1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3  *
4  * Copyright (c) 2013 Faraday Technology Corporation
5  *
6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7  *	   Feng-Hsin Chiang <john453@faraday-tech.com>
8  *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
9  *
10  * Most of code borrowed from the Linux-3.7 EHCI driver
11  */
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36 #include <linux/clk.h>
37 
38 #include <asm/byteorder.h>
39 #include <asm/irq.h>
40 #include <asm/unaligned.h>
41 
42 #include "fotg210.h"
43 
44 static const char hcd_name[] = "fotg210_hcd";
45 
46 #undef FOTG210_URB_TRACE
47 #define FOTG210_STATS
48 
49 /* magic numbers that can affect system performance */
50 #define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
51 #define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
52 #define FOTG210_TUNE_RL_TT	0
53 #define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
54 #define FOTG210_TUNE_MULT_TT	1
55 
56 /* Some drivers think it's safe to schedule isochronous transfers more than 256
57  * ms into the future (partly as a result of an old bug in the scheduling
58  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
59  * length of 512 frames instead of 256.
60  */
61 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
62 
63 /* Initial IRQ latency:  faster than hw default */
64 static int log2_irq_thresh; /* 0 to 6 */
65 module_param(log2_irq_thresh, int, S_IRUGO);
66 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
67 
68 /* initial park setting:  slower than hw default */
69 static unsigned park;
70 module_param(park, uint, S_IRUGO);
71 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
72 
73 /* for link power management(LPM) feature */
74 static unsigned int hird;
75 module_param(hird, int, S_IRUGO);
76 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
77 
78 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
79 
80 #include "fotg210-hcd.h"
81 
82 #define fotg210_dbg(fotg210, fmt, args...) \
83 	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
84 #define fotg210_err(fotg210, fmt, args...) \
85 	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
86 #define fotg210_info(fotg210, fmt, args...) \
87 	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88 #define fotg210_warn(fotg210, fmt, args...) \
89 	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
90 
91 /* check the values in the HCSPARAMS register (host controller _Structural_
92  * parameters) see EHCI spec, Table 2-4 for each value
93  */
94 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
95 {
96 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
97 
98 	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
99 			HCS_N_PORTS(params));
100 }
101 
102 /* check the values in the HCCPARAMS register (host controller _Capability_
103  * parameters) see EHCI Spec, Table 2-5 for each value
104  */
105 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
106 {
107 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
108 
109 	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
110 			params,
111 			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
112 			HCC_CANPARK(params) ? " park" : "");
113 }
114 
115 static void __maybe_unused
116 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
117 {
118 	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
119 			hc32_to_cpup(fotg210, &qtd->hw_next),
120 			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
121 			hc32_to_cpup(fotg210, &qtd->hw_token),
122 			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
123 	if (qtd->hw_buf[1])
124 		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
125 				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
126 				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
127 				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
128 				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
129 }
130 
131 static void __maybe_unused
132 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
133 {
134 	struct fotg210_qh_hw *hw = qh->hw;
135 
136 	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
137 			hw->hw_next, hw->hw_info1, hw->hw_info2,
138 			hw->hw_current);
139 
140 	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
141 }
142 
143 static void __maybe_unused
144 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
145 {
146 	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
147 			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
148 			itd->urb);
149 
150 	fotg210_dbg(fotg210,
151 			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
152 			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
153 			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
154 			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
155 			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
156 			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
157 			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
158 			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
159 			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
160 
161 	fotg210_dbg(fotg210,
162 			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
163 			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
164 			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
165 			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
166 			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
167 			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
168 			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
169 			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
170 
171 	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
172 			itd->index[0], itd->index[1], itd->index[2],
173 			itd->index[3], itd->index[4], itd->index[5],
174 			itd->index[6], itd->index[7]);
175 }
176 
177 static int __maybe_unused
178 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
179 {
180 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
181 			label, label[0] ? " " : "", status,
182 			(status & STS_ASS) ? " Async" : "",
183 			(status & STS_PSS) ? " Periodic" : "",
184 			(status & STS_RECL) ? " Recl" : "",
185 			(status & STS_HALT) ? " Halt" : "",
186 			(status & STS_IAA) ? " IAA" : "",
187 			(status & STS_FATAL) ? " FATAL" : "",
188 			(status & STS_FLR) ? " FLR" : "",
189 			(status & STS_PCD) ? " PCD" : "",
190 			(status & STS_ERR) ? " ERR" : "",
191 			(status & STS_INT) ? " INT" : "");
192 }
193 
194 static int __maybe_unused
195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196 {
197 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
198 			label, label[0] ? " " : "", enable,
199 			(enable & STS_IAA) ? " IAA" : "",
200 			(enable & STS_FATAL) ? " FATAL" : "",
201 			(enable & STS_FLR) ? " FLR" : "",
202 			(enable & STS_PCD) ? " PCD" : "",
203 			(enable & STS_ERR) ? " ERR" : "",
204 			(enable & STS_INT) ? " INT" : "");
205 }
206 
207 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
208 
209 static int dbg_command_buf(char *buf, unsigned len, const char *label,
210 		u32 command)
211 {
212 	return scnprintf(buf, len,
213 			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
214 			label, label[0] ? " " : "", command,
215 			(command & CMD_PARK) ? " park" : "(park)",
216 			CMD_PARK_CNT(command),
217 			(command >> 16) & 0x3f,
218 			(command & CMD_IAAD) ? " IAAD" : "",
219 			(command & CMD_ASE) ? " Async" : "",
220 			(command & CMD_PSE) ? " Periodic" : "",
221 			fls_strings[(command >> 2) & 0x3],
222 			(command & CMD_RESET) ? " Reset" : "",
223 			(command & CMD_RUN) ? "RUN" : "HALT");
224 }
225 
226 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
227 		u32 status)
228 {
229 	char *sig;
230 
231 	/* signaling state */
232 	switch (status & (3 << 10)) {
233 	case 0 << 10:
234 		sig = "se0";
235 		break;
236 	case 1 << 10:
237 		sig = "k";
238 		break; /* low speed */
239 	case 2 << 10:
240 		sig = "j";
241 		break;
242 	default:
243 		sig = "?";
244 		break;
245 	}
246 
247 	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
248 			label, label[0] ? " " : "", port, status,
249 			status >> 25, /*device address */
250 			sig,
251 			(status & PORT_RESET) ? " RESET" : "",
252 			(status & PORT_SUSPEND) ? " SUSPEND" : "",
253 			(status & PORT_RESUME) ? " RESUME" : "",
254 			(status & PORT_PEC) ? " PEC" : "",
255 			(status & PORT_PE) ? " PE" : "",
256 			(status & PORT_CSC) ? " CSC" : "",
257 			(status & PORT_CONNECT) ? " CONNECT" : "");
258 
259 	return buf;
260 }
261 
262 /* functions have the "wrong" filename when they're output... */
263 #define dbg_status(fotg210, label, status) {			\
264 	char _buf[80];						\
265 	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
266 	fotg210_dbg(fotg210, "%s\n", _buf);			\
267 }
268 
269 #define dbg_cmd(fotg210, label, command) {			\
270 	char _buf[80];						\
271 	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
272 	fotg210_dbg(fotg210, "%s\n", _buf);			\
273 }
274 
275 #define dbg_port(fotg210, label, port, status) {			       \
276 	char _buf[80];							       \
277 	fotg210_dbg(fotg210, "%s\n",					       \
278 			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
279 }
280 
281 /* troubleshooting help: expose state in debugfs */
282 static int debug_async_open(struct inode *, struct file *);
283 static int debug_periodic_open(struct inode *, struct file *);
284 static int debug_registers_open(struct inode *, struct file *);
285 static int debug_async_open(struct inode *, struct file *);
286 
287 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
288 static int debug_close(struct inode *, struct file *);
289 
290 static const struct file_operations debug_async_fops = {
291 	.owner		= THIS_MODULE,
292 	.open		= debug_async_open,
293 	.read		= debug_output,
294 	.release	= debug_close,
295 	.llseek		= default_llseek,
296 };
297 static const struct file_operations debug_periodic_fops = {
298 	.owner		= THIS_MODULE,
299 	.open		= debug_periodic_open,
300 	.read		= debug_output,
301 	.release	= debug_close,
302 	.llseek		= default_llseek,
303 };
304 static const struct file_operations debug_registers_fops = {
305 	.owner		= THIS_MODULE,
306 	.open		= debug_registers_open,
307 	.read		= debug_output,
308 	.release	= debug_close,
309 	.llseek		= default_llseek,
310 };
311 
312 static struct dentry *fotg210_debug_root;
313 
314 struct debug_buffer {
315 	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
316 	struct usb_bus *bus;
317 	struct mutex mutex;	/* protect filling of buffer */
318 	size_t count;		/* number of characters filled into buffer */
319 	char *output_buf;
320 	size_t alloc_size;
321 };
322 
323 static inline char speed_char(u32 scratch)
324 {
325 	switch (scratch & (3 << 12)) {
326 	case QH_FULL_SPEED:
327 		return 'f';
328 
329 	case QH_LOW_SPEED:
330 		return 'l';
331 
332 	case QH_HIGH_SPEED:
333 		return 'h';
334 
335 	default:
336 		return '?';
337 	}
338 }
339 
340 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
341 {
342 	__u32 v = hc32_to_cpu(fotg210, token);
343 
344 	if (v & QTD_STS_ACTIVE)
345 		return '*';
346 	if (v & QTD_STS_HALT)
347 		return '-';
348 	if (!IS_SHORT_READ(v))
349 		return ' ';
350 	/* tries to advance through hw_alt_next */
351 	return '/';
352 }
353 
354 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
355 		char **nextp, unsigned *sizep)
356 {
357 	u32 scratch;
358 	u32 hw_curr;
359 	struct fotg210_qtd *td;
360 	unsigned temp;
361 	unsigned size = *sizep;
362 	char *next = *nextp;
363 	char mark;
364 	__le32 list_end = FOTG210_LIST_END(fotg210);
365 	struct fotg210_qh_hw *hw = qh->hw;
366 
367 	if (hw->hw_qtd_next == list_end) /* NEC does this */
368 		mark = '@';
369 	else
370 		mark = token_mark(fotg210, hw->hw_token);
371 	if (mark == '/') { /* qh_alt_next controls qh advance? */
372 		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
373 		    fotg210->async->hw->hw_alt_next)
374 			mark = '#'; /* blocked */
375 		else if (hw->hw_alt_next == list_end)
376 			mark = '.'; /* use hw_qtd_next */
377 		/* else alt_next points to some other qtd */
378 	}
379 	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
380 	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
381 	temp = scnprintf(next, size,
382 			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
383 			qh, scratch & 0x007f,
384 			speed_char(scratch),
385 			(scratch >> 8) & 0x000f,
386 			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
387 			hc32_to_cpup(fotg210, &hw->hw_token), mark,
388 			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
389 				? "data1" : "data0",
390 			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
391 	size -= temp;
392 	next += temp;
393 
394 	/* hc may be modifying the list as we read it ... */
395 	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
396 		scratch = hc32_to_cpup(fotg210, &td->hw_token);
397 		mark = ' ';
398 		if (hw_curr == td->qtd_dma)
399 			mark = '*';
400 		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
401 			mark = '+';
402 		else if (QTD_LENGTH(scratch)) {
403 			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
404 				mark = '#';
405 			else if (td->hw_alt_next != list_end)
406 				mark = '/';
407 		}
408 		temp = snprintf(next, size,
409 				"\n\t%p%c%s len=%d %08x urb %p",
410 				td, mark, ({ char *tmp;
411 				switch ((scratch>>8)&0x03) {
412 				case 0:
413 					tmp = "out";
414 					break;
415 				case 1:
416 					tmp = "in";
417 					break;
418 				case 2:
419 					tmp = "setup";
420 					break;
421 				default:
422 					tmp = "?";
423 					break;
424 				 } tmp; }),
425 				(scratch >> 16) & 0x7fff,
426 				scratch,
427 				td->urb);
428 		if (size < temp)
429 			temp = size;
430 		size -= temp;
431 		next += temp;
432 		if (temp == size)
433 			goto done;
434 	}
435 
436 	temp = snprintf(next, size, "\n");
437 	if (size < temp)
438 		temp = size;
439 
440 	size -= temp;
441 	next += temp;
442 
443 done:
444 	*sizep = size;
445 	*nextp = next;
446 }
447 
448 static ssize_t fill_async_buffer(struct debug_buffer *buf)
449 {
450 	struct usb_hcd *hcd;
451 	struct fotg210_hcd *fotg210;
452 	unsigned long flags;
453 	unsigned temp, size;
454 	char *next;
455 	struct fotg210_qh *qh;
456 
457 	hcd = bus_to_hcd(buf->bus);
458 	fotg210 = hcd_to_fotg210(hcd);
459 	next = buf->output_buf;
460 	size = buf->alloc_size;
461 
462 	*next = 0;
463 
464 	/* dumps a snapshot of the async schedule.
465 	 * usually empty except for long-term bulk reads, or head.
466 	 * one QH per line, and TDs we know about
467 	 */
468 	spin_lock_irqsave(&fotg210->lock, flags);
469 	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
470 			qh = qh->qh_next.qh)
471 		qh_lines(fotg210, qh, &next, &size);
472 	if (fotg210->async_unlink && size > 0) {
473 		temp = scnprintf(next, size, "\nunlink =\n");
474 		size -= temp;
475 		next += temp;
476 
477 		for (qh = fotg210->async_unlink; size > 0 && qh;
478 				qh = qh->unlink_next)
479 			qh_lines(fotg210, qh, &next, &size);
480 	}
481 	spin_unlock_irqrestore(&fotg210->lock, flags);
482 
483 	return strlen(buf->output_buf);
484 }
485 
486 /* count tds, get ep direction */
487 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
488 		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
489 {
490 	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
491 	struct fotg210_qtd *qtd;
492 	char *type = "";
493 	unsigned temp = 0;
494 
495 	/* count tds, get ep direction */
496 	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
497 		temp++;
498 		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
499 		case 0:
500 			type = "out";
501 			continue;
502 		case 1:
503 			type = "in";
504 			continue;
505 		}
506 	}
507 
508 	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
509 			speed_char(scratch), scratch & 0x007f,
510 			(scratch >> 8) & 0x000f, type, qh->usecs,
511 			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
512 }
513 
514 #define DBG_SCHED_LIMIT 64
515 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
516 {
517 	struct usb_hcd *hcd;
518 	struct fotg210_hcd *fotg210;
519 	unsigned long flags;
520 	union fotg210_shadow p, *seen;
521 	unsigned temp, size, seen_count;
522 	char *next;
523 	unsigned i;
524 	__hc32 tag;
525 
526 	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
527 	if (!seen)
528 		return 0;
529 
530 	seen_count = 0;
531 
532 	hcd = bus_to_hcd(buf->bus);
533 	fotg210 = hcd_to_fotg210(hcd);
534 	next = buf->output_buf;
535 	size = buf->alloc_size;
536 
537 	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
538 	size -= temp;
539 	next += temp;
540 
541 	/* dump a snapshot of the periodic schedule.
542 	 * iso changes, interrupt usually doesn't.
543 	 */
544 	spin_lock_irqsave(&fotg210->lock, flags);
545 	for (i = 0; i < fotg210->periodic_size; i++) {
546 		p = fotg210->pshadow[i];
547 		if (likely(!p.ptr))
548 			continue;
549 
550 		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
551 
552 		temp = scnprintf(next, size, "%4d: ", i);
553 		size -= temp;
554 		next += temp;
555 
556 		do {
557 			struct fotg210_qh_hw *hw;
558 
559 			switch (hc32_to_cpu(fotg210, tag)) {
560 			case Q_TYPE_QH:
561 				hw = p.qh->hw;
562 				temp = scnprintf(next, size, " qh%d-%04x/%p",
563 						p.qh->period,
564 						hc32_to_cpup(fotg210,
565 							&hw->hw_info2)
566 							/* uframe masks */
567 							& (QH_CMASK | QH_SMASK),
568 						p.qh);
569 				size -= temp;
570 				next += temp;
571 				/* don't repeat what follows this qh */
572 				for (temp = 0; temp < seen_count; temp++) {
573 					if (seen[temp].ptr != p.ptr)
574 						continue;
575 					if (p.qh->qh_next.ptr) {
576 						temp = scnprintf(next, size,
577 								" ...");
578 						size -= temp;
579 						next += temp;
580 					}
581 					break;
582 				}
583 				/* show more info the first time around */
584 				if (temp == seen_count) {
585 					temp = output_buf_tds_dir(next,
586 							fotg210, hw,
587 							p.qh, size);
588 
589 					if (seen_count < DBG_SCHED_LIMIT)
590 						seen[seen_count++].qh = p.qh;
591 				} else
592 					temp = 0;
593 				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
594 				p = p.qh->qh_next;
595 				break;
596 			case Q_TYPE_FSTN:
597 				temp = scnprintf(next, size,
598 						" fstn-%8x/%p",
599 						p.fstn->hw_prev, p.fstn);
600 				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
601 				p = p.fstn->fstn_next;
602 				break;
603 			case Q_TYPE_ITD:
604 				temp = scnprintf(next, size,
605 						" itd/%p", p.itd);
606 				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
607 				p = p.itd->itd_next;
608 				break;
609 			}
610 			size -= temp;
611 			next += temp;
612 		} while (p.ptr);
613 
614 		temp = scnprintf(next, size, "\n");
615 		size -= temp;
616 		next += temp;
617 	}
618 	spin_unlock_irqrestore(&fotg210->lock, flags);
619 	kfree(seen);
620 
621 	return buf->alloc_size - size;
622 }
623 #undef DBG_SCHED_LIMIT
624 
625 static const char *rh_state_string(struct fotg210_hcd *fotg210)
626 {
627 	switch (fotg210->rh_state) {
628 	case FOTG210_RH_HALTED:
629 		return "halted";
630 	case FOTG210_RH_SUSPENDED:
631 		return "suspended";
632 	case FOTG210_RH_RUNNING:
633 		return "running";
634 	case FOTG210_RH_STOPPING:
635 		return "stopping";
636 	}
637 	return "?";
638 }
639 
640 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
641 {
642 	struct usb_hcd *hcd;
643 	struct fotg210_hcd *fotg210;
644 	unsigned long flags;
645 	unsigned temp, size, i;
646 	char *next, scratch[80];
647 	static const char fmt[] = "%*s\n";
648 	static const char label[] = "";
649 
650 	hcd = bus_to_hcd(buf->bus);
651 	fotg210 = hcd_to_fotg210(hcd);
652 	next = buf->output_buf;
653 	size = buf->alloc_size;
654 
655 	spin_lock_irqsave(&fotg210->lock, flags);
656 
657 	if (!HCD_HW_ACCESSIBLE(hcd)) {
658 		size = scnprintf(next, size,
659 				"bus %s, device %s\n"
660 				"%s\n"
661 				"SUSPENDED(no register access)\n",
662 				hcd->self.controller->bus->name,
663 				dev_name(hcd->self.controller),
664 				hcd->product_desc);
665 		goto done;
666 	}
667 
668 	/* Capability Registers */
669 	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
670 			&fotg210->caps->hc_capbase));
671 	temp = scnprintf(next, size,
672 			"bus %s, device %s\n"
673 			"%s\n"
674 			"EHCI %x.%02x, rh state %s\n",
675 			hcd->self.controller->bus->name,
676 			dev_name(hcd->self.controller),
677 			hcd->product_desc,
678 			i >> 8, i & 0x0ff, rh_state_string(fotg210));
679 	size -= temp;
680 	next += temp;
681 
682 	/* FIXME interpret both types of params */
683 	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
684 	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
685 	size -= temp;
686 	next += temp;
687 
688 	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
689 	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
690 	size -= temp;
691 	next += temp;
692 
693 	/* Operational Registers */
694 	temp = dbg_status_buf(scratch, sizeof(scratch), label,
695 			fotg210_readl(fotg210, &fotg210->regs->status));
696 	temp = scnprintf(next, size, fmt, temp, scratch);
697 	size -= temp;
698 	next += temp;
699 
700 	temp = dbg_command_buf(scratch, sizeof(scratch), label,
701 			fotg210_readl(fotg210, &fotg210->regs->command));
702 	temp = scnprintf(next, size, fmt, temp, scratch);
703 	size -= temp;
704 	next += temp;
705 
706 	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
707 			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
708 	temp = scnprintf(next, size, fmt, temp, scratch);
709 	size -= temp;
710 	next += temp;
711 
712 	temp = scnprintf(next, size, "uframe %04x\n",
713 			fotg210_read_frame_index(fotg210));
714 	size -= temp;
715 	next += temp;
716 
717 	if (fotg210->async_unlink) {
718 		temp = scnprintf(next, size, "async unlink qh %p\n",
719 				fotg210->async_unlink);
720 		size -= temp;
721 		next += temp;
722 	}
723 
724 #ifdef FOTG210_STATS
725 	temp = scnprintf(next, size,
726 			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
727 			fotg210->stats.normal, fotg210->stats.error,
728 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
729 	size -= temp;
730 	next += temp;
731 
732 	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
733 			fotg210->stats.complete, fotg210->stats.unlink);
734 	size -= temp;
735 	next += temp;
736 #endif
737 
738 done:
739 	spin_unlock_irqrestore(&fotg210->lock, flags);
740 
741 	return buf->alloc_size - size;
742 }
743 
744 static struct debug_buffer
745 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
746 {
747 	struct debug_buffer *buf;
748 
749 	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
750 
751 	if (buf) {
752 		buf->bus = bus;
753 		buf->fill_func = fill_func;
754 		mutex_init(&buf->mutex);
755 		buf->alloc_size = PAGE_SIZE;
756 	}
757 
758 	return buf;
759 }
760 
761 static int fill_buffer(struct debug_buffer *buf)
762 {
763 	int ret = 0;
764 
765 	if (!buf->output_buf)
766 		buf->output_buf = vmalloc(buf->alloc_size);
767 
768 	if (!buf->output_buf) {
769 		ret = -ENOMEM;
770 		goto out;
771 	}
772 
773 	ret = buf->fill_func(buf);
774 
775 	if (ret >= 0) {
776 		buf->count = ret;
777 		ret = 0;
778 	}
779 
780 out:
781 	return ret;
782 }
783 
784 static ssize_t debug_output(struct file *file, char __user *user_buf,
785 		size_t len, loff_t *offset)
786 {
787 	struct debug_buffer *buf = file->private_data;
788 	int ret = 0;
789 
790 	mutex_lock(&buf->mutex);
791 	if (buf->count == 0) {
792 		ret = fill_buffer(buf);
793 		if (ret != 0) {
794 			mutex_unlock(&buf->mutex);
795 			goto out;
796 		}
797 	}
798 	mutex_unlock(&buf->mutex);
799 
800 	ret = simple_read_from_buffer(user_buf, len, offset,
801 			buf->output_buf, buf->count);
802 
803 out:
804 	return ret;
805 
806 }
807 
808 static int debug_close(struct inode *inode, struct file *file)
809 {
810 	struct debug_buffer *buf = file->private_data;
811 
812 	if (buf) {
813 		vfree(buf->output_buf);
814 		kfree(buf);
815 	}
816 
817 	return 0;
818 }
819 static int debug_async_open(struct inode *inode, struct file *file)
820 {
821 	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
822 
823 	return file->private_data ? 0 : -ENOMEM;
824 }
825 
826 static int debug_periodic_open(struct inode *inode, struct file *file)
827 {
828 	struct debug_buffer *buf;
829 
830 	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
831 	if (!buf)
832 		return -ENOMEM;
833 
834 	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
835 	file->private_data = buf;
836 	return 0;
837 }
838 
839 static int debug_registers_open(struct inode *inode, struct file *file)
840 {
841 	file->private_data = alloc_buffer(inode->i_private,
842 			fill_registers_buffer);
843 
844 	return file->private_data ? 0 : -ENOMEM;
845 }
846 
847 static inline void create_debug_files(struct fotg210_hcd *fotg210)
848 {
849 	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
850 	struct dentry *root;
851 
852 	root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
853 
854 	debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
855 	debugfs_create_file("periodic", S_IRUGO, root, bus,
856 			    &debug_periodic_fops);
857 	debugfs_create_file("registers", S_IRUGO, root, bus,
858 			    &debug_registers_fops);
859 }
860 
861 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
862 {
863 	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
864 
865 	debugfs_remove(debugfs_lookup(bus->bus_name, fotg210_debug_root));
866 }
867 
868 /* handshake - spin reading hc until handshake completes or fails
869  * @ptr: address of hc register to be read
870  * @mask: bits to look at in result of read
871  * @done: value of those bits when handshake succeeds
872  * @usec: timeout in microseconds
873  *
874  * Returns negative errno, or zero on success
875  *
876  * Success happens when the "mask" bits have the specified value (hardware
877  * handshake done).  There are two failure modes:  "usec" have passed (major
878  * hardware flakeout), or the register reads as all-ones (hardware removed).
879  *
880  * That last failure should_only happen in cases like physical cardbus eject
881  * before driver shutdown. But it also seems to be caused by bugs in cardbus
882  * bridge shutdown:  shutting down the bridge before the devices using it.
883  */
884 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
885 		u32 mask, u32 done, int usec)
886 {
887 	u32 result;
888 	int ret;
889 
890 	ret = readl_poll_timeout_atomic(ptr, result,
891 					((result & mask) == done ||
892 					 result == U32_MAX), 1, usec);
893 	if (result == U32_MAX)		/* card removed */
894 		return -ENODEV;
895 
896 	return ret;
897 }
898 
899 /* Force HC to halt state from unknown (EHCI spec section 2.3).
900  * Must be called with interrupts enabled and the lock not held.
901  */
902 static int fotg210_halt(struct fotg210_hcd *fotg210)
903 {
904 	u32 temp;
905 
906 	spin_lock_irq(&fotg210->lock);
907 
908 	/* disable any irqs left enabled by previous code */
909 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
910 
911 	/*
912 	 * This routine gets called during probe before fotg210->command
913 	 * has been initialized, so we can't rely on its value.
914 	 */
915 	fotg210->command &= ~CMD_RUN;
916 	temp = fotg210_readl(fotg210, &fotg210->regs->command);
917 	temp &= ~(CMD_RUN | CMD_IAAD);
918 	fotg210_writel(fotg210, temp, &fotg210->regs->command);
919 
920 	spin_unlock_irq(&fotg210->lock);
921 	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
922 
923 	return handshake(fotg210, &fotg210->regs->status,
924 			STS_HALT, STS_HALT, 16 * 125);
925 }
926 
927 /* Reset a non-running (STS_HALT == 1) controller.
928  * Must be called with interrupts enabled and the lock not held.
929  */
930 static int fotg210_reset(struct fotg210_hcd *fotg210)
931 {
932 	int retval;
933 	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
934 
935 	/* If the EHCI debug controller is active, special care must be
936 	 * taken before and after a host controller reset
937 	 */
938 	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
939 		fotg210->debug = NULL;
940 
941 	command |= CMD_RESET;
942 	dbg_cmd(fotg210, "reset", command);
943 	fotg210_writel(fotg210, command, &fotg210->regs->command);
944 	fotg210->rh_state = FOTG210_RH_HALTED;
945 	fotg210->next_statechange = jiffies;
946 	retval = handshake(fotg210, &fotg210->regs->command,
947 			CMD_RESET, 0, 250 * 1000);
948 
949 	if (retval)
950 		return retval;
951 
952 	if (fotg210->debug)
953 		dbgp_external_startup(fotg210_to_hcd(fotg210));
954 
955 	fotg210->port_c_suspend = fotg210->suspended_ports =
956 			fotg210->resuming_ports = 0;
957 	return retval;
958 }
959 
960 /* Idle the controller (turn off the schedules).
961  * Must be called with interrupts enabled and the lock not held.
962  */
963 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
964 {
965 	u32 temp;
966 
967 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
968 		return;
969 
970 	/* wait for any schedule enables/disables to take effect */
971 	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
972 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
973 			16 * 125);
974 
975 	/* then disable anything that's still active */
976 	spin_lock_irq(&fotg210->lock);
977 	fotg210->command &= ~(CMD_ASE | CMD_PSE);
978 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
979 	spin_unlock_irq(&fotg210->lock);
980 
981 	/* hardware can take 16 microframes to turn off ... */
982 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
983 			16 * 125);
984 }
985 
986 static void end_unlink_async(struct fotg210_hcd *fotg210);
987 static void unlink_empty_async(struct fotg210_hcd *fotg210);
988 static void fotg210_work(struct fotg210_hcd *fotg210);
989 static void start_unlink_intr(struct fotg210_hcd *fotg210,
990 			      struct fotg210_qh *qh);
991 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
992 
993 /* Set a bit in the USBCMD register */
994 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
995 {
996 	fotg210->command |= bit;
997 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
998 
999 	/* unblock posted write */
1000 	fotg210_readl(fotg210, &fotg210->regs->command);
1001 }
1002 
1003 /* Clear a bit in the USBCMD register */
1004 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1005 {
1006 	fotg210->command &= ~bit;
1007 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1008 
1009 	/* unblock posted write */
1010 	fotg210_readl(fotg210, &fotg210->regs->command);
1011 }
1012 
1013 /* EHCI timer support...  Now using hrtimers.
1014  *
1015  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1016  * the timer routine runs, it checks each possible event; events that are
1017  * currently enabled and whose expiration time has passed get handled.
1018  * The set of enabled events is stored as a collection of bitflags in
1019  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1020  * increasing delay values (ranging between 1 ms and 100 ms).
1021  *
1022  * Rather than implementing a sorted list or tree of all pending events,
1023  * we keep track only of the lowest-numbered pending event, in
1024  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1025  * expiration time is set to the timeout value for this event.
1026  *
1027  * As a result, events might not get handled right away; the actual delay
1028  * could be anywhere up to twice the requested delay.  This doesn't
1029  * matter, because none of the events are especially time-critical.  The
1030  * ones that matter most all have a delay of 1 ms, so they will be
1031  * handled after 2 ms at most, which is okay.  In addition to this, we
1032  * allow for an expiration range of 1 ms.
1033  */
1034 
1035 /* Delay lengths for the hrtimer event types.
1036  * Keep this list sorted by delay length, in the same order as
1037  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1038  */
1039 static unsigned event_delays_ns[] = {
1040 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1041 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1042 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1043 	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1044 	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1045 	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1046 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1047 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1048 	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1049 	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1050 };
1051 
1052 /* Enable a pending hrtimer event */
1053 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1054 		bool resched)
1055 {
1056 	ktime_t *timeout = &fotg210->hr_timeouts[event];
1057 
1058 	if (resched)
1059 		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1060 	fotg210->enabled_hrtimer_events |= (1 << event);
1061 
1062 	/* Track only the lowest-numbered pending event */
1063 	if (event < fotg210->next_hrtimer_event) {
1064 		fotg210->next_hrtimer_event = event;
1065 		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1066 				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1067 	}
1068 }
1069 
1070 
1071 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1072 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1073 {
1074 	unsigned actual, want;
1075 
1076 	/* Don't enable anything if the controller isn't running (e.g., died) */
1077 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1078 		return;
1079 
1080 	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1081 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1082 
1083 	if (want != actual) {
1084 
1085 		/* Poll again later, but give up after about 20 ms */
1086 		if (fotg210->ASS_poll_count++ < 20) {
1087 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1088 					true);
1089 			return;
1090 		}
1091 		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1092 				want, actual);
1093 	}
1094 	fotg210->ASS_poll_count = 0;
1095 
1096 	/* The status is up-to-date; restart or stop the schedule as needed */
1097 	if (want == 0) {	/* Stopped */
1098 		if (fotg210->async_count > 0)
1099 			fotg210_set_command_bit(fotg210, CMD_ASE);
1100 
1101 	} else {		/* Running */
1102 		if (fotg210->async_count == 0) {
1103 
1104 			/* Turn off the schedule after a while */
1105 			fotg210_enable_event(fotg210,
1106 					FOTG210_HRTIMER_DISABLE_ASYNC,
1107 					true);
1108 		}
1109 	}
1110 }
1111 
1112 /* Turn off the async schedule after a brief delay */
1113 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1114 {
1115 	fotg210_clear_command_bit(fotg210, CMD_ASE);
1116 }
1117 
1118 
1119 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1120 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1121 {
1122 	unsigned actual, want;
1123 
1124 	/* Don't do anything if the controller isn't running (e.g., died) */
1125 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1126 		return;
1127 
1128 	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1129 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1130 
1131 	if (want != actual) {
1132 
1133 		/* Poll again later, but give up after about 20 ms */
1134 		if (fotg210->PSS_poll_count++ < 20) {
1135 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1136 					true);
1137 			return;
1138 		}
1139 		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1140 				want, actual);
1141 	}
1142 	fotg210->PSS_poll_count = 0;
1143 
1144 	/* The status is up-to-date; restart or stop the schedule as needed */
1145 	if (want == 0) {	/* Stopped */
1146 		if (fotg210->periodic_count > 0)
1147 			fotg210_set_command_bit(fotg210, CMD_PSE);
1148 
1149 	} else {		/* Running */
1150 		if (fotg210->periodic_count == 0) {
1151 
1152 			/* Turn off the schedule after a while */
1153 			fotg210_enable_event(fotg210,
1154 					FOTG210_HRTIMER_DISABLE_PERIODIC,
1155 					true);
1156 		}
1157 	}
1158 }
1159 
1160 /* Turn off the periodic schedule after a brief delay */
1161 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1162 {
1163 	fotg210_clear_command_bit(fotg210, CMD_PSE);
1164 }
1165 
1166 
1167 /* Poll the STS_HALT status bit; see when a dead controller stops */
1168 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1169 {
1170 	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1171 
1172 		/* Give up after a few milliseconds */
1173 		if (fotg210->died_poll_count++ < 5) {
1174 			/* Try again later */
1175 			fotg210_enable_event(fotg210,
1176 					FOTG210_HRTIMER_POLL_DEAD, true);
1177 			return;
1178 		}
1179 		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1180 	}
1181 
1182 	/* Clean up the mess */
1183 	fotg210->rh_state = FOTG210_RH_HALTED;
1184 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1185 	fotg210_work(fotg210);
1186 	end_unlink_async(fotg210);
1187 
1188 	/* Not in process context, so don't try to reset the controller */
1189 }
1190 
1191 
1192 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1193 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1194 {
1195 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1196 
1197 	/*
1198 	 * Process all the QHs on the intr_unlink list that were added
1199 	 * before the current unlink cycle began.  The list is in
1200 	 * temporal order, so stop when we reach the first entry in the
1201 	 * current cycle.  But if the root hub isn't running then
1202 	 * process all the QHs on the list.
1203 	 */
1204 	fotg210->intr_unlinking = true;
1205 	while (fotg210->intr_unlink) {
1206 		struct fotg210_qh *qh = fotg210->intr_unlink;
1207 
1208 		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1209 			break;
1210 		fotg210->intr_unlink = qh->unlink_next;
1211 		qh->unlink_next = NULL;
1212 		end_unlink_intr(fotg210, qh);
1213 	}
1214 
1215 	/* Handle remaining entries later */
1216 	if (fotg210->intr_unlink) {
1217 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1218 				true);
1219 		++fotg210->intr_unlink_cycle;
1220 	}
1221 	fotg210->intr_unlinking = false;
1222 }
1223 
1224 
1225 /* Start another free-iTDs/siTDs cycle */
1226 static void start_free_itds(struct fotg210_hcd *fotg210)
1227 {
1228 	if (!(fotg210->enabled_hrtimer_events &
1229 			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1230 		fotg210->last_itd_to_free = list_entry(
1231 				fotg210->cached_itd_list.prev,
1232 				struct fotg210_itd, itd_list);
1233 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1234 	}
1235 }
1236 
1237 /* Wait for controller to stop using old iTDs and siTDs */
1238 static void end_free_itds(struct fotg210_hcd *fotg210)
1239 {
1240 	struct fotg210_itd *itd, *n;
1241 
1242 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1243 		fotg210->last_itd_to_free = NULL;
1244 
1245 	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1246 		list_del(&itd->itd_list);
1247 		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1248 		if (itd == fotg210->last_itd_to_free)
1249 			break;
1250 	}
1251 
1252 	if (!list_empty(&fotg210->cached_itd_list))
1253 		start_free_itds(fotg210);
1254 }
1255 
1256 
1257 /* Handle lost (or very late) IAA interrupts */
1258 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1259 {
1260 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1261 		return;
1262 
1263 	/*
1264 	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1265 	 * So we need this watchdog, but must protect it against both
1266 	 * (a) SMP races against real IAA firing and retriggering, and
1267 	 * (b) clean HC shutdown, when IAA watchdog was pending.
1268 	 */
1269 	if (fotg210->async_iaa) {
1270 		u32 cmd, status;
1271 
1272 		/* If we get here, IAA is *REALLY* late.  It's barely
1273 		 * conceivable that the system is so busy that CMD_IAAD
1274 		 * is still legitimately set, so let's be sure it's
1275 		 * clear before we read STS_IAA.  (The HC should clear
1276 		 * CMD_IAAD when it sets STS_IAA.)
1277 		 */
1278 		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1279 
1280 		/*
1281 		 * If IAA is set here it either legitimately triggered
1282 		 * after the watchdog timer expired (_way_ late, so we'll
1283 		 * still count it as lost) ... or a silicon erratum:
1284 		 * - VIA seems to set IAA without triggering the IRQ;
1285 		 * - IAAD potentially cleared without setting IAA.
1286 		 */
1287 		status = fotg210_readl(fotg210, &fotg210->regs->status);
1288 		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1289 			INCR(fotg210->stats.lost_iaa);
1290 			fotg210_writel(fotg210, STS_IAA,
1291 					&fotg210->regs->status);
1292 		}
1293 
1294 		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1295 				status, cmd);
1296 		end_unlink_async(fotg210);
1297 	}
1298 }
1299 
1300 
1301 /* Enable the I/O watchdog, if appropriate */
1302 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1303 {
1304 	/* Not needed if the controller isn't running or it's already enabled */
1305 	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1306 			(fotg210->enabled_hrtimer_events &
1307 			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1308 		return;
1309 
1310 	/*
1311 	 * Isochronous transfers always need the watchdog.
1312 	 * For other sorts we use it only if the flag is set.
1313 	 */
1314 	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1315 			fotg210->async_count + fotg210->intr_count > 0))
1316 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1317 				true);
1318 }
1319 
1320 
1321 /* Handler functions for the hrtimer event types.
1322  * Keep this array in the same order as the event types indexed by
1323  * enum fotg210_hrtimer_event in fotg210.h.
1324  */
1325 static void (*event_handlers[])(struct fotg210_hcd *) = {
1326 	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1327 	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1328 	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1329 	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1330 	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1331 	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1332 	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1333 	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1334 	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1335 	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1336 };
1337 
1338 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1339 {
1340 	struct fotg210_hcd *fotg210 =
1341 			container_of(t, struct fotg210_hcd, hrtimer);
1342 	ktime_t now;
1343 	unsigned long events;
1344 	unsigned long flags;
1345 	unsigned e;
1346 
1347 	spin_lock_irqsave(&fotg210->lock, flags);
1348 
1349 	events = fotg210->enabled_hrtimer_events;
1350 	fotg210->enabled_hrtimer_events = 0;
1351 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1352 
1353 	/*
1354 	 * Check each pending event.  If its time has expired, handle
1355 	 * the event; otherwise re-enable it.
1356 	 */
1357 	now = ktime_get();
1358 	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1359 		if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1360 			event_handlers[e](fotg210);
1361 		else
1362 			fotg210_enable_event(fotg210, e, false);
1363 	}
1364 
1365 	spin_unlock_irqrestore(&fotg210->lock, flags);
1366 	return HRTIMER_NORESTART;
1367 }
1368 
1369 #define fotg210_bus_suspend NULL
1370 #define fotg210_bus_resume NULL
1371 
1372 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1373 		u32 __iomem *status_reg, int port_status)
1374 {
1375 	if (!(port_status & PORT_CONNECT))
1376 		return port_status;
1377 
1378 	/* if reset finished and it's still not enabled -- handoff */
1379 	if (!(port_status & PORT_PE))
1380 		/* with integrated TT, there's nobody to hand it to! */
1381 		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1382 				index + 1);
1383 	else
1384 		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1385 				index + 1);
1386 
1387 	return port_status;
1388 }
1389 
1390 
1391 /* build "status change" packet (one or two bytes) from HC registers */
1392 
1393 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1394 {
1395 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1396 	u32 temp, status;
1397 	u32 mask;
1398 	int retval = 1;
1399 	unsigned long flags;
1400 
1401 	/* init status to no-changes */
1402 	buf[0] = 0;
1403 
1404 	/* Inform the core about resumes-in-progress by returning
1405 	 * a non-zero value even if there are no status changes.
1406 	 */
1407 	status = fotg210->resuming_ports;
1408 
1409 	mask = PORT_CSC | PORT_PEC;
1410 	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1411 
1412 	/* no hub change reports (bit 0) for now (power, ...) */
1413 
1414 	/* port N changes (bit N)? */
1415 	spin_lock_irqsave(&fotg210->lock, flags);
1416 
1417 	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1418 
1419 	/*
1420 	 * Return status information even for ports with OWNER set.
1421 	 * Otherwise hub_wq wouldn't see the disconnect event when a
1422 	 * high-speed device is switched over to the companion
1423 	 * controller by the user.
1424 	 */
1425 
1426 	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1427 			(fotg210->reset_done[0] &&
1428 			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1429 		buf[0] |= 1 << 1;
1430 		status = STS_PCD;
1431 	}
1432 	/* FIXME autosuspend idle root hubs */
1433 	spin_unlock_irqrestore(&fotg210->lock, flags);
1434 	return status ? retval : 0;
1435 }
1436 
1437 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1438 		struct usb_hub_descriptor *desc)
1439 {
1440 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1441 	u16 temp;
1442 
1443 	desc->bDescriptorType = USB_DT_HUB;
1444 	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1445 	desc->bHubContrCurrent = 0;
1446 
1447 	desc->bNbrPorts = ports;
1448 	temp = 1 + (ports / 8);
1449 	desc->bDescLength = 7 + 2 * temp;
1450 
1451 	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1452 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1453 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1454 
1455 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1456 	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1457 	desc->wHubCharacteristics = cpu_to_le16(temp);
1458 }
1459 
1460 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1461 		u16 wIndex, char *buf, u16 wLength)
1462 {
1463 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1464 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1465 	u32 __iomem *status_reg = &fotg210->regs->port_status;
1466 	u32 temp, temp1, status;
1467 	unsigned long flags;
1468 	int retval = 0;
1469 	unsigned selector;
1470 
1471 	/*
1472 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1473 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1474 	 * (track current state ourselves) ... blink for diagnostics,
1475 	 * power, "this is the one", etc.  EHCI spec supports this.
1476 	 */
1477 
1478 	spin_lock_irqsave(&fotg210->lock, flags);
1479 	switch (typeReq) {
1480 	case ClearHubFeature:
1481 		switch (wValue) {
1482 		case C_HUB_LOCAL_POWER:
1483 		case C_HUB_OVER_CURRENT:
1484 			/* no hub-wide feature/status flags */
1485 			break;
1486 		default:
1487 			goto error;
1488 		}
1489 		break;
1490 	case ClearPortFeature:
1491 		if (!wIndex || wIndex > ports)
1492 			goto error;
1493 		wIndex--;
1494 		temp = fotg210_readl(fotg210, status_reg);
1495 		temp &= ~PORT_RWC_BITS;
1496 
1497 		/*
1498 		 * Even if OWNER is set, so the port is owned by the
1499 		 * companion controller, hub_wq needs to be able to clear
1500 		 * the port-change status bits (especially
1501 		 * USB_PORT_STAT_C_CONNECTION).
1502 		 */
1503 
1504 		switch (wValue) {
1505 		case USB_PORT_FEAT_ENABLE:
1506 			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1507 			break;
1508 		case USB_PORT_FEAT_C_ENABLE:
1509 			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1510 			break;
1511 		case USB_PORT_FEAT_SUSPEND:
1512 			if (temp & PORT_RESET)
1513 				goto error;
1514 			if (!(temp & PORT_SUSPEND))
1515 				break;
1516 			if ((temp & PORT_PE) == 0)
1517 				goto error;
1518 
1519 			/* resume signaling for 20 msec */
1520 			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1521 			fotg210->reset_done[wIndex] = jiffies
1522 					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1523 			break;
1524 		case USB_PORT_FEAT_C_SUSPEND:
1525 			clear_bit(wIndex, &fotg210->port_c_suspend);
1526 			break;
1527 		case USB_PORT_FEAT_C_CONNECTION:
1528 			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1529 			break;
1530 		case USB_PORT_FEAT_C_OVER_CURRENT:
1531 			fotg210_writel(fotg210, temp | OTGISR_OVC,
1532 					&fotg210->regs->otgisr);
1533 			break;
1534 		case USB_PORT_FEAT_C_RESET:
1535 			/* GetPortStatus clears reset */
1536 			break;
1537 		default:
1538 			goto error;
1539 		}
1540 		fotg210_readl(fotg210, &fotg210->regs->command);
1541 		break;
1542 	case GetHubDescriptor:
1543 		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1544 				buf);
1545 		break;
1546 	case GetHubStatus:
1547 		/* no hub-wide feature/status flags */
1548 		memset(buf, 0, 4);
1549 		/*cpu_to_le32s ((u32 *) buf); */
1550 		break;
1551 	case GetPortStatus:
1552 		if (!wIndex || wIndex > ports)
1553 			goto error;
1554 		wIndex--;
1555 		status = 0;
1556 		temp = fotg210_readl(fotg210, status_reg);
1557 
1558 		/* wPortChange bits */
1559 		if (temp & PORT_CSC)
1560 			status |= USB_PORT_STAT_C_CONNECTION << 16;
1561 		if (temp & PORT_PEC)
1562 			status |= USB_PORT_STAT_C_ENABLE << 16;
1563 
1564 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1565 		if (temp1 & OTGISR_OVC)
1566 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1567 
1568 		/* whoever resumes must GetPortStatus to complete it!! */
1569 		if (temp & PORT_RESUME) {
1570 
1571 			/* Remote Wakeup received? */
1572 			if (!fotg210->reset_done[wIndex]) {
1573 				/* resume signaling for 20 msec */
1574 				fotg210->reset_done[wIndex] = jiffies
1575 						+ msecs_to_jiffies(20);
1576 				/* check the port again */
1577 				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1578 						fotg210->reset_done[wIndex]);
1579 			}
1580 
1581 			/* resume completed? */
1582 			else if (time_after_eq(jiffies,
1583 					fotg210->reset_done[wIndex])) {
1584 				clear_bit(wIndex, &fotg210->suspended_ports);
1585 				set_bit(wIndex, &fotg210->port_c_suspend);
1586 				fotg210->reset_done[wIndex] = 0;
1587 
1588 				/* stop resume signaling */
1589 				temp = fotg210_readl(fotg210, status_reg);
1590 				fotg210_writel(fotg210, temp &
1591 						~(PORT_RWC_BITS | PORT_RESUME),
1592 						status_reg);
1593 				clear_bit(wIndex, &fotg210->resuming_ports);
1594 				retval = handshake(fotg210, status_reg,
1595 						PORT_RESUME, 0, 2000);/* 2ms */
1596 				if (retval != 0) {
1597 					fotg210_err(fotg210,
1598 							"port %d resume error %d\n",
1599 							wIndex + 1, retval);
1600 					goto error;
1601 				}
1602 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1603 			}
1604 		}
1605 
1606 		/* whoever resets must GetPortStatus to complete it!! */
1607 		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1608 				fotg210->reset_done[wIndex])) {
1609 			status |= USB_PORT_STAT_C_RESET << 16;
1610 			fotg210->reset_done[wIndex] = 0;
1611 			clear_bit(wIndex, &fotg210->resuming_ports);
1612 
1613 			/* force reset to complete */
1614 			fotg210_writel(fotg210,
1615 					temp & ~(PORT_RWC_BITS | PORT_RESET),
1616 					status_reg);
1617 			/* REVISIT:  some hardware needs 550+ usec to clear
1618 			 * this bit; seems too long to spin routinely...
1619 			 */
1620 			retval = handshake(fotg210, status_reg,
1621 					PORT_RESET, 0, 1000);
1622 			if (retval != 0) {
1623 				fotg210_err(fotg210, "port %d reset error %d\n",
1624 						wIndex + 1, retval);
1625 				goto error;
1626 			}
1627 
1628 			/* see what we found out */
1629 			temp = check_reset_complete(fotg210, wIndex, status_reg,
1630 					fotg210_readl(fotg210, status_reg));
1631 
1632 			/* restart schedule */
1633 			fotg210->command |= CMD_RUN;
1634 			fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1635 		}
1636 
1637 		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1638 			fotg210->reset_done[wIndex] = 0;
1639 			clear_bit(wIndex, &fotg210->resuming_ports);
1640 		}
1641 
1642 		/* transfer dedicated ports to the companion hc */
1643 		if ((temp & PORT_CONNECT) &&
1644 				test_bit(wIndex, &fotg210->companion_ports)) {
1645 			temp &= ~PORT_RWC_BITS;
1646 			fotg210_writel(fotg210, temp, status_reg);
1647 			fotg210_dbg(fotg210, "port %d --> companion\n",
1648 					wIndex + 1);
1649 			temp = fotg210_readl(fotg210, status_reg);
1650 		}
1651 
1652 		/*
1653 		 * Even if OWNER is set, there's no harm letting hub_wq
1654 		 * see the wPortStatus values (they should all be 0 except
1655 		 * for PORT_POWER anyway).
1656 		 */
1657 
1658 		if (temp & PORT_CONNECT) {
1659 			status |= USB_PORT_STAT_CONNECTION;
1660 			status |= fotg210_port_speed(fotg210, temp);
1661 		}
1662 		if (temp & PORT_PE)
1663 			status |= USB_PORT_STAT_ENABLE;
1664 
1665 		/* maybe the port was unsuspended without our knowledge */
1666 		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1667 			status |= USB_PORT_STAT_SUSPEND;
1668 		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1669 			clear_bit(wIndex, &fotg210->suspended_ports);
1670 			clear_bit(wIndex, &fotg210->resuming_ports);
1671 			fotg210->reset_done[wIndex] = 0;
1672 			if (temp & PORT_PE)
1673 				set_bit(wIndex, &fotg210->port_c_suspend);
1674 		}
1675 
1676 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1677 		if (temp1 & OTGISR_OVC)
1678 			status |= USB_PORT_STAT_OVERCURRENT;
1679 		if (temp & PORT_RESET)
1680 			status |= USB_PORT_STAT_RESET;
1681 		if (test_bit(wIndex, &fotg210->port_c_suspend))
1682 			status |= USB_PORT_STAT_C_SUSPEND << 16;
1683 
1684 		if (status & ~0xffff)	/* only if wPortChange is interesting */
1685 			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1686 		put_unaligned_le32(status, buf);
1687 		break;
1688 	case SetHubFeature:
1689 		switch (wValue) {
1690 		case C_HUB_LOCAL_POWER:
1691 		case C_HUB_OVER_CURRENT:
1692 			/* no hub-wide feature/status flags */
1693 			break;
1694 		default:
1695 			goto error;
1696 		}
1697 		break;
1698 	case SetPortFeature:
1699 		selector = wIndex >> 8;
1700 		wIndex &= 0xff;
1701 
1702 		if (!wIndex || wIndex > ports)
1703 			goto error;
1704 		wIndex--;
1705 		temp = fotg210_readl(fotg210, status_reg);
1706 		temp &= ~PORT_RWC_BITS;
1707 		switch (wValue) {
1708 		case USB_PORT_FEAT_SUSPEND:
1709 			if ((temp & PORT_PE) == 0
1710 					|| (temp & PORT_RESET) != 0)
1711 				goto error;
1712 
1713 			/* After above check the port must be connected.
1714 			 * Set appropriate bit thus could put phy into low power
1715 			 * mode if we have hostpc feature
1716 			 */
1717 			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1718 					status_reg);
1719 			set_bit(wIndex, &fotg210->suspended_ports);
1720 			break;
1721 		case USB_PORT_FEAT_RESET:
1722 			if (temp & PORT_RESUME)
1723 				goto error;
1724 			/* line status bits may report this as low speed,
1725 			 * which can be fine if this root hub has a
1726 			 * transaction translator built in.
1727 			 */
1728 			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1729 			temp |= PORT_RESET;
1730 			temp &= ~PORT_PE;
1731 
1732 			/*
1733 			 * caller must wait, then call GetPortStatus
1734 			 * usb 2.0 spec says 50 ms resets on root
1735 			 */
1736 			fotg210->reset_done[wIndex] = jiffies
1737 					+ msecs_to_jiffies(50);
1738 			fotg210_writel(fotg210, temp, status_reg);
1739 			break;
1740 
1741 		/* For downstream facing ports (these):  one hub port is put
1742 		 * into test mode according to USB2 11.24.2.13, then the hub
1743 		 * must be reset (which for root hub now means rmmod+modprobe,
1744 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1745 		 * about the EHCI-specific stuff.
1746 		 */
1747 		case USB_PORT_FEAT_TEST:
1748 			if (!selector || selector > 5)
1749 				goto error;
1750 			spin_unlock_irqrestore(&fotg210->lock, flags);
1751 			fotg210_quiesce(fotg210);
1752 			spin_lock_irqsave(&fotg210->lock, flags);
1753 
1754 			/* Put all enabled ports into suspend */
1755 			temp = fotg210_readl(fotg210, status_reg) &
1756 				~PORT_RWC_BITS;
1757 			if (temp & PORT_PE)
1758 				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1759 						status_reg);
1760 
1761 			spin_unlock_irqrestore(&fotg210->lock, flags);
1762 			fotg210_halt(fotg210);
1763 			spin_lock_irqsave(&fotg210->lock, flags);
1764 
1765 			temp = fotg210_readl(fotg210, status_reg);
1766 			temp |= selector << 16;
1767 			fotg210_writel(fotg210, temp, status_reg);
1768 			break;
1769 
1770 		default:
1771 			goto error;
1772 		}
1773 		fotg210_readl(fotg210, &fotg210->regs->command);
1774 		break;
1775 
1776 	default:
1777 error:
1778 		/* "stall" on error */
1779 		retval = -EPIPE;
1780 	}
1781 	spin_unlock_irqrestore(&fotg210->lock, flags);
1782 	return retval;
1783 }
1784 
1785 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1786 		int portnum)
1787 {
1788 	return;
1789 }
1790 
1791 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1792 		int portnum)
1793 {
1794 	return 0;
1795 }
1796 
1797 /* There's basically three types of memory:
1798  *	- data used only by the HCD ... kmalloc is fine
1799  *	- async and periodic schedules, shared by HC and HCD ... these
1800  *	  need to use dma_pool or dma_alloc_coherent
1801  *	- driver buffers, read/written by HC ... single shot DMA mapped
1802  *
1803  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1804  * No memory seen by this driver is pageable.
1805  */
1806 
1807 /* Allocate the key transfer structures from the previously allocated pool */
1808 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1809 		struct fotg210_qtd *qtd, dma_addr_t dma)
1810 {
1811 	memset(qtd, 0, sizeof(*qtd));
1812 	qtd->qtd_dma = dma;
1813 	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1814 	qtd->hw_next = FOTG210_LIST_END(fotg210);
1815 	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1816 	INIT_LIST_HEAD(&qtd->qtd_list);
1817 }
1818 
1819 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1820 		gfp_t flags)
1821 {
1822 	struct fotg210_qtd *qtd;
1823 	dma_addr_t dma;
1824 
1825 	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1826 	if (qtd != NULL)
1827 		fotg210_qtd_init(fotg210, qtd, dma);
1828 
1829 	return qtd;
1830 }
1831 
1832 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1833 		struct fotg210_qtd *qtd)
1834 {
1835 	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1836 }
1837 
1838 
1839 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1840 {
1841 	/* clean qtds first, and know this is not linked */
1842 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1843 		fotg210_dbg(fotg210, "unused qh not empty!\n");
1844 		BUG();
1845 	}
1846 	if (qh->dummy)
1847 		fotg210_qtd_free(fotg210, qh->dummy);
1848 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1849 	kfree(qh);
1850 }
1851 
1852 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1853 		gfp_t flags)
1854 {
1855 	struct fotg210_qh *qh;
1856 	dma_addr_t dma;
1857 
1858 	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1859 	if (!qh)
1860 		goto done;
1861 	qh->hw = (struct fotg210_qh_hw *)
1862 		dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1863 	if (!qh->hw)
1864 		goto fail;
1865 	qh->qh_dma = dma;
1866 	INIT_LIST_HEAD(&qh->qtd_list);
1867 
1868 	/* dummy td enables safe urb queuing */
1869 	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1870 	if (qh->dummy == NULL) {
1871 		fotg210_dbg(fotg210, "no dummy td\n");
1872 		goto fail1;
1873 	}
1874 done:
1875 	return qh;
1876 fail1:
1877 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1878 fail:
1879 	kfree(qh);
1880 	return NULL;
1881 }
1882 
1883 /* The queue heads and transfer descriptors are managed from pools tied
1884  * to each of the "per device" structures.
1885  * This is the initialisation and cleanup code.
1886  */
1887 
1888 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1889 {
1890 	if (fotg210->async)
1891 		qh_destroy(fotg210, fotg210->async);
1892 	fotg210->async = NULL;
1893 
1894 	if (fotg210->dummy)
1895 		qh_destroy(fotg210, fotg210->dummy);
1896 	fotg210->dummy = NULL;
1897 
1898 	/* DMA consistent memory and pools */
1899 	dma_pool_destroy(fotg210->qtd_pool);
1900 	fotg210->qtd_pool = NULL;
1901 
1902 	dma_pool_destroy(fotg210->qh_pool);
1903 	fotg210->qh_pool = NULL;
1904 
1905 	dma_pool_destroy(fotg210->itd_pool);
1906 	fotg210->itd_pool = NULL;
1907 
1908 	if (fotg210->periodic)
1909 		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1910 				fotg210->periodic_size * sizeof(u32),
1911 				fotg210->periodic, fotg210->periodic_dma);
1912 	fotg210->periodic = NULL;
1913 
1914 	/* shadow periodic table */
1915 	kfree(fotg210->pshadow);
1916 	fotg210->pshadow = NULL;
1917 }
1918 
1919 /* remember to add cleanup code (above) if you add anything here */
1920 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1921 {
1922 	int i;
1923 
1924 	/* QTDs for control/bulk/intr transfers */
1925 	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1926 			fotg210_to_hcd(fotg210)->self.controller,
1927 			sizeof(struct fotg210_qtd),
1928 			32 /* byte alignment (for hw parts) */,
1929 			4096 /* can't cross 4K */);
1930 	if (!fotg210->qtd_pool)
1931 		goto fail;
1932 
1933 	/* QHs for control/bulk/intr transfers */
1934 	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1935 			fotg210_to_hcd(fotg210)->self.controller,
1936 			sizeof(struct fotg210_qh_hw),
1937 			32 /* byte alignment (for hw parts) */,
1938 			4096 /* can't cross 4K */);
1939 	if (!fotg210->qh_pool)
1940 		goto fail;
1941 
1942 	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1943 	if (!fotg210->async)
1944 		goto fail;
1945 
1946 	/* ITD for high speed ISO transfers */
1947 	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1948 			fotg210_to_hcd(fotg210)->self.controller,
1949 			sizeof(struct fotg210_itd),
1950 			64 /* byte alignment (for hw parts) */,
1951 			4096 /* can't cross 4K */);
1952 	if (!fotg210->itd_pool)
1953 		goto fail;
1954 
1955 	/* Hardware periodic table */
1956 	fotg210->periodic =
1957 		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1958 				fotg210->periodic_size * sizeof(__le32),
1959 				&fotg210->periodic_dma, 0);
1960 	if (fotg210->periodic == NULL)
1961 		goto fail;
1962 
1963 	for (i = 0; i < fotg210->periodic_size; i++)
1964 		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1965 
1966 	/* software shadow of hardware table */
1967 	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1968 			flags);
1969 	if (fotg210->pshadow != NULL)
1970 		return 0;
1971 
1972 fail:
1973 	fotg210_dbg(fotg210, "couldn't init memory\n");
1974 	fotg210_mem_cleanup(fotg210);
1975 	return -ENOMEM;
1976 }
1977 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1978  *
1979  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1980  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1981  * buffers needed for the larger number).  We use one QH per endpoint, queue
1982  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1983  *
1984  * ISO traffic uses "ISO TD" (itd) records, and (along with
1985  * interrupts) needs careful scheduling.  Performance improvements can be
1986  * an ongoing challenge.  That's in "ehci-sched.c".
1987  *
1988  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1989  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1990  * (b) special fields in qh entries or (c) split iso entries.  TTs will
1991  * buffer low/full speed data so the host collects it at high speed.
1992  */
1993 
1994 /* fill a qtd, returning how much of the buffer we were able to queue up */
1995 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1996 		dma_addr_t buf, size_t len, int token, int maxpacket)
1997 {
1998 	int i, count;
1999 	u64 addr = buf;
2000 
2001 	/* one buffer entry per 4K ... first might be short or unaligned */
2002 	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2003 	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2004 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2005 	if (likely(len < count))		/* ... iff needed */
2006 		count = len;
2007 	else {
2008 		buf +=  0x1000;
2009 		buf &= ~0x0fff;
2010 
2011 		/* per-qtd limit: from 16K to 20K (best alignment) */
2012 		for (i = 1; count < len && i < 5; i++) {
2013 			addr = buf;
2014 			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2015 			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2016 					(u32)(addr >> 32));
2017 			buf += 0x1000;
2018 			if ((count + 0x1000) < len)
2019 				count += 0x1000;
2020 			else
2021 				count = len;
2022 		}
2023 
2024 		/* short packets may only terminate transfers */
2025 		if (count != len)
2026 			count -= (count % maxpacket);
2027 	}
2028 	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2029 	qtd->length = count;
2030 
2031 	return count;
2032 }
2033 
2034 static inline void qh_update(struct fotg210_hcd *fotg210,
2035 		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2036 {
2037 	struct fotg210_qh_hw *hw = qh->hw;
2038 
2039 	/* writes to an active overlay are unsafe */
2040 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2041 
2042 	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2043 	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2044 
2045 	/* Except for control endpoints, we make hardware maintain data
2046 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2047 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2048 	 * ever clear it.
2049 	 */
2050 	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2051 		unsigned is_out, epnum;
2052 
2053 		is_out = qh->is_out;
2054 		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2055 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2056 			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2057 			usb_settoggle(qh->dev, epnum, is_out, 1);
2058 		}
2059 	}
2060 
2061 	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2062 }
2063 
2064 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2065  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2066  * recovery (including urb dequeue) would need software changes to a QH...
2067  */
2068 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2069 {
2070 	struct fotg210_qtd *qtd;
2071 
2072 	if (list_empty(&qh->qtd_list))
2073 		qtd = qh->dummy;
2074 	else {
2075 		qtd = list_entry(qh->qtd_list.next,
2076 				struct fotg210_qtd, qtd_list);
2077 		/*
2078 		 * first qtd may already be partially processed.
2079 		 * If we come here during unlink, the QH overlay region
2080 		 * might have reference to the just unlinked qtd. The
2081 		 * qtd is updated in qh_completions(). Update the QH
2082 		 * overlay here.
2083 		 */
2084 		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2085 			qh->hw->hw_qtd_next = qtd->hw_next;
2086 			qtd = NULL;
2087 		}
2088 	}
2089 
2090 	if (qtd)
2091 		qh_update(fotg210, qh, qtd);
2092 }
2093 
2094 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2095 
2096 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2097 		struct usb_host_endpoint *ep)
2098 {
2099 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2100 	struct fotg210_qh *qh = ep->hcpriv;
2101 	unsigned long flags;
2102 
2103 	spin_lock_irqsave(&fotg210->lock, flags);
2104 	qh->clearing_tt = 0;
2105 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2106 			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2107 		qh_link_async(fotg210, qh);
2108 	spin_unlock_irqrestore(&fotg210->lock, flags);
2109 }
2110 
2111 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2112 		struct fotg210_qh *qh, struct urb *urb, u32 token)
2113 {
2114 
2115 	/* If an async split transaction gets an error or is unlinked,
2116 	 * the TT buffer may be left in an indeterminate state.  We
2117 	 * have to clear the TT buffer.
2118 	 *
2119 	 * Note: this routine is never called for Isochronous transfers.
2120 	 */
2121 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2122 		struct usb_device *tt = urb->dev->tt->hub;
2123 
2124 		dev_dbg(&tt->dev,
2125 				"clear tt buffer port %d, a%d ep%d t%08x\n",
2126 				urb->dev->ttport, urb->dev->devnum,
2127 				usb_pipeendpoint(urb->pipe), token);
2128 
2129 		if (urb->dev->tt->hub !=
2130 				fotg210_to_hcd(fotg210)->self.root_hub) {
2131 			if (usb_hub_clear_tt_buffer(urb) == 0)
2132 				qh->clearing_tt = 1;
2133 		}
2134 	}
2135 }
2136 
2137 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2138 		size_t length, u32 token)
2139 {
2140 	int status = -EINPROGRESS;
2141 
2142 	/* count IN/OUT bytes, not SETUP (even short packets) */
2143 	if (likely(QTD_PID(token) != 2))
2144 		urb->actual_length += length - QTD_LENGTH(token);
2145 
2146 	/* don't modify error codes */
2147 	if (unlikely(urb->unlinked))
2148 		return status;
2149 
2150 	/* force cleanup after short read; not always an error */
2151 	if (unlikely(IS_SHORT_READ(token)))
2152 		status = -EREMOTEIO;
2153 
2154 	/* serious "can't proceed" faults reported by the hardware */
2155 	if (token & QTD_STS_HALT) {
2156 		if (token & QTD_STS_BABBLE) {
2157 			/* FIXME "must" disable babbling device's port too */
2158 			status = -EOVERFLOW;
2159 		/* CERR nonzero + halt --> stall */
2160 		} else if (QTD_CERR(token)) {
2161 			status = -EPIPE;
2162 
2163 		/* In theory, more than one of the following bits can be set
2164 		 * since they are sticky and the transaction is retried.
2165 		 * Which to test first is rather arbitrary.
2166 		 */
2167 		} else if (token & QTD_STS_MMF) {
2168 			/* fs/ls interrupt xfer missed the complete-split */
2169 			status = -EPROTO;
2170 		} else if (token & QTD_STS_DBE) {
2171 			status = (QTD_PID(token) == 1) /* IN ? */
2172 				? -ENOSR  /* hc couldn't read data */
2173 				: -ECOMM; /* hc couldn't write data */
2174 		} else if (token & QTD_STS_XACT) {
2175 			/* timeout, bad CRC, wrong PID, etc */
2176 			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2177 					urb->dev->devpath,
2178 					usb_pipeendpoint(urb->pipe),
2179 					usb_pipein(urb->pipe) ? "in" : "out");
2180 			status = -EPROTO;
2181 		} else {	/* unknown */
2182 			status = -EPROTO;
2183 		}
2184 
2185 		fotg210_dbg(fotg210,
2186 				"dev%d ep%d%s qtd token %08x --> status %d\n",
2187 				usb_pipedevice(urb->pipe),
2188 				usb_pipeendpoint(urb->pipe),
2189 				usb_pipein(urb->pipe) ? "in" : "out",
2190 				token, status);
2191 	}
2192 
2193 	return status;
2194 }
2195 
2196 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2197 		int status)
2198 __releases(fotg210->lock)
2199 __acquires(fotg210->lock)
2200 {
2201 	if (likely(urb->hcpriv != NULL)) {
2202 		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2203 
2204 		/* S-mask in a QH means it's an interrupt urb */
2205 		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2206 
2207 			/* ... update hc-wide periodic stats (for usbfs) */
2208 			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2209 		}
2210 	}
2211 
2212 	if (unlikely(urb->unlinked)) {
2213 		INCR(fotg210->stats.unlink);
2214 	} else {
2215 		/* report non-error and short read status as zero */
2216 		if (status == -EINPROGRESS || status == -EREMOTEIO)
2217 			status = 0;
2218 		INCR(fotg210->stats.complete);
2219 	}
2220 
2221 #ifdef FOTG210_URB_TRACE
2222 	fotg210_dbg(fotg210,
2223 			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2224 			__func__, urb->dev->devpath, urb,
2225 			usb_pipeendpoint(urb->pipe),
2226 			usb_pipein(urb->pipe) ? "in" : "out",
2227 			status,
2228 			urb->actual_length, urb->transfer_buffer_length);
2229 #endif
2230 
2231 	/* complete() can reenter this HCD */
2232 	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2233 	spin_unlock(&fotg210->lock);
2234 	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2235 	spin_lock(&fotg210->lock);
2236 }
2237 
2238 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2239 
2240 /* Process and free completed qtds for a qh, returning URBs to drivers.
2241  * Chases up to qh->hw_current.  Returns number of completions called,
2242  * indicating how much "real" work we did.
2243  */
2244 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2245 		struct fotg210_qh *qh)
2246 {
2247 	struct fotg210_qtd *last, *end = qh->dummy;
2248 	struct fotg210_qtd *qtd, *tmp;
2249 	int last_status;
2250 	int stopped;
2251 	unsigned count = 0;
2252 	u8 state;
2253 	struct fotg210_qh_hw *hw = qh->hw;
2254 
2255 	if (unlikely(list_empty(&qh->qtd_list)))
2256 		return count;
2257 
2258 	/* completions (or tasks on other cpus) must never clobber HALT
2259 	 * till we've gone through and cleaned everything up, even when
2260 	 * they add urbs to this qh's queue or mark them for unlinking.
2261 	 *
2262 	 * NOTE:  unlinking expects to be done in queue order.
2263 	 *
2264 	 * It's a bug for qh->qh_state to be anything other than
2265 	 * QH_STATE_IDLE, unless our caller is scan_async() or
2266 	 * scan_intr().
2267 	 */
2268 	state = qh->qh_state;
2269 	qh->qh_state = QH_STATE_COMPLETING;
2270 	stopped = (state == QH_STATE_IDLE);
2271 
2272 rescan:
2273 	last = NULL;
2274 	last_status = -EINPROGRESS;
2275 	qh->needs_rescan = 0;
2276 
2277 	/* remove de-activated QTDs from front of queue.
2278 	 * after faults (including short reads), cleanup this urb
2279 	 * then let the queue advance.
2280 	 * if queue is stopped, handles unlinks.
2281 	 */
2282 	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2283 		struct urb *urb;
2284 		u32 token = 0;
2285 
2286 		urb = qtd->urb;
2287 
2288 		/* clean up any state from previous QTD ...*/
2289 		if (last) {
2290 			if (likely(last->urb != urb)) {
2291 				fotg210_urb_done(fotg210, last->urb,
2292 						last_status);
2293 				count++;
2294 				last_status = -EINPROGRESS;
2295 			}
2296 			fotg210_qtd_free(fotg210, last);
2297 			last = NULL;
2298 		}
2299 
2300 		/* ignore urbs submitted during completions we reported */
2301 		if (qtd == end)
2302 			break;
2303 
2304 		/* hardware copies qtd out of qh overlay */
2305 		rmb();
2306 		token = hc32_to_cpu(fotg210, qtd->hw_token);
2307 
2308 		/* always clean up qtds the hc de-activated */
2309 retry_xacterr:
2310 		if ((token & QTD_STS_ACTIVE) == 0) {
2311 
2312 			/* Report Data Buffer Error: non-fatal but useful */
2313 			if (token & QTD_STS_DBE)
2314 				fotg210_dbg(fotg210,
2315 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2316 					urb, usb_endpoint_num(&urb->ep->desc),
2317 					usb_endpoint_dir_in(&urb->ep->desc)
2318 						? "in" : "out",
2319 					urb->transfer_buffer_length, qtd, qh);
2320 
2321 			/* on STALL, error, and short reads this urb must
2322 			 * complete and all its qtds must be recycled.
2323 			 */
2324 			if ((token & QTD_STS_HALT) != 0) {
2325 
2326 				/* retry transaction errors until we
2327 				 * reach the software xacterr limit
2328 				 */
2329 				if ((token & QTD_STS_XACT) &&
2330 						QTD_CERR(token) == 0 &&
2331 						++qh->xacterrs < QH_XACTERR_MAX &&
2332 						!urb->unlinked) {
2333 					fotg210_dbg(fotg210,
2334 						"detected XactErr len %zu/%zu retry %d\n",
2335 						qtd->length - QTD_LENGTH(token),
2336 						qtd->length,
2337 						qh->xacterrs);
2338 
2339 					/* reset the token in the qtd and the
2340 					 * qh overlay (which still contains
2341 					 * the qtd) so that we pick up from
2342 					 * where we left off
2343 					 */
2344 					token &= ~QTD_STS_HALT;
2345 					token |= QTD_STS_ACTIVE |
2346 						 (FOTG210_TUNE_CERR << 10);
2347 					qtd->hw_token = cpu_to_hc32(fotg210,
2348 							token);
2349 					wmb();
2350 					hw->hw_token = cpu_to_hc32(fotg210,
2351 							token);
2352 					goto retry_xacterr;
2353 				}
2354 				stopped = 1;
2355 
2356 			/* magic dummy for some short reads; qh won't advance.
2357 			 * that silicon quirk can kick in with this dummy too.
2358 			 *
2359 			 * other short reads won't stop the queue, including
2360 			 * control transfers (status stage handles that) or
2361 			 * most other single-qtd reads ... the queue stops if
2362 			 * URB_SHORT_NOT_OK was set so the driver submitting
2363 			 * the urbs could clean it up.
2364 			 */
2365 			} else if (IS_SHORT_READ(token) &&
2366 					!(qtd->hw_alt_next &
2367 					FOTG210_LIST_END(fotg210))) {
2368 				stopped = 1;
2369 			}
2370 
2371 		/* stop scanning when we reach qtds the hc is using */
2372 		} else if (likely(!stopped
2373 				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2374 			break;
2375 
2376 		/* scan the whole queue for unlinks whenever it stops */
2377 		} else {
2378 			stopped = 1;
2379 
2380 			/* cancel everything if we halt, suspend, etc */
2381 			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2382 				last_status = -ESHUTDOWN;
2383 
2384 			/* this qtd is active; skip it unless a previous qtd
2385 			 * for its urb faulted, or its urb was canceled.
2386 			 */
2387 			else if (last_status == -EINPROGRESS && !urb->unlinked)
2388 				continue;
2389 
2390 			/* qh unlinked; token in overlay may be most current */
2391 			if (state == QH_STATE_IDLE &&
2392 					cpu_to_hc32(fotg210, qtd->qtd_dma)
2393 					== hw->hw_current) {
2394 				token = hc32_to_cpu(fotg210, hw->hw_token);
2395 
2396 				/* An unlink may leave an incomplete
2397 				 * async transaction in the TT buffer.
2398 				 * We have to clear it.
2399 				 */
2400 				fotg210_clear_tt_buffer(fotg210, qh, urb,
2401 						token);
2402 			}
2403 		}
2404 
2405 		/* unless we already know the urb's status, collect qtd status
2406 		 * and update count of bytes transferred.  in common short read
2407 		 * cases with only one data qtd (including control transfers),
2408 		 * queue processing won't halt.  but with two or more qtds (for
2409 		 * example, with a 32 KB transfer), when the first qtd gets a
2410 		 * short read the second must be removed by hand.
2411 		 */
2412 		if (last_status == -EINPROGRESS) {
2413 			last_status = qtd_copy_status(fotg210, urb,
2414 					qtd->length, token);
2415 			if (last_status == -EREMOTEIO &&
2416 					(qtd->hw_alt_next &
2417 					FOTG210_LIST_END(fotg210)))
2418 				last_status = -EINPROGRESS;
2419 
2420 			/* As part of low/full-speed endpoint-halt processing
2421 			 * we must clear the TT buffer (11.17.5).
2422 			 */
2423 			if (unlikely(last_status != -EINPROGRESS &&
2424 					last_status != -EREMOTEIO)) {
2425 				/* The TT's in some hubs malfunction when they
2426 				 * receive this request following a STALL (they
2427 				 * stop sending isochronous packets).  Since a
2428 				 * STALL can't leave the TT buffer in a busy
2429 				 * state (if you believe Figures 11-48 - 11-51
2430 				 * in the USB 2.0 spec), we won't clear the TT
2431 				 * buffer in this case.  Strictly speaking this
2432 				 * is a violation of the spec.
2433 				 */
2434 				if (last_status != -EPIPE)
2435 					fotg210_clear_tt_buffer(fotg210, qh,
2436 							urb, token);
2437 			}
2438 		}
2439 
2440 		/* if we're removing something not at the queue head,
2441 		 * patch the hardware queue pointer.
2442 		 */
2443 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2444 			last = list_entry(qtd->qtd_list.prev,
2445 					struct fotg210_qtd, qtd_list);
2446 			last->hw_next = qtd->hw_next;
2447 		}
2448 
2449 		/* remove qtd; it's recycled after possible urb completion */
2450 		list_del(&qtd->qtd_list);
2451 		last = qtd;
2452 
2453 		/* reinit the xacterr counter for the next qtd */
2454 		qh->xacterrs = 0;
2455 	}
2456 
2457 	/* last urb's completion might still need calling */
2458 	if (likely(last != NULL)) {
2459 		fotg210_urb_done(fotg210, last->urb, last_status);
2460 		count++;
2461 		fotg210_qtd_free(fotg210, last);
2462 	}
2463 
2464 	/* Do we need to rescan for URBs dequeued during a giveback? */
2465 	if (unlikely(qh->needs_rescan)) {
2466 		/* If the QH is already unlinked, do the rescan now. */
2467 		if (state == QH_STATE_IDLE)
2468 			goto rescan;
2469 
2470 		/* Otherwise we have to wait until the QH is fully unlinked.
2471 		 * Our caller will start an unlink if qh->needs_rescan is
2472 		 * set.  But if an unlink has already started, nothing needs
2473 		 * to be done.
2474 		 */
2475 		if (state != QH_STATE_LINKED)
2476 			qh->needs_rescan = 0;
2477 	}
2478 
2479 	/* restore original state; caller must unlink or relink */
2480 	qh->qh_state = state;
2481 
2482 	/* be sure the hardware's done with the qh before refreshing
2483 	 * it after fault cleanup, or recovering from silicon wrongly
2484 	 * overlaying the dummy qtd (which reduces DMA chatter).
2485 	 */
2486 	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2487 		switch (state) {
2488 		case QH_STATE_IDLE:
2489 			qh_refresh(fotg210, qh);
2490 			break;
2491 		case QH_STATE_LINKED:
2492 			/* We won't refresh a QH that's linked (after the HC
2493 			 * stopped the queue).  That avoids a race:
2494 			 *  - HC reads first part of QH;
2495 			 *  - CPU updates that first part and the token;
2496 			 *  - HC reads rest of that QH, including token
2497 			 * Result:  HC gets an inconsistent image, and then
2498 			 * DMAs to/from the wrong memory (corrupting it).
2499 			 *
2500 			 * That should be rare for interrupt transfers,
2501 			 * except maybe high bandwidth ...
2502 			 */
2503 
2504 			/* Tell the caller to start an unlink */
2505 			qh->needs_rescan = 1;
2506 			break;
2507 		/* otherwise, unlink already started */
2508 		}
2509 	}
2510 
2511 	return count;
2512 }
2513 
2514 /* reverse of qh_urb_transaction:  free a list of TDs.
2515  * used for cleanup after errors, before HC sees an URB's TDs.
2516  */
2517 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2518 		struct list_head *head)
2519 {
2520 	struct fotg210_qtd *qtd, *temp;
2521 
2522 	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2523 		list_del(&qtd->qtd_list);
2524 		fotg210_qtd_free(fotg210, qtd);
2525 	}
2526 }
2527 
2528 /* create a list of filled qtds for this URB; won't link into qh.
2529  */
2530 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2531 		struct urb *urb, struct list_head *head, gfp_t flags)
2532 {
2533 	struct fotg210_qtd *qtd, *qtd_prev;
2534 	dma_addr_t buf;
2535 	int len, this_sg_len, maxpacket;
2536 	int is_input;
2537 	u32 token;
2538 	int i;
2539 	struct scatterlist *sg;
2540 
2541 	/*
2542 	 * URBs map to sequences of QTDs:  one logical transaction
2543 	 */
2544 	qtd = fotg210_qtd_alloc(fotg210, flags);
2545 	if (unlikely(!qtd))
2546 		return NULL;
2547 	list_add_tail(&qtd->qtd_list, head);
2548 	qtd->urb = urb;
2549 
2550 	token = QTD_STS_ACTIVE;
2551 	token |= (FOTG210_TUNE_CERR << 10);
2552 	/* for split transactions, SplitXState initialized to zero */
2553 
2554 	len = urb->transfer_buffer_length;
2555 	is_input = usb_pipein(urb->pipe);
2556 	if (usb_pipecontrol(urb->pipe)) {
2557 		/* SETUP pid */
2558 		qtd_fill(fotg210, qtd, urb->setup_dma,
2559 				sizeof(struct usb_ctrlrequest),
2560 				token | (2 /* "setup" */ << 8), 8);
2561 
2562 		/* ... and always at least one more pid */
2563 		token ^= QTD_TOGGLE;
2564 		qtd_prev = qtd;
2565 		qtd = fotg210_qtd_alloc(fotg210, flags);
2566 		if (unlikely(!qtd))
2567 			goto cleanup;
2568 		qtd->urb = urb;
2569 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2570 		list_add_tail(&qtd->qtd_list, head);
2571 
2572 		/* for zero length DATA stages, STATUS is always IN */
2573 		if (len == 0)
2574 			token |= (1 /* "in" */ << 8);
2575 	}
2576 
2577 	/*
2578 	 * data transfer stage:  buffer setup
2579 	 */
2580 	i = urb->num_mapped_sgs;
2581 	if (len > 0 && i > 0) {
2582 		sg = urb->sg;
2583 		buf = sg_dma_address(sg);
2584 
2585 		/* urb->transfer_buffer_length may be smaller than the
2586 		 * size of the scatterlist (or vice versa)
2587 		 */
2588 		this_sg_len = min_t(int, sg_dma_len(sg), len);
2589 	} else {
2590 		sg = NULL;
2591 		buf = urb->transfer_dma;
2592 		this_sg_len = len;
2593 	}
2594 
2595 	if (is_input)
2596 		token |= (1 /* "in" */ << 8);
2597 	/* else it's already initted to "out" pid (0 << 8) */
2598 
2599 	maxpacket = usb_maxpacket(urb->dev, urb->pipe);
2600 
2601 	/*
2602 	 * buffer gets wrapped in one or more qtds;
2603 	 * last one may be "short" (including zero len)
2604 	 * and may serve as a control status ack
2605 	 */
2606 	for (;;) {
2607 		int this_qtd_len;
2608 
2609 		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2610 				maxpacket);
2611 		this_sg_len -= this_qtd_len;
2612 		len -= this_qtd_len;
2613 		buf += this_qtd_len;
2614 
2615 		/*
2616 		 * short reads advance to a "magic" dummy instead of the next
2617 		 * qtd ... that forces the queue to stop, for manual cleanup.
2618 		 * (this will usually be overridden later.)
2619 		 */
2620 		if (is_input)
2621 			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2622 
2623 		/* qh makes control packets use qtd toggle; maybe switch it */
2624 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2625 			token ^= QTD_TOGGLE;
2626 
2627 		if (likely(this_sg_len <= 0)) {
2628 			if (--i <= 0 || len <= 0)
2629 				break;
2630 			sg = sg_next(sg);
2631 			buf = sg_dma_address(sg);
2632 			this_sg_len = min_t(int, sg_dma_len(sg), len);
2633 		}
2634 
2635 		qtd_prev = qtd;
2636 		qtd = fotg210_qtd_alloc(fotg210, flags);
2637 		if (unlikely(!qtd))
2638 			goto cleanup;
2639 		qtd->urb = urb;
2640 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2641 		list_add_tail(&qtd->qtd_list, head);
2642 	}
2643 
2644 	/*
2645 	 * unless the caller requires manual cleanup after short reads,
2646 	 * have the alt_next mechanism keep the queue running after the
2647 	 * last data qtd (the only one, for control and most other cases).
2648 	 */
2649 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2650 			usb_pipecontrol(urb->pipe)))
2651 		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2652 
2653 	/*
2654 	 * control requests may need a terminating data "status" ack;
2655 	 * other OUT ones may need a terminating short packet
2656 	 * (zero length).
2657 	 */
2658 	if (likely(urb->transfer_buffer_length != 0)) {
2659 		int one_more = 0;
2660 
2661 		if (usb_pipecontrol(urb->pipe)) {
2662 			one_more = 1;
2663 			token ^= 0x0100;	/* "in" <--> "out"  */
2664 			token |= QTD_TOGGLE;	/* force DATA1 */
2665 		} else if (usb_pipeout(urb->pipe)
2666 				&& (urb->transfer_flags & URB_ZERO_PACKET)
2667 				&& !(urb->transfer_buffer_length % maxpacket)) {
2668 			one_more = 1;
2669 		}
2670 		if (one_more) {
2671 			qtd_prev = qtd;
2672 			qtd = fotg210_qtd_alloc(fotg210, flags);
2673 			if (unlikely(!qtd))
2674 				goto cleanup;
2675 			qtd->urb = urb;
2676 			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2677 			list_add_tail(&qtd->qtd_list, head);
2678 
2679 			/* never any data in such packets */
2680 			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2681 		}
2682 	}
2683 
2684 	/* by default, enable interrupt on urb completion */
2685 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2686 		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2687 	return head;
2688 
2689 cleanup:
2690 	qtd_list_free(fotg210, urb, head);
2691 	return NULL;
2692 }
2693 
2694 /* Would be best to create all qh's from config descriptors,
2695  * when each interface/altsetting is established.  Unlink
2696  * any previous qh and cancel its urbs first; endpoints are
2697  * implicitly reset then (data toggle too).
2698  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2699  */
2700 
2701 
2702 /* Each QH holds a qtd list; a QH is used for everything except iso.
2703  *
2704  * For interrupt urbs, the scheduler must set the microframe scheduling
2705  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2706  * just one microframe in the s-mask.  For split interrupt transactions
2707  * there are additional complications: c-mask, maybe FSTNs.
2708  */
2709 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2710 		gfp_t flags)
2711 {
2712 	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2713 	struct usb_host_endpoint *ep;
2714 	u32 info1 = 0, info2 = 0;
2715 	int is_input, type;
2716 	int maxp = 0;
2717 	int mult;
2718 	struct usb_tt *tt = urb->dev->tt;
2719 	struct fotg210_qh_hw *hw;
2720 
2721 	if (!qh)
2722 		return qh;
2723 
2724 	/*
2725 	 * init endpoint/device data for this QH
2726 	 */
2727 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2728 	info1 |= usb_pipedevice(urb->pipe) << 0;
2729 
2730 	is_input = usb_pipein(urb->pipe);
2731 	type = usb_pipetype(urb->pipe);
2732 	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2733 	maxp = usb_endpoint_maxp(&ep->desc);
2734 	mult = usb_endpoint_maxp_mult(&ep->desc);
2735 
2736 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2737 	 * acts like up to 3KB, but is built from smaller packets.
2738 	 */
2739 	if (maxp > 1024) {
2740 		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2741 		goto done;
2742 	}
2743 
2744 	/* Compute interrupt scheduling parameters just once, and save.
2745 	 * - allowing for high bandwidth, how many nsec/uframe are used?
2746 	 * - split transactions need a second CSPLIT uframe; same question
2747 	 * - splits also need a schedule gap (for full/low speed I/O)
2748 	 * - qh has a polling interval
2749 	 *
2750 	 * For control/bulk requests, the HC or TT handles these.
2751 	 */
2752 	if (type == PIPE_INTERRUPT) {
2753 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2754 				is_input, 0, mult * maxp));
2755 		qh->start = NO_FRAME;
2756 
2757 		if (urb->dev->speed == USB_SPEED_HIGH) {
2758 			qh->c_usecs = 0;
2759 			qh->gap_uf = 0;
2760 
2761 			qh->period = urb->interval >> 3;
2762 			if (qh->period == 0 && urb->interval != 1) {
2763 				/* NOTE interval 2 or 4 uframes could work.
2764 				 * But interval 1 scheduling is simpler, and
2765 				 * includes high bandwidth.
2766 				 */
2767 				urb->interval = 1;
2768 			} else if (qh->period > fotg210->periodic_size) {
2769 				qh->period = fotg210->periodic_size;
2770 				urb->interval = qh->period << 3;
2771 			}
2772 		} else {
2773 			int think_time;
2774 
2775 			/* gap is f(FS/LS transfer times) */
2776 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2777 					is_input, 0, maxp) / (125 * 1000);
2778 
2779 			/* FIXME this just approximates SPLIT/CSPLIT times */
2780 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2781 				qh->c_usecs = qh->usecs + HS_USECS(0);
2782 				qh->usecs = HS_USECS(1);
2783 			} else {		/* SPLIT+DATA, gap, CSPLIT */
2784 				qh->usecs += HS_USECS(1);
2785 				qh->c_usecs = HS_USECS(0);
2786 			}
2787 
2788 			think_time = tt ? tt->think_time : 0;
2789 			qh->tt_usecs = NS_TO_US(think_time +
2790 					usb_calc_bus_time(urb->dev->speed,
2791 					is_input, 0, maxp));
2792 			qh->period = urb->interval;
2793 			if (qh->period > fotg210->periodic_size) {
2794 				qh->period = fotg210->periodic_size;
2795 				urb->interval = qh->period;
2796 			}
2797 		}
2798 	}
2799 
2800 	/* support for tt scheduling, and access to toggles */
2801 	qh->dev = urb->dev;
2802 
2803 	/* using TT? */
2804 	switch (urb->dev->speed) {
2805 	case USB_SPEED_LOW:
2806 		info1 |= QH_LOW_SPEED;
2807 		fallthrough;
2808 
2809 	case USB_SPEED_FULL:
2810 		/* EPS 0 means "full" */
2811 		if (type != PIPE_INTERRUPT)
2812 			info1 |= (FOTG210_TUNE_RL_TT << 28);
2813 		if (type == PIPE_CONTROL) {
2814 			info1 |= QH_CONTROL_EP;		/* for TT */
2815 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2816 		}
2817 		info1 |= maxp << 16;
2818 
2819 		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2820 
2821 		/* Some Freescale processors have an erratum in which the
2822 		 * port number in the queue head was 0..N-1 instead of 1..N.
2823 		 */
2824 		if (fotg210_has_fsl_portno_bug(fotg210))
2825 			info2 |= (urb->dev->ttport-1) << 23;
2826 		else
2827 			info2 |= urb->dev->ttport << 23;
2828 
2829 		/* set the address of the TT; for TDI's integrated
2830 		 * root hub tt, leave it zeroed.
2831 		 */
2832 		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2833 			info2 |= tt->hub->devnum << 16;
2834 
2835 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2836 
2837 		break;
2838 
2839 	case USB_SPEED_HIGH:		/* no TT involved */
2840 		info1 |= QH_HIGH_SPEED;
2841 		if (type == PIPE_CONTROL) {
2842 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2843 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2844 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2845 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2846 		} else if (type == PIPE_BULK) {
2847 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2848 			/* The USB spec says that high speed bulk endpoints
2849 			 * always use 512 byte maxpacket.  But some device
2850 			 * vendors decided to ignore that, and MSFT is happy
2851 			 * to help them do so.  So now people expect to use
2852 			 * such nonconformant devices with Linux too; sigh.
2853 			 */
2854 			info1 |= maxp << 16;
2855 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2856 		} else {		/* PIPE_INTERRUPT */
2857 			info1 |= maxp << 16;
2858 			info2 |= mult << 30;
2859 		}
2860 		break;
2861 	default:
2862 		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2863 				urb->dev->speed);
2864 done:
2865 		qh_destroy(fotg210, qh);
2866 		return NULL;
2867 	}
2868 
2869 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2870 
2871 	/* init as live, toggle clear, advance to dummy */
2872 	qh->qh_state = QH_STATE_IDLE;
2873 	hw = qh->hw;
2874 	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2875 	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2876 	qh->is_out = !is_input;
2877 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2878 	qh_refresh(fotg210, qh);
2879 	return qh;
2880 }
2881 
2882 static void enable_async(struct fotg210_hcd *fotg210)
2883 {
2884 	if (fotg210->async_count++)
2885 		return;
2886 
2887 	/* Stop waiting to turn off the async schedule */
2888 	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2889 
2890 	/* Don't start the schedule until ASS is 0 */
2891 	fotg210_poll_ASS(fotg210);
2892 	turn_on_io_watchdog(fotg210);
2893 }
2894 
2895 static void disable_async(struct fotg210_hcd *fotg210)
2896 {
2897 	if (--fotg210->async_count)
2898 		return;
2899 
2900 	/* The async schedule and async_unlink list are supposed to be empty */
2901 	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2902 
2903 	/* Don't turn off the schedule until ASS is 1 */
2904 	fotg210_poll_ASS(fotg210);
2905 }
2906 
2907 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2908 
2909 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2910 {
2911 	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2912 	struct fotg210_qh *head;
2913 
2914 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2915 	if (unlikely(qh->clearing_tt))
2916 		return;
2917 
2918 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2919 
2920 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2921 	qh_refresh(fotg210, qh);
2922 
2923 	/* splice right after start */
2924 	head = fotg210->async;
2925 	qh->qh_next = head->qh_next;
2926 	qh->hw->hw_next = head->hw->hw_next;
2927 	wmb();
2928 
2929 	head->qh_next.qh = qh;
2930 	head->hw->hw_next = dma;
2931 
2932 	qh->xacterrs = 0;
2933 	qh->qh_state = QH_STATE_LINKED;
2934 	/* qtd completions reported later by interrupt */
2935 
2936 	enable_async(fotg210);
2937 }
2938 
2939 /* For control/bulk/interrupt, return QH with these TDs appended.
2940  * Allocates and initializes the QH if necessary.
2941  * Returns null if it can't allocate a QH it needs to.
2942  * If the QH has TDs (urbs) already, that's great.
2943  */
2944 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2945 		struct urb *urb, struct list_head *qtd_list,
2946 		int epnum, void **ptr)
2947 {
2948 	struct fotg210_qh *qh = NULL;
2949 	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2950 
2951 	qh = (struct fotg210_qh *) *ptr;
2952 	if (unlikely(qh == NULL)) {
2953 		/* can't sleep here, we have fotg210->lock... */
2954 		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2955 		*ptr = qh;
2956 	}
2957 	if (likely(qh != NULL)) {
2958 		struct fotg210_qtd *qtd;
2959 
2960 		if (unlikely(list_empty(qtd_list)))
2961 			qtd = NULL;
2962 		else
2963 			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2964 					qtd_list);
2965 
2966 		/* control qh may need patching ... */
2967 		if (unlikely(epnum == 0)) {
2968 			/* usb_reset_device() briefly reverts to address 0 */
2969 			if (usb_pipedevice(urb->pipe) == 0)
2970 				qh->hw->hw_info1 &= ~qh_addr_mask;
2971 		}
2972 
2973 		/* just one way to queue requests: swap with the dummy qtd.
2974 		 * only hc or qh_refresh() ever modify the overlay.
2975 		 */
2976 		if (likely(qtd != NULL)) {
2977 			struct fotg210_qtd *dummy;
2978 			dma_addr_t dma;
2979 			__hc32 token;
2980 
2981 			/* to avoid racing the HC, use the dummy td instead of
2982 			 * the first td of our list (becomes new dummy).  both
2983 			 * tds stay deactivated until we're done, when the
2984 			 * HC is allowed to fetch the old dummy (4.10.2).
2985 			 */
2986 			token = qtd->hw_token;
2987 			qtd->hw_token = HALT_BIT(fotg210);
2988 
2989 			dummy = qh->dummy;
2990 
2991 			dma = dummy->qtd_dma;
2992 			*dummy = *qtd;
2993 			dummy->qtd_dma = dma;
2994 
2995 			list_del(&qtd->qtd_list);
2996 			list_add(&dummy->qtd_list, qtd_list);
2997 			list_splice_tail(qtd_list, &qh->qtd_list);
2998 
2999 			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3000 			qh->dummy = qtd;
3001 
3002 			/* hc must see the new dummy at list end */
3003 			dma = qtd->qtd_dma;
3004 			qtd = list_entry(qh->qtd_list.prev,
3005 					struct fotg210_qtd, qtd_list);
3006 			qtd->hw_next = QTD_NEXT(fotg210, dma);
3007 
3008 			/* let the hc process these next qtds */
3009 			wmb();
3010 			dummy->hw_token = token;
3011 
3012 			urb->hcpriv = qh;
3013 		}
3014 	}
3015 	return qh;
3016 }
3017 
3018 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3019 		struct list_head *qtd_list, gfp_t mem_flags)
3020 {
3021 	int epnum;
3022 	unsigned long flags;
3023 	struct fotg210_qh *qh = NULL;
3024 	int rc;
3025 
3026 	epnum = urb->ep->desc.bEndpointAddress;
3027 
3028 #ifdef FOTG210_URB_TRACE
3029 	{
3030 		struct fotg210_qtd *qtd;
3031 
3032 		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3033 		fotg210_dbg(fotg210,
3034 				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3035 				__func__, urb->dev->devpath, urb,
3036 				epnum & 0x0f, (epnum & USB_DIR_IN)
3037 					? "in" : "out",
3038 				urb->transfer_buffer_length,
3039 				qtd, urb->ep->hcpriv);
3040 	}
3041 #endif
3042 
3043 	spin_lock_irqsave(&fotg210->lock, flags);
3044 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3045 		rc = -ESHUTDOWN;
3046 		goto done;
3047 	}
3048 	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3049 	if (unlikely(rc))
3050 		goto done;
3051 
3052 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3053 	if (unlikely(qh == NULL)) {
3054 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3055 		rc = -ENOMEM;
3056 		goto done;
3057 	}
3058 
3059 	/* Control/bulk operations through TTs don't need scheduling,
3060 	 * the HC and TT handle it when the TT has a buffer ready.
3061 	 */
3062 	if (likely(qh->qh_state == QH_STATE_IDLE))
3063 		qh_link_async(fotg210, qh);
3064 done:
3065 	spin_unlock_irqrestore(&fotg210->lock, flags);
3066 	if (unlikely(qh == NULL))
3067 		qtd_list_free(fotg210, urb, qtd_list);
3068 	return rc;
3069 }
3070 
3071 static void single_unlink_async(struct fotg210_hcd *fotg210,
3072 		struct fotg210_qh *qh)
3073 {
3074 	struct fotg210_qh *prev;
3075 
3076 	/* Add to the end of the list of QHs waiting for the next IAAD */
3077 	qh->qh_state = QH_STATE_UNLINK;
3078 	if (fotg210->async_unlink)
3079 		fotg210->async_unlink_last->unlink_next = qh;
3080 	else
3081 		fotg210->async_unlink = qh;
3082 	fotg210->async_unlink_last = qh;
3083 
3084 	/* Unlink it from the schedule */
3085 	prev = fotg210->async;
3086 	while (prev->qh_next.qh != qh)
3087 		prev = prev->qh_next.qh;
3088 
3089 	prev->hw->hw_next = qh->hw->hw_next;
3090 	prev->qh_next = qh->qh_next;
3091 	if (fotg210->qh_scan_next == qh)
3092 		fotg210->qh_scan_next = qh->qh_next.qh;
3093 }
3094 
3095 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3096 {
3097 	/*
3098 	 * Do nothing if an IAA cycle is already running or
3099 	 * if one will be started shortly.
3100 	 */
3101 	if (fotg210->async_iaa || fotg210->async_unlinking)
3102 		return;
3103 
3104 	/* Do all the waiting QHs at once */
3105 	fotg210->async_iaa = fotg210->async_unlink;
3106 	fotg210->async_unlink = NULL;
3107 
3108 	/* If the controller isn't running, we don't have to wait for it */
3109 	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3110 		if (!nested)		/* Avoid recursion */
3111 			end_unlink_async(fotg210);
3112 
3113 	/* Otherwise start a new IAA cycle */
3114 	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3115 		/* Make sure the unlinks are all visible to the hardware */
3116 		wmb();
3117 
3118 		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3119 				&fotg210->regs->command);
3120 		fotg210_readl(fotg210, &fotg210->regs->command);
3121 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3122 				true);
3123 	}
3124 }
3125 
3126 /* the async qh for the qtds being unlinked are now gone from the HC */
3127 
3128 static void end_unlink_async(struct fotg210_hcd *fotg210)
3129 {
3130 	struct fotg210_qh *qh;
3131 
3132 	/* Process the idle QHs */
3133 restart:
3134 	fotg210->async_unlinking = true;
3135 	while (fotg210->async_iaa) {
3136 		qh = fotg210->async_iaa;
3137 		fotg210->async_iaa = qh->unlink_next;
3138 		qh->unlink_next = NULL;
3139 
3140 		qh->qh_state = QH_STATE_IDLE;
3141 		qh->qh_next.qh = NULL;
3142 
3143 		qh_completions(fotg210, qh);
3144 		if (!list_empty(&qh->qtd_list) &&
3145 				fotg210->rh_state == FOTG210_RH_RUNNING)
3146 			qh_link_async(fotg210, qh);
3147 		disable_async(fotg210);
3148 	}
3149 	fotg210->async_unlinking = false;
3150 
3151 	/* Start a new IAA cycle if any QHs are waiting for it */
3152 	if (fotg210->async_unlink) {
3153 		start_iaa_cycle(fotg210, true);
3154 		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3155 			goto restart;
3156 	}
3157 }
3158 
3159 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3160 {
3161 	struct fotg210_qh *qh, *next;
3162 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3163 	bool check_unlinks_later = false;
3164 
3165 	/* Unlink all the async QHs that have been empty for a timer cycle */
3166 	next = fotg210->async->qh_next.qh;
3167 	while (next) {
3168 		qh = next;
3169 		next = qh->qh_next.qh;
3170 
3171 		if (list_empty(&qh->qtd_list) &&
3172 				qh->qh_state == QH_STATE_LINKED) {
3173 			if (!stopped && qh->unlink_cycle ==
3174 					fotg210->async_unlink_cycle)
3175 				check_unlinks_later = true;
3176 			else
3177 				single_unlink_async(fotg210, qh);
3178 		}
3179 	}
3180 
3181 	/* Start a new IAA cycle if any QHs are waiting for it */
3182 	if (fotg210->async_unlink)
3183 		start_iaa_cycle(fotg210, false);
3184 
3185 	/* QHs that haven't been empty for long enough will be handled later */
3186 	if (check_unlinks_later) {
3187 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3188 				true);
3189 		++fotg210->async_unlink_cycle;
3190 	}
3191 }
3192 
3193 /* makes sure the async qh will become idle */
3194 /* caller must own fotg210->lock */
3195 
3196 static void start_unlink_async(struct fotg210_hcd *fotg210,
3197 		struct fotg210_qh *qh)
3198 {
3199 	/*
3200 	 * If the QH isn't linked then there's nothing we can do
3201 	 * unless we were called during a giveback, in which case
3202 	 * qh_completions() has to deal with it.
3203 	 */
3204 	if (qh->qh_state != QH_STATE_LINKED) {
3205 		if (qh->qh_state == QH_STATE_COMPLETING)
3206 			qh->needs_rescan = 1;
3207 		return;
3208 	}
3209 
3210 	single_unlink_async(fotg210, qh);
3211 	start_iaa_cycle(fotg210, false);
3212 }
3213 
3214 static void scan_async(struct fotg210_hcd *fotg210)
3215 {
3216 	struct fotg210_qh *qh;
3217 	bool check_unlinks_later = false;
3218 
3219 	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3220 	while (fotg210->qh_scan_next) {
3221 		qh = fotg210->qh_scan_next;
3222 		fotg210->qh_scan_next = qh->qh_next.qh;
3223 rescan:
3224 		/* clean any finished work for this qh */
3225 		if (!list_empty(&qh->qtd_list)) {
3226 			int temp;
3227 
3228 			/*
3229 			 * Unlinks could happen here; completion reporting
3230 			 * drops the lock.  That's why fotg210->qh_scan_next
3231 			 * always holds the next qh to scan; if the next qh
3232 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3233 			 * in single_unlink_async().
3234 			 */
3235 			temp = qh_completions(fotg210, qh);
3236 			if (qh->needs_rescan) {
3237 				start_unlink_async(fotg210, qh);
3238 			} else if (list_empty(&qh->qtd_list)
3239 					&& qh->qh_state == QH_STATE_LINKED) {
3240 				qh->unlink_cycle = fotg210->async_unlink_cycle;
3241 				check_unlinks_later = true;
3242 			} else if (temp != 0)
3243 				goto rescan;
3244 		}
3245 	}
3246 
3247 	/*
3248 	 * Unlink empty entries, reducing DMA usage as well
3249 	 * as HCD schedule-scanning costs.  Delay for any qh
3250 	 * we just scanned, there's a not-unusual case that it
3251 	 * doesn't stay idle for long.
3252 	 */
3253 	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3254 			!(fotg210->enabled_hrtimer_events &
3255 			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3256 		fotg210_enable_event(fotg210,
3257 				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3258 		++fotg210->async_unlink_cycle;
3259 	}
3260 }
3261 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3262  * These are called "periodic" transactions in the EHCI spec.
3263  *
3264  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3265  * with the "asynchronous" transaction support (control/bulk transfers).
3266  * The only real difference is in how interrupt transfers are scheduled.
3267  *
3268  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3269  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3270  * pre-calculated schedule data to make appending to the queue be quick.
3271  */
3272 static int fotg210_get_frame(struct usb_hcd *hcd);
3273 
3274 /* periodic_next_shadow - return "next" pointer on shadow list
3275  * @periodic: host pointer to qh/itd
3276  * @tag: hardware tag for type of this record
3277  */
3278 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3279 		union fotg210_shadow *periodic, __hc32 tag)
3280 {
3281 	switch (hc32_to_cpu(fotg210, tag)) {
3282 	case Q_TYPE_QH:
3283 		return &periodic->qh->qh_next;
3284 	case Q_TYPE_FSTN:
3285 		return &periodic->fstn->fstn_next;
3286 	default:
3287 		return &periodic->itd->itd_next;
3288 	}
3289 }
3290 
3291 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3292 		union fotg210_shadow *periodic, __hc32 tag)
3293 {
3294 	switch (hc32_to_cpu(fotg210, tag)) {
3295 	/* our fotg210_shadow.qh is actually software part */
3296 	case Q_TYPE_QH:
3297 		return &periodic->qh->hw->hw_next;
3298 	/* others are hw parts */
3299 	default:
3300 		return periodic->hw_next;
3301 	}
3302 }
3303 
3304 /* caller must hold fotg210->lock */
3305 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3306 		void *ptr)
3307 {
3308 	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3309 	__hc32 *hw_p = &fotg210->periodic[frame];
3310 	union fotg210_shadow here = *prev_p;
3311 
3312 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3313 	while (here.ptr && here.ptr != ptr) {
3314 		prev_p = periodic_next_shadow(fotg210, prev_p,
3315 				Q_NEXT_TYPE(fotg210, *hw_p));
3316 		hw_p = shadow_next_periodic(fotg210, &here,
3317 				Q_NEXT_TYPE(fotg210, *hw_p));
3318 		here = *prev_p;
3319 	}
3320 	/* an interrupt entry (at list end) could have been shared */
3321 	if (!here.ptr)
3322 		return;
3323 
3324 	/* update shadow and hardware lists ... the old "next" pointers
3325 	 * from ptr may still be in use, the caller updates them.
3326 	 */
3327 	*prev_p = *periodic_next_shadow(fotg210, &here,
3328 			Q_NEXT_TYPE(fotg210, *hw_p));
3329 
3330 	*hw_p = *shadow_next_periodic(fotg210, &here,
3331 			Q_NEXT_TYPE(fotg210, *hw_p));
3332 }
3333 
3334 /* how many of the uframe's 125 usecs are allocated? */
3335 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3336 		unsigned frame, unsigned uframe)
3337 {
3338 	__hc32 *hw_p = &fotg210->periodic[frame];
3339 	union fotg210_shadow *q = &fotg210->pshadow[frame];
3340 	unsigned usecs = 0;
3341 	struct fotg210_qh_hw *hw;
3342 
3343 	while (q->ptr) {
3344 		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3345 		case Q_TYPE_QH:
3346 			hw = q->qh->hw;
3347 			/* is it in the S-mask? */
3348 			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3349 				usecs += q->qh->usecs;
3350 			/* ... or C-mask? */
3351 			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3352 					1 << (8 + uframe)))
3353 				usecs += q->qh->c_usecs;
3354 			hw_p = &hw->hw_next;
3355 			q = &q->qh->qh_next;
3356 			break;
3357 		/* case Q_TYPE_FSTN: */
3358 		default:
3359 			/* for "save place" FSTNs, count the relevant INTR
3360 			 * bandwidth from the previous frame
3361 			 */
3362 			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3363 				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3364 
3365 			hw_p = &q->fstn->hw_next;
3366 			q = &q->fstn->fstn_next;
3367 			break;
3368 		case Q_TYPE_ITD:
3369 			if (q->itd->hw_transaction[uframe])
3370 				usecs += q->itd->stream->usecs;
3371 			hw_p = &q->itd->hw_next;
3372 			q = &q->itd->itd_next;
3373 			break;
3374 		}
3375 	}
3376 	if (usecs > fotg210->uframe_periodic_max)
3377 		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3378 				frame * 8 + uframe, usecs);
3379 	return usecs;
3380 }
3381 
3382 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3383 {
3384 	if (!dev1->tt || !dev2->tt)
3385 		return 0;
3386 	if (dev1->tt != dev2->tt)
3387 		return 0;
3388 	if (dev1->tt->multi)
3389 		return dev1->ttport == dev2->ttport;
3390 	else
3391 		return 1;
3392 }
3393 
3394 /* return true iff the device's transaction translator is available
3395  * for a periodic transfer starting at the specified frame, using
3396  * all the uframes in the mask.
3397  */
3398 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3399 		struct usb_device *dev, unsigned frame, u32 uf_mask)
3400 {
3401 	if (period == 0)	/* error */
3402 		return 0;
3403 
3404 	/* note bandwidth wastage:  split never follows csplit
3405 	 * (different dev or endpoint) until the next uframe.
3406 	 * calling convention doesn't make that distinction.
3407 	 */
3408 	for (; frame < fotg210->periodic_size; frame += period) {
3409 		union fotg210_shadow here;
3410 		__hc32 type;
3411 		struct fotg210_qh_hw *hw;
3412 
3413 		here = fotg210->pshadow[frame];
3414 		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3415 		while (here.ptr) {
3416 			switch (hc32_to_cpu(fotg210, type)) {
3417 			case Q_TYPE_ITD:
3418 				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3419 				here = here.itd->itd_next;
3420 				continue;
3421 			case Q_TYPE_QH:
3422 				hw = here.qh->hw;
3423 				if (same_tt(dev, here.qh->dev)) {
3424 					u32 mask;
3425 
3426 					mask = hc32_to_cpu(fotg210,
3427 							hw->hw_info2);
3428 					/* "knows" no gap is needed */
3429 					mask |= mask >> 8;
3430 					if (mask & uf_mask)
3431 						break;
3432 				}
3433 				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3434 				here = here.qh->qh_next;
3435 				continue;
3436 			/* case Q_TYPE_FSTN: */
3437 			default:
3438 				fotg210_dbg(fotg210,
3439 						"periodic frame %d bogus type %d\n",
3440 						frame, type);
3441 			}
3442 
3443 			/* collision or error */
3444 			return 0;
3445 		}
3446 	}
3447 
3448 	/* no collision */
3449 	return 1;
3450 }
3451 
3452 static void enable_periodic(struct fotg210_hcd *fotg210)
3453 {
3454 	if (fotg210->periodic_count++)
3455 		return;
3456 
3457 	/* Stop waiting to turn off the periodic schedule */
3458 	fotg210->enabled_hrtimer_events &=
3459 		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3460 
3461 	/* Don't start the schedule until PSS is 0 */
3462 	fotg210_poll_PSS(fotg210);
3463 	turn_on_io_watchdog(fotg210);
3464 }
3465 
3466 static void disable_periodic(struct fotg210_hcd *fotg210)
3467 {
3468 	if (--fotg210->periodic_count)
3469 		return;
3470 
3471 	/* Don't turn off the schedule until PSS is 1 */
3472 	fotg210_poll_PSS(fotg210);
3473 }
3474 
3475 /* periodic schedule slots have iso tds (normal or split) first, then a
3476  * sparse tree for active interrupt transfers.
3477  *
3478  * this just links in a qh; caller guarantees uframe masks are set right.
3479  * no FSTN support (yet; fotg210 0.96+)
3480  */
3481 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3482 {
3483 	unsigned i;
3484 	unsigned period = qh->period;
3485 
3486 	dev_dbg(&qh->dev->dev,
3487 			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3488 			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3489 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3490 			qh->c_usecs);
3491 
3492 	/* high bandwidth, or otherwise every microframe */
3493 	if (period == 0)
3494 		period = 1;
3495 
3496 	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3497 		union fotg210_shadow *prev = &fotg210->pshadow[i];
3498 		__hc32 *hw_p = &fotg210->periodic[i];
3499 		union fotg210_shadow here = *prev;
3500 		__hc32 type = 0;
3501 
3502 		/* skip the iso nodes at list head */
3503 		while (here.ptr) {
3504 			type = Q_NEXT_TYPE(fotg210, *hw_p);
3505 			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3506 				break;
3507 			prev = periodic_next_shadow(fotg210, prev, type);
3508 			hw_p = shadow_next_periodic(fotg210, &here, type);
3509 			here = *prev;
3510 		}
3511 
3512 		/* sorting each branch by period (slow-->fast)
3513 		 * enables sharing interior tree nodes
3514 		 */
3515 		while (here.ptr && qh != here.qh) {
3516 			if (qh->period > here.qh->period)
3517 				break;
3518 			prev = &here.qh->qh_next;
3519 			hw_p = &here.qh->hw->hw_next;
3520 			here = *prev;
3521 		}
3522 		/* link in this qh, unless some earlier pass did that */
3523 		if (qh != here.qh) {
3524 			qh->qh_next = here;
3525 			if (here.qh)
3526 				qh->hw->hw_next = *hw_p;
3527 			wmb();
3528 			prev->qh = qh;
3529 			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3530 		}
3531 	}
3532 	qh->qh_state = QH_STATE_LINKED;
3533 	qh->xacterrs = 0;
3534 
3535 	/* update per-qh bandwidth for usbfs */
3536 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3537 		? ((qh->usecs + qh->c_usecs) / qh->period)
3538 		: (qh->usecs * 8);
3539 
3540 	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3541 
3542 	/* maybe enable periodic schedule processing */
3543 	++fotg210->intr_count;
3544 	enable_periodic(fotg210);
3545 }
3546 
3547 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3548 		struct fotg210_qh *qh)
3549 {
3550 	unsigned i;
3551 	unsigned period;
3552 
3553 	/*
3554 	 * If qh is for a low/full-speed device, simply unlinking it
3555 	 * could interfere with an ongoing split transaction.  To unlink
3556 	 * it safely would require setting the QH_INACTIVATE bit and
3557 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3558 	 *
3559 	 * We won't bother with any of this.  Instead, we assume that the
3560 	 * only reason for unlinking an interrupt QH while the current URB
3561 	 * is still active is to dequeue all the URBs (flush the whole
3562 	 * endpoint queue).
3563 	 *
3564 	 * If rebalancing the periodic schedule is ever implemented, this
3565 	 * approach will no longer be valid.
3566 	 */
3567 
3568 	/* high bandwidth, or otherwise part of every microframe */
3569 	period = qh->period;
3570 	if (!period)
3571 		period = 1;
3572 
3573 	for (i = qh->start; i < fotg210->periodic_size; i += period)
3574 		periodic_unlink(fotg210, i, qh);
3575 
3576 	/* update per-qh bandwidth for usbfs */
3577 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3578 		? ((qh->usecs + qh->c_usecs) / qh->period)
3579 		: (qh->usecs * 8);
3580 
3581 	dev_dbg(&qh->dev->dev,
3582 			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3583 			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3584 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3585 			qh->c_usecs);
3586 
3587 	/* qh->qh_next still "live" to HC */
3588 	qh->qh_state = QH_STATE_UNLINK;
3589 	qh->qh_next.ptr = NULL;
3590 
3591 	if (fotg210->qh_scan_next == qh)
3592 		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3593 				struct fotg210_qh, intr_node);
3594 	list_del(&qh->intr_node);
3595 }
3596 
3597 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3598 		struct fotg210_qh *qh)
3599 {
3600 	/* If the QH isn't linked then there's nothing we can do
3601 	 * unless we were called during a giveback, in which case
3602 	 * qh_completions() has to deal with it.
3603 	 */
3604 	if (qh->qh_state != QH_STATE_LINKED) {
3605 		if (qh->qh_state == QH_STATE_COMPLETING)
3606 			qh->needs_rescan = 1;
3607 		return;
3608 	}
3609 
3610 	qh_unlink_periodic(fotg210, qh);
3611 
3612 	/* Make sure the unlinks are visible before starting the timer */
3613 	wmb();
3614 
3615 	/*
3616 	 * The EHCI spec doesn't say how long it takes the controller to
3617 	 * stop accessing an unlinked interrupt QH.  The timer delay is
3618 	 * 9 uframes; presumably that will be long enough.
3619 	 */
3620 	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3621 
3622 	/* New entries go at the end of the intr_unlink list */
3623 	if (fotg210->intr_unlink)
3624 		fotg210->intr_unlink_last->unlink_next = qh;
3625 	else
3626 		fotg210->intr_unlink = qh;
3627 	fotg210->intr_unlink_last = qh;
3628 
3629 	if (fotg210->intr_unlinking)
3630 		;	/* Avoid recursive calls */
3631 	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3632 		fotg210_handle_intr_unlinks(fotg210);
3633 	else if (fotg210->intr_unlink == qh) {
3634 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3635 				true);
3636 		++fotg210->intr_unlink_cycle;
3637 	}
3638 }
3639 
3640 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3641 {
3642 	struct fotg210_qh_hw *hw = qh->hw;
3643 	int rc;
3644 
3645 	qh->qh_state = QH_STATE_IDLE;
3646 	hw->hw_next = FOTG210_LIST_END(fotg210);
3647 
3648 	qh_completions(fotg210, qh);
3649 
3650 	/* reschedule QH iff another request is queued */
3651 	if (!list_empty(&qh->qtd_list) &&
3652 			fotg210->rh_state == FOTG210_RH_RUNNING) {
3653 		rc = qh_schedule(fotg210, qh);
3654 
3655 		/* An error here likely indicates handshake failure
3656 		 * or no space left in the schedule.  Neither fault
3657 		 * should happen often ...
3658 		 *
3659 		 * FIXME kill the now-dysfunctional queued urbs
3660 		 */
3661 		if (rc != 0)
3662 			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3663 					qh, rc);
3664 	}
3665 
3666 	/* maybe turn off periodic schedule */
3667 	--fotg210->intr_count;
3668 	disable_periodic(fotg210);
3669 }
3670 
3671 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3672 		unsigned uframe, unsigned period, unsigned usecs)
3673 {
3674 	int claimed;
3675 
3676 	/* complete split running into next frame?
3677 	 * given FSTN support, we could sometimes check...
3678 	 */
3679 	if (uframe >= 8)
3680 		return 0;
3681 
3682 	/* convert "usecs we need" to "max already claimed" */
3683 	usecs = fotg210->uframe_periodic_max - usecs;
3684 
3685 	/* we "know" 2 and 4 uframe intervals were rejected; so
3686 	 * for period 0, check _every_ microframe in the schedule.
3687 	 */
3688 	if (unlikely(period == 0)) {
3689 		do {
3690 			for (uframe = 0; uframe < 7; uframe++) {
3691 				claimed = periodic_usecs(fotg210, frame,
3692 						uframe);
3693 				if (claimed > usecs)
3694 					return 0;
3695 			}
3696 		} while ((frame += 1) < fotg210->periodic_size);
3697 
3698 	/* just check the specified uframe, at that period */
3699 	} else {
3700 		do {
3701 			claimed = periodic_usecs(fotg210, frame, uframe);
3702 			if (claimed > usecs)
3703 				return 0;
3704 		} while ((frame += period) < fotg210->periodic_size);
3705 	}
3706 
3707 	/* success! */
3708 	return 1;
3709 }
3710 
3711 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3712 		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3713 {
3714 	int retval = -ENOSPC;
3715 	u8 mask = 0;
3716 
3717 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3718 		goto done;
3719 
3720 	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3721 		goto done;
3722 	if (!qh->c_usecs) {
3723 		retval = 0;
3724 		*c_maskp = 0;
3725 		goto done;
3726 	}
3727 
3728 	/* Make sure this tt's buffer is also available for CSPLITs.
3729 	 * We pessimize a bit; probably the typical full speed case
3730 	 * doesn't need the second CSPLIT.
3731 	 *
3732 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3733 	 * one smart pass...
3734 	 */
3735 	mask = 0x03 << (uframe + qh->gap_uf);
3736 	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3737 
3738 	mask |= 1 << uframe;
3739 	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3740 		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3741 				qh->period, qh->c_usecs))
3742 			goto done;
3743 		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3744 				qh->period, qh->c_usecs))
3745 			goto done;
3746 		retval = 0;
3747 	}
3748 done:
3749 	return retval;
3750 }
3751 
3752 /* "first fit" scheduling policy used the first time through,
3753  * or when the previous schedule slot can't be re-used.
3754  */
3755 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3756 {
3757 	int status;
3758 	unsigned uframe;
3759 	__hc32 c_mask;
3760 	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3761 	struct fotg210_qh_hw *hw = qh->hw;
3762 
3763 	qh_refresh(fotg210, qh);
3764 	hw->hw_next = FOTG210_LIST_END(fotg210);
3765 	frame = qh->start;
3766 
3767 	/* reuse the previous schedule slots, if we can */
3768 	if (frame < qh->period) {
3769 		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3770 		status = check_intr_schedule(fotg210, frame, --uframe,
3771 				qh, &c_mask);
3772 	} else {
3773 		uframe = 0;
3774 		c_mask = 0;
3775 		status = -ENOSPC;
3776 	}
3777 
3778 	/* else scan the schedule to find a group of slots such that all
3779 	 * uframes have enough periodic bandwidth available.
3780 	 */
3781 	if (status) {
3782 		/* "normal" case, uframing flexible except with splits */
3783 		if (qh->period) {
3784 			int i;
3785 
3786 			for (i = qh->period; status && i > 0; --i) {
3787 				frame = ++fotg210->random_frame % qh->period;
3788 				for (uframe = 0; uframe < 8; uframe++) {
3789 					status = check_intr_schedule(fotg210,
3790 							frame, uframe, qh,
3791 							&c_mask);
3792 					if (status == 0)
3793 						break;
3794 				}
3795 			}
3796 
3797 		/* qh->period == 0 means every uframe */
3798 		} else {
3799 			frame = 0;
3800 			status = check_intr_schedule(fotg210, 0, 0, qh,
3801 					&c_mask);
3802 		}
3803 		if (status)
3804 			goto done;
3805 		qh->start = frame;
3806 
3807 		/* reset S-frame and (maybe) C-frame masks */
3808 		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3809 		hw->hw_info2 |= qh->period
3810 			? cpu_to_hc32(fotg210, 1 << uframe)
3811 			: cpu_to_hc32(fotg210, QH_SMASK);
3812 		hw->hw_info2 |= c_mask;
3813 	} else
3814 		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3815 
3816 	/* stuff into the periodic schedule */
3817 	qh_link_periodic(fotg210, qh);
3818 done:
3819 	return status;
3820 }
3821 
3822 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3823 		struct list_head *qtd_list, gfp_t mem_flags)
3824 {
3825 	unsigned epnum;
3826 	unsigned long flags;
3827 	struct fotg210_qh *qh;
3828 	int status;
3829 	struct list_head empty;
3830 
3831 	/* get endpoint and transfer/schedule data */
3832 	epnum = urb->ep->desc.bEndpointAddress;
3833 
3834 	spin_lock_irqsave(&fotg210->lock, flags);
3835 
3836 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3837 		status = -ESHUTDOWN;
3838 		goto done_not_linked;
3839 	}
3840 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3841 	if (unlikely(status))
3842 		goto done_not_linked;
3843 
3844 	/* get qh and force any scheduling errors */
3845 	INIT_LIST_HEAD(&empty);
3846 	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3847 	if (qh == NULL) {
3848 		status = -ENOMEM;
3849 		goto done;
3850 	}
3851 	if (qh->qh_state == QH_STATE_IDLE) {
3852 		status = qh_schedule(fotg210, qh);
3853 		if (status)
3854 			goto done;
3855 	}
3856 
3857 	/* then queue the urb's tds to the qh */
3858 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3859 	BUG_ON(qh == NULL);
3860 
3861 	/* ... update usbfs periodic stats */
3862 	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3863 
3864 done:
3865 	if (unlikely(status))
3866 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3867 done_not_linked:
3868 	spin_unlock_irqrestore(&fotg210->lock, flags);
3869 	if (status)
3870 		qtd_list_free(fotg210, urb, qtd_list);
3871 
3872 	return status;
3873 }
3874 
3875 static void scan_intr(struct fotg210_hcd *fotg210)
3876 {
3877 	struct fotg210_qh *qh;
3878 
3879 	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3880 			&fotg210->intr_qh_list, intr_node) {
3881 rescan:
3882 		/* clean any finished work for this qh */
3883 		if (!list_empty(&qh->qtd_list)) {
3884 			int temp;
3885 
3886 			/*
3887 			 * Unlinks could happen here; completion reporting
3888 			 * drops the lock.  That's why fotg210->qh_scan_next
3889 			 * always holds the next qh to scan; if the next qh
3890 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3891 			 * in qh_unlink_periodic().
3892 			 */
3893 			temp = qh_completions(fotg210, qh);
3894 			if (unlikely(qh->needs_rescan ||
3895 					(list_empty(&qh->qtd_list) &&
3896 					qh->qh_state == QH_STATE_LINKED)))
3897 				start_unlink_intr(fotg210, qh);
3898 			else if (temp != 0)
3899 				goto rescan;
3900 		}
3901 	}
3902 }
3903 
3904 /* fotg210_iso_stream ops work with both ITD and SITD */
3905 
3906 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3907 {
3908 	struct fotg210_iso_stream *stream;
3909 
3910 	stream = kzalloc(sizeof(*stream), mem_flags);
3911 	if (likely(stream != NULL)) {
3912 		INIT_LIST_HEAD(&stream->td_list);
3913 		INIT_LIST_HEAD(&stream->free_list);
3914 		stream->next_uframe = -1;
3915 	}
3916 	return stream;
3917 }
3918 
3919 static void iso_stream_init(struct fotg210_hcd *fotg210,
3920 		struct fotg210_iso_stream *stream, struct usb_device *dev,
3921 		int pipe, unsigned interval)
3922 {
3923 	u32 buf1;
3924 	unsigned epnum, maxp;
3925 	int is_input;
3926 	long bandwidth;
3927 	unsigned multi;
3928 	struct usb_host_endpoint *ep;
3929 
3930 	/*
3931 	 * this might be a "high bandwidth" highspeed endpoint,
3932 	 * as encoded in the ep descriptor's wMaxPacket field
3933 	 */
3934 	epnum = usb_pipeendpoint(pipe);
3935 	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3936 	ep = usb_pipe_endpoint(dev, pipe);
3937 	maxp = usb_endpoint_maxp(&ep->desc);
3938 	if (is_input)
3939 		buf1 = (1 << 11);
3940 	else
3941 		buf1 = 0;
3942 
3943 	multi = usb_endpoint_maxp_mult(&ep->desc);
3944 	buf1 |= maxp;
3945 	maxp *= multi;
3946 
3947 	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3948 	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3949 	stream->buf2 = cpu_to_hc32(fotg210, multi);
3950 
3951 	/* usbfs wants to report the average usecs per frame tied up
3952 	 * when transfers on this endpoint are scheduled ...
3953 	 */
3954 	if (dev->speed == USB_SPEED_FULL) {
3955 		interval <<= 3;
3956 		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3957 				is_input, 1, maxp));
3958 		stream->usecs /= 8;
3959 	} else {
3960 		stream->highspeed = 1;
3961 		stream->usecs = HS_USECS_ISO(maxp);
3962 	}
3963 	bandwidth = stream->usecs * 8;
3964 	bandwidth /= interval;
3965 
3966 	stream->bandwidth = bandwidth;
3967 	stream->udev = dev;
3968 	stream->bEndpointAddress = is_input | epnum;
3969 	stream->interval = interval;
3970 	stream->maxp = maxp;
3971 }
3972 
3973 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3974 		struct urb *urb)
3975 {
3976 	unsigned epnum;
3977 	struct fotg210_iso_stream *stream;
3978 	struct usb_host_endpoint *ep;
3979 	unsigned long flags;
3980 
3981 	epnum = usb_pipeendpoint(urb->pipe);
3982 	if (usb_pipein(urb->pipe))
3983 		ep = urb->dev->ep_in[epnum];
3984 	else
3985 		ep = urb->dev->ep_out[epnum];
3986 
3987 	spin_lock_irqsave(&fotg210->lock, flags);
3988 	stream = ep->hcpriv;
3989 
3990 	if (unlikely(stream == NULL)) {
3991 		stream = iso_stream_alloc(GFP_ATOMIC);
3992 		if (likely(stream != NULL)) {
3993 			ep->hcpriv = stream;
3994 			stream->ep = ep;
3995 			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3996 					urb->interval);
3997 		}
3998 
3999 	/* if dev->ep[epnum] is a QH, hw is set */
4000 	} else if (unlikely(stream->hw != NULL)) {
4001 		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4002 				urb->dev->devpath, epnum,
4003 				usb_pipein(urb->pipe) ? "in" : "out");
4004 		stream = NULL;
4005 	}
4006 
4007 	spin_unlock_irqrestore(&fotg210->lock, flags);
4008 	return stream;
4009 }
4010 
4011 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4012 
4013 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4014 		gfp_t mem_flags)
4015 {
4016 	struct fotg210_iso_sched *iso_sched;
4017 
4018 	iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
4019 	if (likely(iso_sched != NULL))
4020 		INIT_LIST_HEAD(&iso_sched->td_list);
4021 
4022 	return iso_sched;
4023 }
4024 
4025 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4026 		struct fotg210_iso_sched *iso_sched,
4027 		struct fotg210_iso_stream *stream, struct urb *urb)
4028 {
4029 	unsigned i;
4030 	dma_addr_t dma = urb->transfer_dma;
4031 
4032 	/* how many uframes are needed for these transfers */
4033 	iso_sched->span = urb->number_of_packets * stream->interval;
4034 
4035 	/* figure out per-uframe itd fields that we'll need later
4036 	 * when we fit new itds into the schedule.
4037 	 */
4038 	for (i = 0; i < urb->number_of_packets; i++) {
4039 		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4040 		unsigned length;
4041 		dma_addr_t buf;
4042 		u32 trans;
4043 
4044 		length = urb->iso_frame_desc[i].length;
4045 		buf = dma + urb->iso_frame_desc[i].offset;
4046 
4047 		trans = FOTG210_ISOC_ACTIVE;
4048 		trans |= buf & 0x0fff;
4049 		if (unlikely(((i + 1) == urb->number_of_packets))
4050 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4051 			trans |= FOTG210_ITD_IOC;
4052 		trans |= length << 16;
4053 		uframe->transaction = cpu_to_hc32(fotg210, trans);
4054 
4055 		/* might need to cross a buffer page within a uframe */
4056 		uframe->bufp = (buf & ~(u64)0x0fff);
4057 		buf += length;
4058 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4059 			uframe->cross = 1;
4060 	}
4061 }
4062 
4063 static void iso_sched_free(struct fotg210_iso_stream *stream,
4064 		struct fotg210_iso_sched *iso_sched)
4065 {
4066 	if (!iso_sched)
4067 		return;
4068 	/* caller must hold fotg210->lock!*/
4069 	list_splice(&iso_sched->td_list, &stream->free_list);
4070 	kfree(iso_sched);
4071 }
4072 
4073 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4074 		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4075 {
4076 	struct fotg210_itd *itd;
4077 	dma_addr_t itd_dma;
4078 	int i;
4079 	unsigned num_itds;
4080 	struct fotg210_iso_sched *sched;
4081 	unsigned long flags;
4082 
4083 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4084 	if (unlikely(sched == NULL))
4085 		return -ENOMEM;
4086 
4087 	itd_sched_init(fotg210, sched, stream, urb);
4088 
4089 	if (urb->interval < 8)
4090 		num_itds = 1 + (sched->span + 7) / 8;
4091 	else
4092 		num_itds = urb->number_of_packets;
4093 
4094 	/* allocate/init ITDs */
4095 	spin_lock_irqsave(&fotg210->lock, flags);
4096 	for (i = 0; i < num_itds; i++) {
4097 
4098 		/*
4099 		 * Use iTDs from the free list, but not iTDs that may
4100 		 * still be in use by the hardware.
4101 		 */
4102 		if (likely(!list_empty(&stream->free_list))) {
4103 			itd = list_first_entry(&stream->free_list,
4104 					struct fotg210_itd, itd_list);
4105 			if (itd->frame == fotg210->now_frame)
4106 				goto alloc_itd;
4107 			list_del(&itd->itd_list);
4108 			itd_dma = itd->itd_dma;
4109 		} else {
4110 alloc_itd:
4111 			spin_unlock_irqrestore(&fotg210->lock, flags);
4112 			itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4113 					&itd_dma);
4114 			spin_lock_irqsave(&fotg210->lock, flags);
4115 			if (!itd) {
4116 				iso_sched_free(stream, sched);
4117 				spin_unlock_irqrestore(&fotg210->lock, flags);
4118 				return -ENOMEM;
4119 			}
4120 		}
4121 
4122 		memset(itd, 0, sizeof(*itd));
4123 		itd->itd_dma = itd_dma;
4124 		list_add(&itd->itd_list, &sched->td_list);
4125 	}
4126 	spin_unlock_irqrestore(&fotg210->lock, flags);
4127 
4128 	/* temporarily store schedule info in hcpriv */
4129 	urb->hcpriv = sched;
4130 	urb->error_count = 0;
4131 	return 0;
4132 }
4133 
4134 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4135 		u8 usecs, u32 period)
4136 {
4137 	uframe %= period;
4138 	do {
4139 		/* can't commit more than uframe_periodic_max usec */
4140 		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4141 				> (fotg210->uframe_periodic_max - usecs))
4142 			return 0;
4143 
4144 		/* we know urb->interval is 2^N uframes */
4145 		uframe += period;
4146 	} while (uframe < mod);
4147 	return 1;
4148 }
4149 
4150 /* This scheduler plans almost as far into the future as it has actual
4151  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4152  * "as small as possible" to be cache-friendlier.)  That limits the size
4153  * transfers you can stream reliably; avoid more than 64 msec per urb.
4154  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4155  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4156  * and other factors); or more than about 230 msec total (for portability,
4157  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4158  */
4159 
4160 #define SCHEDULE_SLOP 80 /* microframes */
4161 
4162 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4163 		struct fotg210_iso_stream *stream)
4164 {
4165 	u32 now, next, start, period, span;
4166 	int status;
4167 	unsigned mod = fotg210->periodic_size << 3;
4168 	struct fotg210_iso_sched *sched = urb->hcpriv;
4169 
4170 	period = urb->interval;
4171 	span = sched->span;
4172 
4173 	if (span > mod - SCHEDULE_SLOP) {
4174 		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4175 		status = -EFBIG;
4176 		goto fail;
4177 	}
4178 
4179 	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4180 
4181 	/* Typical case: reuse current schedule, stream is still active.
4182 	 * Hopefully there are no gaps from the host falling behind
4183 	 * (irq delays etc), but if there are we'll take the next
4184 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4185 	 */
4186 	if (likely(!list_empty(&stream->td_list))) {
4187 		u32 excess;
4188 
4189 		/* For high speed devices, allow scheduling within the
4190 		 * isochronous scheduling threshold.  For full speed devices
4191 		 * and Intel PCI-based controllers, don't (work around for
4192 		 * Intel ICH9 bug).
4193 		 */
4194 		if (!stream->highspeed && fotg210->fs_i_thresh)
4195 			next = now + fotg210->i_thresh;
4196 		else
4197 			next = now;
4198 
4199 		/* Fell behind (by up to twice the slop amount)?
4200 		 * We decide based on the time of the last currently-scheduled
4201 		 * slot, not the time of the next available slot.
4202 		 */
4203 		excess = (stream->next_uframe - period - next) & (mod - 1);
4204 		if (excess >= mod - 2 * SCHEDULE_SLOP)
4205 			start = next + excess - mod + period *
4206 					DIV_ROUND_UP(mod - excess, period);
4207 		else
4208 			start = next + excess + period;
4209 		if (start - now >= mod) {
4210 			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4211 					urb, start - now - period, period,
4212 					mod);
4213 			status = -EFBIG;
4214 			goto fail;
4215 		}
4216 	}
4217 
4218 	/* need to schedule; when's the next (u)frame we could start?
4219 	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4220 	 * isn't free, the slop should handle reasonably slow cpus.  it
4221 	 * can also help high bandwidth if the dma and irq loads don't
4222 	 * jump until after the queue is primed.
4223 	 */
4224 	else {
4225 		int done = 0;
4226 
4227 		start = SCHEDULE_SLOP + (now & ~0x07);
4228 
4229 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4230 
4231 		/* find a uframe slot with enough bandwidth.
4232 		 * Early uframes are more precious because full-speed
4233 		 * iso IN transfers can't use late uframes,
4234 		 * and therefore they should be allocated last.
4235 		 */
4236 		next = start;
4237 		start += period;
4238 		do {
4239 			start--;
4240 			/* check schedule: enough space? */
4241 			if (itd_slot_ok(fotg210, mod, start,
4242 					stream->usecs, period))
4243 				done = 1;
4244 		} while (start > next && !done);
4245 
4246 		/* no room in the schedule */
4247 		if (!done) {
4248 			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4249 					urb, now, now + mod);
4250 			status = -ENOSPC;
4251 			goto fail;
4252 		}
4253 	}
4254 
4255 	/* Tried to schedule too far into the future? */
4256 	if (unlikely(start - now + span - period >=
4257 			mod - 2 * SCHEDULE_SLOP)) {
4258 		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4259 				urb, start - now, span - period,
4260 				mod - 2 * SCHEDULE_SLOP);
4261 		status = -EFBIG;
4262 		goto fail;
4263 	}
4264 
4265 	stream->next_uframe = start & (mod - 1);
4266 
4267 	/* report high speed start in uframes; full speed, in frames */
4268 	urb->start_frame = stream->next_uframe;
4269 	if (!stream->highspeed)
4270 		urb->start_frame >>= 3;
4271 
4272 	/* Make sure scan_isoc() sees these */
4273 	if (fotg210->isoc_count == 0)
4274 		fotg210->next_frame = now >> 3;
4275 	return 0;
4276 
4277 fail:
4278 	iso_sched_free(stream, sched);
4279 	urb->hcpriv = NULL;
4280 	return status;
4281 }
4282 
4283 static inline void itd_init(struct fotg210_hcd *fotg210,
4284 		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4285 {
4286 	int i;
4287 
4288 	/* it's been recently zeroed */
4289 	itd->hw_next = FOTG210_LIST_END(fotg210);
4290 	itd->hw_bufp[0] = stream->buf0;
4291 	itd->hw_bufp[1] = stream->buf1;
4292 	itd->hw_bufp[2] = stream->buf2;
4293 
4294 	for (i = 0; i < 8; i++)
4295 		itd->index[i] = -1;
4296 
4297 	/* All other fields are filled when scheduling */
4298 }
4299 
4300 static inline void itd_patch(struct fotg210_hcd *fotg210,
4301 		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4302 		unsigned index, u16 uframe)
4303 {
4304 	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4305 	unsigned pg = itd->pg;
4306 
4307 	uframe &= 0x07;
4308 	itd->index[uframe] = index;
4309 
4310 	itd->hw_transaction[uframe] = uf->transaction;
4311 	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4312 	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4313 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4314 
4315 	/* iso_frame_desc[].offset must be strictly increasing */
4316 	if (unlikely(uf->cross)) {
4317 		u64 bufp = uf->bufp + 4096;
4318 
4319 		itd->pg = ++pg;
4320 		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4321 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4322 	}
4323 }
4324 
4325 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4326 		struct fotg210_itd *itd)
4327 {
4328 	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4329 	__hc32 *hw_p = &fotg210->periodic[frame];
4330 	union fotg210_shadow here = *prev;
4331 	__hc32 type = 0;
4332 
4333 	/* skip any iso nodes which might belong to previous microframes */
4334 	while (here.ptr) {
4335 		type = Q_NEXT_TYPE(fotg210, *hw_p);
4336 		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4337 			break;
4338 		prev = periodic_next_shadow(fotg210, prev, type);
4339 		hw_p = shadow_next_periodic(fotg210, &here, type);
4340 		here = *prev;
4341 	}
4342 
4343 	itd->itd_next = here;
4344 	itd->hw_next = *hw_p;
4345 	prev->itd = itd;
4346 	itd->frame = frame;
4347 	wmb();
4348 	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4349 }
4350 
4351 /* fit urb's itds into the selected schedule slot; activate as needed */
4352 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4353 		unsigned mod, struct fotg210_iso_stream *stream)
4354 {
4355 	int packet;
4356 	unsigned next_uframe, uframe, frame;
4357 	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4358 	struct fotg210_itd *itd;
4359 
4360 	next_uframe = stream->next_uframe & (mod - 1);
4361 
4362 	if (unlikely(list_empty(&stream->td_list))) {
4363 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4364 				+= stream->bandwidth;
4365 		fotg210_dbg(fotg210,
4366 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4367 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4368 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4369 			urb->interval,
4370 			next_uframe >> 3, next_uframe & 0x7);
4371 	}
4372 
4373 	/* fill iTDs uframe by uframe */
4374 	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4375 		if (itd == NULL) {
4376 			/* ASSERT:  we have all necessary itds */
4377 
4378 			/* ASSERT:  no itds for this endpoint in this uframe */
4379 
4380 			itd = list_entry(iso_sched->td_list.next,
4381 					struct fotg210_itd, itd_list);
4382 			list_move_tail(&itd->itd_list, &stream->td_list);
4383 			itd->stream = stream;
4384 			itd->urb = urb;
4385 			itd_init(fotg210, stream, itd);
4386 		}
4387 
4388 		uframe = next_uframe & 0x07;
4389 		frame = next_uframe >> 3;
4390 
4391 		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4392 
4393 		next_uframe += stream->interval;
4394 		next_uframe &= mod - 1;
4395 		packet++;
4396 
4397 		/* link completed itds into the schedule */
4398 		if (((next_uframe >> 3) != frame)
4399 				|| packet == urb->number_of_packets) {
4400 			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4401 					itd);
4402 			itd = NULL;
4403 		}
4404 	}
4405 	stream->next_uframe = next_uframe;
4406 
4407 	/* don't need that schedule data any more */
4408 	iso_sched_free(stream, iso_sched);
4409 	urb->hcpriv = NULL;
4410 
4411 	++fotg210->isoc_count;
4412 	enable_periodic(fotg210);
4413 }
4414 
4415 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4416 		FOTG210_ISOC_XACTERR)
4417 
4418 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4419  * and hence its completion callback probably added things to the hardware
4420  * schedule.
4421  *
4422  * Note that we carefully avoid recycling this descriptor until after any
4423  * completion callback runs, so that it won't be reused quickly.  That is,
4424  * assuming (a) no more than two urbs per frame on this endpoint, and also
4425  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4426  * corrupts things if you reuse completed descriptors very quickly...
4427  */
4428 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4429 {
4430 	struct urb *urb = itd->urb;
4431 	struct usb_iso_packet_descriptor *desc;
4432 	u32 t;
4433 	unsigned uframe;
4434 	int urb_index = -1;
4435 	struct fotg210_iso_stream *stream = itd->stream;
4436 	struct usb_device *dev;
4437 	bool retval = false;
4438 
4439 	/* for each uframe with a packet */
4440 	for (uframe = 0; uframe < 8; uframe++) {
4441 		if (likely(itd->index[uframe] == -1))
4442 			continue;
4443 		urb_index = itd->index[uframe];
4444 		desc = &urb->iso_frame_desc[urb_index];
4445 
4446 		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4447 		itd->hw_transaction[uframe] = 0;
4448 
4449 		/* report transfer status */
4450 		if (unlikely(t & ISO_ERRS)) {
4451 			urb->error_count++;
4452 			if (t & FOTG210_ISOC_BUF_ERR)
4453 				desc->status = usb_pipein(urb->pipe)
4454 					? -ENOSR  /* hc couldn't read */
4455 					: -ECOMM; /* hc couldn't write */
4456 			else if (t & FOTG210_ISOC_BABBLE)
4457 				desc->status = -EOVERFLOW;
4458 			else /* (t & FOTG210_ISOC_XACTERR) */
4459 				desc->status = -EPROTO;
4460 
4461 			/* HC need not update length with this error */
4462 			if (!(t & FOTG210_ISOC_BABBLE)) {
4463 				desc->actual_length = FOTG210_ITD_LENGTH(t);
4464 				urb->actual_length += desc->actual_length;
4465 			}
4466 		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4467 			desc->status = 0;
4468 			desc->actual_length = FOTG210_ITD_LENGTH(t);
4469 			urb->actual_length += desc->actual_length;
4470 		} else {
4471 			/* URB was too late */
4472 			desc->status = -EXDEV;
4473 		}
4474 	}
4475 
4476 	/* handle completion now? */
4477 	if (likely((urb_index + 1) != urb->number_of_packets))
4478 		goto done;
4479 
4480 	/* ASSERT: it's really the last itd for this urb
4481 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4482 	 *	BUG_ON (itd->urb == urb);
4483 	 */
4484 
4485 	/* give urb back to the driver; completion often (re)submits */
4486 	dev = urb->dev;
4487 	fotg210_urb_done(fotg210, urb, 0);
4488 	retval = true;
4489 	urb = NULL;
4490 
4491 	--fotg210->isoc_count;
4492 	disable_periodic(fotg210);
4493 
4494 	if (unlikely(list_is_singular(&stream->td_list))) {
4495 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4496 				-= stream->bandwidth;
4497 		fotg210_dbg(fotg210,
4498 			"deschedule devp %s ep%d%s-iso\n",
4499 			dev->devpath, stream->bEndpointAddress & 0x0f,
4500 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4501 	}
4502 
4503 done:
4504 	itd->urb = NULL;
4505 
4506 	/* Add to the end of the free list for later reuse */
4507 	list_move_tail(&itd->itd_list, &stream->free_list);
4508 
4509 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4510 	if (list_empty(&stream->td_list)) {
4511 		list_splice_tail_init(&stream->free_list,
4512 				&fotg210->cached_itd_list);
4513 		start_free_itds(fotg210);
4514 	}
4515 
4516 	return retval;
4517 }
4518 
4519 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4520 		gfp_t mem_flags)
4521 {
4522 	int status = -EINVAL;
4523 	unsigned long flags;
4524 	struct fotg210_iso_stream *stream;
4525 
4526 	/* Get iso_stream head */
4527 	stream = iso_stream_find(fotg210, urb);
4528 	if (unlikely(stream == NULL)) {
4529 		fotg210_dbg(fotg210, "can't get iso stream\n");
4530 		return -ENOMEM;
4531 	}
4532 	if (unlikely(urb->interval != stream->interval &&
4533 			fotg210_port_speed(fotg210, 0) ==
4534 			USB_PORT_STAT_HIGH_SPEED)) {
4535 		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4536 				stream->interval, urb->interval);
4537 		goto done;
4538 	}
4539 
4540 #ifdef FOTG210_URB_TRACE
4541 	fotg210_dbg(fotg210,
4542 			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4543 			__func__, urb->dev->devpath, urb,
4544 			usb_pipeendpoint(urb->pipe),
4545 			usb_pipein(urb->pipe) ? "in" : "out",
4546 			urb->transfer_buffer_length,
4547 			urb->number_of_packets, urb->interval,
4548 			stream);
4549 #endif
4550 
4551 	/* allocate ITDs w/o locking anything */
4552 	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4553 	if (unlikely(status < 0)) {
4554 		fotg210_dbg(fotg210, "can't init itds\n");
4555 		goto done;
4556 	}
4557 
4558 	/* schedule ... need to lock */
4559 	spin_lock_irqsave(&fotg210->lock, flags);
4560 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4561 		status = -ESHUTDOWN;
4562 		goto done_not_linked;
4563 	}
4564 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4565 	if (unlikely(status))
4566 		goto done_not_linked;
4567 	status = iso_stream_schedule(fotg210, urb, stream);
4568 	if (likely(status == 0))
4569 		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4570 	else
4571 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4572 done_not_linked:
4573 	spin_unlock_irqrestore(&fotg210->lock, flags);
4574 done:
4575 	return status;
4576 }
4577 
4578 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4579 		unsigned now_frame, bool live)
4580 {
4581 	unsigned uf;
4582 	bool modified;
4583 	union fotg210_shadow q, *q_p;
4584 	__hc32 type, *hw_p;
4585 
4586 	/* scan each element in frame's queue for completions */
4587 	q_p = &fotg210->pshadow[frame];
4588 	hw_p = &fotg210->periodic[frame];
4589 	q.ptr = q_p->ptr;
4590 	type = Q_NEXT_TYPE(fotg210, *hw_p);
4591 	modified = false;
4592 
4593 	while (q.ptr) {
4594 		switch (hc32_to_cpu(fotg210, type)) {
4595 		case Q_TYPE_ITD:
4596 			/* If this ITD is still active, leave it for
4597 			 * later processing ... check the next entry.
4598 			 * No need to check for activity unless the
4599 			 * frame is current.
4600 			 */
4601 			if (frame == now_frame && live) {
4602 				rmb();
4603 				for (uf = 0; uf < 8; uf++) {
4604 					if (q.itd->hw_transaction[uf] &
4605 							ITD_ACTIVE(fotg210))
4606 						break;
4607 				}
4608 				if (uf < 8) {
4609 					q_p = &q.itd->itd_next;
4610 					hw_p = &q.itd->hw_next;
4611 					type = Q_NEXT_TYPE(fotg210,
4612 							q.itd->hw_next);
4613 					q = *q_p;
4614 					break;
4615 				}
4616 			}
4617 
4618 			/* Take finished ITDs out of the schedule
4619 			 * and process them:  recycle, maybe report
4620 			 * URB completion.  HC won't cache the
4621 			 * pointer for much longer, if at all.
4622 			 */
4623 			*q_p = q.itd->itd_next;
4624 			*hw_p = q.itd->hw_next;
4625 			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4626 			wmb();
4627 			modified = itd_complete(fotg210, q.itd);
4628 			q = *q_p;
4629 			break;
4630 		default:
4631 			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4632 					type, frame, q.ptr);
4633 			fallthrough;
4634 		case Q_TYPE_QH:
4635 		case Q_TYPE_FSTN:
4636 			/* End of the iTDs and siTDs */
4637 			q.ptr = NULL;
4638 			break;
4639 		}
4640 
4641 		/* assume completion callbacks modify the queue */
4642 		if (unlikely(modified && fotg210->isoc_count > 0))
4643 			return -EINVAL;
4644 	}
4645 	return 0;
4646 }
4647 
4648 static void scan_isoc(struct fotg210_hcd *fotg210)
4649 {
4650 	unsigned uf, now_frame, frame, ret;
4651 	unsigned fmask = fotg210->periodic_size - 1;
4652 	bool live;
4653 
4654 	/*
4655 	 * When running, scan from last scan point up to "now"
4656 	 * else clean up by scanning everything that's left.
4657 	 * Touches as few pages as possible:  cache-friendly.
4658 	 */
4659 	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4660 		uf = fotg210_read_frame_index(fotg210);
4661 		now_frame = (uf >> 3) & fmask;
4662 		live = true;
4663 	} else  {
4664 		now_frame = (fotg210->next_frame - 1) & fmask;
4665 		live = false;
4666 	}
4667 	fotg210->now_frame = now_frame;
4668 
4669 	frame = fotg210->next_frame;
4670 	for (;;) {
4671 		ret = 1;
4672 		while (ret != 0)
4673 			ret = scan_frame_queue(fotg210, frame,
4674 					now_frame, live);
4675 
4676 		/* Stop when we have reached the current frame */
4677 		if (frame == now_frame)
4678 			break;
4679 		frame = (frame + 1) & fmask;
4680 	}
4681 	fotg210->next_frame = now_frame;
4682 }
4683 
4684 /* Display / Set uframe_periodic_max
4685  */
4686 static ssize_t uframe_periodic_max_show(struct device *dev,
4687 		struct device_attribute *attr, char *buf)
4688 {
4689 	struct fotg210_hcd *fotg210;
4690 	int n;
4691 
4692 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4693 	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4694 	return n;
4695 }
4696 
4697 
4698 static ssize_t uframe_periodic_max_store(struct device *dev,
4699 		struct device_attribute *attr, const char *buf, size_t count)
4700 {
4701 	struct fotg210_hcd *fotg210;
4702 	unsigned uframe_periodic_max;
4703 	unsigned frame, uframe;
4704 	unsigned short allocated_max;
4705 	unsigned long flags;
4706 	ssize_t ret;
4707 
4708 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4709 	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4710 		return -EINVAL;
4711 
4712 	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4713 		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4714 				uframe_periodic_max);
4715 		return -EINVAL;
4716 	}
4717 
4718 	ret = -EINVAL;
4719 
4720 	/*
4721 	 * lock, so that our checking does not race with possible periodic
4722 	 * bandwidth allocation through submitting new urbs.
4723 	 */
4724 	spin_lock_irqsave(&fotg210->lock, flags);
4725 
4726 	/*
4727 	 * for request to decrease max periodic bandwidth, we have to check
4728 	 * every microframe in the schedule to see whether the decrease is
4729 	 * possible.
4730 	 */
4731 	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4732 		allocated_max = 0;
4733 
4734 		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4735 			for (uframe = 0; uframe < 7; ++uframe)
4736 				allocated_max = max(allocated_max,
4737 						periodic_usecs(fotg210, frame,
4738 						uframe));
4739 
4740 		if (allocated_max > uframe_periodic_max) {
4741 			fotg210_info(fotg210,
4742 					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4743 					allocated_max, uframe_periodic_max);
4744 			goto out_unlock;
4745 		}
4746 	}
4747 
4748 	/* increasing is always ok */
4749 
4750 	fotg210_info(fotg210,
4751 			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4752 			100 * uframe_periodic_max/125, uframe_periodic_max);
4753 
4754 	if (uframe_periodic_max != 100)
4755 		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4756 
4757 	fotg210->uframe_periodic_max = uframe_periodic_max;
4758 	ret = count;
4759 
4760 out_unlock:
4761 	spin_unlock_irqrestore(&fotg210->lock, flags);
4762 	return ret;
4763 }
4764 
4765 static DEVICE_ATTR_RW(uframe_periodic_max);
4766 
4767 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4768 {
4769 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4770 
4771 	return device_create_file(controller, &dev_attr_uframe_periodic_max);
4772 }
4773 
4774 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4775 {
4776 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4777 
4778 	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4779 }
4780 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4781  * The firmware seems to think that powering off is a wakeup event!
4782  * This routine turns off remote wakeup and everything else, on all ports.
4783  */
4784 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4785 {
4786 	u32 __iomem *status_reg = &fotg210->regs->port_status;
4787 
4788 	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4789 }
4790 
4791 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4792  * Must be called with interrupts enabled and the lock not held.
4793  */
4794 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4795 {
4796 	fotg210_halt(fotg210);
4797 
4798 	spin_lock_irq(&fotg210->lock);
4799 	fotg210->rh_state = FOTG210_RH_HALTED;
4800 	fotg210_turn_off_all_ports(fotg210);
4801 	spin_unlock_irq(&fotg210->lock);
4802 }
4803 
4804 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4805  * This forcibly disables dma and IRQs, helping kexec and other cases
4806  * where the next system software may expect clean state.
4807  */
4808 static void fotg210_shutdown(struct usb_hcd *hcd)
4809 {
4810 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4811 
4812 	spin_lock_irq(&fotg210->lock);
4813 	fotg210->shutdown = true;
4814 	fotg210->rh_state = FOTG210_RH_STOPPING;
4815 	fotg210->enabled_hrtimer_events = 0;
4816 	spin_unlock_irq(&fotg210->lock);
4817 
4818 	fotg210_silence_controller(fotg210);
4819 
4820 	hrtimer_cancel(&fotg210->hrtimer);
4821 }
4822 
4823 /* fotg210_work is called from some interrupts, timers, and so on.
4824  * it calls driver completion functions, after dropping fotg210->lock.
4825  */
4826 static void fotg210_work(struct fotg210_hcd *fotg210)
4827 {
4828 	/* another CPU may drop fotg210->lock during a schedule scan while
4829 	 * it reports urb completions.  this flag guards against bogus
4830 	 * attempts at re-entrant schedule scanning.
4831 	 */
4832 	if (fotg210->scanning) {
4833 		fotg210->need_rescan = true;
4834 		return;
4835 	}
4836 	fotg210->scanning = true;
4837 
4838 rescan:
4839 	fotg210->need_rescan = false;
4840 	if (fotg210->async_count)
4841 		scan_async(fotg210);
4842 	if (fotg210->intr_count > 0)
4843 		scan_intr(fotg210);
4844 	if (fotg210->isoc_count > 0)
4845 		scan_isoc(fotg210);
4846 	if (fotg210->need_rescan)
4847 		goto rescan;
4848 	fotg210->scanning = false;
4849 
4850 	/* the IO watchdog guards against hardware or driver bugs that
4851 	 * misplace IRQs, and should let us run completely without IRQs.
4852 	 * such lossage has been observed on both VT6202 and VT8235.
4853 	 */
4854 	turn_on_io_watchdog(fotg210);
4855 }
4856 
4857 /* Called when the fotg210_hcd module is removed.
4858  */
4859 static void fotg210_stop(struct usb_hcd *hcd)
4860 {
4861 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4862 
4863 	fotg210_dbg(fotg210, "stop\n");
4864 
4865 	/* no more interrupts ... */
4866 
4867 	spin_lock_irq(&fotg210->lock);
4868 	fotg210->enabled_hrtimer_events = 0;
4869 	spin_unlock_irq(&fotg210->lock);
4870 
4871 	fotg210_quiesce(fotg210);
4872 	fotg210_silence_controller(fotg210);
4873 	fotg210_reset(fotg210);
4874 
4875 	hrtimer_cancel(&fotg210->hrtimer);
4876 	remove_sysfs_files(fotg210);
4877 	remove_debug_files(fotg210);
4878 
4879 	/* root hub is shut down separately (first, when possible) */
4880 	spin_lock_irq(&fotg210->lock);
4881 	end_free_itds(fotg210);
4882 	spin_unlock_irq(&fotg210->lock);
4883 	fotg210_mem_cleanup(fotg210);
4884 
4885 #ifdef FOTG210_STATS
4886 	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4887 			fotg210->stats.normal, fotg210->stats.error,
4888 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4889 	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4890 			fotg210->stats.complete, fotg210->stats.unlink);
4891 #endif
4892 
4893 	dbg_status(fotg210, "fotg210_stop completed",
4894 			fotg210_readl(fotg210, &fotg210->regs->status));
4895 }
4896 
4897 /* one-time init, only for memory state */
4898 static int hcd_fotg210_init(struct usb_hcd *hcd)
4899 {
4900 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4901 	u32 temp;
4902 	int retval;
4903 	u32 hcc_params;
4904 	struct fotg210_qh_hw *hw;
4905 
4906 	spin_lock_init(&fotg210->lock);
4907 
4908 	/*
4909 	 * keep io watchdog by default, those good HCDs could turn off it later
4910 	 */
4911 	fotg210->need_io_watchdog = 1;
4912 
4913 	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4914 	fotg210->hrtimer.function = fotg210_hrtimer_func;
4915 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4916 
4917 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4918 
4919 	/*
4920 	 * by default set standard 80% (== 100 usec/uframe) max periodic
4921 	 * bandwidth as required by USB 2.0
4922 	 */
4923 	fotg210->uframe_periodic_max = 100;
4924 
4925 	/*
4926 	 * hw default: 1K periodic list heads, one per frame.
4927 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4928 	 */
4929 	fotg210->periodic_size = DEFAULT_I_TDPS;
4930 	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4931 	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4932 
4933 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4934 		/* periodic schedule size can be smaller than default */
4935 		switch (FOTG210_TUNE_FLS) {
4936 		case 0:
4937 			fotg210->periodic_size = 1024;
4938 			break;
4939 		case 1:
4940 			fotg210->periodic_size = 512;
4941 			break;
4942 		case 2:
4943 			fotg210->periodic_size = 256;
4944 			break;
4945 		default:
4946 			BUG();
4947 		}
4948 	}
4949 	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4950 	if (retval < 0)
4951 		return retval;
4952 
4953 	/* controllers may cache some of the periodic schedule ... */
4954 	fotg210->i_thresh = 2;
4955 
4956 	/*
4957 	 * dedicate a qh for the async ring head, since we couldn't unlink
4958 	 * a 'real' qh without stopping the async schedule [4.8].  use it
4959 	 * as the 'reclamation list head' too.
4960 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4961 	 * from automatically advancing to the next td after short reads.
4962 	 */
4963 	fotg210->async->qh_next.qh = NULL;
4964 	hw = fotg210->async->hw;
4965 	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4966 	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4967 	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4968 	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4969 	fotg210->async->qh_state = QH_STATE_LINKED;
4970 	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4971 
4972 	/* clear interrupt enables, set irq latency */
4973 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4974 		log2_irq_thresh = 0;
4975 	temp = 1 << (16 + log2_irq_thresh);
4976 	if (HCC_CANPARK(hcc_params)) {
4977 		/* HW default park == 3, on hardware that supports it (like
4978 		 * NVidia and ALI silicon), maximizes throughput on the async
4979 		 * schedule by avoiding QH fetches between transfers.
4980 		 *
4981 		 * With fast usb storage devices and NForce2, "park" seems to
4982 		 * make problems:  throughput reduction (!), data errors...
4983 		 */
4984 		if (park) {
4985 			park = min_t(unsigned, park, 3);
4986 			temp |= CMD_PARK;
4987 			temp |= park << 8;
4988 		}
4989 		fotg210_dbg(fotg210, "park %d\n", park);
4990 	}
4991 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4992 		/* periodic schedule size can be smaller than default */
4993 		temp &= ~(3 << 2);
4994 		temp |= (FOTG210_TUNE_FLS << 2);
4995 	}
4996 	fotg210->command = temp;
4997 
4998 	/* Accept arbitrarily long scatter-gather lists */
4999 	if (!hcd->localmem_pool)
5000 		hcd->self.sg_tablesize = ~0;
5001 	return 0;
5002 }
5003 
5004 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5005 static int fotg210_run(struct usb_hcd *hcd)
5006 {
5007 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5008 	u32 temp;
5009 
5010 	hcd->uses_new_polling = 1;
5011 
5012 	/* EHCI spec section 4.1 */
5013 
5014 	fotg210_writel(fotg210, fotg210->periodic_dma,
5015 			&fotg210->regs->frame_list);
5016 	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5017 			&fotg210->regs->async_next);
5018 
5019 	/*
5020 	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5021 	 * be used; it constrains QH/ITD/SITD and QTD locations.
5022 	 * dma_pool consistent memory always uses segment zero.
5023 	 * streaming mappings for I/O buffers, like dma_map_single(),
5024 	 * can return segments above 4GB, if the device allows.
5025 	 *
5026 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5027 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5028 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5029 	 * host side drivers though.
5030 	 */
5031 	fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5032 
5033 	/*
5034 	 * Philips, Intel, and maybe others need CMD_RUN before the
5035 	 * root hub will detect new devices (why?); NEC doesn't
5036 	 */
5037 	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5038 	fotg210->command |= CMD_RUN;
5039 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5040 	dbg_cmd(fotg210, "init", fotg210->command);
5041 
5042 	/*
5043 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5044 	 * are explicitly handed to companion controller(s), so no TT is
5045 	 * involved with the root hub.  (Except where one is integrated,
5046 	 * and there's no companion controller unless maybe for USB OTG.)
5047 	 *
5048 	 * Turning on the CF flag will transfer ownership of all ports
5049 	 * from the companions to the EHCI controller.  If any of the
5050 	 * companions are in the middle of a port reset at the time, it
5051 	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5052 	 * guarantees that no resets are in progress.  After we set CF,
5053 	 * a short delay lets the hardware catch up; new resets shouldn't
5054 	 * be started before the port switching actions could complete.
5055 	 */
5056 	down_write(&ehci_cf_port_reset_rwsem);
5057 	fotg210->rh_state = FOTG210_RH_RUNNING;
5058 	/* unblock posted writes */
5059 	fotg210_readl(fotg210, &fotg210->regs->command);
5060 	usleep_range(5000, 10000);
5061 	up_write(&ehci_cf_port_reset_rwsem);
5062 	fotg210->last_periodic_enable = ktime_get_real();
5063 
5064 	temp = HC_VERSION(fotg210,
5065 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5066 	fotg210_info(fotg210,
5067 			"USB %x.%x started, EHCI %x.%02x\n",
5068 			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5069 			temp >> 8, temp & 0xff);
5070 
5071 	fotg210_writel(fotg210, INTR_MASK,
5072 			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5073 
5074 	/* GRR this is run-once init(), being done every time the HC starts.
5075 	 * So long as they're part of class devices, we can't do it init()
5076 	 * since the class device isn't created that early.
5077 	 */
5078 	create_debug_files(fotg210);
5079 	create_sysfs_files(fotg210);
5080 
5081 	return 0;
5082 }
5083 
5084 static int fotg210_setup(struct usb_hcd *hcd)
5085 {
5086 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5087 	int retval;
5088 
5089 	fotg210->regs = (void __iomem *)fotg210->caps +
5090 			HC_LENGTH(fotg210,
5091 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5092 	dbg_hcs_params(fotg210, "reset");
5093 	dbg_hcc_params(fotg210, "reset");
5094 
5095 	/* cache this readonly data; minimize chip reads */
5096 	fotg210->hcs_params = fotg210_readl(fotg210,
5097 			&fotg210->caps->hcs_params);
5098 
5099 	fotg210->sbrn = HCD_USB2;
5100 
5101 	/* data structure init */
5102 	retval = hcd_fotg210_init(hcd);
5103 	if (retval)
5104 		return retval;
5105 
5106 	retval = fotg210_halt(fotg210);
5107 	if (retval)
5108 		return retval;
5109 
5110 	fotg210_reset(fotg210);
5111 
5112 	return 0;
5113 }
5114 
5115 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5116 {
5117 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5118 	u32 status, masked_status, pcd_status = 0, cmd;
5119 	int bh;
5120 
5121 	spin_lock(&fotg210->lock);
5122 
5123 	status = fotg210_readl(fotg210, &fotg210->regs->status);
5124 
5125 	/* e.g. cardbus physical eject */
5126 	if (status == ~(u32) 0) {
5127 		fotg210_dbg(fotg210, "device removed\n");
5128 		goto dead;
5129 	}
5130 
5131 	/*
5132 	 * We don't use STS_FLR, but some controllers don't like it to
5133 	 * remain on, so mask it out along with the other status bits.
5134 	 */
5135 	masked_status = status & (INTR_MASK | STS_FLR);
5136 
5137 	/* Shared IRQ? */
5138 	if (!masked_status ||
5139 			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5140 		spin_unlock(&fotg210->lock);
5141 		return IRQ_NONE;
5142 	}
5143 
5144 	/* clear (just) interrupts */
5145 	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5146 	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5147 	bh = 0;
5148 
5149 	/* unrequested/ignored: Frame List Rollover */
5150 	dbg_status(fotg210, "irq", status);
5151 
5152 	/* INT, ERR, and IAA interrupt rates can be throttled */
5153 
5154 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5155 	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5156 		if (likely((status & STS_ERR) == 0))
5157 			INCR(fotg210->stats.normal);
5158 		else
5159 			INCR(fotg210->stats.error);
5160 		bh = 1;
5161 	}
5162 
5163 	/* complete the unlinking of some qh [4.15.2.3] */
5164 	if (status & STS_IAA) {
5165 
5166 		/* Turn off the IAA watchdog */
5167 		fotg210->enabled_hrtimer_events &=
5168 			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5169 
5170 		/*
5171 		 * Mild optimization: Allow another IAAD to reset the
5172 		 * hrtimer, if one occurs before the next expiration.
5173 		 * In theory we could always cancel the hrtimer, but
5174 		 * tests show that about half the time it will be reset
5175 		 * for some other event anyway.
5176 		 */
5177 		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5178 			++fotg210->next_hrtimer_event;
5179 
5180 		/* guard against (alleged) silicon errata */
5181 		if (cmd & CMD_IAAD)
5182 			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5183 		if (fotg210->async_iaa) {
5184 			INCR(fotg210->stats.iaa);
5185 			end_unlink_async(fotg210);
5186 		} else
5187 			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5188 	}
5189 
5190 	/* remote wakeup [4.3.1] */
5191 	if (status & STS_PCD) {
5192 		int pstatus;
5193 		u32 __iomem *status_reg = &fotg210->regs->port_status;
5194 
5195 		/* kick root hub later */
5196 		pcd_status = status;
5197 
5198 		/* resume root hub? */
5199 		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5200 			usb_hcd_resume_root_hub(hcd);
5201 
5202 		pstatus = fotg210_readl(fotg210, status_reg);
5203 
5204 		if (test_bit(0, &fotg210->suspended_ports) &&
5205 				((pstatus & PORT_RESUME) ||
5206 				!(pstatus & PORT_SUSPEND)) &&
5207 				(pstatus & PORT_PE) &&
5208 				fotg210->reset_done[0] == 0) {
5209 
5210 			/* start 20 msec resume signaling from this port,
5211 			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5212 			 * stop that signaling.  Use 5 ms extra for safety,
5213 			 * like usb_port_resume() does.
5214 			 */
5215 			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5216 			set_bit(0, &fotg210->resuming_ports);
5217 			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5218 			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5219 		}
5220 	}
5221 
5222 	/* PCI errors [4.15.2.4] */
5223 	if (unlikely((status & STS_FATAL) != 0)) {
5224 		fotg210_err(fotg210, "fatal error\n");
5225 		dbg_cmd(fotg210, "fatal", cmd);
5226 		dbg_status(fotg210, "fatal", status);
5227 dead:
5228 		usb_hc_died(hcd);
5229 
5230 		/* Don't let the controller do anything more */
5231 		fotg210->shutdown = true;
5232 		fotg210->rh_state = FOTG210_RH_STOPPING;
5233 		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5234 		fotg210_writel(fotg210, fotg210->command,
5235 				&fotg210->regs->command);
5236 		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5237 		fotg210_handle_controller_death(fotg210);
5238 
5239 		/* Handle completions when the controller stops */
5240 		bh = 0;
5241 	}
5242 
5243 	if (bh)
5244 		fotg210_work(fotg210);
5245 	spin_unlock(&fotg210->lock);
5246 	if (pcd_status)
5247 		usb_hcd_poll_rh_status(hcd);
5248 	return IRQ_HANDLED;
5249 }
5250 
5251 /* non-error returns are a promise to giveback() the urb later
5252  * we drop ownership so next owner (or urb unlink) can get it
5253  *
5254  * urb + dev is in hcd.self.controller.urb_list
5255  * we're queueing TDs onto software and hardware lists
5256  *
5257  * hcd-specific init for hcpriv hasn't been done yet
5258  *
5259  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5260  * to a (possibly active) QH, and the same QH scanning code.
5261  */
5262 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5263 		gfp_t mem_flags)
5264 {
5265 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5266 	struct list_head qtd_list;
5267 
5268 	INIT_LIST_HEAD(&qtd_list);
5269 
5270 	switch (usb_pipetype(urb->pipe)) {
5271 	case PIPE_CONTROL:
5272 		/* qh_completions() code doesn't handle all the fault cases
5273 		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5274 		 */
5275 		if (urb->transfer_buffer_length > (16 * 1024))
5276 			return -EMSGSIZE;
5277 		fallthrough;
5278 	/* case PIPE_BULK: */
5279 	default:
5280 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5281 			return -ENOMEM;
5282 		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5283 
5284 	case PIPE_INTERRUPT:
5285 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5286 			return -ENOMEM;
5287 		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5288 
5289 	case PIPE_ISOCHRONOUS:
5290 		return itd_submit(fotg210, urb, mem_flags);
5291 	}
5292 }
5293 
5294 /* remove from hardware lists
5295  * completions normally happen asynchronously
5296  */
5297 
5298 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5299 {
5300 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5301 	struct fotg210_qh *qh;
5302 	unsigned long flags;
5303 	int rc;
5304 
5305 	spin_lock_irqsave(&fotg210->lock, flags);
5306 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5307 	if (rc)
5308 		goto done;
5309 
5310 	switch (usb_pipetype(urb->pipe)) {
5311 	/* case PIPE_CONTROL: */
5312 	/* case PIPE_BULK:*/
5313 	default:
5314 		qh = (struct fotg210_qh *) urb->hcpriv;
5315 		if (!qh)
5316 			break;
5317 		switch (qh->qh_state) {
5318 		case QH_STATE_LINKED:
5319 		case QH_STATE_COMPLETING:
5320 			start_unlink_async(fotg210, qh);
5321 			break;
5322 		case QH_STATE_UNLINK:
5323 		case QH_STATE_UNLINK_WAIT:
5324 			/* already started */
5325 			break;
5326 		case QH_STATE_IDLE:
5327 			/* QH might be waiting for a Clear-TT-Buffer */
5328 			qh_completions(fotg210, qh);
5329 			break;
5330 		}
5331 		break;
5332 
5333 	case PIPE_INTERRUPT:
5334 		qh = (struct fotg210_qh *) urb->hcpriv;
5335 		if (!qh)
5336 			break;
5337 		switch (qh->qh_state) {
5338 		case QH_STATE_LINKED:
5339 		case QH_STATE_COMPLETING:
5340 			start_unlink_intr(fotg210, qh);
5341 			break;
5342 		case QH_STATE_IDLE:
5343 			qh_completions(fotg210, qh);
5344 			break;
5345 		default:
5346 			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5347 					qh, qh->qh_state);
5348 			goto done;
5349 		}
5350 		break;
5351 
5352 	case PIPE_ISOCHRONOUS:
5353 		/* itd... */
5354 
5355 		/* wait till next completion, do it then. */
5356 		/* completion irqs can wait up to 1024 msec, */
5357 		break;
5358 	}
5359 done:
5360 	spin_unlock_irqrestore(&fotg210->lock, flags);
5361 	return rc;
5362 }
5363 
5364 /* bulk qh holds the data toggle */
5365 
5366 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5367 		struct usb_host_endpoint *ep)
5368 {
5369 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5370 	unsigned long flags;
5371 	struct fotg210_qh *qh, *tmp;
5372 
5373 	/* ASSERT:  any requests/urbs are being unlinked */
5374 	/* ASSERT:  nobody can be submitting urbs for this any more */
5375 
5376 rescan:
5377 	spin_lock_irqsave(&fotg210->lock, flags);
5378 	qh = ep->hcpriv;
5379 	if (!qh)
5380 		goto done;
5381 
5382 	/* endpoints can be iso streams.  for now, we don't
5383 	 * accelerate iso completions ... so spin a while.
5384 	 */
5385 	if (qh->hw == NULL) {
5386 		struct fotg210_iso_stream *stream = ep->hcpriv;
5387 
5388 		if (!list_empty(&stream->td_list))
5389 			goto idle_timeout;
5390 
5391 		/* BUG_ON(!list_empty(&stream->free_list)); */
5392 		kfree(stream);
5393 		goto done;
5394 	}
5395 
5396 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5397 		qh->qh_state = QH_STATE_IDLE;
5398 	switch (qh->qh_state) {
5399 	case QH_STATE_LINKED:
5400 	case QH_STATE_COMPLETING:
5401 		for (tmp = fotg210->async->qh_next.qh;
5402 				tmp && tmp != qh;
5403 				tmp = tmp->qh_next.qh)
5404 			continue;
5405 		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5406 		 * may already be unlinked.
5407 		 */
5408 		if (tmp)
5409 			start_unlink_async(fotg210, qh);
5410 		fallthrough;
5411 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5412 	case QH_STATE_UNLINK_WAIT:
5413 idle_timeout:
5414 		spin_unlock_irqrestore(&fotg210->lock, flags);
5415 		schedule_timeout_uninterruptible(1);
5416 		goto rescan;
5417 	case QH_STATE_IDLE:		/* fully unlinked */
5418 		if (qh->clearing_tt)
5419 			goto idle_timeout;
5420 		if (list_empty(&qh->qtd_list)) {
5421 			qh_destroy(fotg210, qh);
5422 			break;
5423 		}
5424 		fallthrough;
5425 	default:
5426 		/* caller was supposed to have unlinked any requests;
5427 		 * that's not our job.  just leak this memory.
5428 		 */
5429 		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5430 				qh, ep->desc.bEndpointAddress, qh->qh_state,
5431 				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5432 		break;
5433 	}
5434 done:
5435 	ep->hcpriv = NULL;
5436 	spin_unlock_irqrestore(&fotg210->lock, flags);
5437 }
5438 
5439 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5440 		struct usb_host_endpoint *ep)
5441 {
5442 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5443 	struct fotg210_qh *qh;
5444 	int eptype = usb_endpoint_type(&ep->desc);
5445 	int epnum = usb_endpoint_num(&ep->desc);
5446 	int is_out = usb_endpoint_dir_out(&ep->desc);
5447 	unsigned long flags;
5448 
5449 	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5450 		return;
5451 
5452 	spin_lock_irqsave(&fotg210->lock, flags);
5453 	qh = ep->hcpriv;
5454 
5455 	/* For Bulk and Interrupt endpoints we maintain the toggle state
5456 	 * in the hardware; the toggle bits in udev aren't used at all.
5457 	 * When an endpoint is reset by usb_clear_halt() we must reset
5458 	 * the toggle bit in the QH.
5459 	 */
5460 	if (qh) {
5461 		usb_settoggle(qh->dev, epnum, is_out, 0);
5462 		if (!list_empty(&qh->qtd_list)) {
5463 			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5464 		} else if (qh->qh_state == QH_STATE_LINKED ||
5465 				qh->qh_state == QH_STATE_COMPLETING) {
5466 
5467 			/* The toggle value in the QH can't be updated
5468 			 * while the QH is active.  Unlink it now;
5469 			 * re-linking will call qh_refresh().
5470 			 */
5471 			if (eptype == USB_ENDPOINT_XFER_BULK)
5472 				start_unlink_async(fotg210, qh);
5473 			else
5474 				start_unlink_intr(fotg210, qh);
5475 		}
5476 	}
5477 	spin_unlock_irqrestore(&fotg210->lock, flags);
5478 }
5479 
5480 static int fotg210_get_frame(struct usb_hcd *hcd)
5481 {
5482 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5483 
5484 	return (fotg210_read_frame_index(fotg210) >> 3) %
5485 		fotg210->periodic_size;
5486 }
5487 
5488 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5489  * because its registers (and irq) are shared between host/gadget/otg
5490  * functions  and in order to facilitate role switching we cannot
5491  * give the fotg210 driver exclusive access to those.
5492  */
5493 
5494 static const struct hc_driver fotg210_fotg210_hc_driver = {
5495 	.description		= hcd_name,
5496 	.product_desc		= "Faraday USB2.0 Host Controller",
5497 	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5498 
5499 	/*
5500 	 * generic hardware linkage
5501 	 */
5502 	.irq			= fotg210_irq,
5503 	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
5504 
5505 	/*
5506 	 * basic lifecycle operations
5507 	 */
5508 	.reset			= hcd_fotg210_init,
5509 	.start			= fotg210_run,
5510 	.stop			= fotg210_stop,
5511 	.shutdown		= fotg210_shutdown,
5512 
5513 	/*
5514 	 * managing i/o requests and associated device resources
5515 	 */
5516 	.urb_enqueue		= fotg210_urb_enqueue,
5517 	.urb_dequeue		= fotg210_urb_dequeue,
5518 	.endpoint_disable	= fotg210_endpoint_disable,
5519 	.endpoint_reset		= fotg210_endpoint_reset,
5520 
5521 	/*
5522 	 * scheduling support
5523 	 */
5524 	.get_frame_number	= fotg210_get_frame,
5525 
5526 	/*
5527 	 * root hub support
5528 	 */
5529 	.hub_status_data	= fotg210_hub_status_data,
5530 	.hub_control		= fotg210_hub_control,
5531 	.bus_suspend		= fotg210_bus_suspend,
5532 	.bus_resume		= fotg210_bus_resume,
5533 
5534 	.relinquish_port	= fotg210_relinquish_port,
5535 	.port_handed_over	= fotg210_port_handed_over,
5536 
5537 	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5538 };
5539 
5540 static void fotg210_init(struct fotg210_hcd *fotg210)
5541 {
5542 	u32 value;
5543 
5544 	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5545 			&fotg210->regs->gmir);
5546 
5547 	value = ioread32(&fotg210->regs->otgcsr);
5548 	value &= ~OTGCSR_A_BUS_DROP;
5549 	value |= OTGCSR_A_BUS_REQ;
5550 	iowrite32(value, &fotg210->regs->otgcsr);
5551 }
5552 
5553 /*
5554  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5555  *
5556  * Allocates basic resources for this USB host controller, and
5557  * then invokes the start() method for the HCD associated with it
5558  * through the hotplug entry's driver_data.
5559  */
5560 int fotg210_hcd_probe(struct platform_device *pdev)
5561 {
5562 	struct device *dev = &pdev->dev;
5563 	struct usb_hcd *hcd;
5564 	struct resource *res;
5565 	int irq;
5566 	int retval;
5567 	struct fotg210_hcd *fotg210;
5568 
5569 	if (usb_disabled())
5570 		return -ENODEV;
5571 
5572 	pdev->dev.power.power_state = PMSG_ON;
5573 
5574 	irq = platform_get_irq(pdev, 0);
5575 	if (irq < 0)
5576 		return irq;
5577 
5578 	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5579 			dev_name(dev));
5580 	if (!hcd) {
5581 		dev_err(dev, "failed to create hcd\n");
5582 		retval = -ENOMEM;
5583 		goto fail_create_hcd;
5584 	}
5585 
5586 	hcd->has_tt = 1;
5587 
5588 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5589 	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5590 	if (IS_ERR(hcd->regs)) {
5591 		retval = PTR_ERR(hcd->regs);
5592 		goto failed_put_hcd;
5593 	}
5594 
5595 	hcd->rsrc_start = res->start;
5596 	hcd->rsrc_len = resource_size(res);
5597 
5598 	fotg210 = hcd_to_fotg210(hcd);
5599 
5600 	fotg210->caps = hcd->regs;
5601 
5602 	/* It's OK not to supply this clock */
5603 	fotg210->pclk = clk_get(dev, "PCLK");
5604 	if (!IS_ERR(fotg210->pclk)) {
5605 		retval = clk_prepare_enable(fotg210->pclk);
5606 		if (retval) {
5607 			dev_err(dev, "failed to enable PCLK\n");
5608 			goto failed_put_hcd;
5609 		}
5610 	} else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5611 		/*
5612 		 * Percolate deferrals, for anything else,
5613 		 * just live without the clocking.
5614 		 */
5615 		retval = PTR_ERR(fotg210->pclk);
5616 		goto failed_dis_clk;
5617 	}
5618 
5619 	retval = fotg210_setup(hcd);
5620 	if (retval)
5621 		goto failed_dis_clk;
5622 
5623 	fotg210_init(fotg210);
5624 
5625 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5626 	if (retval) {
5627 		dev_err(dev, "failed to add hcd with err %d\n", retval);
5628 		goto failed_dis_clk;
5629 	}
5630 	device_wakeup_enable(hcd->self.controller);
5631 	platform_set_drvdata(pdev, hcd);
5632 
5633 	return retval;
5634 
5635 failed_dis_clk:
5636 	if (!IS_ERR(fotg210->pclk)) {
5637 		clk_disable_unprepare(fotg210->pclk);
5638 		clk_put(fotg210->pclk);
5639 	}
5640 failed_put_hcd:
5641 	usb_put_hcd(hcd);
5642 fail_create_hcd:
5643 	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5644 	return retval;
5645 }
5646 
5647 /*
5648  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5649  * @dev: USB Host Controller being removed
5650  *
5651  */
5652 int fotg210_hcd_remove(struct platform_device *pdev)
5653 {
5654 	struct usb_hcd *hcd = platform_get_drvdata(pdev);
5655 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5656 
5657 	if (!IS_ERR(fotg210->pclk)) {
5658 		clk_disable_unprepare(fotg210->pclk);
5659 		clk_put(fotg210->pclk);
5660 	}
5661 
5662 	usb_remove_hcd(hcd);
5663 	usb_put_hcd(hcd);
5664 
5665 	return 0;
5666 }
5667 
5668 int __init fotg210_hcd_init(void)
5669 {
5670 	if (usb_disabled())
5671 		return -ENODEV;
5672 
5673 	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5674 	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5675 			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5676 		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5677 
5678 	pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5679 			hcd_name, sizeof(struct fotg210_qh),
5680 			sizeof(struct fotg210_qtd),
5681 			sizeof(struct fotg210_itd));
5682 
5683 	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5684 
5685 	return 0;
5686 }
5687 
5688 void __exit fotg210_hcd_cleanup(void)
5689 {
5690 	debugfs_remove(fotg210_debug_root);
5691 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5692 }
5693