xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 06b53b02)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[16];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 };
126 
127 struct ffs_epfile {
128 	/* Protects ep->ep and ep->req. */
129 	struct mutex			mutex;
130 
131 	struct ffs_data			*ffs;
132 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
133 
134 	struct dentry			*dentry;
135 
136 	/*
137 	 * Buffer for holding data from partial reads which may happen since
138 	 * we’re rounding user read requests to a multiple of a max packet size.
139 	 *
140 	 * The pointer is initialised with NULL value and may be set by
141 	 * __ffs_epfile_read_data function to point to a temporary buffer.
142 	 *
143 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
144 	 * data from said buffer and eventually free it.  Importantly, while the
145 	 * function is using the buffer, it sets the pointer to NULL.  This is
146 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
147 	 * can never run concurrently (they are synchronised by epfile->mutex)
148 	 * so the latter will not assign a new value to the pointer.
149 	 *
150 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
151 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
152 	 * value is crux of the synchronisation between ffs_func_eps_disable and
153 	 * __ffs_epfile_read_data.
154 	 *
155 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
156 	 * pointer back to its old value (as described above), but seeing as the
157 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
158 	 * the buffer.
159 	 *
160 	 * == State transitions ==
161 	 *
162 	 * • ptr == NULL:  (initial state)
163 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
164 	 *   ◦ __ffs_epfile_read_buffered:    nop
165 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
166 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
167 	 * • ptr == DROP:
168 	 *   ◦ __ffs_epfile_read_buffer_free: nop
169 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
170 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
171 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
172 	 * • ptr == buf:
173 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
174 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
175 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
176 	 *                                    is always called first
177 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
178 	 * • ptr == NULL and reading:
179 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
180 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
181 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
182 	 *   ◦ reading finishes and …
183 	 *     … all data read:               free buf, go to ptr == NULL
184 	 *     … otherwise:                   go to ptr == buf and reading
185 	 * • ptr == DROP and reading:
186 	 *   ◦ __ffs_epfile_read_buffer_free: nop
187 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
188 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
189 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
190 	 */
191 	struct ffs_buffer		*read_buffer;
192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193 
194 	char				name[5];
195 
196 	unsigned char			in;	/* P: ffs->eps_lock */
197 	unsigned char			isoc;	/* P: ffs->eps_lock */
198 
199 	unsigned char			_pad;
200 };
201 
202 struct ffs_buffer {
203 	size_t length;
204 	char *data;
205 	char storage[];
206 };
207 
208 /*  ffs_io_data structure ***************************************************/
209 
210 struct ffs_io_data {
211 	bool aio;
212 	bool read;
213 
214 	struct kiocb *kiocb;
215 	struct iov_iter data;
216 	const void *to_free;
217 	char *buf;
218 
219 	struct mm_struct *mm;
220 	struct work_struct work;
221 
222 	struct usb_ep *ep;
223 	struct usb_request *req;
224 	struct sg_table sgt;
225 	bool use_sg;
226 
227 	struct ffs_data *ffs;
228 
229 	int status;
230 	struct completion done;
231 };
232 
233 struct ffs_desc_helper {
234 	struct ffs_data *ffs;
235 	unsigned interfaces_count;
236 	unsigned eps_count;
237 };
238 
239 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
240 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
241 
242 static struct dentry *
243 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
244 		   const struct file_operations *fops);
245 
246 /* Devices management *******************************************************/
247 
248 DEFINE_MUTEX(ffs_lock);
249 EXPORT_SYMBOL_GPL(ffs_lock);
250 
251 static struct ffs_dev *_ffs_find_dev(const char *name);
252 static struct ffs_dev *_ffs_alloc_dev(void);
253 static void _ffs_free_dev(struct ffs_dev *dev);
254 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
255 static void ffs_release_dev(struct ffs_dev *ffs_dev);
256 static int ffs_ready(struct ffs_data *ffs);
257 static void ffs_closed(struct ffs_data *ffs);
258 
259 /* Misc helper functions ****************************************************/
260 
261 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
262 	__attribute__((warn_unused_result, nonnull));
263 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
264 	__attribute__((warn_unused_result, nonnull));
265 
266 
267 /* Control file aka ep0 *****************************************************/
268 
269 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
270 {
271 	struct ffs_data *ffs = req->context;
272 
273 	complete(&ffs->ep0req_completion);
274 }
275 
276 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
277 	__releases(&ffs->ev.waitq.lock)
278 {
279 	struct usb_request *req = ffs->ep0req;
280 	int ret;
281 
282 	if (!req) {
283 		spin_unlock_irq(&ffs->ev.waitq.lock);
284 		return -EINVAL;
285 	}
286 
287 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
288 
289 	spin_unlock_irq(&ffs->ev.waitq.lock);
290 
291 	req->buf      = data;
292 	req->length   = len;
293 
294 	/*
295 	 * UDC layer requires to provide a buffer even for ZLP, but should
296 	 * not use it at all. Let's provide some poisoned pointer to catch
297 	 * possible bug in the driver.
298 	 */
299 	if (req->buf == NULL)
300 		req->buf = (void *)0xDEADBABE;
301 
302 	reinit_completion(&ffs->ep0req_completion);
303 
304 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
305 	if (ret < 0)
306 		return ret;
307 
308 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
309 	if (ret) {
310 		usb_ep_dequeue(ffs->gadget->ep0, req);
311 		return -EINTR;
312 	}
313 
314 	ffs->setup_state = FFS_NO_SETUP;
315 	return req->status ? req->status : req->actual;
316 }
317 
318 static int __ffs_ep0_stall(struct ffs_data *ffs)
319 {
320 	if (ffs->ev.can_stall) {
321 		pr_vdebug("ep0 stall\n");
322 		usb_ep_set_halt(ffs->gadget->ep0);
323 		ffs->setup_state = FFS_NO_SETUP;
324 		return -EL2HLT;
325 	} else {
326 		pr_debug("bogus ep0 stall!\n");
327 		return -ESRCH;
328 	}
329 }
330 
331 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
332 			     size_t len, loff_t *ptr)
333 {
334 	struct ffs_data *ffs = file->private_data;
335 	ssize_t ret;
336 	char *data;
337 
338 	ENTER();
339 
340 	/* Fast check if setup was canceled */
341 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
342 		return -EIDRM;
343 
344 	/* Acquire mutex */
345 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
346 	if (ret < 0)
347 		return ret;
348 
349 	/* Check state */
350 	switch (ffs->state) {
351 	case FFS_READ_DESCRIPTORS:
352 	case FFS_READ_STRINGS:
353 		/* Copy data */
354 		if (len < 16) {
355 			ret = -EINVAL;
356 			break;
357 		}
358 
359 		data = ffs_prepare_buffer(buf, len);
360 		if (IS_ERR(data)) {
361 			ret = PTR_ERR(data);
362 			break;
363 		}
364 
365 		/* Handle data */
366 		if (ffs->state == FFS_READ_DESCRIPTORS) {
367 			pr_info("read descriptors\n");
368 			ret = __ffs_data_got_descs(ffs, data, len);
369 			if (ret < 0)
370 				break;
371 
372 			ffs->state = FFS_READ_STRINGS;
373 			ret = len;
374 		} else {
375 			pr_info("read strings\n");
376 			ret = __ffs_data_got_strings(ffs, data, len);
377 			if (ret < 0)
378 				break;
379 
380 			ret = ffs_epfiles_create(ffs);
381 			if (ret) {
382 				ffs->state = FFS_CLOSING;
383 				break;
384 			}
385 
386 			ffs->state = FFS_ACTIVE;
387 			mutex_unlock(&ffs->mutex);
388 
389 			ret = ffs_ready(ffs);
390 			if (ret < 0) {
391 				ffs->state = FFS_CLOSING;
392 				return ret;
393 			}
394 
395 			return len;
396 		}
397 		break;
398 
399 	case FFS_ACTIVE:
400 		data = NULL;
401 		/*
402 		 * We're called from user space, we can use _irq
403 		 * rather then _irqsave
404 		 */
405 		spin_lock_irq(&ffs->ev.waitq.lock);
406 		switch (ffs_setup_state_clear_cancelled(ffs)) {
407 		case FFS_SETUP_CANCELLED:
408 			ret = -EIDRM;
409 			goto done_spin;
410 
411 		case FFS_NO_SETUP:
412 			ret = -ESRCH;
413 			goto done_spin;
414 
415 		case FFS_SETUP_PENDING:
416 			break;
417 		}
418 
419 		/* FFS_SETUP_PENDING */
420 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
421 			spin_unlock_irq(&ffs->ev.waitq.lock);
422 			ret = __ffs_ep0_stall(ffs);
423 			break;
424 		}
425 
426 		/* FFS_SETUP_PENDING and not stall */
427 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
428 
429 		spin_unlock_irq(&ffs->ev.waitq.lock);
430 
431 		data = ffs_prepare_buffer(buf, len);
432 		if (IS_ERR(data)) {
433 			ret = PTR_ERR(data);
434 			break;
435 		}
436 
437 		spin_lock_irq(&ffs->ev.waitq.lock);
438 
439 		/*
440 		 * We are guaranteed to be still in FFS_ACTIVE state
441 		 * but the state of setup could have changed from
442 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
443 		 * to check for that.  If that happened we copied data
444 		 * from user space in vain but it's unlikely.
445 		 *
446 		 * For sure we are not in FFS_NO_SETUP since this is
447 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
448 		 * transition can be performed and it's protected by
449 		 * mutex.
450 		 */
451 		if (ffs_setup_state_clear_cancelled(ffs) ==
452 		    FFS_SETUP_CANCELLED) {
453 			ret = -EIDRM;
454 done_spin:
455 			spin_unlock_irq(&ffs->ev.waitq.lock);
456 		} else {
457 			/* unlocks spinlock */
458 			ret = __ffs_ep0_queue_wait(ffs, data, len);
459 		}
460 		kfree(data);
461 		break;
462 
463 	default:
464 		ret = -EBADFD;
465 		break;
466 	}
467 
468 	mutex_unlock(&ffs->mutex);
469 	return ret;
470 }
471 
472 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
473 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
474 				     size_t n)
475 	__releases(&ffs->ev.waitq.lock)
476 {
477 	/*
478 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
479 	 * size of ffs->ev.types array (which is four) so that's how much space
480 	 * we reserve.
481 	 */
482 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
483 	const size_t size = n * sizeof *events;
484 	unsigned i = 0;
485 
486 	memset(events, 0, size);
487 
488 	do {
489 		events[i].type = ffs->ev.types[i];
490 		if (events[i].type == FUNCTIONFS_SETUP) {
491 			events[i].u.setup = ffs->ev.setup;
492 			ffs->setup_state = FFS_SETUP_PENDING;
493 		}
494 	} while (++i < n);
495 
496 	ffs->ev.count -= n;
497 	if (ffs->ev.count)
498 		memmove(ffs->ev.types, ffs->ev.types + n,
499 			ffs->ev.count * sizeof *ffs->ev.types);
500 
501 	spin_unlock_irq(&ffs->ev.waitq.lock);
502 	mutex_unlock(&ffs->mutex);
503 
504 	return copy_to_user(buf, events, size) ? -EFAULT : size;
505 }
506 
507 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
508 			    size_t len, loff_t *ptr)
509 {
510 	struct ffs_data *ffs = file->private_data;
511 	char *data = NULL;
512 	size_t n;
513 	int ret;
514 
515 	ENTER();
516 
517 	/* Fast check if setup was canceled */
518 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
519 		return -EIDRM;
520 
521 	/* Acquire mutex */
522 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
523 	if (ret < 0)
524 		return ret;
525 
526 	/* Check state */
527 	if (ffs->state != FFS_ACTIVE) {
528 		ret = -EBADFD;
529 		goto done_mutex;
530 	}
531 
532 	/*
533 	 * We're called from user space, we can use _irq rather then
534 	 * _irqsave
535 	 */
536 	spin_lock_irq(&ffs->ev.waitq.lock);
537 
538 	switch (ffs_setup_state_clear_cancelled(ffs)) {
539 	case FFS_SETUP_CANCELLED:
540 		ret = -EIDRM;
541 		break;
542 
543 	case FFS_NO_SETUP:
544 		n = len / sizeof(struct usb_functionfs_event);
545 		if (!n) {
546 			ret = -EINVAL;
547 			break;
548 		}
549 
550 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
551 			ret = -EAGAIN;
552 			break;
553 		}
554 
555 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
556 							ffs->ev.count)) {
557 			ret = -EINTR;
558 			break;
559 		}
560 
561 		/* unlocks spinlock */
562 		return __ffs_ep0_read_events(ffs, buf,
563 					     min(n, (size_t)ffs->ev.count));
564 
565 	case FFS_SETUP_PENDING:
566 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
567 			spin_unlock_irq(&ffs->ev.waitq.lock);
568 			ret = __ffs_ep0_stall(ffs);
569 			goto done_mutex;
570 		}
571 
572 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
573 
574 		spin_unlock_irq(&ffs->ev.waitq.lock);
575 
576 		if (len) {
577 			data = kmalloc(len, GFP_KERNEL);
578 			if (!data) {
579 				ret = -ENOMEM;
580 				goto done_mutex;
581 			}
582 		}
583 
584 		spin_lock_irq(&ffs->ev.waitq.lock);
585 
586 		/* See ffs_ep0_write() */
587 		if (ffs_setup_state_clear_cancelled(ffs) ==
588 		    FFS_SETUP_CANCELLED) {
589 			ret = -EIDRM;
590 			break;
591 		}
592 
593 		/* unlocks spinlock */
594 		ret = __ffs_ep0_queue_wait(ffs, data, len);
595 		if ((ret > 0) && (copy_to_user(buf, data, len)))
596 			ret = -EFAULT;
597 		goto done_mutex;
598 
599 	default:
600 		ret = -EBADFD;
601 		break;
602 	}
603 
604 	spin_unlock_irq(&ffs->ev.waitq.lock);
605 done_mutex:
606 	mutex_unlock(&ffs->mutex);
607 	kfree(data);
608 	return ret;
609 }
610 
611 static int ffs_ep0_open(struct inode *inode, struct file *file)
612 {
613 	struct ffs_data *ffs = inode->i_private;
614 
615 	ENTER();
616 
617 	if (ffs->state == FFS_CLOSING)
618 		return -EBUSY;
619 
620 	file->private_data = ffs;
621 	ffs_data_opened(ffs);
622 
623 	return stream_open(inode, file);
624 }
625 
626 static int ffs_ep0_release(struct inode *inode, struct file *file)
627 {
628 	struct ffs_data *ffs = file->private_data;
629 
630 	ENTER();
631 
632 	ffs_data_closed(ffs);
633 
634 	return 0;
635 }
636 
637 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
638 {
639 	struct ffs_data *ffs = file->private_data;
640 	struct usb_gadget *gadget = ffs->gadget;
641 	long ret;
642 
643 	ENTER();
644 
645 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
646 		struct ffs_function *func = ffs->func;
647 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
648 	} else if (gadget && gadget->ops->ioctl) {
649 		ret = gadget->ops->ioctl(gadget, code, value);
650 	} else {
651 		ret = -ENOTTY;
652 	}
653 
654 	return ret;
655 }
656 
657 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
658 {
659 	struct ffs_data *ffs = file->private_data;
660 	__poll_t mask = EPOLLWRNORM;
661 	int ret;
662 
663 	poll_wait(file, &ffs->ev.waitq, wait);
664 
665 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
666 	if (ret < 0)
667 		return mask;
668 
669 	switch (ffs->state) {
670 	case FFS_READ_DESCRIPTORS:
671 	case FFS_READ_STRINGS:
672 		mask |= EPOLLOUT;
673 		break;
674 
675 	case FFS_ACTIVE:
676 		switch (ffs->setup_state) {
677 		case FFS_NO_SETUP:
678 			if (ffs->ev.count)
679 				mask |= EPOLLIN;
680 			break;
681 
682 		case FFS_SETUP_PENDING:
683 		case FFS_SETUP_CANCELLED:
684 			mask |= (EPOLLIN | EPOLLOUT);
685 			break;
686 		}
687 		break;
688 
689 	case FFS_CLOSING:
690 		break;
691 	case FFS_DEACTIVATED:
692 		break;
693 	}
694 
695 	mutex_unlock(&ffs->mutex);
696 
697 	return mask;
698 }
699 
700 static const struct file_operations ffs_ep0_operations = {
701 	.llseek =	no_llseek,
702 
703 	.open =		ffs_ep0_open,
704 	.write =	ffs_ep0_write,
705 	.read =		ffs_ep0_read,
706 	.release =	ffs_ep0_release,
707 	.unlocked_ioctl =	ffs_ep0_ioctl,
708 	.poll =		ffs_ep0_poll,
709 };
710 
711 
712 /* "Normal" endpoints operations ********************************************/
713 
714 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
715 {
716 	struct ffs_io_data *io_data = req->context;
717 
718 	ENTER();
719 	if (req->status)
720 		io_data->status = req->status;
721 	else
722 		io_data->status = req->actual;
723 
724 	complete(&io_data->done);
725 }
726 
727 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
728 {
729 	ssize_t ret = copy_to_iter(data, data_len, iter);
730 	if (ret == data_len)
731 		return ret;
732 
733 	if (iov_iter_count(iter))
734 		return -EFAULT;
735 
736 	/*
737 	 * Dear user space developer!
738 	 *
739 	 * TL;DR: To stop getting below error message in your kernel log, change
740 	 * user space code using functionfs to align read buffers to a max
741 	 * packet size.
742 	 *
743 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
744 	 * packet size.  When unaligned buffer is passed to functionfs, it
745 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
746 	 *
747 	 * Unfortunately, this means that host may send more data than was
748 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
749 	 * that excess data so it simply drops it.
750 	 *
751 	 * Was the buffer aligned in the first place, no such problem would
752 	 * happen.
753 	 *
754 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
755 	 * by splitting a request into multiple parts.  This splitting may still
756 	 * be a problem though so it’s likely best to align the buffer
757 	 * regardless of it being AIO or not..
758 	 *
759 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
760 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
761 	 * affected.
762 	 */
763 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
764 	       "Align read buffer size to max packet size to avoid the problem.\n",
765 	       data_len, ret);
766 
767 	return ret;
768 }
769 
770 /*
771  * allocate a virtually contiguous buffer and create a scatterlist describing it
772  * @sg_table	- pointer to a place to be filled with sg_table contents
773  * @size	- required buffer size
774  */
775 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
776 {
777 	struct page **pages;
778 	void *vaddr, *ptr;
779 	unsigned int n_pages;
780 	int i;
781 
782 	vaddr = vmalloc(sz);
783 	if (!vaddr)
784 		return NULL;
785 
786 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
787 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
788 	if (!pages) {
789 		vfree(vaddr);
790 
791 		return NULL;
792 	}
793 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
794 		pages[i] = vmalloc_to_page(ptr);
795 
796 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
797 		kvfree(pages);
798 		vfree(vaddr);
799 
800 		return NULL;
801 	}
802 	kvfree(pages);
803 
804 	return vaddr;
805 }
806 
807 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
808 	size_t data_len)
809 {
810 	if (io_data->use_sg)
811 		return ffs_build_sg_list(&io_data->sgt, data_len);
812 
813 	return kmalloc(data_len, GFP_KERNEL);
814 }
815 
816 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
817 {
818 	if (!io_data->buf)
819 		return;
820 
821 	if (io_data->use_sg) {
822 		sg_free_table(&io_data->sgt);
823 		vfree(io_data->buf);
824 	} else {
825 		kfree(io_data->buf);
826 	}
827 }
828 
829 static void ffs_user_copy_worker(struct work_struct *work)
830 {
831 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
832 						   work);
833 	int ret = io_data->req->status ? io_data->req->status :
834 					 io_data->req->actual;
835 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
836 
837 	if (io_data->read && ret > 0) {
838 		kthread_use_mm(io_data->mm);
839 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
840 		kthread_unuse_mm(io_data->mm);
841 	}
842 
843 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
844 
845 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
846 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
847 
848 	usb_ep_free_request(io_data->ep, io_data->req);
849 
850 	if (io_data->read)
851 		kfree(io_data->to_free);
852 	ffs_free_buffer(io_data);
853 	kfree(io_data);
854 }
855 
856 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
857 					 struct usb_request *req)
858 {
859 	struct ffs_io_data *io_data = req->context;
860 	struct ffs_data *ffs = io_data->ffs;
861 
862 	ENTER();
863 
864 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
865 	queue_work(ffs->io_completion_wq, &io_data->work);
866 }
867 
868 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
869 {
870 	/*
871 	 * See comment in struct ffs_epfile for full read_buffer pointer
872 	 * synchronisation story.
873 	 */
874 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
875 	if (buf && buf != READ_BUFFER_DROP)
876 		kfree(buf);
877 }
878 
879 /* Assumes epfile->mutex is held. */
880 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
881 					  struct iov_iter *iter)
882 {
883 	/*
884 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
885 	 * the buffer while we are using it.  See comment in struct ffs_epfile
886 	 * for full read_buffer pointer synchronisation story.
887 	 */
888 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
889 	ssize_t ret;
890 	if (!buf || buf == READ_BUFFER_DROP)
891 		return 0;
892 
893 	ret = copy_to_iter(buf->data, buf->length, iter);
894 	if (buf->length == ret) {
895 		kfree(buf);
896 		return ret;
897 	}
898 
899 	if (iov_iter_count(iter)) {
900 		ret = -EFAULT;
901 	} else {
902 		buf->length -= ret;
903 		buf->data += ret;
904 	}
905 
906 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
907 		kfree(buf);
908 
909 	return ret;
910 }
911 
912 /* Assumes epfile->mutex is held. */
913 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
914 				      void *data, int data_len,
915 				      struct iov_iter *iter)
916 {
917 	struct ffs_buffer *buf;
918 
919 	ssize_t ret = copy_to_iter(data, data_len, iter);
920 	if (data_len == ret)
921 		return ret;
922 
923 	if (iov_iter_count(iter))
924 		return -EFAULT;
925 
926 	/* See ffs_copy_to_iter for more context. */
927 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
928 		data_len, ret);
929 
930 	data_len -= ret;
931 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
932 	if (!buf)
933 		return -ENOMEM;
934 	buf->length = data_len;
935 	buf->data = buf->storage;
936 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
937 
938 	/*
939 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
940 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
941 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
942 	 * story.
943 	 */
944 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
945 		kfree(buf);
946 
947 	return ret;
948 }
949 
950 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
951 {
952 	struct ffs_epfile *epfile = file->private_data;
953 	struct usb_request *req;
954 	struct ffs_ep *ep;
955 	char *data = NULL;
956 	ssize_t ret, data_len = -EINVAL;
957 	int halt;
958 
959 	/* Are we still active? */
960 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
961 		return -ENODEV;
962 
963 	/* Wait for endpoint to be enabled */
964 	ep = epfile->ep;
965 	if (!ep) {
966 		if (file->f_flags & O_NONBLOCK)
967 			return -EAGAIN;
968 
969 		ret = wait_event_interruptible(
970 				epfile->ffs->wait, (ep = epfile->ep));
971 		if (ret)
972 			return -EINTR;
973 	}
974 
975 	/* Do we halt? */
976 	halt = (!io_data->read == !epfile->in);
977 	if (halt && epfile->isoc)
978 		return -EINVAL;
979 
980 	/* We will be using request and read_buffer */
981 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
982 	if (ret)
983 		goto error;
984 
985 	/* Allocate & copy */
986 	if (!halt) {
987 		struct usb_gadget *gadget;
988 
989 		/*
990 		 * Do we have buffered data from previous partial read?  Check
991 		 * that for synchronous case only because we do not have
992 		 * facility to ‘wake up’ a pending asynchronous read and push
993 		 * buffered data to it which we would need to make things behave
994 		 * consistently.
995 		 */
996 		if (!io_data->aio && io_data->read) {
997 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
998 			if (ret)
999 				goto error_mutex;
1000 		}
1001 
1002 		/*
1003 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1004 		 * before the waiting completes, so do not assign to 'gadget'
1005 		 * earlier
1006 		 */
1007 		gadget = epfile->ffs->gadget;
1008 
1009 		spin_lock_irq(&epfile->ffs->eps_lock);
1010 		/* In the meantime, endpoint got disabled or changed. */
1011 		if (epfile->ep != ep) {
1012 			ret = -ESHUTDOWN;
1013 			goto error_lock;
1014 		}
1015 		data_len = iov_iter_count(&io_data->data);
1016 		/*
1017 		 * Controller may require buffer size to be aligned to
1018 		 * maxpacketsize of an out endpoint.
1019 		 */
1020 		if (io_data->read)
1021 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1022 
1023 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1024 		spin_unlock_irq(&epfile->ffs->eps_lock);
1025 
1026 		data = ffs_alloc_buffer(io_data, data_len);
1027 		if (!data) {
1028 			ret = -ENOMEM;
1029 			goto error_mutex;
1030 		}
1031 		if (!io_data->read &&
1032 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1033 			ret = -EFAULT;
1034 			goto error_mutex;
1035 		}
1036 	}
1037 
1038 	spin_lock_irq(&epfile->ffs->eps_lock);
1039 
1040 	if (epfile->ep != ep) {
1041 		/* In the meantime, endpoint got disabled or changed. */
1042 		ret = -ESHUTDOWN;
1043 	} else if (halt) {
1044 		ret = usb_ep_set_halt(ep->ep);
1045 		if (!ret)
1046 			ret = -EBADMSG;
1047 	} else if (data_len == -EINVAL) {
1048 		/*
1049 		 * Sanity Check: even though data_len can't be used
1050 		 * uninitialized at the time I write this comment, some
1051 		 * compilers complain about this situation.
1052 		 * In order to keep the code clean from warnings, data_len is
1053 		 * being initialized to -EINVAL during its declaration, which
1054 		 * means we can't rely on compiler anymore to warn no future
1055 		 * changes won't result in data_len being used uninitialized.
1056 		 * For such reason, we're adding this redundant sanity check
1057 		 * here.
1058 		 */
1059 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1060 		ret = -EINVAL;
1061 	} else if (!io_data->aio) {
1062 		bool interrupted = false;
1063 
1064 		req = ep->req;
1065 		if (io_data->use_sg) {
1066 			req->buf = NULL;
1067 			req->sg	= io_data->sgt.sgl;
1068 			req->num_sgs = io_data->sgt.nents;
1069 		} else {
1070 			req->buf = data;
1071 			req->num_sgs = 0;
1072 		}
1073 		req->length = data_len;
1074 
1075 		io_data->buf = data;
1076 
1077 		init_completion(&io_data->done);
1078 		req->context  = io_data;
1079 		req->complete = ffs_epfile_io_complete;
1080 
1081 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1082 		if (ret < 0)
1083 			goto error_lock;
1084 
1085 		spin_unlock_irq(&epfile->ffs->eps_lock);
1086 
1087 		if (wait_for_completion_interruptible(&io_data->done)) {
1088 			spin_lock_irq(&epfile->ffs->eps_lock);
1089 			if (epfile->ep != ep) {
1090 				ret = -ESHUTDOWN;
1091 				goto error_lock;
1092 			}
1093 			/*
1094 			 * To avoid race condition with ffs_epfile_io_complete,
1095 			 * dequeue the request first then check
1096 			 * status. usb_ep_dequeue API should guarantee no race
1097 			 * condition with req->complete callback.
1098 			 */
1099 			usb_ep_dequeue(ep->ep, req);
1100 			spin_unlock_irq(&epfile->ffs->eps_lock);
1101 			wait_for_completion(&io_data->done);
1102 			interrupted = io_data->status < 0;
1103 		}
1104 
1105 		if (interrupted)
1106 			ret = -EINTR;
1107 		else if (io_data->read && io_data->status > 0)
1108 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1109 						     &io_data->data);
1110 		else
1111 			ret = io_data->status;
1112 		goto error_mutex;
1113 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1114 		ret = -ENOMEM;
1115 	} else {
1116 		if (io_data->use_sg) {
1117 			req->buf = NULL;
1118 			req->sg	= io_data->sgt.sgl;
1119 			req->num_sgs = io_data->sgt.nents;
1120 		} else {
1121 			req->buf = data;
1122 			req->num_sgs = 0;
1123 		}
1124 		req->length = data_len;
1125 
1126 		io_data->buf = data;
1127 		io_data->ep = ep->ep;
1128 		io_data->req = req;
1129 		io_data->ffs = epfile->ffs;
1130 
1131 		req->context  = io_data;
1132 		req->complete = ffs_epfile_async_io_complete;
1133 
1134 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1135 		if (ret) {
1136 			io_data->req = NULL;
1137 			usb_ep_free_request(ep->ep, req);
1138 			goto error_lock;
1139 		}
1140 
1141 		ret = -EIOCBQUEUED;
1142 		/*
1143 		 * Do not kfree the buffer in this function.  It will be freed
1144 		 * by ffs_user_copy_worker.
1145 		 */
1146 		data = NULL;
1147 	}
1148 
1149 error_lock:
1150 	spin_unlock_irq(&epfile->ffs->eps_lock);
1151 error_mutex:
1152 	mutex_unlock(&epfile->mutex);
1153 error:
1154 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1155 		ffs_free_buffer(io_data);
1156 	return ret;
1157 }
1158 
1159 static int
1160 ffs_epfile_open(struct inode *inode, struct file *file)
1161 {
1162 	struct ffs_epfile *epfile = inode->i_private;
1163 
1164 	ENTER();
1165 
1166 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1167 		return -ENODEV;
1168 
1169 	file->private_data = epfile;
1170 	ffs_data_opened(epfile->ffs);
1171 
1172 	return stream_open(inode, file);
1173 }
1174 
1175 static int ffs_aio_cancel(struct kiocb *kiocb)
1176 {
1177 	struct ffs_io_data *io_data = kiocb->private;
1178 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1179 	unsigned long flags;
1180 	int value;
1181 
1182 	ENTER();
1183 
1184 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1185 
1186 	if (io_data && io_data->ep && io_data->req)
1187 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1188 	else
1189 		value = -EINVAL;
1190 
1191 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1192 
1193 	return value;
1194 }
1195 
1196 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1197 {
1198 	struct ffs_io_data io_data, *p = &io_data;
1199 	ssize_t res;
1200 
1201 	ENTER();
1202 
1203 	if (!is_sync_kiocb(kiocb)) {
1204 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1205 		if (!p)
1206 			return -ENOMEM;
1207 		p->aio = true;
1208 	} else {
1209 		memset(p, 0, sizeof(*p));
1210 		p->aio = false;
1211 	}
1212 
1213 	p->read = false;
1214 	p->kiocb = kiocb;
1215 	p->data = *from;
1216 	p->mm = current->mm;
1217 
1218 	kiocb->private = p;
1219 
1220 	if (p->aio)
1221 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1222 
1223 	res = ffs_epfile_io(kiocb->ki_filp, p);
1224 	if (res == -EIOCBQUEUED)
1225 		return res;
1226 	if (p->aio)
1227 		kfree(p);
1228 	else
1229 		*from = p->data;
1230 	return res;
1231 }
1232 
1233 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1234 {
1235 	struct ffs_io_data io_data, *p = &io_data;
1236 	ssize_t res;
1237 
1238 	ENTER();
1239 
1240 	if (!is_sync_kiocb(kiocb)) {
1241 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1242 		if (!p)
1243 			return -ENOMEM;
1244 		p->aio = true;
1245 	} else {
1246 		memset(p, 0, sizeof(*p));
1247 		p->aio = false;
1248 	}
1249 
1250 	p->read = true;
1251 	p->kiocb = kiocb;
1252 	if (p->aio) {
1253 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1254 		if (!p->to_free) {
1255 			kfree(p);
1256 			return -ENOMEM;
1257 		}
1258 	} else {
1259 		p->data = *to;
1260 		p->to_free = NULL;
1261 	}
1262 	p->mm = current->mm;
1263 
1264 	kiocb->private = p;
1265 
1266 	if (p->aio)
1267 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1268 
1269 	res = ffs_epfile_io(kiocb->ki_filp, p);
1270 	if (res == -EIOCBQUEUED)
1271 		return res;
1272 
1273 	if (p->aio) {
1274 		kfree(p->to_free);
1275 		kfree(p);
1276 	} else {
1277 		*to = p->data;
1278 	}
1279 	return res;
1280 }
1281 
1282 static int
1283 ffs_epfile_release(struct inode *inode, struct file *file)
1284 {
1285 	struct ffs_epfile *epfile = inode->i_private;
1286 
1287 	ENTER();
1288 
1289 	__ffs_epfile_read_buffer_free(epfile);
1290 	ffs_data_closed(epfile->ffs);
1291 
1292 	return 0;
1293 }
1294 
1295 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1296 			     unsigned long value)
1297 {
1298 	struct ffs_epfile *epfile = file->private_data;
1299 	struct ffs_ep *ep;
1300 	int ret;
1301 
1302 	ENTER();
1303 
1304 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1305 		return -ENODEV;
1306 
1307 	/* Wait for endpoint to be enabled */
1308 	ep = epfile->ep;
1309 	if (!ep) {
1310 		if (file->f_flags & O_NONBLOCK)
1311 			return -EAGAIN;
1312 
1313 		ret = wait_event_interruptible(
1314 				epfile->ffs->wait, (ep = epfile->ep));
1315 		if (ret)
1316 			return -EINTR;
1317 	}
1318 
1319 	spin_lock_irq(&epfile->ffs->eps_lock);
1320 
1321 	/* In the meantime, endpoint got disabled or changed. */
1322 	if (epfile->ep != ep) {
1323 		spin_unlock_irq(&epfile->ffs->eps_lock);
1324 		return -ESHUTDOWN;
1325 	}
1326 
1327 	switch (code) {
1328 	case FUNCTIONFS_FIFO_STATUS:
1329 		ret = usb_ep_fifo_status(epfile->ep->ep);
1330 		break;
1331 	case FUNCTIONFS_FIFO_FLUSH:
1332 		usb_ep_fifo_flush(epfile->ep->ep);
1333 		ret = 0;
1334 		break;
1335 	case FUNCTIONFS_CLEAR_HALT:
1336 		ret = usb_ep_clear_halt(epfile->ep->ep);
1337 		break;
1338 	case FUNCTIONFS_ENDPOINT_REVMAP:
1339 		ret = epfile->ep->num;
1340 		break;
1341 	case FUNCTIONFS_ENDPOINT_DESC:
1342 	{
1343 		int desc_idx;
1344 		struct usb_endpoint_descriptor desc1, *desc;
1345 
1346 		switch (epfile->ffs->gadget->speed) {
1347 		case USB_SPEED_SUPER:
1348 		case USB_SPEED_SUPER_PLUS:
1349 			desc_idx = 2;
1350 			break;
1351 		case USB_SPEED_HIGH:
1352 			desc_idx = 1;
1353 			break;
1354 		default:
1355 			desc_idx = 0;
1356 		}
1357 
1358 		desc = epfile->ep->descs[desc_idx];
1359 		memcpy(&desc1, desc, desc->bLength);
1360 
1361 		spin_unlock_irq(&epfile->ffs->eps_lock);
1362 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1363 		if (ret)
1364 			ret = -EFAULT;
1365 		return ret;
1366 	}
1367 	default:
1368 		ret = -ENOTTY;
1369 	}
1370 	spin_unlock_irq(&epfile->ffs->eps_lock);
1371 
1372 	return ret;
1373 }
1374 
1375 static const struct file_operations ffs_epfile_operations = {
1376 	.llseek =	no_llseek,
1377 
1378 	.open =		ffs_epfile_open,
1379 	.write_iter =	ffs_epfile_write_iter,
1380 	.read_iter =	ffs_epfile_read_iter,
1381 	.release =	ffs_epfile_release,
1382 	.unlocked_ioctl =	ffs_epfile_ioctl,
1383 	.compat_ioctl = compat_ptr_ioctl,
1384 };
1385 
1386 
1387 /* File system and super block operations ***********************************/
1388 
1389 /*
1390  * Mounting the file system creates a controller file, used first for
1391  * function configuration then later for event monitoring.
1392  */
1393 
1394 static struct inode *__must_check
1395 ffs_sb_make_inode(struct super_block *sb, void *data,
1396 		  const struct file_operations *fops,
1397 		  const struct inode_operations *iops,
1398 		  struct ffs_file_perms *perms)
1399 {
1400 	struct inode *inode;
1401 
1402 	ENTER();
1403 
1404 	inode = new_inode(sb);
1405 
1406 	if (inode) {
1407 		struct timespec64 ts = current_time(inode);
1408 
1409 		inode->i_ino	 = get_next_ino();
1410 		inode->i_mode    = perms->mode;
1411 		inode->i_uid     = perms->uid;
1412 		inode->i_gid     = perms->gid;
1413 		inode->i_atime   = ts;
1414 		inode->i_mtime   = ts;
1415 		inode->i_ctime   = ts;
1416 		inode->i_private = data;
1417 		if (fops)
1418 			inode->i_fop = fops;
1419 		if (iops)
1420 			inode->i_op  = iops;
1421 	}
1422 
1423 	return inode;
1424 }
1425 
1426 /* Create "regular" file */
1427 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1428 					const char *name, void *data,
1429 					const struct file_operations *fops)
1430 {
1431 	struct ffs_data	*ffs = sb->s_fs_info;
1432 	struct dentry	*dentry;
1433 	struct inode	*inode;
1434 
1435 	ENTER();
1436 
1437 	dentry = d_alloc_name(sb->s_root, name);
1438 	if (!dentry)
1439 		return NULL;
1440 
1441 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1442 	if (!inode) {
1443 		dput(dentry);
1444 		return NULL;
1445 	}
1446 
1447 	d_add(dentry, inode);
1448 	return dentry;
1449 }
1450 
1451 /* Super block */
1452 static const struct super_operations ffs_sb_operations = {
1453 	.statfs =	simple_statfs,
1454 	.drop_inode =	generic_delete_inode,
1455 };
1456 
1457 struct ffs_sb_fill_data {
1458 	struct ffs_file_perms perms;
1459 	umode_t root_mode;
1460 	const char *dev_name;
1461 	bool no_disconnect;
1462 	struct ffs_data *ffs_data;
1463 };
1464 
1465 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1466 {
1467 	struct ffs_sb_fill_data *data = fc->fs_private;
1468 	struct inode	*inode;
1469 	struct ffs_data	*ffs = data->ffs_data;
1470 
1471 	ENTER();
1472 
1473 	ffs->sb              = sb;
1474 	data->ffs_data       = NULL;
1475 	sb->s_fs_info        = ffs;
1476 	sb->s_blocksize      = PAGE_SIZE;
1477 	sb->s_blocksize_bits = PAGE_SHIFT;
1478 	sb->s_magic          = FUNCTIONFS_MAGIC;
1479 	sb->s_op             = &ffs_sb_operations;
1480 	sb->s_time_gran      = 1;
1481 
1482 	/* Root inode */
1483 	data->perms.mode = data->root_mode;
1484 	inode = ffs_sb_make_inode(sb, NULL,
1485 				  &simple_dir_operations,
1486 				  &simple_dir_inode_operations,
1487 				  &data->perms);
1488 	sb->s_root = d_make_root(inode);
1489 	if (!sb->s_root)
1490 		return -ENOMEM;
1491 
1492 	/* EP0 file */
1493 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1494 		return -ENOMEM;
1495 
1496 	return 0;
1497 }
1498 
1499 enum {
1500 	Opt_no_disconnect,
1501 	Opt_rmode,
1502 	Opt_fmode,
1503 	Opt_mode,
1504 	Opt_uid,
1505 	Opt_gid,
1506 };
1507 
1508 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1509 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1510 	fsparam_u32	("rmode",		Opt_rmode),
1511 	fsparam_u32	("fmode",		Opt_fmode),
1512 	fsparam_u32	("mode",		Opt_mode),
1513 	fsparam_u32	("uid",			Opt_uid),
1514 	fsparam_u32	("gid",			Opt_gid),
1515 	{}
1516 };
1517 
1518 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1519 {
1520 	struct ffs_sb_fill_data *data = fc->fs_private;
1521 	struct fs_parse_result result;
1522 	int opt;
1523 
1524 	ENTER();
1525 
1526 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1527 	if (opt < 0)
1528 		return opt;
1529 
1530 	switch (opt) {
1531 	case Opt_no_disconnect:
1532 		data->no_disconnect = result.boolean;
1533 		break;
1534 	case Opt_rmode:
1535 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1536 		break;
1537 	case Opt_fmode:
1538 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1539 		break;
1540 	case Opt_mode:
1541 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1542 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1543 		break;
1544 
1545 	case Opt_uid:
1546 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1547 		if (!uid_valid(data->perms.uid))
1548 			goto unmapped_value;
1549 		break;
1550 	case Opt_gid:
1551 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1552 		if (!gid_valid(data->perms.gid))
1553 			goto unmapped_value;
1554 		break;
1555 
1556 	default:
1557 		return -ENOPARAM;
1558 	}
1559 
1560 	return 0;
1561 
1562 unmapped_value:
1563 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1564 }
1565 
1566 /*
1567  * Set up the superblock for a mount.
1568  */
1569 static int ffs_fs_get_tree(struct fs_context *fc)
1570 {
1571 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1572 	struct ffs_data	*ffs;
1573 	int ret;
1574 
1575 	ENTER();
1576 
1577 	if (!fc->source)
1578 		return invalf(fc, "No source specified");
1579 
1580 	ffs = ffs_data_new(fc->source);
1581 	if (!ffs)
1582 		return -ENOMEM;
1583 	ffs->file_perms = ctx->perms;
1584 	ffs->no_disconnect = ctx->no_disconnect;
1585 
1586 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1587 	if (!ffs->dev_name) {
1588 		ffs_data_put(ffs);
1589 		return -ENOMEM;
1590 	}
1591 
1592 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
1593 	if (ret) {
1594 		ffs_data_put(ffs);
1595 		return ret;
1596 	}
1597 
1598 	ctx->ffs_data = ffs;
1599 	return get_tree_nodev(fc, ffs_sb_fill);
1600 }
1601 
1602 static void ffs_fs_free_fc(struct fs_context *fc)
1603 {
1604 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1605 
1606 	if (ctx) {
1607 		if (ctx->ffs_data) {
1608 			ffs_data_put(ctx->ffs_data);
1609 		}
1610 
1611 		kfree(ctx);
1612 	}
1613 }
1614 
1615 static const struct fs_context_operations ffs_fs_context_ops = {
1616 	.free		= ffs_fs_free_fc,
1617 	.parse_param	= ffs_fs_parse_param,
1618 	.get_tree	= ffs_fs_get_tree,
1619 };
1620 
1621 static int ffs_fs_init_fs_context(struct fs_context *fc)
1622 {
1623 	struct ffs_sb_fill_data *ctx;
1624 
1625 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1626 	if (!ctx)
1627 		return -ENOMEM;
1628 
1629 	ctx->perms.mode = S_IFREG | 0600;
1630 	ctx->perms.uid = GLOBAL_ROOT_UID;
1631 	ctx->perms.gid = GLOBAL_ROOT_GID;
1632 	ctx->root_mode = S_IFDIR | 0500;
1633 	ctx->no_disconnect = false;
1634 
1635 	fc->fs_private = ctx;
1636 	fc->ops = &ffs_fs_context_ops;
1637 	return 0;
1638 }
1639 
1640 static void
1641 ffs_fs_kill_sb(struct super_block *sb)
1642 {
1643 	ENTER();
1644 
1645 	kill_litter_super(sb);
1646 	if (sb->s_fs_info)
1647 		ffs_data_closed(sb->s_fs_info);
1648 }
1649 
1650 static struct file_system_type ffs_fs_type = {
1651 	.owner		= THIS_MODULE,
1652 	.name		= "functionfs",
1653 	.init_fs_context = ffs_fs_init_fs_context,
1654 	.parameters	= ffs_fs_fs_parameters,
1655 	.kill_sb	= ffs_fs_kill_sb,
1656 };
1657 MODULE_ALIAS_FS("functionfs");
1658 
1659 
1660 /* Driver's main init/cleanup functions *************************************/
1661 
1662 static int functionfs_init(void)
1663 {
1664 	int ret;
1665 
1666 	ENTER();
1667 
1668 	ret = register_filesystem(&ffs_fs_type);
1669 	if (!ret)
1670 		pr_info("file system registered\n");
1671 	else
1672 		pr_err("failed registering file system (%d)\n", ret);
1673 
1674 	return ret;
1675 }
1676 
1677 static void functionfs_cleanup(void)
1678 {
1679 	ENTER();
1680 
1681 	pr_info("unloading\n");
1682 	unregister_filesystem(&ffs_fs_type);
1683 }
1684 
1685 
1686 /* ffs_data and ffs_function construction and destruction code **************/
1687 
1688 static void ffs_data_clear(struct ffs_data *ffs);
1689 static void ffs_data_reset(struct ffs_data *ffs);
1690 
1691 static void ffs_data_get(struct ffs_data *ffs)
1692 {
1693 	ENTER();
1694 
1695 	refcount_inc(&ffs->ref);
1696 }
1697 
1698 static void ffs_data_opened(struct ffs_data *ffs)
1699 {
1700 	ENTER();
1701 
1702 	refcount_inc(&ffs->ref);
1703 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1704 			ffs->state == FFS_DEACTIVATED) {
1705 		ffs->state = FFS_CLOSING;
1706 		ffs_data_reset(ffs);
1707 	}
1708 }
1709 
1710 static void ffs_data_put(struct ffs_data *ffs)
1711 {
1712 	ENTER();
1713 
1714 	if (refcount_dec_and_test(&ffs->ref)) {
1715 		pr_info("%s(): freeing\n", __func__);
1716 		ffs_data_clear(ffs);
1717 		ffs_release_dev(ffs->private_data);
1718 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1719 		       swait_active(&ffs->ep0req_completion.wait) ||
1720 		       waitqueue_active(&ffs->wait));
1721 		destroy_workqueue(ffs->io_completion_wq);
1722 		kfree(ffs->dev_name);
1723 		kfree(ffs);
1724 	}
1725 }
1726 
1727 static void ffs_data_closed(struct ffs_data *ffs)
1728 {
1729 	struct ffs_epfile *epfiles;
1730 	unsigned long flags;
1731 
1732 	ENTER();
1733 
1734 	if (atomic_dec_and_test(&ffs->opened)) {
1735 		if (ffs->no_disconnect) {
1736 			ffs->state = FFS_DEACTIVATED;
1737 			spin_lock_irqsave(&ffs->eps_lock, flags);
1738 			epfiles = ffs->epfiles;
1739 			ffs->epfiles = NULL;
1740 			spin_unlock_irqrestore(&ffs->eps_lock,
1741 							flags);
1742 
1743 			if (epfiles)
1744 				ffs_epfiles_destroy(epfiles,
1745 						 ffs->eps_count);
1746 
1747 			if (ffs->setup_state == FFS_SETUP_PENDING)
1748 				__ffs_ep0_stall(ffs);
1749 		} else {
1750 			ffs->state = FFS_CLOSING;
1751 			ffs_data_reset(ffs);
1752 		}
1753 	}
1754 	if (atomic_read(&ffs->opened) < 0) {
1755 		ffs->state = FFS_CLOSING;
1756 		ffs_data_reset(ffs);
1757 	}
1758 
1759 	ffs_data_put(ffs);
1760 }
1761 
1762 static struct ffs_data *ffs_data_new(const char *dev_name)
1763 {
1764 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1765 	if (!ffs)
1766 		return NULL;
1767 
1768 	ENTER();
1769 
1770 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1771 	if (!ffs->io_completion_wq) {
1772 		kfree(ffs);
1773 		return NULL;
1774 	}
1775 
1776 	refcount_set(&ffs->ref, 1);
1777 	atomic_set(&ffs->opened, 0);
1778 	ffs->state = FFS_READ_DESCRIPTORS;
1779 	mutex_init(&ffs->mutex);
1780 	spin_lock_init(&ffs->eps_lock);
1781 	init_waitqueue_head(&ffs->ev.waitq);
1782 	init_waitqueue_head(&ffs->wait);
1783 	init_completion(&ffs->ep0req_completion);
1784 
1785 	/* XXX REVISIT need to update it in some places, or do we? */
1786 	ffs->ev.can_stall = 1;
1787 
1788 	return ffs;
1789 }
1790 
1791 static void ffs_data_clear(struct ffs_data *ffs)
1792 {
1793 	struct ffs_epfile *epfiles;
1794 	unsigned long flags;
1795 
1796 	ENTER();
1797 
1798 	ffs_closed(ffs);
1799 
1800 	BUG_ON(ffs->gadget);
1801 
1802 	spin_lock_irqsave(&ffs->eps_lock, flags);
1803 	epfiles = ffs->epfiles;
1804 	ffs->epfiles = NULL;
1805 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
1806 
1807 	/*
1808 	 * potential race possible between ffs_func_eps_disable
1809 	 * & ffs_epfile_release therefore maintaining a local
1810 	 * copy of epfile will save us from use-after-free.
1811 	 */
1812 	if (epfiles) {
1813 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
1814 		ffs->epfiles = NULL;
1815 	}
1816 
1817 	if (ffs->ffs_eventfd) {
1818 		eventfd_ctx_put(ffs->ffs_eventfd);
1819 		ffs->ffs_eventfd = NULL;
1820 	}
1821 
1822 	kfree(ffs->raw_descs_data);
1823 	kfree(ffs->raw_strings);
1824 	kfree(ffs->stringtabs);
1825 }
1826 
1827 static void ffs_data_reset(struct ffs_data *ffs)
1828 {
1829 	ENTER();
1830 
1831 	ffs_data_clear(ffs);
1832 
1833 	ffs->raw_descs_data = NULL;
1834 	ffs->raw_descs = NULL;
1835 	ffs->raw_strings = NULL;
1836 	ffs->stringtabs = NULL;
1837 
1838 	ffs->raw_descs_length = 0;
1839 	ffs->fs_descs_count = 0;
1840 	ffs->hs_descs_count = 0;
1841 	ffs->ss_descs_count = 0;
1842 
1843 	ffs->strings_count = 0;
1844 	ffs->interfaces_count = 0;
1845 	ffs->eps_count = 0;
1846 
1847 	ffs->ev.count = 0;
1848 
1849 	ffs->state = FFS_READ_DESCRIPTORS;
1850 	ffs->setup_state = FFS_NO_SETUP;
1851 	ffs->flags = 0;
1852 
1853 	ffs->ms_os_descs_ext_prop_count = 0;
1854 	ffs->ms_os_descs_ext_prop_name_len = 0;
1855 	ffs->ms_os_descs_ext_prop_data_len = 0;
1856 }
1857 
1858 
1859 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1860 {
1861 	struct usb_gadget_strings **lang;
1862 	int first_id;
1863 
1864 	ENTER();
1865 
1866 	if (WARN_ON(ffs->state != FFS_ACTIVE
1867 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1868 		return -EBADFD;
1869 
1870 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1871 	if (first_id < 0)
1872 		return first_id;
1873 
1874 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1875 	if (!ffs->ep0req)
1876 		return -ENOMEM;
1877 	ffs->ep0req->complete = ffs_ep0_complete;
1878 	ffs->ep0req->context = ffs;
1879 
1880 	lang = ffs->stringtabs;
1881 	if (lang) {
1882 		for (; *lang; ++lang) {
1883 			struct usb_string *str = (*lang)->strings;
1884 			int id = first_id;
1885 			for (; str->s; ++id, ++str)
1886 				str->id = id;
1887 		}
1888 	}
1889 
1890 	ffs->gadget = cdev->gadget;
1891 	ffs_data_get(ffs);
1892 	return 0;
1893 }
1894 
1895 static void functionfs_unbind(struct ffs_data *ffs)
1896 {
1897 	ENTER();
1898 
1899 	if (!WARN_ON(!ffs->gadget)) {
1900 		/* dequeue before freeing ep0req */
1901 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
1902 		mutex_lock(&ffs->mutex);
1903 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1904 		ffs->ep0req = NULL;
1905 		ffs->gadget = NULL;
1906 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1907 		mutex_unlock(&ffs->mutex);
1908 		ffs_data_put(ffs);
1909 	}
1910 }
1911 
1912 static int ffs_epfiles_create(struct ffs_data *ffs)
1913 {
1914 	struct ffs_epfile *epfile, *epfiles;
1915 	unsigned i, count;
1916 
1917 	ENTER();
1918 
1919 	count = ffs->eps_count;
1920 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1921 	if (!epfiles)
1922 		return -ENOMEM;
1923 
1924 	epfile = epfiles;
1925 	for (i = 1; i <= count; ++i, ++epfile) {
1926 		epfile->ffs = ffs;
1927 		mutex_init(&epfile->mutex);
1928 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1929 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1930 		else
1931 			sprintf(epfile->name, "ep%u", i);
1932 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1933 						 epfile,
1934 						 &ffs_epfile_operations);
1935 		if (!epfile->dentry) {
1936 			ffs_epfiles_destroy(epfiles, i - 1);
1937 			return -ENOMEM;
1938 		}
1939 	}
1940 
1941 	ffs->epfiles = epfiles;
1942 	return 0;
1943 }
1944 
1945 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1946 {
1947 	struct ffs_epfile *epfile = epfiles;
1948 
1949 	ENTER();
1950 
1951 	for (; count; --count, ++epfile) {
1952 		BUG_ON(mutex_is_locked(&epfile->mutex));
1953 		if (epfile->dentry) {
1954 			d_delete(epfile->dentry);
1955 			dput(epfile->dentry);
1956 			epfile->dentry = NULL;
1957 		}
1958 	}
1959 
1960 	kfree(epfiles);
1961 }
1962 
1963 static void ffs_func_eps_disable(struct ffs_function *func)
1964 {
1965 	struct ffs_ep *ep;
1966 	struct ffs_epfile *epfile;
1967 	unsigned short count;
1968 	unsigned long flags;
1969 
1970 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1971 	count = func->ffs->eps_count;
1972 	epfile = func->ffs->epfiles;
1973 	ep = func->eps;
1974 	while (count--) {
1975 		/* pending requests get nuked */
1976 		if (ep->ep)
1977 			usb_ep_disable(ep->ep);
1978 		++ep;
1979 
1980 		if (epfile) {
1981 			epfile->ep = NULL;
1982 			__ffs_epfile_read_buffer_free(epfile);
1983 			++epfile;
1984 		}
1985 	}
1986 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1987 }
1988 
1989 static int ffs_func_eps_enable(struct ffs_function *func)
1990 {
1991 	struct ffs_data *ffs;
1992 	struct ffs_ep *ep;
1993 	struct ffs_epfile *epfile;
1994 	unsigned short count;
1995 	unsigned long flags;
1996 	int ret = 0;
1997 
1998 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1999 	ffs = func->ffs;
2000 	ep = func->eps;
2001 	epfile = ffs->epfiles;
2002 	count = ffs->eps_count;
2003 	while(count--) {
2004 		ep->ep->driver_data = ep;
2005 
2006 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2007 		if (ret) {
2008 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2009 					__func__, ep->ep->name, ret);
2010 			break;
2011 		}
2012 
2013 		ret = usb_ep_enable(ep->ep);
2014 		if (!ret) {
2015 			epfile->ep = ep;
2016 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2017 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2018 		} else {
2019 			break;
2020 		}
2021 
2022 		++ep;
2023 		++epfile;
2024 	}
2025 
2026 	wake_up_interruptible(&ffs->wait);
2027 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2028 
2029 	return ret;
2030 }
2031 
2032 
2033 /* Parsing and building descriptors and strings *****************************/
2034 
2035 /*
2036  * This validates if data pointed by data is a valid USB descriptor as
2037  * well as record how many interfaces, endpoints and strings are
2038  * required by given configuration.  Returns address after the
2039  * descriptor or NULL if data is invalid.
2040  */
2041 
2042 enum ffs_entity_type {
2043 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2044 };
2045 
2046 enum ffs_os_desc_type {
2047 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2048 };
2049 
2050 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2051 				   u8 *valuep,
2052 				   struct usb_descriptor_header *desc,
2053 				   void *priv);
2054 
2055 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2056 				    struct usb_os_desc_header *h, void *data,
2057 				    unsigned len, void *priv);
2058 
2059 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2060 					   ffs_entity_callback entity,
2061 					   void *priv, int *current_class)
2062 {
2063 	struct usb_descriptor_header *_ds = (void *)data;
2064 	u8 length;
2065 	int ret;
2066 
2067 	ENTER();
2068 
2069 	/* At least two bytes are required: length and type */
2070 	if (len < 2) {
2071 		pr_vdebug("descriptor too short\n");
2072 		return -EINVAL;
2073 	}
2074 
2075 	/* If we have at least as many bytes as the descriptor takes? */
2076 	length = _ds->bLength;
2077 	if (len < length) {
2078 		pr_vdebug("descriptor longer then available data\n");
2079 		return -EINVAL;
2080 	}
2081 
2082 #define __entity_check_INTERFACE(val)  1
2083 #define __entity_check_STRING(val)     (val)
2084 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2085 #define __entity(type, val) do {					\
2086 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2087 		if (!__entity_check_ ##type(val)) {			\
2088 			pr_vdebug("invalid entity's value\n");		\
2089 			return -EINVAL;					\
2090 		}							\
2091 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2092 		if (ret < 0) {						\
2093 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2094 				 (val), ret);				\
2095 			return ret;					\
2096 		}							\
2097 	} while (0)
2098 
2099 	/* Parse descriptor depending on type. */
2100 	switch (_ds->bDescriptorType) {
2101 	case USB_DT_DEVICE:
2102 	case USB_DT_CONFIG:
2103 	case USB_DT_STRING:
2104 	case USB_DT_DEVICE_QUALIFIER:
2105 		/* function can't have any of those */
2106 		pr_vdebug("descriptor reserved for gadget: %d\n",
2107 		      _ds->bDescriptorType);
2108 		return -EINVAL;
2109 
2110 	case USB_DT_INTERFACE: {
2111 		struct usb_interface_descriptor *ds = (void *)_ds;
2112 		pr_vdebug("interface descriptor\n");
2113 		if (length != sizeof *ds)
2114 			goto inv_length;
2115 
2116 		__entity(INTERFACE, ds->bInterfaceNumber);
2117 		if (ds->iInterface)
2118 			__entity(STRING, ds->iInterface);
2119 		*current_class = ds->bInterfaceClass;
2120 	}
2121 		break;
2122 
2123 	case USB_DT_ENDPOINT: {
2124 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2125 		pr_vdebug("endpoint descriptor\n");
2126 		if (length != USB_DT_ENDPOINT_SIZE &&
2127 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2128 			goto inv_length;
2129 		__entity(ENDPOINT, ds->bEndpointAddress);
2130 	}
2131 		break;
2132 
2133 	case USB_TYPE_CLASS | 0x01:
2134 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2135 			pr_vdebug("hid descriptor\n");
2136 			if (length != sizeof(struct hid_descriptor))
2137 				goto inv_length;
2138 			break;
2139 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2140 			pr_vdebug("ccid descriptor\n");
2141 			if (length != sizeof(struct ccid_descriptor))
2142 				goto inv_length;
2143 			break;
2144 		} else {
2145 			pr_vdebug("unknown descriptor: %d for class %d\n",
2146 			      _ds->bDescriptorType, *current_class);
2147 			return -EINVAL;
2148 		}
2149 
2150 	case USB_DT_OTG:
2151 		if (length != sizeof(struct usb_otg_descriptor))
2152 			goto inv_length;
2153 		break;
2154 
2155 	case USB_DT_INTERFACE_ASSOCIATION: {
2156 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2157 		pr_vdebug("interface association descriptor\n");
2158 		if (length != sizeof *ds)
2159 			goto inv_length;
2160 		if (ds->iFunction)
2161 			__entity(STRING, ds->iFunction);
2162 	}
2163 		break;
2164 
2165 	case USB_DT_SS_ENDPOINT_COMP:
2166 		pr_vdebug("EP SS companion descriptor\n");
2167 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2168 			goto inv_length;
2169 		break;
2170 
2171 	case USB_DT_OTHER_SPEED_CONFIG:
2172 	case USB_DT_INTERFACE_POWER:
2173 	case USB_DT_DEBUG:
2174 	case USB_DT_SECURITY:
2175 	case USB_DT_CS_RADIO_CONTROL:
2176 		/* TODO */
2177 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2178 		return -EINVAL;
2179 
2180 	default:
2181 		/* We should never be here */
2182 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2183 		return -EINVAL;
2184 
2185 inv_length:
2186 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2187 			  _ds->bLength, _ds->bDescriptorType);
2188 		return -EINVAL;
2189 	}
2190 
2191 #undef __entity
2192 #undef __entity_check_DESCRIPTOR
2193 #undef __entity_check_INTERFACE
2194 #undef __entity_check_STRING
2195 #undef __entity_check_ENDPOINT
2196 
2197 	return length;
2198 }
2199 
2200 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2201 				     ffs_entity_callback entity, void *priv)
2202 {
2203 	const unsigned _len = len;
2204 	unsigned long num = 0;
2205 	int current_class = -1;
2206 
2207 	ENTER();
2208 
2209 	for (;;) {
2210 		int ret;
2211 
2212 		if (num == count)
2213 			data = NULL;
2214 
2215 		/* Record "descriptor" entity */
2216 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2217 		if (ret < 0) {
2218 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2219 				 num, ret);
2220 			return ret;
2221 		}
2222 
2223 		if (!data)
2224 			return _len - len;
2225 
2226 		ret = ffs_do_single_desc(data, len, entity, priv,
2227 			&current_class);
2228 		if (ret < 0) {
2229 			pr_debug("%s returns %d\n", __func__, ret);
2230 			return ret;
2231 		}
2232 
2233 		len -= ret;
2234 		data += ret;
2235 		++num;
2236 	}
2237 }
2238 
2239 static int __ffs_data_do_entity(enum ffs_entity_type type,
2240 				u8 *valuep, struct usb_descriptor_header *desc,
2241 				void *priv)
2242 {
2243 	struct ffs_desc_helper *helper = priv;
2244 	struct usb_endpoint_descriptor *d;
2245 
2246 	ENTER();
2247 
2248 	switch (type) {
2249 	case FFS_DESCRIPTOR:
2250 		break;
2251 
2252 	case FFS_INTERFACE:
2253 		/*
2254 		 * Interfaces are indexed from zero so if we
2255 		 * encountered interface "n" then there are at least
2256 		 * "n+1" interfaces.
2257 		 */
2258 		if (*valuep >= helper->interfaces_count)
2259 			helper->interfaces_count = *valuep + 1;
2260 		break;
2261 
2262 	case FFS_STRING:
2263 		/*
2264 		 * Strings are indexed from 1 (0 is reserved
2265 		 * for languages list)
2266 		 */
2267 		if (*valuep > helper->ffs->strings_count)
2268 			helper->ffs->strings_count = *valuep;
2269 		break;
2270 
2271 	case FFS_ENDPOINT:
2272 		d = (void *)desc;
2273 		helper->eps_count++;
2274 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2275 			return -EINVAL;
2276 		/* Check if descriptors for any speed were already parsed */
2277 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2278 			helper->ffs->eps_addrmap[helper->eps_count] =
2279 				d->bEndpointAddress;
2280 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2281 				d->bEndpointAddress)
2282 			return -EINVAL;
2283 		break;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2290 				   struct usb_os_desc_header *desc)
2291 {
2292 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2293 	u16 w_index = le16_to_cpu(desc->wIndex);
2294 
2295 	if (bcd_version != 1) {
2296 		pr_vdebug("unsupported os descriptors version: %d",
2297 			  bcd_version);
2298 		return -EINVAL;
2299 	}
2300 	switch (w_index) {
2301 	case 0x4:
2302 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2303 		break;
2304 	case 0x5:
2305 		*next_type = FFS_OS_DESC_EXT_PROP;
2306 		break;
2307 	default:
2308 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2309 		return -EINVAL;
2310 	}
2311 
2312 	return sizeof(*desc);
2313 }
2314 
2315 /*
2316  * Process all extended compatibility/extended property descriptors
2317  * of a feature descriptor
2318  */
2319 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2320 					      enum ffs_os_desc_type type,
2321 					      u16 feature_count,
2322 					      ffs_os_desc_callback entity,
2323 					      void *priv,
2324 					      struct usb_os_desc_header *h)
2325 {
2326 	int ret;
2327 	const unsigned _len = len;
2328 
2329 	ENTER();
2330 
2331 	/* loop over all ext compat/ext prop descriptors */
2332 	while (feature_count--) {
2333 		ret = entity(type, h, data, len, priv);
2334 		if (ret < 0) {
2335 			pr_debug("bad OS descriptor, type: %d\n", type);
2336 			return ret;
2337 		}
2338 		data += ret;
2339 		len -= ret;
2340 	}
2341 	return _len - len;
2342 }
2343 
2344 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2345 static int __must_check ffs_do_os_descs(unsigned count,
2346 					char *data, unsigned len,
2347 					ffs_os_desc_callback entity, void *priv)
2348 {
2349 	const unsigned _len = len;
2350 	unsigned long num = 0;
2351 
2352 	ENTER();
2353 
2354 	for (num = 0; num < count; ++num) {
2355 		int ret;
2356 		enum ffs_os_desc_type type;
2357 		u16 feature_count;
2358 		struct usb_os_desc_header *desc = (void *)data;
2359 
2360 		if (len < sizeof(*desc))
2361 			return -EINVAL;
2362 
2363 		/*
2364 		 * Record "descriptor" entity.
2365 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2366 		 * Move the data pointer to the beginning of extended
2367 		 * compatibilities proper or extended properties proper
2368 		 * portions of the data
2369 		 */
2370 		if (le32_to_cpu(desc->dwLength) > len)
2371 			return -EINVAL;
2372 
2373 		ret = __ffs_do_os_desc_header(&type, desc);
2374 		if (ret < 0) {
2375 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2376 				 num, ret);
2377 			return ret;
2378 		}
2379 		/*
2380 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2381 		 */
2382 		feature_count = le16_to_cpu(desc->wCount);
2383 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2384 		    (feature_count > 255 || desc->Reserved))
2385 				return -EINVAL;
2386 		len -= ret;
2387 		data += ret;
2388 
2389 		/*
2390 		 * Process all function/property descriptors
2391 		 * of this Feature Descriptor
2392 		 */
2393 		ret = ffs_do_single_os_desc(data, len, type,
2394 					    feature_count, entity, priv, desc);
2395 		if (ret < 0) {
2396 			pr_debug("%s returns %d\n", __func__, ret);
2397 			return ret;
2398 		}
2399 
2400 		len -= ret;
2401 		data += ret;
2402 	}
2403 	return _len - len;
2404 }
2405 
2406 /*
2407  * Validate contents of the buffer from userspace related to OS descriptors.
2408  */
2409 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2410 				 struct usb_os_desc_header *h, void *data,
2411 				 unsigned len, void *priv)
2412 {
2413 	struct ffs_data *ffs = priv;
2414 	u8 length;
2415 
2416 	ENTER();
2417 
2418 	switch (type) {
2419 	case FFS_OS_DESC_EXT_COMPAT: {
2420 		struct usb_ext_compat_desc *d = data;
2421 		int i;
2422 
2423 		if (len < sizeof(*d) ||
2424 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2425 			return -EINVAL;
2426 		if (d->Reserved1 != 1) {
2427 			/*
2428 			 * According to the spec, Reserved1 must be set to 1
2429 			 * but older kernels incorrectly rejected non-zero
2430 			 * values.  We fix it here to avoid returning EINVAL
2431 			 * in response to values we used to accept.
2432 			 */
2433 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2434 			d->Reserved1 = 1;
2435 		}
2436 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2437 			if (d->Reserved2[i])
2438 				return -EINVAL;
2439 
2440 		length = sizeof(struct usb_ext_compat_desc);
2441 	}
2442 		break;
2443 	case FFS_OS_DESC_EXT_PROP: {
2444 		struct usb_ext_prop_desc *d = data;
2445 		u32 type, pdl;
2446 		u16 pnl;
2447 
2448 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2449 			return -EINVAL;
2450 		length = le32_to_cpu(d->dwSize);
2451 		if (len < length)
2452 			return -EINVAL;
2453 		type = le32_to_cpu(d->dwPropertyDataType);
2454 		if (type < USB_EXT_PROP_UNICODE ||
2455 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2456 			pr_vdebug("unsupported os descriptor property type: %d",
2457 				  type);
2458 			return -EINVAL;
2459 		}
2460 		pnl = le16_to_cpu(d->wPropertyNameLength);
2461 		if (length < 14 + pnl) {
2462 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2463 				  length, pnl, type);
2464 			return -EINVAL;
2465 		}
2466 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2467 		if (length != 14 + pnl + pdl) {
2468 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2469 				  length, pnl, pdl, type);
2470 			return -EINVAL;
2471 		}
2472 		++ffs->ms_os_descs_ext_prop_count;
2473 		/* property name reported to the host as "WCHAR"s */
2474 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2475 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2476 	}
2477 		break;
2478 	default:
2479 		pr_vdebug("unknown descriptor: %d\n", type);
2480 		return -EINVAL;
2481 	}
2482 	return length;
2483 }
2484 
2485 static int __ffs_data_got_descs(struct ffs_data *ffs,
2486 				char *const _data, size_t len)
2487 {
2488 	char *data = _data, *raw_descs;
2489 	unsigned os_descs_count = 0, counts[3], flags;
2490 	int ret = -EINVAL, i;
2491 	struct ffs_desc_helper helper;
2492 
2493 	ENTER();
2494 
2495 	if (get_unaligned_le32(data + 4) != len)
2496 		goto error;
2497 
2498 	switch (get_unaligned_le32(data)) {
2499 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2500 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2501 		data += 8;
2502 		len  -= 8;
2503 		break;
2504 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2505 		flags = get_unaligned_le32(data + 8);
2506 		ffs->user_flags = flags;
2507 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2508 			      FUNCTIONFS_HAS_HS_DESC |
2509 			      FUNCTIONFS_HAS_SS_DESC |
2510 			      FUNCTIONFS_HAS_MS_OS_DESC |
2511 			      FUNCTIONFS_VIRTUAL_ADDR |
2512 			      FUNCTIONFS_EVENTFD |
2513 			      FUNCTIONFS_ALL_CTRL_RECIP |
2514 			      FUNCTIONFS_CONFIG0_SETUP)) {
2515 			ret = -ENOSYS;
2516 			goto error;
2517 		}
2518 		data += 12;
2519 		len  -= 12;
2520 		break;
2521 	default:
2522 		goto error;
2523 	}
2524 
2525 	if (flags & FUNCTIONFS_EVENTFD) {
2526 		if (len < 4)
2527 			goto error;
2528 		ffs->ffs_eventfd =
2529 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2530 		if (IS_ERR(ffs->ffs_eventfd)) {
2531 			ret = PTR_ERR(ffs->ffs_eventfd);
2532 			ffs->ffs_eventfd = NULL;
2533 			goto error;
2534 		}
2535 		data += 4;
2536 		len  -= 4;
2537 	}
2538 
2539 	/* Read fs_count, hs_count and ss_count (if present) */
2540 	for (i = 0; i < 3; ++i) {
2541 		if (!(flags & (1 << i))) {
2542 			counts[i] = 0;
2543 		} else if (len < 4) {
2544 			goto error;
2545 		} else {
2546 			counts[i] = get_unaligned_le32(data);
2547 			data += 4;
2548 			len  -= 4;
2549 		}
2550 	}
2551 	if (flags & (1 << i)) {
2552 		if (len < 4) {
2553 			goto error;
2554 		}
2555 		os_descs_count = get_unaligned_le32(data);
2556 		data += 4;
2557 		len -= 4;
2558 	}
2559 
2560 	/* Read descriptors */
2561 	raw_descs = data;
2562 	helper.ffs = ffs;
2563 	for (i = 0; i < 3; ++i) {
2564 		if (!counts[i])
2565 			continue;
2566 		helper.interfaces_count = 0;
2567 		helper.eps_count = 0;
2568 		ret = ffs_do_descs(counts[i], data, len,
2569 				   __ffs_data_do_entity, &helper);
2570 		if (ret < 0)
2571 			goto error;
2572 		if (!ffs->eps_count && !ffs->interfaces_count) {
2573 			ffs->eps_count = helper.eps_count;
2574 			ffs->interfaces_count = helper.interfaces_count;
2575 		} else {
2576 			if (ffs->eps_count != helper.eps_count) {
2577 				ret = -EINVAL;
2578 				goto error;
2579 			}
2580 			if (ffs->interfaces_count != helper.interfaces_count) {
2581 				ret = -EINVAL;
2582 				goto error;
2583 			}
2584 		}
2585 		data += ret;
2586 		len  -= ret;
2587 	}
2588 	if (os_descs_count) {
2589 		ret = ffs_do_os_descs(os_descs_count, data, len,
2590 				      __ffs_data_do_os_desc, ffs);
2591 		if (ret < 0)
2592 			goto error;
2593 		data += ret;
2594 		len -= ret;
2595 	}
2596 
2597 	if (raw_descs == data || len) {
2598 		ret = -EINVAL;
2599 		goto error;
2600 	}
2601 
2602 	ffs->raw_descs_data	= _data;
2603 	ffs->raw_descs		= raw_descs;
2604 	ffs->raw_descs_length	= data - raw_descs;
2605 	ffs->fs_descs_count	= counts[0];
2606 	ffs->hs_descs_count	= counts[1];
2607 	ffs->ss_descs_count	= counts[2];
2608 	ffs->ms_os_descs_count	= os_descs_count;
2609 
2610 	return 0;
2611 
2612 error:
2613 	kfree(_data);
2614 	return ret;
2615 }
2616 
2617 static int __ffs_data_got_strings(struct ffs_data *ffs,
2618 				  char *const _data, size_t len)
2619 {
2620 	u32 str_count, needed_count, lang_count;
2621 	struct usb_gadget_strings **stringtabs, *t;
2622 	const char *data = _data;
2623 	struct usb_string *s;
2624 
2625 	ENTER();
2626 
2627 	if (len < 16 ||
2628 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2629 	    get_unaligned_le32(data + 4) != len)
2630 		goto error;
2631 	str_count  = get_unaligned_le32(data + 8);
2632 	lang_count = get_unaligned_le32(data + 12);
2633 
2634 	/* if one is zero the other must be zero */
2635 	if (!str_count != !lang_count)
2636 		goto error;
2637 
2638 	/* Do we have at least as many strings as descriptors need? */
2639 	needed_count = ffs->strings_count;
2640 	if (str_count < needed_count)
2641 		goto error;
2642 
2643 	/*
2644 	 * If we don't need any strings just return and free all
2645 	 * memory.
2646 	 */
2647 	if (!needed_count) {
2648 		kfree(_data);
2649 		return 0;
2650 	}
2651 
2652 	/* Allocate everything in one chunk so there's less maintenance. */
2653 	{
2654 		unsigned i = 0;
2655 		vla_group(d);
2656 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2657 			size_add(lang_count, 1));
2658 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2659 		vla_item(d, struct usb_string, strings,
2660 			size_mul(lang_count, (needed_count + 1)));
2661 
2662 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2663 
2664 		if (!vlabuf) {
2665 			kfree(_data);
2666 			return -ENOMEM;
2667 		}
2668 
2669 		/* Initialize the VLA pointers */
2670 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2671 		t = vla_ptr(vlabuf, d, stringtab);
2672 		i = lang_count;
2673 		do {
2674 			*stringtabs++ = t++;
2675 		} while (--i);
2676 		*stringtabs = NULL;
2677 
2678 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2679 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2680 		t = vla_ptr(vlabuf, d, stringtab);
2681 		s = vla_ptr(vlabuf, d, strings);
2682 	}
2683 
2684 	/* For each language */
2685 	data += 16;
2686 	len -= 16;
2687 
2688 	do { /* lang_count > 0 so we can use do-while */
2689 		unsigned needed = needed_count;
2690 		u32 str_per_lang = str_count;
2691 
2692 		if (len < 3)
2693 			goto error_free;
2694 		t->language = get_unaligned_le16(data);
2695 		t->strings  = s;
2696 		++t;
2697 
2698 		data += 2;
2699 		len -= 2;
2700 
2701 		/* For each string */
2702 		do { /* str_count > 0 so we can use do-while */
2703 			size_t length = strnlen(data, len);
2704 
2705 			if (length == len)
2706 				goto error_free;
2707 
2708 			/*
2709 			 * User may provide more strings then we need,
2710 			 * if that's the case we simply ignore the
2711 			 * rest
2712 			 */
2713 			if (needed) {
2714 				/*
2715 				 * s->id will be set while adding
2716 				 * function to configuration so for
2717 				 * now just leave garbage here.
2718 				 */
2719 				s->s = data;
2720 				--needed;
2721 				++s;
2722 			}
2723 
2724 			data += length + 1;
2725 			len -= length + 1;
2726 		} while (--str_per_lang);
2727 
2728 		s->id = 0;   /* terminator */
2729 		s->s = NULL;
2730 		++s;
2731 
2732 	} while (--lang_count);
2733 
2734 	/* Some garbage left? */
2735 	if (len)
2736 		goto error_free;
2737 
2738 	/* Done! */
2739 	ffs->stringtabs = stringtabs;
2740 	ffs->raw_strings = _data;
2741 
2742 	return 0;
2743 
2744 error_free:
2745 	kfree(stringtabs);
2746 error:
2747 	kfree(_data);
2748 	return -EINVAL;
2749 }
2750 
2751 
2752 /* Events handling and management *******************************************/
2753 
2754 static void __ffs_event_add(struct ffs_data *ffs,
2755 			    enum usb_functionfs_event_type type)
2756 {
2757 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2758 	int neg = 0;
2759 
2760 	/*
2761 	 * Abort any unhandled setup
2762 	 *
2763 	 * We do not need to worry about some cmpxchg() changing value
2764 	 * of ffs->setup_state without holding the lock because when
2765 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2766 	 * the source does nothing.
2767 	 */
2768 	if (ffs->setup_state == FFS_SETUP_PENDING)
2769 		ffs->setup_state = FFS_SETUP_CANCELLED;
2770 
2771 	/*
2772 	 * Logic of this function guarantees that there are at most four pending
2773 	 * evens on ffs->ev.types queue.  This is important because the queue
2774 	 * has space for four elements only and __ffs_ep0_read_events function
2775 	 * depends on that limit as well.  If more event types are added, those
2776 	 * limits have to be revisited or guaranteed to still hold.
2777 	 */
2778 	switch (type) {
2779 	case FUNCTIONFS_RESUME:
2780 		rem_type2 = FUNCTIONFS_SUSPEND;
2781 		fallthrough;
2782 	case FUNCTIONFS_SUSPEND:
2783 	case FUNCTIONFS_SETUP:
2784 		rem_type1 = type;
2785 		/* Discard all similar events */
2786 		break;
2787 
2788 	case FUNCTIONFS_BIND:
2789 	case FUNCTIONFS_UNBIND:
2790 	case FUNCTIONFS_DISABLE:
2791 	case FUNCTIONFS_ENABLE:
2792 		/* Discard everything other then power management. */
2793 		rem_type1 = FUNCTIONFS_SUSPEND;
2794 		rem_type2 = FUNCTIONFS_RESUME;
2795 		neg = 1;
2796 		break;
2797 
2798 	default:
2799 		WARN(1, "%d: unknown event, this should not happen\n", type);
2800 		return;
2801 	}
2802 
2803 	{
2804 		u8 *ev  = ffs->ev.types, *out = ev;
2805 		unsigned n = ffs->ev.count;
2806 		for (; n; --n, ++ev)
2807 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2808 				*out++ = *ev;
2809 			else
2810 				pr_vdebug("purging event %d\n", *ev);
2811 		ffs->ev.count = out - ffs->ev.types;
2812 	}
2813 
2814 	pr_vdebug("adding event %d\n", type);
2815 	ffs->ev.types[ffs->ev.count++] = type;
2816 	wake_up_locked(&ffs->ev.waitq);
2817 	if (ffs->ffs_eventfd)
2818 		eventfd_signal(ffs->ffs_eventfd, 1);
2819 }
2820 
2821 static void ffs_event_add(struct ffs_data *ffs,
2822 			  enum usb_functionfs_event_type type)
2823 {
2824 	unsigned long flags;
2825 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2826 	__ffs_event_add(ffs, type);
2827 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2828 }
2829 
2830 /* Bind/unbind USB function hooks *******************************************/
2831 
2832 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2833 {
2834 	int i;
2835 
2836 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2837 		if (ffs->eps_addrmap[i] == endpoint_address)
2838 			return i;
2839 	return -ENOENT;
2840 }
2841 
2842 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2843 				    struct usb_descriptor_header *desc,
2844 				    void *priv)
2845 {
2846 	struct usb_endpoint_descriptor *ds = (void *)desc;
2847 	struct ffs_function *func = priv;
2848 	struct ffs_ep *ffs_ep;
2849 	unsigned ep_desc_id;
2850 	int idx;
2851 	static const char *speed_names[] = { "full", "high", "super" };
2852 
2853 	if (type != FFS_DESCRIPTOR)
2854 		return 0;
2855 
2856 	/*
2857 	 * If ss_descriptors is not NULL, we are reading super speed
2858 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2859 	 * speed descriptors; otherwise, we are reading full speed
2860 	 * descriptors.
2861 	 */
2862 	if (func->function.ss_descriptors) {
2863 		ep_desc_id = 2;
2864 		func->function.ss_descriptors[(long)valuep] = desc;
2865 	} else if (func->function.hs_descriptors) {
2866 		ep_desc_id = 1;
2867 		func->function.hs_descriptors[(long)valuep] = desc;
2868 	} else {
2869 		ep_desc_id = 0;
2870 		func->function.fs_descriptors[(long)valuep]    = desc;
2871 	}
2872 
2873 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2874 		return 0;
2875 
2876 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2877 	if (idx < 0)
2878 		return idx;
2879 
2880 	ffs_ep = func->eps + idx;
2881 
2882 	if (ffs_ep->descs[ep_desc_id]) {
2883 		pr_err("two %sspeed descriptors for EP %d\n",
2884 			  speed_names[ep_desc_id],
2885 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2886 		return -EINVAL;
2887 	}
2888 	ffs_ep->descs[ep_desc_id] = ds;
2889 
2890 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2891 	if (ffs_ep->ep) {
2892 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2893 		if (!ds->wMaxPacketSize)
2894 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2895 	} else {
2896 		struct usb_request *req;
2897 		struct usb_ep *ep;
2898 		u8 bEndpointAddress;
2899 		u16 wMaxPacketSize;
2900 
2901 		/*
2902 		 * We back up bEndpointAddress because autoconfig overwrites
2903 		 * it with physical endpoint address.
2904 		 */
2905 		bEndpointAddress = ds->bEndpointAddress;
2906 		/*
2907 		 * We back up wMaxPacketSize because autoconfig treats
2908 		 * endpoint descriptors as if they were full speed.
2909 		 */
2910 		wMaxPacketSize = ds->wMaxPacketSize;
2911 		pr_vdebug("autoconfig\n");
2912 		ep = usb_ep_autoconfig(func->gadget, ds);
2913 		if (!ep)
2914 			return -ENOTSUPP;
2915 		ep->driver_data = func->eps + idx;
2916 
2917 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2918 		if (!req)
2919 			return -ENOMEM;
2920 
2921 		ffs_ep->ep  = ep;
2922 		ffs_ep->req = req;
2923 		func->eps_revmap[ds->bEndpointAddress &
2924 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2925 		/*
2926 		 * If we use virtual address mapping, we restore
2927 		 * original bEndpointAddress value.
2928 		 */
2929 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2930 			ds->bEndpointAddress = bEndpointAddress;
2931 		/*
2932 		 * Restore wMaxPacketSize which was potentially
2933 		 * overwritten by autoconfig.
2934 		 */
2935 		ds->wMaxPacketSize = wMaxPacketSize;
2936 	}
2937 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2938 
2939 	return 0;
2940 }
2941 
2942 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2943 				   struct usb_descriptor_header *desc,
2944 				   void *priv)
2945 {
2946 	struct ffs_function *func = priv;
2947 	unsigned idx;
2948 	u8 newValue;
2949 
2950 	switch (type) {
2951 	default:
2952 	case FFS_DESCRIPTOR:
2953 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2954 		return 0;
2955 
2956 	case FFS_INTERFACE:
2957 		idx = *valuep;
2958 		if (func->interfaces_nums[idx] < 0) {
2959 			int id = usb_interface_id(func->conf, &func->function);
2960 			if (id < 0)
2961 				return id;
2962 			func->interfaces_nums[idx] = id;
2963 		}
2964 		newValue = func->interfaces_nums[idx];
2965 		break;
2966 
2967 	case FFS_STRING:
2968 		/* String' IDs are allocated when fsf_data is bound to cdev */
2969 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2970 		break;
2971 
2972 	case FFS_ENDPOINT:
2973 		/*
2974 		 * USB_DT_ENDPOINT are handled in
2975 		 * __ffs_func_bind_do_descs().
2976 		 */
2977 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2978 			return 0;
2979 
2980 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2981 		if (!func->eps[idx].ep)
2982 			return -EINVAL;
2983 
2984 		{
2985 			struct usb_endpoint_descriptor **descs;
2986 			descs = func->eps[idx].descs;
2987 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2988 		}
2989 		break;
2990 	}
2991 
2992 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2993 	*valuep = newValue;
2994 	return 0;
2995 }
2996 
2997 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2998 				      struct usb_os_desc_header *h, void *data,
2999 				      unsigned len, void *priv)
3000 {
3001 	struct ffs_function *func = priv;
3002 	u8 length = 0;
3003 
3004 	switch (type) {
3005 	case FFS_OS_DESC_EXT_COMPAT: {
3006 		struct usb_ext_compat_desc *desc = data;
3007 		struct usb_os_desc_table *t;
3008 
3009 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3010 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3011 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
3012 		       ARRAY_SIZE(desc->CompatibleID) +
3013 		       ARRAY_SIZE(desc->SubCompatibleID));
3014 		length = sizeof(*desc);
3015 	}
3016 		break;
3017 	case FFS_OS_DESC_EXT_PROP: {
3018 		struct usb_ext_prop_desc *desc = data;
3019 		struct usb_os_desc_table *t;
3020 		struct usb_os_desc_ext_prop *ext_prop;
3021 		char *ext_prop_name;
3022 		char *ext_prop_data;
3023 
3024 		t = &func->function.os_desc_table[h->interface];
3025 		t->if_id = func->interfaces_nums[h->interface];
3026 
3027 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3028 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3029 
3030 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3031 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3032 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3033 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3034 		length = ext_prop->name_len + ext_prop->data_len + 14;
3035 
3036 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3037 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3038 			ext_prop->name_len;
3039 
3040 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3041 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3042 			ext_prop->data_len;
3043 		memcpy(ext_prop_data,
3044 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3045 		       ext_prop->data_len);
3046 		/* unicode data reported to the host as "WCHAR"s */
3047 		switch (ext_prop->type) {
3048 		case USB_EXT_PROP_UNICODE:
3049 		case USB_EXT_PROP_UNICODE_ENV:
3050 		case USB_EXT_PROP_UNICODE_LINK:
3051 		case USB_EXT_PROP_UNICODE_MULTI:
3052 			ext_prop->data_len *= 2;
3053 			break;
3054 		}
3055 		ext_prop->data = ext_prop_data;
3056 
3057 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3058 		       ext_prop->name_len);
3059 		/* property name reported to the host as "WCHAR"s */
3060 		ext_prop->name_len *= 2;
3061 		ext_prop->name = ext_prop_name;
3062 
3063 		t->os_desc->ext_prop_len +=
3064 			ext_prop->name_len + ext_prop->data_len + 14;
3065 		++t->os_desc->ext_prop_count;
3066 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3067 	}
3068 		break;
3069 	default:
3070 		pr_vdebug("unknown descriptor: %d\n", type);
3071 	}
3072 
3073 	return length;
3074 }
3075 
3076 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3077 						struct usb_configuration *c)
3078 {
3079 	struct ffs_function *func = ffs_func_from_usb(f);
3080 	struct f_fs_opts *ffs_opts =
3081 		container_of(f->fi, struct f_fs_opts, func_inst);
3082 	struct ffs_data *ffs_data;
3083 	int ret;
3084 
3085 	ENTER();
3086 
3087 	/*
3088 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3089 	 * which already uses locking; taking the same lock here would
3090 	 * cause a deadlock.
3091 	 *
3092 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3093 	 */
3094 	if (!ffs_opts->no_configfs)
3095 		ffs_dev_lock();
3096 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3097 	ffs_data = ffs_opts->dev->ffs_data;
3098 	if (!ffs_opts->no_configfs)
3099 		ffs_dev_unlock();
3100 	if (ret)
3101 		return ERR_PTR(ret);
3102 
3103 	func->ffs = ffs_data;
3104 	func->conf = c;
3105 	func->gadget = c->cdev->gadget;
3106 
3107 	/*
3108 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3109 	 * configurations are bound in sequence with list_for_each_entry,
3110 	 * in each configuration its functions are bound in sequence
3111 	 * with list_for_each_entry, so we assume no race condition
3112 	 * with regard to ffs_opts->bound access
3113 	 */
3114 	if (!ffs_opts->refcnt) {
3115 		ret = functionfs_bind(func->ffs, c->cdev);
3116 		if (ret)
3117 			return ERR_PTR(ret);
3118 	}
3119 	ffs_opts->refcnt++;
3120 	func->function.strings = func->ffs->stringtabs;
3121 
3122 	return ffs_opts;
3123 }
3124 
3125 static int _ffs_func_bind(struct usb_configuration *c,
3126 			  struct usb_function *f)
3127 {
3128 	struct ffs_function *func = ffs_func_from_usb(f);
3129 	struct ffs_data *ffs = func->ffs;
3130 
3131 	const int full = !!func->ffs->fs_descs_count;
3132 	const int high = !!func->ffs->hs_descs_count;
3133 	const int super = !!func->ffs->ss_descs_count;
3134 
3135 	int fs_len, hs_len, ss_len, ret, i;
3136 	struct ffs_ep *eps_ptr;
3137 
3138 	/* Make it a single chunk, less management later on */
3139 	vla_group(d);
3140 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3141 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3142 		full ? ffs->fs_descs_count + 1 : 0);
3143 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3144 		high ? ffs->hs_descs_count + 1 : 0);
3145 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3146 		super ? ffs->ss_descs_count + 1 : 0);
3147 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3148 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3149 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3150 	vla_item_with_sz(d, char[16], ext_compat,
3151 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3152 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3153 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3154 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3155 			 ffs->ms_os_descs_ext_prop_count);
3156 	vla_item_with_sz(d, char, ext_prop_name,
3157 			 ffs->ms_os_descs_ext_prop_name_len);
3158 	vla_item_with_sz(d, char, ext_prop_data,
3159 			 ffs->ms_os_descs_ext_prop_data_len);
3160 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3161 	char *vlabuf;
3162 
3163 	ENTER();
3164 
3165 	/* Has descriptors only for speeds gadget does not support */
3166 	if (!(full | high | super))
3167 		return -ENOTSUPP;
3168 
3169 	/* Allocate a single chunk, less management later on */
3170 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3171 	if (!vlabuf)
3172 		return -ENOMEM;
3173 
3174 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3175 	ffs->ms_os_descs_ext_prop_name_avail =
3176 		vla_ptr(vlabuf, d, ext_prop_name);
3177 	ffs->ms_os_descs_ext_prop_data_avail =
3178 		vla_ptr(vlabuf, d, ext_prop_data);
3179 
3180 	/* Copy descriptors  */
3181 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3182 	       ffs->raw_descs_length);
3183 
3184 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3185 	eps_ptr = vla_ptr(vlabuf, d, eps);
3186 	for (i = 0; i < ffs->eps_count; i++)
3187 		eps_ptr[i].num = -1;
3188 
3189 	/* Save pointers
3190 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3191 	*/
3192 	func->eps             = vla_ptr(vlabuf, d, eps);
3193 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3194 
3195 	/*
3196 	 * Go through all the endpoint descriptors and allocate
3197 	 * endpoints first, so that later we can rewrite the endpoint
3198 	 * numbers without worrying that it may be described later on.
3199 	 */
3200 	if (full) {
3201 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3202 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3203 				      vla_ptr(vlabuf, d, raw_descs),
3204 				      d_raw_descs__sz,
3205 				      __ffs_func_bind_do_descs, func);
3206 		if (fs_len < 0) {
3207 			ret = fs_len;
3208 			goto error;
3209 		}
3210 	} else {
3211 		fs_len = 0;
3212 	}
3213 
3214 	if (high) {
3215 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3216 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3217 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3218 				      d_raw_descs__sz - fs_len,
3219 				      __ffs_func_bind_do_descs, func);
3220 		if (hs_len < 0) {
3221 			ret = hs_len;
3222 			goto error;
3223 		}
3224 	} else {
3225 		hs_len = 0;
3226 	}
3227 
3228 	if (super) {
3229 		func->function.ss_descriptors = func->function.ssp_descriptors =
3230 			vla_ptr(vlabuf, d, ss_descs);
3231 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3232 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3233 				d_raw_descs__sz - fs_len - hs_len,
3234 				__ffs_func_bind_do_descs, func);
3235 		if (ss_len < 0) {
3236 			ret = ss_len;
3237 			goto error;
3238 		}
3239 	} else {
3240 		ss_len = 0;
3241 	}
3242 
3243 	/*
3244 	 * Now handle interface numbers allocation and interface and
3245 	 * endpoint numbers rewriting.  We can do that in one go
3246 	 * now.
3247 	 */
3248 	ret = ffs_do_descs(ffs->fs_descs_count +
3249 			   (high ? ffs->hs_descs_count : 0) +
3250 			   (super ? ffs->ss_descs_count : 0),
3251 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3252 			   __ffs_func_bind_do_nums, func);
3253 	if (ret < 0)
3254 		goto error;
3255 
3256 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3257 	if (c->cdev->use_os_string) {
3258 		for (i = 0; i < ffs->interfaces_count; ++i) {
3259 			struct usb_os_desc *desc;
3260 
3261 			desc = func->function.os_desc_table[i].os_desc =
3262 				vla_ptr(vlabuf, d, os_desc) +
3263 				i * sizeof(struct usb_os_desc);
3264 			desc->ext_compat_id =
3265 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3266 			INIT_LIST_HEAD(&desc->ext_prop);
3267 		}
3268 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3269 				      vla_ptr(vlabuf, d, raw_descs) +
3270 				      fs_len + hs_len + ss_len,
3271 				      d_raw_descs__sz - fs_len - hs_len -
3272 				      ss_len,
3273 				      __ffs_func_bind_do_os_desc, func);
3274 		if (ret < 0)
3275 			goto error;
3276 	}
3277 	func->function.os_desc_n =
3278 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3279 
3280 	/* And we're done */
3281 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3282 	return 0;
3283 
3284 error:
3285 	/* XXX Do we need to release all claimed endpoints here? */
3286 	return ret;
3287 }
3288 
3289 static int ffs_func_bind(struct usb_configuration *c,
3290 			 struct usb_function *f)
3291 {
3292 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3293 	struct ffs_function *func = ffs_func_from_usb(f);
3294 	int ret;
3295 
3296 	if (IS_ERR(ffs_opts))
3297 		return PTR_ERR(ffs_opts);
3298 
3299 	ret = _ffs_func_bind(c, f);
3300 	if (ret && !--ffs_opts->refcnt)
3301 		functionfs_unbind(func->ffs);
3302 
3303 	return ret;
3304 }
3305 
3306 
3307 /* Other USB function hooks *************************************************/
3308 
3309 static void ffs_reset_work(struct work_struct *work)
3310 {
3311 	struct ffs_data *ffs = container_of(work,
3312 		struct ffs_data, reset_work);
3313 	ffs_data_reset(ffs);
3314 }
3315 
3316 static int ffs_func_set_alt(struct usb_function *f,
3317 			    unsigned interface, unsigned alt)
3318 {
3319 	struct ffs_function *func = ffs_func_from_usb(f);
3320 	struct ffs_data *ffs = func->ffs;
3321 	int ret = 0, intf;
3322 
3323 	if (alt != (unsigned)-1) {
3324 		intf = ffs_func_revmap_intf(func, interface);
3325 		if (intf < 0)
3326 			return intf;
3327 	}
3328 
3329 	if (ffs->func)
3330 		ffs_func_eps_disable(ffs->func);
3331 
3332 	if (ffs->state == FFS_DEACTIVATED) {
3333 		ffs->state = FFS_CLOSING;
3334 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3335 		schedule_work(&ffs->reset_work);
3336 		return -ENODEV;
3337 	}
3338 
3339 	if (ffs->state != FFS_ACTIVE)
3340 		return -ENODEV;
3341 
3342 	if (alt == (unsigned)-1) {
3343 		ffs->func = NULL;
3344 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3345 		return 0;
3346 	}
3347 
3348 	ffs->func = func;
3349 	ret = ffs_func_eps_enable(func);
3350 	if (ret >= 0)
3351 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3352 	return ret;
3353 }
3354 
3355 static void ffs_func_disable(struct usb_function *f)
3356 {
3357 	ffs_func_set_alt(f, 0, (unsigned)-1);
3358 }
3359 
3360 static int ffs_func_setup(struct usb_function *f,
3361 			  const struct usb_ctrlrequest *creq)
3362 {
3363 	struct ffs_function *func = ffs_func_from_usb(f);
3364 	struct ffs_data *ffs = func->ffs;
3365 	unsigned long flags;
3366 	int ret;
3367 
3368 	ENTER();
3369 
3370 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3371 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3372 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3373 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3374 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3375 
3376 	/*
3377 	 * Most requests directed to interface go through here
3378 	 * (notable exceptions are set/get interface) so we need to
3379 	 * handle them.  All other either handled by composite or
3380 	 * passed to usb_configuration->setup() (if one is set).  No
3381 	 * matter, we will handle requests directed to endpoint here
3382 	 * as well (as it's straightforward).  Other request recipient
3383 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3384 	 * is being used.
3385 	 */
3386 	if (ffs->state != FFS_ACTIVE)
3387 		return -ENODEV;
3388 
3389 	switch (creq->bRequestType & USB_RECIP_MASK) {
3390 	case USB_RECIP_INTERFACE:
3391 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3392 		if (ret < 0)
3393 			return ret;
3394 		break;
3395 
3396 	case USB_RECIP_ENDPOINT:
3397 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3398 		if (ret < 0)
3399 			return ret;
3400 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3401 			ret = func->ffs->eps_addrmap[ret];
3402 		break;
3403 
3404 	default:
3405 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3406 			ret = le16_to_cpu(creq->wIndex);
3407 		else
3408 			return -EOPNOTSUPP;
3409 	}
3410 
3411 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3412 	ffs->ev.setup = *creq;
3413 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3414 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3415 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3416 
3417 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3418 }
3419 
3420 static bool ffs_func_req_match(struct usb_function *f,
3421 			       const struct usb_ctrlrequest *creq,
3422 			       bool config0)
3423 {
3424 	struct ffs_function *func = ffs_func_from_usb(f);
3425 
3426 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3427 		return false;
3428 
3429 	switch (creq->bRequestType & USB_RECIP_MASK) {
3430 	case USB_RECIP_INTERFACE:
3431 		return (ffs_func_revmap_intf(func,
3432 					     le16_to_cpu(creq->wIndex)) >= 0);
3433 	case USB_RECIP_ENDPOINT:
3434 		return (ffs_func_revmap_ep(func,
3435 					   le16_to_cpu(creq->wIndex)) >= 0);
3436 	default:
3437 		return (bool) (func->ffs->user_flags &
3438 			       FUNCTIONFS_ALL_CTRL_RECIP);
3439 	}
3440 }
3441 
3442 static void ffs_func_suspend(struct usb_function *f)
3443 {
3444 	ENTER();
3445 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3446 }
3447 
3448 static void ffs_func_resume(struct usb_function *f)
3449 {
3450 	ENTER();
3451 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3452 }
3453 
3454 
3455 /* Endpoint and interface numbers reverse mapping ***************************/
3456 
3457 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3458 {
3459 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3460 	return num ? num : -EDOM;
3461 }
3462 
3463 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3464 {
3465 	short *nums = func->interfaces_nums;
3466 	unsigned count = func->ffs->interfaces_count;
3467 
3468 	for (; count; --count, ++nums) {
3469 		if (*nums >= 0 && *nums == intf)
3470 			return nums - func->interfaces_nums;
3471 	}
3472 
3473 	return -EDOM;
3474 }
3475 
3476 
3477 /* Devices management *******************************************************/
3478 
3479 static LIST_HEAD(ffs_devices);
3480 
3481 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3482 {
3483 	struct ffs_dev *dev;
3484 
3485 	if (!name)
3486 		return NULL;
3487 
3488 	list_for_each_entry(dev, &ffs_devices, entry) {
3489 		if (strcmp(dev->name, name) == 0)
3490 			return dev;
3491 	}
3492 
3493 	return NULL;
3494 }
3495 
3496 /*
3497  * ffs_lock must be taken by the caller of this function
3498  */
3499 static struct ffs_dev *_ffs_get_single_dev(void)
3500 {
3501 	struct ffs_dev *dev;
3502 
3503 	if (list_is_singular(&ffs_devices)) {
3504 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3505 		if (dev->single)
3506 			return dev;
3507 	}
3508 
3509 	return NULL;
3510 }
3511 
3512 /*
3513  * ffs_lock must be taken by the caller of this function
3514  */
3515 static struct ffs_dev *_ffs_find_dev(const char *name)
3516 {
3517 	struct ffs_dev *dev;
3518 
3519 	dev = _ffs_get_single_dev();
3520 	if (dev)
3521 		return dev;
3522 
3523 	return _ffs_do_find_dev(name);
3524 }
3525 
3526 /* Configfs support *********************************************************/
3527 
3528 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3529 {
3530 	return container_of(to_config_group(item), struct f_fs_opts,
3531 			    func_inst.group);
3532 }
3533 
3534 static void ffs_attr_release(struct config_item *item)
3535 {
3536 	struct f_fs_opts *opts = to_ffs_opts(item);
3537 
3538 	usb_put_function_instance(&opts->func_inst);
3539 }
3540 
3541 static struct configfs_item_operations ffs_item_ops = {
3542 	.release	= ffs_attr_release,
3543 };
3544 
3545 static const struct config_item_type ffs_func_type = {
3546 	.ct_item_ops	= &ffs_item_ops,
3547 	.ct_owner	= THIS_MODULE,
3548 };
3549 
3550 
3551 /* Function registration interface ******************************************/
3552 
3553 static void ffs_free_inst(struct usb_function_instance *f)
3554 {
3555 	struct f_fs_opts *opts;
3556 
3557 	opts = to_f_fs_opts(f);
3558 	ffs_release_dev(opts->dev);
3559 	ffs_dev_lock();
3560 	_ffs_free_dev(opts->dev);
3561 	ffs_dev_unlock();
3562 	kfree(opts);
3563 }
3564 
3565 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3566 {
3567 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3568 		return -ENAMETOOLONG;
3569 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3570 }
3571 
3572 static struct usb_function_instance *ffs_alloc_inst(void)
3573 {
3574 	struct f_fs_opts *opts;
3575 	struct ffs_dev *dev;
3576 
3577 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3578 	if (!opts)
3579 		return ERR_PTR(-ENOMEM);
3580 
3581 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3582 	opts->func_inst.free_func_inst = ffs_free_inst;
3583 	ffs_dev_lock();
3584 	dev = _ffs_alloc_dev();
3585 	ffs_dev_unlock();
3586 	if (IS_ERR(dev)) {
3587 		kfree(opts);
3588 		return ERR_CAST(dev);
3589 	}
3590 	opts->dev = dev;
3591 	dev->opts = opts;
3592 
3593 	config_group_init_type_name(&opts->func_inst.group, "",
3594 				    &ffs_func_type);
3595 	return &opts->func_inst;
3596 }
3597 
3598 static void ffs_free(struct usb_function *f)
3599 {
3600 	kfree(ffs_func_from_usb(f));
3601 }
3602 
3603 static void ffs_func_unbind(struct usb_configuration *c,
3604 			    struct usb_function *f)
3605 {
3606 	struct ffs_function *func = ffs_func_from_usb(f);
3607 	struct ffs_data *ffs = func->ffs;
3608 	struct f_fs_opts *opts =
3609 		container_of(f->fi, struct f_fs_opts, func_inst);
3610 	struct ffs_ep *ep = func->eps;
3611 	unsigned count = ffs->eps_count;
3612 	unsigned long flags;
3613 
3614 	ENTER();
3615 	if (ffs->func == func) {
3616 		ffs_func_eps_disable(func);
3617 		ffs->func = NULL;
3618 	}
3619 
3620 	/* Drain any pending AIO completions */
3621 	drain_workqueue(ffs->io_completion_wq);
3622 
3623 	if (!--opts->refcnt)
3624 		functionfs_unbind(ffs);
3625 
3626 	/* cleanup after autoconfig */
3627 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3628 	while (count--) {
3629 		if (ep->ep && ep->req)
3630 			usb_ep_free_request(ep->ep, ep->req);
3631 		ep->req = NULL;
3632 		++ep;
3633 	}
3634 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3635 	kfree(func->eps);
3636 	func->eps = NULL;
3637 	/*
3638 	 * eps, descriptors and interfaces_nums are allocated in the
3639 	 * same chunk so only one free is required.
3640 	 */
3641 	func->function.fs_descriptors = NULL;
3642 	func->function.hs_descriptors = NULL;
3643 	func->function.ss_descriptors = NULL;
3644 	func->function.ssp_descriptors = NULL;
3645 	func->interfaces_nums = NULL;
3646 
3647 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3648 }
3649 
3650 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3651 {
3652 	struct ffs_function *func;
3653 
3654 	ENTER();
3655 
3656 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3657 	if (!func)
3658 		return ERR_PTR(-ENOMEM);
3659 
3660 	func->function.name    = "Function FS Gadget";
3661 
3662 	func->function.bind    = ffs_func_bind;
3663 	func->function.unbind  = ffs_func_unbind;
3664 	func->function.set_alt = ffs_func_set_alt;
3665 	func->function.disable = ffs_func_disable;
3666 	func->function.setup   = ffs_func_setup;
3667 	func->function.req_match = ffs_func_req_match;
3668 	func->function.suspend = ffs_func_suspend;
3669 	func->function.resume  = ffs_func_resume;
3670 	func->function.free_func = ffs_free;
3671 
3672 	return &func->function;
3673 }
3674 
3675 /*
3676  * ffs_lock must be taken by the caller of this function
3677  */
3678 static struct ffs_dev *_ffs_alloc_dev(void)
3679 {
3680 	struct ffs_dev *dev;
3681 	int ret;
3682 
3683 	if (_ffs_get_single_dev())
3684 			return ERR_PTR(-EBUSY);
3685 
3686 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3687 	if (!dev)
3688 		return ERR_PTR(-ENOMEM);
3689 
3690 	if (list_empty(&ffs_devices)) {
3691 		ret = functionfs_init();
3692 		if (ret) {
3693 			kfree(dev);
3694 			return ERR_PTR(ret);
3695 		}
3696 	}
3697 
3698 	list_add(&dev->entry, &ffs_devices);
3699 
3700 	return dev;
3701 }
3702 
3703 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3704 {
3705 	struct ffs_dev *existing;
3706 	int ret = 0;
3707 
3708 	ffs_dev_lock();
3709 
3710 	existing = _ffs_do_find_dev(name);
3711 	if (!existing)
3712 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
3713 	else if (existing != dev)
3714 		ret = -EBUSY;
3715 
3716 	ffs_dev_unlock();
3717 
3718 	return ret;
3719 }
3720 EXPORT_SYMBOL_GPL(ffs_name_dev);
3721 
3722 int ffs_single_dev(struct ffs_dev *dev)
3723 {
3724 	int ret;
3725 
3726 	ret = 0;
3727 	ffs_dev_lock();
3728 
3729 	if (!list_is_singular(&ffs_devices))
3730 		ret = -EBUSY;
3731 	else
3732 		dev->single = true;
3733 
3734 	ffs_dev_unlock();
3735 	return ret;
3736 }
3737 EXPORT_SYMBOL_GPL(ffs_single_dev);
3738 
3739 /*
3740  * ffs_lock must be taken by the caller of this function
3741  */
3742 static void _ffs_free_dev(struct ffs_dev *dev)
3743 {
3744 	list_del(&dev->entry);
3745 
3746 	kfree(dev);
3747 	if (list_empty(&ffs_devices))
3748 		functionfs_cleanup();
3749 }
3750 
3751 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3752 {
3753 	int ret = 0;
3754 	struct ffs_dev *ffs_dev;
3755 
3756 	ENTER();
3757 	ffs_dev_lock();
3758 
3759 	ffs_dev = _ffs_find_dev(dev_name);
3760 	if (!ffs_dev) {
3761 		ret = -ENOENT;
3762 	} else if (ffs_dev->mounted) {
3763 		ret = -EBUSY;
3764 	} else if (ffs_dev->ffs_acquire_dev_callback &&
3765 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3766 		ret = -ENOENT;
3767 	} else {
3768 		ffs_dev->mounted = true;
3769 		ffs_dev->ffs_data = ffs_data;
3770 		ffs_data->private_data = ffs_dev;
3771 	}
3772 
3773 	ffs_dev_unlock();
3774 	return ret;
3775 }
3776 
3777 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3778 {
3779 	ENTER();
3780 	ffs_dev_lock();
3781 
3782 	if (ffs_dev && ffs_dev->mounted) {
3783 		ffs_dev->mounted = false;
3784 		if (ffs_dev->ffs_data) {
3785 			ffs_dev->ffs_data->private_data = NULL;
3786 			ffs_dev->ffs_data = NULL;
3787 		}
3788 
3789 		if (ffs_dev->ffs_release_dev_callback)
3790 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3791 	}
3792 
3793 	ffs_dev_unlock();
3794 }
3795 
3796 static int ffs_ready(struct ffs_data *ffs)
3797 {
3798 	struct ffs_dev *ffs_obj;
3799 	int ret = 0;
3800 
3801 	ENTER();
3802 	ffs_dev_lock();
3803 
3804 	ffs_obj = ffs->private_data;
3805 	if (!ffs_obj) {
3806 		ret = -EINVAL;
3807 		goto done;
3808 	}
3809 	if (WARN_ON(ffs_obj->desc_ready)) {
3810 		ret = -EBUSY;
3811 		goto done;
3812 	}
3813 
3814 	ffs_obj->desc_ready = true;
3815 
3816 	if (ffs_obj->ffs_ready_callback) {
3817 		ret = ffs_obj->ffs_ready_callback(ffs);
3818 		if (ret)
3819 			goto done;
3820 	}
3821 
3822 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3823 done:
3824 	ffs_dev_unlock();
3825 	return ret;
3826 }
3827 
3828 static void ffs_closed(struct ffs_data *ffs)
3829 {
3830 	struct ffs_dev *ffs_obj;
3831 	struct f_fs_opts *opts;
3832 	struct config_item *ci;
3833 
3834 	ENTER();
3835 	ffs_dev_lock();
3836 
3837 	ffs_obj = ffs->private_data;
3838 	if (!ffs_obj)
3839 		goto done;
3840 
3841 	ffs_obj->desc_ready = false;
3842 
3843 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3844 	    ffs_obj->ffs_closed_callback)
3845 		ffs_obj->ffs_closed_callback(ffs);
3846 
3847 	if (ffs_obj->opts)
3848 		opts = ffs_obj->opts;
3849 	else
3850 		goto done;
3851 
3852 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3853 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3854 		goto done;
3855 
3856 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3857 	ffs_dev_unlock();
3858 
3859 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3860 		unregister_gadget_item(ci);
3861 	return;
3862 done:
3863 	ffs_dev_unlock();
3864 }
3865 
3866 /* Misc helper functions ****************************************************/
3867 
3868 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3869 {
3870 	return nonblock
3871 		? mutex_trylock(mutex) ? 0 : -EAGAIN
3872 		: mutex_lock_interruptible(mutex);
3873 }
3874 
3875 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3876 {
3877 	char *data;
3878 
3879 	if (!len)
3880 		return NULL;
3881 
3882 	data = memdup_user(buf, len);
3883 	if (IS_ERR(data))
3884 		return data;
3885 
3886 	pr_vdebug("Buffer from user space:\n");
3887 	ffs_dump_mem("", data, len);
3888 
3889 	return data;
3890 }
3891 
3892 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3893 MODULE_LICENSE("GPL");
3894 MODULE_AUTHOR("Michal Nazarewicz");
3895