1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Faraday FOTG210 EHCI-like driver 3 * 4 * Copyright (c) 2013 Faraday Technology Corporation 5 * 6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com> 7 * Feng-Hsin Chiang <john453@faraday-tech.com> 8 * Po-Yu Chuang <ratbert.chuang@gmail.com> 9 * 10 * Most of code borrowed from the Linux-3.7 EHCI driver 11 */ 12 #include <linux/module.h> 13 #include <linux/of.h> 14 #include <linux/device.h> 15 #include <linux/dmapool.h> 16 #include <linux/kernel.h> 17 #include <linux/delay.h> 18 #include <linux/ioport.h> 19 #include <linux/sched.h> 20 #include <linux/vmalloc.h> 21 #include <linux/errno.h> 22 #include <linux/init.h> 23 #include <linux/hrtimer.h> 24 #include <linux/list.h> 25 #include <linux/interrupt.h> 26 #include <linux/usb.h> 27 #include <linux/usb/hcd.h> 28 #include <linux/moduleparam.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/debugfs.h> 31 #include <linux/slab.h> 32 #include <linux/uaccess.h> 33 #include <linux/platform_device.h> 34 #include <linux/io.h> 35 #include <linux/iopoll.h> 36 37 #include <asm/byteorder.h> 38 #include <asm/irq.h> 39 #include <asm/unaligned.h> 40 41 #include "fotg210.h" 42 43 static const char hcd_name[] = "fotg210_hcd"; 44 45 #undef FOTG210_URB_TRACE 46 #define FOTG210_STATS 47 48 /* magic numbers that can affect system performance */ 49 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ 50 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ 51 #define FOTG210_TUNE_RL_TT 0 52 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ 53 #define FOTG210_TUNE_MULT_TT 1 54 55 /* Some drivers think it's safe to schedule isochronous transfers more than 256 56 * ms into the future (partly as a result of an old bug in the scheduling 57 * code). In an attempt to avoid trouble, we will use a minimum scheduling 58 * length of 512 frames instead of 256. 59 */ 60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */ 61 62 /* Initial IRQ latency: faster than hw default */ 63 static int log2_irq_thresh; /* 0 to 6 */ 64 module_param(log2_irq_thresh, int, S_IRUGO); 65 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 66 67 /* initial park setting: slower than hw default */ 68 static unsigned park; 69 module_param(park, uint, S_IRUGO); 70 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 71 72 /* for link power management(LPM) feature */ 73 static unsigned int hird; 74 module_param(hird, int, S_IRUGO); 75 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us"); 76 77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) 78 79 #include "fotg210-hcd.h" 80 81 #define fotg210_dbg(fotg210, fmt, args...) \ 82 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 83 #define fotg210_err(fotg210, fmt, args...) \ 84 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 85 #define fotg210_info(fotg210, fmt, args...) \ 86 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 87 #define fotg210_warn(fotg210, fmt, args...) \ 88 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 89 90 /* check the values in the HCSPARAMS register (host controller _Structural_ 91 * parameters) see EHCI spec, Table 2-4 for each value 92 */ 93 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label) 94 { 95 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params); 96 97 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params, 98 HCS_N_PORTS(params)); 99 } 100 101 /* check the values in the HCCPARAMS register (host controller _Capability_ 102 * parameters) see EHCI Spec, Table 2-5 for each value 103 */ 104 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label) 105 { 106 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 107 108 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label, 109 params, 110 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024", 111 HCC_CANPARK(params) ? " park" : ""); 112 } 113 114 static void __maybe_unused 115 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd) 116 { 117 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd, 118 hc32_to_cpup(fotg210, &qtd->hw_next), 119 hc32_to_cpup(fotg210, &qtd->hw_alt_next), 120 hc32_to_cpup(fotg210, &qtd->hw_token), 121 hc32_to_cpup(fotg210, &qtd->hw_buf[0])); 122 if (qtd->hw_buf[1]) 123 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n", 124 hc32_to_cpup(fotg210, &qtd->hw_buf[1]), 125 hc32_to_cpup(fotg210, &qtd->hw_buf[2]), 126 hc32_to_cpup(fotg210, &qtd->hw_buf[3]), 127 hc32_to_cpup(fotg210, &qtd->hw_buf[4])); 128 } 129 130 static void __maybe_unused 131 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 132 { 133 struct fotg210_qh_hw *hw = qh->hw; 134 135 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh, 136 hw->hw_next, hw->hw_info1, hw->hw_info2, 137 hw->hw_current); 138 139 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next); 140 } 141 142 static void __maybe_unused 143 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd) 144 { 145 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label, 146 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next), 147 itd->urb); 148 149 fotg210_dbg(fotg210, 150 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n", 151 hc32_to_cpu(fotg210, itd->hw_transaction[0]), 152 hc32_to_cpu(fotg210, itd->hw_transaction[1]), 153 hc32_to_cpu(fotg210, itd->hw_transaction[2]), 154 hc32_to_cpu(fotg210, itd->hw_transaction[3]), 155 hc32_to_cpu(fotg210, itd->hw_transaction[4]), 156 hc32_to_cpu(fotg210, itd->hw_transaction[5]), 157 hc32_to_cpu(fotg210, itd->hw_transaction[6]), 158 hc32_to_cpu(fotg210, itd->hw_transaction[7])); 159 160 fotg210_dbg(fotg210, 161 " buf: %08x %08x %08x %08x %08x %08x %08x\n", 162 hc32_to_cpu(fotg210, itd->hw_bufp[0]), 163 hc32_to_cpu(fotg210, itd->hw_bufp[1]), 164 hc32_to_cpu(fotg210, itd->hw_bufp[2]), 165 hc32_to_cpu(fotg210, itd->hw_bufp[3]), 166 hc32_to_cpu(fotg210, itd->hw_bufp[4]), 167 hc32_to_cpu(fotg210, itd->hw_bufp[5]), 168 hc32_to_cpu(fotg210, itd->hw_bufp[6])); 169 170 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n", 171 itd->index[0], itd->index[1], itd->index[2], 172 itd->index[3], itd->index[4], itd->index[5], 173 itd->index[6], itd->index[7]); 174 } 175 176 static int __maybe_unused 177 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 178 { 179 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 180 label, label[0] ? " " : "", status, 181 (status & STS_ASS) ? " Async" : "", 182 (status & STS_PSS) ? " Periodic" : "", 183 (status & STS_RECL) ? " Recl" : "", 184 (status & STS_HALT) ? " Halt" : "", 185 (status & STS_IAA) ? " IAA" : "", 186 (status & STS_FATAL) ? " FATAL" : "", 187 (status & STS_FLR) ? " FLR" : "", 188 (status & STS_PCD) ? " PCD" : "", 189 (status & STS_ERR) ? " ERR" : "", 190 (status & STS_INT) ? " INT" : ""); 191 } 192 193 static int __maybe_unused 194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 195 { 196 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 197 label, label[0] ? " " : "", enable, 198 (enable & STS_IAA) ? " IAA" : "", 199 (enable & STS_FATAL) ? " FATAL" : "", 200 (enable & STS_FLR) ? " FLR" : "", 201 (enable & STS_PCD) ? " PCD" : "", 202 (enable & STS_ERR) ? " ERR" : "", 203 (enable & STS_INT) ? " INT" : ""); 204 } 205 206 static const char *const fls_strings[] = { "1024", "512", "256", "??" }; 207 208 static int dbg_command_buf(char *buf, unsigned len, const char *label, 209 u32 command) 210 { 211 return scnprintf(buf, len, 212 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s", 213 label, label[0] ? " " : "", command, 214 (command & CMD_PARK) ? " park" : "(park)", 215 CMD_PARK_CNT(command), 216 (command >> 16) & 0x3f, 217 (command & CMD_IAAD) ? " IAAD" : "", 218 (command & CMD_ASE) ? " Async" : "", 219 (command & CMD_PSE) ? " Periodic" : "", 220 fls_strings[(command >> 2) & 0x3], 221 (command & CMD_RESET) ? " Reset" : "", 222 (command & CMD_RUN) ? "RUN" : "HALT"); 223 } 224 225 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port, 226 u32 status) 227 { 228 char *sig; 229 230 /* signaling state */ 231 switch (status & (3 << 10)) { 232 case 0 << 10: 233 sig = "se0"; 234 break; 235 case 1 << 10: 236 sig = "k"; 237 break; /* low speed */ 238 case 2 << 10: 239 sig = "j"; 240 break; 241 default: 242 sig = "?"; 243 break; 244 } 245 246 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s", 247 label, label[0] ? " " : "", port, status, 248 status >> 25, /*device address */ 249 sig, 250 (status & PORT_RESET) ? " RESET" : "", 251 (status & PORT_SUSPEND) ? " SUSPEND" : "", 252 (status & PORT_RESUME) ? " RESUME" : "", 253 (status & PORT_PEC) ? " PEC" : "", 254 (status & PORT_PE) ? " PE" : "", 255 (status & PORT_CSC) ? " CSC" : "", 256 (status & PORT_CONNECT) ? " CONNECT" : ""); 257 258 return buf; 259 } 260 261 /* functions have the "wrong" filename when they're output... */ 262 #define dbg_status(fotg210, label, status) { \ 263 char _buf[80]; \ 264 dbg_status_buf(_buf, sizeof(_buf), label, status); \ 265 fotg210_dbg(fotg210, "%s\n", _buf); \ 266 } 267 268 #define dbg_cmd(fotg210, label, command) { \ 269 char _buf[80]; \ 270 dbg_command_buf(_buf, sizeof(_buf), label, command); \ 271 fotg210_dbg(fotg210, "%s\n", _buf); \ 272 } 273 274 #define dbg_port(fotg210, label, port, status) { \ 275 char _buf[80]; \ 276 fotg210_dbg(fotg210, "%s\n", \ 277 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\ 278 } 279 280 /* troubleshooting help: expose state in debugfs */ 281 static int debug_async_open(struct inode *, struct file *); 282 static int debug_periodic_open(struct inode *, struct file *); 283 static int debug_registers_open(struct inode *, struct file *); 284 static int debug_async_open(struct inode *, struct file *); 285 286 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*); 287 static int debug_close(struct inode *, struct file *); 288 289 static const struct file_operations debug_async_fops = { 290 .owner = THIS_MODULE, 291 .open = debug_async_open, 292 .read = debug_output, 293 .release = debug_close, 294 .llseek = default_llseek, 295 }; 296 static const struct file_operations debug_periodic_fops = { 297 .owner = THIS_MODULE, 298 .open = debug_periodic_open, 299 .read = debug_output, 300 .release = debug_close, 301 .llseek = default_llseek, 302 }; 303 static const struct file_operations debug_registers_fops = { 304 .owner = THIS_MODULE, 305 .open = debug_registers_open, 306 .read = debug_output, 307 .release = debug_close, 308 .llseek = default_llseek, 309 }; 310 311 static struct dentry *fotg210_debug_root; 312 313 struct debug_buffer { 314 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */ 315 struct usb_bus *bus; 316 struct mutex mutex; /* protect filling of buffer */ 317 size_t count; /* number of characters filled into buffer */ 318 char *output_buf; 319 size_t alloc_size; 320 }; 321 322 static inline char speed_char(u32 scratch) 323 { 324 switch (scratch & (3 << 12)) { 325 case QH_FULL_SPEED: 326 return 'f'; 327 328 case QH_LOW_SPEED: 329 return 'l'; 330 331 case QH_HIGH_SPEED: 332 return 'h'; 333 334 default: 335 return '?'; 336 } 337 } 338 339 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token) 340 { 341 __u32 v = hc32_to_cpu(fotg210, token); 342 343 if (v & QTD_STS_ACTIVE) 344 return '*'; 345 if (v & QTD_STS_HALT) 346 return '-'; 347 if (!IS_SHORT_READ(v)) 348 return ' '; 349 /* tries to advance through hw_alt_next */ 350 return '/'; 351 } 352 353 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh, 354 char **nextp, unsigned *sizep) 355 { 356 u32 scratch; 357 u32 hw_curr; 358 struct fotg210_qtd *td; 359 unsigned temp; 360 unsigned size = *sizep; 361 char *next = *nextp; 362 char mark; 363 __le32 list_end = FOTG210_LIST_END(fotg210); 364 struct fotg210_qh_hw *hw = qh->hw; 365 366 if (hw->hw_qtd_next == list_end) /* NEC does this */ 367 mark = '@'; 368 else 369 mark = token_mark(fotg210, hw->hw_token); 370 if (mark == '/') { /* qh_alt_next controls qh advance? */ 371 if ((hw->hw_alt_next & QTD_MASK(fotg210)) == 372 fotg210->async->hw->hw_alt_next) 373 mark = '#'; /* blocked */ 374 else if (hw->hw_alt_next == list_end) 375 mark = '.'; /* use hw_qtd_next */ 376 /* else alt_next points to some other qtd */ 377 } 378 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); 379 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0; 380 temp = scnprintf(next, size, 381 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)", 382 qh, scratch & 0x007f, 383 speed_char(scratch), 384 (scratch >> 8) & 0x000f, 385 scratch, hc32_to_cpup(fotg210, &hw->hw_info2), 386 hc32_to_cpup(fotg210, &hw->hw_token), mark, 387 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token) 388 ? "data1" : "data0", 389 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f); 390 size -= temp; 391 next += temp; 392 393 /* hc may be modifying the list as we read it ... */ 394 list_for_each_entry(td, &qh->qtd_list, qtd_list) { 395 scratch = hc32_to_cpup(fotg210, &td->hw_token); 396 mark = ' '; 397 if (hw_curr == td->qtd_dma) 398 mark = '*'; 399 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma)) 400 mark = '+'; 401 else if (QTD_LENGTH(scratch)) { 402 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next) 403 mark = '#'; 404 else if (td->hw_alt_next != list_end) 405 mark = '/'; 406 } 407 temp = snprintf(next, size, 408 "\n\t%p%c%s len=%d %08x urb %p", 409 td, mark, ({ char *tmp; 410 switch ((scratch>>8)&0x03) { 411 case 0: 412 tmp = "out"; 413 break; 414 case 1: 415 tmp = "in"; 416 break; 417 case 2: 418 tmp = "setup"; 419 break; 420 default: 421 tmp = "?"; 422 break; 423 } tmp; }), 424 (scratch >> 16) & 0x7fff, 425 scratch, 426 td->urb); 427 if (size < temp) 428 temp = size; 429 size -= temp; 430 next += temp; 431 if (temp == size) 432 goto done; 433 } 434 435 temp = snprintf(next, size, "\n"); 436 if (size < temp) 437 temp = size; 438 439 size -= temp; 440 next += temp; 441 442 done: 443 *sizep = size; 444 *nextp = next; 445 } 446 447 static ssize_t fill_async_buffer(struct debug_buffer *buf) 448 { 449 struct usb_hcd *hcd; 450 struct fotg210_hcd *fotg210; 451 unsigned long flags; 452 unsigned temp, size; 453 char *next; 454 struct fotg210_qh *qh; 455 456 hcd = bus_to_hcd(buf->bus); 457 fotg210 = hcd_to_fotg210(hcd); 458 next = buf->output_buf; 459 size = buf->alloc_size; 460 461 *next = 0; 462 463 /* dumps a snapshot of the async schedule. 464 * usually empty except for long-term bulk reads, or head. 465 * one QH per line, and TDs we know about 466 */ 467 spin_lock_irqsave(&fotg210->lock, flags); 468 for (qh = fotg210->async->qh_next.qh; size > 0 && qh; 469 qh = qh->qh_next.qh) 470 qh_lines(fotg210, qh, &next, &size); 471 if (fotg210->async_unlink && size > 0) { 472 temp = scnprintf(next, size, "\nunlink =\n"); 473 size -= temp; 474 next += temp; 475 476 for (qh = fotg210->async_unlink; size > 0 && qh; 477 qh = qh->unlink_next) 478 qh_lines(fotg210, qh, &next, &size); 479 } 480 spin_unlock_irqrestore(&fotg210->lock, flags); 481 482 return strlen(buf->output_buf); 483 } 484 485 /* count tds, get ep direction */ 486 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210, 487 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size) 488 { 489 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); 490 struct fotg210_qtd *qtd; 491 char *type = ""; 492 unsigned temp = 0; 493 494 /* count tds, get ep direction */ 495 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) { 496 temp++; 497 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) { 498 case 0: 499 type = "out"; 500 continue; 501 case 1: 502 type = "in"; 503 continue; 504 } 505 } 506 507 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)", 508 speed_char(scratch), scratch & 0x007f, 509 (scratch >> 8) & 0x000f, type, qh->usecs, 510 qh->c_usecs, temp, (scratch >> 16) & 0x7ff); 511 } 512 513 #define DBG_SCHED_LIMIT 64 514 static ssize_t fill_periodic_buffer(struct debug_buffer *buf) 515 { 516 struct usb_hcd *hcd; 517 struct fotg210_hcd *fotg210; 518 unsigned long flags; 519 union fotg210_shadow p, *seen; 520 unsigned temp, size, seen_count; 521 char *next; 522 unsigned i; 523 __hc32 tag; 524 525 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC); 526 if (!seen) 527 return 0; 528 529 seen_count = 0; 530 531 hcd = bus_to_hcd(buf->bus); 532 fotg210 = hcd_to_fotg210(hcd); 533 next = buf->output_buf; 534 size = buf->alloc_size; 535 536 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size); 537 size -= temp; 538 next += temp; 539 540 /* dump a snapshot of the periodic schedule. 541 * iso changes, interrupt usually doesn't. 542 */ 543 spin_lock_irqsave(&fotg210->lock, flags); 544 for (i = 0; i < fotg210->periodic_size; i++) { 545 p = fotg210->pshadow[i]; 546 if (likely(!p.ptr)) 547 continue; 548 549 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]); 550 551 temp = scnprintf(next, size, "%4d: ", i); 552 size -= temp; 553 next += temp; 554 555 do { 556 struct fotg210_qh_hw *hw; 557 558 switch (hc32_to_cpu(fotg210, tag)) { 559 case Q_TYPE_QH: 560 hw = p.qh->hw; 561 temp = scnprintf(next, size, " qh%d-%04x/%p", 562 p.qh->period, 563 hc32_to_cpup(fotg210, 564 &hw->hw_info2) 565 /* uframe masks */ 566 & (QH_CMASK | QH_SMASK), 567 p.qh); 568 size -= temp; 569 next += temp; 570 /* don't repeat what follows this qh */ 571 for (temp = 0; temp < seen_count; temp++) { 572 if (seen[temp].ptr != p.ptr) 573 continue; 574 if (p.qh->qh_next.ptr) { 575 temp = scnprintf(next, size, 576 " ..."); 577 size -= temp; 578 next += temp; 579 } 580 break; 581 } 582 /* show more info the first time around */ 583 if (temp == seen_count) { 584 temp = output_buf_tds_dir(next, 585 fotg210, hw, 586 p.qh, size); 587 588 if (seen_count < DBG_SCHED_LIMIT) 589 seen[seen_count++].qh = p.qh; 590 } else 591 temp = 0; 592 tag = Q_NEXT_TYPE(fotg210, hw->hw_next); 593 p = p.qh->qh_next; 594 break; 595 case Q_TYPE_FSTN: 596 temp = scnprintf(next, size, 597 " fstn-%8x/%p", 598 p.fstn->hw_prev, p.fstn); 599 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next); 600 p = p.fstn->fstn_next; 601 break; 602 case Q_TYPE_ITD: 603 temp = scnprintf(next, size, 604 " itd/%p", p.itd); 605 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next); 606 p = p.itd->itd_next; 607 break; 608 } 609 size -= temp; 610 next += temp; 611 } while (p.ptr); 612 613 temp = scnprintf(next, size, "\n"); 614 size -= temp; 615 next += temp; 616 } 617 spin_unlock_irqrestore(&fotg210->lock, flags); 618 kfree(seen); 619 620 return buf->alloc_size - size; 621 } 622 #undef DBG_SCHED_LIMIT 623 624 static const char *rh_state_string(struct fotg210_hcd *fotg210) 625 { 626 switch (fotg210->rh_state) { 627 case FOTG210_RH_HALTED: 628 return "halted"; 629 case FOTG210_RH_SUSPENDED: 630 return "suspended"; 631 case FOTG210_RH_RUNNING: 632 return "running"; 633 case FOTG210_RH_STOPPING: 634 return "stopping"; 635 } 636 return "?"; 637 } 638 639 static ssize_t fill_registers_buffer(struct debug_buffer *buf) 640 { 641 struct usb_hcd *hcd; 642 struct fotg210_hcd *fotg210; 643 unsigned long flags; 644 unsigned temp, size, i; 645 char *next, scratch[80]; 646 static const char fmt[] = "%*s\n"; 647 static const char label[] = ""; 648 649 hcd = bus_to_hcd(buf->bus); 650 fotg210 = hcd_to_fotg210(hcd); 651 next = buf->output_buf; 652 size = buf->alloc_size; 653 654 spin_lock_irqsave(&fotg210->lock, flags); 655 656 if (!HCD_HW_ACCESSIBLE(hcd)) { 657 size = scnprintf(next, size, 658 "bus %s, device %s\n" 659 "%s\n" 660 "SUSPENDED(no register access)\n", 661 hcd->self.controller->bus->name, 662 dev_name(hcd->self.controller), 663 hcd->product_desc); 664 goto done; 665 } 666 667 /* Capability Registers */ 668 i = HC_VERSION(fotg210, fotg210_readl(fotg210, 669 &fotg210->caps->hc_capbase)); 670 temp = scnprintf(next, size, 671 "bus %s, device %s\n" 672 "%s\n" 673 "EHCI %x.%02x, rh state %s\n", 674 hcd->self.controller->bus->name, 675 dev_name(hcd->self.controller), 676 hcd->product_desc, 677 i >> 8, i & 0x0ff, rh_state_string(fotg210)); 678 size -= temp; 679 next += temp; 680 681 /* FIXME interpret both types of params */ 682 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params); 683 temp = scnprintf(next, size, "structural params 0x%08x\n", i); 684 size -= temp; 685 next += temp; 686 687 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 688 temp = scnprintf(next, size, "capability params 0x%08x\n", i); 689 size -= temp; 690 next += temp; 691 692 /* Operational Registers */ 693 temp = dbg_status_buf(scratch, sizeof(scratch), label, 694 fotg210_readl(fotg210, &fotg210->regs->status)); 695 temp = scnprintf(next, size, fmt, temp, scratch); 696 size -= temp; 697 next += temp; 698 699 temp = dbg_command_buf(scratch, sizeof(scratch), label, 700 fotg210_readl(fotg210, &fotg210->regs->command)); 701 temp = scnprintf(next, size, fmt, temp, scratch); 702 size -= temp; 703 next += temp; 704 705 temp = dbg_intr_buf(scratch, sizeof(scratch), label, 706 fotg210_readl(fotg210, &fotg210->regs->intr_enable)); 707 temp = scnprintf(next, size, fmt, temp, scratch); 708 size -= temp; 709 next += temp; 710 711 temp = scnprintf(next, size, "uframe %04x\n", 712 fotg210_read_frame_index(fotg210)); 713 size -= temp; 714 next += temp; 715 716 if (fotg210->async_unlink) { 717 temp = scnprintf(next, size, "async unlink qh %p\n", 718 fotg210->async_unlink); 719 size -= temp; 720 next += temp; 721 } 722 723 #ifdef FOTG210_STATS 724 temp = scnprintf(next, size, 725 "irq normal %ld err %ld iaa %ld(lost %ld)\n", 726 fotg210->stats.normal, fotg210->stats.error, 727 fotg210->stats.iaa, fotg210->stats.lost_iaa); 728 size -= temp; 729 next += temp; 730 731 temp = scnprintf(next, size, "complete %ld unlink %ld\n", 732 fotg210->stats.complete, fotg210->stats.unlink); 733 size -= temp; 734 next += temp; 735 #endif 736 737 done: 738 spin_unlock_irqrestore(&fotg210->lock, flags); 739 740 return buf->alloc_size - size; 741 } 742 743 static struct debug_buffer 744 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *)) 745 { 746 struct debug_buffer *buf; 747 748 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL); 749 750 if (buf) { 751 buf->bus = bus; 752 buf->fill_func = fill_func; 753 mutex_init(&buf->mutex); 754 buf->alloc_size = PAGE_SIZE; 755 } 756 757 return buf; 758 } 759 760 static int fill_buffer(struct debug_buffer *buf) 761 { 762 int ret = 0; 763 764 if (!buf->output_buf) 765 buf->output_buf = vmalloc(buf->alloc_size); 766 767 if (!buf->output_buf) { 768 ret = -ENOMEM; 769 goto out; 770 } 771 772 ret = buf->fill_func(buf); 773 774 if (ret >= 0) { 775 buf->count = ret; 776 ret = 0; 777 } 778 779 out: 780 return ret; 781 } 782 783 static ssize_t debug_output(struct file *file, char __user *user_buf, 784 size_t len, loff_t *offset) 785 { 786 struct debug_buffer *buf = file->private_data; 787 int ret = 0; 788 789 mutex_lock(&buf->mutex); 790 if (buf->count == 0) { 791 ret = fill_buffer(buf); 792 if (ret != 0) { 793 mutex_unlock(&buf->mutex); 794 goto out; 795 } 796 } 797 mutex_unlock(&buf->mutex); 798 799 ret = simple_read_from_buffer(user_buf, len, offset, 800 buf->output_buf, buf->count); 801 802 out: 803 return ret; 804 805 } 806 807 static int debug_close(struct inode *inode, struct file *file) 808 { 809 struct debug_buffer *buf = file->private_data; 810 811 if (buf) { 812 vfree(buf->output_buf); 813 kfree(buf); 814 } 815 816 return 0; 817 } 818 static int debug_async_open(struct inode *inode, struct file *file) 819 { 820 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer); 821 822 return file->private_data ? 0 : -ENOMEM; 823 } 824 825 static int debug_periodic_open(struct inode *inode, struct file *file) 826 { 827 struct debug_buffer *buf; 828 829 buf = alloc_buffer(inode->i_private, fill_periodic_buffer); 830 if (!buf) 831 return -ENOMEM; 832 833 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE; 834 file->private_data = buf; 835 return 0; 836 } 837 838 static int debug_registers_open(struct inode *inode, struct file *file) 839 { 840 file->private_data = alloc_buffer(inode->i_private, 841 fill_registers_buffer); 842 843 return file->private_data ? 0 : -ENOMEM; 844 } 845 846 static inline void create_debug_files(struct fotg210_hcd *fotg210) 847 { 848 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; 849 struct dentry *root; 850 851 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root); 852 853 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops); 854 debugfs_create_file("periodic", S_IRUGO, root, bus, 855 &debug_periodic_fops); 856 debugfs_create_file("registers", S_IRUGO, root, bus, 857 &debug_registers_fops); 858 } 859 860 static inline void remove_debug_files(struct fotg210_hcd *fotg210) 861 { 862 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; 863 864 debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root); 865 } 866 867 /* handshake - spin reading hc until handshake completes or fails 868 * @ptr: address of hc register to be read 869 * @mask: bits to look at in result of read 870 * @done: value of those bits when handshake succeeds 871 * @usec: timeout in microseconds 872 * 873 * Returns negative errno, or zero on success 874 * 875 * Success happens when the "mask" bits have the specified value (hardware 876 * handshake done). There are two failure modes: "usec" have passed (major 877 * hardware flakeout), or the register reads as all-ones (hardware removed). 878 * 879 * That last failure should_only happen in cases like physical cardbus eject 880 * before driver shutdown. But it also seems to be caused by bugs in cardbus 881 * bridge shutdown: shutting down the bridge before the devices using it. 882 */ 883 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr, 884 u32 mask, u32 done, int usec) 885 { 886 u32 result; 887 int ret; 888 889 ret = readl_poll_timeout_atomic(ptr, result, 890 ((result & mask) == done || 891 result == U32_MAX), 1, usec); 892 if (result == U32_MAX) /* card removed */ 893 return -ENODEV; 894 895 return ret; 896 } 897 898 /* Force HC to halt state from unknown (EHCI spec section 2.3). 899 * Must be called with interrupts enabled and the lock not held. 900 */ 901 static int fotg210_halt(struct fotg210_hcd *fotg210) 902 { 903 u32 temp; 904 905 spin_lock_irq(&fotg210->lock); 906 907 /* disable any irqs left enabled by previous code */ 908 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 909 910 /* 911 * This routine gets called during probe before fotg210->command 912 * has been initialized, so we can't rely on its value. 913 */ 914 fotg210->command &= ~CMD_RUN; 915 temp = fotg210_readl(fotg210, &fotg210->regs->command); 916 temp &= ~(CMD_RUN | CMD_IAAD); 917 fotg210_writel(fotg210, temp, &fotg210->regs->command); 918 919 spin_unlock_irq(&fotg210->lock); 920 synchronize_irq(fotg210_to_hcd(fotg210)->irq); 921 922 return handshake(fotg210, &fotg210->regs->status, 923 STS_HALT, STS_HALT, 16 * 125); 924 } 925 926 /* Reset a non-running (STS_HALT == 1) controller. 927 * Must be called with interrupts enabled and the lock not held. 928 */ 929 static int fotg210_reset(struct fotg210_hcd *fotg210) 930 { 931 int retval; 932 u32 command = fotg210_readl(fotg210, &fotg210->regs->command); 933 934 /* If the EHCI debug controller is active, special care must be 935 * taken before and after a host controller reset 936 */ 937 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210))) 938 fotg210->debug = NULL; 939 940 command |= CMD_RESET; 941 dbg_cmd(fotg210, "reset", command); 942 fotg210_writel(fotg210, command, &fotg210->regs->command); 943 fotg210->rh_state = FOTG210_RH_HALTED; 944 fotg210->next_statechange = jiffies; 945 retval = handshake(fotg210, &fotg210->regs->command, 946 CMD_RESET, 0, 250 * 1000); 947 948 if (retval) 949 return retval; 950 951 if (fotg210->debug) 952 dbgp_external_startup(fotg210_to_hcd(fotg210)); 953 954 fotg210->port_c_suspend = fotg210->suspended_ports = 955 fotg210->resuming_ports = 0; 956 return retval; 957 } 958 959 /* Idle the controller (turn off the schedules). 960 * Must be called with interrupts enabled and the lock not held. 961 */ 962 static void fotg210_quiesce(struct fotg210_hcd *fotg210) 963 { 964 u32 temp; 965 966 if (fotg210->rh_state != FOTG210_RH_RUNNING) 967 return; 968 969 /* wait for any schedule enables/disables to take effect */ 970 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS); 971 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp, 972 16 * 125); 973 974 /* then disable anything that's still active */ 975 spin_lock_irq(&fotg210->lock); 976 fotg210->command &= ~(CMD_ASE | CMD_PSE); 977 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 978 spin_unlock_irq(&fotg210->lock); 979 980 /* hardware can take 16 microframes to turn off ... */ 981 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0, 982 16 * 125); 983 } 984 985 static void end_unlink_async(struct fotg210_hcd *fotg210); 986 static void unlink_empty_async(struct fotg210_hcd *fotg210); 987 static void fotg210_work(struct fotg210_hcd *fotg210); 988 static void start_unlink_intr(struct fotg210_hcd *fotg210, 989 struct fotg210_qh *qh); 990 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 991 992 /* Set a bit in the USBCMD register */ 993 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit) 994 { 995 fotg210->command |= bit; 996 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 997 998 /* unblock posted write */ 999 fotg210_readl(fotg210, &fotg210->regs->command); 1000 } 1001 1002 /* Clear a bit in the USBCMD register */ 1003 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit) 1004 { 1005 fotg210->command &= ~bit; 1006 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1007 1008 /* unblock posted write */ 1009 fotg210_readl(fotg210, &fotg210->regs->command); 1010 } 1011 1012 /* EHCI timer support... Now using hrtimers. 1013 * 1014 * Lots of different events are triggered from fotg210->hrtimer. Whenever 1015 * the timer routine runs, it checks each possible event; events that are 1016 * currently enabled and whose expiration time has passed get handled. 1017 * The set of enabled events is stored as a collection of bitflags in 1018 * fotg210->enabled_hrtimer_events, and they are numbered in order of 1019 * increasing delay values (ranging between 1 ms and 100 ms). 1020 * 1021 * Rather than implementing a sorted list or tree of all pending events, 1022 * we keep track only of the lowest-numbered pending event, in 1023 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its 1024 * expiration time is set to the timeout value for this event. 1025 * 1026 * As a result, events might not get handled right away; the actual delay 1027 * could be anywhere up to twice the requested delay. This doesn't 1028 * matter, because none of the events are especially time-critical. The 1029 * ones that matter most all have a delay of 1 ms, so they will be 1030 * handled after 2 ms at most, which is okay. In addition to this, we 1031 * allow for an expiration range of 1 ms. 1032 */ 1033 1034 /* Delay lengths for the hrtimer event types. 1035 * Keep this list sorted by delay length, in the same order as 1036 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h. 1037 */ 1038 static unsigned event_delays_ns[] = { 1039 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */ 1040 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */ 1041 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */ 1042 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */ 1043 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */ 1044 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 1045 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 1046 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 1047 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 1048 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */ 1049 }; 1050 1051 /* Enable a pending hrtimer event */ 1052 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event, 1053 bool resched) 1054 { 1055 ktime_t *timeout = &fotg210->hr_timeouts[event]; 1056 1057 if (resched) 1058 *timeout = ktime_add(ktime_get(), event_delays_ns[event]); 1059 fotg210->enabled_hrtimer_events |= (1 << event); 1060 1061 /* Track only the lowest-numbered pending event */ 1062 if (event < fotg210->next_hrtimer_event) { 1063 fotg210->next_hrtimer_event = event; 1064 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout, 1065 NSEC_PER_MSEC, HRTIMER_MODE_ABS); 1066 } 1067 } 1068 1069 1070 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */ 1071 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210) 1072 { 1073 unsigned actual, want; 1074 1075 /* Don't enable anything if the controller isn't running (e.g., died) */ 1076 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1077 return; 1078 1079 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0; 1080 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS; 1081 1082 if (want != actual) { 1083 1084 /* Poll again later, but give up after about 20 ms */ 1085 if (fotg210->ASS_poll_count++ < 20) { 1086 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS, 1087 true); 1088 return; 1089 } 1090 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n", 1091 want, actual); 1092 } 1093 fotg210->ASS_poll_count = 0; 1094 1095 /* The status is up-to-date; restart or stop the schedule as needed */ 1096 if (want == 0) { /* Stopped */ 1097 if (fotg210->async_count > 0) 1098 fotg210_set_command_bit(fotg210, CMD_ASE); 1099 1100 } else { /* Running */ 1101 if (fotg210->async_count == 0) { 1102 1103 /* Turn off the schedule after a while */ 1104 fotg210_enable_event(fotg210, 1105 FOTG210_HRTIMER_DISABLE_ASYNC, 1106 true); 1107 } 1108 } 1109 } 1110 1111 /* Turn off the async schedule after a brief delay */ 1112 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210) 1113 { 1114 fotg210_clear_command_bit(fotg210, CMD_ASE); 1115 } 1116 1117 1118 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */ 1119 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210) 1120 { 1121 unsigned actual, want; 1122 1123 /* Don't do anything if the controller isn't running (e.g., died) */ 1124 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1125 return; 1126 1127 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0; 1128 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS; 1129 1130 if (want != actual) { 1131 1132 /* Poll again later, but give up after about 20 ms */ 1133 if (fotg210->PSS_poll_count++ < 20) { 1134 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS, 1135 true); 1136 return; 1137 } 1138 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n", 1139 want, actual); 1140 } 1141 fotg210->PSS_poll_count = 0; 1142 1143 /* The status is up-to-date; restart or stop the schedule as needed */ 1144 if (want == 0) { /* Stopped */ 1145 if (fotg210->periodic_count > 0) 1146 fotg210_set_command_bit(fotg210, CMD_PSE); 1147 1148 } else { /* Running */ 1149 if (fotg210->periodic_count == 0) { 1150 1151 /* Turn off the schedule after a while */ 1152 fotg210_enable_event(fotg210, 1153 FOTG210_HRTIMER_DISABLE_PERIODIC, 1154 true); 1155 } 1156 } 1157 } 1158 1159 /* Turn off the periodic schedule after a brief delay */ 1160 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210) 1161 { 1162 fotg210_clear_command_bit(fotg210, CMD_PSE); 1163 } 1164 1165 1166 /* Poll the STS_HALT status bit; see when a dead controller stops */ 1167 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210) 1168 { 1169 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) { 1170 1171 /* Give up after a few milliseconds */ 1172 if (fotg210->died_poll_count++ < 5) { 1173 /* Try again later */ 1174 fotg210_enable_event(fotg210, 1175 FOTG210_HRTIMER_POLL_DEAD, true); 1176 return; 1177 } 1178 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n"); 1179 } 1180 1181 /* Clean up the mess */ 1182 fotg210->rh_state = FOTG210_RH_HALTED; 1183 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 1184 fotg210_work(fotg210); 1185 end_unlink_async(fotg210); 1186 1187 /* Not in process context, so don't try to reset the controller */ 1188 } 1189 1190 1191 /* Handle unlinked interrupt QHs once they are gone from the hardware */ 1192 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210) 1193 { 1194 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); 1195 1196 /* 1197 * Process all the QHs on the intr_unlink list that were added 1198 * before the current unlink cycle began. The list is in 1199 * temporal order, so stop when we reach the first entry in the 1200 * current cycle. But if the root hub isn't running then 1201 * process all the QHs on the list. 1202 */ 1203 fotg210->intr_unlinking = true; 1204 while (fotg210->intr_unlink) { 1205 struct fotg210_qh *qh = fotg210->intr_unlink; 1206 1207 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle) 1208 break; 1209 fotg210->intr_unlink = qh->unlink_next; 1210 qh->unlink_next = NULL; 1211 end_unlink_intr(fotg210, qh); 1212 } 1213 1214 /* Handle remaining entries later */ 1215 if (fotg210->intr_unlink) { 1216 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, 1217 true); 1218 ++fotg210->intr_unlink_cycle; 1219 } 1220 fotg210->intr_unlinking = false; 1221 } 1222 1223 1224 /* Start another free-iTDs/siTDs cycle */ 1225 static void start_free_itds(struct fotg210_hcd *fotg210) 1226 { 1227 if (!(fotg210->enabled_hrtimer_events & 1228 BIT(FOTG210_HRTIMER_FREE_ITDS))) { 1229 fotg210->last_itd_to_free = list_entry( 1230 fotg210->cached_itd_list.prev, 1231 struct fotg210_itd, itd_list); 1232 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true); 1233 } 1234 } 1235 1236 /* Wait for controller to stop using old iTDs and siTDs */ 1237 static void end_free_itds(struct fotg210_hcd *fotg210) 1238 { 1239 struct fotg210_itd *itd, *n; 1240 1241 if (fotg210->rh_state < FOTG210_RH_RUNNING) 1242 fotg210->last_itd_to_free = NULL; 1243 1244 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) { 1245 list_del(&itd->itd_list); 1246 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma); 1247 if (itd == fotg210->last_itd_to_free) 1248 break; 1249 } 1250 1251 if (!list_empty(&fotg210->cached_itd_list)) 1252 start_free_itds(fotg210); 1253 } 1254 1255 1256 /* Handle lost (or very late) IAA interrupts */ 1257 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210) 1258 { 1259 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1260 return; 1261 1262 /* 1263 * Lost IAA irqs wedge things badly; seen first with a vt8235. 1264 * So we need this watchdog, but must protect it against both 1265 * (a) SMP races against real IAA firing and retriggering, and 1266 * (b) clean HC shutdown, when IAA watchdog was pending. 1267 */ 1268 if (fotg210->async_iaa) { 1269 u32 cmd, status; 1270 1271 /* If we get here, IAA is *REALLY* late. It's barely 1272 * conceivable that the system is so busy that CMD_IAAD 1273 * is still legitimately set, so let's be sure it's 1274 * clear before we read STS_IAA. (The HC should clear 1275 * CMD_IAAD when it sets STS_IAA.) 1276 */ 1277 cmd = fotg210_readl(fotg210, &fotg210->regs->command); 1278 1279 /* 1280 * If IAA is set here it either legitimately triggered 1281 * after the watchdog timer expired (_way_ late, so we'll 1282 * still count it as lost) ... or a silicon erratum: 1283 * - VIA seems to set IAA without triggering the IRQ; 1284 * - IAAD potentially cleared without setting IAA. 1285 */ 1286 status = fotg210_readl(fotg210, &fotg210->regs->status); 1287 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) { 1288 INCR(fotg210->stats.lost_iaa); 1289 fotg210_writel(fotg210, STS_IAA, 1290 &fotg210->regs->status); 1291 } 1292 1293 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n", 1294 status, cmd); 1295 end_unlink_async(fotg210); 1296 } 1297 } 1298 1299 1300 /* Enable the I/O watchdog, if appropriate */ 1301 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210) 1302 { 1303 /* Not needed if the controller isn't running or it's already enabled */ 1304 if (fotg210->rh_state != FOTG210_RH_RUNNING || 1305 (fotg210->enabled_hrtimer_events & 1306 BIT(FOTG210_HRTIMER_IO_WATCHDOG))) 1307 return; 1308 1309 /* 1310 * Isochronous transfers always need the watchdog. 1311 * For other sorts we use it only if the flag is set. 1312 */ 1313 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog && 1314 fotg210->async_count + fotg210->intr_count > 0)) 1315 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG, 1316 true); 1317 } 1318 1319 1320 /* Handler functions for the hrtimer event types. 1321 * Keep this array in the same order as the event types indexed by 1322 * enum fotg210_hrtimer_event in fotg210.h. 1323 */ 1324 static void (*event_handlers[])(struct fotg210_hcd *) = { 1325 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */ 1326 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */ 1327 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */ 1328 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */ 1329 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */ 1330 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 1331 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 1332 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 1333 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 1334 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */ 1335 }; 1336 1337 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t) 1338 { 1339 struct fotg210_hcd *fotg210 = 1340 container_of(t, struct fotg210_hcd, hrtimer); 1341 ktime_t now; 1342 unsigned long events; 1343 unsigned long flags; 1344 unsigned e; 1345 1346 spin_lock_irqsave(&fotg210->lock, flags); 1347 1348 events = fotg210->enabled_hrtimer_events; 1349 fotg210->enabled_hrtimer_events = 0; 1350 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; 1351 1352 /* 1353 * Check each pending event. If its time has expired, handle 1354 * the event; otherwise re-enable it. 1355 */ 1356 now = ktime_get(); 1357 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) { 1358 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0) 1359 event_handlers[e](fotg210); 1360 else 1361 fotg210_enable_event(fotg210, e, false); 1362 } 1363 1364 spin_unlock_irqrestore(&fotg210->lock, flags); 1365 return HRTIMER_NORESTART; 1366 } 1367 1368 #define fotg210_bus_suspend NULL 1369 #define fotg210_bus_resume NULL 1370 1371 static int check_reset_complete(struct fotg210_hcd *fotg210, int index, 1372 u32 __iomem *status_reg, int port_status) 1373 { 1374 if (!(port_status & PORT_CONNECT)) 1375 return port_status; 1376 1377 /* if reset finished and it's still not enabled -- handoff */ 1378 if (!(port_status & PORT_PE)) 1379 /* with integrated TT, there's nobody to hand it to! */ 1380 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n", 1381 index + 1); 1382 else 1383 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n", 1384 index + 1); 1385 1386 return port_status; 1387 } 1388 1389 1390 /* build "status change" packet (one or two bytes) from HC registers */ 1391 1392 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf) 1393 { 1394 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 1395 u32 temp, status; 1396 u32 mask; 1397 int retval = 1; 1398 unsigned long flags; 1399 1400 /* init status to no-changes */ 1401 buf[0] = 0; 1402 1403 /* Inform the core about resumes-in-progress by returning 1404 * a non-zero value even if there are no status changes. 1405 */ 1406 status = fotg210->resuming_ports; 1407 1408 mask = PORT_CSC | PORT_PEC; 1409 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */ 1410 1411 /* no hub change reports (bit 0) for now (power, ...) */ 1412 1413 /* port N changes (bit N)? */ 1414 spin_lock_irqsave(&fotg210->lock, flags); 1415 1416 temp = fotg210_readl(fotg210, &fotg210->regs->port_status); 1417 1418 /* 1419 * Return status information even for ports with OWNER set. 1420 * Otherwise hub_wq wouldn't see the disconnect event when a 1421 * high-speed device is switched over to the companion 1422 * controller by the user. 1423 */ 1424 1425 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) || 1426 (fotg210->reset_done[0] && 1427 time_after_eq(jiffies, fotg210->reset_done[0]))) { 1428 buf[0] |= 1 << 1; 1429 status = STS_PCD; 1430 } 1431 /* FIXME autosuspend idle root hubs */ 1432 spin_unlock_irqrestore(&fotg210->lock, flags); 1433 return status ? retval : 0; 1434 } 1435 1436 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210, 1437 struct usb_hub_descriptor *desc) 1438 { 1439 int ports = HCS_N_PORTS(fotg210->hcs_params); 1440 u16 temp; 1441 1442 desc->bDescriptorType = USB_DT_HUB; 1443 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */ 1444 desc->bHubContrCurrent = 0; 1445 1446 desc->bNbrPorts = ports; 1447 temp = 1 + (ports / 8); 1448 desc->bDescLength = 7 + 2 * temp; 1449 1450 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 1451 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 1452 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 1453 1454 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 1455 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 1456 desc->wHubCharacteristics = cpu_to_le16(temp); 1457 } 1458 1459 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, 1460 u16 wIndex, char *buf, u16 wLength) 1461 { 1462 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 1463 int ports = HCS_N_PORTS(fotg210->hcs_params); 1464 u32 __iomem *status_reg = &fotg210->regs->port_status; 1465 u32 temp, temp1, status; 1466 unsigned long flags; 1467 int retval = 0; 1468 unsigned selector; 1469 1470 /* 1471 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 1472 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 1473 * (track current state ourselves) ... blink for diagnostics, 1474 * power, "this is the one", etc. EHCI spec supports this. 1475 */ 1476 1477 spin_lock_irqsave(&fotg210->lock, flags); 1478 switch (typeReq) { 1479 case ClearHubFeature: 1480 switch (wValue) { 1481 case C_HUB_LOCAL_POWER: 1482 case C_HUB_OVER_CURRENT: 1483 /* no hub-wide feature/status flags */ 1484 break; 1485 default: 1486 goto error; 1487 } 1488 break; 1489 case ClearPortFeature: 1490 if (!wIndex || wIndex > ports) 1491 goto error; 1492 wIndex--; 1493 temp = fotg210_readl(fotg210, status_reg); 1494 temp &= ~PORT_RWC_BITS; 1495 1496 /* 1497 * Even if OWNER is set, so the port is owned by the 1498 * companion controller, hub_wq needs to be able to clear 1499 * the port-change status bits (especially 1500 * USB_PORT_STAT_C_CONNECTION). 1501 */ 1502 1503 switch (wValue) { 1504 case USB_PORT_FEAT_ENABLE: 1505 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg); 1506 break; 1507 case USB_PORT_FEAT_C_ENABLE: 1508 fotg210_writel(fotg210, temp | PORT_PEC, status_reg); 1509 break; 1510 case USB_PORT_FEAT_SUSPEND: 1511 if (temp & PORT_RESET) 1512 goto error; 1513 if (!(temp & PORT_SUSPEND)) 1514 break; 1515 if ((temp & PORT_PE) == 0) 1516 goto error; 1517 1518 /* resume signaling for 20 msec */ 1519 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg); 1520 fotg210->reset_done[wIndex] = jiffies 1521 + msecs_to_jiffies(USB_RESUME_TIMEOUT); 1522 break; 1523 case USB_PORT_FEAT_C_SUSPEND: 1524 clear_bit(wIndex, &fotg210->port_c_suspend); 1525 break; 1526 case USB_PORT_FEAT_C_CONNECTION: 1527 fotg210_writel(fotg210, temp | PORT_CSC, status_reg); 1528 break; 1529 case USB_PORT_FEAT_C_OVER_CURRENT: 1530 fotg210_writel(fotg210, temp | OTGISR_OVC, 1531 &fotg210->regs->otgisr); 1532 break; 1533 case USB_PORT_FEAT_C_RESET: 1534 /* GetPortStatus clears reset */ 1535 break; 1536 default: 1537 goto error; 1538 } 1539 fotg210_readl(fotg210, &fotg210->regs->command); 1540 break; 1541 case GetHubDescriptor: 1542 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *) 1543 buf); 1544 break; 1545 case GetHubStatus: 1546 /* no hub-wide feature/status flags */ 1547 memset(buf, 0, 4); 1548 /*cpu_to_le32s ((u32 *) buf); */ 1549 break; 1550 case GetPortStatus: 1551 if (!wIndex || wIndex > ports) 1552 goto error; 1553 wIndex--; 1554 status = 0; 1555 temp = fotg210_readl(fotg210, status_reg); 1556 1557 /* wPortChange bits */ 1558 if (temp & PORT_CSC) 1559 status |= USB_PORT_STAT_C_CONNECTION << 16; 1560 if (temp & PORT_PEC) 1561 status |= USB_PORT_STAT_C_ENABLE << 16; 1562 1563 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); 1564 if (temp1 & OTGISR_OVC) 1565 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 1566 1567 /* whoever resumes must GetPortStatus to complete it!! */ 1568 if (temp & PORT_RESUME) { 1569 1570 /* Remote Wakeup received? */ 1571 if (!fotg210->reset_done[wIndex]) { 1572 /* resume signaling for 20 msec */ 1573 fotg210->reset_done[wIndex] = jiffies 1574 + msecs_to_jiffies(20); 1575 /* check the port again */ 1576 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer, 1577 fotg210->reset_done[wIndex]); 1578 } 1579 1580 /* resume completed? */ 1581 else if (time_after_eq(jiffies, 1582 fotg210->reset_done[wIndex])) { 1583 clear_bit(wIndex, &fotg210->suspended_ports); 1584 set_bit(wIndex, &fotg210->port_c_suspend); 1585 fotg210->reset_done[wIndex] = 0; 1586 1587 /* stop resume signaling */ 1588 temp = fotg210_readl(fotg210, status_reg); 1589 fotg210_writel(fotg210, temp & 1590 ~(PORT_RWC_BITS | PORT_RESUME), 1591 status_reg); 1592 clear_bit(wIndex, &fotg210->resuming_ports); 1593 retval = handshake(fotg210, status_reg, 1594 PORT_RESUME, 0, 2000);/* 2ms */ 1595 if (retval != 0) { 1596 fotg210_err(fotg210, 1597 "port %d resume error %d\n", 1598 wIndex + 1, retval); 1599 goto error; 1600 } 1601 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 1602 } 1603 } 1604 1605 /* whoever resets must GetPortStatus to complete it!! */ 1606 if ((temp & PORT_RESET) && time_after_eq(jiffies, 1607 fotg210->reset_done[wIndex])) { 1608 status |= USB_PORT_STAT_C_RESET << 16; 1609 fotg210->reset_done[wIndex] = 0; 1610 clear_bit(wIndex, &fotg210->resuming_ports); 1611 1612 /* force reset to complete */ 1613 fotg210_writel(fotg210, 1614 temp & ~(PORT_RWC_BITS | PORT_RESET), 1615 status_reg); 1616 /* REVISIT: some hardware needs 550+ usec to clear 1617 * this bit; seems too long to spin routinely... 1618 */ 1619 retval = handshake(fotg210, status_reg, 1620 PORT_RESET, 0, 1000); 1621 if (retval != 0) { 1622 fotg210_err(fotg210, "port %d reset error %d\n", 1623 wIndex + 1, retval); 1624 goto error; 1625 } 1626 1627 /* see what we found out */ 1628 temp = check_reset_complete(fotg210, wIndex, status_reg, 1629 fotg210_readl(fotg210, status_reg)); 1630 1631 /* restart schedule */ 1632 fotg210->command |= CMD_RUN; 1633 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1634 } 1635 1636 if (!(temp & (PORT_RESUME|PORT_RESET))) { 1637 fotg210->reset_done[wIndex] = 0; 1638 clear_bit(wIndex, &fotg210->resuming_ports); 1639 } 1640 1641 /* transfer dedicated ports to the companion hc */ 1642 if ((temp & PORT_CONNECT) && 1643 test_bit(wIndex, &fotg210->companion_ports)) { 1644 temp &= ~PORT_RWC_BITS; 1645 fotg210_writel(fotg210, temp, status_reg); 1646 fotg210_dbg(fotg210, "port %d --> companion\n", 1647 wIndex + 1); 1648 temp = fotg210_readl(fotg210, status_reg); 1649 } 1650 1651 /* 1652 * Even if OWNER is set, there's no harm letting hub_wq 1653 * see the wPortStatus values (they should all be 0 except 1654 * for PORT_POWER anyway). 1655 */ 1656 1657 if (temp & PORT_CONNECT) { 1658 status |= USB_PORT_STAT_CONNECTION; 1659 status |= fotg210_port_speed(fotg210, temp); 1660 } 1661 if (temp & PORT_PE) 1662 status |= USB_PORT_STAT_ENABLE; 1663 1664 /* maybe the port was unsuspended without our knowledge */ 1665 if (temp & (PORT_SUSPEND|PORT_RESUME)) { 1666 status |= USB_PORT_STAT_SUSPEND; 1667 } else if (test_bit(wIndex, &fotg210->suspended_ports)) { 1668 clear_bit(wIndex, &fotg210->suspended_ports); 1669 clear_bit(wIndex, &fotg210->resuming_ports); 1670 fotg210->reset_done[wIndex] = 0; 1671 if (temp & PORT_PE) 1672 set_bit(wIndex, &fotg210->port_c_suspend); 1673 } 1674 1675 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); 1676 if (temp1 & OTGISR_OVC) 1677 status |= USB_PORT_STAT_OVERCURRENT; 1678 if (temp & PORT_RESET) 1679 status |= USB_PORT_STAT_RESET; 1680 if (test_bit(wIndex, &fotg210->port_c_suspend)) 1681 status |= USB_PORT_STAT_C_SUSPEND << 16; 1682 1683 if (status & ~0xffff) /* only if wPortChange is interesting */ 1684 dbg_port(fotg210, "GetStatus", wIndex + 1, temp); 1685 put_unaligned_le32(status, buf); 1686 break; 1687 case SetHubFeature: 1688 switch (wValue) { 1689 case C_HUB_LOCAL_POWER: 1690 case C_HUB_OVER_CURRENT: 1691 /* no hub-wide feature/status flags */ 1692 break; 1693 default: 1694 goto error; 1695 } 1696 break; 1697 case SetPortFeature: 1698 selector = wIndex >> 8; 1699 wIndex &= 0xff; 1700 1701 if (!wIndex || wIndex > ports) 1702 goto error; 1703 wIndex--; 1704 temp = fotg210_readl(fotg210, status_reg); 1705 temp &= ~PORT_RWC_BITS; 1706 switch (wValue) { 1707 case USB_PORT_FEAT_SUSPEND: 1708 if ((temp & PORT_PE) == 0 1709 || (temp & PORT_RESET) != 0) 1710 goto error; 1711 1712 /* After above check the port must be connected. 1713 * Set appropriate bit thus could put phy into low power 1714 * mode if we have hostpc feature 1715 */ 1716 fotg210_writel(fotg210, temp | PORT_SUSPEND, 1717 status_reg); 1718 set_bit(wIndex, &fotg210->suspended_ports); 1719 break; 1720 case USB_PORT_FEAT_RESET: 1721 if (temp & PORT_RESUME) 1722 goto error; 1723 /* line status bits may report this as low speed, 1724 * which can be fine if this root hub has a 1725 * transaction translator built in. 1726 */ 1727 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1); 1728 temp |= PORT_RESET; 1729 temp &= ~PORT_PE; 1730 1731 /* 1732 * caller must wait, then call GetPortStatus 1733 * usb 2.0 spec says 50 ms resets on root 1734 */ 1735 fotg210->reset_done[wIndex] = jiffies 1736 + msecs_to_jiffies(50); 1737 fotg210_writel(fotg210, temp, status_reg); 1738 break; 1739 1740 /* For downstream facing ports (these): one hub port is put 1741 * into test mode according to USB2 11.24.2.13, then the hub 1742 * must be reset (which for root hub now means rmmod+modprobe, 1743 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 1744 * about the EHCI-specific stuff. 1745 */ 1746 case USB_PORT_FEAT_TEST: 1747 if (!selector || selector > 5) 1748 goto error; 1749 spin_unlock_irqrestore(&fotg210->lock, flags); 1750 fotg210_quiesce(fotg210); 1751 spin_lock_irqsave(&fotg210->lock, flags); 1752 1753 /* Put all enabled ports into suspend */ 1754 temp = fotg210_readl(fotg210, status_reg) & 1755 ~PORT_RWC_BITS; 1756 if (temp & PORT_PE) 1757 fotg210_writel(fotg210, temp | PORT_SUSPEND, 1758 status_reg); 1759 1760 spin_unlock_irqrestore(&fotg210->lock, flags); 1761 fotg210_halt(fotg210); 1762 spin_lock_irqsave(&fotg210->lock, flags); 1763 1764 temp = fotg210_readl(fotg210, status_reg); 1765 temp |= selector << 16; 1766 fotg210_writel(fotg210, temp, status_reg); 1767 break; 1768 1769 default: 1770 goto error; 1771 } 1772 fotg210_readl(fotg210, &fotg210->regs->command); 1773 break; 1774 1775 default: 1776 error: 1777 /* "stall" on error */ 1778 retval = -EPIPE; 1779 } 1780 spin_unlock_irqrestore(&fotg210->lock, flags); 1781 return retval; 1782 } 1783 1784 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd, 1785 int portnum) 1786 { 1787 return; 1788 } 1789 1790 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd, 1791 int portnum) 1792 { 1793 return 0; 1794 } 1795 1796 /* There's basically three types of memory: 1797 * - data used only by the HCD ... kmalloc is fine 1798 * - async and periodic schedules, shared by HC and HCD ... these 1799 * need to use dma_pool or dma_alloc_coherent 1800 * - driver buffers, read/written by HC ... single shot DMA mapped 1801 * 1802 * There's also "register" data (e.g. PCI or SOC), which is memory mapped. 1803 * No memory seen by this driver is pageable. 1804 */ 1805 1806 /* Allocate the key transfer structures from the previously allocated pool */ 1807 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210, 1808 struct fotg210_qtd *qtd, dma_addr_t dma) 1809 { 1810 memset(qtd, 0, sizeof(*qtd)); 1811 qtd->qtd_dma = dma; 1812 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); 1813 qtd->hw_next = FOTG210_LIST_END(fotg210); 1814 qtd->hw_alt_next = FOTG210_LIST_END(fotg210); 1815 INIT_LIST_HEAD(&qtd->qtd_list); 1816 } 1817 1818 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210, 1819 gfp_t flags) 1820 { 1821 struct fotg210_qtd *qtd; 1822 dma_addr_t dma; 1823 1824 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma); 1825 if (qtd != NULL) 1826 fotg210_qtd_init(fotg210, qtd, dma); 1827 1828 return qtd; 1829 } 1830 1831 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210, 1832 struct fotg210_qtd *qtd) 1833 { 1834 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma); 1835 } 1836 1837 1838 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 1839 { 1840 /* clean qtds first, and know this is not linked */ 1841 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 1842 fotg210_dbg(fotg210, "unused qh not empty!\n"); 1843 BUG(); 1844 } 1845 if (qh->dummy) 1846 fotg210_qtd_free(fotg210, qh->dummy); 1847 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); 1848 kfree(qh); 1849 } 1850 1851 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210, 1852 gfp_t flags) 1853 { 1854 struct fotg210_qh *qh; 1855 dma_addr_t dma; 1856 1857 qh = kzalloc(sizeof(*qh), GFP_ATOMIC); 1858 if (!qh) 1859 goto done; 1860 qh->hw = (struct fotg210_qh_hw *) 1861 dma_pool_zalloc(fotg210->qh_pool, flags, &dma); 1862 if (!qh->hw) 1863 goto fail; 1864 qh->qh_dma = dma; 1865 INIT_LIST_HEAD(&qh->qtd_list); 1866 1867 /* dummy td enables safe urb queuing */ 1868 qh->dummy = fotg210_qtd_alloc(fotg210, flags); 1869 if (qh->dummy == NULL) { 1870 fotg210_dbg(fotg210, "no dummy td\n"); 1871 goto fail1; 1872 } 1873 done: 1874 return qh; 1875 fail1: 1876 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); 1877 fail: 1878 kfree(qh); 1879 return NULL; 1880 } 1881 1882 /* The queue heads and transfer descriptors are managed from pools tied 1883 * to each of the "per device" structures. 1884 * This is the initialisation and cleanup code. 1885 */ 1886 1887 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210) 1888 { 1889 if (fotg210->async) 1890 qh_destroy(fotg210, fotg210->async); 1891 fotg210->async = NULL; 1892 1893 if (fotg210->dummy) 1894 qh_destroy(fotg210, fotg210->dummy); 1895 fotg210->dummy = NULL; 1896 1897 /* DMA consistent memory and pools */ 1898 dma_pool_destroy(fotg210->qtd_pool); 1899 fotg210->qtd_pool = NULL; 1900 1901 dma_pool_destroy(fotg210->qh_pool); 1902 fotg210->qh_pool = NULL; 1903 1904 dma_pool_destroy(fotg210->itd_pool); 1905 fotg210->itd_pool = NULL; 1906 1907 if (fotg210->periodic) 1908 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller, 1909 fotg210->periodic_size * sizeof(u32), 1910 fotg210->periodic, fotg210->periodic_dma); 1911 fotg210->periodic = NULL; 1912 1913 /* shadow periodic table */ 1914 kfree(fotg210->pshadow); 1915 fotg210->pshadow = NULL; 1916 } 1917 1918 /* remember to add cleanup code (above) if you add anything here */ 1919 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags) 1920 { 1921 int i; 1922 1923 /* QTDs for control/bulk/intr transfers */ 1924 fotg210->qtd_pool = dma_pool_create("fotg210_qtd", 1925 fotg210_to_hcd(fotg210)->self.controller, 1926 sizeof(struct fotg210_qtd), 1927 32 /* byte alignment (for hw parts) */, 1928 4096 /* can't cross 4K */); 1929 if (!fotg210->qtd_pool) 1930 goto fail; 1931 1932 /* QHs for control/bulk/intr transfers */ 1933 fotg210->qh_pool = dma_pool_create("fotg210_qh", 1934 fotg210_to_hcd(fotg210)->self.controller, 1935 sizeof(struct fotg210_qh_hw), 1936 32 /* byte alignment (for hw parts) */, 1937 4096 /* can't cross 4K */); 1938 if (!fotg210->qh_pool) 1939 goto fail; 1940 1941 fotg210->async = fotg210_qh_alloc(fotg210, flags); 1942 if (!fotg210->async) 1943 goto fail; 1944 1945 /* ITD for high speed ISO transfers */ 1946 fotg210->itd_pool = dma_pool_create("fotg210_itd", 1947 fotg210_to_hcd(fotg210)->self.controller, 1948 sizeof(struct fotg210_itd), 1949 64 /* byte alignment (for hw parts) */, 1950 4096 /* can't cross 4K */); 1951 if (!fotg210->itd_pool) 1952 goto fail; 1953 1954 /* Hardware periodic table */ 1955 fotg210->periodic = 1956 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller, 1957 fotg210->periodic_size * sizeof(__le32), 1958 &fotg210->periodic_dma, 0); 1959 if (fotg210->periodic == NULL) 1960 goto fail; 1961 1962 for (i = 0; i < fotg210->periodic_size; i++) 1963 fotg210->periodic[i] = FOTG210_LIST_END(fotg210); 1964 1965 /* software shadow of hardware table */ 1966 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *), 1967 flags); 1968 if (fotg210->pshadow != NULL) 1969 return 0; 1970 1971 fail: 1972 fotg210_dbg(fotg210, "couldn't init memory\n"); 1973 fotg210_mem_cleanup(fotg210); 1974 return -ENOMEM; 1975 } 1976 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation. 1977 * 1978 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" 1979 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned 1980 * buffers needed for the larger number). We use one QH per endpoint, queue 1981 * multiple urbs (all three types) per endpoint. URBs may need several qtds. 1982 * 1983 * ISO traffic uses "ISO TD" (itd) records, and (along with 1984 * interrupts) needs careful scheduling. Performance improvements can be 1985 * an ongoing challenge. That's in "ehci-sched.c". 1986 * 1987 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, 1988 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using 1989 * (b) special fields in qh entries or (c) split iso entries. TTs will 1990 * buffer low/full speed data so the host collects it at high speed. 1991 */ 1992 1993 /* fill a qtd, returning how much of the buffer we were able to queue up */ 1994 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, 1995 dma_addr_t buf, size_t len, int token, int maxpacket) 1996 { 1997 int i, count; 1998 u64 addr = buf; 1999 2000 /* one buffer entry per 4K ... first might be short or unaligned */ 2001 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr); 2002 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32)); 2003 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 2004 if (likely(len < count)) /* ... iff needed */ 2005 count = len; 2006 else { 2007 buf += 0x1000; 2008 buf &= ~0x0fff; 2009 2010 /* per-qtd limit: from 16K to 20K (best alignment) */ 2011 for (i = 1; count < len && i < 5; i++) { 2012 addr = buf; 2013 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr); 2014 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210, 2015 (u32)(addr >> 32)); 2016 buf += 0x1000; 2017 if ((count + 0x1000) < len) 2018 count += 0x1000; 2019 else 2020 count = len; 2021 } 2022 2023 /* short packets may only terminate transfers */ 2024 if (count != len) 2025 count -= (count % maxpacket); 2026 } 2027 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token); 2028 qtd->length = count; 2029 2030 return count; 2031 } 2032 2033 static inline void qh_update(struct fotg210_hcd *fotg210, 2034 struct fotg210_qh *qh, struct fotg210_qtd *qtd) 2035 { 2036 struct fotg210_qh_hw *hw = qh->hw; 2037 2038 /* writes to an active overlay are unsafe */ 2039 BUG_ON(qh->qh_state != QH_STATE_IDLE); 2040 2041 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2042 hw->hw_alt_next = FOTG210_LIST_END(fotg210); 2043 2044 /* Except for control endpoints, we make hardware maintain data 2045 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 2046 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 2047 * ever clear it. 2048 */ 2049 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) { 2050 unsigned is_out, epnum; 2051 2052 is_out = qh->is_out; 2053 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f; 2054 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 2055 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE); 2056 usb_settoggle(qh->dev, epnum, is_out, 1); 2057 } 2058 } 2059 2060 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING); 2061 } 2062 2063 /* if it weren't for a common silicon quirk (writing the dummy into the qh 2064 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 2065 * recovery (including urb dequeue) would need software changes to a QH... 2066 */ 2067 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 2068 { 2069 struct fotg210_qtd *qtd; 2070 2071 if (list_empty(&qh->qtd_list)) 2072 qtd = qh->dummy; 2073 else { 2074 qtd = list_entry(qh->qtd_list.next, 2075 struct fotg210_qtd, qtd_list); 2076 /* 2077 * first qtd may already be partially processed. 2078 * If we come here during unlink, the QH overlay region 2079 * might have reference to the just unlinked qtd. The 2080 * qtd is updated in qh_completions(). Update the QH 2081 * overlay here. 2082 */ 2083 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) { 2084 qh->hw->hw_qtd_next = qtd->hw_next; 2085 qtd = NULL; 2086 } 2087 } 2088 2089 if (qtd) 2090 qh_update(fotg210, qh, qtd); 2091 } 2092 2093 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 2094 2095 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd, 2096 struct usb_host_endpoint *ep) 2097 { 2098 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 2099 struct fotg210_qh *qh = ep->hcpriv; 2100 unsigned long flags; 2101 2102 spin_lock_irqsave(&fotg210->lock, flags); 2103 qh->clearing_tt = 0; 2104 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) 2105 && fotg210->rh_state == FOTG210_RH_RUNNING) 2106 qh_link_async(fotg210, qh); 2107 spin_unlock_irqrestore(&fotg210->lock, flags); 2108 } 2109 2110 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210, 2111 struct fotg210_qh *qh, struct urb *urb, u32 token) 2112 { 2113 2114 /* If an async split transaction gets an error or is unlinked, 2115 * the TT buffer may be left in an indeterminate state. We 2116 * have to clear the TT buffer. 2117 * 2118 * Note: this routine is never called for Isochronous transfers. 2119 */ 2120 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { 2121 struct usb_device *tt = urb->dev->tt->hub; 2122 2123 dev_dbg(&tt->dev, 2124 "clear tt buffer port %d, a%d ep%d t%08x\n", 2125 urb->dev->ttport, urb->dev->devnum, 2126 usb_pipeendpoint(urb->pipe), token); 2127 2128 if (urb->dev->tt->hub != 2129 fotg210_to_hcd(fotg210)->self.root_hub) { 2130 if (usb_hub_clear_tt_buffer(urb) == 0) 2131 qh->clearing_tt = 1; 2132 } 2133 } 2134 } 2135 2136 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb, 2137 size_t length, u32 token) 2138 { 2139 int status = -EINPROGRESS; 2140 2141 /* count IN/OUT bytes, not SETUP (even short packets) */ 2142 if (likely(QTD_PID(token) != 2)) 2143 urb->actual_length += length - QTD_LENGTH(token); 2144 2145 /* don't modify error codes */ 2146 if (unlikely(urb->unlinked)) 2147 return status; 2148 2149 /* force cleanup after short read; not always an error */ 2150 if (unlikely(IS_SHORT_READ(token))) 2151 status = -EREMOTEIO; 2152 2153 /* serious "can't proceed" faults reported by the hardware */ 2154 if (token & QTD_STS_HALT) { 2155 if (token & QTD_STS_BABBLE) { 2156 /* FIXME "must" disable babbling device's port too */ 2157 status = -EOVERFLOW; 2158 /* CERR nonzero + halt --> stall */ 2159 } else if (QTD_CERR(token)) { 2160 status = -EPIPE; 2161 2162 /* In theory, more than one of the following bits can be set 2163 * since they are sticky and the transaction is retried. 2164 * Which to test first is rather arbitrary. 2165 */ 2166 } else if (token & QTD_STS_MMF) { 2167 /* fs/ls interrupt xfer missed the complete-split */ 2168 status = -EPROTO; 2169 } else if (token & QTD_STS_DBE) { 2170 status = (QTD_PID(token) == 1) /* IN ? */ 2171 ? -ENOSR /* hc couldn't read data */ 2172 : -ECOMM; /* hc couldn't write data */ 2173 } else if (token & QTD_STS_XACT) { 2174 /* timeout, bad CRC, wrong PID, etc */ 2175 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n", 2176 urb->dev->devpath, 2177 usb_pipeendpoint(urb->pipe), 2178 usb_pipein(urb->pipe) ? "in" : "out"); 2179 status = -EPROTO; 2180 } else { /* unknown */ 2181 status = -EPROTO; 2182 } 2183 2184 fotg210_dbg(fotg210, 2185 "dev%d ep%d%s qtd token %08x --> status %d\n", 2186 usb_pipedevice(urb->pipe), 2187 usb_pipeendpoint(urb->pipe), 2188 usb_pipein(urb->pipe) ? "in" : "out", 2189 token, status); 2190 } 2191 2192 return status; 2193 } 2194 2195 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, 2196 int status) 2197 __releases(fotg210->lock) 2198 __acquires(fotg210->lock) 2199 { 2200 if (likely(urb->hcpriv != NULL)) { 2201 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv; 2202 2203 /* S-mask in a QH means it's an interrupt urb */ 2204 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) { 2205 2206 /* ... update hc-wide periodic stats (for usbfs) */ 2207 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--; 2208 } 2209 } 2210 2211 if (unlikely(urb->unlinked)) { 2212 INCR(fotg210->stats.unlink); 2213 } else { 2214 /* report non-error and short read status as zero */ 2215 if (status == -EINPROGRESS || status == -EREMOTEIO) 2216 status = 0; 2217 INCR(fotg210->stats.complete); 2218 } 2219 2220 #ifdef FOTG210_URB_TRACE 2221 fotg210_dbg(fotg210, 2222 "%s %s urb %p ep%d%s status %d len %d/%d\n", 2223 __func__, urb->dev->devpath, urb, 2224 usb_pipeendpoint(urb->pipe), 2225 usb_pipein(urb->pipe) ? "in" : "out", 2226 status, 2227 urb->actual_length, urb->transfer_buffer_length); 2228 #endif 2229 2230 /* complete() can reenter this HCD */ 2231 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 2232 spin_unlock(&fotg210->lock); 2233 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status); 2234 spin_lock(&fotg210->lock); 2235 } 2236 2237 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 2238 2239 /* Process and free completed qtds for a qh, returning URBs to drivers. 2240 * Chases up to qh->hw_current. Returns number of completions called, 2241 * indicating how much "real" work we did. 2242 */ 2243 static unsigned qh_completions(struct fotg210_hcd *fotg210, 2244 struct fotg210_qh *qh) 2245 { 2246 struct fotg210_qtd *last, *end = qh->dummy; 2247 struct fotg210_qtd *qtd, *tmp; 2248 int last_status; 2249 int stopped; 2250 unsigned count = 0; 2251 u8 state; 2252 struct fotg210_qh_hw *hw = qh->hw; 2253 2254 if (unlikely(list_empty(&qh->qtd_list))) 2255 return count; 2256 2257 /* completions (or tasks on other cpus) must never clobber HALT 2258 * till we've gone through and cleaned everything up, even when 2259 * they add urbs to this qh's queue or mark them for unlinking. 2260 * 2261 * NOTE: unlinking expects to be done in queue order. 2262 * 2263 * It's a bug for qh->qh_state to be anything other than 2264 * QH_STATE_IDLE, unless our caller is scan_async() or 2265 * scan_intr(). 2266 */ 2267 state = qh->qh_state; 2268 qh->qh_state = QH_STATE_COMPLETING; 2269 stopped = (state == QH_STATE_IDLE); 2270 2271 rescan: 2272 last = NULL; 2273 last_status = -EINPROGRESS; 2274 qh->needs_rescan = 0; 2275 2276 /* remove de-activated QTDs from front of queue. 2277 * after faults (including short reads), cleanup this urb 2278 * then let the queue advance. 2279 * if queue is stopped, handles unlinks. 2280 */ 2281 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { 2282 struct urb *urb; 2283 u32 token = 0; 2284 2285 urb = qtd->urb; 2286 2287 /* clean up any state from previous QTD ...*/ 2288 if (last) { 2289 if (likely(last->urb != urb)) { 2290 fotg210_urb_done(fotg210, last->urb, 2291 last_status); 2292 count++; 2293 last_status = -EINPROGRESS; 2294 } 2295 fotg210_qtd_free(fotg210, last); 2296 last = NULL; 2297 } 2298 2299 /* ignore urbs submitted during completions we reported */ 2300 if (qtd == end) 2301 break; 2302 2303 /* hardware copies qtd out of qh overlay */ 2304 rmb(); 2305 token = hc32_to_cpu(fotg210, qtd->hw_token); 2306 2307 /* always clean up qtds the hc de-activated */ 2308 retry_xacterr: 2309 if ((token & QTD_STS_ACTIVE) == 0) { 2310 2311 /* Report Data Buffer Error: non-fatal but useful */ 2312 if (token & QTD_STS_DBE) 2313 fotg210_dbg(fotg210, 2314 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", 2315 urb, usb_endpoint_num(&urb->ep->desc), 2316 usb_endpoint_dir_in(&urb->ep->desc) 2317 ? "in" : "out", 2318 urb->transfer_buffer_length, qtd, qh); 2319 2320 /* on STALL, error, and short reads this urb must 2321 * complete and all its qtds must be recycled. 2322 */ 2323 if ((token & QTD_STS_HALT) != 0) { 2324 2325 /* retry transaction errors until we 2326 * reach the software xacterr limit 2327 */ 2328 if ((token & QTD_STS_XACT) && 2329 QTD_CERR(token) == 0 && 2330 ++qh->xacterrs < QH_XACTERR_MAX && 2331 !urb->unlinked) { 2332 fotg210_dbg(fotg210, 2333 "detected XactErr len %zu/%zu retry %d\n", 2334 qtd->length - QTD_LENGTH(token), 2335 qtd->length, 2336 qh->xacterrs); 2337 2338 /* reset the token in the qtd and the 2339 * qh overlay (which still contains 2340 * the qtd) so that we pick up from 2341 * where we left off 2342 */ 2343 token &= ~QTD_STS_HALT; 2344 token |= QTD_STS_ACTIVE | 2345 (FOTG210_TUNE_CERR << 10); 2346 qtd->hw_token = cpu_to_hc32(fotg210, 2347 token); 2348 wmb(); 2349 hw->hw_token = cpu_to_hc32(fotg210, 2350 token); 2351 goto retry_xacterr; 2352 } 2353 stopped = 1; 2354 2355 /* magic dummy for some short reads; qh won't advance. 2356 * that silicon quirk can kick in with this dummy too. 2357 * 2358 * other short reads won't stop the queue, including 2359 * control transfers (status stage handles that) or 2360 * most other single-qtd reads ... the queue stops if 2361 * URB_SHORT_NOT_OK was set so the driver submitting 2362 * the urbs could clean it up. 2363 */ 2364 } else if (IS_SHORT_READ(token) && 2365 !(qtd->hw_alt_next & 2366 FOTG210_LIST_END(fotg210))) { 2367 stopped = 1; 2368 } 2369 2370 /* stop scanning when we reach qtds the hc is using */ 2371 } else if (likely(!stopped 2372 && fotg210->rh_state >= FOTG210_RH_RUNNING)) { 2373 break; 2374 2375 /* scan the whole queue for unlinks whenever it stops */ 2376 } else { 2377 stopped = 1; 2378 2379 /* cancel everything if we halt, suspend, etc */ 2380 if (fotg210->rh_state < FOTG210_RH_RUNNING) 2381 last_status = -ESHUTDOWN; 2382 2383 /* this qtd is active; skip it unless a previous qtd 2384 * for its urb faulted, or its urb was canceled. 2385 */ 2386 else if (last_status == -EINPROGRESS && !urb->unlinked) 2387 continue; 2388 2389 /* qh unlinked; token in overlay may be most current */ 2390 if (state == QH_STATE_IDLE && 2391 cpu_to_hc32(fotg210, qtd->qtd_dma) 2392 == hw->hw_current) { 2393 token = hc32_to_cpu(fotg210, hw->hw_token); 2394 2395 /* An unlink may leave an incomplete 2396 * async transaction in the TT buffer. 2397 * We have to clear it. 2398 */ 2399 fotg210_clear_tt_buffer(fotg210, qh, urb, 2400 token); 2401 } 2402 } 2403 2404 /* unless we already know the urb's status, collect qtd status 2405 * and update count of bytes transferred. in common short read 2406 * cases with only one data qtd (including control transfers), 2407 * queue processing won't halt. but with two or more qtds (for 2408 * example, with a 32 KB transfer), when the first qtd gets a 2409 * short read the second must be removed by hand. 2410 */ 2411 if (last_status == -EINPROGRESS) { 2412 last_status = qtd_copy_status(fotg210, urb, 2413 qtd->length, token); 2414 if (last_status == -EREMOTEIO && 2415 (qtd->hw_alt_next & 2416 FOTG210_LIST_END(fotg210))) 2417 last_status = -EINPROGRESS; 2418 2419 /* As part of low/full-speed endpoint-halt processing 2420 * we must clear the TT buffer (11.17.5). 2421 */ 2422 if (unlikely(last_status != -EINPROGRESS && 2423 last_status != -EREMOTEIO)) { 2424 /* The TT's in some hubs malfunction when they 2425 * receive this request following a STALL (they 2426 * stop sending isochronous packets). Since a 2427 * STALL can't leave the TT buffer in a busy 2428 * state (if you believe Figures 11-48 - 11-51 2429 * in the USB 2.0 spec), we won't clear the TT 2430 * buffer in this case. Strictly speaking this 2431 * is a violation of the spec. 2432 */ 2433 if (last_status != -EPIPE) 2434 fotg210_clear_tt_buffer(fotg210, qh, 2435 urb, token); 2436 } 2437 } 2438 2439 /* if we're removing something not at the queue head, 2440 * patch the hardware queue pointer. 2441 */ 2442 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 2443 last = list_entry(qtd->qtd_list.prev, 2444 struct fotg210_qtd, qtd_list); 2445 last->hw_next = qtd->hw_next; 2446 } 2447 2448 /* remove qtd; it's recycled after possible urb completion */ 2449 list_del(&qtd->qtd_list); 2450 last = qtd; 2451 2452 /* reinit the xacterr counter for the next qtd */ 2453 qh->xacterrs = 0; 2454 } 2455 2456 /* last urb's completion might still need calling */ 2457 if (likely(last != NULL)) { 2458 fotg210_urb_done(fotg210, last->urb, last_status); 2459 count++; 2460 fotg210_qtd_free(fotg210, last); 2461 } 2462 2463 /* Do we need to rescan for URBs dequeued during a giveback? */ 2464 if (unlikely(qh->needs_rescan)) { 2465 /* If the QH is already unlinked, do the rescan now. */ 2466 if (state == QH_STATE_IDLE) 2467 goto rescan; 2468 2469 /* Otherwise we have to wait until the QH is fully unlinked. 2470 * Our caller will start an unlink if qh->needs_rescan is 2471 * set. But if an unlink has already started, nothing needs 2472 * to be done. 2473 */ 2474 if (state != QH_STATE_LINKED) 2475 qh->needs_rescan = 0; 2476 } 2477 2478 /* restore original state; caller must unlink or relink */ 2479 qh->qh_state = state; 2480 2481 /* be sure the hardware's done with the qh before refreshing 2482 * it after fault cleanup, or recovering from silicon wrongly 2483 * overlaying the dummy qtd (which reduces DMA chatter). 2484 */ 2485 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) { 2486 switch (state) { 2487 case QH_STATE_IDLE: 2488 qh_refresh(fotg210, qh); 2489 break; 2490 case QH_STATE_LINKED: 2491 /* We won't refresh a QH that's linked (after the HC 2492 * stopped the queue). That avoids a race: 2493 * - HC reads first part of QH; 2494 * - CPU updates that first part and the token; 2495 * - HC reads rest of that QH, including token 2496 * Result: HC gets an inconsistent image, and then 2497 * DMAs to/from the wrong memory (corrupting it). 2498 * 2499 * That should be rare for interrupt transfers, 2500 * except maybe high bandwidth ... 2501 */ 2502 2503 /* Tell the caller to start an unlink */ 2504 qh->needs_rescan = 1; 2505 break; 2506 /* otherwise, unlink already started */ 2507 } 2508 } 2509 2510 return count; 2511 } 2512 2513 /* reverse of qh_urb_transaction: free a list of TDs. 2514 * used for cleanup after errors, before HC sees an URB's TDs. 2515 */ 2516 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb, 2517 struct list_head *head) 2518 { 2519 struct fotg210_qtd *qtd, *temp; 2520 2521 list_for_each_entry_safe(qtd, temp, head, qtd_list) { 2522 list_del(&qtd->qtd_list); 2523 fotg210_qtd_free(fotg210, qtd); 2524 } 2525 } 2526 2527 /* create a list of filled qtds for this URB; won't link into qh. 2528 */ 2529 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210, 2530 struct urb *urb, struct list_head *head, gfp_t flags) 2531 { 2532 struct fotg210_qtd *qtd, *qtd_prev; 2533 dma_addr_t buf; 2534 int len, this_sg_len, maxpacket; 2535 int is_input; 2536 u32 token; 2537 int i; 2538 struct scatterlist *sg; 2539 2540 /* 2541 * URBs map to sequences of QTDs: one logical transaction 2542 */ 2543 qtd = fotg210_qtd_alloc(fotg210, flags); 2544 if (unlikely(!qtd)) 2545 return NULL; 2546 list_add_tail(&qtd->qtd_list, head); 2547 qtd->urb = urb; 2548 2549 token = QTD_STS_ACTIVE; 2550 token |= (FOTG210_TUNE_CERR << 10); 2551 /* for split transactions, SplitXState initialized to zero */ 2552 2553 len = urb->transfer_buffer_length; 2554 is_input = usb_pipein(urb->pipe); 2555 if (usb_pipecontrol(urb->pipe)) { 2556 /* SETUP pid */ 2557 qtd_fill(fotg210, qtd, urb->setup_dma, 2558 sizeof(struct usb_ctrlrequest), 2559 token | (2 /* "setup" */ << 8), 8); 2560 2561 /* ... and always at least one more pid */ 2562 token ^= QTD_TOGGLE; 2563 qtd_prev = qtd; 2564 qtd = fotg210_qtd_alloc(fotg210, flags); 2565 if (unlikely(!qtd)) 2566 goto cleanup; 2567 qtd->urb = urb; 2568 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2569 list_add_tail(&qtd->qtd_list, head); 2570 2571 /* for zero length DATA stages, STATUS is always IN */ 2572 if (len == 0) 2573 token |= (1 /* "in" */ << 8); 2574 } 2575 2576 /* 2577 * data transfer stage: buffer setup 2578 */ 2579 i = urb->num_mapped_sgs; 2580 if (len > 0 && i > 0) { 2581 sg = urb->sg; 2582 buf = sg_dma_address(sg); 2583 2584 /* urb->transfer_buffer_length may be smaller than the 2585 * size of the scatterlist (or vice versa) 2586 */ 2587 this_sg_len = min_t(int, sg_dma_len(sg), len); 2588 } else { 2589 sg = NULL; 2590 buf = urb->transfer_dma; 2591 this_sg_len = len; 2592 } 2593 2594 if (is_input) 2595 token |= (1 /* "in" */ << 8); 2596 /* else it's already initted to "out" pid (0 << 8) */ 2597 2598 maxpacket = usb_maxpacket(urb->dev, urb->pipe); 2599 2600 /* 2601 * buffer gets wrapped in one or more qtds; 2602 * last one may be "short" (including zero len) 2603 * and may serve as a control status ack 2604 */ 2605 for (;;) { 2606 int this_qtd_len; 2607 2608 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token, 2609 maxpacket); 2610 this_sg_len -= this_qtd_len; 2611 len -= this_qtd_len; 2612 buf += this_qtd_len; 2613 2614 /* 2615 * short reads advance to a "magic" dummy instead of the next 2616 * qtd ... that forces the queue to stop, for manual cleanup. 2617 * (this will usually be overridden later.) 2618 */ 2619 if (is_input) 2620 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next; 2621 2622 /* qh makes control packets use qtd toggle; maybe switch it */ 2623 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 2624 token ^= QTD_TOGGLE; 2625 2626 if (likely(this_sg_len <= 0)) { 2627 if (--i <= 0 || len <= 0) 2628 break; 2629 sg = sg_next(sg); 2630 buf = sg_dma_address(sg); 2631 this_sg_len = min_t(int, sg_dma_len(sg), len); 2632 } 2633 2634 qtd_prev = qtd; 2635 qtd = fotg210_qtd_alloc(fotg210, flags); 2636 if (unlikely(!qtd)) 2637 goto cleanup; 2638 qtd->urb = urb; 2639 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2640 list_add_tail(&qtd->qtd_list, head); 2641 } 2642 2643 /* 2644 * unless the caller requires manual cleanup after short reads, 2645 * have the alt_next mechanism keep the queue running after the 2646 * last data qtd (the only one, for control and most other cases). 2647 */ 2648 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 || 2649 usb_pipecontrol(urb->pipe))) 2650 qtd->hw_alt_next = FOTG210_LIST_END(fotg210); 2651 2652 /* 2653 * control requests may need a terminating data "status" ack; 2654 * other OUT ones may need a terminating short packet 2655 * (zero length). 2656 */ 2657 if (likely(urb->transfer_buffer_length != 0)) { 2658 int one_more = 0; 2659 2660 if (usb_pipecontrol(urb->pipe)) { 2661 one_more = 1; 2662 token ^= 0x0100; /* "in" <--> "out" */ 2663 token |= QTD_TOGGLE; /* force DATA1 */ 2664 } else if (usb_pipeout(urb->pipe) 2665 && (urb->transfer_flags & URB_ZERO_PACKET) 2666 && !(urb->transfer_buffer_length % maxpacket)) { 2667 one_more = 1; 2668 } 2669 if (one_more) { 2670 qtd_prev = qtd; 2671 qtd = fotg210_qtd_alloc(fotg210, flags); 2672 if (unlikely(!qtd)) 2673 goto cleanup; 2674 qtd->urb = urb; 2675 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2676 list_add_tail(&qtd->qtd_list, head); 2677 2678 /* never any data in such packets */ 2679 qtd_fill(fotg210, qtd, 0, 0, token, 0); 2680 } 2681 } 2682 2683 /* by default, enable interrupt on urb completion */ 2684 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) 2685 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC); 2686 return head; 2687 2688 cleanup: 2689 qtd_list_free(fotg210, urb, head); 2690 return NULL; 2691 } 2692 2693 /* Would be best to create all qh's from config descriptors, 2694 * when each interface/altsetting is established. Unlink 2695 * any previous qh and cancel its urbs first; endpoints are 2696 * implicitly reset then (data toggle too). 2697 * That'd mean updating how usbcore talks to HCDs. (2.7?) 2698 */ 2699 2700 2701 /* Each QH holds a qtd list; a QH is used for everything except iso. 2702 * 2703 * For interrupt urbs, the scheduler must set the microframe scheduling 2704 * mask(s) each time the QH gets scheduled. For highspeed, that's 2705 * just one microframe in the s-mask. For split interrupt transactions 2706 * there are additional complications: c-mask, maybe FSTNs. 2707 */ 2708 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb, 2709 gfp_t flags) 2710 { 2711 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags); 2712 struct usb_host_endpoint *ep; 2713 u32 info1 = 0, info2 = 0; 2714 int is_input, type; 2715 int maxp = 0; 2716 int mult; 2717 struct usb_tt *tt = urb->dev->tt; 2718 struct fotg210_qh_hw *hw; 2719 2720 if (!qh) 2721 return qh; 2722 2723 /* 2724 * init endpoint/device data for this QH 2725 */ 2726 info1 |= usb_pipeendpoint(urb->pipe) << 8; 2727 info1 |= usb_pipedevice(urb->pipe) << 0; 2728 2729 is_input = usb_pipein(urb->pipe); 2730 type = usb_pipetype(urb->pipe); 2731 ep = usb_pipe_endpoint(urb->dev, urb->pipe); 2732 maxp = usb_endpoint_maxp(&ep->desc); 2733 mult = usb_endpoint_maxp_mult(&ep->desc); 2734 2735 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth 2736 * acts like up to 3KB, but is built from smaller packets. 2737 */ 2738 if (maxp > 1024) { 2739 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp); 2740 goto done; 2741 } 2742 2743 /* Compute interrupt scheduling parameters just once, and save. 2744 * - allowing for high bandwidth, how many nsec/uframe are used? 2745 * - split transactions need a second CSPLIT uframe; same question 2746 * - splits also need a schedule gap (for full/low speed I/O) 2747 * - qh has a polling interval 2748 * 2749 * For control/bulk requests, the HC or TT handles these. 2750 */ 2751 if (type == PIPE_INTERRUPT) { 2752 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 2753 is_input, 0, mult * maxp)); 2754 qh->start = NO_FRAME; 2755 2756 if (urb->dev->speed == USB_SPEED_HIGH) { 2757 qh->c_usecs = 0; 2758 qh->gap_uf = 0; 2759 2760 qh->period = urb->interval >> 3; 2761 if (qh->period == 0 && urb->interval != 1) { 2762 /* NOTE interval 2 or 4 uframes could work. 2763 * But interval 1 scheduling is simpler, and 2764 * includes high bandwidth. 2765 */ 2766 urb->interval = 1; 2767 } else if (qh->period > fotg210->periodic_size) { 2768 qh->period = fotg210->periodic_size; 2769 urb->interval = qh->period << 3; 2770 } 2771 } else { 2772 int think_time; 2773 2774 /* gap is f(FS/LS transfer times) */ 2775 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 2776 is_input, 0, maxp) / (125 * 1000); 2777 2778 /* FIXME this just approximates SPLIT/CSPLIT times */ 2779 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 2780 qh->c_usecs = qh->usecs + HS_USECS(0); 2781 qh->usecs = HS_USECS(1); 2782 } else { /* SPLIT+DATA, gap, CSPLIT */ 2783 qh->usecs += HS_USECS(1); 2784 qh->c_usecs = HS_USECS(0); 2785 } 2786 2787 think_time = tt ? tt->think_time : 0; 2788 qh->tt_usecs = NS_TO_US(think_time + 2789 usb_calc_bus_time(urb->dev->speed, 2790 is_input, 0, maxp)); 2791 qh->period = urb->interval; 2792 if (qh->period > fotg210->periodic_size) { 2793 qh->period = fotg210->periodic_size; 2794 urb->interval = qh->period; 2795 } 2796 } 2797 } 2798 2799 /* support for tt scheduling, and access to toggles */ 2800 qh->dev = urb->dev; 2801 2802 /* using TT? */ 2803 switch (urb->dev->speed) { 2804 case USB_SPEED_LOW: 2805 info1 |= QH_LOW_SPEED; 2806 fallthrough; 2807 2808 case USB_SPEED_FULL: 2809 /* EPS 0 means "full" */ 2810 if (type != PIPE_INTERRUPT) 2811 info1 |= (FOTG210_TUNE_RL_TT << 28); 2812 if (type == PIPE_CONTROL) { 2813 info1 |= QH_CONTROL_EP; /* for TT */ 2814 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 2815 } 2816 info1 |= maxp << 16; 2817 2818 info2 |= (FOTG210_TUNE_MULT_TT << 30); 2819 2820 /* Some Freescale processors have an erratum in which the 2821 * port number in the queue head was 0..N-1 instead of 1..N. 2822 */ 2823 if (fotg210_has_fsl_portno_bug(fotg210)) 2824 info2 |= (urb->dev->ttport-1) << 23; 2825 else 2826 info2 |= urb->dev->ttport << 23; 2827 2828 /* set the address of the TT; for TDI's integrated 2829 * root hub tt, leave it zeroed. 2830 */ 2831 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub) 2832 info2 |= tt->hub->devnum << 16; 2833 2834 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 2835 2836 break; 2837 2838 case USB_SPEED_HIGH: /* no TT involved */ 2839 info1 |= QH_HIGH_SPEED; 2840 if (type == PIPE_CONTROL) { 2841 info1 |= (FOTG210_TUNE_RL_HS << 28); 2842 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 2843 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 2844 info2 |= (FOTG210_TUNE_MULT_HS << 30); 2845 } else if (type == PIPE_BULK) { 2846 info1 |= (FOTG210_TUNE_RL_HS << 28); 2847 /* The USB spec says that high speed bulk endpoints 2848 * always use 512 byte maxpacket. But some device 2849 * vendors decided to ignore that, and MSFT is happy 2850 * to help them do so. So now people expect to use 2851 * such nonconformant devices with Linux too; sigh. 2852 */ 2853 info1 |= maxp << 16; 2854 info2 |= (FOTG210_TUNE_MULT_HS << 30); 2855 } else { /* PIPE_INTERRUPT */ 2856 info1 |= maxp << 16; 2857 info2 |= mult << 30; 2858 } 2859 break; 2860 default: 2861 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev, 2862 urb->dev->speed); 2863 done: 2864 qh_destroy(fotg210, qh); 2865 return NULL; 2866 } 2867 2868 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 2869 2870 /* init as live, toggle clear, advance to dummy */ 2871 qh->qh_state = QH_STATE_IDLE; 2872 hw = qh->hw; 2873 hw->hw_info1 = cpu_to_hc32(fotg210, info1); 2874 hw->hw_info2 = cpu_to_hc32(fotg210, info2); 2875 qh->is_out = !is_input; 2876 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 2877 qh_refresh(fotg210, qh); 2878 return qh; 2879 } 2880 2881 static void enable_async(struct fotg210_hcd *fotg210) 2882 { 2883 if (fotg210->async_count++) 2884 return; 2885 2886 /* Stop waiting to turn off the async schedule */ 2887 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC); 2888 2889 /* Don't start the schedule until ASS is 0 */ 2890 fotg210_poll_ASS(fotg210); 2891 turn_on_io_watchdog(fotg210); 2892 } 2893 2894 static void disable_async(struct fotg210_hcd *fotg210) 2895 { 2896 if (--fotg210->async_count) 2897 return; 2898 2899 /* The async schedule and async_unlink list are supposed to be empty */ 2900 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink); 2901 2902 /* Don't turn off the schedule until ASS is 1 */ 2903 fotg210_poll_ASS(fotg210); 2904 } 2905 2906 /* move qh (and its qtds) onto async queue; maybe enable queue. */ 2907 2908 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 2909 { 2910 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma); 2911 struct fotg210_qh *head; 2912 2913 /* Don't link a QH if there's a Clear-TT-Buffer pending */ 2914 if (unlikely(qh->clearing_tt)) 2915 return; 2916 2917 WARN_ON(qh->qh_state != QH_STATE_IDLE); 2918 2919 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 2920 qh_refresh(fotg210, qh); 2921 2922 /* splice right after start */ 2923 head = fotg210->async; 2924 qh->qh_next = head->qh_next; 2925 qh->hw->hw_next = head->hw->hw_next; 2926 wmb(); 2927 2928 head->qh_next.qh = qh; 2929 head->hw->hw_next = dma; 2930 2931 qh->xacterrs = 0; 2932 qh->qh_state = QH_STATE_LINKED; 2933 /* qtd completions reported later by interrupt */ 2934 2935 enable_async(fotg210); 2936 } 2937 2938 /* For control/bulk/interrupt, return QH with these TDs appended. 2939 * Allocates and initializes the QH if necessary. 2940 * Returns null if it can't allocate a QH it needs to. 2941 * If the QH has TDs (urbs) already, that's great. 2942 */ 2943 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210, 2944 struct urb *urb, struct list_head *qtd_list, 2945 int epnum, void **ptr) 2946 { 2947 struct fotg210_qh *qh = NULL; 2948 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f); 2949 2950 qh = (struct fotg210_qh *) *ptr; 2951 if (unlikely(qh == NULL)) { 2952 /* can't sleep here, we have fotg210->lock... */ 2953 qh = qh_make(fotg210, urb, GFP_ATOMIC); 2954 *ptr = qh; 2955 } 2956 if (likely(qh != NULL)) { 2957 struct fotg210_qtd *qtd; 2958 2959 if (unlikely(list_empty(qtd_list))) 2960 qtd = NULL; 2961 else 2962 qtd = list_entry(qtd_list->next, struct fotg210_qtd, 2963 qtd_list); 2964 2965 /* control qh may need patching ... */ 2966 if (unlikely(epnum == 0)) { 2967 /* usb_reset_device() briefly reverts to address 0 */ 2968 if (usb_pipedevice(urb->pipe) == 0) 2969 qh->hw->hw_info1 &= ~qh_addr_mask; 2970 } 2971 2972 /* just one way to queue requests: swap with the dummy qtd. 2973 * only hc or qh_refresh() ever modify the overlay. 2974 */ 2975 if (likely(qtd != NULL)) { 2976 struct fotg210_qtd *dummy; 2977 dma_addr_t dma; 2978 __hc32 token; 2979 2980 /* to avoid racing the HC, use the dummy td instead of 2981 * the first td of our list (becomes new dummy). both 2982 * tds stay deactivated until we're done, when the 2983 * HC is allowed to fetch the old dummy (4.10.2). 2984 */ 2985 token = qtd->hw_token; 2986 qtd->hw_token = HALT_BIT(fotg210); 2987 2988 dummy = qh->dummy; 2989 2990 dma = dummy->qtd_dma; 2991 *dummy = *qtd; 2992 dummy->qtd_dma = dma; 2993 2994 list_del(&qtd->qtd_list); 2995 list_add(&dummy->qtd_list, qtd_list); 2996 list_splice_tail(qtd_list, &qh->qtd_list); 2997 2998 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma); 2999 qh->dummy = qtd; 3000 3001 /* hc must see the new dummy at list end */ 3002 dma = qtd->qtd_dma; 3003 qtd = list_entry(qh->qtd_list.prev, 3004 struct fotg210_qtd, qtd_list); 3005 qtd->hw_next = QTD_NEXT(fotg210, dma); 3006 3007 /* let the hc process these next qtds */ 3008 wmb(); 3009 dummy->hw_token = token; 3010 3011 urb->hcpriv = qh; 3012 } 3013 } 3014 return qh; 3015 } 3016 3017 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb, 3018 struct list_head *qtd_list, gfp_t mem_flags) 3019 { 3020 int epnum; 3021 unsigned long flags; 3022 struct fotg210_qh *qh = NULL; 3023 int rc; 3024 3025 epnum = urb->ep->desc.bEndpointAddress; 3026 3027 #ifdef FOTG210_URB_TRACE 3028 { 3029 struct fotg210_qtd *qtd; 3030 3031 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list); 3032 fotg210_dbg(fotg210, 3033 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 3034 __func__, urb->dev->devpath, urb, 3035 epnum & 0x0f, (epnum & USB_DIR_IN) 3036 ? "in" : "out", 3037 urb->transfer_buffer_length, 3038 qtd, urb->ep->hcpriv); 3039 } 3040 #endif 3041 3042 spin_lock_irqsave(&fotg210->lock, flags); 3043 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 3044 rc = -ESHUTDOWN; 3045 goto done; 3046 } 3047 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 3048 if (unlikely(rc)) 3049 goto done; 3050 3051 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); 3052 if (unlikely(qh == NULL)) { 3053 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 3054 rc = -ENOMEM; 3055 goto done; 3056 } 3057 3058 /* Control/bulk operations through TTs don't need scheduling, 3059 * the HC and TT handle it when the TT has a buffer ready. 3060 */ 3061 if (likely(qh->qh_state == QH_STATE_IDLE)) 3062 qh_link_async(fotg210, qh); 3063 done: 3064 spin_unlock_irqrestore(&fotg210->lock, flags); 3065 if (unlikely(qh == NULL)) 3066 qtd_list_free(fotg210, urb, qtd_list); 3067 return rc; 3068 } 3069 3070 static void single_unlink_async(struct fotg210_hcd *fotg210, 3071 struct fotg210_qh *qh) 3072 { 3073 struct fotg210_qh *prev; 3074 3075 /* Add to the end of the list of QHs waiting for the next IAAD */ 3076 qh->qh_state = QH_STATE_UNLINK; 3077 if (fotg210->async_unlink) 3078 fotg210->async_unlink_last->unlink_next = qh; 3079 else 3080 fotg210->async_unlink = qh; 3081 fotg210->async_unlink_last = qh; 3082 3083 /* Unlink it from the schedule */ 3084 prev = fotg210->async; 3085 while (prev->qh_next.qh != qh) 3086 prev = prev->qh_next.qh; 3087 3088 prev->hw->hw_next = qh->hw->hw_next; 3089 prev->qh_next = qh->qh_next; 3090 if (fotg210->qh_scan_next == qh) 3091 fotg210->qh_scan_next = qh->qh_next.qh; 3092 } 3093 3094 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested) 3095 { 3096 /* 3097 * Do nothing if an IAA cycle is already running or 3098 * if one will be started shortly. 3099 */ 3100 if (fotg210->async_iaa || fotg210->async_unlinking) 3101 return; 3102 3103 /* Do all the waiting QHs at once */ 3104 fotg210->async_iaa = fotg210->async_unlink; 3105 fotg210->async_unlink = NULL; 3106 3107 /* If the controller isn't running, we don't have to wait for it */ 3108 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) { 3109 if (!nested) /* Avoid recursion */ 3110 end_unlink_async(fotg210); 3111 3112 /* Otherwise start a new IAA cycle */ 3113 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) { 3114 /* Make sure the unlinks are all visible to the hardware */ 3115 wmb(); 3116 3117 fotg210_writel(fotg210, fotg210->command | CMD_IAAD, 3118 &fotg210->regs->command); 3119 fotg210_readl(fotg210, &fotg210->regs->command); 3120 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG, 3121 true); 3122 } 3123 } 3124 3125 /* the async qh for the qtds being unlinked are now gone from the HC */ 3126 3127 static void end_unlink_async(struct fotg210_hcd *fotg210) 3128 { 3129 struct fotg210_qh *qh; 3130 3131 /* Process the idle QHs */ 3132 restart: 3133 fotg210->async_unlinking = true; 3134 while (fotg210->async_iaa) { 3135 qh = fotg210->async_iaa; 3136 fotg210->async_iaa = qh->unlink_next; 3137 qh->unlink_next = NULL; 3138 3139 qh->qh_state = QH_STATE_IDLE; 3140 qh->qh_next.qh = NULL; 3141 3142 qh_completions(fotg210, qh); 3143 if (!list_empty(&qh->qtd_list) && 3144 fotg210->rh_state == FOTG210_RH_RUNNING) 3145 qh_link_async(fotg210, qh); 3146 disable_async(fotg210); 3147 } 3148 fotg210->async_unlinking = false; 3149 3150 /* Start a new IAA cycle if any QHs are waiting for it */ 3151 if (fotg210->async_unlink) { 3152 start_iaa_cycle(fotg210, true); 3153 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) 3154 goto restart; 3155 } 3156 } 3157 3158 static void unlink_empty_async(struct fotg210_hcd *fotg210) 3159 { 3160 struct fotg210_qh *qh, *next; 3161 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); 3162 bool check_unlinks_later = false; 3163 3164 /* Unlink all the async QHs that have been empty for a timer cycle */ 3165 next = fotg210->async->qh_next.qh; 3166 while (next) { 3167 qh = next; 3168 next = qh->qh_next.qh; 3169 3170 if (list_empty(&qh->qtd_list) && 3171 qh->qh_state == QH_STATE_LINKED) { 3172 if (!stopped && qh->unlink_cycle == 3173 fotg210->async_unlink_cycle) 3174 check_unlinks_later = true; 3175 else 3176 single_unlink_async(fotg210, qh); 3177 } 3178 } 3179 3180 /* Start a new IAA cycle if any QHs are waiting for it */ 3181 if (fotg210->async_unlink) 3182 start_iaa_cycle(fotg210, false); 3183 3184 /* QHs that haven't been empty for long enough will be handled later */ 3185 if (check_unlinks_later) { 3186 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, 3187 true); 3188 ++fotg210->async_unlink_cycle; 3189 } 3190 } 3191 3192 /* makes sure the async qh will become idle */ 3193 /* caller must own fotg210->lock */ 3194 3195 static void start_unlink_async(struct fotg210_hcd *fotg210, 3196 struct fotg210_qh *qh) 3197 { 3198 /* 3199 * If the QH isn't linked then there's nothing we can do 3200 * unless we were called during a giveback, in which case 3201 * qh_completions() has to deal with it. 3202 */ 3203 if (qh->qh_state != QH_STATE_LINKED) { 3204 if (qh->qh_state == QH_STATE_COMPLETING) 3205 qh->needs_rescan = 1; 3206 return; 3207 } 3208 3209 single_unlink_async(fotg210, qh); 3210 start_iaa_cycle(fotg210, false); 3211 } 3212 3213 static void scan_async(struct fotg210_hcd *fotg210) 3214 { 3215 struct fotg210_qh *qh; 3216 bool check_unlinks_later = false; 3217 3218 fotg210->qh_scan_next = fotg210->async->qh_next.qh; 3219 while (fotg210->qh_scan_next) { 3220 qh = fotg210->qh_scan_next; 3221 fotg210->qh_scan_next = qh->qh_next.qh; 3222 rescan: 3223 /* clean any finished work for this qh */ 3224 if (!list_empty(&qh->qtd_list)) { 3225 int temp; 3226 3227 /* 3228 * Unlinks could happen here; completion reporting 3229 * drops the lock. That's why fotg210->qh_scan_next 3230 * always holds the next qh to scan; if the next qh 3231 * gets unlinked then fotg210->qh_scan_next is adjusted 3232 * in single_unlink_async(). 3233 */ 3234 temp = qh_completions(fotg210, qh); 3235 if (qh->needs_rescan) { 3236 start_unlink_async(fotg210, qh); 3237 } else if (list_empty(&qh->qtd_list) 3238 && qh->qh_state == QH_STATE_LINKED) { 3239 qh->unlink_cycle = fotg210->async_unlink_cycle; 3240 check_unlinks_later = true; 3241 } else if (temp != 0) 3242 goto rescan; 3243 } 3244 } 3245 3246 /* 3247 * Unlink empty entries, reducing DMA usage as well 3248 * as HCD schedule-scanning costs. Delay for any qh 3249 * we just scanned, there's a not-unusual case that it 3250 * doesn't stay idle for long. 3251 */ 3252 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING && 3253 !(fotg210->enabled_hrtimer_events & 3254 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) { 3255 fotg210_enable_event(fotg210, 3256 FOTG210_HRTIMER_ASYNC_UNLINKS, true); 3257 ++fotg210->async_unlink_cycle; 3258 } 3259 } 3260 /* EHCI scheduled transaction support: interrupt, iso, split iso 3261 * These are called "periodic" transactions in the EHCI spec. 3262 * 3263 * Note that for interrupt transfers, the QH/QTD manipulation is shared 3264 * with the "asynchronous" transaction support (control/bulk transfers). 3265 * The only real difference is in how interrupt transfers are scheduled. 3266 * 3267 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 3268 * It keeps track of every ITD (or SITD) that's linked, and holds enough 3269 * pre-calculated schedule data to make appending to the queue be quick. 3270 */ 3271 static int fotg210_get_frame(struct usb_hcd *hcd); 3272 3273 /* periodic_next_shadow - return "next" pointer on shadow list 3274 * @periodic: host pointer to qh/itd 3275 * @tag: hardware tag for type of this record 3276 */ 3277 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210, 3278 union fotg210_shadow *periodic, __hc32 tag) 3279 { 3280 switch (hc32_to_cpu(fotg210, tag)) { 3281 case Q_TYPE_QH: 3282 return &periodic->qh->qh_next; 3283 case Q_TYPE_FSTN: 3284 return &periodic->fstn->fstn_next; 3285 default: 3286 return &periodic->itd->itd_next; 3287 } 3288 } 3289 3290 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210, 3291 union fotg210_shadow *periodic, __hc32 tag) 3292 { 3293 switch (hc32_to_cpu(fotg210, tag)) { 3294 /* our fotg210_shadow.qh is actually software part */ 3295 case Q_TYPE_QH: 3296 return &periodic->qh->hw->hw_next; 3297 /* others are hw parts */ 3298 default: 3299 return periodic->hw_next; 3300 } 3301 } 3302 3303 /* caller must hold fotg210->lock */ 3304 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame, 3305 void *ptr) 3306 { 3307 union fotg210_shadow *prev_p = &fotg210->pshadow[frame]; 3308 __hc32 *hw_p = &fotg210->periodic[frame]; 3309 union fotg210_shadow here = *prev_p; 3310 3311 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 3312 while (here.ptr && here.ptr != ptr) { 3313 prev_p = periodic_next_shadow(fotg210, prev_p, 3314 Q_NEXT_TYPE(fotg210, *hw_p)); 3315 hw_p = shadow_next_periodic(fotg210, &here, 3316 Q_NEXT_TYPE(fotg210, *hw_p)); 3317 here = *prev_p; 3318 } 3319 /* an interrupt entry (at list end) could have been shared */ 3320 if (!here.ptr) 3321 return; 3322 3323 /* update shadow and hardware lists ... the old "next" pointers 3324 * from ptr may still be in use, the caller updates them. 3325 */ 3326 *prev_p = *periodic_next_shadow(fotg210, &here, 3327 Q_NEXT_TYPE(fotg210, *hw_p)); 3328 3329 *hw_p = *shadow_next_periodic(fotg210, &here, 3330 Q_NEXT_TYPE(fotg210, *hw_p)); 3331 } 3332 3333 /* how many of the uframe's 125 usecs are allocated? */ 3334 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210, 3335 unsigned frame, unsigned uframe) 3336 { 3337 __hc32 *hw_p = &fotg210->periodic[frame]; 3338 union fotg210_shadow *q = &fotg210->pshadow[frame]; 3339 unsigned usecs = 0; 3340 struct fotg210_qh_hw *hw; 3341 3342 while (q->ptr) { 3343 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) { 3344 case Q_TYPE_QH: 3345 hw = q->qh->hw; 3346 /* is it in the S-mask? */ 3347 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe)) 3348 usecs += q->qh->usecs; 3349 /* ... or C-mask? */ 3350 if (hw->hw_info2 & cpu_to_hc32(fotg210, 3351 1 << (8 + uframe))) 3352 usecs += q->qh->c_usecs; 3353 hw_p = &hw->hw_next; 3354 q = &q->qh->qh_next; 3355 break; 3356 /* case Q_TYPE_FSTN: */ 3357 default: 3358 /* for "save place" FSTNs, count the relevant INTR 3359 * bandwidth from the previous frame 3360 */ 3361 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210)) 3362 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n"); 3363 3364 hw_p = &q->fstn->hw_next; 3365 q = &q->fstn->fstn_next; 3366 break; 3367 case Q_TYPE_ITD: 3368 if (q->itd->hw_transaction[uframe]) 3369 usecs += q->itd->stream->usecs; 3370 hw_p = &q->itd->hw_next; 3371 q = &q->itd->itd_next; 3372 break; 3373 } 3374 } 3375 if (usecs > fotg210->uframe_periodic_max) 3376 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n", 3377 frame * 8 + uframe, usecs); 3378 return usecs; 3379 } 3380 3381 static int same_tt(struct usb_device *dev1, struct usb_device *dev2) 3382 { 3383 if (!dev1->tt || !dev2->tt) 3384 return 0; 3385 if (dev1->tt != dev2->tt) 3386 return 0; 3387 if (dev1->tt->multi) 3388 return dev1->ttport == dev2->ttport; 3389 else 3390 return 1; 3391 } 3392 3393 /* return true iff the device's transaction translator is available 3394 * for a periodic transfer starting at the specified frame, using 3395 * all the uframes in the mask. 3396 */ 3397 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period, 3398 struct usb_device *dev, unsigned frame, u32 uf_mask) 3399 { 3400 if (period == 0) /* error */ 3401 return 0; 3402 3403 /* note bandwidth wastage: split never follows csplit 3404 * (different dev or endpoint) until the next uframe. 3405 * calling convention doesn't make that distinction. 3406 */ 3407 for (; frame < fotg210->periodic_size; frame += period) { 3408 union fotg210_shadow here; 3409 __hc32 type; 3410 struct fotg210_qh_hw *hw; 3411 3412 here = fotg210->pshadow[frame]; 3413 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]); 3414 while (here.ptr) { 3415 switch (hc32_to_cpu(fotg210, type)) { 3416 case Q_TYPE_ITD: 3417 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next); 3418 here = here.itd->itd_next; 3419 continue; 3420 case Q_TYPE_QH: 3421 hw = here.qh->hw; 3422 if (same_tt(dev, here.qh->dev)) { 3423 u32 mask; 3424 3425 mask = hc32_to_cpu(fotg210, 3426 hw->hw_info2); 3427 /* "knows" no gap is needed */ 3428 mask |= mask >> 8; 3429 if (mask & uf_mask) 3430 break; 3431 } 3432 type = Q_NEXT_TYPE(fotg210, hw->hw_next); 3433 here = here.qh->qh_next; 3434 continue; 3435 /* case Q_TYPE_FSTN: */ 3436 default: 3437 fotg210_dbg(fotg210, 3438 "periodic frame %d bogus type %d\n", 3439 frame, type); 3440 } 3441 3442 /* collision or error */ 3443 return 0; 3444 } 3445 } 3446 3447 /* no collision */ 3448 return 1; 3449 } 3450 3451 static void enable_periodic(struct fotg210_hcd *fotg210) 3452 { 3453 if (fotg210->periodic_count++) 3454 return; 3455 3456 /* Stop waiting to turn off the periodic schedule */ 3457 fotg210->enabled_hrtimer_events &= 3458 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC); 3459 3460 /* Don't start the schedule until PSS is 0 */ 3461 fotg210_poll_PSS(fotg210); 3462 turn_on_io_watchdog(fotg210); 3463 } 3464 3465 static void disable_periodic(struct fotg210_hcd *fotg210) 3466 { 3467 if (--fotg210->periodic_count) 3468 return; 3469 3470 /* Don't turn off the schedule until PSS is 1 */ 3471 fotg210_poll_PSS(fotg210); 3472 } 3473 3474 /* periodic schedule slots have iso tds (normal or split) first, then a 3475 * sparse tree for active interrupt transfers. 3476 * 3477 * this just links in a qh; caller guarantees uframe masks are set right. 3478 * no FSTN support (yet; fotg210 0.96+) 3479 */ 3480 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3481 { 3482 unsigned i; 3483 unsigned period = qh->period; 3484 3485 dev_dbg(&qh->dev->dev, 3486 "link qh%d-%04x/%p start %d [%d/%d us]\n", period, 3487 hc32_to_cpup(fotg210, &qh->hw->hw_info2) & 3488 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, 3489 qh->c_usecs); 3490 3491 /* high bandwidth, or otherwise every microframe */ 3492 if (period == 0) 3493 period = 1; 3494 3495 for (i = qh->start; i < fotg210->periodic_size; i += period) { 3496 union fotg210_shadow *prev = &fotg210->pshadow[i]; 3497 __hc32 *hw_p = &fotg210->periodic[i]; 3498 union fotg210_shadow here = *prev; 3499 __hc32 type = 0; 3500 3501 /* skip the iso nodes at list head */ 3502 while (here.ptr) { 3503 type = Q_NEXT_TYPE(fotg210, *hw_p); 3504 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) 3505 break; 3506 prev = periodic_next_shadow(fotg210, prev, type); 3507 hw_p = shadow_next_periodic(fotg210, &here, type); 3508 here = *prev; 3509 } 3510 3511 /* sorting each branch by period (slow-->fast) 3512 * enables sharing interior tree nodes 3513 */ 3514 while (here.ptr && qh != here.qh) { 3515 if (qh->period > here.qh->period) 3516 break; 3517 prev = &here.qh->qh_next; 3518 hw_p = &here.qh->hw->hw_next; 3519 here = *prev; 3520 } 3521 /* link in this qh, unless some earlier pass did that */ 3522 if (qh != here.qh) { 3523 qh->qh_next = here; 3524 if (here.qh) 3525 qh->hw->hw_next = *hw_p; 3526 wmb(); 3527 prev->qh = qh; 3528 *hw_p = QH_NEXT(fotg210, qh->qh_dma); 3529 } 3530 } 3531 qh->qh_state = QH_STATE_LINKED; 3532 qh->xacterrs = 0; 3533 3534 /* update per-qh bandwidth for usbfs */ 3535 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period 3536 ? ((qh->usecs + qh->c_usecs) / qh->period) 3537 : (qh->usecs * 8); 3538 3539 list_add(&qh->intr_node, &fotg210->intr_qh_list); 3540 3541 /* maybe enable periodic schedule processing */ 3542 ++fotg210->intr_count; 3543 enable_periodic(fotg210); 3544 } 3545 3546 static void qh_unlink_periodic(struct fotg210_hcd *fotg210, 3547 struct fotg210_qh *qh) 3548 { 3549 unsigned i; 3550 unsigned period; 3551 3552 /* 3553 * If qh is for a low/full-speed device, simply unlinking it 3554 * could interfere with an ongoing split transaction. To unlink 3555 * it safely would require setting the QH_INACTIVATE bit and 3556 * waiting at least one frame, as described in EHCI 4.12.2.5. 3557 * 3558 * We won't bother with any of this. Instead, we assume that the 3559 * only reason for unlinking an interrupt QH while the current URB 3560 * is still active is to dequeue all the URBs (flush the whole 3561 * endpoint queue). 3562 * 3563 * If rebalancing the periodic schedule is ever implemented, this 3564 * approach will no longer be valid. 3565 */ 3566 3567 /* high bandwidth, or otherwise part of every microframe */ 3568 period = qh->period; 3569 if (!period) 3570 period = 1; 3571 3572 for (i = qh->start; i < fotg210->periodic_size; i += period) 3573 periodic_unlink(fotg210, i, qh); 3574 3575 /* update per-qh bandwidth for usbfs */ 3576 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period 3577 ? ((qh->usecs + qh->c_usecs) / qh->period) 3578 : (qh->usecs * 8); 3579 3580 dev_dbg(&qh->dev->dev, 3581 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 3582 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) & 3583 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, 3584 qh->c_usecs); 3585 3586 /* qh->qh_next still "live" to HC */ 3587 qh->qh_state = QH_STATE_UNLINK; 3588 qh->qh_next.ptr = NULL; 3589 3590 if (fotg210->qh_scan_next == qh) 3591 fotg210->qh_scan_next = list_entry(qh->intr_node.next, 3592 struct fotg210_qh, intr_node); 3593 list_del(&qh->intr_node); 3594 } 3595 3596 static void start_unlink_intr(struct fotg210_hcd *fotg210, 3597 struct fotg210_qh *qh) 3598 { 3599 /* If the QH isn't linked then there's nothing we can do 3600 * unless we were called during a giveback, in which case 3601 * qh_completions() has to deal with it. 3602 */ 3603 if (qh->qh_state != QH_STATE_LINKED) { 3604 if (qh->qh_state == QH_STATE_COMPLETING) 3605 qh->needs_rescan = 1; 3606 return; 3607 } 3608 3609 qh_unlink_periodic(fotg210, qh); 3610 3611 /* Make sure the unlinks are visible before starting the timer */ 3612 wmb(); 3613 3614 /* 3615 * The EHCI spec doesn't say how long it takes the controller to 3616 * stop accessing an unlinked interrupt QH. The timer delay is 3617 * 9 uframes; presumably that will be long enough. 3618 */ 3619 qh->unlink_cycle = fotg210->intr_unlink_cycle; 3620 3621 /* New entries go at the end of the intr_unlink list */ 3622 if (fotg210->intr_unlink) 3623 fotg210->intr_unlink_last->unlink_next = qh; 3624 else 3625 fotg210->intr_unlink = qh; 3626 fotg210->intr_unlink_last = qh; 3627 3628 if (fotg210->intr_unlinking) 3629 ; /* Avoid recursive calls */ 3630 else if (fotg210->rh_state < FOTG210_RH_RUNNING) 3631 fotg210_handle_intr_unlinks(fotg210); 3632 else if (fotg210->intr_unlink == qh) { 3633 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, 3634 true); 3635 ++fotg210->intr_unlink_cycle; 3636 } 3637 } 3638 3639 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3640 { 3641 struct fotg210_qh_hw *hw = qh->hw; 3642 int rc; 3643 3644 qh->qh_state = QH_STATE_IDLE; 3645 hw->hw_next = FOTG210_LIST_END(fotg210); 3646 3647 qh_completions(fotg210, qh); 3648 3649 /* reschedule QH iff another request is queued */ 3650 if (!list_empty(&qh->qtd_list) && 3651 fotg210->rh_state == FOTG210_RH_RUNNING) { 3652 rc = qh_schedule(fotg210, qh); 3653 3654 /* An error here likely indicates handshake failure 3655 * or no space left in the schedule. Neither fault 3656 * should happen often ... 3657 * 3658 * FIXME kill the now-dysfunctional queued urbs 3659 */ 3660 if (rc != 0) 3661 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n", 3662 qh, rc); 3663 } 3664 3665 /* maybe turn off periodic schedule */ 3666 --fotg210->intr_count; 3667 disable_periodic(fotg210); 3668 } 3669 3670 static int check_period(struct fotg210_hcd *fotg210, unsigned frame, 3671 unsigned uframe, unsigned period, unsigned usecs) 3672 { 3673 int claimed; 3674 3675 /* complete split running into next frame? 3676 * given FSTN support, we could sometimes check... 3677 */ 3678 if (uframe >= 8) 3679 return 0; 3680 3681 /* convert "usecs we need" to "max already claimed" */ 3682 usecs = fotg210->uframe_periodic_max - usecs; 3683 3684 /* we "know" 2 and 4 uframe intervals were rejected; so 3685 * for period 0, check _every_ microframe in the schedule. 3686 */ 3687 if (unlikely(period == 0)) { 3688 do { 3689 for (uframe = 0; uframe < 7; uframe++) { 3690 claimed = periodic_usecs(fotg210, frame, 3691 uframe); 3692 if (claimed > usecs) 3693 return 0; 3694 } 3695 } while ((frame += 1) < fotg210->periodic_size); 3696 3697 /* just check the specified uframe, at that period */ 3698 } else { 3699 do { 3700 claimed = periodic_usecs(fotg210, frame, uframe); 3701 if (claimed > usecs) 3702 return 0; 3703 } while ((frame += period) < fotg210->periodic_size); 3704 } 3705 3706 /* success! */ 3707 return 1; 3708 } 3709 3710 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame, 3711 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp) 3712 { 3713 int retval = -ENOSPC; 3714 u8 mask = 0; 3715 3716 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 3717 goto done; 3718 3719 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs)) 3720 goto done; 3721 if (!qh->c_usecs) { 3722 retval = 0; 3723 *c_maskp = 0; 3724 goto done; 3725 } 3726 3727 /* Make sure this tt's buffer is also available for CSPLITs. 3728 * We pessimize a bit; probably the typical full speed case 3729 * doesn't need the second CSPLIT. 3730 * 3731 * NOTE: both SPLIT and CSPLIT could be checked in just 3732 * one smart pass... 3733 */ 3734 mask = 0x03 << (uframe + qh->gap_uf); 3735 *c_maskp = cpu_to_hc32(fotg210, mask << 8); 3736 3737 mask |= 1 << uframe; 3738 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) { 3739 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1, 3740 qh->period, qh->c_usecs)) 3741 goto done; 3742 if (!check_period(fotg210, frame, uframe + qh->gap_uf, 3743 qh->period, qh->c_usecs)) 3744 goto done; 3745 retval = 0; 3746 } 3747 done: 3748 return retval; 3749 } 3750 3751 /* "first fit" scheduling policy used the first time through, 3752 * or when the previous schedule slot can't be re-used. 3753 */ 3754 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3755 { 3756 int status; 3757 unsigned uframe; 3758 __hc32 c_mask; 3759 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 3760 struct fotg210_qh_hw *hw = qh->hw; 3761 3762 qh_refresh(fotg210, qh); 3763 hw->hw_next = FOTG210_LIST_END(fotg210); 3764 frame = qh->start; 3765 3766 /* reuse the previous schedule slots, if we can */ 3767 if (frame < qh->period) { 3768 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK); 3769 status = check_intr_schedule(fotg210, frame, --uframe, 3770 qh, &c_mask); 3771 } else { 3772 uframe = 0; 3773 c_mask = 0; 3774 status = -ENOSPC; 3775 } 3776 3777 /* else scan the schedule to find a group of slots such that all 3778 * uframes have enough periodic bandwidth available. 3779 */ 3780 if (status) { 3781 /* "normal" case, uframing flexible except with splits */ 3782 if (qh->period) { 3783 int i; 3784 3785 for (i = qh->period; status && i > 0; --i) { 3786 frame = ++fotg210->random_frame % qh->period; 3787 for (uframe = 0; uframe < 8; uframe++) { 3788 status = check_intr_schedule(fotg210, 3789 frame, uframe, qh, 3790 &c_mask); 3791 if (status == 0) 3792 break; 3793 } 3794 } 3795 3796 /* qh->period == 0 means every uframe */ 3797 } else { 3798 frame = 0; 3799 status = check_intr_schedule(fotg210, 0, 0, qh, 3800 &c_mask); 3801 } 3802 if (status) 3803 goto done; 3804 qh->start = frame; 3805 3806 /* reset S-frame and (maybe) C-frame masks */ 3807 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK)); 3808 hw->hw_info2 |= qh->period 3809 ? cpu_to_hc32(fotg210, 1 << uframe) 3810 : cpu_to_hc32(fotg210, QH_SMASK); 3811 hw->hw_info2 |= c_mask; 3812 } else 3813 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh); 3814 3815 /* stuff into the periodic schedule */ 3816 qh_link_periodic(fotg210, qh); 3817 done: 3818 return status; 3819 } 3820 3821 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb, 3822 struct list_head *qtd_list, gfp_t mem_flags) 3823 { 3824 unsigned epnum; 3825 unsigned long flags; 3826 struct fotg210_qh *qh; 3827 int status; 3828 struct list_head empty; 3829 3830 /* get endpoint and transfer/schedule data */ 3831 epnum = urb->ep->desc.bEndpointAddress; 3832 3833 spin_lock_irqsave(&fotg210->lock, flags); 3834 3835 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 3836 status = -ESHUTDOWN; 3837 goto done_not_linked; 3838 } 3839 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 3840 if (unlikely(status)) 3841 goto done_not_linked; 3842 3843 /* get qh and force any scheduling errors */ 3844 INIT_LIST_HEAD(&empty); 3845 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv); 3846 if (qh == NULL) { 3847 status = -ENOMEM; 3848 goto done; 3849 } 3850 if (qh->qh_state == QH_STATE_IDLE) { 3851 status = qh_schedule(fotg210, qh); 3852 if (status) 3853 goto done; 3854 } 3855 3856 /* then queue the urb's tds to the qh */ 3857 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); 3858 BUG_ON(qh == NULL); 3859 3860 /* ... update usbfs periodic stats */ 3861 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++; 3862 3863 done: 3864 if (unlikely(status)) 3865 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 3866 done_not_linked: 3867 spin_unlock_irqrestore(&fotg210->lock, flags); 3868 if (status) 3869 qtd_list_free(fotg210, urb, qtd_list); 3870 3871 return status; 3872 } 3873 3874 static void scan_intr(struct fotg210_hcd *fotg210) 3875 { 3876 struct fotg210_qh *qh; 3877 3878 list_for_each_entry_safe(qh, fotg210->qh_scan_next, 3879 &fotg210->intr_qh_list, intr_node) { 3880 rescan: 3881 /* clean any finished work for this qh */ 3882 if (!list_empty(&qh->qtd_list)) { 3883 int temp; 3884 3885 /* 3886 * Unlinks could happen here; completion reporting 3887 * drops the lock. That's why fotg210->qh_scan_next 3888 * always holds the next qh to scan; if the next qh 3889 * gets unlinked then fotg210->qh_scan_next is adjusted 3890 * in qh_unlink_periodic(). 3891 */ 3892 temp = qh_completions(fotg210, qh); 3893 if (unlikely(qh->needs_rescan || 3894 (list_empty(&qh->qtd_list) && 3895 qh->qh_state == QH_STATE_LINKED))) 3896 start_unlink_intr(fotg210, qh); 3897 else if (temp != 0) 3898 goto rescan; 3899 } 3900 } 3901 } 3902 3903 /* fotg210_iso_stream ops work with both ITD and SITD */ 3904 3905 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags) 3906 { 3907 struct fotg210_iso_stream *stream; 3908 3909 stream = kzalloc(sizeof(*stream), mem_flags); 3910 if (likely(stream != NULL)) { 3911 INIT_LIST_HEAD(&stream->td_list); 3912 INIT_LIST_HEAD(&stream->free_list); 3913 stream->next_uframe = -1; 3914 } 3915 return stream; 3916 } 3917 3918 static void iso_stream_init(struct fotg210_hcd *fotg210, 3919 struct fotg210_iso_stream *stream, struct usb_device *dev, 3920 int pipe, unsigned interval) 3921 { 3922 u32 buf1; 3923 unsigned epnum, maxp; 3924 int is_input; 3925 long bandwidth; 3926 unsigned multi; 3927 struct usb_host_endpoint *ep; 3928 3929 /* 3930 * this might be a "high bandwidth" highspeed endpoint, 3931 * as encoded in the ep descriptor's wMaxPacket field 3932 */ 3933 epnum = usb_pipeendpoint(pipe); 3934 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0; 3935 ep = usb_pipe_endpoint(dev, pipe); 3936 maxp = usb_endpoint_maxp(&ep->desc); 3937 if (is_input) 3938 buf1 = (1 << 11); 3939 else 3940 buf1 = 0; 3941 3942 multi = usb_endpoint_maxp_mult(&ep->desc); 3943 buf1 |= maxp; 3944 maxp *= multi; 3945 3946 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum); 3947 stream->buf1 = cpu_to_hc32(fotg210, buf1); 3948 stream->buf2 = cpu_to_hc32(fotg210, multi); 3949 3950 /* usbfs wants to report the average usecs per frame tied up 3951 * when transfers on this endpoint are scheduled ... 3952 */ 3953 if (dev->speed == USB_SPEED_FULL) { 3954 interval <<= 3; 3955 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed, 3956 is_input, 1, maxp)); 3957 stream->usecs /= 8; 3958 } else { 3959 stream->highspeed = 1; 3960 stream->usecs = HS_USECS_ISO(maxp); 3961 } 3962 bandwidth = stream->usecs * 8; 3963 bandwidth /= interval; 3964 3965 stream->bandwidth = bandwidth; 3966 stream->udev = dev; 3967 stream->bEndpointAddress = is_input | epnum; 3968 stream->interval = interval; 3969 stream->maxp = maxp; 3970 } 3971 3972 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210, 3973 struct urb *urb) 3974 { 3975 unsigned epnum; 3976 struct fotg210_iso_stream *stream; 3977 struct usb_host_endpoint *ep; 3978 unsigned long flags; 3979 3980 epnum = usb_pipeendpoint(urb->pipe); 3981 if (usb_pipein(urb->pipe)) 3982 ep = urb->dev->ep_in[epnum]; 3983 else 3984 ep = urb->dev->ep_out[epnum]; 3985 3986 spin_lock_irqsave(&fotg210->lock, flags); 3987 stream = ep->hcpriv; 3988 3989 if (unlikely(stream == NULL)) { 3990 stream = iso_stream_alloc(GFP_ATOMIC); 3991 if (likely(stream != NULL)) { 3992 ep->hcpriv = stream; 3993 stream->ep = ep; 3994 iso_stream_init(fotg210, stream, urb->dev, urb->pipe, 3995 urb->interval); 3996 } 3997 3998 /* if dev->ep[epnum] is a QH, hw is set */ 3999 } else if (unlikely(stream->hw != NULL)) { 4000 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n", 4001 urb->dev->devpath, epnum, 4002 usb_pipein(urb->pipe) ? "in" : "out"); 4003 stream = NULL; 4004 } 4005 4006 spin_unlock_irqrestore(&fotg210->lock, flags); 4007 return stream; 4008 } 4009 4010 /* fotg210_iso_sched ops can be ITD-only or SITD-only */ 4011 4012 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets, 4013 gfp_t mem_flags) 4014 { 4015 struct fotg210_iso_sched *iso_sched; 4016 4017 iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags); 4018 if (likely(iso_sched != NULL)) 4019 INIT_LIST_HEAD(&iso_sched->td_list); 4020 4021 return iso_sched; 4022 } 4023 4024 static inline void itd_sched_init(struct fotg210_hcd *fotg210, 4025 struct fotg210_iso_sched *iso_sched, 4026 struct fotg210_iso_stream *stream, struct urb *urb) 4027 { 4028 unsigned i; 4029 dma_addr_t dma = urb->transfer_dma; 4030 4031 /* how many uframes are needed for these transfers */ 4032 iso_sched->span = urb->number_of_packets * stream->interval; 4033 4034 /* figure out per-uframe itd fields that we'll need later 4035 * when we fit new itds into the schedule. 4036 */ 4037 for (i = 0; i < urb->number_of_packets; i++) { 4038 struct fotg210_iso_packet *uframe = &iso_sched->packet[i]; 4039 unsigned length; 4040 dma_addr_t buf; 4041 u32 trans; 4042 4043 length = urb->iso_frame_desc[i].length; 4044 buf = dma + urb->iso_frame_desc[i].offset; 4045 4046 trans = FOTG210_ISOC_ACTIVE; 4047 trans |= buf & 0x0fff; 4048 if (unlikely(((i + 1) == urb->number_of_packets)) 4049 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 4050 trans |= FOTG210_ITD_IOC; 4051 trans |= length << 16; 4052 uframe->transaction = cpu_to_hc32(fotg210, trans); 4053 4054 /* might need to cross a buffer page within a uframe */ 4055 uframe->bufp = (buf & ~(u64)0x0fff); 4056 buf += length; 4057 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) 4058 uframe->cross = 1; 4059 } 4060 } 4061 4062 static void iso_sched_free(struct fotg210_iso_stream *stream, 4063 struct fotg210_iso_sched *iso_sched) 4064 { 4065 if (!iso_sched) 4066 return; 4067 /* caller must hold fotg210->lock!*/ 4068 list_splice(&iso_sched->td_list, &stream->free_list); 4069 kfree(iso_sched); 4070 } 4071 4072 static int itd_urb_transaction(struct fotg210_iso_stream *stream, 4073 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags) 4074 { 4075 struct fotg210_itd *itd; 4076 dma_addr_t itd_dma; 4077 int i; 4078 unsigned num_itds; 4079 struct fotg210_iso_sched *sched; 4080 unsigned long flags; 4081 4082 sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 4083 if (unlikely(sched == NULL)) 4084 return -ENOMEM; 4085 4086 itd_sched_init(fotg210, sched, stream, urb); 4087 4088 if (urb->interval < 8) 4089 num_itds = 1 + (sched->span + 7) / 8; 4090 else 4091 num_itds = urb->number_of_packets; 4092 4093 /* allocate/init ITDs */ 4094 spin_lock_irqsave(&fotg210->lock, flags); 4095 for (i = 0; i < num_itds; i++) { 4096 4097 /* 4098 * Use iTDs from the free list, but not iTDs that may 4099 * still be in use by the hardware. 4100 */ 4101 if (likely(!list_empty(&stream->free_list))) { 4102 itd = list_first_entry(&stream->free_list, 4103 struct fotg210_itd, itd_list); 4104 if (itd->frame == fotg210->now_frame) 4105 goto alloc_itd; 4106 list_del(&itd->itd_list); 4107 itd_dma = itd->itd_dma; 4108 } else { 4109 alloc_itd: 4110 spin_unlock_irqrestore(&fotg210->lock, flags); 4111 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags, 4112 &itd_dma); 4113 spin_lock_irqsave(&fotg210->lock, flags); 4114 if (!itd) { 4115 iso_sched_free(stream, sched); 4116 spin_unlock_irqrestore(&fotg210->lock, flags); 4117 return -ENOMEM; 4118 } 4119 } 4120 4121 memset(itd, 0, sizeof(*itd)); 4122 itd->itd_dma = itd_dma; 4123 list_add(&itd->itd_list, &sched->td_list); 4124 } 4125 spin_unlock_irqrestore(&fotg210->lock, flags); 4126 4127 /* temporarily store schedule info in hcpriv */ 4128 urb->hcpriv = sched; 4129 urb->error_count = 0; 4130 return 0; 4131 } 4132 4133 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe, 4134 u8 usecs, u32 period) 4135 { 4136 uframe %= period; 4137 do { 4138 /* can't commit more than uframe_periodic_max usec */ 4139 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7) 4140 > (fotg210->uframe_periodic_max - usecs)) 4141 return 0; 4142 4143 /* we know urb->interval is 2^N uframes */ 4144 uframe += period; 4145 } while (uframe < mod); 4146 return 1; 4147 } 4148 4149 /* This scheduler plans almost as far into the future as it has actual 4150 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 4151 * "as small as possible" to be cache-friendlier.) That limits the size 4152 * transfers you can stream reliably; avoid more than 64 msec per urb. 4153 * Also avoid queue depths of less than fotg210's worst irq latency (affected 4154 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 4155 * and other factors); or more than about 230 msec total (for portability, 4156 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler! 4157 */ 4158 4159 #define SCHEDULE_SLOP 80 /* microframes */ 4160 4161 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb, 4162 struct fotg210_iso_stream *stream) 4163 { 4164 u32 now, next, start, period, span; 4165 int status; 4166 unsigned mod = fotg210->periodic_size << 3; 4167 struct fotg210_iso_sched *sched = urb->hcpriv; 4168 4169 period = urb->interval; 4170 span = sched->span; 4171 4172 if (span > mod - SCHEDULE_SLOP) { 4173 fotg210_dbg(fotg210, "iso request %p too long\n", urb); 4174 status = -EFBIG; 4175 goto fail; 4176 } 4177 4178 now = fotg210_read_frame_index(fotg210) & (mod - 1); 4179 4180 /* Typical case: reuse current schedule, stream is still active. 4181 * Hopefully there are no gaps from the host falling behind 4182 * (irq delays etc), but if there are we'll take the next 4183 * slot in the schedule, implicitly assuming URB_ISO_ASAP. 4184 */ 4185 if (likely(!list_empty(&stream->td_list))) { 4186 u32 excess; 4187 4188 /* For high speed devices, allow scheduling within the 4189 * isochronous scheduling threshold. For full speed devices 4190 * and Intel PCI-based controllers, don't (work around for 4191 * Intel ICH9 bug). 4192 */ 4193 if (!stream->highspeed && fotg210->fs_i_thresh) 4194 next = now + fotg210->i_thresh; 4195 else 4196 next = now; 4197 4198 /* Fell behind (by up to twice the slop amount)? 4199 * We decide based on the time of the last currently-scheduled 4200 * slot, not the time of the next available slot. 4201 */ 4202 excess = (stream->next_uframe - period - next) & (mod - 1); 4203 if (excess >= mod - 2 * SCHEDULE_SLOP) 4204 start = next + excess - mod + period * 4205 DIV_ROUND_UP(mod - excess, period); 4206 else 4207 start = next + excess + period; 4208 if (start - now >= mod) { 4209 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", 4210 urb, start - now - period, period, 4211 mod); 4212 status = -EFBIG; 4213 goto fail; 4214 } 4215 } 4216 4217 /* need to schedule; when's the next (u)frame we could start? 4218 * this is bigger than fotg210->i_thresh allows; scheduling itself 4219 * isn't free, the slop should handle reasonably slow cpus. it 4220 * can also help high bandwidth if the dma and irq loads don't 4221 * jump until after the queue is primed. 4222 */ 4223 else { 4224 int done = 0; 4225 4226 start = SCHEDULE_SLOP + (now & ~0x07); 4227 4228 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */ 4229 4230 /* find a uframe slot with enough bandwidth. 4231 * Early uframes are more precious because full-speed 4232 * iso IN transfers can't use late uframes, 4233 * and therefore they should be allocated last. 4234 */ 4235 next = start; 4236 start += period; 4237 do { 4238 start--; 4239 /* check schedule: enough space? */ 4240 if (itd_slot_ok(fotg210, mod, start, 4241 stream->usecs, period)) 4242 done = 1; 4243 } while (start > next && !done); 4244 4245 /* no room in the schedule */ 4246 if (!done) { 4247 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n", 4248 urb, now, now + mod); 4249 status = -ENOSPC; 4250 goto fail; 4251 } 4252 } 4253 4254 /* Tried to schedule too far into the future? */ 4255 if (unlikely(start - now + span - period >= 4256 mod - 2 * SCHEDULE_SLOP)) { 4257 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", 4258 urb, start - now, span - period, 4259 mod - 2 * SCHEDULE_SLOP); 4260 status = -EFBIG; 4261 goto fail; 4262 } 4263 4264 stream->next_uframe = start & (mod - 1); 4265 4266 /* report high speed start in uframes; full speed, in frames */ 4267 urb->start_frame = stream->next_uframe; 4268 if (!stream->highspeed) 4269 urb->start_frame >>= 3; 4270 4271 /* Make sure scan_isoc() sees these */ 4272 if (fotg210->isoc_count == 0) 4273 fotg210->next_frame = now >> 3; 4274 return 0; 4275 4276 fail: 4277 iso_sched_free(stream, sched); 4278 urb->hcpriv = NULL; 4279 return status; 4280 } 4281 4282 static inline void itd_init(struct fotg210_hcd *fotg210, 4283 struct fotg210_iso_stream *stream, struct fotg210_itd *itd) 4284 { 4285 int i; 4286 4287 /* it's been recently zeroed */ 4288 itd->hw_next = FOTG210_LIST_END(fotg210); 4289 itd->hw_bufp[0] = stream->buf0; 4290 itd->hw_bufp[1] = stream->buf1; 4291 itd->hw_bufp[2] = stream->buf2; 4292 4293 for (i = 0; i < 8; i++) 4294 itd->index[i] = -1; 4295 4296 /* All other fields are filled when scheduling */ 4297 } 4298 4299 static inline void itd_patch(struct fotg210_hcd *fotg210, 4300 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched, 4301 unsigned index, u16 uframe) 4302 { 4303 struct fotg210_iso_packet *uf = &iso_sched->packet[index]; 4304 unsigned pg = itd->pg; 4305 4306 uframe &= 0x07; 4307 itd->index[uframe] = index; 4308 4309 itd->hw_transaction[uframe] = uf->transaction; 4310 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12); 4311 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0); 4312 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32)); 4313 4314 /* iso_frame_desc[].offset must be strictly increasing */ 4315 if (unlikely(uf->cross)) { 4316 u64 bufp = uf->bufp + 4096; 4317 4318 itd->pg = ++pg; 4319 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0); 4320 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32)); 4321 } 4322 } 4323 4324 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame, 4325 struct fotg210_itd *itd) 4326 { 4327 union fotg210_shadow *prev = &fotg210->pshadow[frame]; 4328 __hc32 *hw_p = &fotg210->periodic[frame]; 4329 union fotg210_shadow here = *prev; 4330 __hc32 type = 0; 4331 4332 /* skip any iso nodes which might belong to previous microframes */ 4333 while (here.ptr) { 4334 type = Q_NEXT_TYPE(fotg210, *hw_p); 4335 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) 4336 break; 4337 prev = periodic_next_shadow(fotg210, prev, type); 4338 hw_p = shadow_next_periodic(fotg210, &here, type); 4339 here = *prev; 4340 } 4341 4342 itd->itd_next = here; 4343 itd->hw_next = *hw_p; 4344 prev->itd = itd; 4345 itd->frame = frame; 4346 wmb(); 4347 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD); 4348 } 4349 4350 /* fit urb's itds into the selected schedule slot; activate as needed */ 4351 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb, 4352 unsigned mod, struct fotg210_iso_stream *stream) 4353 { 4354 int packet; 4355 unsigned next_uframe, uframe, frame; 4356 struct fotg210_iso_sched *iso_sched = urb->hcpriv; 4357 struct fotg210_itd *itd; 4358 4359 next_uframe = stream->next_uframe & (mod - 1); 4360 4361 if (unlikely(list_empty(&stream->td_list))) { 4362 fotg210_to_hcd(fotg210)->self.bandwidth_allocated 4363 += stream->bandwidth; 4364 fotg210_dbg(fotg210, 4365 "schedule devp %s ep%d%s-iso period %d start %d.%d\n", 4366 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 4367 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 4368 urb->interval, 4369 next_uframe >> 3, next_uframe & 0x7); 4370 } 4371 4372 /* fill iTDs uframe by uframe */ 4373 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) { 4374 if (itd == NULL) { 4375 /* ASSERT: we have all necessary itds */ 4376 4377 /* ASSERT: no itds for this endpoint in this uframe */ 4378 4379 itd = list_entry(iso_sched->td_list.next, 4380 struct fotg210_itd, itd_list); 4381 list_move_tail(&itd->itd_list, &stream->td_list); 4382 itd->stream = stream; 4383 itd->urb = urb; 4384 itd_init(fotg210, stream, itd); 4385 } 4386 4387 uframe = next_uframe & 0x07; 4388 frame = next_uframe >> 3; 4389 4390 itd_patch(fotg210, itd, iso_sched, packet, uframe); 4391 4392 next_uframe += stream->interval; 4393 next_uframe &= mod - 1; 4394 packet++; 4395 4396 /* link completed itds into the schedule */ 4397 if (((next_uframe >> 3) != frame) 4398 || packet == urb->number_of_packets) { 4399 itd_link(fotg210, frame & (fotg210->periodic_size - 1), 4400 itd); 4401 itd = NULL; 4402 } 4403 } 4404 stream->next_uframe = next_uframe; 4405 4406 /* don't need that schedule data any more */ 4407 iso_sched_free(stream, iso_sched); 4408 urb->hcpriv = NULL; 4409 4410 ++fotg210->isoc_count; 4411 enable_periodic(fotg210); 4412 } 4413 4414 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\ 4415 FOTG210_ISOC_XACTERR) 4416 4417 /* Process and recycle a completed ITD. Return true iff its urb completed, 4418 * and hence its completion callback probably added things to the hardware 4419 * schedule. 4420 * 4421 * Note that we carefully avoid recycling this descriptor until after any 4422 * completion callback runs, so that it won't be reused quickly. That is, 4423 * assuming (a) no more than two urbs per frame on this endpoint, and also 4424 * (b) only this endpoint's completions submit URBs. It seems some silicon 4425 * corrupts things if you reuse completed descriptors very quickly... 4426 */ 4427 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd) 4428 { 4429 struct urb *urb = itd->urb; 4430 struct usb_iso_packet_descriptor *desc; 4431 u32 t; 4432 unsigned uframe; 4433 int urb_index = -1; 4434 struct fotg210_iso_stream *stream = itd->stream; 4435 struct usb_device *dev; 4436 bool retval = false; 4437 4438 /* for each uframe with a packet */ 4439 for (uframe = 0; uframe < 8; uframe++) { 4440 if (likely(itd->index[uframe] == -1)) 4441 continue; 4442 urb_index = itd->index[uframe]; 4443 desc = &urb->iso_frame_desc[urb_index]; 4444 4445 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]); 4446 itd->hw_transaction[uframe] = 0; 4447 4448 /* report transfer status */ 4449 if (unlikely(t & ISO_ERRS)) { 4450 urb->error_count++; 4451 if (t & FOTG210_ISOC_BUF_ERR) 4452 desc->status = usb_pipein(urb->pipe) 4453 ? -ENOSR /* hc couldn't read */ 4454 : -ECOMM; /* hc couldn't write */ 4455 else if (t & FOTG210_ISOC_BABBLE) 4456 desc->status = -EOVERFLOW; 4457 else /* (t & FOTG210_ISOC_XACTERR) */ 4458 desc->status = -EPROTO; 4459 4460 /* HC need not update length with this error */ 4461 if (!(t & FOTG210_ISOC_BABBLE)) { 4462 desc->actual_length = FOTG210_ITD_LENGTH(t); 4463 urb->actual_length += desc->actual_length; 4464 } 4465 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) { 4466 desc->status = 0; 4467 desc->actual_length = FOTG210_ITD_LENGTH(t); 4468 urb->actual_length += desc->actual_length; 4469 } else { 4470 /* URB was too late */ 4471 desc->status = -EXDEV; 4472 } 4473 } 4474 4475 /* handle completion now? */ 4476 if (likely((urb_index + 1) != urb->number_of_packets)) 4477 goto done; 4478 4479 /* ASSERT: it's really the last itd for this urb 4480 * list_for_each_entry (itd, &stream->td_list, itd_list) 4481 * BUG_ON (itd->urb == urb); 4482 */ 4483 4484 /* give urb back to the driver; completion often (re)submits */ 4485 dev = urb->dev; 4486 fotg210_urb_done(fotg210, urb, 0); 4487 retval = true; 4488 urb = NULL; 4489 4490 --fotg210->isoc_count; 4491 disable_periodic(fotg210); 4492 4493 if (unlikely(list_is_singular(&stream->td_list))) { 4494 fotg210_to_hcd(fotg210)->self.bandwidth_allocated 4495 -= stream->bandwidth; 4496 fotg210_dbg(fotg210, 4497 "deschedule devp %s ep%d%s-iso\n", 4498 dev->devpath, stream->bEndpointAddress & 0x0f, 4499 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 4500 } 4501 4502 done: 4503 itd->urb = NULL; 4504 4505 /* Add to the end of the free list for later reuse */ 4506 list_move_tail(&itd->itd_list, &stream->free_list); 4507 4508 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ 4509 if (list_empty(&stream->td_list)) { 4510 list_splice_tail_init(&stream->free_list, 4511 &fotg210->cached_itd_list); 4512 start_free_itds(fotg210); 4513 } 4514 4515 return retval; 4516 } 4517 4518 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb, 4519 gfp_t mem_flags) 4520 { 4521 int status = -EINVAL; 4522 unsigned long flags; 4523 struct fotg210_iso_stream *stream; 4524 4525 /* Get iso_stream head */ 4526 stream = iso_stream_find(fotg210, urb); 4527 if (unlikely(stream == NULL)) { 4528 fotg210_dbg(fotg210, "can't get iso stream\n"); 4529 return -ENOMEM; 4530 } 4531 if (unlikely(urb->interval != stream->interval && 4532 fotg210_port_speed(fotg210, 0) == 4533 USB_PORT_STAT_HIGH_SPEED)) { 4534 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n", 4535 stream->interval, urb->interval); 4536 goto done; 4537 } 4538 4539 #ifdef FOTG210_URB_TRACE 4540 fotg210_dbg(fotg210, 4541 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n", 4542 __func__, urb->dev->devpath, urb, 4543 usb_pipeendpoint(urb->pipe), 4544 usb_pipein(urb->pipe) ? "in" : "out", 4545 urb->transfer_buffer_length, 4546 urb->number_of_packets, urb->interval, 4547 stream); 4548 #endif 4549 4550 /* allocate ITDs w/o locking anything */ 4551 status = itd_urb_transaction(stream, fotg210, urb, mem_flags); 4552 if (unlikely(status < 0)) { 4553 fotg210_dbg(fotg210, "can't init itds\n"); 4554 goto done; 4555 } 4556 4557 /* schedule ... need to lock */ 4558 spin_lock_irqsave(&fotg210->lock, flags); 4559 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 4560 status = -ESHUTDOWN; 4561 goto done_not_linked; 4562 } 4563 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 4564 if (unlikely(status)) 4565 goto done_not_linked; 4566 status = iso_stream_schedule(fotg210, urb, stream); 4567 if (likely(status == 0)) 4568 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream); 4569 else 4570 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 4571 done_not_linked: 4572 spin_unlock_irqrestore(&fotg210->lock, flags); 4573 done: 4574 return status; 4575 } 4576 4577 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame, 4578 unsigned now_frame, bool live) 4579 { 4580 unsigned uf; 4581 bool modified; 4582 union fotg210_shadow q, *q_p; 4583 __hc32 type, *hw_p; 4584 4585 /* scan each element in frame's queue for completions */ 4586 q_p = &fotg210->pshadow[frame]; 4587 hw_p = &fotg210->periodic[frame]; 4588 q.ptr = q_p->ptr; 4589 type = Q_NEXT_TYPE(fotg210, *hw_p); 4590 modified = false; 4591 4592 while (q.ptr) { 4593 switch (hc32_to_cpu(fotg210, type)) { 4594 case Q_TYPE_ITD: 4595 /* If this ITD is still active, leave it for 4596 * later processing ... check the next entry. 4597 * No need to check for activity unless the 4598 * frame is current. 4599 */ 4600 if (frame == now_frame && live) { 4601 rmb(); 4602 for (uf = 0; uf < 8; uf++) { 4603 if (q.itd->hw_transaction[uf] & 4604 ITD_ACTIVE(fotg210)) 4605 break; 4606 } 4607 if (uf < 8) { 4608 q_p = &q.itd->itd_next; 4609 hw_p = &q.itd->hw_next; 4610 type = Q_NEXT_TYPE(fotg210, 4611 q.itd->hw_next); 4612 q = *q_p; 4613 break; 4614 } 4615 } 4616 4617 /* Take finished ITDs out of the schedule 4618 * and process them: recycle, maybe report 4619 * URB completion. HC won't cache the 4620 * pointer for much longer, if at all. 4621 */ 4622 *q_p = q.itd->itd_next; 4623 *hw_p = q.itd->hw_next; 4624 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next); 4625 wmb(); 4626 modified = itd_complete(fotg210, q.itd); 4627 q = *q_p; 4628 break; 4629 default: 4630 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n", 4631 type, frame, q.ptr); 4632 fallthrough; 4633 case Q_TYPE_QH: 4634 case Q_TYPE_FSTN: 4635 /* End of the iTDs and siTDs */ 4636 q.ptr = NULL; 4637 break; 4638 } 4639 4640 /* assume completion callbacks modify the queue */ 4641 if (unlikely(modified && fotg210->isoc_count > 0)) 4642 return -EINVAL; 4643 } 4644 return 0; 4645 } 4646 4647 static void scan_isoc(struct fotg210_hcd *fotg210) 4648 { 4649 unsigned uf, now_frame, frame, ret; 4650 unsigned fmask = fotg210->periodic_size - 1; 4651 bool live; 4652 4653 /* 4654 * When running, scan from last scan point up to "now" 4655 * else clean up by scanning everything that's left. 4656 * Touches as few pages as possible: cache-friendly. 4657 */ 4658 if (fotg210->rh_state >= FOTG210_RH_RUNNING) { 4659 uf = fotg210_read_frame_index(fotg210); 4660 now_frame = (uf >> 3) & fmask; 4661 live = true; 4662 } else { 4663 now_frame = (fotg210->next_frame - 1) & fmask; 4664 live = false; 4665 } 4666 fotg210->now_frame = now_frame; 4667 4668 frame = fotg210->next_frame; 4669 for (;;) { 4670 ret = 1; 4671 while (ret != 0) 4672 ret = scan_frame_queue(fotg210, frame, 4673 now_frame, live); 4674 4675 /* Stop when we have reached the current frame */ 4676 if (frame == now_frame) 4677 break; 4678 frame = (frame + 1) & fmask; 4679 } 4680 fotg210->next_frame = now_frame; 4681 } 4682 4683 /* Display / Set uframe_periodic_max 4684 */ 4685 static ssize_t uframe_periodic_max_show(struct device *dev, 4686 struct device_attribute *attr, char *buf) 4687 { 4688 struct fotg210_hcd *fotg210; 4689 4690 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); 4691 return sysfs_emit(buf, "%d\n", fotg210->uframe_periodic_max); 4692 } 4693 4694 static ssize_t uframe_periodic_max_store(struct device *dev, 4695 struct device_attribute *attr, const char *buf, size_t count) 4696 { 4697 struct fotg210_hcd *fotg210; 4698 unsigned uframe_periodic_max; 4699 unsigned frame, uframe; 4700 unsigned short allocated_max; 4701 unsigned long flags; 4702 ssize_t ret; 4703 4704 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); 4705 4706 ret = kstrtouint(buf, 0, &uframe_periodic_max); 4707 if (ret) 4708 return ret; 4709 4710 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) { 4711 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n", 4712 uframe_periodic_max); 4713 return -EINVAL; 4714 } 4715 4716 ret = -EINVAL; 4717 4718 /* 4719 * lock, so that our checking does not race with possible periodic 4720 * bandwidth allocation through submitting new urbs. 4721 */ 4722 spin_lock_irqsave(&fotg210->lock, flags); 4723 4724 /* 4725 * for request to decrease max periodic bandwidth, we have to check 4726 * every microframe in the schedule to see whether the decrease is 4727 * possible. 4728 */ 4729 if (uframe_periodic_max < fotg210->uframe_periodic_max) { 4730 allocated_max = 0; 4731 4732 for (frame = 0; frame < fotg210->periodic_size; ++frame) 4733 for (uframe = 0; uframe < 7; ++uframe) 4734 allocated_max = max(allocated_max, 4735 periodic_usecs(fotg210, frame, 4736 uframe)); 4737 4738 if (allocated_max > uframe_periodic_max) { 4739 fotg210_info(fotg210, 4740 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n", 4741 allocated_max, uframe_periodic_max); 4742 goto out_unlock; 4743 } 4744 } 4745 4746 /* increasing is always ok */ 4747 4748 fotg210_info(fotg210, 4749 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n", 4750 100 * uframe_periodic_max/125, uframe_periodic_max); 4751 4752 if (uframe_periodic_max != 100) 4753 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n"); 4754 4755 fotg210->uframe_periodic_max = uframe_periodic_max; 4756 ret = count; 4757 4758 out_unlock: 4759 spin_unlock_irqrestore(&fotg210->lock, flags); 4760 return ret; 4761 } 4762 4763 static DEVICE_ATTR_RW(uframe_periodic_max); 4764 4765 static inline int create_sysfs_files(struct fotg210_hcd *fotg210) 4766 { 4767 struct device *controller = fotg210_to_hcd(fotg210)->self.controller; 4768 4769 return device_create_file(controller, &dev_attr_uframe_periodic_max); 4770 } 4771 4772 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210) 4773 { 4774 struct device *controller = fotg210_to_hcd(fotg210)->self.controller; 4775 4776 device_remove_file(controller, &dev_attr_uframe_periodic_max); 4777 } 4778 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 4779 * The firmware seems to think that powering off is a wakeup event! 4780 * This routine turns off remote wakeup and everything else, on all ports. 4781 */ 4782 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210) 4783 { 4784 u32 __iomem *status_reg = &fotg210->regs->port_status; 4785 4786 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg); 4787 } 4788 4789 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers. 4790 * Must be called with interrupts enabled and the lock not held. 4791 */ 4792 static void fotg210_silence_controller(struct fotg210_hcd *fotg210) 4793 { 4794 fotg210_halt(fotg210); 4795 4796 spin_lock_irq(&fotg210->lock); 4797 fotg210->rh_state = FOTG210_RH_HALTED; 4798 fotg210_turn_off_all_ports(fotg210); 4799 spin_unlock_irq(&fotg210->lock); 4800 } 4801 4802 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc). 4803 * This forcibly disables dma and IRQs, helping kexec and other cases 4804 * where the next system software may expect clean state. 4805 */ 4806 static void fotg210_shutdown(struct usb_hcd *hcd) 4807 { 4808 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4809 4810 spin_lock_irq(&fotg210->lock); 4811 fotg210->shutdown = true; 4812 fotg210->rh_state = FOTG210_RH_STOPPING; 4813 fotg210->enabled_hrtimer_events = 0; 4814 spin_unlock_irq(&fotg210->lock); 4815 4816 fotg210_silence_controller(fotg210); 4817 4818 hrtimer_cancel(&fotg210->hrtimer); 4819 } 4820 4821 /* fotg210_work is called from some interrupts, timers, and so on. 4822 * it calls driver completion functions, after dropping fotg210->lock. 4823 */ 4824 static void fotg210_work(struct fotg210_hcd *fotg210) 4825 { 4826 /* another CPU may drop fotg210->lock during a schedule scan while 4827 * it reports urb completions. this flag guards against bogus 4828 * attempts at re-entrant schedule scanning. 4829 */ 4830 if (fotg210->scanning) { 4831 fotg210->need_rescan = true; 4832 return; 4833 } 4834 fotg210->scanning = true; 4835 4836 rescan: 4837 fotg210->need_rescan = false; 4838 if (fotg210->async_count) 4839 scan_async(fotg210); 4840 if (fotg210->intr_count > 0) 4841 scan_intr(fotg210); 4842 if (fotg210->isoc_count > 0) 4843 scan_isoc(fotg210); 4844 if (fotg210->need_rescan) 4845 goto rescan; 4846 fotg210->scanning = false; 4847 4848 /* the IO watchdog guards against hardware or driver bugs that 4849 * misplace IRQs, and should let us run completely without IRQs. 4850 * such lossage has been observed on both VT6202 and VT8235. 4851 */ 4852 turn_on_io_watchdog(fotg210); 4853 } 4854 4855 /* Called when the fotg210_hcd module is removed. 4856 */ 4857 static void fotg210_stop(struct usb_hcd *hcd) 4858 { 4859 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4860 4861 fotg210_dbg(fotg210, "stop\n"); 4862 4863 /* no more interrupts ... */ 4864 4865 spin_lock_irq(&fotg210->lock); 4866 fotg210->enabled_hrtimer_events = 0; 4867 spin_unlock_irq(&fotg210->lock); 4868 4869 fotg210_quiesce(fotg210); 4870 fotg210_silence_controller(fotg210); 4871 fotg210_reset(fotg210); 4872 4873 hrtimer_cancel(&fotg210->hrtimer); 4874 remove_sysfs_files(fotg210); 4875 remove_debug_files(fotg210); 4876 4877 /* root hub is shut down separately (first, when possible) */ 4878 spin_lock_irq(&fotg210->lock); 4879 end_free_itds(fotg210); 4880 spin_unlock_irq(&fotg210->lock); 4881 fotg210_mem_cleanup(fotg210); 4882 4883 #ifdef FOTG210_STATS 4884 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n", 4885 fotg210->stats.normal, fotg210->stats.error, 4886 fotg210->stats.iaa, fotg210->stats.lost_iaa); 4887 fotg210_dbg(fotg210, "complete %ld unlink %ld\n", 4888 fotg210->stats.complete, fotg210->stats.unlink); 4889 #endif 4890 4891 dbg_status(fotg210, "fotg210_stop completed", 4892 fotg210_readl(fotg210, &fotg210->regs->status)); 4893 } 4894 4895 /* one-time init, only for memory state */ 4896 static int hcd_fotg210_init(struct usb_hcd *hcd) 4897 { 4898 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4899 u32 temp; 4900 int retval; 4901 u32 hcc_params; 4902 struct fotg210_qh_hw *hw; 4903 4904 spin_lock_init(&fotg210->lock); 4905 4906 /* 4907 * keep io watchdog by default, those good HCDs could turn off it later 4908 */ 4909 fotg210->need_io_watchdog = 1; 4910 4911 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 4912 fotg210->hrtimer.function = fotg210_hrtimer_func; 4913 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; 4914 4915 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 4916 4917 /* 4918 * by default set standard 80% (== 100 usec/uframe) max periodic 4919 * bandwidth as required by USB 2.0 4920 */ 4921 fotg210->uframe_periodic_max = 100; 4922 4923 /* 4924 * hw default: 1K periodic list heads, one per frame. 4925 * periodic_size can shrink by USBCMD update if hcc_params allows. 4926 */ 4927 fotg210->periodic_size = DEFAULT_I_TDPS; 4928 INIT_LIST_HEAD(&fotg210->intr_qh_list); 4929 INIT_LIST_HEAD(&fotg210->cached_itd_list); 4930 4931 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 4932 /* periodic schedule size can be smaller than default */ 4933 switch (FOTG210_TUNE_FLS) { 4934 case 0: 4935 fotg210->periodic_size = 1024; 4936 break; 4937 case 1: 4938 fotg210->periodic_size = 512; 4939 break; 4940 case 2: 4941 fotg210->periodic_size = 256; 4942 break; 4943 default: 4944 BUG(); 4945 } 4946 } 4947 retval = fotg210_mem_init(fotg210, GFP_KERNEL); 4948 if (retval < 0) 4949 return retval; 4950 4951 /* controllers may cache some of the periodic schedule ... */ 4952 fotg210->i_thresh = 2; 4953 4954 /* 4955 * dedicate a qh for the async ring head, since we couldn't unlink 4956 * a 'real' qh without stopping the async schedule [4.8]. use it 4957 * as the 'reclamation list head' too. 4958 * its dummy is used in hw_alt_next of many tds, to prevent the qh 4959 * from automatically advancing to the next td after short reads. 4960 */ 4961 fotg210->async->qh_next.qh = NULL; 4962 hw = fotg210->async->hw; 4963 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma); 4964 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD); 4965 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); 4966 hw->hw_qtd_next = FOTG210_LIST_END(fotg210); 4967 fotg210->async->qh_state = QH_STATE_LINKED; 4968 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma); 4969 4970 /* clear interrupt enables, set irq latency */ 4971 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 4972 log2_irq_thresh = 0; 4973 temp = 1 << (16 + log2_irq_thresh); 4974 if (HCC_CANPARK(hcc_params)) { 4975 /* HW default park == 3, on hardware that supports it (like 4976 * NVidia and ALI silicon), maximizes throughput on the async 4977 * schedule by avoiding QH fetches between transfers. 4978 * 4979 * With fast usb storage devices and NForce2, "park" seems to 4980 * make problems: throughput reduction (!), data errors... 4981 */ 4982 if (park) { 4983 park = min_t(unsigned, park, 3); 4984 temp |= CMD_PARK; 4985 temp |= park << 8; 4986 } 4987 fotg210_dbg(fotg210, "park %d\n", park); 4988 } 4989 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 4990 /* periodic schedule size can be smaller than default */ 4991 temp &= ~(3 << 2); 4992 temp |= (FOTG210_TUNE_FLS << 2); 4993 } 4994 fotg210->command = temp; 4995 4996 /* Accept arbitrarily long scatter-gather lists */ 4997 if (!hcd->localmem_pool) 4998 hcd->self.sg_tablesize = ~0; 4999 return 0; 5000 } 5001 5002 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */ 5003 static int fotg210_run(struct usb_hcd *hcd) 5004 { 5005 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5006 u32 temp; 5007 5008 hcd->uses_new_polling = 1; 5009 5010 /* EHCI spec section 4.1 */ 5011 5012 fotg210_writel(fotg210, fotg210->periodic_dma, 5013 &fotg210->regs->frame_list); 5014 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma, 5015 &fotg210->regs->async_next); 5016 5017 /* 5018 * hcc_params controls whether fotg210->regs->segment must (!!!) 5019 * be used; it constrains QH/ITD/SITD and QTD locations. 5020 * dma_pool consistent memory always uses segment zero. 5021 * streaming mappings for I/O buffers, like dma_map_single(), 5022 * can return segments above 4GB, if the device allows. 5023 * 5024 * NOTE: the dma mask is visible through dev->dma_mask, so 5025 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 5026 * Scsi_Host.highmem_io, and so forth. It's readonly to all 5027 * host side drivers though. 5028 */ 5029 fotg210_readl(fotg210, &fotg210->caps->hcc_params); 5030 5031 /* 5032 * Philips, Intel, and maybe others need CMD_RUN before the 5033 * root hub will detect new devices (why?); NEC doesn't 5034 */ 5035 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET); 5036 fotg210->command |= CMD_RUN; 5037 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 5038 dbg_cmd(fotg210, "init", fotg210->command); 5039 5040 /* 5041 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 5042 * are explicitly handed to companion controller(s), so no TT is 5043 * involved with the root hub. (Except where one is integrated, 5044 * and there's no companion controller unless maybe for USB OTG.) 5045 * 5046 * Turning on the CF flag will transfer ownership of all ports 5047 * from the companions to the EHCI controller. If any of the 5048 * companions are in the middle of a port reset at the time, it 5049 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem 5050 * guarantees that no resets are in progress. After we set CF, 5051 * a short delay lets the hardware catch up; new resets shouldn't 5052 * be started before the port switching actions could complete. 5053 */ 5054 down_write(&ehci_cf_port_reset_rwsem); 5055 fotg210->rh_state = FOTG210_RH_RUNNING; 5056 /* unblock posted writes */ 5057 fotg210_readl(fotg210, &fotg210->regs->command); 5058 usleep_range(5000, 10000); 5059 up_write(&ehci_cf_port_reset_rwsem); 5060 fotg210->last_periodic_enable = ktime_get_real(); 5061 5062 temp = HC_VERSION(fotg210, 5063 fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); 5064 fotg210_info(fotg210, 5065 "USB %x.%x started, EHCI %x.%02x\n", 5066 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f), 5067 temp >> 8, temp & 0xff); 5068 5069 fotg210_writel(fotg210, INTR_MASK, 5070 &fotg210->regs->intr_enable); /* Turn On Interrupts */ 5071 5072 /* GRR this is run-once init(), being done every time the HC starts. 5073 * So long as they're part of class devices, we can't do it init() 5074 * since the class device isn't created that early. 5075 */ 5076 create_debug_files(fotg210); 5077 create_sysfs_files(fotg210); 5078 5079 return 0; 5080 } 5081 5082 static int fotg210_setup(struct usb_hcd *hcd) 5083 { 5084 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5085 int retval; 5086 5087 fotg210->regs = (void __iomem *)fotg210->caps + 5088 HC_LENGTH(fotg210, 5089 fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); 5090 dbg_hcs_params(fotg210, "reset"); 5091 dbg_hcc_params(fotg210, "reset"); 5092 5093 /* cache this readonly data; minimize chip reads */ 5094 fotg210->hcs_params = fotg210_readl(fotg210, 5095 &fotg210->caps->hcs_params); 5096 5097 fotg210->sbrn = HCD_USB2; 5098 5099 /* data structure init */ 5100 retval = hcd_fotg210_init(hcd); 5101 if (retval) 5102 return retval; 5103 5104 retval = fotg210_halt(fotg210); 5105 if (retval) 5106 return retval; 5107 5108 fotg210_reset(fotg210); 5109 5110 return 0; 5111 } 5112 5113 static irqreturn_t fotg210_irq(struct usb_hcd *hcd) 5114 { 5115 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5116 u32 status, masked_status, pcd_status = 0, cmd; 5117 int bh; 5118 5119 spin_lock(&fotg210->lock); 5120 5121 status = fotg210_readl(fotg210, &fotg210->regs->status); 5122 5123 /* e.g. cardbus physical eject */ 5124 if (status == ~(u32) 0) { 5125 fotg210_dbg(fotg210, "device removed\n"); 5126 goto dead; 5127 } 5128 5129 /* 5130 * We don't use STS_FLR, but some controllers don't like it to 5131 * remain on, so mask it out along with the other status bits. 5132 */ 5133 masked_status = status & (INTR_MASK | STS_FLR); 5134 5135 /* Shared IRQ? */ 5136 if (!masked_status || 5137 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) { 5138 spin_unlock(&fotg210->lock); 5139 return IRQ_NONE; 5140 } 5141 5142 /* clear (just) interrupts */ 5143 fotg210_writel(fotg210, masked_status, &fotg210->regs->status); 5144 cmd = fotg210_readl(fotg210, &fotg210->regs->command); 5145 bh = 0; 5146 5147 /* unrequested/ignored: Frame List Rollover */ 5148 dbg_status(fotg210, "irq", status); 5149 5150 /* INT, ERR, and IAA interrupt rates can be throttled */ 5151 5152 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 5153 if (likely((status & (STS_INT|STS_ERR)) != 0)) { 5154 if (likely((status & STS_ERR) == 0)) 5155 INCR(fotg210->stats.normal); 5156 else 5157 INCR(fotg210->stats.error); 5158 bh = 1; 5159 } 5160 5161 /* complete the unlinking of some qh [4.15.2.3] */ 5162 if (status & STS_IAA) { 5163 5164 /* Turn off the IAA watchdog */ 5165 fotg210->enabled_hrtimer_events &= 5166 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG); 5167 5168 /* 5169 * Mild optimization: Allow another IAAD to reset the 5170 * hrtimer, if one occurs before the next expiration. 5171 * In theory we could always cancel the hrtimer, but 5172 * tests show that about half the time it will be reset 5173 * for some other event anyway. 5174 */ 5175 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG) 5176 ++fotg210->next_hrtimer_event; 5177 5178 /* guard against (alleged) silicon errata */ 5179 if (cmd & CMD_IAAD) 5180 fotg210_dbg(fotg210, "IAA with IAAD still set?\n"); 5181 if (fotg210->async_iaa) { 5182 INCR(fotg210->stats.iaa); 5183 end_unlink_async(fotg210); 5184 } else 5185 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n"); 5186 } 5187 5188 /* remote wakeup [4.3.1] */ 5189 if (status & STS_PCD) { 5190 int pstatus; 5191 u32 __iomem *status_reg = &fotg210->regs->port_status; 5192 5193 /* kick root hub later */ 5194 pcd_status = status; 5195 5196 /* resume root hub? */ 5197 if (fotg210->rh_state == FOTG210_RH_SUSPENDED) 5198 usb_hcd_resume_root_hub(hcd); 5199 5200 pstatus = fotg210_readl(fotg210, status_reg); 5201 5202 if (test_bit(0, &fotg210->suspended_ports) && 5203 ((pstatus & PORT_RESUME) || 5204 !(pstatus & PORT_SUSPEND)) && 5205 (pstatus & PORT_PE) && 5206 fotg210->reset_done[0] == 0) { 5207 5208 /* start 20 msec resume signaling from this port, 5209 * and make hub_wq collect PORT_STAT_C_SUSPEND to 5210 * stop that signaling. Use 5 ms extra for safety, 5211 * like usb_port_resume() does. 5212 */ 5213 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25); 5214 set_bit(0, &fotg210->resuming_ports); 5215 fotg210_dbg(fotg210, "port 1 remote wakeup\n"); 5216 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]); 5217 } 5218 } 5219 5220 /* PCI errors [4.15.2.4] */ 5221 if (unlikely((status & STS_FATAL) != 0)) { 5222 fotg210_err(fotg210, "fatal error\n"); 5223 dbg_cmd(fotg210, "fatal", cmd); 5224 dbg_status(fotg210, "fatal", status); 5225 dead: 5226 usb_hc_died(hcd); 5227 5228 /* Don't let the controller do anything more */ 5229 fotg210->shutdown = true; 5230 fotg210->rh_state = FOTG210_RH_STOPPING; 5231 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE); 5232 fotg210_writel(fotg210, fotg210->command, 5233 &fotg210->regs->command); 5234 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 5235 fotg210_handle_controller_death(fotg210); 5236 5237 /* Handle completions when the controller stops */ 5238 bh = 0; 5239 } 5240 5241 if (bh) 5242 fotg210_work(fotg210); 5243 spin_unlock(&fotg210->lock); 5244 if (pcd_status) 5245 usb_hcd_poll_rh_status(hcd); 5246 return IRQ_HANDLED; 5247 } 5248 5249 /* non-error returns are a promise to giveback() the urb later 5250 * we drop ownership so next owner (or urb unlink) can get it 5251 * 5252 * urb + dev is in hcd.self.controller.urb_list 5253 * we're queueing TDs onto software and hardware lists 5254 * 5255 * hcd-specific init for hcpriv hasn't been done yet 5256 * 5257 * NOTE: control, bulk, and interrupt share the same code to append TDs 5258 * to a (possibly active) QH, and the same QH scanning code. 5259 */ 5260 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 5261 gfp_t mem_flags) 5262 { 5263 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5264 struct list_head qtd_list; 5265 5266 INIT_LIST_HEAD(&qtd_list); 5267 5268 switch (usb_pipetype(urb->pipe)) { 5269 case PIPE_CONTROL: 5270 /* qh_completions() code doesn't handle all the fault cases 5271 * in multi-TD control transfers. Even 1KB is rare anyway. 5272 */ 5273 if (urb->transfer_buffer_length > (16 * 1024)) 5274 return -EMSGSIZE; 5275 fallthrough; 5276 /* case PIPE_BULK: */ 5277 default: 5278 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) 5279 return -ENOMEM; 5280 return submit_async(fotg210, urb, &qtd_list, mem_flags); 5281 5282 case PIPE_INTERRUPT: 5283 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) 5284 return -ENOMEM; 5285 return intr_submit(fotg210, urb, &qtd_list, mem_flags); 5286 5287 case PIPE_ISOCHRONOUS: 5288 return itd_submit(fotg210, urb, mem_flags); 5289 } 5290 } 5291 5292 /* remove from hardware lists 5293 * completions normally happen asynchronously 5294 */ 5295 5296 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 5297 { 5298 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5299 struct fotg210_qh *qh; 5300 unsigned long flags; 5301 int rc; 5302 5303 spin_lock_irqsave(&fotg210->lock, flags); 5304 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 5305 if (rc) 5306 goto done; 5307 5308 switch (usb_pipetype(urb->pipe)) { 5309 /* case PIPE_CONTROL: */ 5310 /* case PIPE_BULK:*/ 5311 default: 5312 qh = (struct fotg210_qh *) urb->hcpriv; 5313 if (!qh) 5314 break; 5315 switch (qh->qh_state) { 5316 case QH_STATE_LINKED: 5317 case QH_STATE_COMPLETING: 5318 start_unlink_async(fotg210, qh); 5319 break; 5320 case QH_STATE_UNLINK: 5321 case QH_STATE_UNLINK_WAIT: 5322 /* already started */ 5323 break; 5324 case QH_STATE_IDLE: 5325 /* QH might be waiting for a Clear-TT-Buffer */ 5326 qh_completions(fotg210, qh); 5327 break; 5328 } 5329 break; 5330 5331 case PIPE_INTERRUPT: 5332 qh = (struct fotg210_qh *) urb->hcpriv; 5333 if (!qh) 5334 break; 5335 switch (qh->qh_state) { 5336 case QH_STATE_LINKED: 5337 case QH_STATE_COMPLETING: 5338 start_unlink_intr(fotg210, qh); 5339 break; 5340 case QH_STATE_IDLE: 5341 qh_completions(fotg210, qh); 5342 break; 5343 default: 5344 fotg210_dbg(fotg210, "bogus qh %p state %d\n", 5345 qh, qh->qh_state); 5346 goto done; 5347 } 5348 break; 5349 5350 case PIPE_ISOCHRONOUS: 5351 /* itd... */ 5352 5353 /* wait till next completion, do it then. */ 5354 /* completion irqs can wait up to 1024 msec, */ 5355 break; 5356 } 5357 done: 5358 spin_unlock_irqrestore(&fotg210->lock, flags); 5359 return rc; 5360 } 5361 5362 /* bulk qh holds the data toggle */ 5363 5364 static void fotg210_endpoint_disable(struct usb_hcd *hcd, 5365 struct usb_host_endpoint *ep) 5366 { 5367 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5368 unsigned long flags; 5369 struct fotg210_qh *qh, *tmp; 5370 5371 /* ASSERT: any requests/urbs are being unlinked */ 5372 /* ASSERT: nobody can be submitting urbs for this any more */ 5373 5374 rescan: 5375 spin_lock_irqsave(&fotg210->lock, flags); 5376 qh = ep->hcpriv; 5377 if (!qh) 5378 goto done; 5379 5380 /* endpoints can be iso streams. for now, we don't 5381 * accelerate iso completions ... so spin a while. 5382 */ 5383 if (qh->hw == NULL) { 5384 struct fotg210_iso_stream *stream = ep->hcpriv; 5385 5386 if (!list_empty(&stream->td_list)) 5387 goto idle_timeout; 5388 5389 /* BUG_ON(!list_empty(&stream->free_list)); */ 5390 kfree(stream); 5391 goto done; 5392 } 5393 5394 if (fotg210->rh_state < FOTG210_RH_RUNNING) 5395 qh->qh_state = QH_STATE_IDLE; 5396 switch (qh->qh_state) { 5397 case QH_STATE_LINKED: 5398 case QH_STATE_COMPLETING: 5399 for (tmp = fotg210->async->qh_next.qh; 5400 tmp && tmp != qh; 5401 tmp = tmp->qh_next.qh) 5402 continue; 5403 /* periodic qh self-unlinks on empty, and a COMPLETING qh 5404 * may already be unlinked. 5405 */ 5406 if (tmp) 5407 start_unlink_async(fotg210, qh); 5408 fallthrough; 5409 case QH_STATE_UNLINK: /* wait for hw to finish? */ 5410 case QH_STATE_UNLINK_WAIT: 5411 idle_timeout: 5412 spin_unlock_irqrestore(&fotg210->lock, flags); 5413 schedule_timeout_uninterruptible(1); 5414 goto rescan; 5415 case QH_STATE_IDLE: /* fully unlinked */ 5416 if (qh->clearing_tt) 5417 goto idle_timeout; 5418 if (list_empty(&qh->qtd_list)) { 5419 qh_destroy(fotg210, qh); 5420 break; 5421 } 5422 fallthrough; 5423 default: 5424 /* caller was supposed to have unlinked any requests; 5425 * that's not our job. just leak this memory. 5426 */ 5427 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n", 5428 qh, ep->desc.bEndpointAddress, qh->qh_state, 5429 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 5430 break; 5431 } 5432 done: 5433 ep->hcpriv = NULL; 5434 spin_unlock_irqrestore(&fotg210->lock, flags); 5435 } 5436 5437 static void fotg210_endpoint_reset(struct usb_hcd *hcd, 5438 struct usb_host_endpoint *ep) 5439 { 5440 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5441 struct fotg210_qh *qh; 5442 int eptype = usb_endpoint_type(&ep->desc); 5443 int epnum = usb_endpoint_num(&ep->desc); 5444 int is_out = usb_endpoint_dir_out(&ep->desc); 5445 unsigned long flags; 5446 5447 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT) 5448 return; 5449 5450 spin_lock_irqsave(&fotg210->lock, flags); 5451 qh = ep->hcpriv; 5452 5453 /* For Bulk and Interrupt endpoints we maintain the toggle state 5454 * in the hardware; the toggle bits in udev aren't used at all. 5455 * When an endpoint is reset by usb_clear_halt() we must reset 5456 * the toggle bit in the QH. 5457 */ 5458 if (qh) { 5459 usb_settoggle(qh->dev, epnum, is_out, 0); 5460 if (!list_empty(&qh->qtd_list)) { 5461 WARN_ONCE(1, "clear_halt for a busy endpoint\n"); 5462 } else if (qh->qh_state == QH_STATE_LINKED || 5463 qh->qh_state == QH_STATE_COMPLETING) { 5464 5465 /* The toggle value in the QH can't be updated 5466 * while the QH is active. Unlink it now; 5467 * re-linking will call qh_refresh(). 5468 */ 5469 if (eptype == USB_ENDPOINT_XFER_BULK) 5470 start_unlink_async(fotg210, qh); 5471 else 5472 start_unlink_intr(fotg210, qh); 5473 } 5474 } 5475 spin_unlock_irqrestore(&fotg210->lock, flags); 5476 } 5477 5478 static int fotg210_get_frame(struct usb_hcd *hcd) 5479 { 5480 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5481 5482 return (fotg210_read_frame_index(fotg210) >> 3) % 5483 fotg210->periodic_size; 5484 } 5485 5486 /* The EHCI in ChipIdea HDRC cannot be a separate module or device, 5487 * because its registers (and irq) are shared between host/gadget/otg 5488 * functions and in order to facilitate role switching we cannot 5489 * give the fotg210 driver exclusive access to those. 5490 */ 5491 5492 static const struct hc_driver fotg210_fotg210_hc_driver = { 5493 .description = hcd_name, 5494 .product_desc = "Faraday USB2.0 Host Controller", 5495 .hcd_priv_size = sizeof(struct fotg210_hcd), 5496 5497 /* 5498 * generic hardware linkage 5499 */ 5500 .irq = fotg210_irq, 5501 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2, 5502 5503 /* 5504 * basic lifecycle operations 5505 */ 5506 .reset = hcd_fotg210_init, 5507 .start = fotg210_run, 5508 .stop = fotg210_stop, 5509 .shutdown = fotg210_shutdown, 5510 5511 /* 5512 * managing i/o requests and associated device resources 5513 */ 5514 .urb_enqueue = fotg210_urb_enqueue, 5515 .urb_dequeue = fotg210_urb_dequeue, 5516 .endpoint_disable = fotg210_endpoint_disable, 5517 .endpoint_reset = fotg210_endpoint_reset, 5518 5519 /* 5520 * scheduling support 5521 */ 5522 .get_frame_number = fotg210_get_frame, 5523 5524 /* 5525 * root hub support 5526 */ 5527 .hub_status_data = fotg210_hub_status_data, 5528 .hub_control = fotg210_hub_control, 5529 .bus_suspend = fotg210_bus_suspend, 5530 .bus_resume = fotg210_bus_resume, 5531 5532 .relinquish_port = fotg210_relinquish_port, 5533 .port_handed_over = fotg210_port_handed_over, 5534 5535 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete, 5536 }; 5537 5538 static void fotg210_init(struct fotg210_hcd *fotg210) 5539 { 5540 u32 value; 5541 5542 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY, 5543 &fotg210->regs->gmir); 5544 5545 value = ioread32(&fotg210->regs->otgcsr); 5546 value &= ~OTGCSR_A_BUS_DROP; 5547 value |= OTGCSR_A_BUS_REQ; 5548 iowrite32(value, &fotg210->regs->otgcsr); 5549 } 5550 5551 /* 5552 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs 5553 * 5554 * Allocates basic resources for this USB host controller, and 5555 * then invokes the start() method for the HCD associated with it 5556 * through the hotplug entry's driver_data. 5557 */ 5558 int fotg210_hcd_probe(struct platform_device *pdev, struct fotg210 *fotg) 5559 { 5560 struct device *dev = &pdev->dev; 5561 struct usb_hcd *hcd; 5562 int irq; 5563 int retval; 5564 struct fotg210_hcd *fotg210; 5565 5566 if (usb_disabled()) 5567 return -ENODEV; 5568 5569 pdev->dev.power.power_state = PMSG_ON; 5570 5571 irq = platform_get_irq(pdev, 0); 5572 if (irq < 0) 5573 return irq; 5574 5575 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev, 5576 dev_name(dev)); 5577 if (!hcd) { 5578 retval = dev_err_probe(dev, -ENOMEM, "failed to create hcd\n"); 5579 goto fail_create_hcd; 5580 } 5581 5582 hcd->has_tt = 1; 5583 5584 hcd->regs = fotg->base; 5585 5586 hcd->rsrc_start = fotg->res->start; 5587 hcd->rsrc_len = resource_size(fotg->res); 5588 5589 fotg210 = hcd_to_fotg210(hcd); 5590 5591 fotg210->fotg = fotg; 5592 fotg210->caps = hcd->regs; 5593 5594 retval = fotg210_setup(hcd); 5595 if (retval) 5596 goto failed_put_hcd; 5597 5598 fotg210_init(fotg210); 5599 5600 retval = usb_add_hcd(hcd, irq, IRQF_SHARED); 5601 if (retval) { 5602 dev_err_probe(dev, retval, "failed to add hcd\n"); 5603 goto failed_put_hcd; 5604 } 5605 device_wakeup_enable(hcd->self.controller); 5606 platform_set_drvdata(pdev, hcd); 5607 5608 return retval; 5609 5610 failed_put_hcd: 5611 usb_put_hcd(hcd); 5612 fail_create_hcd: 5613 return dev_err_probe(dev, retval, "init %s fail\n", dev_name(dev)); 5614 } 5615 5616 /* 5617 * fotg210_hcd_remove - shutdown processing for EHCI HCDs 5618 * @dev: USB Host Controller being removed 5619 * 5620 */ 5621 int fotg210_hcd_remove(struct platform_device *pdev) 5622 { 5623 struct usb_hcd *hcd = platform_get_drvdata(pdev); 5624 5625 usb_remove_hcd(hcd); 5626 usb_put_hcd(hcd); 5627 5628 return 0; 5629 } 5630 5631 int __init fotg210_hcd_init(void) 5632 { 5633 if (usb_disabled()) 5634 return -ENODEV; 5635 5636 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5637 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) || 5638 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded)) 5639 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n"); 5640 5641 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n", 5642 hcd_name, sizeof(struct fotg210_qh), 5643 sizeof(struct fotg210_qtd), 5644 sizeof(struct fotg210_itd)); 5645 5646 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root); 5647 5648 return 0; 5649 } 5650 5651 void __exit fotg210_hcd_cleanup(void) 5652 { 5653 debugfs_remove(fotg210_debug_root); 5654 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5655 } 5656