3578 kfree(func->eps); 3579 func->eps = NULL; 3580 /* 3581 * eps, descriptors and interfaces_nums are allocated in the 3582 * same chunk so only one free is required. 3583 */ 3584 func->function.fs_descriptors = NULL; 3585 func->function.hs_descriptors = NULL; 3586 func->function.ss_descriptors = NULL; 3587 func->interfaces_nums = NULL; 3588 3589 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3590 } 3591 3592 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3593 { 3594 struct ffs_function *func; 3595 3596 ENTER(); 3597 3598 func = kzalloc(sizeof(*func), GFP_KERNEL); 3599 if (unlikely(!func)) 3600 return ERR_PTR(-ENOMEM); 3601 3602 func->function.name = "Function FS Gadget"; 3603 3604 func->function.bind = ffs_func_bind; 3605 func->function.unbind = ffs_func_unbind; 3606 func->function.set_alt = ffs_func_set_alt; 3607 func->function.disable = ffs_func_disable; 3608 func->function.setup = ffs_func_setup; 3609 func->function.req_match = ffs_func_req_match; 3610 func->function.suspend = ffs_func_suspend; 3611 func->function.resume = ffs_func_resume; 3612 func->function.free_func = ffs_free; 3613 3614 return &func->function; 3615 } 3616 3617 /* 3618 * ffs_lock must be taken by the caller of this function 3619 */ 3620 static struct ffs_dev *_ffs_alloc_dev(void) 3621 { 3622 struct ffs_dev *dev; 3623 int ret; 3624 3625 if (_ffs_get_single_dev()) 3626 return ERR_PTR(-EBUSY); 3627 3628 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3629 if (!dev) 3630 return ERR_PTR(-ENOMEM); 3631 3632 if (list_empty(&ffs_devices)) { 3633 ret = functionfs_init(); 3634 if (ret) { 3635 kfree(dev); 3636 return ERR_PTR(ret); 3637 } 3638 } 3639 3640 list_add(&dev->entry, &ffs_devices); 3641 3642 return dev; 3643 } 3644 3645 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3646 { 3647 struct ffs_dev *existing; 3648 int ret = 0; 3649 3650 ffs_dev_lock(); 3651 3652 existing = _ffs_do_find_dev(name); 3653 if (!existing) 3654 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3655 else if (existing != dev) 3656 ret = -EBUSY; 3657 3658 ffs_dev_unlock(); 3659 3660 return ret; 3661 } 3662 EXPORT_SYMBOL_GPL(ffs_name_dev); 3663 3664 int ffs_single_dev(struct ffs_dev *dev) 3665 { 3666 int ret; 3667 3668 ret = 0; 3669 ffs_dev_lock(); 3670 3671 if (!list_is_singular(&ffs_devices)) 3672 ret = -EBUSY; 3673 else 3674 dev->single = true; 3675 3676 ffs_dev_unlock(); 3677 return ret; 3678 } 3679 EXPORT_SYMBOL_GPL(ffs_single_dev); 3680 3681 /* 3682 * ffs_lock must be taken by the caller of this function 3683 */ 3684 static void _ffs_free_dev(struct ffs_dev *dev) 3685 { 3686 list_del(&dev->entry); 3687 3688 /* Clear the private_data pointer to stop incorrect dev access */ 3689 if (dev->ffs_data) 3690 dev->ffs_data->private_data = NULL; 3691 3692 kfree(dev); 3693 if (list_empty(&ffs_devices)) 3694 functionfs_cleanup(); 3695 } 3696 3697 static void *ffs_acquire_dev(const char *dev_name) 3698 { 3699 struct ffs_dev *ffs_dev; 3700 3701 ENTER(); 3702 ffs_dev_lock(); 3703 3704 ffs_dev = _ffs_find_dev(dev_name); 3705 if (!ffs_dev) 3706 ffs_dev = ERR_PTR(-ENOENT); 3707 else if (ffs_dev->mounted) 3708 ffs_dev = ERR_PTR(-EBUSY); 3709 else if (ffs_dev->ffs_acquire_dev_callback && 3710 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3711 ffs_dev = ERR_PTR(-ENOENT); 3712 else 3713 ffs_dev->mounted = true; 3714 3715 ffs_dev_unlock(); 3716 return ffs_dev; 3717 } 3718 3719 static void ffs_release_dev(struct ffs_data *ffs_data) 3720 { 3721 struct ffs_dev *ffs_dev; 3722 3723 ENTER(); 3724 ffs_dev_lock(); 3725 3726 ffs_dev = ffs_data->private_data; 3727 if (ffs_dev) { 3728 ffs_dev->mounted = false; 3729 3730 if (ffs_dev->ffs_release_dev_callback) 3731 ffs_dev->ffs_release_dev_callback(ffs_dev); 3732 } 3733 3734 ffs_dev_unlock(); 3735 } 3736 3737 static int ffs_ready(struct ffs_data *ffs) 3738 { 3739 struct ffs_dev *ffs_obj; 3740 int ret = 0; 3741 3742 ENTER(); 3743 ffs_dev_lock(); 3744 3745 ffs_obj = ffs->private_data; 3746 if (!ffs_obj) { 3747 ret = -EINVAL; 3748 goto done; 3749 } 3750 if (WARN_ON(ffs_obj->desc_ready)) { 3751 ret = -EBUSY; 3752 goto done; 3753 } 3754 3755 ffs_obj->desc_ready = true; 3756 ffs_obj->ffs_data = ffs; 3757 3758 if (ffs_obj->ffs_ready_callback) { 3759 ret = ffs_obj->ffs_ready_callback(ffs); 3760 if (ret) 3761 goto done; 3762 } 3763 3764 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3765 done: 3766 ffs_dev_unlock(); 3767 return ret; 3768 } 3769 3770 static void ffs_closed(struct ffs_data *ffs) 3771 { 3772 struct ffs_dev *ffs_obj; 3773 struct f_fs_opts *opts; 3774 struct config_item *ci; 3775 3776 ENTER(); 3777 ffs_dev_lock(); 3778 3779 ffs_obj = ffs->private_data; 3780 if (!ffs_obj) 3781 goto done; 3782 3783 ffs_obj->desc_ready = false; 3784 ffs_obj->ffs_data = NULL; 3785 3786 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3787 ffs_obj->ffs_closed_callback) 3788 ffs_obj->ffs_closed_callback(ffs); 3789 3790 if (ffs_obj->opts) 3791 opts = ffs_obj->opts; 3792 else 3793 goto done; 3794 3795 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3796 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3797 goto done; 3798 3799 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3800 ffs_dev_unlock(); 3801 3802 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3803 unregister_gadget_item(ci); 3804 return; 3805 done: 3806 ffs_dev_unlock(); 3807 } 3808 3809 /* Misc helper functions ****************************************************/ 3810 3811 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3812 { 3813 return nonblock 3814 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3815 : mutex_lock_interruptible(mutex); 3816 } 3817 3818 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3819 { 3820 char *data; 3821 3822 if (unlikely(!len)) 3823 return NULL; 3824 3825 data = kmalloc(len, GFP_KERNEL); 3826 if (unlikely(!data)) 3827 return ERR_PTR(-ENOMEM); 3828 3829 if (unlikely(copy_from_user(data, buf, len))) { 3830 kfree(data); 3831 return ERR_PTR(-EFAULT); 3832 } 3833 3834 pr_vdebug("Buffer from user space:\n"); 3835 ffs_dump_mem("", data, len); 3836 3837 return data; 3838 } 3839 3840 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3841 MODULE_LICENSE("GPL"); 3842 MODULE_AUTHOR("Michal Nazarewicz"); 3843