xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 07d9a767)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[16];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 
126 	int				status;	/* P: epfile->mutex */
127 };
128 
129 struct ffs_epfile {
130 	/* Protects ep->ep and ep->req. */
131 	struct mutex			mutex;
132 
133 	struct ffs_data			*ffs;
134 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
135 
136 	struct dentry			*dentry;
137 
138 	/*
139 	 * Buffer for holding data from partial reads which may happen since
140 	 * we’re rounding user read requests to a multiple of a max packet size.
141 	 *
142 	 * The pointer is initialised with NULL value and may be set by
143 	 * __ffs_epfile_read_data function to point to a temporary buffer.
144 	 *
145 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 	 * data from said buffer and eventually free it.  Importantly, while the
147 	 * function is using the buffer, it sets the pointer to NULL.  This is
148 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 	 * can never run concurrently (they are synchronised by epfile->mutex)
150 	 * so the latter will not assign a new value to the pointer.
151 	 *
152 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
154 	 * value is crux of the synchronisation between ffs_func_eps_disable and
155 	 * __ffs_epfile_read_data.
156 	 *
157 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 	 * pointer back to its old value (as described above), but seeing as the
159 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 	 * the buffer.
161 	 *
162 	 * == State transitions ==
163 	 *
164 	 * • ptr == NULL:  (initial state)
165 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 	 *   ◦ __ffs_epfile_read_buffered:    nop
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == DROP:
170 	 *   ◦ __ffs_epfile_read_buffer_free: nop
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
172 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
174 	 * • ptr == buf:
175 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
177 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
178 	 *                                    is always called first
179 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
180 	 * • ptr == NULL and reading:
181 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
183 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
184 	 *   ◦ reading finishes and …
185 	 *     … all data read:               free buf, go to ptr == NULL
186 	 *     … otherwise:                   go to ptr == buf and reading
187 	 * • ptr == DROP and reading:
188 	 *   ◦ __ffs_epfile_read_buffer_free: nop
189 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
190 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
191 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
192 	 */
193 	struct ffs_buffer		*read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195 
196 	char				name[5];
197 
198 	unsigned char			in;	/* P: ffs->eps_lock */
199 	unsigned char			isoc;	/* P: ffs->eps_lock */
200 
201 	unsigned char			_pad;
202 };
203 
204 struct ffs_buffer {
205 	size_t length;
206 	char *data;
207 	char storage[];
208 };
209 
210 /*  ffs_io_data structure ***************************************************/
211 
212 struct ffs_io_data {
213 	bool aio;
214 	bool read;
215 
216 	struct kiocb *kiocb;
217 	struct iov_iter data;
218 	const void *to_free;
219 	char *buf;
220 
221 	struct mm_struct *mm;
222 	struct work_struct work;
223 
224 	struct usb_ep *ep;
225 	struct usb_request *req;
226 	struct sg_table sgt;
227 	bool use_sg;
228 
229 	struct ffs_data *ffs;
230 };
231 
232 struct ffs_desc_helper {
233 	struct ffs_data *ffs;
234 	unsigned interfaces_count;
235 	unsigned eps_count;
236 };
237 
238 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240 
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 		   const struct file_operations *fops);
244 
245 /* Devices management *******************************************************/
246 
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249 
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static void *ffs_acquire_dev(const char *dev_name);
254 static void ffs_release_dev(struct ffs_data *ffs_data);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257 
258 /* Misc helper functions ****************************************************/
259 
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 	__attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 	__attribute__((warn_unused_result, nonnull));
264 
265 
266 /* Control file aka ep0 *****************************************************/
267 
268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 	struct ffs_data *ffs = req->context;
271 
272 	complete(&ffs->ep0req_completion);
273 }
274 
275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 	__releases(&ffs->ev.waitq.lock)
277 {
278 	struct usb_request *req = ffs->ep0req;
279 	int ret;
280 
281 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
282 
283 	spin_unlock_irq(&ffs->ev.waitq.lock);
284 
285 	req->buf      = data;
286 	req->length   = len;
287 
288 	/*
289 	 * UDC layer requires to provide a buffer even for ZLP, but should
290 	 * not use it at all. Let's provide some poisoned pointer to catch
291 	 * possible bug in the driver.
292 	 */
293 	if (req->buf == NULL)
294 		req->buf = (void *)0xDEADBABE;
295 
296 	reinit_completion(&ffs->ep0req_completion);
297 
298 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
299 	if (unlikely(ret < 0))
300 		return ret;
301 
302 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
303 	if (unlikely(ret)) {
304 		usb_ep_dequeue(ffs->gadget->ep0, req);
305 		return -EINTR;
306 	}
307 
308 	ffs->setup_state = FFS_NO_SETUP;
309 	return req->status ? req->status : req->actual;
310 }
311 
312 static int __ffs_ep0_stall(struct ffs_data *ffs)
313 {
314 	if (ffs->ev.can_stall) {
315 		pr_vdebug("ep0 stall\n");
316 		usb_ep_set_halt(ffs->gadget->ep0);
317 		ffs->setup_state = FFS_NO_SETUP;
318 		return -EL2HLT;
319 	} else {
320 		pr_debug("bogus ep0 stall!\n");
321 		return -ESRCH;
322 	}
323 }
324 
325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
326 			     size_t len, loff_t *ptr)
327 {
328 	struct ffs_data *ffs = file->private_data;
329 	ssize_t ret;
330 	char *data;
331 
332 	ENTER();
333 
334 	/* Fast check if setup was canceled */
335 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336 		return -EIDRM;
337 
338 	/* Acquire mutex */
339 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
340 	if (unlikely(ret < 0))
341 		return ret;
342 
343 	/* Check state */
344 	switch (ffs->state) {
345 	case FFS_READ_DESCRIPTORS:
346 	case FFS_READ_STRINGS:
347 		/* Copy data */
348 		if (unlikely(len < 16)) {
349 			ret = -EINVAL;
350 			break;
351 		}
352 
353 		data = ffs_prepare_buffer(buf, len);
354 		if (IS_ERR(data)) {
355 			ret = PTR_ERR(data);
356 			break;
357 		}
358 
359 		/* Handle data */
360 		if (ffs->state == FFS_READ_DESCRIPTORS) {
361 			pr_info("read descriptors\n");
362 			ret = __ffs_data_got_descs(ffs, data, len);
363 			if (unlikely(ret < 0))
364 				break;
365 
366 			ffs->state = FFS_READ_STRINGS;
367 			ret = len;
368 		} else {
369 			pr_info("read strings\n");
370 			ret = __ffs_data_got_strings(ffs, data, len);
371 			if (unlikely(ret < 0))
372 				break;
373 
374 			ret = ffs_epfiles_create(ffs);
375 			if (unlikely(ret)) {
376 				ffs->state = FFS_CLOSING;
377 				break;
378 			}
379 
380 			ffs->state = FFS_ACTIVE;
381 			mutex_unlock(&ffs->mutex);
382 
383 			ret = ffs_ready(ffs);
384 			if (unlikely(ret < 0)) {
385 				ffs->state = FFS_CLOSING;
386 				return ret;
387 			}
388 
389 			return len;
390 		}
391 		break;
392 
393 	case FFS_ACTIVE:
394 		data = NULL;
395 		/*
396 		 * We're called from user space, we can use _irq
397 		 * rather then _irqsave
398 		 */
399 		spin_lock_irq(&ffs->ev.waitq.lock);
400 		switch (ffs_setup_state_clear_cancelled(ffs)) {
401 		case FFS_SETUP_CANCELLED:
402 			ret = -EIDRM;
403 			goto done_spin;
404 
405 		case FFS_NO_SETUP:
406 			ret = -ESRCH;
407 			goto done_spin;
408 
409 		case FFS_SETUP_PENDING:
410 			break;
411 		}
412 
413 		/* FFS_SETUP_PENDING */
414 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
415 			spin_unlock_irq(&ffs->ev.waitq.lock);
416 			ret = __ffs_ep0_stall(ffs);
417 			break;
418 		}
419 
420 		/* FFS_SETUP_PENDING and not stall */
421 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
422 
423 		spin_unlock_irq(&ffs->ev.waitq.lock);
424 
425 		data = ffs_prepare_buffer(buf, len);
426 		if (IS_ERR(data)) {
427 			ret = PTR_ERR(data);
428 			break;
429 		}
430 
431 		spin_lock_irq(&ffs->ev.waitq.lock);
432 
433 		/*
434 		 * We are guaranteed to be still in FFS_ACTIVE state
435 		 * but the state of setup could have changed from
436 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437 		 * to check for that.  If that happened we copied data
438 		 * from user space in vain but it's unlikely.
439 		 *
440 		 * For sure we are not in FFS_NO_SETUP since this is
441 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
442 		 * transition can be performed and it's protected by
443 		 * mutex.
444 		 */
445 		if (ffs_setup_state_clear_cancelled(ffs) ==
446 		    FFS_SETUP_CANCELLED) {
447 			ret = -EIDRM;
448 done_spin:
449 			spin_unlock_irq(&ffs->ev.waitq.lock);
450 		} else {
451 			/* unlocks spinlock */
452 			ret = __ffs_ep0_queue_wait(ffs, data, len);
453 		}
454 		kfree(data);
455 		break;
456 
457 	default:
458 		ret = -EBADFD;
459 		break;
460 	}
461 
462 	mutex_unlock(&ffs->mutex);
463 	return ret;
464 }
465 
466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
468 				     size_t n)
469 	__releases(&ffs->ev.waitq.lock)
470 {
471 	/*
472 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
473 	 * size of ffs->ev.types array (which is four) so that's how much space
474 	 * we reserve.
475 	 */
476 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
477 	const size_t size = n * sizeof *events;
478 	unsigned i = 0;
479 
480 	memset(events, 0, size);
481 
482 	do {
483 		events[i].type = ffs->ev.types[i];
484 		if (events[i].type == FUNCTIONFS_SETUP) {
485 			events[i].u.setup = ffs->ev.setup;
486 			ffs->setup_state = FFS_SETUP_PENDING;
487 		}
488 	} while (++i < n);
489 
490 	ffs->ev.count -= n;
491 	if (ffs->ev.count)
492 		memmove(ffs->ev.types, ffs->ev.types + n,
493 			ffs->ev.count * sizeof *ffs->ev.types);
494 
495 	spin_unlock_irq(&ffs->ev.waitq.lock);
496 	mutex_unlock(&ffs->mutex);
497 
498 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
499 }
500 
501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
502 			    size_t len, loff_t *ptr)
503 {
504 	struct ffs_data *ffs = file->private_data;
505 	char *data = NULL;
506 	size_t n;
507 	int ret;
508 
509 	ENTER();
510 
511 	/* Fast check if setup was canceled */
512 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513 		return -EIDRM;
514 
515 	/* Acquire mutex */
516 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
517 	if (unlikely(ret < 0))
518 		return ret;
519 
520 	/* Check state */
521 	if (ffs->state != FFS_ACTIVE) {
522 		ret = -EBADFD;
523 		goto done_mutex;
524 	}
525 
526 	/*
527 	 * We're called from user space, we can use _irq rather then
528 	 * _irqsave
529 	 */
530 	spin_lock_irq(&ffs->ev.waitq.lock);
531 
532 	switch (ffs_setup_state_clear_cancelled(ffs)) {
533 	case FFS_SETUP_CANCELLED:
534 		ret = -EIDRM;
535 		break;
536 
537 	case FFS_NO_SETUP:
538 		n = len / sizeof(struct usb_functionfs_event);
539 		if (unlikely(!n)) {
540 			ret = -EINVAL;
541 			break;
542 		}
543 
544 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
545 			ret = -EAGAIN;
546 			break;
547 		}
548 
549 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
550 							ffs->ev.count)) {
551 			ret = -EINTR;
552 			break;
553 		}
554 
555 		/* unlocks spinlock */
556 		return __ffs_ep0_read_events(ffs, buf,
557 					     min(n, (size_t)ffs->ev.count));
558 
559 	case FFS_SETUP_PENDING:
560 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
561 			spin_unlock_irq(&ffs->ev.waitq.lock);
562 			ret = __ffs_ep0_stall(ffs);
563 			goto done_mutex;
564 		}
565 
566 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
567 
568 		spin_unlock_irq(&ffs->ev.waitq.lock);
569 
570 		if (likely(len)) {
571 			data = kmalloc(len, GFP_KERNEL);
572 			if (unlikely(!data)) {
573 				ret = -ENOMEM;
574 				goto done_mutex;
575 			}
576 		}
577 
578 		spin_lock_irq(&ffs->ev.waitq.lock);
579 
580 		/* See ffs_ep0_write() */
581 		if (ffs_setup_state_clear_cancelled(ffs) ==
582 		    FFS_SETUP_CANCELLED) {
583 			ret = -EIDRM;
584 			break;
585 		}
586 
587 		/* unlocks spinlock */
588 		ret = __ffs_ep0_queue_wait(ffs, data, len);
589 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
590 			ret = -EFAULT;
591 		goto done_mutex;
592 
593 	default:
594 		ret = -EBADFD;
595 		break;
596 	}
597 
598 	spin_unlock_irq(&ffs->ev.waitq.lock);
599 done_mutex:
600 	mutex_unlock(&ffs->mutex);
601 	kfree(data);
602 	return ret;
603 }
604 
605 static int ffs_ep0_open(struct inode *inode, struct file *file)
606 {
607 	struct ffs_data *ffs = inode->i_private;
608 
609 	ENTER();
610 
611 	if (unlikely(ffs->state == FFS_CLOSING))
612 		return -EBUSY;
613 
614 	file->private_data = ffs;
615 	ffs_data_opened(ffs);
616 
617 	return 0;
618 }
619 
620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622 	struct ffs_data *ffs = file->private_data;
623 
624 	ENTER();
625 
626 	ffs_data_closed(ffs);
627 
628 	return 0;
629 }
630 
631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
632 {
633 	struct ffs_data *ffs = file->private_data;
634 	struct usb_gadget *gadget = ffs->gadget;
635 	long ret;
636 
637 	ENTER();
638 
639 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
640 		struct ffs_function *func = ffs->func;
641 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642 	} else if (gadget && gadget->ops->ioctl) {
643 		ret = gadget->ops->ioctl(gadget, code, value);
644 	} else {
645 		ret = -ENOTTY;
646 	}
647 
648 	return ret;
649 }
650 
651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 {
653 	struct ffs_data *ffs = file->private_data;
654 	__poll_t mask = EPOLLWRNORM;
655 	int ret;
656 
657 	poll_wait(file, &ffs->ev.waitq, wait);
658 
659 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
660 	if (unlikely(ret < 0))
661 		return mask;
662 
663 	switch (ffs->state) {
664 	case FFS_READ_DESCRIPTORS:
665 	case FFS_READ_STRINGS:
666 		mask |= EPOLLOUT;
667 		break;
668 
669 	case FFS_ACTIVE:
670 		switch (ffs->setup_state) {
671 		case FFS_NO_SETUP:
672 			if (ffs->ev.count)
673 				mask |= EPOLLIN;
674 			break;
675 
676 		case FFS_SETUP_PENDING:
677 		case FFS_SETUP_CANCELLED:
678 			mask |= (EPOLLIN | EPOLLOUT);
679 			break;
680 		}
681 	case FFS_CLOSING:
682 		break;
683 	case FFS_DEACTIVATED:
684 		break;
685 	}
686 
687 	mutex_unlock(&ffs->mutex);
688 
689 	return mask;
690 }
691 
692 static const struct file_operations ffs_ep0_operations = {
693 	.llseek =	no_llseek,
694 
695 	.open =		ffs_ep0_open,
696 	.write =	ffs_ep0_write,
697 	.read =		ffs_ep0_read,
698 	.release =	ffs_ep0_release,
699 	.unlocked_ioctl =	ffs_ep0_ioctl,
700 	.poll =		ffs_ep0_poll,
701 };
702 
703 
704 /* "Normal" endpoints operations ********************************************/
705 
706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
707 {
708 	ENTER();
709 	if (likely(req->context)) {
710 		struct ffs_ep *ep = _ep->driver_data;
711 		ep->status = req->status ? req->status : req->actual;
712 		complete(req->context);
713 	}
714 }
715 
716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
717 {
718 	ssize_t ret = copy_to_iter(data, data_len, iter);
719 	if (likely(ret == data_len))
720 		return ret;
721 
722 	if (unlikely(iov_iter_count(iter)))
723 		return -EFAULT;
724 
725 	/*
726 	 * Dear user space developer!
727 	 *
728 	 * TL;DR: To stop getting below error message in your kernel log, change
729 	 * user space code using functionfs to align read buffers to a max
730 	 * packet size.
731 	 *
732 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
733 	 * packet size.  When unaligned buffer is passed to functionfs, it
734 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
735 	 *
736 	 * Unfortunately, this means that host may send more data than was
737 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
738 	 * that excess data so it simply drops it.
739 	 *
740 	 * Was the buffer aligned in the first place, no such problem would
741 	 * happen.
742 	 *
743 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
744 	 * by splitting a request into multiple parts.  This splitting may still
745 	 * be a problem though so it’s likely best to align the buffer
746 	 * regardless of it being AIO or not..
747 	 *
748 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
749 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
750 	 * affected.
751 	 */
752 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
753 	       "Align read buffer size to max packet size to avoid the problem.\n",
754 	       data_len, ret);
755 
756 	return ret;
757 }
758 
759 /*
760  * allocate a virtually contiguous buffer and create a scatterlist describing it
761  * @sg_table	- pointer to a place to be filled with sg_table contents
762  * @size	- required buffer size
763  */
764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
765 {
766 	struct page **pages;
767 	void *vaddr, *ptr;
768 	unsigned int n_pages;
769 	int i;
770 
771 	vaddr = vmalloc(sz);
772 	if (!vaddr)
773 		return NULL;
774 
775 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
776 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
777 	if (!pages) {
778 		vfree(vaddr);
779 
780 		return NULL;
781 	}
782 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
783 		pages[i] = vmalloc_to_page(ptr);
784 
785 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
786 		kvfree(pages);
787 		vfree(vaddr);
788 
789 		return NULL;
790 	}
791 	kvfree(pages);
792 
793 	return vaddr;
794 }
795 
796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
797 	size_t data_len)
798 {
799 	if (io_data->use_sg)
800 		return ffs_build_sg_list(&io_data->sgt, data_len);
801 
802 	return kmalloc(data_len, GFP_KERNEL);
803 }
804 
805 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
806 {
807 	if (!io_data->buf)
808 		return;
809 
810 	if (io_data->use_sg) {
811 		sg_free_table(&io_data->sgt);
812 		vfree(io_data->buf);
813 	} else {
814 		kfree(io_data->buf);
815 	}
816 }
817 
818 static void ffs_user_copy_worker(struct work_struct *work)
819 {
820 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
821 						   work);
822 	int ret = io_data->req->status ? io_data->req->status :
823 					 io_data->req->actual;
824 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
825 
826 	if (io_data->read && ret > 0) {
827 		kthread_use_mm(io_data->mm);
828 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
829 		kthread_unuse_mm(io_data->mm);
830 	}
831 
832 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
833 
834 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
835 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
836 
837 	usb_ep_free_request(io_data->ep, io_data->req);
838 
839 	if (io_data->read)
840 		kfree(io_data->to_free);
841 	ffs_free_buffer(io_data);
842 	kfree(io_data);
843 }
844 
845 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
846 					 struct usb_request *req)
847 {
848 	struct ffs_io_data *io_data = req->context;
849 	struct ffs_data *ffs = io_data->ffs;
850 
851 	ENTER();
852 
853 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
854 	queue_work(ffs->io_completion_wq, &io_data->work);
855 }
856 
857 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
858 {
859 	/*
860 	 * See comment in struct ffs_epfile for full read_buffer pointer
861 	 * synchronisation story.
862 	 */
863 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
864 	if (buf && buf != READ_BUFFER_DROP)
865 		kfree(buf);
866 }
867 
868 /* Assumes epfile->mutex is held. */
869 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
870 					  struct iov_iter *iter)
871 {
872 	/*
873 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
874 	 * the buffer while we are using it.  See comment in struct ffs_epfile
875 	 * for full read_buffer pointer synchronisation story.
876 	 */
877 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
878 	ssize_t ret;
879 	if (!buf || buf == READ_BUFFER_DROP)
880 		return 0;
881 
882 	ret = copy_to_iter(buf->data, buf->length, iter);
883 	if (buf->length == ret) {
884 		kfree(buf);
885 		return ret;
886 	}
887 
888 	if (unlikely(iov_iter_count(iter))) {
889 		ret = -EFAULT;
890 	} else {
891 		buf->length -= ret;
892 		buf->data += ret;
893 	}
894 
895 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
896 		kfree(buf);
897 
898 	return ret;
899 }
900 
901 /* Assumes epfile->mutex is held. */
902 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
903 				      void *data, int data_len,
904 				      struct iov_iter *iter)
905 {
906 	struct ffs_buffer *buf;
907 
908 	ssize_t ret = copy_to_iter(data, data_len, iter);
909 	if (likely(data_len == ret))
910 		return ret;
911 
912 	if (unlikely(iov_iter_count(iter)))
913 		return -EFAULT;
914 
915 	/* See ffs_copy_to_iter for more context. */
916 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
917 		data_len, ret);
918 
919 	data_len -= ret;
920 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
921 	if (!buf)
922 		return -ENOMEM;
923 	buf->length = data_len;
924 	buf->data = buf->storage;
925 	memcpy(buf->storage, data + ret, data_len);
926 
927 	/*
928 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
929 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
930 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
931 	 * story.
932 	 */
933 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
934 		kfree(buf);
935 
936 	return ret;
937 }
938 
939 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
940 {
941 	struct ffs_epfile *epfile = file->private_data;
942 	struct usb_request *req;
943 	struct ffs_ep *ep;
944 	char *data = NULL;
945 	ssize_t ret, data_len = -EINVAL;
946 	int halt;
947 
948 	/* Are we still active? */
949 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
950 		return -ENODEV;
951 
952 	/* Wait for endpoint to be enabled */
953 	ep = epfile->ep;
954 	if (!ep) {
955 		if (file->f_flags & O_NONBLOCK)
956 			return -EAGAIN;
957 
958 		ret = wait_event_interruptible(
959 				epfile->ffs->wait, (ep = epfile->ep));
960 		if (ret)
961 			return -EINTR;
962 	}
963 
964 	/* Do we halt? */
965 	halt = (!io_data->read == !epfile->in);
966 	if (halt && epfile->isoc)
967 		return -EINVAL;
968 
969 	/* We will be using request and read_buffer */
970 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
971 	if (unlikely(ret))
972 		goto error;
973 
974 	/* Allocate & copy */
975 	if (!halt) {
976 		struct usb_gadget *gadget;
977 
978 		/*
979 		 * Do we have buffered data from previous partial read?  Check
980 		 * that for synchronous case only because we do not have
981 		 * facility to ‘wake up’ a pending asynchronous read and push
982 		 * buffered data to it which we would need to make things behave
983 		 * consistently.
984 		 */
985 		if (!io_data->aio && io_data->read) {
986 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
987 			if (ret)
988 				goto error_mutex;
989 		}
990 
991 		/*
992 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
993 		 * before the waiting completes, so do not assign to 'gadget'
994 		 * earlier
995 		 */
996 		gadget = epfile->ffs->gadget;
997 
998 		spin_lock_irq(&epfile->ffs->eps_lock);
999 		/* In the meantime, endpoint got disabled or changed. */
1000 		if (epfile->ep != ep) {
1001 			ret = -ESHUTDOWN;
1002 			goto error_lock;
1003 		}
1004 		data_len = iov_iter_count(&io_data->data);
1005 		/*
1006 		 * Controller may require buffer size to be aligned to
1007 		 * maxpacketsize of an out endpoint.
1008 		 */
1009 		if (io_data->read)
1010 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1011 
1012 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1013 		spin_unlock_irq(&epfile->ffs->eps_lock);
1014 
1015 		data = ffs_alloc_buffer(io_data, data_len);
1016 		if (unlikely(!data)) {
1017 			ret = -ENOMEM;
1018 			goto error_mutex;
1019 		}
1020 		if (!io_data->read &&
1021 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1022 			ret = -EFAULT;
1023 			goto error_mutex;
1024 		}
1025 	}
1026 
1027 	spin_lock_irq(&epfile->ffs->eps_lock);
1028 
1029 	if (epfile->ep != ep) {
1030 		/* In the meantime, endpoint got disabled or changed. */
1031 		ret = -ESHUTDOWN;
1032 	} else if (halt) {
1033 		ret = usb_ep_set_halt(ep->ep);
1034 		if (!ret)
1035 			ret = -EBADMSG;
1036 	} else if (unlikely(data_len == -EINVAL)) {
1037 		/*
1038 		 * Sanity Check: even though data_len can't be used
1039 		 * uninitialized at the time I write this comment, some
1040 		 * compilers complain about this situation.
1041 		 * In order to keep the code clean from warnings, data_len is
1042 		 * being initialized to -EINVAL during its declaration, which
1043 		 * means we can't rely on compiler anymore to warn no future
1044 		 * changes won't result in data_len being used uninitialized.
1045 		 * For such reason, we're adding this redundant sanity check
1046 		 * here.
1047 		 */
1048 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1049 		ret = -EINVAL;
1050 	} else if (!io_data->aio) {
1051 		DECLARE_COMPLETION_ONSTACK(done);
1052 		bool interrupted = false;
1053 
1054 		req = ep->req;
1055 		if (io_data->use_sg) {
1056 			req->buf = NULL;
1057 			req->sg	= io_data->sgt.sgl;
1058 			req->num_sgs = io_data->sgt.nents;
1059 		} else {
1060 			req->buf = data;
1061 			req->num_sgs = 0;
1062 		}
1063 		req->length = data_len;
1064 
1065 		io_data->buf = data;
1066 
1067 		req->context  = &done;
1068 		req->complete = ffs_epfile_io_complete;
1069 
1070 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1071 		if (unlikely(ret < 0))
1072 			goto error_lock;
1073 
1074 		spin_unlock_irq(&epfile->ffs->eps_lock);
1075 
1076 		if (unlikely(wait_for_completion_interruptible(&done))) {
1077 			/*
1078 			 * To avoid race condition with ffs_epfile_io_complete,
1079 			 * dequeue the request first then check
1080 			 * status. usb_ep_dequeue API should guarantee no race
1081 			 * condition with req->complete callback.
1082 			 */
1083 			usb_ep_dequeue(ep->ep, req);
1084 			wait_for_completion(&done);
1085 			interrupted = ep->status < 0;
1086 		}
1087 
1088 		if (interrupted)
1089 			ret = -EINTR;
1090 		else if (io_data->read && ep->status > 0)
1091 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1092 						     &io_data->data);
1093 		else
1094 			ret = ep->status;
1095 		goto error_mutex;
1096 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1097 		ret = -ENOMEM;
1098 	} else {
1099 		if (io_data->use_sg) {
1100 			req->buf = NULL;
1101 			req->sg	= io_data->sgt.sgl;
1102 			req->num_sgs = io_data->sgt.nents;
1103 		} else {
1104 			req->buf = data;
1105 			req->num_sgs = 0;
1106 		}
1107 		req->length = data_len;
1108 
1109 		io_data->buf = data;
1110 		io_data->ep = ep->ep;
1111 		io_data->req = req;
1112 		io_data->ffs = epfile->ffs;
1113 
1114 		req->context  = io_data;
1115 		req->complete = ffs_epfile_async_io_complete;
1116 
1117 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1118 		if (unlikely(ret)) {
1119 			io_data->req = NULL;
1120 			usb_ep_free_request(ep->ep, req);
1121 			goto error_lock;
1122 		}
1123 
1124 		ret = -EIOCBQUEUED;
1125 		/*
1126 		 * Do not kfree the buffer in this function.  It will be freed
1127 		 * by ffs_user_copy_worker.
1128 		 */
1129 		data = NULL;
1130 	}
1131 
1132 error_lock:
1133 	spin_unlock_irq(&epfile->ffs->eps_lock);
1134 error_mutex:
1135 	mutex_unlock(&epfile->mutex);
1136 error:
1137 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1138 		ffs_free_buffer(io_data);
1139 	return ret;
1140 }
1141 
1142 static int
1143 ffs_epfile_open(struct inode *inode, struct file *file)
1144 {
1145 	struct ffs_epfile *epfile = inode->i_private;
1146 
1147 	ENTER();
1148 
1149 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1150 		return -ENODEV;
1151 
1152 	file->private_data = epfile;
1153 	ffs_data_opened(epfile->ffs);
1154 
1155 	return 0;
1156 }
1157 
1158 static int ffs_aio_cancel(struct kiocb *kiocb)
1159 {
1160 	struct ffs_io_data *io_data = kiocb->private;
1161 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1162 	unsigned long flags;
1163 	int value;
1164 
1165 	ENTER();
1166 
1167 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1168 
1169 	if (likely(io_data && io_data->ep && io_data->req))
1170 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1171 	else
1172 		value = -EINVAL;
1173 
1174 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1175 
1176 	return value;
1177 }
1178 
1179 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1180 {
1181 	struct ffs_io_data io_data, *p = &io_data;
1182 	ssize_t res;
1183 
1184 	ENTER();
1185 
1186 	if (!is_sync_kiocb(kiocb)) {
1187 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1188 		if (unlikely(!p))
1189 			return -ENOMEM;
1190 		p->aio = true;
1191 	} else {
1192 		memset(p, 0, sizeof(*p));
1193 		p->aio = false;
1194 	}
1195 
1196 	p->read = false;
1197 	p->kiocb = kiocb;
1198 	p->data = *from;
1199 	p->mm = current->mm;
1200 
1201 	kiocb->private = p;
1202 
1203 	if (p->aio)
1204 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1205 
1206 	res = ffs_epfile_io(kiocb->ki_filp, p);
1207 	if (res == -EIOCBQUEUED)
1208 		return res;
1209 	if (p->aio)
1210 		kfree(p);
1211 	else
1212 		*from = p->data;
1213 	return res;
1214 }
1215 
1216 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1217 {
1218 	struct ffs_io_data io_data, *p = &io_data;
1219 	ssize_t res;
1220 
1221 	ENTER();
1222 
1223 	if (!is_sync_kiocb(kiocb)) {
1224 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1225 		if (unlikely(!p))
1226 			return -ENOMEM;
1227 		p->aio = true;
1228 	} else {
1229 		memset(p, 0, sizeof(*p));
1230 		p->aio = false;
1231 	}
1232 
1233 	p->read = true;
1234 	p->kiocb = kiocb;
1235 	if (p->aio) {
1236 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1237 		if (!p->to_free) {
1238 			kfree(p);
1239 			return -ENOMEM;
1240 		}
1241 	} else {
1242 		p->data = *to;
1243 		p->to_free = NULL;
1244 	}
1245 	p->mm = current->mm;
1246 
1247 	kiocb->private = p;
1248 
1249 	if (p->aio)
1250 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1251 
1252 	res = ffs_epfile_io(kiocb->ki_filp, p);
1253 	if (res == -EIOCBQUEUED)
1254 		return res;
1255 
1256 	if (p->aio) {
1257 		kfree(p->to_free);
1258 		kfree(p);
1259 	} else {
1260 		*to = p->data;
1261 	}
1262 	return res;
1263 }
1264 
1265 static int
1266 ffs_epfile_release(struct inode *inode, struct file *file)
1267 {
1268 	struct ffs_epfile *epfile = inode->i_private;
1269 
1270 	ENTER();
1271 
1272 	__ffs_epfile_read_buffer_free(epfile);
1273 	ffs_data_closed(epfile->ffs);
1274 
1275 	return 0;
1276 }
1277 
1278 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1279 			     unsigned long value)
1280 {
1281 	struct ffs_epfile *epfile = file->private_data;
1282 	struct ffs_ep *ep;
1283 	int ret;
1284 
1285 	ENTER();
1286 
1287 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1288 		return -ENODEV;
1289 
1290 	/* Wait for endpoint to be enabled */
1291 	ep = epfile->ep;
1292 	if (!ep) {
1293 		if (file->f_flags & O_NONBLOCK)
1294 			return -EAGAIN;
1295 
1296 		ret = wait_event_interruptible(
1297 				epfile->ffs->wait, (ep = epfile->ep));
1298 		if (ret)
1299 			return -EINTR;
1300 	}
1301 
1302 	spin_lock_irq(&epfile->ffs->eps_lock);
1303 
1304 	/* In the meantime, endpoint got disabled or changed. */
1305 	if (epfile->ep != ep) {
1306 		spin_unlock_irq(&epfile->ffs->eps_lock);
1307 		return -ESHUTDOWN;
1308 	}
1309 
1310 	switch (code) {
1311 	case FUNCTIONFS_FIFO_STATUS:
1312 		ret = usb_ep_fifo_status(epfile->ep->ep);
1313 		break;
1314 	case FUNCTIONFS_FIFO_FLUSH:
1315 		usb_ep_fifo_flush(epfile->ep->ep);
1316 		ret = 0;
1317 		break;
1318 	case FUNCTIONFS_CLEAR_HALT:
1319 		ret = usb_ep_clear_halt(epfile->ep->ep);
1320 		break;
1321 	case FUNCTIONFS_ENDPOINT_REVMAP:
1322 		ret = epfile->ep->num;
1323 		break;
1324 	case FUNCTIONFS_ENDPOINT_DESC:
1325 	{
1326 		int desc_idx;
1327 		struct usb_endpoint_descriptor desc1, *desc;
1328 
1329 		switch (epfile->ffs->gadget->speed) {
1330 		case USB_SPEED_SUPER:
1331 			desc_idx = 2;
1332 			break;
1333 		case USB_SPEED_HIGH:
1334 			desc_idx = 1;
1335 			break;
1336 		default:
1337 			desc_idx = 0;
1338 		}
1339 
1340 		desc = epfile->ep->descs[desc_idx];
1341 		memcpy(&desc1, desc, desc->bLength);
1342 
1343 		spin_unlock_irq(&epfile->ffs->eps_lock);
1344 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1345 		if (ret)
1346 			ret = -EFAULT;
1347 		return ret;
1348 	}
1349 	default:
1350 		ret = -ENOTTY;
1351 	}
1352 	spin_unlock_irq(&epfile->ffs->eps_lock);
1353 
1354 	return ret;
1355 }
1356 
1357 static const struct file_operations ffs_epfile_operations = {
1358 	.llseek =	no_llseek,
1359 
1360 	.open =		ffs_epfile_open,
1361 	.write_iter =	ffs_epfile_write_iter,
1362 	.read_iter =	ffs_epfile_read_iter,
1363 	.release =	ffs_epfile_release,
1364 	.unlocked_ioctl =	ffs_epfile_ioctl,
1365 	.compat_ioctl = compat_ptr_ioctl,
1366 };
1367 
1368 
1369 /* File system and super block operations ***********************************/
1370 
1371 /*
1372  * Mounting the file system creates a controller file, used first for
1373  * function configuration then later for event monitoring.
1374  */
1375 
1376 static struct inode *__must_check
1377 ffs_sb_make_inode(struct super_block *sb, void *data,
1378 		  const struct file_operations *fops,
1379 		  const struct inode_operations *iops,
1380 		  struct ffs_file_perms *perms)
1381 {
1382 	struct inode *inode;
1383 
1384 	ENTER();
1385 
1386 	inode = new_inode(sb);
1387 
1388 	if (likely(inode)) {
1389 		struct timespec64 ts = current_time(inode);
1390 
1391 		inode->i_ino	 = get_next_ino();
1392 		inode->i_mode    = perms->mode;
1393 		inode->i_uid     = perms->uid;
1394 		inode->i_gid     = perms->gid;
1395 		inode->i_atime   = ts;
1396 		inode->i_mtime   = ts;
1397 		inode->i_ctime   = ts;
1398 		inode->i_private = data;
1399 		if (fops)
1400 			inode->i_fop = fops;
1401 		if (iops)
1402 			inode->i_op  = iops;
1403 	}
1404 
1405 	return inode;
1406 }
1407 
1408 /* Create "regular" file */
1409 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1410 					const char *name, void *data,
1411 					const struct file_operations *fops)
1412 {
1413 	struct ffs_data	*ffs = sb->s_fs_info;
1414 	struct dentry	*dentry;
1415 	struct inode	*inode;
1416 
1417 	ENTER();
1418 
1419 	dentry = d_alloc_name(sb->s_root, name);
1420 	if (unlikely(!dentry))
1421 		return NULL;
1422 
1423 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1424 	if (unlikely(!inode)) {
1425 		dput(dentry);
1426 		return NULL;
1427 	}
1428 
1429 	d_add(dentry, inode);
1430 	return dentry;
1431 }
1432 
1433 /* Super block */
1434 static const struct super_operations ffs_sb_operations = {
1435 	.statfs =	simple_statfs,
1436 	.drop_inode =	generic_delete_inode,
1437 };
1438 
1439 struct ffs_sb_fill_data {
1440 	struct ffs_file_perms perms;
1441 	umode_t root_mode;
1442 	const char *dev_name;
1443 	bool no_disconnect;
1444 	struct ffs_data *ffs_data;
1445 };
1446 
1447 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1448 {
1449 	struct ffs_sb_fill_data *data = fc->fs_private;
1450 	struct inode	*inode;
1451 	struct ffs_data	*ffs = data->ffs_data;
1452 
1453 	ENTER();
1454 
1455 	ffs->sb              = sb;
1456 	data->ffs_data       = NULL;
1457 	sb->s_fs_info        = ffs;
1458 	sb->s_blocksize      = PAGE_SIZE;
1459 	sb->s_blocksize_bits = PAGE_SHIFT;
1460 	sb->s_magic          = FUNCTIONFS_MAGIC;
1461 	sb->s_op             = &ffs_sb_operations;
1462 	sb->s_time_gran      = 1;
1463 
1464 	/* Root inode */
1465 	data->perms.mode = data->root_mode;
1466 	inode = ffs_sb_make_inode(sb, NULL,
1467 				  &simple_dir_operations,
1468 				  &simple_dir_inode_operations,
1469 				  &data->perms);
1470 	sb->s_root = d_make_root(inode);
1471 	if (unlikely(!sb->s_root))
1472 		return -ENOMEM;
1473 
1474 	/* EP0 file */
1475 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1476 					 &ffs_ep0_operations)))
1477 		return -ENOMEM;
1478 
1479 	return 0;
1480 }
1481 
1482 enum {
1483 	Opt_no_disconnect,
1484 	Opt_rmode,
1485 	Opt_fmode,
1486 	Opt_mode,
1487 	Opt_uid,
1488 	Opt_gid,
1489 };
1490 
1491 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1492 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1493 	fsparam_u32	("rmode",		Opt_rmode),
1494 	fsparam_u32	("fmode",		Opt_fmode),
1495 	fsparam_u32	("mode",		Opt_mode),
1496 	fsparam_u32	("uid",			Opt_uid),
1497 	fsparam_u32	("gid",			Opt_gid),
1498 	{}
1499 };
1500 
1501 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1502 {
1503 	struct ffs_sb_fill_data *data = fc->fs_private;
1504 	struct fs_parse_result result;
1505 	int opt;
1506 
1507 	ENTER();
1508 
1509 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1510 	if (opt < 0)
1511 		return opt;
1512 
1513 	switch (opt) {
1514 	case Opt_no_disconnect:
1515 		data->no_disconnect = result.boolean;
1516 		break;
1517 	case Opt_rmode:
1518 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1519 		break;
1520 	case Opt_fmode:
1521 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1522 		break;
1523 	case Opt_mode:
1524 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1525 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1526 		break;
1527 
1528 	case Opt_uid:
1529 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1530 		if (!uid_valid(data->perms.uid))
1531 			goto unmapped_value;
1532 		break;
1533 	case Opt_gid:
1534 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1535 		if (!gid_valid(data->perms.gid))
1536 			goto unmapped_value;
1537 		break;
1538 
1539 	default:
1540 		return -ENOPARAM;
1541 	}
1542 
1543 	return 0;
1544 
1545 unmapped_value:
1546 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1547 }
1548 
1549 /*
1550  * Set up the superblock for a mount.
1551  */
1552 static int ffs_fs_get_tree(struct fs_context *fc)
1553 {
1554 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1555 	void *ffs_dev;
1556 	struct ffs_data	*ffs;
1557 
1558 	ENTER();
1559 
1560 	if (!fc->source)
1561 		return invalf(fc, "No source specified");
1562 
1563 	ffs = ffs_data_new(fc->source);
1564 	if (unlikely(!ffs))
1565 		return -ENOMEM;
1566 	ffs->file_perms = ctx->perms;
1567 	ffs->no_disconnect = ctx->no_disconnect;
1568 
1569 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1570 	if (unlikely(!ffs->dev_name)) {
1571 		ffs_data_put(ffs);
1572 		return -ENOMEM;
1573 	}
1574 
1575 	ffs_dev = ffs_acquire_dev(ffs->dev_name);
1576 	if (IS_ERR(ffs_dev)) {
1577 		ffs_data_put(ffs);
1578 		return PTR_ERR(ffs_dev);
1579 	}
1580 
1581 	ffs->private_data = ffs_dev;
1582 	ctx->ffs_data = ffs;
1583 	return get_tree_nodev(fc, ffs_sb_fill);
1584 }
1585 
1586 static void ffs_fs_free_fc(struct fs_context *fc)
1587 {
1588 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1589 
1590 	if (ctx) {
1591 		if (ctx->ffs_data) {
1592 			ffs_release_dev(ctx->ffs_data);
1593 			ffs_data_put(ctx->ffs_data);
1594 		}
1595 
1596 		kfree(ctx);
1597 	}
1598 }
1599 
1600 static const struct fs_context_operations ffs_fs_context_ops = {
1601 	.free		= ffs_fs_free_fc,
1602 	.parse_param	= ffs_fs_parse_param,
1603 	.get_tree	= ffs_fs_get_tree,
1604 };
1605 
1606 static int ffs_fs_init_fs_context(struct fs_context *fc)
1607 {
1608 	struct ffs_sb_fill_data *ctx;
1609 
1610 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1611 	if (!ctx)
1612 		return -ENOMEM;
1613 
1614 	ctx->perms.mode = S_IFREG | 0600;
1615 	ctx->perms.uid = GLOBAL_ROOT_UID;
1616 	ctx->perms.gid = GLOBAL_ROOT_GID;
1617 	ctx->root_mode = S_IFDIR | 0500;
1618 	ctx->no_disconnect = false;
1619 
1620 	fc->fs_private = ctx;
1621 	fc->ops = &ffs_fs_context_ops;
1622 	return 0;
1623 }
1624 
1625 static void
1626 ffs_fs_kill_sb(struct super_block *sb)
1627 {
1628 	ENTER();
1629 
1630 	kill_litter_super(sb);
1631 	if (sb->s_fs_info) {
1632 		ffs_release_dev(sb->s_fs_info);
1633 		ffs_data_closed(sb->s_fs_info);
1634 	}
1635 }
1636 
1637 static struct file_system_type ffs_fs_type = {
1638 	.owner		= THIS_MODULE,
1639 	.name		= "functionfs",
1640 	.init_fs_context = ffs_fs_init_fs_context,
1641 	.parameters	= ffs_fs_fs_parameters,
1642 	.kill_sb	= ffs_fs_kill_sb,
1643 };
1644 MODULE_ALIAS_FS("functionfs");
1645 
1646 
1647 /* Driver's main init/cleanup functions *************************************/
1648 
1649 static int functionfs_init(void)
1650 {
1651 	int ret;
1652 
1653 	ENTER();
1654 
1655 	ret = register_filesystem(&ffs_fs_type);
1656 	if (likely(!ret))
1657 		pr_info("file system registered\n");
1658 	else
1659 		pr_err("failed registering file system (%d)\n", ret);
1660 
1661 	return ret;
1662 }
1663 
1664 static void functionfs_cleanup(void)
1665 {
1666 	ENTER();
1667 
1668 	pr_info("unloading\n");
1669 	unregister_filesystem(&ffs_fs_type);
1670 }
1671 
1672 
1673 /* ffs_data and ffs_function construction and destruction code **************/
1674 
1675 static void ffs_data_clear(struct ffs_data *ffs);
1676 static void ffs_data_reset(struct ffs_data *ffs);
1677 
1678 static void ffs_data_get(struct ffs_data *ffs)
1679 {
1680 	ENTER();
1681 
1682 	refcount_inc(&ffs->ref);
1683 }
1684 
1685 static void ffs_data_opened(struct ffs_data *ffs)
1686 {
1687 	ENTER();
1688 
1689 	refcount_inc(&ffs->ref);
1690 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1691 			ffs->state == FFS_DEACTIVATED) {
1692 		ffs->state = FFS_CLOSING;
1693 		ffs_data_reset(ffs);
1694 	}
1695 }
1696 
1697 static void ffs_data_put(struct ffs_data *ffs)
1698 {
1699 	ENTER();
1700 
1701 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1702 		pr_info("%s(): freeing\n", __func__);
1703 		ffs_data_clear(ffs);
1704 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1705 		       swait_active(&ffs->ep0req_completion.wait) ||
1706 		       waitqueue_active(&ffs->wait));
1707 		destroy_workqueue(ffs->io_completion_wq);
1708 		kfree(ffs->dev_name);
1709 		kfree(ffs);
1710 	}
1711 }
1712 
1713 static void ffs_data_closed(struct ffs_data *ffs)
1714 {
1715 	ENTER();
1716 
1717 	if (atomic_dec_and_test(&ffs->opened)) {
1718 		if (ffs->no_disconnect) {
1719 			ffs->state = FFS_DEACTIVATED;
1720 			if (ffs->epfiles) {
1721 				ffs_epfiles_destroy(ffs->epfiles,
1722 						   ffs->eps_count);
1723 				ffs->epfiles = NULL;
1724 			}
1725 			if (ffs->setup_state == FFS_SETUP_PENDING)
1726 				__ffs_ep0_stall(ffs);
1727 		} else {
1728 			ffs->state = FFS_CLOSING;
1729 			ffs_data_reset(ffs);
1730 		}
1731 	}
1732 	if (atomic_read(&ffs->opened) < 0) {
1733 		ffs->state = FFS_CLOSING;
1734 		ffs_data_reset(ffs);
1735 	}
1736 
1737 	ffs_data_put(ffs);
1738 }
1739 
1740 static struct ffs_data *ffs_data_new(const char *dev_name)
1741 {
1742 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1743 	if (unlikely(!ffs))
1744 		return NULL;
1745 
1746 	ENTER();
1747 
1748 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1749 	if (!ffs->io_completion_wq) {
1750 		kfree(ffs);
1751 		return NULL;
1752 	}
1753 
1754 	refcount_set(&ffs->ref, 1);
1755 	atomic_set(&ffs->opened, 0);
1756 	ffs->state = FFS_READ_DESCRIPTORS;
1757 	mutex_init(&ffs->mutex);
1758 	spin_lock_init(&ffs->eps_lock);
1759 	init_waitqueue_head(&ffs->ev.waitq);
1760 	init_waitqueue_head(&ffs->wait);
1761 	init_completion(&ffs->ep0req_completion);
1762 
1763 	/* XXX REVISIT need to update it in some places, or do we? */
1764 	ffs->ev.can_stall = 1;
1765 
1766 	return ffs;
1767 }
1768 
1769 static void ffs_data_clear(struct ffs_data *ffs)
1770 {
1771 	ENTER();
1772 
1773 	ffs_closed(ffs);
1774 
1775 	BUG_ON(ffs->gadget);
1776 
1777 	if (ffs->epfiles)
1778 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1779 
1780 	if (ffs->ffs_eventfd)
1781 		eventfd_ctx_put(ffs->ffs_eventfd);
1782 
1783 	kfree(ffs->raw_descs_data);
1784 	kfree(ffs->raw_strings);
1785 	kfree(ffs->stringtabs);
1786 }
1787 
1788 static void ffs_data_reset(struct ffs_data *ffs)
1789 {
1790 	ENTER();
1791 
1792 	ffs_data_clear(ffs);
1793 
1794 	ffs->epfiles = NULL;
1795 	ffs->raw_descs_data = NULL;
1796 	ffs->raw_descs = NULL;
1797 	ffs->raw_strings = NULL;
1798 	ffs->stringtabs = NULL;
1799 
1800 	ffs->raw_descs_length = 0;
1801 	ffs->fs_descs_count = 0;
1802 	ffs->hs_descs_count = 0;
1803 	ffs->ss_descs_count = 0;
1804 
1805 	ffs->strings_count = 0;
1806 	ffs->interfaces_count = 0;
1807 	ffs->eps_count = 0;
1808 
1809 	ffs->ev.count = 0;
1810 
1811 	ffs->state = FFS_READ_DESCRIPTORS;
1812 	ffs->setup_state = FFS_NO_SETUP;
1813 	ffs->flags = 0;
1814 
1815 	ffs->ms_os_descs_ext_prop_count = 0;
1816 	ffs->ms_os_descs_ext_prop_name_len = 0;
1817 	ffs->ms_os_descs_ext_prop_data_len = 0;
1818 }
1819 
1820 
1821 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1822 {
1823 	struct usb_gadget_strings **lang;
1824 	int first_id;
1825 
1826 	ENTER();
1827 
1828 	if (WARN_ON(ffs->state != FFS_ACTIVE
1829 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1830 		return -EBADFD;
1831 
1832 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1833 	if (unlikely(first_id < 0))
1834 		return first_id;
1835 
1836 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1837 	if (unlikely(!ffs->ep0req))
1838 		return -ENOMEM;
1839 	ffs->ep0req->complete = ffs_ep0_complete;
1840 	ffs->ep0req->context = ffs;
1841 
1842 	lang = ffs->stringtabs;
1843 	if (lang) {
1844 		for (; *lang; ++lang) {
1845 			struct usb_string *str = (*lang)->strings;
1846 			int id = first_id;
1847 			for (; str->s; ++id, ++str)
1848 				str->id = id;
1849 		}
1850 	}
1851 
1852 	ffs->gadget = cdev->gadget;
1853 	ffs_data_get(ffs);
1854 	return 0;
1855 }
1856 
1857 static void functionfs_unbind(struct ffs_data *ffs)
1858 {
1859 	ENTER();
1860 
1861 	if (!WARN_ON(!ffs->gadget)) {
1862 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1863 		ffs->ep0req = NULL;
1864 		ffs->gadget = NULL;
1865 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1866 		ffs_data_put(ffs);
1867 	}
1868 }
1869 
1870 static int ffs_epfiles_create(struct ffs_data *ffs)
1871 {
1872 	struct ffs_epfile *epfile, *epfiles;
1873 	unsigned i, count;
1874 
1875 	ENTER();
1876 
1877 	count = ffs->eps_count;
1878 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1879 	if (!epfiles)
1880 		return -ENOMEM;
1881 
1882 	epfile = epfiles;
1883 	for (i = 1; i <= count; ++i, ++epfile) {
1884 		epfile->ffs = ffs;
1885 		mutex_init(&epfile->mutex);
1886 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1887 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1888 		else
1889 			sprintf(epfile->name, "ep%u", i);
1890 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1891 						 epfile,
1892 						 &ffs_epfile_operations);
1893 		if (unlikely(!epfile->dentry)) {
1894 			ffs_epfiles_destroy(epfiles, i - 1);
1895 			return -ENOMEM;
1896 		}
1897 	}
1898 
1899 	ffs->epfiles = epfiles;
1900 	return 0;
1901 }
1902 
1903 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1904 {
1905 	struct ffs_epfile *epfile = epfiles;
1906 
1907 	ENTER();
1908 
1909 	for (; count; --count, ++epfile) {
1910 		BUG_ON(mutex_is_locked(&epfile->mutex));
1911 		if (epfile->dentry) {
1912 			d_delete(epfile->dentry);
1913 			dput(epfile->dentry);
1914 			epfile->dentry = NULL;
1915 		}
1916 	}
1917 
1918 	kfree(epfiles);
1919 }
1920 
1921 static void ffs_func_eps_disable(struct ffs_function *func)
1922 {
1923 	struct ffs_ep *ep         = func->eps;
1924 	struct ffs_epfile *epfile = func->ffs->epfiles;
1925 	unsigned count            = func->ffs->eps_count;
1926 	unsigned long flags;
1927 
1928 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1929 	while (count--) {
1930 		/* pending requests get nuked */
1931 		if (likely(ep->ep))
1932 			usb_ep_disable(ep->ep);
1933 		++ep;
1934 
1935 		if (epfile) {
1936 			epfile->ep = NULL;
1937 			__ffs_epfile_read_buffer_free(epfile);
1938 			++epfile;
1939 		}
1940 	}
1941 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1942 }
1943 
1944 static int ffs_func_eps_enable(struct ffs_function *func)
1945 {
1946 	struct ffs_data *ffs      = func->ffs;
1947 	struct ffs_ep *ep         = func->eps;
1948 	struct ffs_epfile *epfile = ffs->epfiles;
1949 	unsigned count            = ffs->eps_count;
1950 	unsigned long flags;
1951 	int ret = 0;
1952 
1953 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1954 	while(count--) {
1955 		ep->ep->driver_data = ep;
1956 
1957 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1958 		if (ret) {
1959 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1960 					__func__, ep->ep->name, ret);
1961 			break;
1962 		}
1963 
1964 		ret = usb_ep_enable(ep->ep);
1965 		if (likely(!ret)) {
1966 			epfile->ep = ep;
1967 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1968 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1969 		} else {
1970 			break;
1971 		}
1972 
1973 		++ep;
1974 		++epfile;
1975 	}
1976 
1977 	wake_up_interruptible(&ffs->wait);
1978 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1979 
1980 	return ret;
1981 }
1982 
1983 
1984 /* Parsing and building descriptors and strings *****************************/
1985 
1986 /*
1987  * This validates if data pointed by data is a valid USB descriptor as
1988  * well as record how many interfaces, endpoints and strings are
1989  * required by given configuration.  Returns address after the
1990  * descriptor or NULL if data is invalid.
1991  */
1992 
1993 enum ffs_entity_type {
1994 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1995 };
1996 
1997 enum ffs_os_desc_type {
1998 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1999 };
2000 
2001 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2002 				   u8 *valuep,
2003 				   struct usb_descriptor_header *desc,
2004 				   void *priv);
2005 
2006 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2007 				    struct usb_os_desc_header *h, void *data,
2008 				    unsigned len, void *priv);
2009 
2010 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2011 					   ffs_entity_callback entity,
2012 					   void *priv, int *current_class)
2013 {
2014 	struct usb_descriptor_header *_ds = (void *)data;
2015 	u8 length;
2016 	int ret;
2017 
2018 	ENTER();
2019 
2020 	/* At least two bytes are required: length and type */
2021 	if (len < 2) {
2022 		pr_vdebug("descriptor too short\n");
2023 		return -EINVAL;
2024 	}
2025 
2026 	/* If we have at least as many bytes as the descriptor takes? */
2027 	length = _ds->bLength;
2028 	if (len < length) {
2029 		pr_vdebug("descriptor longer then available data\n");
2030 		return -EINVAL;
2031 	}
2032 
2033 #define __entity_check_INTERFACE(val)  1
2034 #define __entity_check_STRING(val)     (val)
2035 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2036 #define __entity(type, val) do {					\
2037 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2038 		if (unlikely(!__entity_check_ ##type(val))) {		\
2039 			pr_vdebug("invalid entity's value\n");		\
2040 			return -EINVAL;					\
2041 		}							\
2042 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2043 		if (unlikely(ret < 0)) {				\
2044 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2045 				 (val), ret);				\
2046 			return ret;					\
2047 		}							\
2048 	} while (0)
2049 
2050 	/* Parse descriptor depending on type. */
2051 	switch (_ds->bDescriptorType) {
2052 	case USB_DT_DEVICE:
2053 	case USB_DT_CONFIG:
2054 	case USB_DT_STRING:
2055 	case USB_DT_DEVICE_QUALIFIER:
2056 		/* function can't have any of those */
2057 		pr_vdebug("descriptor reserved for gadget: %d\n",
2058 		      _ds->bDescriptorType);
2059 		return -EINVAL;
2060 
2061 	case USB_DT_INTERFACE: {
2062 		struct usb_interface_descriptor *ds = (void *)_ds;
2063 		pr_vdebug("interface descriptor\n");
2064 		if (length != sizeof *ds)
2065 			goto inv_length;
2066 
2067 		__entity(INTERFACE, ds->bInterfaceNumber);
2068 		if (ds->iInterface)
2069 			__entity(STRING, ds->iInterface);
2070 		*current_class = ds->bInterfaceClass;
2071 	}
2072 		break;
2073 
2074 	case USB_DT_ENDPOINT: {
2075 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2076 		pr_vdebug("endpoint descriptor\n");
2077 		if (length != USB_DT_ENDPOINT_SIZE &&
2078 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2079 			goto inv_length;
2080 		__entity(ENDPOINT, ds->bEndpointAddress);
2081 	}
2082 		break;
2083 
2084 	case USB_TYPE_CLASS | 0x01:
2085                 if (*current_class == USB_INTERFACE_CLASS_HID) {
2086 			pr_vdebug("hid descriptor\n");
2087 			if (length != sizeof(struct hid_descriptor))
2088 				goto inv_length;
2089 			break;
2090 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2091 			pr_vdebug("ccid descriptor\n");
2092 			if (length != sizeof(struct ccid_descriptor))
2093 				goto inv_length;
2094 			break;
2095 		} else {
2096 			pr_vdebug("unknown descriptor: %d for class %d\n",
2097 			      _ds->bDescriptorType, *current_class);
2098 			return -EINVAL;
2099 		}
2100 
2101 	case USB_DT_OTG:
2102 		if (length != sizeof(struct usb_otg_descriptor))
2103 			goto inv_length;
2104 		break;
2105 
2106 	case USB_DT_INTERFACE_ASSOCIATION: {
2107 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2108 		pr_vdebug("interface association descriptor\n");
2109 		if (length != sizeof *ds)
2110 			goto inv_length;
2111 		if (ds->iFunction)
2112 			__entity(STRING, ds->iFunction);
2113 	}
2114 		break;
2115 
2116 	case USB_DT_SS_ENDPOINT_COMP:
2117 		pr_vdebug("EP SS companion descriptor\n");
2118 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2119 			goto inv_length;
2120 		break;
2121 
2122 	case USB_DT_OTHER_SPEED_CONFIG:
2123 	case USB_DT_INTERFACE_POWER:
2124 	case USB_DT_DEBUG:
2125 	case USB_DT_SECURITY:
2126 	case USB_DT_CS_RADIO_CONTROL:
2127 		/* TODO */
2128 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2129 		return -EINVAL;
2130 
2131 	default:
2132 		/* We should never be here */
2133 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2134 		return -EINVAL;
2135 
2136 inv_length:
2137 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2138 			  _ds->bLength, _ds->bDescriptorType);
2139 		return -EINVAL;
2140 	}
2141 
2142 #undef __entity
2143 #undef __entity_check_DESCRIPTOR
2144 #undef __entity_check_INTERFACE
2145 #undef __entity_check_STRING
2146 #undef __entity_check_ENDPOINT
2147 
2148 	return length;
2149 }
2150 
2151 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2152 				     ffs_entity_callback entity, void *priv)
2153 {
2154 	const unsigned _len = len;
2155 	unsigned long num = 0;
2156 	int current_class = -1;
2157 
2158 	ENTER();
2159 
2160 	for (;;) {
2161 		int ret;
2162 
2163 		if (num == count)
2164 			data = NULL;
2165 
2166 		/* Record "descriptor" entity */
2167 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2168 		if (unlikely(ret < 0)) {
2169 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2170 				 num, ret);
2171 			return ret;
2172 		}
2173 
2174 		if (!data)
2175 			return _len - len;
2176 
2177 		ret = ffs_do_single_desc(data, len, entity, priv,
2178 			&current_class);
2179 		if (unlikely(ret < 0)) {
2180 			pr_debug("%s returns %d\n", __func__, ret);
2181 			return ret;
2182 		}
2183 
2184 		len -= ret;
2185 		data += ret;
2186 		++num;
2187 	}
2188 }
2189 
2190 static int __ffs_data_do_entity(enum ffs_entity_type type,
2191 				u8 *valuep, struct usb_descriptor_header *desc,
2192 				void *priv)
2193 {
2194 	struct ffs_desc_helper *helper = priv;
2195 	struct usb_endpoint_descriptor *d;
2196 
2197 	ENTER();
2198 
2199 	switch (type) {
2200 	case FFS_DESCRIPTOR:
2201 		break;
2202 
2203 	case FFS_INTERFACE:
2204 		/*
2205 		 * Interfaces are indexed from zero so if we
2206 		 * encountered interface "n" then there are at least
2207 		 * "n+1" interfaces.
2208 		 */
2209 		if (*valuep >= helper->interfaces_count)
2210 			helper->interfaces_count = *valuep + 1;
2211 		break;
2212 
2213 	case FFS_STRING:
2214 		/*
2215 		 * Strings are indexed from 1 (0 is reserved
2216 		 * for languages list)
2217 		 */
2218 		if (*valuep > helper->ffs->strings_count)
2219 			helper->ffs->strings_count = *valuep;
2220 		break;
2221 
2222 	case FFS_ENDPOINT:
2223 		d = (void *)desc;
2224 		helper->eps_count++;
2225 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2226 			return -EINVAL;
2227 		/* Check if descriptors for any speed were already parsed */
2228 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2229 			helper->ffs->eps_addrmap[helper->eps_count] =
2230 				d->bEndpointAddress;
2231 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2232 				d->bEndpointAddress)
2233 			return -EINVAL;
2234 		break;
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2241 				   struct usb_os_desc_header *desc)
2242 {
2243 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2244 	u16 w_index = le16_to_cpu(desc->wIndex);
2245 
2246 	if (bcd_version != 1) {
2247 		pr_vdebug("unsupported os descriptors version: %d",
2248 			  bcd_version);
2249 		return -EINVAL;
2250 	}
2251 	switch (w_index) {
2252 	case 0x4:
2253 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2254 		break;
2255 	case 0x5:
2256 		*next_type = FFS_OS_DESC_EXT_PROP;
2257 		break;
2258 	default:
2259 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2260 		return -EINVAL;
2261 	}
2262 
2263 	return sizeof(*desc);
2264 }
2265 
2266 /*
2267  * Process all extended compatibility/extended property descriptors
2268  * of a feature descriptor
2269  */
2270 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2271 					      enum ffs_os_desc_type type,
2272 					      u16 feature_count,
2273 					      ffs_os_desc_callback entity,
2274 					      void *priv,
2275 					      struct usb_os_desc_header *h)
2276 {
2277 	int ret;
2278 	const unsigned _len = len;
2279 
2280 	ENTER();
2281 
2282 	/* loop over all ext compat/ext prop descriptors */
2283 	while (feature_count--) {
2284 		ret = entity(type, h, data, len, priv);
2285 		if (unlikely(ret < 0)) {
2286 			pr_debug("bad OS descriptor, type: %d\n", type);
2287 			return ret;
2288 		}
2289 		data += ret;
2290 		len -= ret;
2291 	}
2292 	return _len - len;
2293 }
2294 
2295 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2296 static int __must_check ffs_do_os_descs(unsigned count,
2297 					char *data, unsigned len,
2298 					ffs_os_desc_callback entity, void *priv)
2299 {
2300 	const unsigned _len = len;
2301 	unsigned long num = 0;
2302 
2303 	ENTER();
2304 
2305 	for (num = 0; num < count; ++num) {
2306 		int ret;
2307 		enum ffs_os_desc_type type;
2308 		u16 feature_count;
2309 		struct usb_os_desc_header *desc = (void *)data;
2310 
2311 		if (len < sizeof(*desc))
2312 			return -EINVAL;
2313 
2314 		/*
2315 		 * Record "descriptor" entity.
2316 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2317 		 * Move the data pointer to the beginning of extended
2318 		 * compatibilities proper or extended properties proper
2319 		 * portions of the data
2320 		 */
2321 		if (le32_to_cpu(desc->dwLength) > len)
2322 			return -EINVAL;
2323 
2324 		ret = __ffs_do_os_desc_header(&type, desc);
2325 		if (unlikely(ret < 0)) {
2326 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2327 				 num, ret);
2328 			return ret;
2329 		}
2330 		/*
2331 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2332 		 */
2333 		feature_count = le16_to_cpu(desc->wCount);
2334 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2335 		    (feature_count > 255 || desc->Reserved))
2336 				return -EINVAL;
2337 		len -= ret;
2338 		data += ret;
2339 
2340 		/*
2341 		 * Process all function/property descriptors
2342 		 * of this Feature Descriptor
2343 		 */
2344 		ret = ffs_do_single_os_desc(data, len, type,
2345 					    feature_count, entity, priv, desc);
2346 		if (unlikely(ret < 0)) {
2347 			pr_debug("%s returns %d\n", __func__, ret);
2348 			return ret;
2349 		}
2350 
2351 		len -= ret;
2352 		data += ret;
2353 	}
2354 	return _len - len;
2355 }
2356 
2357 /*
2358  * Validate contents of the buffer from userspace related to OS descriptors.
2359  */
2360 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2361 				 struct usb_os_desc_header *h, void *data,
2362 				 unsigned len, void *priv)
2363 {
2364 	struct ffs_data *ffs = priv;
2365 	u8 length;
2366 
2367 	ENTER();
2368 
2369 	switch (type) {
2370 	case FFS_OS_DESC_EXT_COMPAT: {
2371 		struct usb_ext_compat_desc *d = data;
2372 		int i;
2373 
2374 		if (len < sizeof(*d) ||
2375 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2376 			return -EINVAL;
2377 		if (d->Reserved1 != 1) {
2378 			/*
2379 			 * According to the spec, Reserved1 must be set to 1
2380 			 * but older kernels incorrectly rejected non-zero
2381 			 * values.  We fix it here to avoid returning EINVAL
2382 			 * in response to values we used to accept.
2383 			 */
2384 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2385 			d->Reserved1 = 1;
2386 		}
2387 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2388 			if (d->Reserved2[i])
2389 				return -EINVAL;
2390 
2391 		length = sizeof(struct usb_ext_compat_desc);
2392 	}
2393 		break;
2394 	case FFS_OS_DESC_EXT_PROP: {
2395 		struct usb_ext_prop_desc *d = data;
2396 		u32 type, pdl;
2397 		u16 pnl;
2398 
2399 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2400 			return -EINVAL;
2401 		length = le32_to_cpu(d->dwSize);
2402 		if (len < length)
2403 			return -EINVAL;
2404 		type = le32_to_cpu(d->dwPropertyDataType);
2405 		if (type < USB_EXT_PROP_UNICODE ||
2406 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2407 			pr_vdebug("unsupported os descriptor property type: %d",
2408 				  type);
2409 			return -EINVAL;
2410 		}
2411 		pnl = le16_to_cpu(d->wPropertyNameLength);
2412 		if (length < 14 + pnl) {
2413 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2414 				  length, pnl, type);
2415 			return -EINVAL;
2416 		}
2417 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2418 		if (length != 14 + pnl + pdl) {
2419 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2420 				  length, pnl, pdl, type);
2421 			return -EINVAL;
2422 		}
2423 		++ffs->ms_os_descs_ext_prop_count;
2424 		/* property name reported to the host as "WCHAR"s */
2425 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2426 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2427 	}
2428 		break;
2429 	default:
2430 		pr_vdebug("unknown descriptor: %d\n", type);
2431 		return -EINVAL;
2432 	}
2433 	return length;
2434 }
2435 
2436 static int __ffs_data_got_descs(struct ffs_data *ffs,
2437 				char *const _data, size_t len)
2438 {
2439 	char *data = _data, *raw_descs;
2440 	unsigned os_descs_count = 0, counts[3], flags;
2441 	int ret = -EINVAL, i;
2442 	struct ffs_desc_helper helper;
2443 
2444 	ENTER();
2445 
2446 	if (get_unaligned_le32(data + 4) != len)
2447 		goto error;
2448 
2449 	switch (get_unaligned_le32(data)) {
2450 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2451 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2452 		data += 8;
2453 		len  -= 8;
2454 		break;
2455 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2456 		flags = get_unaligned_le32(data + 8);
2457 		ffs->user_flags = flags;
2458 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2459 			      FUNCTIONFS_HAS_HS_DESC |
2460 			      FUNCTIONFS_HAS_SS_DESC |
2461 			      FUNCTIONFS_HAS_MS_OS_DESC |
2462 			      FUNCTIONFS_VIRTUAL_ADDR |
2463 			      FUNCTIONFS_EVENTFD |
2464 			      FUNCTIONFS_ALL_CTRL_RECIP |
2465 			      FUNCTIONFS_CONFIG0_SETUP)) {
2466 			ret = -ENOSYS;
2467 			goto error;
2468 		}
2469 		data += 12;
2470 		len  -= 12;
2471 		break;
2472 	default:
2473 		goto error;
2474 	}
2475 
2476 	if (flags & FUNCTIONFS_EVENTFD) {
2477 		if (len < 4)
2478 			goto error;
2479 		ffs->ffs_eventfd =
2480 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2481 		if (IS_ERR(ffs->ffs_eventfd)) {
2482 			ret = PTR_ERR(ffs->ffs_eventfd);
2483 			ffs->ffs_eventfd = NULL;
2484 			goto error;
2485 		}
2486 		data += 4;
2487 		len  -= 4;
2488 	}
2489 
2490 	/* Read fs_count, hs_count and ss_count (if present) */
2491 	for (i = 0; i < 3; ++i) {
2492 		if (!(flags & (1 << i))) {
2493 			counts[i] = 0;
2494 		} else if (len < 4) {
2495 			goto error;
2496 		} else {
2497 			counts[i] = get_unaligned_le32(data);
2498 			data += 4;
2499 			len  -= 4;
2500 		}
2501 	}
2502 	if (flags & (1 << i)) {
2503 		if (len < 4) {
2504 			goto error;
2505 		}
2506 		os_descs_count = get_unaligned_le32(data);
2507 		data += 4;
2508 		len -= 4;
2509 	}
2510 
2511 	/* Read descriptors */
2512 	raw_descs = data;
2513 	helper.ffs = ffs;
2514 	for (i = 0; i < 3; ++i) {
2515 		if (!counts[i])
2516 			continue;
2517 		helper.interfaces_count = 0;
2518 		helper.eps_count = 0;
2519 		ret = ffs_do_descs(counts[i], data, len,
2520 				   __ffs_data_do_entity, &helper);
2521 		if (ret < 0)
2522 			goto error;
2523 		if (!ffs->eps_count && !ffs->interfaces_count) {
2524 			ffs->eps_count = helper.eps_count;
2525 			ffs->interfaces_count = helper.interfaces_count;
2526 		} else {
2527 			if (ffs->eps_count != helper.eps_count) {
2528 				ret = -EINVAL;
2529 				goto error;
2530 			}
2531 			if (ffs->interfaces_count != helper.interfaces_count) {
2532 				ret = -EINVAL;
2533 				goto error;
2534 			}
2535 		}
2536 		data += ret;
2537 		len  -= ret;
2538 	}
2539 	if (os_descs_count) {
2540 		ret = ffs_do_os_descs(os_descs_count, data, len,
2541 				      __ffs_data_do_os_desc, ffs);
2542 		if (ret < 0)
2543 			goto error;
2544 		data += ret;
2545 		len -= ret;
2546 	}
2547 
2548 	if (raw_descs == data || len) {
2549 		ret = -EINVAL;
2550 		goto error;
2551 	}
2552 
2553 	ffs->raw_descs_data	= _data;
2554 	ffs->raw_descs		= raw_descs;
2555 	ffs->raw_descs_length	= data - raw_descs;
2556 	ffs->fs_descs_count	= counts[0];
2557 	ffs->hs_descs_count	= counts[1];
2558 	ffs->ss_descs_count	= counts[2];
2559 	ffs->ms_os_descs_count	= os_descs_count;
2560 
2561 	return 0;
2562 
2563 error:
2564 	kfree(_data);
2565 	return ret;
2566 }
2567 
2568 static int __ffs_data_got_strings(struct ffs_data *ffs,
2569 				  char *const _data, size_t len)
2570 {
2571 	u32 str_count, needed_count, lang_count;
2572 	struct usb_gadget_strings **stringtabs, *t;
2573 	const char *data = _data;
2574 	struct usb_string *s;
2575 
2576 	ENTER();
2577 
2578 	if (unlikely(len < 16 ||
2579 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2580 		     get_unaligned_le32(data + 4) != len))
2581 		goto error;
2582 	str_count  = get_unaligned_le32(data + 8);
2583 	lang_count = get_unaligned_le32(data + 12);
2584 
2585 	/* if one is zero the other must be zero */
2586 	if (unlikely(!str_count != !lang_count))
2587 		goto error;
2588 
2589 	/* Do we have at least as many strings as descriptors need? */
2590 	needed_count = ffs->strings_count;
2591 	if (unlikely(str_count < needed_count))
2592 		goto error;
2593 
2594 	/*
2595 	 * If we don't need any strings just return and free all
2596 	 * memory.
2597 	 */
2598 	if (!needed_count) {
2599 		kfree(_data);
2600 		return 0;
2601 	}
2602 
2603 	/* Allocate everything in one chunk so there's less maintenance. */
2604 	{
2605 		unsigned i = 0;
2606 		vla_group(d);
2607 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2608 			lang_count + 1);
2609 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2610 		vla_item(d, struct usb_string, strings,
2611 			lang_count*(needed_count+1));
2612 
2613 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2614 
2615 		if (unlikely(!vlabuf)) {
2616 			kfree(_data);
2617 			return -ENOMEM;
2618 		}
2619 
2620 		/* Initialize the VLA pointers */
2621 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2622 		t = vla_ptr(vlabuf, d, stringtab);
2623 		i = lang_count;
2624 		do {
2625 			*stringtabs++ = t++;
2626 		} while (--i);
2627 		*stringtabs = NULL;
2628 
2629 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2630 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2631 		t = vla_ptr(vlabuf, d, stringtab);
2632 		s = vla_ptr(vlabuf, d, strings);
2633 	}
2634 
2635 	/* For each language */
2636 	data += 16;
2637 	len -= 16;
2638 
2639 	do { /* lang_count > 0 so we can use do-while */
2640 		unsigned needed = needed_count;
2641 
2642 		if (unlikely(len < 3))
2643 			goto error_free;
2644 		t->language = get_unaligned_le16(data);
2645 		t->strings  = s;
2646 		++t;
2647 
2648 		data += 2;
2649 		len -= 2;
2650 
2651 		/* For each string */
2652 		do { /* str_count > 0 so we can use do-while */
2653 			size_t length = strnlen(data, len);
2654 
2655 			if (unlikely(length == len))
2656 				goto error_free;
2657 
2658 			/*
2659 			 * User may provide more strings then we need,
2660 			 * if that's the case we simply ignore the
2661 			 * rest
2662 			 */
2663 			if (likely(needed)) {
2664 				/*
2665 				 * s->id will be set while adding
2666 				 * function to configuration so for
2667 				 * now just leave garbage here.
2668 				 */
2669 				s->s = data;
2670 				--needed;
2671 				++s;
2672 			}
2673 
2674 			data += length + 1;
2675 			len -= length + 1;
2676 		} while (--str_count);
2677 
2678 		s->id = 0;   /* terminator */
2679 		s->s = NULL;
2680 		++s;
2681 
2682 	} while (--lang_count);
2683 
2684 	/* Some garbage left? */
2685 	if (unlikely(len))
2686 		goto error_free;
2687 
2688 	/* Done! */
2689 	ffs->stringtabs = stringtabs;
2690 	ffs->raw_strings = _data;
2691 
2692 	return 0;
2693 
2694 error_free:
2695 	kfree(stringtabs);
2696 error:
2697 	kfree(_data);
2698 	return -EINVAL;
2699 }
2700 
2701 
2702 /* Events handling and management *******************************************/
2703 
2704 static void __ffs_event_add(struct ffs_data *ffs,
2705 			    enum usb_functionfs_event_type type)
2706 {
2707 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2708 	int neg = 0;
2709 
2710 	/*
2711 	 * Abort any unhandled setup
2712 	 *
2713 	 * We do not need to worry about some cmpxchg() changing value
2714 	 * of ffs->setup_state without holding the lock because when
2715 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2716 	 * the source does nothing.
2717 	 */
2718 	if (ffs->setup_state == FFS_SETUP_PENDING)
2719 		ffs->setup_state = FFS_SETUP_CANCELLED;
2720 
2721 	/*
2722 	 * Logic of this function guarantees that there are at most four pending
2723 	 * evens on ffs->ev.types queue.  This is important because the queue
2724 	 * has space for four elements only and __ffs_ep0_read_events function
2725 	 * depends on that limit as well.  If more event types are added, those
2726 	 * limits have to be revisited or guaranteed to still hold.
2727 	 */
2728 	switch (type) {
2729 	case FUNCTIONFS_RESUME:
2730 		rem_type2 = FUNCTIONFS_SUSPEND;
2731 		fallthrough;
2732 	case FUNCTIONFS_SUSPEND:
2733 	case FUNCTIONFS_SETUP:
2734 		rem_type1 = type;
2735 		/* Discard all similar events */
2736 		break;
2737 
2738 	case FUNCTIONFS_BIND:
2739 	case FUNCTIONFS_UNBIND:
2740 	case FUNCTIONFS_DISABLE:
2741 	case FUNCTIONFS_ENABLE:
2742 		/* Discard everything other then power management. */
2743 		rem_type1 = FUNCTIONFS_SUSPEND;
2744 		rem_type2 = FUNCTIONFS_RESUME;
2745 		neg = 1;
2746 		break;
2747 
2748 	default:
2749 		WARN(1, "%d: unknown event, this should not happen\n", type);
2750 		return;
2751 	}
2752 
2753 	{
2754 		u8 *ev  = ffs->ev.types, *out = ev;
2755 		unsigned n = ffs->ev.count;
2756 		for (; n; --n, ++ev)
2757 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2758 				*out++ = *ev;
2759 			else
2760 				pr_vdebug("purging event %d\n", *ev);
2761 		ffs->ev.count = out - ffs->ev.types;
2762 	}
2763 
2764 	pr_vdebug("adding event %d\n", type);
2765 	ffs->ev.types[ffs->ev.count++] = type;
2766 	wake_up_locked(&ffs->ev.waitq);
2767 	if (ffs->ffs_eventfd)
2768 		eventfd_signal(ffs->ffs_eventfd, 1);
2769 }
2770 
2771 static void ffs_event_add(struct ffs_data *ffs,
2772 			  enum usb_functionfs_event_type type)
2773 {
2774 	unsigned long flags;
2775 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2776 	__ffs_event_add(ffs, type);
2777 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2778 }
2779 
2780 /* Bind/unbind USB function hooks *******************************************/
2781 
2782 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2783 {
2784 	int i;
2785 
2786 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2787 		if (ffs->eps_addrmap[i] == endpoint_address)
2788 			return i;
2789 	return -ENOENT;
2790 }
2791 
2792 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2793 				    struct usb_descriptor_header *desc,
2794 				    void *priv)
2795 {
2796 	struct usb_endpoint_descriptor *ds = (void *)desc;
2797 	struct ffs_function *func = priv;
2798 	struct ffs_ep *ffs_ep;
2799 	unsigned ep_desc_id;
2800 	int idx;
2801 	static const char *speed_names[] = { "full", "high", "super" };
2802 
2803 	if (type != FFS_DESCRIPTOR)
2804 		return 0;
2805 
2806 	/*
2807 	 * If ss_descriptors is not NULL, we are reading super speed
2808 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2809 	 * speed descriptors; otherwise, we are reading full speed
2810 	 * descriptors.
2811 	 */
2812 	if (func->function.ss_descriptors) {
2813 		ep_desc_id = 2;
2814 		func->function.ss_descriptors[(long)valuep] = desc;
2815 	} else if (func->function.hs_descriptors) {
2816 		ep_desc_id = 1;
2817 		func->function.hs_descriptors[(long)valuep] = desc;
2818 	} else {
2819 		ep_desc_id = 0;
2820 		func->function.fs_descriptors[(long)valuep]    = desc;
2821 	}
2822 
2823 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2824 		return 0;
2825 
2826 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2827 	if (idx < 0)
2828 		return idx;
2829 
2830 	ffs_ep = func->eps + idx;
2831 
2832 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2833 		pr_err("two %sspeed descriptors for EP %d\n",
2834 			  speed_names[ep_desc_id],
2835 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2836 		return -EINVAL;
2837 	}
2838 	ffs_ep->descs[ep_desc_id] = ds;
2839 
2840 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2841 	if (ffs_ep->ep) {
2842 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2843 		if (!ds->wMaxPacketSize)
2844 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2845 	} else {
2846 		struct usb_request *req;
2847 		struct usb_ep *ep;
2848 		u8 bEndpointAddress;
2849 		u16 wMaxPacketSize;
2850 
2851 		/*
2852 		 * We back up bEndpointAddress because autoconfig overwrites
2853 		 * it with physical endpoint address.
2854 		 */
2855 		bEndpointAddress = ds->bEndpointAddress;
2856 		/*
2857 		 * We back up wMaxPacketSize because autoconfig treats
2858 		 * endpoint descriptors as if they were full speed.
2859 		 */
2860 		wMaxPacketSize = ds->wMaxPacketSize;
2861 		pr_vdebug("autoconfig\n");
2862 		ep = usb_ep_autoconfig(func->gadget, ds);
2863 		if (unlikely(!ep))
2864 			return -ENOTSUPP;
2865 		ep->driver_data = func->eps + idx;
2866 
2867 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2868 		if (unlikely(!req))
2869 			return -ENOMEM;
2870 
2871 		ffs_ep->ep  = ep;
2872 		ffs_ep->req = req;
2873 		func->eps_revmap[ds->bEndpointAddress &
2874 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2875 		/*
2876 		 * If we use virtual address mapping, we restore
2877 		 * original bEndpointAddress value.
2878 		 */
2879 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2880 			ds->bEndpointAddress = bEndpointAddress;
2881 		/*
2882 		 * Restore wMaxPacketSize which was potentially
2883 		 * overwritten by autoconfig.
2884 		 */
2885 		ds->wMaxPacketSize = wMaxPacketSize;
2886 	}
2887 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2888 
2889 	return 0;
2890 }
2891 
2892 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2893 				   struct usb_descriptor_header *desc,
2894 				   void *priv)
2895 {
2896 	struct ffs_function *func = priv;
2897 	unsigned idx;
2898 	u8 newValue;
2899 
2900 	switch (type) {
2901 	default:
2902 	case FFS_DESCRIPTOR:
2903 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2904 		return 0;
2905 
2906 	case FFS_INTERFACE:
2907 		idx = *valuep;
2908 		if (func->interfaces_nums[idx] < 0) {
2909 			int id = usb_interface_id(func->conf, &func->function);
2910 			if (unlikely(id < 0))
2911 				return id;
2912 			func->interfaces_nums[idx] = id;
2913 		}
2914 		newValue = func->interfaces_nums[idx];
2915 		break;
2916 
2917 	case FFS_STRING:
2918 		/* String' IDs are allocated when fsf_data is bound to cdev */
2919 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2920 		break;
2921 
2922 	case FFS_ENDPOINT:
2923 		/*
2924 		 * USB_DT_ENDPOINT are handled in
2925 		 * __ffs_func_bind_do_descs().
2926 		 */
2927 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2928 			return 0;
2929 
2930 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2931 		if (unlikely(!func->eps[idx].ep))
2932 			return -EINVAL;
2933 
2934 		{
2935 			struct usb_endpoint_descriptor **descs;
2936 			descs = func->eps[idx].descs;
2937 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2938 		}
2939 		break;
2940 	}
2941 
2942 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2943 	*valuep = newValue;
2944 	return 0;
2945 }
2946 
2947 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2948 				      struct usb_os_desc_header *h, void *data,
2949 				      unsigned len, void *priv)
2950 {
2951 	struct ffs_function *func = priv;
2952 	u8 length = 0;
2953 
2954 	switch (type) {
2955 	case FFS_OS_DESC_EXT_COMPAT: {
2956 		struct usb_ext_compat_desc *desc = data;
2957 		struct usb_os_desc_table *t;
2958 
2959 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2960 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2961 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2962 		       ARRAY_SIZE(desc->CompatibleID) +
2963 		       ARRAY_SIZE(desc->SubCompatibleID));
2964 		length = sizeof(*desc);
2965 	}
2966 		break;
2967 	case FFS_OS_DESC_EXT_PROP: {
2968 		struct usb_ext_prop_desc *desc = data;
2969 		struct usb_os_desc_table *t;
2970 		struct usb_os_desc_ext_prop *ext_prop;
2971 		char *ext_prop_name;
2972 		char *ext_prop_data;
2973 
2974 		t = &func->function.os_desc_table[h->interface];
2975 		t->if_id = func->interfaces_nums[h->interface];
2976 
2977 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2978 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2979 
2980 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2981 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2982 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2983 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2984 		length = ext_prop->name_len + ext_prop->data_len + 14;
2985 
2986 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2987 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2988 			ext_prop->name_len;
2989 
2990 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2991 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2992 			ext_prop->data_len;
2993 		memcpy(ext_prop_data,
2994 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2995 		       ext_prop->data_len);
2996 		/* unicode data reported to the host as "WCHAR"s */
2997 		switch (ext_prop->type) {
2998 		case USB_EXT_PROP_UNICODE:
2999 		case USB_EXT_PROP_UNICODE_ENV:
3000 		case USB_EXT_PROP_UNICODE_LINK:
3001 		case USB_EXT_PROP_UNICODE_MULTI:
3002 			ext_prop->data_len *= 2;
3003 			break;
3004 		}
3005 		ext_prop->data = ext_prop_data;
3006 
3007 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3008 		       ext_prop->name_len);
3009 		/* property name reported to the host as "WCHAR"s */
3010 		ext_prop->name_len *= 2;
3011 		ext_prop->name = ext_prop_name;
3012 
3013 		t->os_desc->ext_prop_len +=
3014 			ext_prop->name_len + ext_prop->data_len + 14;
3015 		++t->os_desc->ext_prop_count;
3016 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3017 	}
3018 		break;
3019 	default:
3020 		pr_vdebug("unknown descriptor: %d\n", type);
3021 	}
3022 
3023 	return length;
3024 }
3025 
3026 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3027 						struct usb_configuration *c)
3028 {
3029 	struct ffs_function *func = ffs_func_from_usb(f);
3030 	struct f_fs_opts *ffs_opts =
3031 		container_of(f->fi, struct f_fs_opts, func_inst);
3032 	int ret;
3033 
3034 	ENTER();
3035 
3036 	/*
3037 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3038 	 * which already uses locking; taking the same lock here would
3039 	 * cause a deadlock.
3040 	 *
3041 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3042 	 */
3043 	if (!ffs_opts->no_configfs)
3044 		ffs_dev_lock();
3045 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3046 	func->ffs = ffs_opts->dev->ffs_data;
3047 	if (!ffs_opts->no_configfs)
3048 		ffs_dev_unlock();
3049 	if (ret)
3050 		return ERR_PTR(ret);
3051 
3052 	func->conf = c;
3053 	func->gadget = c->cdev->gadget;
3054 
3055 	/*
3056 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3057 	 * configurations are bound in sequence with list_for_each_entry,
3058 	 * in each configuration its functions are bound in sequence
3059 	 * with list_for_each_entry, so we assume no race condition
3060 	 * with regard to ffs_opts->bound access
3061 	 */
3062 	if (!ffs_opts->refcnt) {
3063 		ret = functionfs_bind(func->ffs, c->cdev);
3064 		if (ret)
3065 			return ERR_PTR(ret);
3066 	}
3067 	ffs_opts->refcnt++;
3068 	func->function.strings = func->ffs->stringtabs;
3069 
3070 	return ffs_opts;
3071 }
3072 
3073 static int _ffs_func_bind(struct usb_configuration *c,
3074 			  struct usb_function *f)
3075 {
3076 	struct ffs_function *func = ffs_func_from_usb(f);
3077 	struct ffs_data *ffs = func->ffs;
3078 
3079 	const int full = !!func->ffs->fs_descs_count;
3080 	const int high = !!func->ffs->hs_descs_count;
3081 	const int super = !!func->ffs->ss_descs_count;
3082 
3083 	int fs_len, hs_len, ss_len, ret, i;
3084 	struct ffs_ep *eps_ptr;
3085 
3086 	/* Make it a single chunk, less management later on */
3087 	vla_group(d);
3088 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3089 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3090 		full ? ffs->fs_descs_count + 1 : 0);
3091 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3092 		high ? ffs->hs_descs_count + 1 : 0);
3093 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3094 		super ? ffs->ss_descs_count + 1 : 0);
3095 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3096 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3097 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3098 	vla_item_with_sz(d, char[16], ext_compat,
3099 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3100 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3101 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3102 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3103 			 ffs->ms_os_descs_ext_prop_count);
3104 	vla_item_with_sz(d, char, ext_prop_name,
3105 			 ffs->ms_os_descs_ext_prop_name_len);
3106 	vla_item_with_sz(d, char, ext_prop_data,
3107 			 ffs->ms_os_descs_ext_prop_data_len);
3108 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3109 	char *vlabuf;
3110 
3111 	ENTER();
3112 
3113 	/* Has descriptors only for speeds gadget does not support */
3114 	if (unlikely(!(full | high | super)))
3115 		return -ENOTSUPP;
3116 
3117 	/* Allocate a single chunk, less management later on */
3118 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3119 	if (unlikely(!vlabuf))
3120 		return -ENOMEM;
3121 
3122 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3123 	ffs->ms_os_descs_ext_prop_name_avail =
3124 		vla_ptr(vlabuf, d, ext_prop_name);
3125 	ffs->ms_os_descs_ext_prop_data_avail =
3126 		vla_ptr(vlabuf, d, ext_prop_data);
3127 
3128 	/* Copy descriptors  */
3129 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3130 	       ffs->raw_descs_length);
3131 
3132 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3133 	eps_ptr = vla_ptr(vlabuf, d, eps);
3134 	for (i = 0; i < ffs->eps_count; i++)
3135 		eps_ptr[i].num = -1;
3136 
3137 	/* Save pointers
3138 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3139 	*/
3140 	func->eps             = vla_ptr(vlabuf, d, eps);
3141 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3142 
3143 	/*
3144 	 * Go through all the endpoint descriptors and allocate
3145 	 * endpoints first, so that later we can rewrite the endpoint
3146 	 * numbers without worrying that it may be described later on.
3147 	 */
3148 	if (likely(full)) {
3149 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3150 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3151 				      vla_ptr(vlabuf, d, raw_descs),
3152 				      d_raw_descs__sz,
3153 				      __ffs_func_bind_do_descs, func);
3154 		if (unlikely(fs_len < 0)) {
3155 			ret = fs_len;
3156 			goto error;
3157 		}
3158 	} else {
3159 		fs_len = 0;
3160 	}
3161 
3162 	if (likely(high)) {
3163 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3164 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3165 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3166 				      d_raw_descs__sz - fs_len,
3167 				      __ffs_func_bind_do_descs, func);
3168 		if (unlikely(hs_len < 0)) {
3169 			ret = hs_len;
3170 			goto error;
3171 		}
3172 	} else {
3173 		hs_len = 0;
3174 	}
3175 
3176 	if (likely(super)) {
3177 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3178 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3179 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3180 				d_raw_descs__sz - fs_len - hs_len,
3181 				__ffs_func_bind_do_descs, func);
3182 		if (unlikely(ss_len < 0)) {
3183 			ret = ss_len;
3184 			goto error;
3185 		}
3186 	} else {
3187 		ss_len = 0;
3188 	}
3189 
3190 	/*
3191 	 * Now handle interface numbers allocation and interface and
3192 	 * endpoint numbers rewriting.  We can do that in one go
3193 	 * now.
3194 	 */
3195 	ret = ffs_do_descs(ffs->fs_descs_count +
3196 			   (high ? ffs->hs_descs_count : 0) +
3197 			   (super ? ffs->ss_descs_count : 0),
3198 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3199 			   __ffs_func_bind_do_nums, func);
3200 	if (unlikely(ret < 0))
3201 		goto error;
3202 
3203 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3204 	if (c->cdev->use_os_string) {
3205 		for (i = 0; i < ffs->interfaces_count; ++i) {
3206 			struct usb_os_desc *desc;
3207 
3208 			desc = func->function.os_desc_table[i].os_desc =
3209 				vla_ptr(vlabuf, d, os_desc) +
3210 				i * sizeof(struct usb_os_desc);
3211 			desc->ext_compat_id =
3212 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3213 			INIT_LIST_HEAD(&desc->ext_prop);
3214 		}
3215 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3216 				      vla_ptr(vlabuf, d, raw_descs) +
3217 				      fs_len + hs_len + ss_len,
3218 				      d_raw_descs__sz - fs_len - hs_len -
3219 				      ss_len,
3220 				      __ffs_func_bind_do_os_desc, func);
3221 		if (unlikely(ret < 0))
3222 			goto error;
3223 	}
3224 	func->function.os_desc_n =
3225 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3226 
3227 	/* And we're done */
3228 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3229 	return 0;
3230 
3231 error:
3232 	/* XXX Do we need to release all claimed endpoints here? */
3233 	return ret;
3234 }
3235 
3236 static int ffs_func_bind(struct usb_configuration *c,
3237 			 struct usb_function *f)
3238 {
3239 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3240 	struct ffs_function *func = ffs_func_from_usb(f);
3241 	int ret;
3242 
3243 	if (IS_ERR(ffs_opts))
3244 		return PTR_ERR(ffs_opts);
3245 
3246 	ret = _ffs_func_bind(c, f);
3247 	if (ret && !--ffs_opts->refcnt)
3248 		functionfs_unbind(func->ffs);
3249 
3250 	return ret;
3251 }
3252 
3253 
3254 /* Other USB function hooks *************************************************/
3255 
3256 static void ffs_reset_work(struct work_struct *work)
3257 {
3258 	struct ffs_data *ffs = container_of(work,
3259 		struct ffs_data, reset_work);
3260 	ffs_data_reset(ffs);
3261 }
3262 
3263 static int ffs_func_set_alt(struct usb_function *f,
3264 			    unsigned interface, unsigned alt)
3265 {
3266 	struct ffs_function *func = ffs_func_from_usb(f);
3267 	struct ffs_data *ffs = func->ffs;
3268 	int ret = 0, intf;
3269 
3270 	if (alt != (unsigned)-1) {
3271 		intf = ffs_func_revmap_intf(func, interface);
3272 		if (unlikely(intf < 0))
3273 			return intf;
3274 	}
3275 
3276 	if (ffs->func)
3277 		ffs_func_eps_disable(ffs->func);
3278 
3279 	if (ffs->state == FFS_DEACTIVATED) {
3280 		ffs->state = FFS_CLOSING;
3281 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3282 		schedule_work(&ffs->reset_work);
3283 		return -ENODEV;
3284 	}
3285 
3286 	if (ffs->state != FFS_ACTIVE)
3287 		return -ENODEV;
3288 
3289 	if (alt == (unsigned)-1) {
3290 		ffs->func = NULL;
3291 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3292 		return 0;
3293 	}
3294 
3295 	ffs->func = func;
3296 	ret = ffs_func_eps_enable(func);
3297 	if (likely(ret >= 0))
3298 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3299 	return ret;
3300 }
3301 
3302 static void ffs_func_disable(struct usb_function *f)
3303 {
3304 	ffs_func_set_alt(f, 0, (unsigned)-1);
3305 }
3306 
3307 static int ffs_func_setup(struct usb_function *f,
3308 			  const struct usb_ctrlrequest *creq)
3309 {
3310 	struct ffs_function *func = ffs_func_from_usb(f);
3311 	struct ffs_data *ffs = func->ffs;
3312 	unsigned long flags;
3313 	int ret;
3314 
3315 	ENTER();
3316 
3317 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3318 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3319 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3320 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3321 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3322 
3323 	/*
3324 	 * Most requests directed to interface go through here
3325 	 * (notable exceptions are set/get interface) so we need to
3326 	 * handle them.  All other either handled by composite or
3327 	 * passed to usb_configuration->setup() (if one is set).  No
3328 	 * matter, we will handle requests directed to endpoint here
3329 	 * as well (as it's straightforward).  Other request recipient
3330 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3331 	 * is being used.
3332 	 */
3333 	if (ffs->state != FFS_ACTIVE)
3334 		return -ENODEV;
3335 
3336 	switch (creq->bRequestType & USB_RECIP_MASK) {
3337 	case USB_RECIP_INTERFACE:
3338 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3339 		if (unlikely(ret < 0))
3340 			return ret;
3341 		break;
3342 
3343 	case USB_RECIP_ENDPOINT:
3344 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3345 		if (unlikely(ret < 0))
3346 			return ret;
3347 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3348 			ret = func->ffs->eps_addrmap[ret];
3349 		break;
3350 
3351 	default:
3352 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3353 			ret = le16_to_cpu(creq->wIndex);
3354 		else
3355 			return -EOPNOTSUPP;
3356 	}
3357 
3358 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3359 	ffs->ev.setup = *creq;
3360 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3361 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3362 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3363 
3364 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3365 }
3366 
3367 static bool ffs_func_req_match(struct usb_function *f,
3368 			       const struct usb_ctrlrequest *creq,
3369 			       bool config0)
3370 {
3371 	struct ffs_function *func = ffs_func_from_usb(f);
3372 
3373 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3374 		return false;
3375 
3376 	switch (creq->bRequestType & USB_RECIP_MASK) {
3377 	case USB_RECIP_INTERFACE:
3378 		return (ffs_func_revmap_intf(func,
3379 					     le16_to_cpu(creq->wIndex)) >= 0);
3380 	case USB_RECIP_ENDPOINT:
3381 		return (ffs_func_revmap_ep(func,
3382 					   le16_to_cpu(creq->wIndex)) >= 0);
3383 	default:
3384 		return (bool) (func->ffs->user_flags &
3385 			       FUNCTIONFS_ALL_CTRL_RECIP);
3386 	}
3387 }
3388 
3389 static void ffs_func_suspend(struct usb_function *f)
3390 {
3391 	ENTER();
3392 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3393 }
3394 
3395 static void ffs_func_resume(struct usb_function *f)
3396 {
3397 	ENTER();
3398 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3399 }
3400 
3401 
3402 /* Endpoint and interface numbers reverse mapping ***************************/
3403 
3404 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3405 {
3406 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3407 	return num ? num : -EDOM;
3408 }
3409 
3410 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3411 {
3412 	short *nums = func->interfaces_nums;
3413 	unsigned count = func->ffs->interfaces_count;
3414 
3415 	for (; count; --count, ++nums) {
3416 		if (*nums >= 0 && *nums == intf)
3417 			return nums - func->interfaces_nums;
3418 	}
3419 
3420 	return -EDOM;
3421 }
3422 
3423 
3424 /* Devices management *******************************************************/
3425 
3426 static LIST_HEAD(ffs_devices);
3427 
3428 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3429 {
3430 	struct ffs_dev *dev;
3431 
3432 	if (!name)
3433 		return NULL;
3434 
3435 	list_for_each_entry(dev, &ffs_devices, entry) {
3436 		if (strcmp(dev->name, name) == 0)
3437 			return dev;
3438 	}
3439 
3440 	return NULL;
3441 }
3442 
3443 /*
3444  * ffs_lock must be taken by the caller of this function
3445  */
3446 static struct ffs_dev *_ffs_get_single_dev(void)
3447 {
3448 	struct ffs_dev *dev;
3449 
3450 	if (list_is_singular(&ffs_devices)) {
3451 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3452 		if (dev->single)
3453 			return dev;
3454 	}
3455 
3456 	return NULL;
3457 }
3458 
3459 /*
3460  * ffs_lock must be taken by the caller of this function
3461  */
3462 static struct ffs_dev *_ffs_find_dev(const char *name)
3463 {
3464 	struct ffs_dev *dev;
3465 
3466 	dev = _ffs_get_single_dev();
3467 	if (dev)
3468 		return dev;
3469 
3470 	return _ffs_do_find_dev(name);
3471 }
3472 
3473 /* Configfs support *********************************************************/
3474 
3475 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3476 {
3477 	return container_of(to_config_group(item), struct f_fs_opts,
3478 			    func_inst.group);
3479 }
3480 
3481 static void ffs_attr_release(struct config_item *item)
3482 {
3483 	struct f_fs_opts *opts = to_ffs_opts(item);
3484 
3485 	usb_put_function_instance(&opts->func_inst);
3486 }
3487 
3488 static struct configfs_item_operations ffs_item_ops = {
3489 	.release	= ffs_attr_release,
3490 };
3491 
3492 static const struct config_item_type ffs_func_type = {
3493 	.ct_item_ops	= &ffs_item_ops,
3494 	.ct_owner	= THIS_MODULE,
3495 };
3496 
3497 
3498 /* Function registration interface ******************************************/
3499 
3500 static void ffs_free_inst(struct usb_function_instance *f)
3501 {
3502 	struct f_fs_opts *opts;
3503 
3504 	opts = to_f_fs_opts(f);
3505 	ffs_dev_lock();
3506 	_ffs_free_dev(opts->dev);
3507 	ffs_dev_unlock();
3508 	kfree(opts);
3509 }
3510 
3511 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3512 {
3513 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3514 		return -ENAMETOOLONG;
3515 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3516 }
3517 
3518 static struct usb_function_instance *ffs_alloc_inst(void)
3519 {
3520 	struct f_fs_opts *opts;
3521 	struct ffs_dev *dev;
3522 
3523 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3524 	if (!opts)
3525 		return ERR_PTR(-ENOMEM);
3526 
3527 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3528 	opts->func_inst.free_func_inst = ffs_free_inst;
3529 	ffs_dev_lock();
3530 	dev = _ffs_alloc_dev();
3531 	ffs_dev_unlock();
3532 	if (IS_ERR(dev)) {
3533 		kfree(opts);
3534 		return ERR_CAST(dev);
3535 	}
3536 	opts->dev = dev;
3537 	dev->opts = opts;
3538 
3539 	config_group_init_type_name(&opts->func_inst.group, "",
3540 				    &ffs_func_type);
3541 	return &opts->func_inst;
3542 }
3543 
3544 static void ffs_free(struct usb_function *f)
3545 {
3546 	kfree(ffs_func_from_usb(f));
3547 }
3548 
3549 static void ffs_func_unbind(struct usb_configuration *c,
3550 			    struct usb_function *f)
3551 {
3552 	struct ffs_function *func = ffs_func_from_usb(f);
3553 	struct ffs_data *ffs = func->ffs;
3554 	struct f_fs_opts *opts =
3555 		container_of(f->fi, struct f_fs_opts, func_inst);
3556 	struct ffs_ep *ep = func->eps;
3557 	unsigned count = ffs->eps_count;
3558 	unsigned long flags;
3559 
3560 	ENTER();
3561 	if (ffs->func == func) {
3562 		ffs_func_eps_disable(func);
3563 		ffs->func = NULL;
3564 	}
3565 
3566 	if (!--opts->refcnt)
3567 		functionfs_unbind(ffs);
3568 
3569 	/* cleanup after autoconfig */
3570 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3571 	while (count--) {
3572 		if (ep->ep && ep->req)
3573 			usb_ep_free_request(ep->ep, ep->req);
3574 		ep->req = NULL;
3575 		++ep;
3576 	}
3577 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3578 	kfree(func->eps);
3579 	func->eps = NULL;
3580 	/*
3581 	 * eps, descriptors and interfaces_nums are allocated in the
3582 	 * same chunk so only one free is required.
3583 	 */
3584 	func->function.fs_descriptors = NULL;
3585 	func->function.hs_descriptors = NULL;
3586 	func->function.ss_descriptors = NULL;
3587 	func->interfaces_nums = NULL;
3588 
3589 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3590 }
3591 
3592 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3593 {
3594 	struct ffs_function *func;
3595 
3596 	ENTER();
3597 
3598 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3599 	if (unlikely(!func))
3600 		return ERR_PTR(-ENOMEM);
3601 
3602 	func->function.name    = "Function FS Gadget";
3603 
3604 	func->function.bind    = ffs_func_bind;
3605 	func->function.unbind  = ffs_func_unbind;
3606 	func->function.set_alt = ffs_func_set_alt;
3607 	func->function.disable = ffs_func_disable;
3608 	func->function.setup   = ffs_func_setup;
3609 	func->function.req_match = ffs_func_req_match;
3610 	func->function.suspend = ffs_func_suspend;
3611 	func->function.resume  = ffs_func_resume;
3612 	func->function.free_func = ffs_free;
3613 
3614 	return &func->function;
3615 }
3616 
3617 /*
3618  * ffs_lock must be taken by the caller of this function
3619  */
3620 static struct ffs_dev *_ffs_alloc_dev(void)
3621 {
3622 	struct ffs_dev *dev;
3623 	int ret;
3624 
3625 	if (_ffs_get_single_dev())
3626 			return ERR_PTR(-EBUSY);
3627 
3628 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3629 	if (!dev)
3630 		return ERR_PTR(-ENOMEM);
3631 
3632 	if (list_empty(&ffs_devices)) {
3633 		ret = functionfs_init();
3634 		if (ret) {
3635 			kfree(dev);
3636 			return ERR_PTR(ret);
3637 		}
3638 	}
3639 
3640 	list_add(&dev->entry, &ffs_devices);
3641 
3642 	return dev;
3643 }
3644 
3645 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3646 {
3647 	struct ffs_dev *existing;
3648 	int ret = 0;
3649 
3650 	ffs_dev_lock();
3651 
3652 	existing = _ffs_do_find_dev(name);
3653 	if (!existing)
3654 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3655 	else if (existing != dev)
3656 		ret = -EBUSY;
3657 
3658 	ffs_dev_unlock();
3659 
3660 	return ret;
3661 }
3662 EXPORT_SYMBOL_GPL(ffs_name_dev);
3663 
3664 int ffs_single_dev(struct ffs_dev *dev)
3665 {
3666 	int ret;
3667 
3668 	ret = 0;
3669 	ffs_dev_lock();
3670 
3671 	if (!list_is_singular(&ffs_devices))
3672 		ret = -EBUSY;
3673 	else
3674 		dev->single = true;
3675 
3676 	ffs_dev_unlock();
3677 	return ret;
3678 }
3679 EXPORT_SYMBOL_GPL(ffs_single_dev);
3680 
3681 /*
3682  * ffs_lock must be taken by the caller of this function
3683  */
3684 static void _ffs_free_dev(struct ffs_dev *dev)
3685 {
3686 	list_del(&dev->entry);
3687 
3688 	/* Clear the private_data pointer to stop incorrect dev access */
3689 	if (dev->ffs_data)
3690 		dev->ffs_data->private_data = NULL;
3691 
3692 	kfree(dev);
3693 	if (list_empty(&ffs_devices))
3694 		functionfs_cleanup();
3695 }
3696 
3697 static void *ffs_acquire_dev(const char *dev_name)
3698 {
3699 	struct ffs_dev *ffs_dev;
3700 
3701 	ENTER();
3702 	ffs_dev_lock();
3703 
3704 	ffs_dev = _ffs_find_dev(dev_name);
3705 	if (!ffs_dev)
3706 		ffs_dev = ERR_PTR(-ENOENT);
3707 	else if (ffs_dev->mounted)
3708 		ffs_dev = ERR_PTR(-EBUSY);
3709 	else if (ffs_dev->ffs_acquire_dev_callback &&
3710 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3711 		ffs_dev = ERR_PTR(-ENOENT);
3712 	else
3713 		ffs_dev->mounted = true;
3714 
3715 	ffs_dev_unlock();
3716 	return ffs_dev;
3717 }
3718 
3719 static void ffs_release_dev(struct ffs_data *ffs_data)
3720 {
3721 	struct ffs_dev *ffs_dev;
3722 
3723 	ENTER();
3724 	ffs_dev_lock();
3725 
3726 	ffs_dev = ffs_data->private_data;
3727 	if (ffs_dev) {
3728 		ffs_dev->mounted = false;
3729 
3730 		if (ffs_dev->ffs_release_dev_callback)
3731 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3732 	}
3733 
3734 	ffs_dev_unlock();
3735 }
3736 
3737 static int ffs_ready(struct ffs_data *ffs)
3738 {
3739 	struct ffs_dev *ffs_obj;
3740 	int ret = 0;
3741 
3742 	ENTER();
3743 	ffs_dev_lock();
3744 
3745 	ffs_obj = ffs->private_data;
3746 	if (!ffs_obj) {
3747 		ret = -EINVAL;
3748 		goto done;
3749 	}
3750 	if (WARN_ON(ffs_obj->desc_ready)) {
3751 		ret = -EBUSY;
3752 		goto done;
3753 	}
3754 
3755 	ffs_obj->desc_ready = true;
3756 	ffs_obj->ffs_data = ffs;
3757 
3758 	if (ffs_obj->ffs_ready_callback) {
3759 		ret = ffs_obj->ffs_ready_callback(ffs);
3760 		if (ret)
3761 			goto done;
3762 	}
3763 
3764 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3765 done:
3766 	ffs_dev_unlock();
3767 	return ret;
3768 }
3769 
3770 static void ffs_closed(struct ffs_data *ffs)
3771 {
3772 	struct ffs_dev *ffs_obj;
3773 	struct f_fs_opts *opts;
3774 	struct config_item *ci;
3775 
3776 	ENTER();
3777 	ffs_dev_lock();
3778 
3779 	ffs_obj = ffs->private_data;
3780 	if (!ffs_obj)
3781 		goto done;
3782 
3783 	ffs_obj->desc_ready = false;
3784 	ffs_obj->ffs_data = NULL;
3785 
3786 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3787 	    ffs_obj->ffs_closed_callback)
3788 		ffs_obj->ffs_closed_callback(ffs);
3789 
3790 	if (ffs_obj->opts)
3791 		opts = ffs_obj->opts;
3792 	else
3793 		goto done;
3794 
3795 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3796 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3797 		goto done;
3798 
3799 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3800 	ffs_dev_unlock();
3801 
3802 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3803 		unregister_gadget_item(ci);
3804 	return;
3805 done:
3806 	ffs_dev_unlock();
3807 }
3808 
3809 /* Misc helper functions ****************************************************/
3810 
3811 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3812 {
3813 	return nonblock
3814 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3815 		: mutex_lock_interruptible(mutex);
3816 }
3817 
3818 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3819 {
3820 	char *data;
3821 
3822 	if (unlikely(!len))
3823 		return NULL;
3824 
3825 	data = kmalloc(len, GFP_KERNEL);
3826 	if (unlikely(!data))
3827 		return ERR_PTR(-ENOMEM);
3828 
3829 	if (unlikely(copy_from_user(data, buf, len))) {
3830 		kfree(data);
3831 		return ERR_PTR(-EFAULT);
3832 	}
3833 
3834 	pr_vdebug("Buffer from user space:\n");
3835 	ffs_dump_mem("", data, len);
3836 
3837 	return data;
3838 }
3839 
3840 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3841 MODULE_LICENSE("GPL");
3842 MODULE_AUTHOR("Michal Nazarewicz");
3843