1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/kthread.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 }; 126 127 struct ffs_epfile { 128 /* Protects ep->ep and ep->req. */ 129 struct mutex mutex; 130 131 struct ffs_data *ffs; 132 struct ffs_ep *ep; /* P: ffs->eps_lock */ 133 134 struct dentry *dentry; 135 136 /* 137 * Buffer for holding data from partial reads which may happen since 138 * we’re rounding user read requests to a multiple of a max packet size. 139 * 140 * The pointer is initialised with NULL value and may be set by 141 * __ffs_epfile_read_data function to point to a temporary buffer. 142 * 143 * In normal operation, calls to __ffs_epfile_read_buffered will consume 144 * data from said buffer and eventually free it. Importantly, while the 145 * function is using the buffer, it sets the pointer to NULL. This is 146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 147 * can never run concurrently (they are synchronised by epfile->mutex) 148 * so the latter will not assign a new value to the pointer. 149 * 150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 152 * value is crux of the synchronisation between ffs_func_eps_disable and 153 * __ffs_epfile_read_data. 154 * 155 * Once __ffs_epfile_read_data is about to finish it will try to set the 156 * pointer back to its old value (as described above), but seeing as the 157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 158 * the buffer. 159 * 160 * == State transitions == 161 * 162 * • ptr == NULL: (initial state) 163 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 164 * ◦ __ffs_epfile_read_buffered: nop 165 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 166 * ◦ reading finishes: n/a, not in ‘and reading’ state 167 * • ptr == DROP: 168 * ◦ __ffs_epfile_read_buffer_free: nop 169 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 170 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 171 * ◦ reading finishes: n/a, not in ‘and reading’ state 172 * • ptr == buf: 173 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 174 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 175 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 176 * is always called first 177 * ◦ reading finishes: n/a, not in ‘and reading’ state 178 * • ptr == NULL and reading: 179 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 180 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 181 * ◦ __ffs_epfile_read_data: n/a, mutex is held 182 * ◦ reading finishes and … 183 * … all data read: free buf, go to ptr == NULL 184 * … otherwise: go to ptr == buf and reading 185 * • ptr == DROP and reading: 186 * ◦ __ffs_epfile_read_buffer_free: nop 187 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 188 * ◦ __ffs_epfile_read_data: n/a, mutex is held 189 * ◦ reading finishes: free buf, go to ptr == DROP 190 */ 191 struct ffs_buffer *read_buffer; 192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 193 194 char name[5]; 195 196 unsigned char in; /* P: ffs->eps_lock */ 197 unsigned char isoc; /* P: ffs->eps_lock */ 198 199 unsigned char _pad; 200 }; 201 202 struct ffs_buffer { 203 size_t length; 204 char *data; 205 char storage[]; 206 }; 207 208 /* ffs_io_data structure ***************************************************/ 209 210 struct ffs_io_data { 211 bool aio; 212 bool read; 213 214 struct kiocb *kiocb; 215 struct iov_iter data; 216 const void *to_free; 217 char *buf; 218 219 struct mm_struct *mm; 220 struct work_struct work; 221 222 struct usb_ep *ep; 223 struct usb_request *req; 224 struct sg_table sgt; 225 bool use_sg; 226 227 struct ffs_data *ffs; 228 229 int status; 230 struct completion done; 231 }; 232 233 struct ffs_desc_helper { 234 struct ffs_data *ffs; 235 unsigned interfaces_count; 236 unsigned eps_count; 237 }; 238 239 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 240 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 241 242 static struct dentry * 243 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 244 const struct file_operations *fops); 245 246 /* Devices management *******************************************************/ 247 248 DEFINE_MUTEX(ffs_lock); 249 EXPORT_SYMBOL_GPL(ffs_lock); 250 251 static struct ffs_dev *_ffs_find_dev(const char *name); 252 static struct ffs_dev *_ffs_alloc_dev(void); 253 static void _ffs_free_dev(struct ffs_dev *dev); 254 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 255 static void ffs_release_dev(struct ffs_dev *ffs_dev); 256 static int ffs_ready(struct ffs_data *ffs); 257 static void ffs_closed(struct ffs_data *ffs); 258 259 /* Misc helper functions ****************************************************/ 260 261 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 262 __attribute__((warn_unused_result, nonnull)); 263 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 264 __attribute__((warn_unused_result, nonnull)); 265 266 267 /* Control file aka ep0 *****************************************************/ 268 269 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 270 { 271 struct ffs_data *ffs = req->context; 272 273 complete(&ffs->ep0req_completion); 274 } 275 276 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 277 __releases(&ffs->ev.waitq.lock) 278 { 279 struct usb_request *req = ffs->ep0req; 280 int ret; 281 282 if (!req) 283 return -EINVAL; 284 285 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 286 287 spin_unlock_irq(&ffs->ev.waitq.lock); 288 289 req->buf = data; 290 req->length = len; 291 292 /* 293 * UDC layer requires to provide a buffer even for ZLP, but should 294 * not use it at all. Let's provide some poisoned pointer to catch 295 * possible bug in the driver. 296 */ 297 if (req->buf == NULL) 298 req->buf = (void *)0xDEADBABE; 299 300 reinit_completion(&ffs->ep0req_completion); 301 302 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 303 if (ret < 0) 304 return ret; 305 306 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 307 if (ret) { 308 usb_ep_dequeue(ffs->gadget->ep0, req); 309 return -EINTR; 310 } 311 312 ffs->setup_state = FFS_NO_SETUP; 313 return req->status ? req->status : req->actual; 314 } 315 316 static int __ffs_ep0_stall(struct ffs_data *ffs) 317 { 318 if (ffs->ev.can_stall) { 319 pr_vdebug("ep0 stall\n"); 320 usb_ep_set_halt(ffs->gadget->ep0); 321 ffs->setup_state = FFS_NO_SETUP; 322 return -EL2HLT; 323 } else { 324 pr_debug("bogus ep0 stall!\n"); 325 return -ESRCH; 326 } 327 } 328 329 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 330 size_t len, loff_t *ptr) 331 { 332 struct ffs_data *ffs = file->private_data; 333 ssize_t ret; 334 char *data; 335 336 ENTER(); 337 338 /* Fast check if setup was canceled */ 339 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 340 return -EIDRM; 341 342 /* Acquire mutex */ 343 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 344 if (ret < 0) 345 return ret; 346 347 /* Check state */ 348 switch (ffs->state) { 349 case FFS_READ_DESCRIPTORS: 350 case FFS_READ_STRINGS: 351 /* Copy data */ 352 if (len < 16) { 353 ret = -EINVAL; 354 break; 355 } 356 357 data = ffs_prepare_buffer(buf, len); 358 if (IS_ERR(data)) { 359 ret = PTR_ERR(data); 360 break; 361 } 362 363 /* Handle data */ 364 if (ffs->state == FFS_READ_DESCRIPTORS) { 365 pr_info("read descriptors\n"); 366 ret = __ffs_data_got_descs(ffs, data, len); 367 if (ret < 0) 368 break; 369 370 ffs->state = FFS_READ_STRINGS; 371 ret = len; 372 } else { 373 pr_info("read strings\n"); 374 ret = __ffs_data_got_strings(ffs, data, len); 375 if (ret < 0) 376 break; 377 378 ret = ffs_epfiles_create(ffs); 379 if (ret) { 380 ffs->state = FFS_CLOSING; 381 break; 382 } 383 384 ffs->state = FFS_ACTIVE; 385 mutex_unlock(&ffs->mutex); 386 387 ret = ffs_ready(ffs); 388 if (ret < 0) { 389 ffs->state = FFS_CLOSING; 390 return ret; 391 } 392 393 return len; 394 } 395 break; 396 397 case FFS_ACTIVE: 398 data = NULL; 399 /* 400 * We're called from user space, we can use _irq 401 * rather then _irqsave 402 */ 403 spin_lock_irq(&ffs->ev.waitq.lock); 404 switch (ffs_setup_state_clear_cancelled(ffs)) { 405 case FFS_SETUP_CANCELLED: 406 ret = -EIDRM; 407 goto done_spin; 408 409 case FFS_NO_SETUP: 410 ret = -ESRCH; 411 goto done_spin; 412 413 case FFS_SETUP_PENDING: 414 break; 415 } 416 417 /* FFS_SETUP_PENDING */ 418 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 419 spin_unlock_irq(&ffs->ev.waitq.lock); 420 ret = __ffs_ep0_stall(ffs); 421 break; 422 } 423 424 /* FFS_SETUP_PENDING and not stall */ 425 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 426 427 spin_unlock_irq(&ffs->ev.waitq.lock); 428 429 data = ffs_prepare_buffer(buf, len); 430 if (IS_ERR(data)) { 431 ret = PTR_ERR(data); 432 break; 433 } 434 435 spin_lock_irq(&ffs->ev.waitq.lock); 436 437 /* 438 * We are guaranteed to be still in FFS_ACTIVE state 439 * but the state of setup could have changed from 440 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 441 * to check for that. If that happened we copied data 442 * from user space in vain but it's unlikely. 443 * 444 * For sure we are not in FFS_NO_SETUP since this is 445 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 446 * transition can be performed and it's protected by 447 * mutex. 448 */ 449 if (ffs_setup_state_clear_cancelled(ffs) == 450 FFS_SETUP_CANCELLED) { 451 ret = -EIDRM; 452 done_spin: 453 spin_unlock_irq(&ffs->ev.waitq.lock); 454 } else { 455 /* unlocks spinlock */ 456 ret = __ffs_ep0_queue_wait(ffs, data, len); 457 } 458 kfree(data); 459 break; 460 461 default: 462 ret = -EBADFD; 463 break; 464 } 465 466 mutex_unlock(&ffs->mutex); 467 return ret; 468 } 469 470 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 471 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 472 size_t n) 473 __releases(&ffs->ev.waitq.lock) 474 { 475 /* 476 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 477 * size of ffs->ev.types array (which is four) so that's how much space 478 * we reserve. 479 */ 480 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 481 const size_t size = n * sizeof *events; 482 unsigned i = 0; 483 484 memset(events, 0, size); 485 486 do { 487 events[i].type = ffs->ev.types[i]; 488 if (events[i].type == FUNCTIONFS_SETUP) { 489 events[i].u.setup = ffs->ev.setup; 490 ffs->setup_state = FFS_SETUP_PENDING; 491 } 492 } while (++i < n); 493 494 ffs->ev.count -= n; 495 if (ffs->ev.count) 496 memmove(ffs->ev.types, ffs->ev.types + n, 497 ffs->ev.count * sizeof *ffs->ev.types); 498 499 spin_unlock_irq(&ffs->ev.waitq.lock); 500 mutex_unlock(&ffs->mutex); 501 502 return copy_to_user(buf, events, size) ? -EFAULT : size; 503 } 504 505 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 506 size_t len, loff_t *ptr) 507 { 508 struct ffs_data *ffs = file->private_data; 509 char *data = NULL; 510 size_t n; 511 int ret; 512 513 ENTER(); 514 515 /* Fast check if setup was canceled */ 516 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 517 return -EIDRM; 518 519 /* Acquire mutex */ 520 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 521 if (ret < 0) 522 return ret; 523 524 /* Check state */ 525 if (ffs->state != FFS_ACTIVE) { 526 ret = -EBADFD; 527 goto done_mutex; 528 } 529 530 /* 531 * We're called from user space, we can use _irq rather then 532 * _irqsave 533 */ 534 spin_lock_irq(&ffs->ev.waitq.lock); 535 536 switch (ffs_setup_state_clear_cancelled(ffs)) { 537 case FFS_SETUP_CANCELLED: 538 ret = -EIDRM; 539 break; 540 541 case FFS_NO_SETUP: 542 n = len / sizeof(struct usb_functionfs_event); 543 if (!n) { 544 ret = -EINVAL; 545 break; 546 } 547 548 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 549 ret = -EAGAIN; 550 break; 551 } 552 553 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 554 ffs->ev.count)) { 555 ret = -EINTR; 556 break; 557 } 558 559 /* unlocks spinlock */ 560 return __ffs_ep0_read_events(ffs, buf, 561 min(n, (size_t)ffs->ev.count)); 562 563 case FFS_SETUP_PENDING: 564 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 565 spin_unlock_irq(&ffs->ev.waitq.lock); 566 ret = __ffs_ep0_stall(ffs); 567 goto done_mutex; 568 } 569 570 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 571 572 spin_unlock_irq(&ffs->ev.waitq.lock); 573 574 if (len) { 575 data = kmalloc(len, GFP_KERNEL); 576 if (!data) { 577 ret = -ENOMEM; 578 goto done_mutex; 579 } 580 } 581 582 spin_lock_irq(&ffs->ev.waitq.lock); 583 584 /* See ffs_ep0_write() */ 585 if (ffs_setup_state_clear_cancelled(ffs) == 586 FFS_SETUP_CANCELLED) { 587 ret = -EIDRM; 588 break; 589 } 590 591 /* unlocks spinlock */ 592 ret = __ffs_ep0_queue_wait(ffs, data, len); 593 if ((ret > 0) && (copy_to_user(buf, data, len))) 594 ret = -EFAULT; 595 goto done_mutex; 596 597 default: 598 ret = -EBADFD; 599 break; 600 } 601 602 spin_unlock_irq(&ffs->ev.waitq.lock); 603 done_mutex: 604 mutex_unlock(&ffs->mutex); 605 kfree(data); 606 return ret; 607 } 608 609 static int ffs_ep0_open(struct inode *inode, struct file *file) 610 { 611 struct ffs_data *ffs = inode->i_private; 612 613 ENTER(); 614 615 if (ffs->state == FFS_CLOSING) 616 return -EBUSY; 617 618 file->private_data = ffs; 619 ffs_data_opened(ffs); 620 621 return stream_open(inode, file); 622 } 623 624 static int ffs_ep0_release(struct inode *inode, struct file *file) 625 { 626 struct ffs_data *ffs = file->private_data; 627 628 ENTER(); 629 630 ffs_data_closed(ffs); 631 632 return 0; 633 } 634 635 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 636 { 637 struct ffs_data *ffs = file->private_data; 638 struct usb_gadget *gadget = ffs->gadget; 639 long ret; 640 641 ENTER(); 642 643 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 644 struct ffs_function *func = ffs->func; 645 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 646 } else if (gadget && gadget->ops->ioctl) { 647 ret = gadget->ops->ioctl(gadget, code, value); 648 } else { 649 ret = -ENOTTY; 650 } 651 652 return ret; 653 } 654 655 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 656 { 657 struct ffs_data *ffs = file->private_data; 658 __poll_t mask = EPOLLWRNORM; 659 int ret; 660 661 poll_wait(file, &ffs->ev.waitq, wait); 662 663 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 664 if (ret < 0) 665 return mask; 666 667 switch (ffs->state) { 668 case FFS_READ_DESCRIPTORS: 669 case FFS_READ_STRINGS: 670 mask |= EPOLLOUT; 671 break; 672 673 case FFS_ACTIVE: 674 switch (ffs->setup_state) { 675 case FFS_NO_SETUP: 676 if (ffs->ev.count) 677 mask |= EPOLLIN; 678 break; 679 680 case FFS_SETUP_PENDING: 681 case FFS_SETUP_CANCELLED: 682 mask |= (EPOLLIN | EPOLLOUT); 683 break; 684 } 685 break; 686 687 case FFS_CLOSING: 688 break; 689 case FFS_DEACTIVATED: 690 break; 691 } 692 693 mutex_unlock(&ffs->mutex); 694 695 return mask; 696 } 697 698 static const struct file_operations ffs_ep0_operations = { 699 .llseek = no_llseek, 700 701 .open = ffs_ep0_open, 702 .write = ffs_ep0_write, 703 .read = ffs_ep0_read, 704 .release = ffs_ep0_release, 705 .unlocked_ioctl = ffs_ep0_ioctl, 706 .poll = ffs_ep0_poll, 707 }; 708 709 710 /* "Normal" endpoints operations ********************************************/ 711 712 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 713 { 714 struct ffs_io_data *io_data = req->context; 715 716 ENTER(); 717 if (req->status) 718 io_data->status = req->status; 719 else 720 io_data->status = req->actual; 721 722 complete(&io_data->done); 723 } 724 725 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 726 { 727 ssize_t ret = copy_to_iter(data, data_len, iter); 728 if (ret == data_len) 729 return ret; 730 731 if (iov_iter_count(iter)) 732 return -EFAULT; 733 734 /* 735 * Dear user space developer! 736 * 737 * TL;DR: To stop getting below error message in your kernel log, change 738 * user space code using functionfs to align read buffers to a max 739 * packet size. 740 * 741 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 742 * packet size. When unaligned buffer is passed to functionfs, it 743 * internally uses a larger, aligned buffer so that such UDCs are happy. 744 * 745 * Unfortunately, this means that host may send more data than was 746 * requested in read(2) system call. f_fs doesn’t know what to do with 747 * that excess data so it simply drops it. 748 * 749 * Was the buffer aligned in the first place, no such problem would 750 * happen. 751 * 752 * Data may be dropped only in AIO reads. Synchronous reads are handled 753 * by splitting a request into multiple parts. This splitting may still 754 * be a problem though so it’s likely best to align the buffer 755 * regardless of it being AIO or not.. 756 * 757 * This only affects OUT endpoints, i.e. reading data with a read(2), 758 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 759 * affected. 760 */ 761 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 762 "Align read buffer size to max packet size to avoid the problem.\n", 763 data_len, ret); 764 765 return ret; 766 } 767 768 /* 769 * allocate a virtually contiguous buffer and create a scatterlist describing it 770 * @sg_table - pointer to a place to be filled with sg_table contents 771 * @size - required buffer size 772 */ 773 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 774 { 775 struct page **pages; 776 void *vaddr, *ptr; 777 unsigned int n_pages; 778 int i; 779 780 vaddr = vmalloc(sz); 781 if (!vaddr) 782 return NULL; 783 784 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 785 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 786 if (!pages) { 787 vfree(vaddr); 788 789 return NULL; 790 } 791 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 792 pages[i] = vmalloc_to_page(ptr); 793 794 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 795 kvfree(pages); 796 vfree(vaddr); 797 798 return NULL; 799 } 800 kvfree(pages); 801 802 return vaddr; 803 } 804 805 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 806 size_t data_len) 807 { 808 if (io_data->use_sg) 809 return ffs_build_sg_list(&io_data->sgt, data_len); 810 811 return kmalloc(data_len, GFP_KERNEL); 812 } 813 814 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 815 { 816 if (!io_data->buf) 817 return; 818 819 if (io_data->use_sg) { 820 sg_free_table(&io_data->sgt); 821 vfree(io_data->buf); 822 } else { 823 kfree(io_data->buf); 824 } 825 } 826 827 static void ffs_user_copy_worker(struct work_struct *work) 828 { 829 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 830 work); 831 int ret = io_data->req->status ? io_data->req->status : 832 io_data->req->actual; 833 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 834 835 if (io_data->read && ret > 0) { 836 kthread_use_mm(io_data->mm); 837 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 838 kthread_unuse_mm(io_data->mm); 839 } 840 841 io_data->kiocb->ki_complete(io_data->kiocb, ret); 842 843 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 844 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 845 846 usb_ep_free_request(io_data->ep, io_data->req); 847 848 if (io_data->read) 849 kfree(io_data->to_free); 850 ffs_free_buffer(io_data); 851 kfree(io_data); 852 } 853 854 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 855 struct usb_request *req) 856 { 857 struct ffs_io_data *io_data = req->context; 858 struct ffs_data *ffs = io_data->ffs; 859 860 ENTER(); 861 862 INIT_WORK(&io_data->work, ffs_user_copy_worker); 863 queue_work(ffs->io_completion_wq, &io_data->work); 864 } 865 866 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 867 { 868 /* 869 * See comment in struct ffs_epfile for full read_buffer pointer 870 * synchronisation story. 871 */ 872 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 873 if (buf && buf != READ_BUFFER_DROP) 874 kfree(buf); 875 } 876 877 /* Assumes epfile->mutex is held. */ 878 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 879 struct iov_iter *iter) 880 { 881 /* 882 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 883 * the buffer while we are using it. See comment in struct ffs_epfile 884 * for full read_buffer pointer synchronisation story. 885 */ 886 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 887 ssize_t ret; 888 if (!buf || buf == READ_BUFFER_DROP) 889 return 0; 890 891 ret = copy_to_iter(buf->data, buf->length, iter); 892 if (buf->length == ret) { 893 kfree(buf); 894 return ret; 895 } 896 897 if (iov_iter_count(iter)) { 898 ret = -EFAULT; 899 } else { 900 buf->length -= ret; 901 buf->data += ret; 902 } 903 904 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 905 kfree(buf); 906 907 return ret; 908 } 909 910 /* Assumes epfile->mutex is held. */ 911 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 912 void *data, int data_len, 913 struct iov_iter *iter) 914 { 915 struct ffs_buffer *buf; 916 917 ssize_t ret = copy_to_iter(data, data_len, iter); 918 if (data_len == ret) 919 return ret; 920 921 if (iov_iter_count(iter)) 922 return -EFAULT; 923 924 /* See ffs_copy_to_iter for more context. */ 925 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 926 data_len, ret); 927 928 data_len -= ret; 929 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 930 if (!buf) 931 return -ENOMEM; 932 buf->length = data_len; 933 buf->data = buf->storage; 934 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 935 936 /* 937 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 938 * ffs_func_eps_disable has been called in the meanwhile). See comment 939 * in struct ffs_epfile for full read_buffer pointer synchronisation 940 * story. 941 */ 942 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 943 kfree(buf); 944 945 return ret; 946 } 947 948 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 949 { 950 struct ffs_epfile *epfile = file->private_data; 951 struct usb_request *req; 952 struct ffs_ep *ep; 953 char *data = NULL; 954 ssize_t ret, data_len = -EINVAL; 955 int halt; 956 957 /* Are we still active? */ 958 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 959 return -ENODEV; 960 961 /* Wait for endpoint to be enabled */ 962 ep = epfile->ep; 963 if (!ep) { 964 if (file->f_flags & O_NONBLOCK) 965 return -EAGAIN; 966 967 ret = wait_event_interruptible( 968 epfile->ffs->wait, (ep = epfile->ep)); 969 if (ret) 970 return -EINTR; 971 } 972 973 /* Do we halt? */ 974 halt = (!io_data->read == !epfile->in); 975 if (halt && epfile->isoc) 976 return -EINVAL; 977 978 /* We will be using request and read_buffer */ 979 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 980 if (ret) 981 goto error; 982 983 /* Allocate & copy */ 984 if (!halt) { 985 struct usb_gadget *gadget; 986 987 /* 988 * Do we have buffered data from previous partial read? Check 989 * that for synchronous case only because we do not have 990 * facility to ‘wake up’ a pending asynchronous read and push 991 * buffered data to it which we would need to make things behave 992 * consistently. 993 */ 994 if (!io_data->aio && io_data->read) { 995 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 996 if (ret) 997 goto error_mutex; 998 } 999 1000 /* 1001 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 1002 * before the waiting completes, so do not assign to 'gadget' 1003 * earlier 1004 */ 1005 gadget = epfile->ffs->gadget; 1006 1007 spin_lock_irq(&epfile->ffs->eps_lock); 1008 /* In the meantime, endpoint got disabled or changed. */ 1009 if (epfile->ep != ep) { 1010 ret = -ESHUTDOWN; 1011 goto error_lock; 1012 } 1013 data_len = iov_iter_count(&io_data->data); 1014 /* 1015 * Controller may require buffer size to be aligned to 1016 * maxpacketsize of an out endpoint. 1017 */ 1018 if (io_data->read) 1019 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1020 1021 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1022 spin_unlock_irq(&epfile->ffs->eps_lock); 1023 1024 data = ffs_alloc_buffer(io_data, data_len); 1025 if (!data) { 1026 ret = -ENOMEM; 1027 goto error_mutex; 1028 } 1029 if (!io_data->read && 1030 !copy_from_iter_full(data, data_len, &io_data->data)) { 1031 ret = -EFAULT; 1032 goto error_mutex; 1033 } 1034 } 1035 1036 spin_lock_irq(&epfile->ffs->eps_lock); 1037 1038 if (epfile->ep != ep) { 1039 /* In the meantime, endpoint got disabled or changed. */ 1040 ret = -ESHUTDOWN; 1041 } else if (halt) { 1042 ret = usb_ep_set_halt(ep->ep); 1043 if (!ret) 1044 ret = -EBADMSG; 1045 } else if (data_len == -EINVAL) { 1046 /* 1047 * Sanity Check: even though data_len can't be used 1048 * uninitialized at the time I write this comment, some 1049 * compilers complain about this situation. 1050 * In order to keep the code clean from warnings, data_len is 1051 * being initialized to -EINVAL during its declaration, which 1052 * means we can't rely on compiler anymore to warn no future 1053 * changes won't result in data_len being used uninitialized. 1054 * For such reason, we're adding this redundant sanity check 1055 * here. 1056 */ 1057 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1058 ret = -EINVAL; 1059 } else if (!io_data->aio) { 1060 bool interrupted = false; 1061 1062 req = ep->req; 1063 if (io_data->use_sg) { 1064 req->buf = NULL; 1065 req->sg = io_data->sgt.sgl; 1066 req->num_sgs = io_data->sgt.nents; 1067 } else { 1068 req->buf = data; 1069 req->num_sgs = 0; 1070 } 1071 req->length = data_len; 1072 1073 io_data->buf = data; 1074 1075 init_completion(&io_data->done); 1076 req->context = io_data; 1077 req->complete = ffs_epfile_io_complete; 1078 1079 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1080 if (ret < 0) 1081 goto error_lock; 1082 1083 spin_unlock_irq(&epfile->ffs->eps_lock); 1084 1085 if (wait_for_completion_interruptible(&io_data->done)) { 1086 spin_lock_irq(&epfile->ffs->eps_lock); 1087 if (epfile->ep != ep) { 1088 ret = -ESHUTDOWN; 1089 goto error_lock; 1090 } 1091 /* 1092 * To avoid race condition with ffs_epfile_io_complete, 1093 * dequeue the request first then check 1094 * status. usb_ep_dequeue API should guarantee no race 1095 * condition with req->complete callback. 1096 */ 1097 usb_ep_dequeue(ep->ep, req); 1098 spin_unlock_irq(&epfile->ffs->eps_lock); 1099 wait_for_completion(&io_data->done); 1100 interrupted = io_data->status < 0; 1101 } 1102 1103 if (interrupted) 1104 ret = -EINTR; 1105 else if (io_data->read && io_data->status > 0) 1106 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1107 &io_data->data); 1108 else 1109 ret = io_data->status; 1110 goto error_mutex; 1111 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1112 ret = -ENOMEM; 1113 } else { 1114 if (io_data->use_sg) { 1115 req->buf = NULL; 1116 req->sg = io_data->sgt.sgl; 1117 req->num_sgs = io_data->sgt.nents; 1118 } else { 1119 req->buf = data; 1120 req->num_sgs = 0; 1121 } 1122 req->length = data_len; 1123 1124 io_data->buf = data; 1125 io_data->ep = ep->ep; 1126 io_data->req = req; 1127 io_data->ffs = epfile->ffs; 1128 1129 req->context = io_data; 1130 req->complete = ffs_epfile_async_io_complete; 1131 1132 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1133 if (ret) { 1134 io_data->req = NULL; 1135 usb_ep_free_request(ep->ep, req); 1136 goto error_lock; 1137 } 1138 1139 ret = -EIOCBQUEUED; 1140 /* 1141 * Do not kfree the buffer in this function. It will be freed 1142 * by ffs_user_copy_worker. 1143 */ 1144 data = NULL; 1145 } 1146 1147 error_lock: 1148 spin_unlock_irq(&epfile->ffs->eps_lock); 1149 error_mutex: 1150 mutex_unlock(&epfile->mutex); 1151 error: 1152 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1153 ffs_free_buffer(io_data); 1154 return ret; 1155 } 1156 1157 static int 1158 ffs_epfile_open(struct inode *inode, struct file *file) 1159 { 1160 struct ffs_epfile *epfile = inode->i_private; 1161 1162 ENTER(); 1163 1164 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1165 return -ENODEV; 1166 1167 file->private_data = epfile; 1168 ffs_data_opened(epfile->ffs); 1169 1170 return stream_open(inode, file); 1171 } 1172 1173 static int ffs_aio_cancel(struct kiocb *kiocb) 1174 { 1175 struct ffs_io_data *io_data = kiocb->private; 1176 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1177 unsigned long flags; 1178 int value; 1179 1180 ENTER(); 1181 1182 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1183 1184 if (io_data && io_data->ep && io_data->req) 1185 value = usb_ep_dequeue(io_data->ep, io_data->req); 1186 else 1187 value = -EINVAL; 1188 1189 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1190 1191 return value; 1192 } 1193 1194 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1195 { 1196 struct ffs_io_data io_data, *p = &io_data; 1197 ssize_t res; 1198 1199 ENTER(); 1200 1201 if (!is_sync_kiocb(kiocb)) { 1202 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1203 if (!p) 1204 return -ENOMEM; 1205 p->aio = true; 1206 } else { 1207 memset(p, 0, sizeof(*p)); 1208 p->aio = false; 1209 } 1210 1211 p->read = false; 1212 p->kiocb = kiocb; 1213 p->data = *from; 1214 p->mm = current->mm; 1215 1216 kiocb->private = p; 1217 1218 if (p->aio) 1219 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1220 1221 res = ffs_epfile_io(kiocb->ki_filp, p); 1222 if (res == -EIOCBQUEUED) 1223 return res; 1224 if (p->aio) 1225 kfree(p); 1226 else 1227 *from = p->data; 1228 return res; 1229 } 1230 1231 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1232 { 1233 struct ffs_io_data io_data, *p = &io_data; 1234 ssize_t res; 1235 1236 ENTER(); 1237 1238 if (!is_sync_kiocb(kiocb)) { 1239 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1240 if (!p) 1241 return -ENOMEM; 1242 p->aio = true; 1243 } else { 1244 memset(p, 0, sizeof(*p)); 1245 p->aio = false; 1246 } 1247 1248 p->read = true; 1249 p->kiocb = kiocb; 1250 if (p->aio) { 1251 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1252 if (!p->to_free) { 1253 kfree(p); 1254 return -ENOMEM; 1255 } 1256 } else { 1257 p->data = *to; 1258 p->to_free = NULL; 1259 } 1260 p->mm = current->mm; 1261 1262 kiocb->private = p; 1263 1264 if (p->aio) 1265 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1266 1267 res = ffs_epfile_io(kiocb->ki_filp, p); 1268 if (res == -EIOCBQUEUED) 1269 return res; 1270 1271 if (p->aio) { 1272 kfree(p->to_free); 1273 kfree(p); 1274 } else { 1275 *to = p->data; 1276 } 1277 return res; 1278 } 1279 1280 static int 1281 ffs_epfile_release(struct inode *inode, struct file *file) 1282 { 1283 struct ffs_epfile *epfile = inode->i_private; 1284 1285 ENTER(); 1286 1287 __ffs_epfile_read_buffer_free(epfile); 1288 ffs_data_closed(epfile->ffs); 1289 1290 return 0; 1291 } 1292 1293 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1294 unsigned long value) 1295 { 1296 struct ffs_epfile *epfile = file->private_data; 1297 struct ffs_ep *ep; 1298 int ret; 1299 1300 ENTER(); 1301 1302 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1303 return -ENODEV; 1304 1305 /* Wait for endpoint to be enabled */ 1306 ep = epfile->ep; 1307 if (!ep) { 1308 if (file->f_flags & O_NONBLOCK) 1309 return -EAGAIN; 1310 1311 ret = wait_event_interruptible( 1312 epfile->ffs->wait, (ep = epfile->ep)); 1313 if (ret) 1314 return -EINTR; 1315 } 1316 1317 spin_lock_irq(&epfile->ffs->eps_lock); 1318 1319 /* In the meantime, endpoint got disabled or changed. */ 1320 if (epfile->ep != ep) { 1321 spin_unlock_irq(&epfile->ffs->eps_lock); 1322 return -ESHUTDOWN; 1323 } 1324 1325 switch (code) { 1326 case FUNCTIONFS_FIFO_STATUS: 1327 ret = usb_ep_fifo_status(epfile->ep->ep); 1328 break; 1329 case FUNCTIONFS_FIFO_FLUSH: 1330 usb_ep_fifo_flush(epfile->ep->ep); 1331 ret = 0; 1332 break; 1333 case FUNCTIONFS_CLEAR_HALT: 1334 ret = usb_ep_clear_halt(epfile->ep->ep); 1335 break; 1336 case FUNCTIONFS_ENDPOINT_REVMAP: 1337 ret = epfile->ep->num; 1338 break; 1339 case FUNCTIONFS_ENDPOINT_DESC: 1340 { 1341 int desc_idx; 1342 struct usb_endpoint_descriptor desc1, *desc; 1343 1344 switch (epfile->ffs->gadget->speed) { 1345 case USB_SPEED_SUPER: 1346 case USB_SPEED_SUPER_PLUS: 1347 desc_idx = 2; 1348 break; 1349 case USB_SPEED_HIGH: 1350 desc_idx = 1; 1351 break; 1352 default: 1353 desc_idx = 0; 1354 } 1355 1356 desc = epfile->ep->descs[desc_idx]; 1357 memcpy(&desc1, desc, desc->bLength); 1358 1359 spin_unlock_irq(&epfile->ffs->eps_lock); 1360 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1361 if (ret) 1362 ret = -EFAULT; 1363 return ret; 1364 } 1365 default: 1366 ret = -ENOTTY; 1367 } 1368 spin_unlock_irq(&epfile->ffs->eps_lock); 1369 1370 return ret; 1371 } 1372 1373 static const struct file_operations ffs_epfile_operations = { 1374 .llseek = no_llseek, 1375 1376 .open = ffs_epfile_open, 1377 .write_iter = ffs_epfile_write_iter, 1378 .read_iter = ffs_epfile_read_iter, 1379 .release = ffs_epfile_release, 1380 .unlocked_ioctl = ffs_epfile_ioctl, 1381 .compat_ioctl = compat_ptr_ioctl, 1382 }; 1383 1384 1385 /* File system and super block operations ***********************************/ 1386 1387 /* 1388 * Mounting the file system creates a controller file, used first for 1389 * function configuration then later for event monitoring. 1390 */ 1391 1392 static struct inode *__must_check 1393 ffs_sb_make_inode(struct super_block *sb, void *data, 1394 const struct file_operations *fops, 1395 const struct inode_operations *iops, 1396 struct ffs_file_perms *perms) 1397 { 1398 struct inode *inode; 1399 1400 ENTER(); 1401 1402 inode = new_inode(sb); 1403 1404 if (inode) { 1405 struct timespec64 ts = current_time(inode); 1406 1407 inode->i_ino = get_next_ino(); 1408 inode->i_mode = perms->mode; 1409 inode->i_uid = perms->uid; 1410 inode->i_gid = perms->gid; 1411 inode->i_atime = ts; 1412 inode->i_mtime = ts; 1413 inode->i_ctime = ts; 1414 inode->i_private = data; 1415 if (fops) 1416 inode->i_fop = fops; 1417 if (iops) 1418 inode->i_op = iops; 1419 } 1420 1421 return inode; 1422 } 1423 1424 /* Create "regular" file */ 1425 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1426 const char *name, void *data, 1427 const struct file_operations *fops) 1428 { 1429 struct ffs_data *ffs = sb->s_fs_info; 1430 struct dentry *dentry; 1431 struct inode *inode; 1432 1433 ENTER(); 1434 1435 dentry = d_alloc_name(sb->s_root, name); 1436 if (!dentry) 1437 return NULL; 1438 1439 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1440 if (!inode) { 1441 dput(dentry); 1442 return NULL; 1443 } 1444 1445 d_add(dentry, inode); 1446 return dentry; 1447 } 1448 1449 /* Super block */ 1450 static const struct super_operations ffs_sb_operations = { 1451 .statfs = simple_statfs, 1452 .drop_inode = generic_delete_inode, 1453 }; 1454 1455 struct ffs_sb_fill_data { 1456 struct ffs_file_perms perms; 1457 umode_t root_mode; 1458 const char *dev_name; 1459 bool no_disconnect; 1460 struct ffs_data *ffs_data; 1461 }; 1462 1463 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1464 { 1465 struct ffs_sb_fill_data *data = fc->fs_private; 1466 struct inode *inode; 1467 struct ffs_data *ffs = data->ffs_data; 1468 1469 ENTER(); 1470 1471 ffs->sb = sb; 1472 data->ffs_data = NULL; 1473 sb->s_fs_info = ffs; 1474 sb->s_blocksize = PAGE_SIZE; 1475 sb->s_blocksize_bits = PAGE_SHIFT; 1476 sb->s_magic = FUNCTIONFS_MAGIC; 1477 sb->s_op = &ffs_sb_operations; 1478 sb->s_time_gran = 1; 1479 1480 /* Root inode */ 1481 data->perms.mode = data->root_mode; 1482 inode = ffs_sb_make_inode(sb, NULL, 1483 &simple_dir_operations, 1484 &simple_dir_inode_operations, 1485 &data->perms); 1486 sb->s_root = d_make_root(inode); 1487 if (!sb->s_root) 1488 return -ENOMEM; 1489 1490 /* EP0 file */ 1491 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1492 return -ENOMEM; 1493 1494 return 0; 1495 } 1496 1497 enum { 1498 Opt_no_disconnect, 1499 Opt_rmode, 1500 Opt_fmode, 1501 Opt_mode, 1502 Opt_uid, 1503 Opt_gid, 1504 }; 1505 1506 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1507 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1508 fsparam_u32 ("rmode", Opt_rmode), 1509 fsparam_u32 ("fmode", Opt_fmode), 1510 fsparam_u32 ("mode", Opt_mode), 1511 fsparam_u32 ("uid", Opt_uid), 1512 fsparam_u32 ("gid", Opt_gid), 1513 {} 1514 }; 1515 1516 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1517 { 1518 struct ffs_sb_fill_data *data = fc->fs_private; 1519 struct fs_parse_result result; 1520 int opt; 1521 1522 ENTER(); 1523 1524 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1525 if (opt < 0) 1526 return opt; 1527 1528 switch (opt) { 1529 case Opt_no_disconnect: 1530 data->no_disconnect = result.boolean; 1531 break; 1532 case Opt_rmode: 1533 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1534 break; 1535 case Opt_fmode: 1536 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1537 break; 1538 case Opt_mode: 1539 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1540 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1541 break; 1542 1543 case Opt_uid: 1544 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1545 if (!uid_valid(data->perms.uid)) 1546 goto unmapped_value; 1547 break; 1548 case Opt_gid: 1549 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1550 if (!gid_valid(data->perms.gid)) 1551 goto unmapped_value; 1552 break; 1553 1554 default: 1555 return -ENOPARAM; 1556 } 1557 1558 return 0; 1559 1560 unmapped_value: 1561 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1562 } 1563 1564 /* 1565 * Set up the superblock for a mount. 1566 */ 1567 static int ffs_fs_get_tree(struct fs_context *fc) 1568 { 1569 struct ffs_sb_fill_data *ctx = fc->fs_private; 1570 struct ffs_data *ffs; 1571 int ret; 1572 1573 ENTER(); 1574 1575 if (!fc->source) 1576 return invalf(fc, "No source specified"); 1577 1578 ffs = ffs_data_new(fc->source); 1579 if (!ffs) 1580 return -ENOMEM; 1581 ffs->file_perms = ctx->perms; 1582 ffs->no_disconnect = ctx->no_disconnect; 1583 1584 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1585 if (!ffs->dev_name) { 1586 ffs_data_put(ffs); 1587 return -ENOMEM; 1588 } 1589 1590 ret = ffs_acquire_dev(ffs->dev_name, ffs); 1591 if (ret) { 1592 ffs_data_put(ffs); 1593 return ret; 1594 } 1595 1596 ctx->ffs_data = ffs; 1597 return get_tree_nodev(fc, ffs_sb_fill); 1598 } 1599 1600 static void ffs_fs_free_fc(struct fs_context *fc) 1601 { 1602 struct ffs_sb_fill_data *ctx = fc->fs_private; 1603 1604 if (ctx) { 1605 if (ctx->ffs_data) { 1606 ffs_data_put(ctx->ffs_data); 1607 } 1608 1609 kfree(ctx); 1610 } 1611 } 1612 1613 static const struct fs_context_operations ffs_fs_context_ops = { 1614 .free = ffs_fs_free_fc, 1615 .parse_param = ffs_fs_parse_param, 1616 .get_tree = ffs_fs_get_tree, 1617 }; 1618 1619 static int ffs_fs_init_fs_context(struct fs_context *fc) 1620 { 1621 struct ffs_sb_fill_data *ctx; 1622 1623 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1624 if (!ctx) 1625 return -ENOMEM; 1626 1627 ctx->perms.mode = S_IFREG | 0600; 1628 ctx->perms.uid = GLOBAL_ROOT_UID; 1629 ctx->perms.gid = GLOBAL_ROOT_GID; 1630 ctx->root_mode = S_IFDIR | 0500; 1631 ctx->no_disconnect = false; 1632 1633 fc->fs_private = ctx; 1634 fc->ops = &ffs_fs_context_ops; 1635 return 0; 1636 } 1637 1638 static void 1639 ffs_fs_kill_sb(struct super_block *sb) 1640 { 1641 ENTER(); 1642 1643 kill_litter_super(sb); 1644 if (sb->s_fs_info) 1645 ffs_data_closed(sb->s_fs_info); 1646 } 1647 1648 static struct file_system_type ffs_fs_type = { 1649 .owner = THIS_MODULE, 1650 .name = "functionfs", 1651 .init_fs_context = ffs_fs_init_fs_context, 1652 .parameters = ffs_fs_fs_parameters, 1653 .kill_sb = ffs_fs_kill_sb, 1654 }; 1655 MODULE_ALIAS_FS("functionfs"); 1656 1657 1658 /* Driver's main init/cleanup functions *************************************/ 1659 1660 static int functionfs_init(void) 1661 { 1662 int ret; 1663 1664 ENTER(); 1665 1666 ret = register_filesystem(&ffs_fs_type); 1667 if (!ret) 1668 pr_info("file system registered\n"); 1669 else 1670 pr_err("failed registering file system (%d)\n", ret); 1671 1672 return ret; 1673 } 1674 1675 static void functionfs_cleanup(void) 1676 { 1677 ENTER(); 1678 1679 pr_info("unloading\n"); 1680 unregister_filesystem(&ffs_fs_type); 1681 } 1682 1683 1684 /* ffs_data and ffs_function construction and destruction code **************/ 1685 1686 static void ffs_data_clear(struct ffs_data *ffs); 1687 static void ffs_data_reset(struct ffs_data *ffs); 1688 1689 static void ffs_data_get(struct ffs_data *ffs) 1690 { 1691 ENTER(); 1692 1693 refcount_inc(&ffs->ref); 1694 } 1695 1696 static void ffs_data_opened(struct ffs_data *ffs) 1697 { 1698 ENTER(); 1699 1700 refcount_inc(&ffs->ref); 1701 if (atomic_add_return(1, &ffs->opened) == 1 && 1702 ffs->state == FFS_DEACTIVATED) { 1703 ffs->state = FFS_CLOSING; 1704 ffs_data_reset(ffs); 1705 } 1706 } 1707 1708 static void ffs_data_put(struct ffs_data *ffs) 1709 { 1710 ENTER(); 1711 1712 if (refcount_dec_and_test(&ffs->ref)) { 1713 pr_info("%s(): freeing\n", __func__); 1714 ffs_data_clear(ffs); 1715 ffs_release_dev(ffs->private_data); 1716 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1717 swait_active(&ffs->ep0req_completion.wait) || 1718 waitqueue_active(&ffs->wait)); 1719 destroy_workqueue(ffs->io_completion_wq); 1720 kfree(ffs->dev_name); 1721 kfree(ffs); 1722 } 1723 } 1724 1725 static void ffs_data_closed(struct ffs_data *ffs) 1726 { 1727 struct ffs_epfile *epfiles; 1728 unsigned long flags; 1729 1730 ENTER(); 1731 1732 if (atomic_dec_and_test(&ffs->opened)) { 1733 if (ffs->no_disconnect) { 1734 ffs->state = FFS_DEACTIVATED; 1735 spin_lock_irqsave(&ffs->eps_lock, flags); 1736 epfiles = ffs->epfiles; 1737 ffs->epfiles = NULL; 1738 spin_unlock_irqrestore(&ffs->eps_lock, 1739 flags); 1740 1741 if (epfiles) 1742 ffs_epfiles_destroy(epfiles, 1743 ffs->eps_count); 1744 1745 if (ffs->setup_state == FFS_SETUP_PENDING) 1746 __ffs_ep0_stall(ffs); 1747 } else { 1748 ffs->state = FFS_CLOSING; 1749 ffs_data_reset(ffs); 1750 } 1751 } 1752 if (atomic_read(&ffs->opened) < 0) { 1753 ffs->state = FFS_CLOSING; 1754 ffs_data_reset(ffs); 1755 } 1756 1757 ffs_data_put(ffs); 1758 } 1759 1760 static struct ffs_data *ffs_data_new(const char *dev_name) 1761 { 1762 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1763 if (!ffs) 1764 return NULL; 1765 1766 ENTER(); 1767 1768 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1769 if (!ffs->io_completion_wq) { 1770 kfree(ffs); 1771 return NULL; 1772 } 1773 1774 refcount_set(&ffs->ref, 1); 1775 atomic_set(&ffs->opened, 0); 1776 ffs->state = FFS_READ_DESCRIPTORS; 1777 mutex_init(&ffs->mutex); 1778 spin_lock_init(&ffs->eps_lock); 1779 init_waitqueue_head(&ffs->ev.waitq); 1780 init_waitqueue_head(&ffs->wait); 1781 init_completion(&ffs->ep0req_completion); 1782 1783 /* XXX REVISIT need to update it in some places, or do we? */ 1784 ffs->ev.can_stall = 1; 1785 1786 return ffs; 1787 } 1788 1789 static void ffs_data_clear(struct ffs_data *ffs) 1790 { 1791 struct ffs_epfile *epfiles; 1792 unsigned long flags; 1793 1794 ENTER(); 1795 1796 ffs_closed(ffs); 1797 1798 BUG_ON(ffs->gadget); 1799 1800 spin_lock_irqsave(&ffs->eps_lock, flags); 1801 epfiles = ffs->epfiles; 1802 ffs->epfiles = NULL; 1803 spin_unlock_irqrestore(&ffs->eps_lock, flags); 1804 1805 /* 1806 * potential race possible between ffs_func_eps_disable 1807 * & ffs_epfile_release therefore maintaining a local 1808 * copy of epfile will save us from use-after-free. 1809 */ 1810 if (epfiles) { 1811 ffs_epfiles_destroy(epfiles, ffs->eps_count); 1812 ffs->epfiles = NULL; 1813 } 1814 1815 if (ffs->ffs_eventfd) { 1816 eventfd_ctx_put(ffs->ffs_eventfd); 1817 ffs->ffs_eventfd = NULL; 1818 } 1819 1820 kfree(ffs->raw_descs_data); 1821 kfree(ffs->raw_strings); 1822 kfree(ffs->stringtabs); 1823 } 1824 1825 static void ffs_data_reset(struct ffs_data *ffs) 1826 { 1827 ENTER(); 1828 1829 ffs_data_clear(ffs); 1830 1831 ffs->raw_descs_data = NULL; 1832 ffs->raw_descs = NULL; 1833 ffs->raw_strings = NULL; 1834 ffs->stringtabs = NULL; 1835 1836 ffs->raw_descs_length = 0; 1837 ffs->fs_descs_count = 0; 1838 ffs->hs_descs_count = 0; 1839 ffs->ss_descs_count = 0; 1840 1841 ffs->strings_count = 0; 1842 ffs->interfaces_count = 0; 1843 ffs->eps_count = 0; 1844 1845 ffs->ev.count = 0; 1846 1847 ffs->state = FFS_READ_DESCRIPTORS; 1848 ffs->setup_state = FFS_NO_SETUP; 1849 ffs->flags = 0; 1850 1851 ffs->ms_os_descs_ext_prop_count = 0; 1852 ffs->ms_os_descs_ext_prop_name_len = 0; 1853 ffs->ms_os_descs_ext_prop_data_len = 0; 1854 } 1855 1856 1857 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1858 { 1859 struct usb_gadget_strings **lang; 1860 int first_id; 1861 1862 ENTER(); 1863 1864 if (WARN_ON(ffs->state != FFS_ACTIVE 1865 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1866 return -EBADFD; 1867 1868 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1869 if (first_id < 0) 1870 return first_id; 1871 1872 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1873 if (!ffs->ep0req) 1874 return -ENOMEM; 1875 ffs->ep0req->complete = ffs_ep0_complete; 1876 ffs->ep0req->context = ffs; 1877 1878 lang = ffs->stringtabs; 1879 if (lang) { 1880 for (; *lang; ++lang) { 1881 struct usb_string *str = (*lang)->strings; 1882 int id = first_id; 1883 for (; str->s; ++id, ++str) 1884 str->id = id; 1885 } 1886 } 1887 1888 ffs->gadget = cdev->gadget; 1889 ffs_data_get(ffs); 1890 return 0; 1891 } 1892 1893 static void functionfs_unbind(struct ffs_data *ffs) 1894 { 1895 ENTER(); 1896 1897 if (!WARN_ON(!ffs->gadget)) { 1898 /* dequeue before freeing ep0req */ 1899 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 1900 mutex_lock(&ffs->mutex); 1901 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1902 ffs->ep0req = NULL; 1903 ffs->gadget = NULL; 1904 clear_bit(FFS_FL_BOUND, &ffs->flags); 1905 mutex_unlock(&ffs->mutex); 1906 ffs_data_put(ffs); 1907 } 1908 } 1909 1910 static int ffs_epfiles_create(struct ffs_data *ffs) 1911 { 1912 struct ffs_epfile *epfile, *epfiles; 1913 unsigned i, count; 1914 1915 ENTER(); 1916 1917 count = ffs->eps_count; 1918 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1919 if (!epfiles) 1920 return -ENOMEM; 1921 1922 epfile = epfiles; 1923 for (i = 1; i <= count; ++i, ++epfile) { 1924 epfile->ffs = ffs; 1925 mutex_init(&epfile->mutex); 1926 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1927 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1928 else 1929 sprintf(epfile->name, "ep%u", i); 1930 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1931 epfile, 1932 &ffs_epfile_operations); 1933 if (!epfile->dentry) { 1934 ffs_epfiles_destroy(epfiles, i - 1); 1935 return -ENOMEM; 1936 } 1937 } 1938 1939 ffs->epfiles = epfiles; 1940 return 0; 1941 } 1942 1943 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1944 { 1945 struct ffs_epfile *epfile = epfiles; 1946 1947 ENTER(); 1948 1949 for (; count; --count, ++epfile) { 1950 BUG_ON(mutex_is_locked(&epfile->mutex)); 1951 if (epfile->dentry) { 1952 d_delete(epfile->dentry); 1953 dput(epfile->dentry); 1954 epfile->dentry = NULL; 1955 } 1956 } 1957 1958 kfree(epfiles); 1959 } 1960 1961 static void ffs_func_eps_disable(struct ffs_function *func) 1962 { 1963 struct ffs_ep *ep; 1964 struct ffs_epfile *epfile; 1965 unsigned short count; 1966 unsigned long flags; 1967 1968 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1969 count = func->ffs->eps_count; 1970 epfile = func->ffs->epfiles; 1971 ep = func->eps; 1972 while (count--) { 1973 /* pending requests get nuked */ 1974 if (ep->ep) 1975 usb_ep_disable(ep->ep); 1976 ++ep; 1977 1978 if (epfile) { 1979 epfile->ep = NULL; 1980 __ffs_epfile_read_buffer_free(epfile); 1981 ++epfile; 1982 } 1983 } 1984 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1985 } 1986 1987 static int ffs_func_eps_enable(struct ffs_function *func) 1988 { 1989 struct ffs_data *ffs; 1990 struct ffs_ep *ep; 1991 struct ffs_epfile *epfile; 1992 unsigned short count; 1993 unsigned long flags; 1994 int ret = 0; 1995 1996 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1997 ffs = func->ffs; 1998 ep = func->eps; 1999 epfile = ffs->epfiles; 2000 count = ffs->eps_count; 2001 while(count--) { 2002 ep->ep->driver_data = ep; 2003 2004 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 2005 if (ret) { 2006 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 2007 __func__, ep->ep->name, ret); 2008 break; 2009 } 2010 2011 ret = usb_ep_enable(ep->ep); 2012 if (!ret) { 2013 epfile->ep = ep; 2014 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 2015 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 2016 } else { 2017 break; 2018 } 2019 2020 ++ep; 2021 ++epfile; 2022 } 2023 2024 wake_up_interruptible(&ffs->wait); 2025 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2026 2027 return ret; 2028 } 2029 2030 2031 /* Parsing and building descriptors and strings *****************************/ 2032 2033 /* 2034 * This validates if data pointed by data is a valid USB descriptor as 2035 * well as record how many interfaces, endpoints and strings are 2036 * required by given configuration. Returns address after the 2037 * descriptor or NULL if data is invalid. 2038 */ 2039 2040 enum ffs_entity_type { 2041 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2042 }; 2043 2044 enum ffs_os_desc_type { 2045 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2046 }; 2047 2048 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2049 u8 *valuep, 2050 struct usb_descriptor_header *desc, 2051 void *priv); 2052 2053 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2054 struct usb_os_desc_header *h, void *data, 2055 unsigned len, void *priv); 2056 2057 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2058 ffs_entity_callback entity, 2059 void *priv, int *current_class) 2060 { 2061 struct usb_descriptor_header *_ds = (void *)data; 2062 u8 length; 2063 int ret; 2064 2065 ENTER(); 2066 2067 /* At least two bytes are required: length and type */ 2068 if (len < 2) { 2069 pr_vdebug("descriptor too short\n"); 2070 return -EINVAL; 2071 } 2072 2073 /* If we have at least as many bytes as the descriptor takes? */ 2074 length = _ds->bLength; 2075 if (len < length) { 2076 pr_vdebug("descriptor longer then available data\n"); 2077 return -EINVAL; 2078 } 2079 2080 #define __entity_check_INTERFACE(val) 1 2081 #define __entity_check_STRING(val) (val) 2082 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2083 #define __entity(type, val) do { \ 2084 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2085 if (!__entity_check_ ##type(val)) { \ 2086 pr_vdebug("invalid entity's value\n"); \ 2087 return -EINVAL; \ 2088 } \ 2089 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2090 if (ret < 0) { \ 2091 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2092 (val), ret); \ 2093 return ret; \ 2094 } \ 2095 } while (0) 2096 2097 /* Parse descriptor depending on type. */ 2098 switch (_ds->bDescriptorType) { 2099 case USB_DT_DEVICE: 2100 case USB_DT_CONFIG: 2101 case USB_DT_STRING: 2102 case USB_DT_DEVICE_QUALIFIER: 2103 /* function can't have any of those */ 2104 pr_vdebug("descriptor reserved for gadget: %d\n", 2105 _ds->bDescriptorType); 2106 return -EINVAL; 2107 2108 case USB_DT_INTERFACE: { 2109 struct usb_interface_descriptor *ds = (void *)_ds; 2110 pr_vdebug("interface descriptor\n"); 2111 if (length != sizeof *ds) 2112 goto inv_length; 2113 2114 __entity(INTERFACE, ds->bInterfaceNumber); 2115 if (ds->iInterface) 2116 __entity(STRING, ds->iInterface); 2117 *current_class = ds->bInterfaceClass; 2118 } 2119 break; 2120 2121 case USB_DT_ENDPOINT: { 2122 struct usb_endpoint_descriptor *ds = (void *)_ds; 2123 pr_vdebug("endpoint descriptor\n"); 2124 if (length != USB_DT_ENDPOINT_SIZE && 2125 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2126 goto inv_length; 2127 __entity(ENDPOINT, ds->bEndpointAddress); 2128 } 2129 break; 2130 2131 case USB_TYPE_CLASS | 0x01: 2132 if (*current_class == USB_INTERFACE_CLASS_HID) { 2133 pr_vdebug("hid descriptor\n"); 2134 if (length != sizeof(struct hid_descriptor)) 2135 goto inv_length; 2136 break; 2137 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2138 pr_vdebug("ccid descriptor\n"); 2139 if (length != sizeof(struct ccid_descriptor)) 2140 goto inv_length; 2141 break; 2142 } else { 2143 pr_vdebug("unknown descriptor: %d for class %d\n", 2144 _ds->bDescriptorType, *current_class); 2145 return -EINVAL; 2146 } 2147 2148 case USB_DT_OTG: 2149 if (length != sizeof(struct usb_otg_descriptor)) 2150 goto inv_length; 2151 break; 2152 2153 case USB_DT_INTERFACE_ASSOCIATION: { 2154 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2155 pr_vdebug("interface association descriptor\n"); 2156 if (length != sizeof *ds) 2157 goto inv_length; 2158 if (ds->iFunction) 2159 __entity(STRING, ds->iFunction); 2160 } 2161 break; 2162 2163 case USB_DT_SS_ENDPOINT_COMP: 2164 pr_vdebug("EP SS companion descriptor\n"); 2165 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2166 goto inv_length; 2167 break; 2168 2169 case USB_DT_OTHER_SPEED_CONFIG: 2170 case USB_DT_INTERFACE_POWER: 2171 case USB_DT_DEBUG: 2172 case USB_DT_SECURITY: 2173 case USB_DT_CS_RADIO_CONTROL: 2174 /* TODO */ 2175 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2176 return -EINVAL; 2177 2178 default: 2179 /* We should never be here */ 2180 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2181 return -EINVAL; 2182 2183 inv_length: 2184 pr_vdebug("invalid length: %d (descriptor %d)\n", 2185 _ds->bLength, _ds->bDescriptorType); 2186 return -EINVAL; 2187 } 2188 2189 #undef __entity 2190 #undef __entity_check_DESCRIPTOR 2191 #undef __entity_check_INTERFACE 2192 #undef __entity_check_STRING 2193 #undef __entity_check_ENDPOINT 2194 2195 return length; 2196 } 2197 2198 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2199 ffs_entity_callback entity, void *priv) 2200 { 2201 const unsigned _len = len; 2202 unsigned long num = 0; 2203 int current_class = -1; 2204 2205 ENTER(); 2206 2207 for (;;) { 2208 int ret; 2209 2210 if (num == count) 2211 data = NULL; 2212 2213 /* Record "descriptor" entity */ 2214 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2215 if (ret < 0) { 2216 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2217 num, ret); 2218 return ret; 2219 } 2220 2221 if (!data) 2222 return _len - len; 2223 2224 ret = ffs_do_single_desc(data, len, entity, priv, 2225 ¤t_class); 2226 if (ret < 0) { 2227 pr_debug("%s returns %d\n", __func__, ret); 2228 return ret; 2229 } 2230 2231 len -= ret; 2232 data += ret; 2233 ++num; 2234 } 2235 } 2236 2237 static int __ffs_data_do_entity(enum ffs_entity_type type, 2238 u8 *valuep, struct usb_descriptor_header *desc, 2239 void *priv) 2240 { 2241 struct ffs_desc_helper *helper = priv; 2242 struct usb_endpoint_descriptor *d; 2243 2244 ENTER(); 2245 2246 switch (type) { 2247 case FFS_DESCRIPTOR: 2248 break; 2249 2250 case FFS_INTERFACE: 2251 /* 2252 * Interfaces are indexed from zero so if we 2253 * encountered interface "n" then there are at least 2254 * "n+1" interfaces. 2255 */ 2256 if (*valuep >= helper->interfaces_count) 2257 helper->interfaces_count = *valuep + 1; 2258 break; 2259 2260 case FFS_STRING: 2261 /* 2262 * Strings are indexed from 1 (0 is reserved 2263 * for languages list) 2264 */ 2265 if (*valuep > helper->ffs->strings_count) 2266 helper->ffs->strings_count = *valuep; 2267 break; 2268 2269 case FFS_ENDPOINT: 2270 d = (void *)desc; 2271 helper->eps_count++; 2272 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2273 return -EINVAL; 2274 /* Check if descriptors for any speed were already parsed */ 2275 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2276 helper->ffs->eps_addrmap[helper->eps_count] = 2277 d->bEndpointAddress; 2278 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2279 d->bEndpointAddress) 2280 return -EINVAL; 2281 break; 2282 } 2283 2284 return 0; 2285 } 2286 2287 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2288 struct usb_os_desc_header *desc) 2289 { 2290 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2291 u16 w_index = le16_to_cpu(desc->wIndex); 2292 2293 if (bcd_version != 1) { 2294 pr_vdebug("unsupported os descriptors version: %d", 2295 bcd_version); 2296 return -EINVAL; 2297 } 2298 switch (w_index) { 2299 case 0x4: 2300 *next_type = FFS_OS_DESC_EXT_COMPAT; 2301 break; 2302 case 0x5: 2303 *next_type = FFS_OS_DESC_EXT_PROP; 2304 break; 2305 default: 2306 pr_vdebug("unsupported os descriptor type: %d", w_index); 2307 return -EINVAL; 2308 } 2309 2310 return sizeof(*desc); 2311 } 2312 2313 /* 2314 * Process all extended compatibility/extended property descriptors 2315 * of a feature descriptor 2316 */ 2317 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2318 enum ffs_os_desc_type type, 2319 u16 feature_count, 2320 ffs_os_desc_callback entity, 2321 void *priv, 2322 struct usb_os_desc_header *h) 2323 { 2324 int ret; 2325 const unsigned _len = len; 2326 2327 ENTER(); 2328 2329 /* loop over all ext compat/ext prop descriptors */ 2330 while (feature_count--) { 2331 ret = entity(type, h, data, len, priv); 2332 if (ret < 0) { 2333 pr_debug("bad OS descriptor, type: %d\n", type); 2334 return ret; 2335 } 2336 data += ret; 2337 len -= ret; 2338 } 2339 return _len - len; 2340 } 2341 2342 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2343 static int __must_check ffs_do_os_descs(unsigned count, 2344 char *data, unsigned len, 2345 ffs_os_desc_callback entity, void *priv) 2346 { 2347 const unsigned _len = len; 2348 unsigned long num = 0; 2349 2350 ENTER(); 2351 2352 for (num = 0; num < count; ++num) { 2353 int ret; 2354 enum ffs_os_desc_type type; 2355 u16 feature_count; 2356 struct usb_os_desc_header *desc = (void *)data; 2357 2358 if (len < sizeof(*desc)) 2359 return -EINVAL; 2360 2361 /* 2362 * Record "descriptor" entity. 2363 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2364 * Move the data pointer to the beginning of extended 2365 * compatibilities proper or extended properties proper 2366 * portions of the data 2367 */ 2368 if (le32_to_cpu(desc->dwLength) > len) 2369 return -EINVAL; 2370 2371 ret = __ffs_do_os_desc_header(&type, desc); 2372 if (ret < 0) { 2373 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2374 num, ret); 2375 return ret; 2376 } 2377 /* 2378 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2379 */ 2380 feature_count = le16_to_cpu(desc->wCount); 2381 if (type == FFS_OS_DESC_EXT_COMPAT && 2382 (feature_count > 255 || desc->Reserved)) 2383 return -EINVAL; 2384 len -= ret; 2385 data += ret; 2386 2387 /* 2388 * Process all function/property descriptors 2389 * of this Feature Descriptor 2390 */ 2391 ret = ffs_do_single_os_desc(data, len, type, 2392 feature_count, entity, priv, desc); 2393 if (ret < 0) { 2394 pr_debug("%s returns %d\n", __func__, ret); 2395 return ret; 2396 } 2397 2398 len -= ret; 2399 data += ret; 2400 } 2401 return _len - len; 2402 } 2403 2404 /* 2405 * Validate contents of the buffer from userspace related to OS descriptors. 2406 */ 2407 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2408 struct usb_os_desc_header *h, void *data, 2409 unsigned len, void *priv) 2410 { 2411 struct ffs_data *ffs = priv; 2412 u8 length; 2413 2414 ENTER(); 2415 2416 switch (type) { 2417 case FFS_OS_DESC_EXT_COMPAT: { 2418 struct usb_ext_compat_desc *d = data; 2419 int i; 2420 2421 if (len < sizeof(*d) || 2422 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2423 return -EINVAL; 2424 if (d->Reserved1 != 1) { 2425 /* 2426 * According to the spec, Reserved1 must be set to 1 2427 * but older kernels incorrectly rejected non-zero 2428 * values. We fix it here to avoid returning EINVAL 2429 * in response to values we used to accept. 2430 */ 2431 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2432 d->Reserved1 = 1; 2433 } 2434 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2435 if (d->Reserved2[i]) 2436 return -EINVAL; 2437 2438 length = sizeof(struct usb_ext_compat_desc); 2439 } 2440 break; 2441 case FFS_OS_DESC_EXT_PROP: { 2442 struct usb_ext_prop_desc *d = data; 2443 u32 type, pdl; 2444 u16 pnl; 2445 2446 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2447 return -EINVAL; 2448 length = le32_to_cpu(d->dwSize); 2449 if (len < length) 2450 return -EINVAL; 2451 type = le32_to_cpu(d->dwPropertyDataType); 2452 if (type < USB_EXT_PROP_UNICODE || 2453 type > USB_EXT_PROP_UNICODE_MULTI) { 2454 pr_vdebug("unsupported os descriptor property type: %d", 2455 type); 2456 return -EINVAL; 2457 } 2458 pnl = le16_to_cpu(d->wPropertyNameLength); 2459 if (length < 14 + pnl) { 2460 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2461 length, pnl, type); 2462 return -EINVAL; 2463 } 2464 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2465 if (length != 14 + pnl + pdl) { 2466 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2467 length, pnl, pdl, type); 2468 return -EINVAL; 2469 } 2470 ++ffs->ms_os_descs_ext_prop_count; 2471 /* property name reported to the host as "WCHAR"s */ 2472 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2473 ffs->ms_os_descs_ext_prop_data_len += pdl; 2474 } 2475 break; 2476 default: 2477 pr_vdebug("unknown descriptor: %d\n", type); 2478 return -EINVAL; 2479 } 2480 return length; 2481 } 2482 2483 static int __ffs_data_got_descs(struct ffs_data *ffs, 2484 char *const _data, size_t len) 2485 { 2486 char *data = _data, *raw_descs; 2487 unsigned os_descs_count = 0, counts[3], flags; 2488 int ret = -EINVAL, i; 2489 struct ffs_desc_helper helper; 2490 2491 ENTER(); 2492 2493 if (get_unaligned_le32(data + 4) != len) 2494 goto error; 2495 2496 switch (get_unaligned_le32(data)) { 2497 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2498 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2499 data += 8; 2500 len -= 8; 2501 break; 2502 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2503 flags = get_unaligned_le32(data + 8); 2504 ffs->user_flags = flags; 2505 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2506 FUNCTIONFS_HAS_HS_DESC | 2507 FUNCTIONFS_HAS_SS_DESC | 2508 FUNCTIONFS_HAS_MS_OS_DESC | 2509 FUNCTIONFS_VIRTUAL_ADDR | 2510 FUNCTIONFS_EVENTFD | 2511 FUNCTIONFS_ALL_CTRL_RECIP | 2512 FUNCTIONFS_CONFIG0_SETUP)) { 2513 ret = -ENOSYS; 2514 goto error; 2515 } 2516 data += 12; 2517 len -= 12; 2518 break; 2519 default: 2520 goto error; 2521 } 2522 2523 if (flags & FUNCTIONFS_EVENTFD) { 2524 if (len < 4) 2525 goto error; 2526 ffs->ffs_eventfd = 2527 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2528 if (IS_ERR(ffs->ffs_eventfd)) { 2529 ret = PTR_ERR(ffs->ffs_eventfd); 2530 ffs->ffs_eventfd = NULL; 2531 goto error; 2532 } 2533 data += 4; 2534 len -= 4; 2535 } 2536 2537 /* Read fs_count, hs_count and ss_count (if present) */ 2538 for (i = 0; i < 3; ++i) { 2539 if (!(flags & (1 << i))) { 2540 counts[i] = 0; 2541 } else if (len < 4) { 2542 goto error; 2543 } else { 2544 counts[i] = get_unaligned_le32(data); 2545 data += 4; 2546 len -= 4; 2547 } 2548 } 2549 if (flags & (1 << i)) { 2550 if (len < 4) { 2551 goto error; 2552 } 2553 os_descs_count = get_unaligned_le32(data); 2554 data += 4; 2555 len -= 4; 2556 } 2557 2558 /* Read descriptors */ 2559 raw_descs = data; 2560 helper.ffs = ffs; 2561 for (i = 0; i < 3; ++i) { 2562 if (!counts[i]) 2563 continue; 2564 helper.interfaces_count = 0; 2565 helper.eps_count = 0; 2566 ret = ffs_do_descs(counts[i], data, len, 2567 __ffs_data_do_entity, &helper); 2568 if (ret < 0) 2569 goto error; 2570 if (!ffs->eps_count && !ffs->interfaces_count) { 2571 ffs->eps_count = helper.eps_count; 2572 ffs->interfaces_count = helper.interfaces_count; 2573 } else { 2574 if (ffs->eps_count != helper.eps_count) { 2575 ret = -EINVAL; 2576 goto error; 2577 } 2578 if (ffs->interfaces_count != helper.interfaces_count) { 2579 ret = -EINVAL; 2580 goto error; 2581 } 2582 } 2583 data += ret; 2584 len -= ret; 2585 } 2586 if (os_descs_count) { 2587 ret = ffs_do_os_descs(os_descs_count, data, len, 2588 __ffs_data_do_os_desc, ffs); 2589 if (ret < 0) 2590 goto error; 2591 data += ret; 2592 len -= ret; 2593 } 2594 2595 if (raw_descs == data || len) { 2596 ret = -EINVAL; 2597 goto error; 2598 } 2599 2600 ffs->raw_descs_data = _data; 2601 ffs->raw_descs = raw_descs; 2602 ffs->raw_descs_length = data - raw_descs; 2603 ffs->fs_descs_count = counts[0]; 2604 ffs->hs_descs_count = counts[1]; 2605 ffs->ss_descs_count = counts[2]; 2606 ffs->ms_os_descs_count = os_descs_count; 2607 2608 return 0; 2609 2610 error: 2611 kfree(_data); 2612 return ret; 2613 } 2614 2615 static int __ffs_data_got_strings(struct ffs_data *ffs, 2616 char *const _data, size_t len) 2617 { 2618 u32 str_count, needed_count, lang_count; 2619 struct usb_gadget_strings **stringtabs, *t; 2620 const char *data = _data; 2621 struct usb_string *s; 2622 2623 ENTER(); 2624 2625 if (len < 16 || 2626 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2627 get_unaligned_le32(data + 4) != len) 2628 goto error; 2629 str_count = get_unaligned_le32(data + 8); 2630 lang_count = get_unaligned_le32(data + 12); 2631 2632 /* if one is zero the other must be zero */ 2633 if (!str_count != !lang_count) 2634 goto error; 2635 2636 /* Do we have at least as many strings as descriptors need? */ 2637 needed_count = ffs->strings_count; 2638 if (str_count < needed_count) 2639 goto error; 2640 2641 /* 2642 * If we don't need any strings just return and free all 2643 * memory. 2644 */ 2645 if (!needed_count) { 2646 kfree(_data); 2647 return 0; 2648 } 2649 2650 /* Allocate everything in one chunk so there's less maintenance. */ 2651 { 2652 unsigned i = 0; 2653 vla_group(d); 2654 vla_item(d, struct usb_gadget_strings *, stringtabs, 2655 size_add(lang_count, 1)); 2656 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2657 vla_item(d, struct usb_string, strings, 2658 size_mul(lang_count, (needed_count + 1))); 2659 2660 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2661 2662 if (!vlabuf) { 2663 kfree(_data); 2664 return -ENOMEM; 2665 } 2666 2667 /* Initialize the VLA pointers */ 2668 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2669 t = vla_ptr(vlabuf, d, stringtab); 2670 i = lang_count; 2671 do { 2672 *stringtabs++ = t++; 2673 } while (--i); 2674 *stringtabs = NULL; 2675 2676 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2677 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2678 t = vla_ptr(vlabuf, d, stringtab); 2679 s = vla_ptr(vlabuf, d, strings); 2680 } 2681 2682 /* For each language */ 2683 data += 16; 2684 len -= 16; 2685 2686 do { /* lang_count > 0 so we can use do-while */ 2687 unsigned needed = needed_count; 2688 u32 str_per_lang = str_count; 2689 2690 if (len < 3) 2691 goto error_free; 2692 t->language = get_unaligned_le16(data); 2693 t->strings = s; 2694 ++t; 2695 2696 data += 2; 2697 len -= 2; 2698 2699 /* For each string */ 2700 do { /* str_count > 0 so we can use do-while */ 2701 size_t length = strnlen(data, len); 2702 2703 if (length == len) 2704 goto error_free; 2705 2706 /* 2707 * User may provide more strings then we need, 2708 * if that's the case we simply ignore the 2709 * rest 2710 */ 2711 if (needed) { 2712 /* 2713 * s->id will be set while adding 2714 * function to configuration so for 2715 * now just leave garbage here. 2716 */ 2717 s->s = data; 2718 --needed; 2719 ++s; 2720 } 2721 2722 data += length + 1; 2723 len -= length + 1; 2724 } while (--str_per_lang); 2725 2726 s->id = 0; /* terminator */ 2727 s->s = NULL; 2728 ++s; 2729 2730 } while (--lang_count); 2731 2732 /* Some garbage left? */ 2733 if (len) 2734 goto error_free; 2735 2736 /* Done! */ 2737 ffs->stringtabs = stringtabs; 2738 ffs->raw_strings = _data; 2739 2740 return 0; 2741 2742 error_free: 2743 kfree(stringtabs); 2744 error: 2745 kfree(_data); 2746 return -EINVAL; 2747 } 2748 2749 2750 /* Events handling and management *******************************************/ 2751 2752 static void __ffs_event_add(struct ffs_data *ffs, 2753 enum usb_functionfs_event_type type) 2754 { 2755 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2756 int neg = 0; 2757 2758 /* 2759 * Abort any unhandled setup 2760 * 2761 * We do not need to worry about some cmpxchg() changing value 2762 * of ffs->setup_state without holding the lock because when 2763 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2764 * the source does nothing. 2765 */ 2766 if (ffs->setup_state == FFS_SETUP_PENDING) 2767 ffs->setup_state = FFS_SETUP_CANCELLED; 2768 2769 /* 2770 * Logic of this function guarantees that there are at most four pending 2771 * evens on ffs->ev.types queue. This is important because the queue 2772 * has space for four elements only and __ffs_ep0_read_events function 2773 * depends on that limit as well. If more event types are added, those 2774 * limits have to be revisited or guaranteed to still hold. 2775 */ 2776 switch (type) { 2777 case FUNCTIONFS_RESUME: 2778 rem_type2 = FUNCTIONFS_SUSPEND; 2779 fallthrough; 2780 case FUNCTIONFS_SUSPEND: 2781 case FUNCTIONFS_SETUP: 2782 rem_type1 = type; 2783 /* Discard all similar events */ 2784 break; 2785 2786 case FUNCTIONFS_BIND: 2787 case FUNCTIONFS_UNBIND: 2788 case FUNCTIONFS_DISABLE: 2789 case FUNCTIONFS_ENABLE: 2790 /* Discard everything other then power management. */ 2791 rem_type1 = FUNCTIONFS_SUSPEND; 2792 rem_type2 = FUNCTIONFS_RESUME; 2793 neg = 1; 2794 break; 2795 2796 default: 2797 WARN(1, "%d: unknown event, this should not happen\n", type); 2798 return; 2799 } 2800 2801 { 2802 u8 *ev = ffs->ev.types, *out = ev; 2803 unsigned n = ffs->ev.count; 2804 for (; n; --n, ++ev) 2805 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2806 *out++ = *ev; 2807 else 2808 pr_vdebug("purging event %d\n", *ev); 2809 ffs->ev.count = out - ffs->ev.types; 2810 } 2811 2812 pr_vdebug("adding event %d\n", type); 2813 ffs->ev.types[ffs->ev.count++] = type; 2814 wake_up_locked(&ffs->ev.waitq); 2815 if (ffs->ffs_eventfd) 2816 eventfd_signal(ffs->ffs_eventfd, 1); 2817 } 2818 2819 static void ffs_event_add(struct ffs_data *ffs, 2820 enum usb_functionfs_event_type type) 2821 { 2822 unsigned long flags; 2823 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2824 __ffs_event_add(ffs, type); 2825 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2826 } 2827 2828 /* Bind/unbind USB function hooks *******************************************/ 2829 2830 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2831 { 2832 int i; 2833 2834 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2835 if (ffs->eps_addrmap[i] == endpoint_address) 2836 return i; 2837 return -ENOENT; 2838 } 2839 2840 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2841 struct usb_descriptor_header *desc, 2842 void *priv) 2843 { 2844 struct usb_endpoint_descriptor *ds = (void *)desc; 2845 struct ffs_function *func = priv; 2846 struct ffs_ep *ffs_ep; 2847 unsigned ep_desc_id; 2848 int idx; 2849 static const char *speed_names[] = { "full", "high", "super" }; 2850 2851 if (type != FFS_DESCRIPTOR) 2852 return 0; 2853 2854 /* 2855 * If ss_descriptors is not NULL, we are reading super speed 2856 * descriptors; if hs_descriptors is not NULL, we are reading high 2857 * speed descriptors; otherwise, we are reading full speed 2858 * descriptors. 2859 */ 2860 if (func->function.ss_descriptors) { 2861 ep_desc_id = 2; 2862 func->function.ss_descriptors[(long)valuep] = desc; 2863 } else if (func->function.hs_descriptors) { 2864 ep_desc_id = 1; 2865 func->function.hs_descriptors[(long)valuep] = desc; 2866 } else { 2867 ep_desc_id = 0; 2868 func->function.fs_descriptors[(long)valuep] = desc; 2869 } 2870 2871 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2872 return 0; 2873 2874 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2875 if (idx < 0) 2876 return idx; 2877 2878 ffs_ep = func->eps + idx; 2879 2880 if (ffs_ep->descs[ep_desc_id]) { 2881 pr_err("two %sspeed descriptors for EP %d\n", 2882 speed_names[ep_desc_id], 2883 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2884 return -EINVAL; 2885 } 2886 ffs_ep->descs[ep_desc_id] = ds; 2887 2888 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2889 if (ffs_ep->ep) { 2890 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2891 if (!ds->wMaxPacketSize) 2892 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2893 } else { 2894 struct usb_request *req; 2895 struct usb_ep *ep; 2896 u8 bEndpointAddress; 2897 u16 wMaxPacketSize; 2898 2899 /* 2900 * We back up bEndpointAddress because autoconfig overwrites 2901 * it with physical endpoint address. 2902 */ 2903 bEndpointAddress = ds->bEndpointAddress; 2904 /* 2905 * We back up wMaxPacketSize because autoconfig treats 2906 * endpoint descriptors as if they were full speed. 2907 */ 2908 wMaxPacketSize = ds->wMaxPacketSize; 2909 pr_vdebug("autoconfig\n"); 2910 ep = usb_ep_autoconfig(func->gadget, ds); 2911 if (!ep) 2912 return -ENOTSUPP; 2913 ep->driver_data = func->eps + idx; 2914 2915 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2916 if (!req) 2917 return -ENOMEM; 2918 2919 ffs_ep->ep = ep; 2920 ffs_ep->req = req; 2921 func->eps_revmap[ds->bEndpointAddress & 2922 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2923 /* 2924 * If we use virtual address mapping, we restore 2925 * original bEndpointAddress value. 2926 */ 2927 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2928 ds->bEndpointAddress = bEndpointAddress; 2929 /* 2930 * Restore wMaxPacketSize which was potentially 2931 * overwritten by autoconfig. 2932 */ 2933 ds->wMaxPacketSize = wMaxPacketSize; 2934 } 2935 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2936 2937 return 0; 2938 } 2939 2940 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2941 struct usb_descriptor_header *desc, 2942 void *priv) 2943 { 2944 struct ffs_function *func = priv; 2945 unsigned idx; 2946 u8 newValue; 2947 2948 switch (type) { 2949 default: 2950 case FFS_DESCRIPTOR: 2951 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2952 return 0; 2953 2954 case FFS_INTERFACE: 2955 idx = *valuep; 2956 if (func->interfaces_nums[idx] < 0) { 2957 int id = usb_interface_id(func->conf, &func->function); 2958 if (id < 0) 2959 return id; 2960 func->interfaces_nums[idx] = id; 2961 } 2962 newValue = func->interfaces_nums[idx]; 2963 break; 2964 2965 case FFS_STRING: 2966 /* String' IDs are allocated when fsf_data is bound to cdev */ 2967 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2968 break; 2969 2970 case FFS_ENDPOINT: 2971 /* 2972 * USB_DT_ENDPOINT are handled in 2973 * __ffs_func_bind_do_descs(). 2974 */ 2975 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2976 return 0; 2977 2978 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2979 if (!func->eps[idx].ep) 2980 return -EINVAL; 2981 2982 { 2983 struct usb_endpoint_descriptor **descs; 2984 descs = func->eps[idx].descs; 2985 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2986 } 2987 break; 2988 } 2989 2990 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2991 *valuep = newValue; 2992 return 0; 2993 } 2994 2995 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2996 struct usb_os_desc_header *h, void *data, 2997 unsigned len, void *priv) 2998 { 2999 struct ffs_function *func = priv; 3000 u8 length = 0; 3001 3002 switch (type) { 3003 case FFS_OS_DESC_EXT_COMPAT: { 3004 struct usb_ext_compat_desc *desc = data; 3005 struct usb_os_desc_table *t; 3006 3007 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 3008 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 3009 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 3010 ARRAY_SIZE(desc->CompatibleID) + 3011 ARRAY_SIZE(desc->SubCompatibleID)); 3012 length = sizeof(*desc); 3013 } 3014 break; 3015 case FFS_OS_DESC_EXT_PROP: { 3016 struct usb_ext_prop_desc *desc = data; 3017 struct usb_os_desc_table *t; 3018 struct usb_os_desc_ext_prop *ext_prop; 3019 char *ext_prop_name; 3020 char *ext_prop_data; 3021 3022 t = &func->function.os_desc_table[h->interface]; 3023 t->if_id = func->interfaces_nums[h->interface]; 3024 3025 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 3026 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 3027 3028 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 3029 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 3030 ext_prop->data_len = le32_to_cpu(*(__le32 *) 3031 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 3032 length = ext_prop->name_len + ext_prop->data_len + 14; 3033 3034 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 3035 func->ffs->ms_os_descs_ext_prop_name_avail += 3036 ext_prop->name_len; 3037 3038 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3039 func->ffs->ms_os_descs_ext_prop_data_avail += 3040 ext_prop->data_len; 3041 memcpy(ext_prop_data, 3042 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3043 ext_prop->data_len); 3044 /* unicode data reported to the host as "WCHAR"s */ 3045 switch (ext_prop->type) { 3046 case USB_EXT_PROP_UNICODE: 3047 case USB_EXT_PROP_UNICODE_ENV: 3048 case USB_EXT_PROP_UNICODE_LINK: 3049 case USB_EXT_PROP_UNICODE_MULTI: 3050 ext_prop->data_len *= 2; 3051 break; 3052 } 3053 ext_prop->data = ext_prop_data; 3054 3055 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3056 ext_prop->name_len); 3057 /* property name reported to the host as "WCHAR"s */ 3058 ext_prop->name_len *= 2; 3059 ext_prop->name = ext_prop_name; 3060 3061 t->os_desc->ext_prop_len += 3062 ext_prop->name_len + ext_prop->data_len + 14; 3063 ++t->os_desc->ext_prop_count; 3064 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3065 } 3066 break; 3067 default: 3068 pr_vdebug("unknown descriptor: %d\n", type); 3069 } 3070 3071 return length; 3072 } 3073 3074 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3075 struct usb_configuration *c) 3076 { 3077 struct ffs_function *func = ffs_func_from_usb(f); 3078 struct f_fs_opts *ffs_opts = 3079 container_of(f->fi, struct f_fs_opts, func_inst); 3080 struct ffs_data *ffs_data; 3081 int ret; 3082 3083 ENTER(); 3084 3085 /* 3086 * Legacy gadget triggers binding in functionfs_ready_callback, 3087 * which already uses locking; taking the same lock here would 3088 * cause a deadlock. 3089 * 3090 * Configfs-enabled gadgets however do need ffs_dev_lock. 3091 */ 3092 if (!ffs_opts->no_configfs) 3093 ffs_dev_lock(); 3094 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3095 ffs_data = ffs_opts->dev->ffs_data; 3096 if (!ffs_opts->no_configfs) 3097 ffs_dev_unlock(); 3098 if (ret) 3099 return ERR_PTR(ret); 3100 3101 func->ffs = ffs_data; 3102 func->conf = c; 3103 func->gadget = c->cdev->gadget; 3104 3105 /* 3106 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3107 * configurations are bound in sequence with list_for_each_entry, 3108 * in each configuration its functions are bound in sequence 3109 * with list_for_each_entry, so we assume no race condition 3110 * with regard to ffs_opts->bound access 3111 */ 3112 if (!ffs_opts->refcnt) { 3113 ret = functionfs_bind(func->ffs, c->cdev); 3114 if (ret) 3115 return ERR_PTR(ret); 3116 } 3117 ffs_opts->refcnt++; 3118 func->function.strings = func->ffs->stringtabs; 3119 3120 return ffs_opts; 3121 } 3122 3123 static int _ffs_func_bind(struct usb_configuration *c, 3124 struct usb_function *f) 3125 { 3126 struct ffs_function *func = ffs_func_from_usb(f); 3127 struct ffs_data *ffs = func->ffs; 3128 3129 const int full = !!func->ffs->fs_descs_count; 3130 const int high = !!func->ffs->hs_descs_count; 3131 const int super = !!func->ffs->ss_descs_count; 3132 3133 int fs_len, hs_len, ss_len, ret, i; 3134 struct ffs_ep *eps_ptr; 3135 3136 /* Make it a single chunk, less management later on */ 3137 vla_group(d); 3138 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3139 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3140 full ? ffs->fs_descs_count + 1 : 0); 3141 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3142 high ? ffs->hs_descs_count + 1 : 0); 3143 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3144 super ? ffs->ss_descs_count + 1 : 0); 3145 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3146 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3147 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3148 vla_item_with_sz(d, char[16], ext_compat, 3149 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3150 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3151 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3152 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3153 ffs->ms_os_descs_ext_prop_count); 3154 vla_item_with_sz(d, char, ext_prop_name, 3155 ffs->ms_os_descs_ext_prop_name_len); 3156 vla_item_with_sz(d, char, ext_prop_data, 3157 ffs->ms_os_descs_ext_prop_data_len); 3158 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3159 char *vlabuf; 3160 3161 ENTER(); 3162 3163 /* Has descriptors only for speeds gadget does not support */ 3164 if (!(full | high | super)) 3165 return -ENOTSUPP; 3166 3167 /* Allocate a single chunk, less management later on */ 3168 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3169 if (!vlabuf) 3170 return -ENOMEM; 3171 3172 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3173 ffs->ms_os_descs_ext_prop_name_avail = 3174 vla_ptr(vlabuf, d, ext_prop_name); 3175 ffs->ms_os_descs_ext_prop_data_avail = 3176 vla_ptr(vlabuf, d, ext_prop_data); 3177 3178 /* Copy descriptors */ 3179 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3180 ffs->raw_descs_length); 3181 3182 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3183 eps_ptr = vla_ptr(vlabuf, d, eps); 3184 for (i = 0; i < ffs->eps_count; i++) 3185 eps_ptr[i].num = -1; 3186 3187 /* Save pointers 3188 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3189 */ 3190 func->eps = vla_ptr(vlabuf, d, eps); 3191 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3192 3193 /* 3194 * Go through all the endpoint descriptors and allocate 3195 * endpoints first, so that later we can rewrite the endpoint 3196 * numbers without worrying that it may be described later on. 3197 */ 3198 if (full) { 3199 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3200 fs_len = ffs_do_descs(ffs->fs_descs_count, 3201 vla_ptr(vlabuf, d, raw_descs), 3202 d_raw_descs__sz, 3203 __ffs_func_bind_do_descs, func); 3204 if (fs_len < 0) { 3205 ret = fs_len; 3206 goto error; 3207 } 3208 } else { 3209 fs_len = 0; 3210 } 3211 3212 if (high) { 3213 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3214 hs_len = ffs_do_descs(ffs->hs_descs_count, 3215 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3216 d_raw_descs__sz - fs_len, 3217 __ffs_func_bind_do_descs, func); 3218 if (hs_len < 0) { 3219 ret = hs_len; 3220 goto error; 3221 } 3222 } else { 3223 hs_len = 0; 3224 } 3225 3226 if (super) { 3227 func->function.ss_descriptors = func->function.ssp_descriptors = 3228 vla_ptr(vlabuf, d, ss_descs); 3229 ss_len = ffs_do_descs(ffs->ss_descs_count, 3230 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3231 d_raw_descs__sz - fs_len - hs_len, 3232 __ffs_func_bind_do_descs, func); 3233 if (ss_len < 0) { 3234 ret = ss_len; 3235 goto error; 3236 } 3237 } else { 3238 ss_len = 0; 3239 } 3240 3241 /* 3242 * Now handle interface numbers allocation and interface and 3243 * endpoint numbers rewriting. We can do that in one go 3244 * now. 3245 */ 3246 ret = ffs_do_descs(ffs->fs_descs_count + 3247 (high ? ffs->hs_descs_count : 0) + 3248 (super ? ffs->ss_descs_count : 0), 3249 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3250 __ffs_func_bind_do_nums, func); 3251 if (ret < 0) 3252 goto error; 3253 3254 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3255 if (c->cdev->use_os_string) { 3256 for (i = 0; i < ffs->interfaces_count; ++i) { 3257 struct usb_os_desc *desc; 3258 3259 desc = func->function.os_desc_table[i].os_desc = 3260 vla_ptr(vlabuf, d, os_desc) + 3261 i * sizeof(struct usb_os_desc); 3262 desc->ext_compat_id = 3263 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3264 INIT_LIST_HEAD(&desc->ext_prop); 3265 } 3266 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3267 vla_ptr(vlabuf, d, raw_descs) + 3268 fs_len + hs_len + ss_len, 3269 d_raw_descs__sz - fs_len - hs_len - 3270 ss_len, 3271 __ffs_func_bind_do_os_desc, func); 3272 if (ret < 0) 3273 goto error; 3274 } 3275 func->function.os_desc_n = 3276 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3277 3278 /* And we're done */ 3279 ffs_event_add(ffs, FUNCTIONFS_BIND); 3280 return 0; 3281 3282 error: 3283 /* XXX Do we need to release all claimed endpoints here? */ 3284 return ret; 3285 } 3286 3287 static int ffs_func_bind(struct usb_configuration *c, 3288 struct usb_function *f) 3289 { 3290 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3291 struct ffs_function *func = ffs_func_from_usb(f); 3292 int ret; 3293 3294 if (IS_ERR(ffs_opts)) 3295 return PTR_ERR(ffs_opts); 3296 3297 ret = _ffs_func_bind(c, f); 3298 if (ret && !--ffs_opts->refcnt) 3299 functionfs_unbind(func->ffs); 3300 3301 return ret; 3302 } 3303 3304 3305 /* Other USB function hooks *************************************************/ 3306 3307 static void ffs_reset_work(struct work_struct *work) 3308 { 3309 struct ffs_data *ffs = container_of(work, 3310 struct ffs_data, reset_work); 3311 ffs_data_reset(ffs); 3312 } 3313 3314 static int ffs_func_set_alt(struct usb_function *f, 3315 unsigned interface, unsigned alt) 3316 { 3317 struct ffs_function *func = ffs_func_from_usb(f); 3318 struct ffs_data *ffs = func->ffs; 3319 int ret = 0, intf; 3320 3321 if (alt != (unsigned)-1) { 3322 intf = ffs_func_revmap_intf(func, interface); 3323 if (intf < 0) 3324 return intf; 3325 } 3326 3327 if (ffs->func) 3328 ffs_func_eps_disable(ffs->func); 3329 3330 if (ffs->state == FFS_DEACTIVATED) { 3331 ffs->state = FFS_CLOSING; 3332 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3333 schedule_work(&ffs->reset_work); 3334 return -ENODEV; 3335 } 3336 3337 if (ffs->state != FFS_ACTIVE) 3338 return -ENODEV; 3339 3340 if (alt == (unsigned)-1) { 3341 ffs->func = NULL; 3342 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3343 return 0; 3344 } 3345 3346 ffs->func = func; 3347 ret = ffs_func_eps_enable(func); 3348 if (ret >= 0) 3349 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3350 return ret; 3351 } 3352 3353 static void ffs_func_disable(struct usb_function *f) 3354 { 3355 ffs_func_set_alt(f, 0, (unsigned)-1); 3356 } 3357 3358 static int ffs_func_setup(struct usb_function *f, 3359 const struct usb_ctrlrequest *creq) 3360 { 3361 struct ffs_function *func = ffs_func_from_usb(f); 3362 struct ffs_data *ffs = func->ffs; 3363 unsigned long flags; 3364 int ret; 3365 3366 ENTER(); 3367 3368 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3369 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3370 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3371 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3372 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3373 3374 /* 3375 * Most requests directed to interface go through here 3376 * (notable exceptions are set/get interface) so we need to 3377 * handle them. All other either handled by composite or 3378 * passed to usb_configuration->setup() (if one is set). No 3379 * matter, we will handle requests directed to endpoint here 3380 * as well (as it's straightforward). Other request recipient 3381 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3382 * is being used. 3383 */ 3384 if (ffs->state != FFS_ACTIVE) 3385 return -ENODEV; 3386 3387 switch (creq->bRequestType & USB_RECIP_MASK) { 3388 case USB_RECIP_INTERFACE: 3389 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3390 if (ret < 0) 3391 return ret; 3392 break; 3393 3394 case USB_RECIP_ENDPOINT: 3395 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3396 if (ret < 0) 3397 return ret; 3398 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3399 ret = func->ffs->eps_addrmap[ret]; 3400 break; 3401 3402 default: 3403 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3404 ret = le16_to_cpu(creq->wIndex); 3405 else 3406 return -EOPNOTSUPP; 3407 } 3408 3409 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3410 ffs->ev.setup = *creq; 3411 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3412 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3413 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3414 3415 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3416 } 3417 3418 static bool ffs_func_req_match(struct usb_function *f, 3419 const struct usb_ctrlrequest *creq, 3420 bool config0) 3421 { 3422 struct ffs_function *func = ffs_func_from_usb(f); 3423 3424 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3425 return false; 3426 3427 switch (creq->bRequestType & USB_RECIP_MASK) { 3428 case USB_RECIP_INTERFACE: 3429 return (ffs_func_revmap_intf(func, 3430 le16_to_cpu(creq->wIndex)) >= 0); 3431 case USB_RECIP_ENDPOINT: 3432 return (ffs_func_revmap_ep(func, 3433 le16_to_cpu(creq->wIndex)) >= 0); 3434 default: 3435 return (bool) (func->ffs->user_flags & 3436 FUNCTIONFS_ALL_CTRL_RECIP); 3437 } 3438 } 3439 3440 static void ffs_func_suspend(struct usb_function *f) 3441 { 3442 ENTER(); 3443 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3444 } 3445 3446 static void ffs_func_resume(struct usb_function *f) 3447 { 3448 ENTER(); 3449 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3450 } 3451 3452 3453 /* Endpoint and interface numbers reverse mapping ***************************/ 3454 3455 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3456 { 3457 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3458 return num ? num : -EDOM; 3459 } 3460 3461 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3462 { 3463 short *nums = func->interfaces_nums; 3464 unsigned count = func->ffs->interfaces_count; 3465 3466 for (; count; --count, ++nums) { 3467 if (*nums >= 0 && *nums == intf) 3468 return nums - func->interfaces_nums; 3469 } 3470 3471 return -EDOM; 3472 } 3473 3474 3475 /* Devices management *******************************************************/ 3476 3477 static LIST_HEAD(ffs_devices); 3478 3479 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3480 { 3481 struct ffs_dev *dev; 3482 3483 if (!name) 3484 return NULL; 3485 3486 list_for_each_entry(dev, &ffs_devices, entry) { 3487 if (strcmp(dev->name, name) == 0) 3488 return dev; 3489 } 3490 3491 return NULL; 3492 } 3493 3494 /* 3495 * ffs_lock must be taken by the caller of this function 3496 */ 3497 static struct ffs_dev *_ffs_get_single_dev(void) 3498 { 3499 struct ffs_dev *dev; 3500 3501 if (list_is_singular(&ffs_devices)) { 3502 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3503 if (dev->single) 3504 return dev; 3505 } 3506 3507 return NULL; 3508 } 3509 3510 /* 3511 * ffs_lock must be taken by the caller of this function 3512 */ 3513 static struct ffs_dev *_ffs_find_dev(const char *name) 3514 { 3515 struct ffs_dev *dev; 3516 3517 dev = _ffs_get_single_dev(); 3518 if (dev) 3519 return dev; 3520 3521 return _ffs_do_find_dev(name); 3522 } 3523 3524 /* Configfs support *********************************************************/ 3525 3526 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3527 { 3528 return container_of(to_config_group(item), struct f_fs_opts, 3529 func_inst.group); 3530 } 3531 3532 static void ffs_attr_release(struct config_item *item) 3533 { 3534 struct f_fs_opts *opts = to_ffs_opts(item); 3535 3536 usb_put_function_instance(&opts->func_inst); 3537 } 3538 3539 static struct configfs_item_operations ffs_item_ops = { 3540 .release = ffs_attr_release, 3541 }; 3542 3543 static const struct config_item_type ffs_func_type = { 3544 .ct_item_ops = &ffs_item_ops, 3545 .ct_owner = THIS_MODULE, 3546 }; 3547 3548 3549 /* Function registration interface ******************************************/ 3550 3551 static void ffs_free_inst(struct usb_function_instance *f) 3552 { 3553 struct f_fs_opts *opts; 3554 3555 opts = to_f_fs_opts(f); 3556 ffs_release_dev(opts->dev); 3557 ffs_dev_lock(); 3558 _ffs_free_dev(opts->dev); 3559 ffs_dev_unlock(); 3560 kfree(opts); 3561 } 3562 3563 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3564 { 3565 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3566 return -ENAMETOOLONG; 3567 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3568 } 3569 3570 static struct usb_function_instance *ffs_alloc_inst(void) 3571 { 3572 struct f_fs_opts *opts; 3573 struct ffs_dev *dev; 3574 3575 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3576 if (!opts) 3577 return ERR_PTR(-ENOMEM); 3578 3579 opts->func_inst.set_inst_name = ffs_set_inst_name; 3580 opts->func_inst.free_func_inst = ffs_free_inst; 3581 ffs_dev_lock(); 3582 dev = _ffs_alloc_dev(); 3583 ffs_dev_unlock(); 3584 if (IS_ERR(dev)) { 3585 kfree(opts); 3586 return ERR_CAST(dev); 3587 } 3588 opts->dev = dev; 3589 dev->opts = opts; 3590 3591 config_group_init_type_name(&opts->func_inst.group, "", 3592 &ffs_func_type); 3593 return &opts->func_inst; 3594 } 3595 3596 static void ffs_free(struct usb_function *f) 3597 { 3598 kfree(ffs_func_from_usb(f)); 3599 } 3600 3601 static void ffs_func_unbind(struct usb_configuration *c, 3602 struct usb_function *f) 3603 { 3604 struct ffs_function *func = ffs_func_from_usb(f); 3605 struct ffs_data *ffs = func->ffs; 3606 struct f_fs_opts *opts = 3607 container_of(f->fi, struct f_fs_opts, func_inst); 3608 struct ffs_ep *ep = func->eps; 3609 unsigned count = ffs->eps_count; 3610 unsigned long flags; 3611 3612 ENTER(); 3613 if (ffs->func == func) { 3614 ffs_func_eps_disable(func); 3615 ffs->func = NULL; 3616 } 3617 3618 /* Drain any pending AIO completions */ 3619 drain_workqueue(ffs->io_completion_wq); 3620 3621 if (!--opts->refcnt) 3622 functionfs_unbind(ffs); 3623 3624 /* cleanup after autoconfig */ 3625 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3626 while (count--) { 3627 if (ep->ep && ep->req) 3628 usb_ep_free_request(ep->ep, ep->req); 3629 ep->req = NULL; 3630 ++ep; 3631 } 3632 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3633 kfree(func->eps); 3634 func->eps = NULL; 3635 /* 3636 * eps, descriptors and interfaces_nums are allocated in the 3637 * same chunk so only one free is required. 3638 */ 3639 func->function.fs_descriptors = NULL; 3640 func->function.hs_descriptors = NULL; 3641 func->function.ss_descriptors = NULL; 3642 func->function.ssp_descriptors = NULL; 3643 func->interfaces_nums = NULL; 3644 3645 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3646 } 3647 3648 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3649 { 3650 struct ffs_function *func; 3651 3652 ENTER(); 3653 3654 func = kzalloc(sizeof(*func), GFP_KERNEL); 3655 if (!func) 3656 return ERR_PTR(-ENOMEM); 3657 3658 func->function.name = "Function FS Gadget"; 3659 3660 func->function.bind = ffs_func_bind; 3661 func->function.unbind = ffs_func_unbind; 3662 func->function.set_alt = ffs_func_set_alt; 3663 func->function.disable = ffs_func_disable; 3664 func->function.setup = ffs_func_setup; 3665 func->function.req_match = ffs_func_req_match; 3666 func->function.suspend = ffs_func_suspend; 3667 func->function.resume = ffs_func_resume; 3668 func->function.free_func = ffs_free; 3669 3670 return &func->function; 3671 } 3672 3673 /* 3674 * ffs_lock must be taken by the caller of this function 3675 */ 3676 static struct ffs_dev *_ffs_alloc_dev(void) 3677 { 3678 struct ffs_dev *dev; 3679 int ret; 3680 3681 if (_ffs_get_single_dev()) 3682 return ERR_PTR(-EBUSY); 3683 3684 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3685 if (!dev) 3686 return ERR_PTR(-ENOMEM); 3687 3688 if (list_empty(&ffs_devices)) { 3689 ret = functionfs_init(); 3690 if (ret) { 3691 kfree(dev); 3692 return ERR_PTR(ret); 3693 } 3694 } 3695 3696 list_add(&dev->entry, &ffs_devices); 3697 3698 return dev; 3699 } 3700 3701 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3702 { 3703 struct ffs_dev *existing; 3704 int ret = 0; 3705 3706 ffs_dev_lock(); 3707 3708 existing = _ffs_do_find_dev(name); 3709 if (!existing) 3710 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 3711 else if (existing != dev) 3712 ret = -EBUSY; 3713 3714 ffs_dev_unlock(); 3715 3716 return ret; 3717 } 3718 EXPORT_SYMBOL_GPL(ffs_name_dev); 3719 3720 int ffs_single_dev(struct ffs_dev *dev) 3721 { 3722 int ret; 3723 3724 ret = 0; 3725 ffs_dev_lock(); 3726 3727 if (!list_is_singular(&ffs_devices)) 3728 ret = -EBUSY; 3729 else 3730 dev->single = true; 3731 3732 ffs_dev_unlock(); 3733 return ret; 3734 } 3735 EXPORT_SYMBOL_GPL(ffs_single_dev); 3736 3737 /* 3738 * ffs_lock must be taken by the caller of this function 3739 */ 3740 static void _ffs_free_dev(struct ffs_dev *dev) 3741 { 3742 list_del(&dev->entry); 3743 3744 kfree(dev); 3745 if (list_empty(&ffs_devices)) 3746 functionfs_cleanup(); 3747 } 3748 3749 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 3750 { 3751 int ret = 0; 3752 struct ffs_dev *ffs_dev; 3753 3754 ENTER(); 3755 ffs_dev_lock(); 3756 3757 ffs_dev = _ffs_find_dev(dev_name); 3758 if (!ffs_dev) { 3759 ret = -ENOENT; 3760 } else if (ffs_dev->mounted) { 3761 ret = -EBUSY; 3762 } else if (ffs_dev->ffs_acquire_dev_callback && 3763 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 3764 ret = -ENOENT; 3765 } else { 3766 ffs_dev->mounted = true; 3767 ffs_dev->ffs_data = ffs_data; 3768 ffs_data->private_data = ffs_dev; 3769 } 3770 3771 ffs_dev_unlock(); 3772 return ret; 3773 } 3774 3775 static void ffs_release_dev(struct ffs_dev *ffs_dev) 3776 { 3777 ENTER(); 3778 ffs_dev_lock(); 3779 3780 if (ffs_dev && ffs_dev->mounted) { 3781 ffs_dev->mounted = false; 3782 if (ffs_dev->ffs_data) { 3783 ffs_dev->ffs_data->private_data = NULL; 3784 ffs_dev->ffs_data = NULL; 3785 } 3786 3787 if (ffs_dev->ffs_release_dev_callback) 3788 ffs_dev->ffs_release_dev_callback(ffs_dev); 3789 } 3790 3791 ffs_dev_unlock(); 3792 } 3793 3794 static int ffs_ready(struct ffs_data *ffs) 3795 { 3796 struct ffs_dev *ffs_obj; 3797 int ret = 0; 3798 3799 ENTER(); 3800 ffs_dev_lock(); 3801 3802 ffs_obj = ffs->private_data; 3803 if (!ffs_obj) { 3804 ret = -EINVAL; 3805 goto done; 3806 } 3807 if (WARN_ON(ffs_obj->desc_ready)) { 3808 ret = -EBUSY; 3809 goto done; 3810 } 3811 3812 ffs_obj->desc_ready = true; 3813 3814 if (ffs_obj->ffs_ready_callback) { 3815 ret = ffs_obj->ffs_ready_callback(ffs); 3816 if (ret) 3817 goto done; 3818 } 3819 3820 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3821 done: 3822 ffs_dev_unlock(); 3823 return ret; 3824 } 3825 3826 static void ffs_closed(struct ffs_data *ffs) 3827 { 3828 struct ffs_dev *ffs_obj; 3829 struct f_fs_opts *opts; 3830 struct config_item *ci; 3831 3832 ENTER(); 3833 ffs_dev_lock(); 3834 3835 ffs_obj = ffs->private_data; 3836 if (!ffs_obj) 3837 goto done; 3838 3839 ffs_obj->desc_ready = false; 3840 3841 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3842 ffs_obj->ffs_closed_callback) 3843 ffs_obj->ffs_closed_callback(ffs); 3844 3845 if (ffs_obj->opts) 3846 opts = ffs_obj->opts; 3847 else 3848 goto done; 3849 3850 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3851 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3852 goto done; 3853 3854 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3855 ffs_dev_unlock(); 3856 3857 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3858 unregister_gadget_item(ci); 3859 return; 3860 done: 3861 ffs_dev_unlock(); 3862 } 3863 3864 /* Misc helper functions ****************************************************/ 3865 3866 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3867 { 3868 return nonblock 3869 ? mutex_trylock(mutex) ? 0 : -EAGAIN 3870 : mutex_lock_interruptible(mutex); 3871 } 3872 3873 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3874 { 3875 char *data; 3876 3877 if (!len) 3878 return NULL; 3879 3880 data = memdup_user(buf, len); 3881 if (IS_ERR(data)) 3882 return data; 3883 3884 pr_vdebug("Buffer from user space:\n"); 3885 ffs_dump_mem("", data, len); 3886 3887 return data; 3888 } 3889 3890 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3891 MODULE_LICENSE("GPL"); 3892 MODULE_AUTHOR("Michal Nazarewicz"); 3893