1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Faraday FOTG210 EHCI-like driver 3 * 4 * Copyright (c) 2013 Faraday Technology Corporation 5 * 6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com> 7 * Feng-Hsin Chiang <john453@faraday-tech.com> 8 * Po-Yu Chuang <ratbert.chuang@gmail.com> 9 * 10 * Most of code borrowed from the Linux-3.7 EHCI driver 11 */ 12 #include <linux/module.h> 13 #include <linux/of.h> 14 #include <linux/device.h> 15 #include <linux/dmapool.h> 16 #include <linux/kernel.h> 17 #include <linux/delay.h> 18 #include <linux/ioport.h> 19 #include <linux/sched.h> 20 #include <linux/vmalloc.h> 21 #include <linux/errno.h> 22 #include <linux/init.h> 23 #include <linux/hrtimer.h> 24 #include <linux/list.h> 25 #include <linux/interrupt.h> 26 #include <linux/usb.h> 27 #include <linux/usb/hcd.h> 28 #include <linux/moduleparam.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/debugfs.h> 31 #include <linux/slab.h> 32 #include <linux/uaccess.h> 33 #include <linux/platform_device.h> 34 #include <linux/io.h> 35 #include <linux/iopoll.h> 36 #include <linux/clk.h> 37 38 #include <asm/byteorder.h> 39 #include <asm/irq.h> 40 #include <asm/unaligned.h> 41 42 #include "fotg210.h" 43 44 static const char hcd_name[] = "fotg210_hcd"; 45 46 #undef FOTG210_URB_TRACE 47 #define FOTG210_STATS 48 49 /* magic numbers that can affect system performance */ 50 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ 51 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ 52 #define FOTG210_TUNE_RL_TT 0 53 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ 54 #define FOTG210_TUNE_MULT_TT 1 55 56 /* Some drivers think it's safe to schedule isochronous transfers more than 256 57 * ms into the future (partly as a result of an old bug in the scheduling 58 * code). In an attempt to avoid trouble, we will use a minimum scheduling 59 * length of 512 frames instead of 256. 60 */ 61 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */ 62 63 /* Initial IRQ latency: faster than hw default */ 64 static int log2_irq_thresh; /* 0 to 6 */ 65 module_param(log2_irq_thresh, int, S_IRUGO); 66 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 67 68 /* initial park setting: slower than hw default */ 69 static unsigned park; 70 module_param(park, uint, S_IRUGO); 71 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 72 73 /* for link power management(LPM) feature */ 74 static unsigned int hird; 75 module_param(hird, int, S_IRUGO); 76 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us"); 77 78 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) 79 80 #include "fotg210-hcd.h" 81 82 #define fotg210_dbg(fotg210, fmt, args...) \ 83 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 84 #define fotg210_err(fotg210, fmt, args...) \ 85 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 86 #define fotg210_info(fotg210, fmt, args...) \ 87 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 88 #define fotg210_warn(fotg210, fmt, args...) \ 89 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 90 91 /* check the values in the HCSPARAMS register (host controller _Structural_ 92 * parameters) see EHCI spec, Table 2-4 for each value 93 */ 94 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label) 95 { 96 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params); 97 98 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params, 99 HCS_N_PORTS(params)); 100 } 101 102 /* check the values in the HCCPARAMS register (host controller _Capability_ 103 * parameters) see EHCI Spec, Table 2-5 for each value 104 */ 105 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label) 106 { 107 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 108 109 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label, 110 params, 111 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024", 112 HCC_CANPARK(params) ? " park" : ""); 113 } 114 115 static void __maybe_unused 116 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd) 117 { 118 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd, 119 hc32_to_cpup(fotg210, &qtd->hw_next), 120 hc32_to_cpup(fotg210, &qtd->hw_alt_next), 121 hc32_to_cpup(fotg210, &qtd->hw_token), 122 hc32_to_cpup(fotg210, &qtd->hw_buf[0])); 123 if (qtd->hw_buf[1]) 124 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n", 125 hc32_to_cpup(fotg210, &qtd->hw_buf[1]), 126 hc32_to_cpup(fotg210, &qtd->hw_buf[2]), 127 hc32_to_cpup(fotg210, &qtd->hw_buf[3]), 128 hc32_to_cpup(fotg210, &qtd->hw_buf[4])); 129 } 130 131 static void __maybe_unused 132 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 133 { 134 struct fotg210_qh_hw *hw = qh->hw; 135 136 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh, 137 hw->hw_next, hw->hw_info1, hw->hw_info2, 138 hw->hw_current); 139 140 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next); 141 } 142 143 static void __maybe_unused 144 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd) 145 { 146 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label, 147 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next), 148 itd->urb); 149 150 fotg210_dbg(fotg210, 151 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n", 152 hc32_to_cpu(fotg210, itd->hw_transaction[0]), 153 hc32_to_cpu(fotg210, itd->hw_transaction[1]), 154 hc32_to_cpu(fotg210, itd->hw_transaction[2]), 155 hc32_to_cpu(fotg210, itd->hw_transaction[3]), 156 hc32_to_cpu(fotg210, itd->hw_transaction[4]), 157 hc32_to_cpu(fotg210, itd->hw_transaction[5]), 158 hc32_to_cpu(fotg210, itd->hw_transaction[6]), 159 hc32_to_cpu(fotg210, itd->hw_transaction[7])); 160 161 fotg210_dbg(fotg210, 162 " buf: %08x %08x %08x %08x %08x %08x %08x\n", 163 hc32_to_cpu(fotg210, itd->hw_bufp[0]), 164 hc32_to_cpu(fotg210, itd->hw_bufp[1]), 165 hc32_to_cpu(fotg210, itd->hw_bufp[2]), 166 hc32_to_cpu(fotg210, itd->hw_bufp[3]), 167 hc32_to_cpu(fotg210, itd->hw_bufp[4]), 168 hc32_to_cpu(fotg210, itd->hw_bufp[5]), 169 hc32_to_cpu(fotg210, itd->hw_bufp[6])); 170 171 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n", 172 itd->index[0], itd->index[1], itd->index[2], 173 itd->index[3], itd->index[4], itd->index[5], 174 itd->index[6], itd->index[7]); 175 } 176 177 static int __maybe_unused 178 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 179 { 180 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 181 label, label[0] ? " " : "", status, 182 (status & STS_ASS) ? " Async" : "", 183 (status & STS_PSS) ? " Periodic" : "", 184 (status & STS_RECL) ? " Recl" : "", 185 (status & STS_HALT) ? " Halt" : "", 186 (status & STS_IAA) ? " IAA" : "", 187 (status & STS_FATAL) ? " FATAL" : "", 188 (status & STS_FLR) ? " FLR" : "", 189 (status & STS_PCD) ? " PCD" : "", 190 (status & STS_ERR) ? " ERR" : "", 191 (status & STS_INT) ? " INT" : ""); 192 } 193 194 static int __maybe_unused 195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 196 { 197 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 198 label, label[0] ? " " : "", enable, 199 (enable & STS_IAA) ? " IAA" : "", 200 (enable & STS_FATAL) ? " FATAL" : "", 201 (enable & STS_FLR) ? " FLR" : "", 202 (enable & STS_PCD) ? " PCD" : "", 203 (enable & STS_ERR) ? " ERR" : "", 204 (enable & STS_INT) ? " INT" : ""); 205 } 206 207 static const char *const fls_strings[] = { "1024", "512", "256", "??" }; 208 209 static int dbg_command_buf(char *buf, unsigned len, const char *label, 210 u32 command) 211 { 212 return scnprintf(buf, len, 213 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s", 214 label, label[0] ? " " : "", command, 215 (command & CMD_PARK) ? " park" : "(park)", 216 CMD_PARK_CNT(command), 217 (command >> 16) & 0x3f, 218 (command & CMD_IAAD) ? " IAAD" : "", 219 (command & CMD_ASE) ? " Async" : "", 220 (command & CMD_PSE) ? " Periodic" : "", 221 fls_strings[(command >> 2) & 0x3], 222 (command & CMD_RESET) ? " Reset" : "", 223 (command & CMD_RUN) ? "RUN" : "HALT"); 224 } 225 226 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port, 227 u32 status) 228 { 229 char *sig; 230 231 /* signaling state */ 232 switch (status & (3 << 10)) { 233 case 0 << 10: 234 sig = "se0"; 235 break; 236 case 1 << 10: 237 sig = "k"; 238 break; /* low speed */ 239 case 2 << 10: 240 sig = "j"; 241 break; 242 default: 243 sig = "?"; 244 break; 245 } 246 247 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s", 248 label, label[0] ? " " : "", port, status, 249 status >> 25, /*device address */ 250 sig, 251 (status & PORT_RESET) ? " RESET" : "", 252 (status & PORT_SUSPEND) ? " SUSPEND" : "", 253 (status & PORT_RESUME) ? " RESUME" : "", 254 (status & PORT_PEC) ? " PEC" : "", 255 (status & PORT_PE) ? " PE" : "", 256 (status & PORT_CSC) ? " CSC" : "", 257 (status & PORT_CONNECT) ? " CONNECT" : ""); 258 259 return buf; 260 } 261 262 /* functions have the "wrong" filename when they're output... */ 263 #define dbg_status(fotg210, label, status) { \ 264 char _buf[80]; \ 265 dbg_status_buf(_buf, sizeof(_buf), label, status); \ 266 fotg210_dbg(fotg210, "%s\n", _buf); \ 267 } 268 269 #define dbg_cmd(fotg210, label, command) { \ 270 char _buf[80]; \ 271 dbg_command_buf(_buf, sizeof(_buf), label, command); \ 272 fotg210_dbg(fotg210, "%s\n", _buf); \ 273 } 274 275 #define dbg_port(fotg210, label, port, status) { \ 276 char _buf[80]; \ 277 fotg210_dbg(fotg210, "%s\n", \ 278 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\ 279 } 280 281 /* troubleshooting help: expose state in debugfs */ 282 static int debug_async_open(struct inode *, struct file *); 283 static int debug_periodic_open(struct inode *, struct file *); 284 static int debug_registers_open(struct inode *, struct file *); 285 static int debug_async_open(struct inode *, struct file *); 286 287 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*); 288 static int debug_close(struct inode *, struct file *); 289 290 static const struct file_operations debug_async_fops = { 291 .owner = THIS_MODULE, 292 .open = debug_async_open, 293 .read = debug_output, 294 .release = debug_close, 295 .llseek = default_llseek, 296 }; 297 static const struct file_operations debug_periodic_fops = { 298 .owner = THIS_MODULE, 299 .open = debug_periodic_open, 300 .read = debug_output, 301 .release = debug_close, 302 .llseek = default_llseek, 303 }; 304 static const struct file_operations debug_registers_fops = { 305 .owner = THIS_MODULE, 306 .open = debug_registers_open, 307 .read = debug_output, 308 .release = debug_close, 309 .llseek = default_llseek, 310 }; 311 312 static struct dentry *fotg210_debug_root; 313 314 struct debug_buffer { 315 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */ 316 struct usb_bus *bus; 317 struct mutex mutex; /* protect filling of buffer */ 318 size_t count; /* number of characters filled into buffer */ 319 char *output_buf; 320 size_t alloc_size; 321 }; 322 323 static inline char speed_char(u32 scratch) 324 { 325 switch (scratch & (3 << 12)) { 326 case QH_FULL_SPEED: 327 return 'f'; 328 329 case QH_LOW_SPEED: 330 return 'l'; 331 332 case QH_HIGH_SPEED: 333 return 'h'; 334 335 default: 336 return '?'; 337 } 338 } 339 340 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token) 341 { 342 __u32 v = hc32_to_cpu(fotg210, token); 343 344 if (v & QTD_STS_ACTIVE) 345 return '*'; 346 if (v & QTD_STS_HALT) 347 return '-'; 348 if (!IS_SHORT_READ(v)) 349 return ' '; 350 /* tries to advance through hw_alt_next */ 351 return '/'; 352 } 353 354 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh, 355 char **nextp, unsigned *sizep) 356 { 357 u32 scratch; 358 u32 hw_curr; 359 struct fotg210_qtd *td; 360 unsigned temp; 361 unsigned size = *sizep; 362 char *next = *nextp; 363 char mark; 364 __le32 list_end = FOTG210_LIST_END(fotg210); 365 struct fotg210_qh_hw *hw = qh->hw; 366 367 if (hw->hw_qtd_next == list_end) /* NEC does this */ 368 mark = '@'; 369 else 370 mark = token_mark(fotg210, hw->hw_token); 371 if (mark == '/') { /* qh_alt_next controls qh advance? */ 372 if ((hw->hw_alt_next & QTD_MASK(fotg210)) == 373 fotg210->async->hw->hw_alt_next) 374 mark = '#'; /* blocked */ 375 else if (hw->hw_alt_next == list_end) 376 mark = '.'; /* use hw_qtd_next */ 377 /* else alt_next points to some other qtd */ 378 } 379 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); 380 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0; 381 temp = scnprintf(next, size, 382 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)", 383 qh, scratch & 0x007f, 384 speed_char(scratch), 385 (scratch >> 8) & 0x000f, 386 scratch, hc32_to_cpup(fotg210, &hw->hw_info2), 387 hc32_to_cpup(fotg210, &hw->hw_token), mark, 388 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token) 389 ? "data1" : "data0", 390 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f); 391 size -= temp; 392 next += temp; 393 394 /* hc may be modifying the list as we read it ... */ 395 list_for_each_entry(td, &qh->qtd_list, qtd_list) { 396 scratch = hc32_to_cpup(fotg210, &td->hw_token); 397 mark = ' '; 398 if (hw_curr == td->qtd_dma) 399 mark = '*'; 400 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma)) 401 mark = '+'; 402 else if (QTD_LENGTH(scratch)) { 403 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next) 404 mark = '#'; 405 else if (td->hw_alt_next != list_end) 406 mark = '/'; 407 } 408 temp = snprintf(next, size, 409 "\n\t%p%c%s len=%d %08x urb %p", 410 td, mark, ({ char *tmp; 411 switch ((scratch>>8)&0x03) { 412 case 0: 413 tmp = "out"; 414 break; 415 case 1: 416 tmp = "in"; 417 break; 418 case 2: 419 tmp = "setup"; 420 break; 421 default: 422 tmp = "?"; 423 break; 424 } tmp; }), 425 (scratch >> 16) & 0x7fff, 426 scratch, 427 td->urb); 428 if (size < temp) 429 temp = size; 430 size -= temp; 431 next += temp; 432 if (temp == size) 433 goto done; 434 } 435 436 temp = snprintf(next, size, "\n"); 437 if (size < temp) 438 temp = size; 439 440 size -= temp; 441 next += temp; 442 443 done: 444 *sizep = size; 445 *nextp = next; 446 } 447 448 static ssize_t fill_async_buffer(struct debug_buffer *buf) 449 { 450 struct usb_hcd *hcd; 451 struct fotg210_hcd *fotg210; 452 unsigned long flags; 453 unsigned temp, size; 454 char *next; 455 struct fotg210_qh *qh; 456 457 hcd = bus_to_hcd(buf->bus); 458 fotg210 = hcd_to_fotg210(hcd); 459 next = buf->output_buf; 460 size = buf->alloc_size; 461 462 *next = 0; 463 464 /* dumps a snapshot of the async schedule. 465 * usually empty except for long-term bulk reads, or head. 466 * one QH per line, and TDs we know about 467 */ 468 spin_lock_irqsave(&fotg210->lock, flags); 469 for (qh = fotg210->async->qh_next.qh; size > 0 && qh; 470 qh = qh->qh_next.qh) 471 qh_lines(fotg210, qh, &next, &size); 472 if (fotg210->async_unlink && size > 0) { 473 temp = scnprintf(next, size, "\nunlink =\n"); 474 size -= temp; 475 next += temp; 476 477 for (qh = fotg210->async_unlink; size > 0 && qh; 478 qh = qh->unlink_next) 479 qh_lines(fotg210, qh, &next, &size); 480 } 481 spin_unlock_irqrestore(&fotg210->lock, flags); 482 483 return strlen(buf->output_buf); 484 } 485 486 /* count tds, get ep direction */ 487 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210, 488 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size) 489 { 490 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); 491 struct fotg210_qtd *qtd; 492 char *type = ""; 493 unsigned temp = 0; 494 495 /* count tds, get ep direction */ 496 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) { 497 temp++; 498 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) { 499 case 0: 500 type = "out"; 501 continue; 502 case 1: 503 type = "in"; 504 continue; 505 } 506 } 507 508 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)", 509 speed_char(scratch), scratch & 0x007f, 510 (scratch >> 8) & 0x000f, type, qh->usecs, 511 qh->c_usecs, temp, (scratch >> 16) & 0x7ff); 512 } 513 514 #define DBG_SCHED_LIMIT 64 515 static ssize_t fill_periodic_buffer(struct debug_buffer *buf) 516 { 517 struct usb_hcd *hcd; 518 struct fotg210_hcd *fotg210; 519 unsigned long flags; 520 union fotg210_shadow p, *seen; 521 unsigned temp, size, seen_count; 522 char *next; 523 unsigned i; 524 __hc32 tag; 525 526 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC); 527 if (!seen) 528 return 0; 529 530 seen_count = 0; 531 532 hcd = bus_to_hcd(buf->bus); 533 fotg210 = hcd_to_fotg210(hcd); 534 next = buf->output_buf; 535 size = buf->alloc_size; 536 537 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size); 538 size -= temp; 539 next += temp; 540 541 /* dump a snapshot of the periodic schedule. 542 * iso changes, interrupt usually doesn't. 543 */ 544 spin_lock_irqsave(&fotg210->lock, flags); 545 for (i = 0; i < fotg210->periodic_size; i++) { 546 p = fotg210->pshadow[i]; 547 if (likely(!p.ptr)) 548 continue; 549 550 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]); 551 552 temp = scnprintf(next, size, "%4d: ", i); 553 size -= temp; 554 next += temp; 555 556 do { 557 struct fotg210_qh_hw *hw; 558 559 switch (hc32_to_cpu(fotg210, tag)) { 560 case Q_TYPE_QH: 561 hw = p.qh->hw; 562 temp = scnprintf(next, size, " qh%d-%04x/%p", 563 p.qh->period, 564 hc32_to_cpup(fotg210, 565 &hw->hw_info2) 566 /* uframe masks */ 567 & (QH_CMASK | QH_SMASK), 568 p.qh); 569 size -= temp; 570 next += temp; 571 /* don't repeat what follows this qh */ 572 for (temp = 0; temp < seen_count; temp++) { 573 if (seen[temp].ptr != p.ptr) 574 continue; 575 if (p.qh->qh_next.ptr) { 576 temp = scnprintf(next, size, 577 " ..."); 578 size -= temp; 579 next += temp; 580 } 581 break; 582 } 583 /* show more info the first time around */ 584 if (temp == seen_count) { 585 temp = output_buf_tds_dir(next, 586 fotg210, hw, 587 p.qh, size); 588 589 if (seen_count < DBG_SCHED_LIMIT) 590 seen[seen_count++].qh = p.qh; 591 } else 592 temp = 0; 593 tag = Q_NEXT_TYPE(fotg210, hw->hw_next); 594 p = p.qh->qh_next; 595 break; 596 case Q_TYPE_FSTN: 597 temp = scnprintf(next, size, 598 " fstn-%8x/%p", 599 p.fstn->hw_prev, p.fstn); 600 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next); 601 p = p.fstn->fstn_next; 602 break; 603 case Q_TYPE_ITD: 604 temp = scnprintf(next, size, 605 " itd/%p", p.itd); 606 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next); 607 p = p.itd->itd_next; 608 break; 609 } 610 size -= temp; 611 next += temp; 612 } while (p.ptr); 613 614 temp = scnprintf(next, size, "\n"); 615 size -= temp; 616 next += temp; 617 } 618 spin_unlock_irqrestore(&fotg210->lock, flags); 619 kfree(seen); 620 621 return buf->alloc_size - size; 622 } 623 #undef DBG_SCHED_LIMIT 624 625 static const char *rh_state_string(struct fotg210_hcd *fotg210) 626 { 627 switch (fotg210->rh_state) { 628 case FOTG210_RH_HALTED: 629 return "halted"; 630 case FOTG210_RH_SUSPENDED: 631 return "suspended"; 632 case FOTG210_RH_RUNNING: 633 return "running"; 634 case FOTG210_RH_STOPPING: 635 return "stopping"; 636 } 637 return "?"; 638 } 639 640 static ssize_t fill_registers_buffer(struct debug_buffer *buf) 641 { 642 struct usb_hcd *hcd; 643 struct fotg210_hcd *fotg210; 644 unsigned long flags; 645 unsigned temp, size, i; 646 char *next, scratch[80]; 647 static const char fmt[] = "%*s\n"; 648 static const char label[] = ""; 649 650 hcd = bus_to_hcd(buf->bus); 651 fotg210 = hcd_to_fotg210(hcd); 652 next = buf->output_buf; 653 size = buf->alloc_size; 654 655 spin_lock_irqsave(&fotg210->lock, flags); 656 657 if (!HCD_HW_ACCESSIBLE(hcd)) { 658 size = scnprintf(next, size, 659 "bus %s, device %s\n" 660 "%s\n" 661 "SUSPENDED(no register access)\n", 662 hcd->self.controller->bus->name, 663 dev_name(hcd->self.controller), 664 hcd->product_desc); 665 goto done; 666 } 667 668 /* Capability Registers */ 669 i = HC_VERSION(fotg210, fotg210_readl(fotg210, 670 &fotg210->caps->hc_capbase)); 671 temp = scnprintf(next, size, 672 "bus %s, device %s\n" 673 "%s\n" 674 "EHCI %x.%02x, rh state %s\n", 675 hcd->self.controller->bus->name, 676 dev_name(hcd->self.controller), 677 hcd->product_desc, 678 i >> 8, i & 0x0ff, rh_state_string(fotg210)); 679 size -= temp; 680 next += temp; 681 682 /* FIXME interpret both types of params */ 683 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params); 684 temp = scnprintf(next, size, "structural params 0x%08x\n", i); 685 size -= temp; 686 next += temp; 687 688 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 689 temp = scnprintf(next, size, "capability params 0x%08x\n", i); 690 size -= temp; 691 next += temp; 692 693 /* Operational Registers */ 694 temp = dbg_status_buf(scratch, sizeof(scratch), label, 695 fotg210_readl(fotg210, &fotg210->regs->status)); 696 temp = scnprintf(next, size, fmt, temp, scratch); 697 size -= temp; 698 next += temp; 699 700 temp = dbg_command_buf(scratch, sizeof(scratch), label, 701 fotg210_readl(fotg210, &fotg210->regs->command)); 702 temp = scnprintf(next, size, fmt, temp, scratch); 703 size -= temp; 704 next += temp; 705 706 temp = dbg_intr_buf(scratch, sizeof(scratch), label, 707 fotg210_readl(fotg210, &fotg210->regs->intr_enable)); 708 temp = scnprintf(next, size, fmt, temp, scratch); 709 size -= temp; 710 next += temp; 711 712 temp = scnprintf(next, size, "uframe %04x\n", 713 fotg210_read_frame_index(fotg210)); 714 size -= temp; 715 next += temp; 716 717 if (fotg210->async_unlink) { 718 temp = scnprintf(next, size, "async unlink qh %p\n", 719 fotg210->async_unlink); 720 size -= temp; 721 next += temp; 722 } 723 724 #ifdef FOTG210_STATS 725 temp = scnprintf(next, size, 726 "irq normal %ld err %ld iaa %ld(lost %ld)\n", 727 fotg210->stats.normal, fotg210->stats.error, 728 fotg210->stats.iaa, fotg210->stats.lost_iaa); 729 size -= temp; 730 next += temp; 731 732 temp = scnprintf(next, size, "complete %ld unlink %ld\n", 733 fotg210->stats.complete, fotg210->stats.unlink); 734 size -= temp; 735 next += temp; 736 #endif 737 738 done: 739 spin_unlock_irqrestore(&fotg210->lock, flags); 740 741 return buf->alloc_size - size; 742 } 743 744 static struct debug_buffer 745 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *)) 746 { 747 struct debug_buffer *buf; 748 749 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL); 750 751 if (buf) { 752 buf->bus = bus; 753 buf->fill_func = fill_func; 754 mutex_init(&buf->mutex); 755 buf->alloc_size = PAGE_SIZE; 756 } 757 758 return buf; 759 } 760 761 static int fill_buffer(struct debug_buffer *buf) 762 { 763 int ret = 0; 764 765 if (!buf->output_buf) 766 buf->output_buf = vmalloc(buf->alloc_size); 767 768 if (!buf->output_buf) { 769 ret = -ENOMEM; 770 goto out; 771 } 772 773 ret = buf->fill_func(buf); 774 775 if (ret >= 0) { 776 buf->count = ret; 777 ret = 0; 778 } 779 780 out: 781 return ret; 782 } 783 784 static ssize_t debug_output(struct file *file, char __user *user_buf, 785 size_t len, loff_t *offset) 786 { 787 struct debug_buffer *buf = file->private_data; 788 int ret = 0; 789 790 mutex_lock(&buf->mutex); 791 if (buf->count == 0) { 792 ret = fill_buffer(buf); 793 if (ret != 0) { 794 mutex_unlock(&buf->mutex); 795 goto out; 796 } 797 } 798 mutex_unlock(&buf->mutex); 799 800 ret = simple_read_from_buffer(user_buf, len, offset, 801 buf->output_buf, buf->count); 802 803 out: 804 return ret; 805 806 } 807 808 static int debug_close(struct inode *inode, struct file *file) 809 { 810 struct debug_buffer *buf = file->private_data; 811 812 if (buf) { 813 vfree(buf->output_buf); 814 kfree(buf); 815 } 816 817 return 0; 818 } 819 static int debug_async_open(struct inode *inode, struct file *file) 820 { 821 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer); 822 823 return file->private_data ? 0 : -ENOMEM; 824 } 825 826 static int debug_periodic_open(struct inode *inode, struct file *file) 827 { 828 struct debug_buffer *buf; 829 830 buf = alloc_buffer(inode->i_private, fill_periodic_buffer); 831 if (!buf) 832 return -ENOMEM; 833 834 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE; 835 file->private_data = buf; 836 return 0; 837 } 838 839 static int debug_registers_open(struct inode *inode, struct file *file) 840 { 841 file->private_data = alloc_buffer(inode->i_private, 842 fill_registers_buffer); 843 844 return file->private_data ? 0 : -ENOMEM; 845 } 846 847 static inline void create_debug_files(struct fotg210_hcd *fotg210) 848 { 849 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; 850 struct dentry *root; 851 852 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root); 853 854 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops); 855 debugfs_create_file("periodic", S_IRUGO, root, bus, 856 &debug_periodic_fops); 857 debugfs_create_file("registers", S_IRUGO, root, bus, 858 &debug_registers_fops); 859 } 860 861 static inline void remove_debug_files(struct fotg210_hcd *fotg210) 862 { 863 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; 864 865 debugfs_remove(debugfs_lookup(bus->bus_name, fotg210_debug_root)); 866 } 867 868 /* handshake - spin reading hc until handshake completes or fails 869 * @ptr: address of hc register to be read 870 * @mask: bits to look at in result of read 871 * @done: value of those bits when handshake succeeds 872 * @usec: timeout in microseconds 873 * 874 * Returns negative errno, or zero on success 875 * 876 * Success happens when the "mask" bits have the specified value (hardware 877 * handshake done). There are two failure modes: "usec" have passed (major 878 * hardware flakeout), or the register reads as all-ones (hardware removed). 879 * 880 * That last failure should_only happen in cases like physical cardbus eject 881 * before driver shutdown. But it also seems to be caused by bugs in cardbus 882 * bridge shutdown: shutting down the bridge before the devices using it. 883 */ 884 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr, 885 u32 mask, u32 done, int usec) 886 { 887 u32 result; 888 int ret; 889 890 ret = readl_poll_timeout_atomic(ptr, result, 891 ((result & mask) == done || 892 result == U32_MAX), 1, usec); 893 if (result == U32_MAX) /* card removed */ 894 return -ENODEV; 895 896 return ret; 897 } 898 899 /* Force HC to halt state from unknown (EHCI spec section 2.3). 900 * Must be called with interrupts enabled and the lock not held. 901 */ 902 static int fotg210_halt(struct fotg210_hcd *fotg210) 903 { 904 u32 temp; 905 906 spin_lock_irq(&fotg210->lock); 907 908 /* disable any irqs left enabled by previous code */ 909 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 910 911 /* 912 * This routine gets called during probe before fotg210->command 913 * has been initialized, so we can't rely on its value. 914 */ 915 fotg210->command &= ~CMD_RUN; 916 temp = fotg210_readl(fotg210, &fotg210->regs->command); 917 temp &= ~(CMD_RUN | CMD_IAAD); 918 fotg210_writel(fotg210, temp, &fotg210->regs->command); 919 920 spin_unlock_irq(&fotg210->lock); 921 synchronize_irq(fotg210_to_hcd(fotg210)->irq); 922 923 return handshake(fotg210, &fotg210->regs->status, 924 STS_HALT, STS_HALT, 16 * 125); 925 } 926 927 /* Reset a non-running (STS_HALT == 1) controller. 928 * Must be called with interrupts enabled and the lock not held. 929 */ 930 static int fotg210_reset(struct fotg210_hcd *fotg210) 931 { 932 int retval; 933 u32 command = fotg210_readl(fotg210, &fotg210->regs->command); 934 935 /* If the EHCI debug controller is active, special care must be 936 * taken before and after a host controller reset 937 */ 938 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210))) 939 fotg210->debug = NULL; 940 941 command |= CMD_RESET; 942 dbg_cmd(fotg210, "reset", command); 943 fotg210_writel(fotg210, command, &fotg210->regs->command); 944 fotg210->rh_state = FOTG210_RH_HALTED; 945 fotg210->next_statechange = jiffies; 946 retval = handshake(fotg210, &fotg210->regs->command, 947 CMD_RESET, 0, 250 * 1000); 948 949 if (retval) 950 return retval; 951 952 if (fotg210->debug) 953 dbgp_external_startup(fotg210_to_hcd(fotg210)); 954 955 fotg210->port_c_suspend = fotg210->suspended_ports = 956 fotg210->resuming_ports = 0; 957 return retval; 958 } 959 960 /* Idle the controller (turn off the schedules). 961 * Must be called with interrupts enabled and the lock not held. 962 */ 963 static void fotg210_quiesce(struct fotg210_hcd *fotg210) 964 { 965 u32 temp; 966 967 if (fotg210->rh_state != FOTG210_RH_RUNNING) 968 return; 969 970 /* wait for any schedule enables/disables to take effect */ 971 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS); 972 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp, 973 16 * 125); 974 975 /* then disable anything that's still active */ 976 spin_lock_irq(&fotg210->lock); 977 fotg210->command &= ~(CMD_ASE | CMD_PSE); 978 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 979 spin_unlock_irq(&fotg210->lock); 980 981 /* hardware can take 16 microframes to turn off ... */ 982 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0, 983 16 * 125); 984 } 985 986 static void end_unlink_async(struct fotg210_hcd *fotg210); 987 static void unlink_empty_async(struct fotg210_hcd *fotg210); 988 static void fotg210_work(struct fotg210_hcd *fotg210); 989 static void start_unlink_intr(struct fotg210_hcd *fotg210, 990 struct fotg210_qh *qh); 991 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 992 993 /* Set a bit in the USBCMD register */ 994 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit) 995 { 996 fotg210->command |= bit; 997 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 998 999 /* unblock posted write */ 1000 fotg210_readl(fotg210, &fotg210->regs->command); 1001 } 1002 1003 /* Clear a bit in the USBCMD register */ 1004 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit) 1005 { 1006 fotg210->command &= ~bit; 1007 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1008 1009 /* unblock posted write */ 1010 fotg210_readl(fotg210, &fotg210->regs->command); 1011 } 1012 1013 /* EHCI timer support... Now using hrtimers. 1014 * 1015 * Lots of different events are triggered from fotg210->hrtimer. Whenever 1016 * the timer routine runs, it checks each possible event; events that are 1017 * currently enabled and whose expiration time has passed get handled. 1018 * The set of enabled events is stored as a collection of bitflags in 1019 * fotg210->enabled_hrtimer_events, and they are numbered in order of 1020 * increasing delay values (ranging between 1 ms and 100 ms). 1021 * 1022 * Rather than implementing a sorted list or tree of all pending events, 1023 * we keep track only of the lowest-numbered pending event, in 1024 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its 1025 * expiration time is set to the timeout value for this event. 1026 * 1027 * As a result, events might not get handled right away; the actual delay 1028 * could be anywhere up to twice the requested delay. This doesn't 1029 * matter, because none of the events are especially time-critical. The 1030 * ones that matter most all have a delay of 1 ms, so they will be 1031 * handled after 2 ms at most, which is okay. In addition to this, we 1032 * allow for an expiration range of 1 ms. 1033 */ 1034 1035 /* Delay lengths for the hrtimer event types. 1036 * Keep this list sorted by delay length, in the same order as 1037 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h. 1038 */ 1039 static unsigned event_delays_ns[] = { 1040 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */ 1041 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */ 1042 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */ 1043 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */ 1044 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */ 1045 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 1046 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 1047 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 1048 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 1049 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */ 1050 }; 1051 1052 /* Enable a pending hrtimer event */ 1053 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event, 1054 bool resched) 1055 { 1056 ktime_t *timeout = &fotg210->hr_timeouts[event]; 1057 1058 if (resched) 1059 *timeout = ktime_add(ktime_get(), event_delays_ns[event]); 1060 fotg210->enabled_hrtimer_events |= (1 << event); 1061 1062 /* Track only the lowest-numbered pending event */ 1063 if (event < fotg210->next_hrtimer_event) { 1064 fotg210->next_hrtimer_event = event; 1065 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout, 1066 NSEC_PER_MSEC, HRTIMER_MODE_ABS); 1067 } 1068 } 1069 1070 1071 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */ 1072 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210) 1073 { 1074 unsigned actual, want; 1075 1076 /* Don't enable anything if the controller isn't running (e.g., died) */ 1077 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1078 return; 1079 1080 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0; 1081 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS; 1082 1083 if (want != actual) { 1084 1085 /* Poll again later, but give up after about 20 ms */ 1086 if (fotg210->ASS_poll_count++ < 20) { 1087 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS, 1088 true); 1089 return; 1090 } 1091 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n", 1092 want, actual); 1093 } 1094 fotg210->ASS_poll_count = 0; 1095 1096 /* The status is up-to-date; restart or stop the schedule as needed */ 1097 if (want == 0) { /* Stopped */ 1098 if (fotg210->async_count > 0) 1099 fotg210_set_command_bit(fotg210, CMD_ASE); 1100 1101 } else { /* Running */ 1102 if (fotg210->async_count == 0) { 1103 1104 /* Turn off the schedule after a while */ 1105 fotg210_enable_event(fotg210, 1106 FOTG210_HRTIMER_DISABLE_ASYNC, 1107 true); 1108 } 1109 } 1110 } 1111 1112 /* Turn off the async schedule after a brief delay */ 1113 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210) 1114 { 1115 fotg210_clear_command_bit(fotg210, CMD_ASE); 1116 } 1117 1118 1119 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */ 1120 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210) 1121 { 1122 unsigned actual, want; 1123 1124 /* Don't do anything if the controller isn't running (e.g., died) */ 1125 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1126 return; 1127 1128 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0; 1129 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS; 1130 1131 if (want != actual) { 1132 1133 /* Poll again later, but give up after about 20 ms */ 1134 if (fotg210->PSS_poll_count++ < 20) { 1135 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS, 1136 true); 1137 return; 1138 } 1139 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n", 1140 want, actual); 1141 } 1142 fotg210->PSS_poll_count = 0; 1143 1144 /* The status is up-to-date; restart or stop the schedule as needed */ 1145 if (want == 0) { /* Stopped */ 1146 if (fotg210->periodic_count > 0) 1147 fotg210_set_command_bit(fotg210, CMD_PSE); 1148 1149 } else { /* Running */ 1150 if (fotg210->periodic_count == 0) { 1151 1152 /* Turn off the schedule after a while */ 1153 fotg210_enable_event(fotg210, 1154 FOTG210_HRTIMER_DISABLE_PERIODIC, 1155 true); 1156 } 1157 } 1158 } 1159 1160 /* Turn off the periodic schedule after a brief delay */ 1161 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210) 1162 { 1163 fotg210_clear_command_bit(fotg210, CMD_PSE); 1164 } 1165 1166 1167 /* Poll the STS_HALT status bit; see when a dead controller stops */ 1168 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210) 1169 { 1170 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) { 1171 1172 /* Give up after a few milliseconds */ 1173 if (fotg210->died_poll_count++ < 5) { 1174 /* Try again later */ 1175 fotg210_enable_event(fotg210, 1176 FOTG210_HRTIMER_POLL_DEAD, true); 1177 return; 1178 } 1179 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n"); 1180 } 1181 1182 /* Clean up the mess */ 1183 fotg210->rh_state = FOTG210_RH_HALTED; 1184 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 1185 fotg210_work(fotg210); 1186 end_unlink_async(fotg210); 1187 1188 /* Not in process context, so don't try to reset the controller */ 1189 } 1190 1191 1192 /* Handle unlinked interrupt QHs once they are gone from the hardware */ 1193 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210) 1194 { 1195 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); 1196 1197 /* 1198 * Process all the QHs on the intr_unlink list that were added 1199 * before the current unlink cycle began. The list is in 1200 * temporal order, so stop when we reach the first entry in the 1201 * current cycle. But if the root hub isn't running then 1202 * process all the QHs on the list. 1203 */ 1204 fotg210->intr_unlinking = true; 1205 while (fotg210->intr_unlink) { 1206 struct fotg210_qh *qh = fotg210->intr_unlink; 1207 1208 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle) 1209 break; 1210 fotg210->intr_unlink = qh->unlink_next; 1211 qh->unlink_next = NULL; 1212 end_unlink_intr(fotg210, qh); 1213 } 1214 1215 /* Handle remaining entries later */ 1216 if (fotg210->intr_unlink) { 1217 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, 1218 true); 1219 ++fotg210->intr_unlink_cycle; 1220 } 1221 fotg210->intr_unlinking = false; 1222 } 1223 1224 1225 /* Start another free-iTDs/siTDs cycle */ 1226 static void start_free_itds(struct fotg210_hcd *fotg210) 1227 { 1228 if (!(fotg210->enabled_hrtimer_events & 1229 BIT(FOTG210_HRTIMER_FREE_ITDS))) { 1230 fotg210->last_itd_to_free = list_entry( 1231 fotg210->cached_itd_list.prev, 1232 struct fotg210_itd, itd_list); 1233 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true); 1234 } 1235 } 1236 1237 /* Wait for controller to stop using old iTDs and siTDs */ 1238 static void end_free_itds(struct fotg210_hcd *fotg210) 1239 { 1240 struct fotg210_itd *itd, *n; 1241 1242 if (fotg210->rh_state < FOTG210_RH_RUNNING) 1243 fotg210->last_itd_to_free = NULL; 1244 1245 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) { 1246 list_del(&itd->itd_list); 1247 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma); 1248 if (itd == fotg210->last_itd_to_free) 1249 break; 1250 } 1251 1252 if (!list_empty(&fotg210->cached_itd_list)) 1253 start_free_itds(fotg210); 1254 } 1255 1256 1257 /* Handle lost (or very late) IAA interrupts */ 1258 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210) 1259 { 1260 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1261 return; 1262 1263 /* 1264 * Lost IAA irqs wedge things badly; seen first with a vt8235. 1265 * So we need this watchdog, but must protect it against both 1266 * (a) SMP races against real IAA firing and retriggering, and 1267 * (b) clean HC shutdown, when IAA watchdog was pending. 1268 */ 1269 if (fotg210->async_iaa) { 1270 u32 cmd, status; 1271 1272 /* If we get here, IAA is *REALLY* late. It's barely 1273 * conceivable that the system is so busy that CMD_IAAD 1274 * is still legitimately set, so let's be sure it's 1275 * clear before we read STS_IAA. (The HC should clear 1276 * CMD_IAAD when it sets STS_IAA.) 1277 */ 1278 cmd = fotg210_readl(fotg210, &fotg210->regs->command); 1279 1280 /* 1281 * If IAA is set here it either legitimately triggered 1282 * after the watchdog timer expired (_way_ late, so we'll 1283 * still count it as lost) ... or a silicon erratum: 1284 * - VIA seems to set IAA without triggering the IRQ; 1285 * - IAAD potentially cleared without setting IAA. 1286 */ 1287 status = fotg210_readl(fotg210, &fotg210->regs->status); 1288 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) { 1289 INCR(fotg210->stats.lost_iaa); 1290 fotg210_writel(fotg210, STS_IAA, 1291 &fotg210->regs->status); 1292 } 1293 1294 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n", 1295 status, cmd); 1296 end_unlink_async(fotg210); 1297 } 1298 } 1299 1300 1301 /* Enable the I/O watchdog, if appropriate */ 1302 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210) 1303 { 1304 /* Not needed if the controller isn't running or it's already enabled */ 1305 if (fotg210->rh_state != FOTG210_RH_RUNNING || 1306 (fotg210->enabled_hrtimer_events & 1307 BIT(FOTG210_HRTIMER_IO_WATCHDOG))) 1308 return; 1309 1310 /* 1311 * Isochronous transfers always need the watchdog. 1312 * For other sorts we use it only if the flag is set. 1313 */ 1314 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog && 1315 fotg210->async_count + fotg210->intr_count > 0)) 1316 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG, 1317 true); 1318 } 1319 1320 1321 /* Handler functions for the hrtimer event types. 1322 * Keep this array in the same order as the event types indexed by 1323 * enum fotg210_hrtimer_event in fotg210.h. 1324 */ 1325 static void (*event_handlers[])(struct fotg210_hcd *) = { 1326 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */ 1327 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */ 1328 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */ 1329 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */ 1330 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */ 1331 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 1332 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 1333 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 1334 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 1335 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */ 1336 }; 1337 1338 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t) 1339 { 1340 struct fotg210_hcd *fotg210 = 1341 container_of(t, struct fotg210_hcd, hrtimer); 1342 ktime_t now; 1343 unsigned long events; 1344 unsigned long flags; 1345 unsigned e; 1346 1347 spin_lock_irqsave(&fotg210->lock, flags); 1348 1349 events = fotg210->enabled_hrtimer_events; 1350 fotg210->enabled_hrtimer_events = 0; 1351 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; 1352 1353 /* 1354 * Check each pending event. If its time has expired, handle 1355 * the event; otherwise re-enable it. 1356 */ 1357 now = ktime_get(); 1358 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) { 1359 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0) 1360 event_handlers[e](fotg210); 1361 else 1362 fotg210_enable_event(fotg210, e, false); 1363 } 1364 1365 spin_unlock_irqrestore(&fotg210->lock, flags); 1366 return HRTIMER_NORESTART; 1367 } 1368 1369 #define fotg210_bus_suspend NULL 1370 #define fotg210_bus_resume NULL 1371 1372 static int check_reset_complete(struct fotg210_hcd *fotg210, int index, 1373 u32 __iomem *status_reg, int port_status) 1374 { 1375 if (!(port_status & PORT_CONNECT)) 1376 return port_status; 1377 1378 /* if reset finished and it's still not enabled -- handoff */ 1379 if (!(port_status & PORT_PE)) 1380 /* with integrated TT, there's nobody to hand it to! */ 1381 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n", 1382 index + 1); 1383 else 1384 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n", 1385 index + 1); 1386 1387 return port_status; 1388 } 1389 1390 1391 /* build "status change" packet (one or two bytes) from HC registers */ 1392 1393 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf) 1394 { 1395 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 1396 u32 temp, status; 1397 u32 mask; 1398 int retval = 1; 1399 unsigned long flags; 1400 1401 /* init status to no-changes */ 1402 buf[0] = 0; 1403 1404 /* Inform the core about resumes-in-progress by returning 1405 * a non-zero value even if there are no status changes. 1406 */ 1407 status = fotg210->resuming_ports; 1408 1409 mask = PORT_CSC | PORT_PEC; 1410 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */ 1411 1412 /* no hub change reports (bit 0) for now (power, ...) */ 1413 1414 /* port N changes (bit N)? */ 1415 spin_lock_irqsave(&fotg210->lock, flags); 1416 1417 temp = fotg210_readl(fotg210, &fotg210->regs->port_status); 1418 1419 /* 1420 * Return status information even for ports with OWNER set. 1421 * Otherwise hub_wq wouldn't see the disconnect event when a 1422 * high-speed device is switched over to the companion 1423 * controller by the user. 1424 */ 1425 1426 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) || 1427 (fotg210->reset_done[0] && 1428 time_after_eq(jiffies, fotg210->reset_done[0]))) { 1429 buf[0] |= 1 << 1; 1430 status = STS_PCD; 1431 } 1432 /* FIXME autosuspend idle root hubs */ 1433 spin_unlock_irqrestore(&fotg210->lock, flags); 1434 return status ? retval : 0; 1435 } 1436 1437 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210, 1438 struct usb_hub_descriptor *desc) 1439 { 1440 int ports = HCS_N_PORTS(fotg210->hcs_params); 1441 u16 temp; 1442 1443 desc->bDescriptorType = USB_DT_HUB; 1444 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */ 1445 desc->bHubContrCurrent = 0; 1446 1447 desc->bNbrPorts = ports; 1448 temp = 1 + (ports / 8); 1449 desc->bDescLength = 7 + 2 * temp; 1450 1451 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 1452 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 1453 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 1454 1455 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 1456 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 1457 desc->wHubCharacteristics = cpu_to_le16(temp); 1458 } 1459 1460 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, 1461 u16 wIndex, char *buf, u16 wLength) 1462 { 1463 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 1464 int ports = HCS_N_PORTS(fotg210->hcs_params); 1465 u32 __iomem *status_reg = &fotg210->regs->port_status; 1466 u32 temp, temp1, status; 1467 unsigned long flags; 1468 int retval = 0; 1469 unsigned selector; 1470 1471 /* 1472 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 1473 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 1474 * (track current state ourselves) ... blink for diagnostics, 1475 * power, "this is the one", etc. EHCI spec supports this. 1476 */ 1477 1478 spin_lock_irqsave(&fotg210->lock, flags); 1479 switch (typeReq) { 1480 case ClearHubFeature: 1481 switch (wValue) { 1482 case C_HUB_LOCAL_POWER: 1483 case C_HUB_OVER_CURRENT: 1484 /* no hub-wide feature/status flags */ 1485 break; 1486 default: 1487 goto error; 1488 } 1489 break; 1490 case ClearPortFeature: 1491 if (!wIndex || wIndex > ports) 1492 goto error; 1493 wIndex--; 1494 temp = fotg210_readl(fotg210, status_reg); 1495 temp &= ~PORT_RWC_BITS; 1496 1497 /* 1498 * Even if OWNER is set, so the port is owned by the 1499 * companion controller, hub_wq needs to be able to clear 1500 * the port-change status bits (especially 1501 * USB_PORT_STAT_C_CONNECTION). 1502 */ 1503 1504 switch (wValue) { 1505 case USB_PORT_FEAT_ENABLE: 1506 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg); 1507 break; 1508 case USB_PORT_FEAT_C_ENABLE: 1509 fotg210_writel(fotg210, temp | PORT_PEC, status_reg); 1510 break; 1511 case USB_PORT_FEAT_SUSPEND: 1512 if (temp & PORT_RESET) 1513 goto error; 1514 if (!(temp & PORT_SUSPEND)) 1515 break; 1516 if ((temp & PORT_PE) == 0) 1517 goto error; 1518 1519 /* resume signaling for 20 msec */ 1520 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg); 1521 fotg210->reset_done[wIndex] = jiffies 1522 + msecs_to_jiffies(USB_RESUME_TIMEOUT); 1523 break; 1524 case USB_PORT_FEAT_C_SUSPEND: 1525 clear_bit(wIndex, &fotg210->port_c_suspend); 1526 break; 1527 case USB_PORT_FEAT_C_CONNECTION: 1528 fotg210_writel(fotg210, temp | PORT_CSC, status_reg); 1529 break; 1530 case USB_PORT_FEAT_C_OVER_CURRENT: 1531 fotg210_writel(fotg210, temp | OTGISR_OVC, 1532 &fotg210->regs->otgisr); 1533 break; 1534 case USB_PORT_FEAT_C_RESET: 1535 /* GetPortStatus clears reset */ 1536 break; 1537 default: 1538 goto error; 1539 } 1540 fotg210_readl(fotg210, &fotg210->regs->command); 1541 break; 1542 case GetHubDescriptor: 1543 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *) 1544 buf); 1545 break; 1546 case GetHubStatus: 1547 /* no hub-wide feature/status flags */ 1548 memset(buf, 0, 4); 1549 /*cpu_to_le32s ((u32 *) buf); */ 1550 break; 1551 case GetPortStatus: 1552 if (!wIndex || wIndex > ports) 1553 goto error; 1554 wIndex--; 1555 status = 0; 1556 temp = fotg210_readl(fotg210, status_reg); 1557 1558 /* wPortChange bits */ 1559 if (temp & PORT_CSC) 1560 status |= USB_PORT_STAT_C_CONNECTION << 16; 1561 if (temp & PORT_PEC) 1562 status |= USB_PORT_STAT_C_ENABLE << 16; 1563 1564 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); 1565 if (temp1 & OTGISR_OVC) 1566 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 1567 1568 /* whoever resumes must GetPortStatus to complete it!! */ 1569 if (temp & PORT_RESUME) { 1570 1571 /* Remote Wakeup received? */ 1572 if (!fotg210->reset_done[wIndex]) { 1573 /* resume signaling for 20 msec */ 1574 fotg210->reset_done[wIndex] = jiffies 1575 + msecs_to_jiffies(20); 1576 /* check the port again */ 1577 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer, 1578 fotg210->reset_done[wIndex]); 1579 } 1580 1581 /* resume completed? */ 1582 else if (time_after_eq(jiffies, 1583 fotg210->reset_done[wIndex])) { 1584 clear_bit(wIndex, &fotg210->suspended_ports); 1585 set_bit(wIndex, &fotg210->port_c_suspend); 1586 fotg210->reset_done[wIndex] = 0; 1587 1588 /* stop resume signaling */ 1589 temp = fotg210_readl(fotg210, status_reg); 1590 fotg210_writel(fotg210, temp & 1591 ~(PORT_RWC_BITS | PORT_RESUME), 1592 status_reg); 1593 clear_bit(wIndex, &fotg210->resuming_ports); 1594 retval = handshake(fotg210, status_reg, 1595 PORT_RESUME, 0, 2000);/* 2ms */ 1596 if (retval != 0) { 1597 fotg210_err(fotg210, 1598 "port %d resume error %d\n", 1599 wIndex + 1, retval); 1600 goto error; 1601 } 1602 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 1603 } 1604 } 1605 1606 /* whoever resets must GetPortStatus to complete it!! */ 1607 if ((temp & PORT_RESET) && time_after_eq(jiffies, 1608 fotg210->reset_done[wIndex])) { 1609 status |= USB_PORT_STAT_C_RESET << 16; 1610 fotg210->reset_done[wIndex] = 0; 1611 clear_bit(wIndex, &fotg210->resuming_ports); 1612 1613 /* force reset to complete */ 1614 fotg210_writel(fotg210, 1615 temp & ~(PORT_RWC_BITS | PORT_RESET), 1616 status_reg); 1617 /* REVISIT: some hardware needs 550+ usec to clear 1618 * this bit; seems too long to spin routinely... 1619 */ 1620 retval = handshake(fotg210, status_reg, 1621 PORT_RESET, 0, 1000); 1622 if (retval != 0) { 1623 fotg210_err(fotg210, "port %d reset error %d\n", 1624 wIndex + 1, retval); 1625 goto error; 1626 } 1627 1628 /* see what we found out */ 1629 temp = check_reset_complete(fotg210, wIndex, status_reg, 1630 fotg210_readl(fotg210, status_reg)); 1631 1632 /* restart schedule */ 1633 fotg210->command |= CMD_RUN; 1634 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1635 } 1636 1637 if (!(temp & (PORT_RESUME|PORT_RESET))) { 1638 fotg210->reset_done[wIndex] = 0; 1639 clear_bit(wIndex, &fotg210->resuming_ports); 1640 } 1641 1642 /* transfer dedicated ports to the companion hc */ 1643 if ((temp & PORT_CONNECT) && 1644 test_bit(wIndex, &fotg210->companion_ports)) { 1645 temp &= ~PORT_RWC_BITS; 1646 fotg210_writel(fotg210, temp, status_reg); 1647 fotg210_dbg(fotg210, "port %d --> companion\n", 1648 wIndex + 1); 1649 temp = fotg210_readl(fotg210, status_reg); 1650 } 1651 1652 /* 1653 * Even if OWNER is set, there's no harm letting hub_wq 1654 * see the wPortStatus values (they should all be 0 except 1655 * for PORT_POWER anyway). 1656 */ 1657 1658 if (temp & PORT_CONNECT) { 1659 status |= USB_PORT_STAT_CONNECTION; 1660 status |= fotg210_port_speed(fotg210, temp); 1661 } 1662 if (temp & PORT_PE) 1663 status |= USB_PORT_STAT_ENABLE; 1664 1665 /* maybe the port was unsuspended without our knowledge */ 1666 if (temp & (PORT_SUSPEND|PORT_RESUME)) { 1667 status |= USB_PORT_STAT_SUSPEND; 1668 } else if (test_bit(wIndex, &fotg210->suspended_ports)) { 1669 clear_bit(wIndex, &fotg210->suspended_ports); 1670 clear_bit(wIndex, &fotg210->resuming_ports); 1671 fotg210->reset_done[wIndex] = 0; 1672 if (temp & PORT_PE) 1673 set_bit(wIndex, &fotg210->port_c_suspend); 1674 } 1675 1676 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); 1677 if (temp1 & OTGISR_OVC) 1678 status |= USB_PORT_STAT_OVERCURRENT; 1679 if (temp & PORT_RESET) 1680 status |= USB_PORT_STAT_RESET; 1681 if (test_bit(wIndex, &fotg210->port_c_suspend)) 1682 status |= USB_PORT_STAT_C_SUSPEND << 16; 1683 1684 if (status & ~0xffff) /* only if wPortChange is interesting */ 1685 dbg_port(fotg210, "GetStatus", wIndex + 1, temp); 1686 put_unaligned_le32(status, buf); 1687 break; 1688 case SetHubFeature: 1689 switch (wValue) { 1690 case C_HUB_LOCAL_POWER: 1691 case C_HUB_OVER_CURRENT: 1692 /* no hub-wide feature/status flags */ 1693 break; 1694 default: 1695 goto error; 1696 } 1697 break; 1698 case SetPortFeature: 1699 selector = wIndex >> 8; 1700 wIndex &= 0xff; 1701 1702 if (!wIndex || wIndex > ports) 1703 goto error; 1704 wIndex--; 1705 temp = fotg210_readl(fotg210, status_reg); 1706 temp &= ~PORT_RWC_BITS; 1707 switch (wValue) { 1708 case USB_PORT_FEAT_SUSPEND: 1709 if ((temp & PORT_PE) == 0 1710 || (temp & PORT_RESET) != 0) 1711 goto error; 1712 1713 /* After above check the port must be connected. 1714 * Set appropriate bit thus could put phy into low power 1715 * mode if we have hostpc feature 1716 */ 1717 fotg210_writel(fotg210, temp | PORT_SUSPEND, 1718 status_reg); 1719 set_bit(wIndex, &fotg210->suspended_ports); 1720 break; 1721 case USB_PORT_FEAT_RESET: 1722 if (temp & PORT_RESUME) 1723 goto error; 1724 /* line status bits may report this as low speed, 1725 * which can be fine if this root hub has a 1726 * transaction translator built in. 1727 */ 1728 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1); 1729 temp |= PORT_RESET; 1730 temp &= ~PORT_PE; 1731 1732 /* 1733 * caller must wait, then call GetPortStatus 1734 * usb 2.0 spec says 50 ms resets on root 1735 */ 1736 fotg210->reset_done[wIndex] = jiffies 1737 + msecs_to_jiffies(50); 1738 fotg210_writel(fotg210, temp, status_reg); 1739 break; 1740 1741 /* For downstream facing ports (these): one hub port is put 1742 * into test mode according to USB2 11.24.2.13, then the hub 1743 * must be reset (which for root hub now means rmmod+modprobe, 1744 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 1745 * about the EHCI-specific stuff. 1746 */ 1747 case USB_PORT_FEAT_TEST: 1748 if (!selector || selector > 5) 1749 goto error; 1750 spin_unlock_irqrestore(&fotg210->lock, flags); 1751 fotg210_quiesce(fotg210); 1752 spin_lock_irqsave(&fotg210->lock, flags); 1753 1754 /* Put all enabled ports into suspend */ 1755 temp = fotg210_readl(fotg210, status_reg) & 1756 ~PORT_RWC_BITS; 1757 if (temp & PORT_PE) 1758 fotg210_writel(fotg210, temp | PORT_SUSPEND, 1759 status_reg); 1760 1761 spin_unlock_irqrestore(&fotg210->lock, flags); 1762 fotg210_halt(fotg210); 1763 spin_lock_irqsave(&fotg210->lock, flags); 1764 1765 temp = fotg210_readl(fotg210, status_reg); 1766 temp |= selector << 16; 1767 fotg210_writel(fotg210, temp, status_reg); 1768 break; 1769 1770 default: 1771 goto error; 1772 } 1773 fotg210_readl(fotg210, &fotg210->regs->command); 1774 break; 1775 1776 default: 1777 error: 1778 /* "stall" on error */ 1779 retval = -EPIPE; 1780 } 1781 spin_unlock_irqrestore(&fotg210->lock, flags); 1782 return retval; 1783 } 1784 1785 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd, 1786 int portnum) 1787 { 1788 return; 1789 } 1790 1791 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd, 1792 int portnum) 1793 { 1794 return 0; 1795 } 1796 1797 /* There's basically three types of memory: 1798 * - data used only by the HCD ... kmalloc is fine 1799 * - async and periodic schedules, shared by HC and HCD ... these 1800 * need to use dma_pool or dma_alloc_coherent 1801 * - driver buffers, read/written by HC ... single shot DMA mapped 1802 * 1803 * There's also "register" data (e.g. PCI or SOC), which is memory mapped. 1804 * No memory seen by this driver is pageable. 1805 */ 1806 1807 /* Allocate the key transfer structures from the previously allocated pool */ 1808 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210, 1809 struct fotg210_qtd *qtd, dma_addr_t dma) 1810 { 1811 memset(qtd, 0, sizeof(*qtd)); 1812 qtd->qtd_dma = dma; 1813 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); 1814 qtd->hw_next = FOTG210_LIST_END(fotg210); 1815 qtd->hw_alt_next = FOTG210_LIST_END(fotg210); 1816 INIT_LIST_HEAD(&qtd->qtd_list); 1817 } 1818 1819 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210, 1820 gfp_t flags) 1821 { 1822 struct fotg210_qtd *qtd; 1823 dma_addr_t dma; 1824 1825 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma); 1826 if (qtd != NULL) 1827 fotg210_qtd_init(fotg210, qtd, dma); 1828 1829 return qtd; 1830 } 1831 1832 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210, 1833 struct fotg210_qtd *qtd) 1834 { 1835 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma); 1836 } 1837 1838 1839 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 1840 { 1841 /* clean qtds first, and know this is not linked */ 1842 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 1843 fotg210_dbg(fotg210, "unused qh not empty!\n"); 1844 BUG(); 1845 } 1846 if (qh->dummy) 1847 fotg210_qtd_free(fotg210, qh->dummy); 1848 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); 1849 kfree(qh); 1850 } 1851 1852 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210, 1853 gfp_t flags) 1854 { 1855 struct fotg210_qh *qh; 1856 dma_addr_t dma; 1857 1858 qh = kzalloc(sizeof(*qh), GFP_ATOMIC); 1859 if (!qh) 1860 goto done; 1861 qh->hw = (struct fotg210_qh_hw *) 1862 dma_pool_zalloc(fotg210->qh_pool, flags, &dma); 1863 if (!qh->hw) 1864 goto fail; 1865 qh->qh_dma = dma; 1866 INIT_LIST_HEAD(&qh->qtd_list); 1867 1868 /* dummy td enables safe urb queuing */ 1869 qh->dummy = fotg210_qtd_alloc(fotg210, flags); 1870 if (qh->dummy == NULL) { 1871 fotg210_dbg(fotg210, "no dummy td\n"); 1872 goto fail1; 1873 } 1874 done: 1875 return qh; 1876 fail1: 1877 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); 1878 fail: 1879 kfree(qh); 1880 return NULL; 1881 } 1882 1883 /* The queue heads and transfer descriptors are managed from pools tied 1884 * to each of the "per device" structures. 1885 * This is the initialisation and cleanup code. 1886 */ 1887 1888 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210) 1889 { 1890 if (fotg210->async) 1891 qh_destroy(fotg210, fotg210->async); 1892 fotg210->async = NULL; 1893 1894 if (fotg210->dummy) 1895 qh_destroy(fotg210, fotg210->dummy); 1896 fotg210->dummy = NULL; 1897 1898 /* DMA consistent memory and pools */ 1899 dma_pool_destroy(fotg210->qtd_pool); 1900 fotg210->qtd_pool = NULL; 1901 1902 dma_pool_destroy(fotg210->qh_pool); 1903 fotg210->qh_pool = NULL; 1904 1905 dma_pool_destroy(fotg210->itd_pool); 1906 fotg210->itd_pool = NULL; 1907 1908 if (fotg210->periodic) 1909 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller, 1910 fotg210->periodic_size * sizeof(u32), 1911 fotg210->periodic, fotg210->periodic_dma); 1912 fotg210->periodic = NULL; 1913 1914 /* shadow periodic table */ 1915 kfree(fotg210->pshadow); 1916 fotg210->pshadow = NULL; 1917 } 1918 1919 /* remember to add cleanup code (above) if you add anything here */ 1920 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags) 1921 { 1922 int i; 1923 1924 /* QTDs for control/bulk/intr transfers */ 1925 fotg210->qtd_pool = dma_pool_create("fotg210_qtd", 1926 fotg210_to_hcd(fotg210)->self.controller, 1927 sizeof(struct fotg210_qtd), 1928 32 /* byte alignment (for hw parts) */, 1929 4096 /* can't cross 4K */); 1930 if (!fotg210->qtd_pool) 1931 goto fail; 1932 1933 /* QHs for control/bulk/intr transfers */ 1934 fotg210->qh_pool = dma_pool_create("fotg210_qh", 1935 fotg210_to_hcd(fotg210)->self.controller, 1936 sizeof(struct fotg210_qh_hw), 1937 32 /* byte alignment (for hw parts) */, 1938 4096 /* can't cross 4K */); 1939 if (!fotg210->qh_pool) 1940 goto fail; 1941 1942 fotg210->async = fotg210_qh_alloc(fotg210, flags); 1943 if (!fotg210->async) 1944 goto fail; 1945 1946 /* ITD for high speed ISO transfers */ 1947 fotg210->itd_pool = dma_pool_create("fotg210_itd", 1948 fotg210_to_hcd(fotg210)->self.controller, 1949 sizeof(struct fotg210_itd), 1950 64 /* byte alignment (for hw parts) */, 1951 4096 /* can't cross 4K */); 1952 if (!fotg210->itd_pool) 1953 goto fail; 1954 1955 /* Hardware periodic table */ 1956 fotg210->periodic = 1957 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller, 1958 fotg210->periodic_size * sizeof(__le32), 1959 &fotg210->periodic_dma, 0); 1960 if (fotg210->periodic == NULL) 1961 goto fail; 1962 1963 for (i = 0; i < fotg210->periodic_size; i++) 1964 fotg210->periodic[i] = FOTG210_LIST_END(fotg210); 1965 1966 /* software shadow of hardware table */ 1967 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *), 1968 flags); 1969 if (fotg210->pshadow != NULL) 1970 return 0; 1971 1972 fail: 1973 fotg210_dbg(fotg210, "couldn't init memory\n"); 1974 fotg210_mem_cleanup(fotg210); 1975 return -ENOMEM; 1976 } 1977 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation. 1978 * 1979 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" 1980 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned 1981 * buffers needed for the larger number). We use one QH per endpoint, queue 1982 * multiple urbs (all three types) per endpoint. URBs may need several qtds. 1983 * 1984 * ISO traffic uses "ISO TD" (itd) records, and (along with 1985 * interrupts) needs careful scheduling. Performance improvements can be 1986 * an ongoing challenge. That's in "ehci-sched.c". 1987 * 1988 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, 1989 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using 1990 * (b) special fields in qh entries or (c) split iso entries. TTs will 1991 * buffer low/full speed data so the host collects it at high speed. 1992 */ 1993 1994 /* fill a qtd, returning how much of the buffer we were able to queue up */ 1995 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, 1996 dma_addr_t buf, size_t len, int token, int maxpacket) 1997 { 1998 int i, count; 1999 u64 addr = buf; 2000 2001 /* one buffer entry per 4K ... first might be short or unaligned */ 2002 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr); 2003 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32)); 2004 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 2005 if (likely(len < count)) /* ... iff needed */ 2006 count = len; 2007 else { 2008 buf += 0x1000; 2009 buf &= ~0x0fff; 2010 2011 /* per-qtd limit: from 16K to 20K (best alignment) */ 2012 for (i = 1; count < len && i < 5; i++) { 2013 addr = buf; 2014 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr); 2015 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210, 2016 (u32)(addr >> 32)); 2017 buf += 0x1000; 2018 if ((count + 0x1000) < len) 2019 count += 0x1000; 2020 else 2021 count = len; 2022 } 2023 2024 /* short packets may only terminate transfers */ 2025 if (count != len) 2026 count -= (count % maxpacket); 2027 } 2028 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token); 2029 qtd->length = count; 2030 2031 return count; 2032 } 2033 2034 static inline void qh_update(struct fotg210_hcd *fotg210, 2035 struct fotg210_qh *qh, struct fotg210_qtd *qtd) 2036 { 2037 struct fotg210_qh_hw *hw = qh->hw; 2038 2039 /* writes to an active overlay are unsafe */ 2040 BUG_ON(qh->qh_state != QH_STATE_IDLE); 2041 2042 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2043 hw->hw_alt_next = FOTG210_LIST_END(fotg210); 2044 2045 /* Except for control endpoints, we make hardware maintain data 2046 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 2047 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 2048 * ever clear it. 2049 */ 2050 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) { 2051 unsigned is_out, epnum; 2052 2053 is_out = qh->is_out; 2054 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f; 2055 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 2056 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE); 2057 usb_settoggle(qh->dev, epnum, is_out, 1); 2058 } 2059 } 2060 2061 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING); 2062 } 2063 2064 /* if it weren't for a common silicon quirk (writing the dummy into the qh 2065 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 2066 * recovery (including urb dequeue) would need software changes to a QH... 2067 */ 2068 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 2069 { 2070 struct fotg210_qtd *qtd; 2071 2072 if (list_empty(&qh->qtd_list)) 2073 qtd = qh->dummy; 2074 else { 2075 qtd = list_entry(qh->qtd_list.next, 2076 struct fotg210_qtd, qtd_list); 2077 /* 2078 * first qtd may already be partially processed. 2079 * If we come here during unlink, the QH overlay region 2080 * might have reference to the just unlinked qtd. The 2081 * qtd is updated in qh_completions(). Update the QH 2082 * overlay here. 2083 */ 2084 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) { 2085 qh->hw->hw_qtd_next = qtd->hw_next; 2086 qtd = NULL; 2087 } 2088 } 2089 2090 if (qtd) 2091 qh_update(fotg210, qh, qtd); 2092 } 2093 2094 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 2095 2096 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd, 2097 struct usb_host_endpoint *ep) 2098 { 2099 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 2100 struct fotg210_qh *qh = ep->hcpriv; 2101 unsigned long flags; 2102 2103 spin_lock_irqsave(&fotg210->lock, flags); 2104 qh->clearing_tt = 0; 2105 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) 2106 && fotg210->rh_state == FOTG210_RH_RUNNING) 2107 qh_link_async(fotg210, qh); 2108 spin_unlock_irqrestore(&fotg210->lock, flags); 2109 } 2110 2111 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210, 2112 struct fotg210_qh *qh, struct urb *urb, u32 token) 2113 { 2114 2115 /* If an async split transaction gets an error or is unlinked, 2116 * the TT buffer may be left in an indeterminate state. We 2117 * have to clear the TT buffer. 2118 * 2119 * Note: this routine is never called for Isochronous transfers. 2120 */ 2121 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { 2122 struct usb_device *tt = urb->dev->tt->hub; 2123 2124 dev_dbg(&tt->dev, 2125 "clear tt buffer port %d, a%d ep%d t%08x\n", 2126 urb->dev->ttport, urb->dev->devnum, 2127 usb_pipeendpoint(urb->pipe), token); 2128 2129 if (urb->dev->tt->hub != 2130 fotg210_to_hcd(fotg210)->self.root_hub) { 2131 if (usb_hub_clear_tt_buffer(urb) == 0) 2132 qh->clearing_tt = 1; 2133 } 2134 } 2135 } 2136 2137 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb, 2138 size_t length, u32 token) 2139 { 2140 int status = -EINPROGRESS; 2141 2142 /* count IN/OUT bytes, not SETUP (even short packets) */ 2143 if (likely(QTD_PID(token) != 2)) 2144 urb->actual_length += length - QTD_LENGTH(token); 2145 2146 /* don't modify error codes */ 2147 if (unlikely(urb->unlinked)) 2148 return status; 2149 2150 /* force cleanup after short read; not always an error */ 2151 if (unlikely(IS_SHORT_READ(token))) 2152 status = -EREMOTEIO; 2153 2154 /* serious "can't proceed" faults reported by the hardware */ 2155 if (token & QTD_STS_HALT) { 2156 if (token & QTD_STS_BABBLE) { 2157 /* FIXME "must" disable babbling device's port too */ 2158 status = -EOVERFLOW; 2159 /* CERR nonzero + halt --> stall */ 2160 } else if (QTD_CERR(token)) { 2161 status = -EPIPE; 2162 2163 /* In theory, more than one of the following bits can be set 2164 * since they are sticky and the transaction is retried. 2165 * Which to test first is rather arbitrary. 2166 */ 2167 } else if (token & QTD_STS_MMF) { 2168 /* fs/ls interrupt xfer missed the complete-split */ 2169 status = -EPROTO; 2170 } else if (token & QTD_STS_DBE) { 2171 status = (QTD_PID(token) == 1) /* IN ? */ 2172 ? -ENOSR /* hc couldn't read data */ 2173 : -ECOMM; /* hc couldn't write data */ 2174 } else if (token & QTD_STS_XACT) { 2175 /* timeout, bad CRC, wrong PID, etc */ 2176 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n", 2177 urb->dev->devpath, 2178 usb_pipeendpoint(urb->pipe), 2179 usb_pipein(urb->pipe) ? "in" : "out"); 2180 status = -EPROTO; 2181 } else { /* unknown */ 2182 status = -EPROTO; 2183 } 2184 2185 fotg210_dbg(fotg210, 2186 "dev%d ep%d%s qtd token %08x --> status %d\n", 2187 usb_pipedevice(urb->pipe), 2188 usb_pipeendpoint(urb->pipe), 2189 usb_pipein(urb->pipe) ? "in" : "out", 2190 token, status); 2191 } 2192 2193 return status; 2194 } 2195 2196 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, 2197 int status) 2198 __releases(fotg210->lock) 2199 __acquires(fotg210->lock) 2200 { 2201 if (likely(urb->hcpriv != NULL)) { 2202 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv; 2203 2204 /* S-mask in a QH means it's an interrupt urb */ 2205 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) { 2206 2207 /* ... update hc-wide periodic stats (for usbfs) */ 2208 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--; 2209 } 2210 } 2211 2212 if (unlikely(urb->unlinked)) { 2213 INCR(fotg210->stats.unlink); 2214 } else { 2215 /* report non-error and short read status as zero */ 2216 if (status == -EINPROGRESS || status == -EREMOTEIO) 2217 status = 0; 2218 INCR(fotg210->stats.complete); 2219 } 2220 2221 #ifdef FOTG210_URB_TRACE 2222 fotg210_dbg(fotg210, 2223 "%s %s urb %p ep%d%s status %d len %d/%d\n", 2224 __func__, urb->dev->devpath, urb, 2225 usb_pipeendpoint(urb->pipe), 2226 usb_pipein(urb->pipe) ? "in" : "out", 2227 status, 2228 urb->actual_length, urb->transfer_buffer_length); 2229 #endif 2230 2231 /* complete() can reenter this HCD */ 2232 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 2233 spin_unlock(&fotg210->lock); 2234 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status); 2235 spin_lock(&fotg210->lock); 2236 } 2237 2238 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 2239 2240 /* Process and free completed qtds for a qh, returning URBs to drivers. 2241 * Chases up to qh->hw_current. Returns number of completions called, 2242 * indicating how much "real" work we did. 2243 */ 2244 static unsigned qh_completions(struct fotg210_hcd *fotg210, 2245 struct fotg210_qh *qh) 2246 { 2247 struct fotg210_qtd *last, *end = qh->dummy; 2248 struct fotg210_qtd *qtd, *tmp; 2249 int last_status; 2250 int stopped; 2251 unsigned count = 0; 2252 u8 state; 2253 struct fotg210_qh_hw *hw = qh->hw; 2254 2255 if (unlikely(list_empty(&qh->qtd_list))) 2256 return count; 2257 2258 /* completions (or tasks on other cpus) must never clobber HALT 2259 * till we've gone through and cleaned everything up, even when 2260 * they add urbs to this qh's queue or mark them for unlinking. 2261 * 2262 * NOTE: unlinking expects to be done in queue order. 2263 * 2264 * It's a bug for qh->qh_state to be anything other than 2265 * QH_STATE_IDLE, unless our caller is scan_async() or 2266 * scan_intr(). 2267 */ 2268 state = qh->qh_state; 2269 qh->qh_state = QH_STATE_COMPLETING; 2270 stopped = (state == QH_STATE_IDLE); 2271 2272 rescan: 2273 last = NULL; 2274 last_status = -EINPROGRESS; 2275 qh->needs_rescan = 0; 2276 2277 /* remove de-activated QTDs from front of queue. 2278 * after faults (including short reads), cleanup this urb 2279 * then let the queue advance. 2280 * if queue is stopped, handles unlinks. 2281 */ 2282 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { 2283 struct urb *urb; 2284 u32 token = 0; 2285 2286 urb = qtd->urb; 2287 2288 /* clean up any state from previous QTD ...*/ 2289 if (last) { 2290 if (likely(last->urb != urb)) { 2291 fotg210_urb_done(fotg210, last->urb, 2292 last_status); 2293 count++; 2294 last_status = -EINPROGRESS; 2295 } 2296 fotg210_qtd_free(fotg210, last); 2297 last = NULL; 2298 } 2299 2300 /* ignore urbs submitted during completions we reported */ 2301 if (qtd == end) 2302 break; 2303 2304 /* hardware copies qtd out of qh overlay */ 2305 rmb(); 2306 token = hc32_to_cpu(fotg210, qtd->hw_token); 2307 2308 /* always clean up qtds the hc de-activated */ 2309 retry_xacterr: 2310 if ((token & QTD_STS_ACTIVE) == 0) { 2311 2312 /* Report Data Buffer Error: non-fatal but useful */ 2313 if (token & QTD_STS_DBE) 2314 fotg210_dbg(fotg210, 2315 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", 2316 urb, usb_endpoint_num(&urb->ep->desc), 2317 usb_endpoint_dir_in(&urb->ep->desc) 2318 ? "in" : "out", 2319 urb->transfer_buffer_length, qtd, qh); 2320 2321 /* on STALL, error, and short reads this urb must 2322 * complete and all its qtds must be recycled. 2323 */ 2324 if ((token & QTD_STS_HALT) != 0) { 2325 2326 /* retry transaction errors until we 2327 * reach the software xacterr limit 2328 */ 2329 if ((token & QTD_STS_XACT) && 2330 QTD_CERR(token) == 0 && 2331 ++qh->xacterrs < QH_XACTERR_MAX && 2332 !urb->unlinked) { 2333 fotg210_dbg(fotg210, 2334 "detected XactErr len %zu/%zu retry %d\n", 2335 qtd->length - QTD_LENGTH(token), 2336 qtd->length, 2337 qh->xacterrs); 2338 2339 /* reset the token in the qtd and the 2340 * qh overlay (which still contains 2341 * the qtd) so that we pick up from 2342 * where we left off 2343 */ 2344 token &= ~QTD_STS_HALT; 2345 token |= QTD_STS_ACTIVE | 2346 (FOTG210_TUNE_CERR << 10); 2347 qtd->hw_token = cpu_to_hc32(fotg210, 2348 token); 2349 wmb(); 2350 hw->hw_token = cpu_to_hc32(fotg210, 2351 token); 2352 goto retry_xacterr; 2353 } 2354 stopped = 1; 2355 2356 /* magic dummy for some short reads; qh won't advance. 2357 * that silicon quirk can kick in with this dummy too. 2358 * 2359 * other short reads won't stop the queue, including 2360 * control transfers (status stage handles that) or 2361 * most other single-qtd reads ... the queue stops if 2362 * URB_SHORT_NOT_OK was set so the driver submitting 2363 * the urbs could clean it up. 2364 */ 2365 } else if (IS_SHORT_READ(token) && 2366 !(qtd->hw_alt_next & 2367 FOTG210_LIST_END(fotg210))) { 2368 stopped = 1; 2369 } 2370 2371 /* stop scanning when we reach qtds the hc is using */ 2372 } else if (likely(!stopped 2373 && fotg210->rh_state >= FOTG210_RH_RUNNING)) { 2374 break; 2375 2376 /* scan the whole queue for unlinks whenever it stops */ 2377 } else { 2378 stopped = 1; 2379 2380 /* cancel everything if we halt, suspend, etc */ 2381 if (fotg210->rh_state < FOTG210_RH_RUNNING) 2382 last_status = -ESHUTDOWN; 2383 2384 /* this qtd is active; skip it unless a previous qtd 2385 * for its urb faulted, or its urb was canceled. 2386 */ 2387 else if (last_status == -EINPROGRESS && !urb->unlinked) 2388 continue; 2389 2390 /* qh unlinked; token in overlay may be most current */ 2391 if (state == QH_STATE_IDLE && 2392 cpu_to_hc32(fotg210, qtd->qtd_dma) 2393 == hw->hw_current) { 2394 token = hc32_to_cpu(fotg210, hw->hw_token); 2395 2396 /* An unlink may leave an incomplete 2397 * async transaction in the TT buffer. 2398 * We have to clear it. 2399 */ 2400 fotg210_clear_tt_buffer(fotg210, qh, urb, 2401 token); 2402 } 2403 } 2404 2405 /* unless we already know the urb's status, collect qtd status 2406 * and update count of bytes transferred. in common short read 2407 * cases with only one data qtd (including control transfers), 2408 * queue processing won't halt. but with two or more qtds (for 2409 * example, with a 32 KB transfer), when the first qtd gets a 2410 * short read the second must be removed by hand. 2411 */ 2412 if (last_status == -EINPROGRESS) { 2413 last_status = qtd_copy_status(fotg210, urb, 2414 qtd->length, token); 2415 if (last_status == -EREMOTEIO && 2416 (qtd->hw_alt_next & 2417 FOTG210_LIST_END(fotg210))) 2418 last_status = -EINPROGRESS; 2419 2420 /* As part of low/full-speed endpoint-halt processing 2421 * we must clear the TT buffer (11.17.5). 2422 */ 2423 if (unlikely(last_status != -EINPROGRESS && 2424 last_status != -EREMOTEIO)) { 2425 /* The TT's in some hubs malfunction when they 2426 * receive this request following a STALL (they 2427 * stop sending isochronous packets). Since a 2428 * STALL can't leave the TT buffer in a busy 2429 * state (if you believe Figures 11-48 - 11-51 2430 * in the USB 2.0 spec), we won't clear the TT 2431 * buffer in this case. Strictly speaking this 2432 * is a violation of the spec. 2433 */ 2434 if (last_status != -EPIPE) 2435 fotg210_clear_tt_buffer(fotg210, qh, 2436 urb, token); 2437 } 2438 } 2439 2440 /* if we're removing something not at the queue head, 2441 * patch the hardware queue pointer. 2442 */ 2443 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 2444 last = list_entry(qtd->qtd_list.prev, 2445 struct fotg210_qtd, qtd_list); 2446 last->hw_next = qtd->hw_next; 2447 } 2448 2449 /* remove qtd; it's recycled after possible urb completion */ 2450 list_del(&qtd->qtd_list); 2451 last = qtd; 2452 2453 /* reinit the xacterr counter for the next qtd */ 2454 qh->xacterrs = 0; 2455 } 2456 2457 /* last urb's completion might still need calling */ 2458 if (likely(last != NULL)) { 2459 fotg210_urb_done(fotg210, last->urb, last_status); 2460 count++; 2461 fotg210_qtd_free(fotg210, last); 2462 } 2463 2464 /* Do we need to rescan for URBs dequeued during a giveback? */ 2465 if (unlikely(qh->needs_rescan)) { 2466 /* If the QH is already unlinked, do the rescan now. */ 2467 if (state == QH_STATE_IDLE) 2468 goto rescan; 2469 2470 /* Otherwise we have to wait until the QH is fully unlinked. 2471 * Our caller will start an unlink if qh->needs_rescan is 2472 * set. But if an unlink has already started, nothing needs 2473 * to be done. 2474 */ 2475 if (state != QH_STATE_LINKED) 2476 qh->needs_rescan = 0; 2477 } 2478 2479 /* restore original state; caller must unlink or relink */ 2480 qh->qh_state = state; 2481 2482 /* be sure the hardware's done with the qh before refreshing 2483 * it after fault cleanup, or recovering from silicon wrongly 2484 * overlaying the dummy qtd (which reduces DMA chatter). 2485 */ 2486 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) { 2487 switch (state) { 2488 case QH_STATE_IDLE: 2489 qh_refresh(fotg210, qh); 2490 break; 2491 case QH_STATE_LINKED: 2492 /* We won't refresh a QH that's linked (after the HC 2493 * stopped the queue). That avoids a race: 2494 * - HC reads first part of QH; 2495 * - CPU updates that first part and the token; 2496 * - HC reads rest of that QH, including token 2497 * Result: HC gets an inconsistent image, and then 2498 * DMAs to/from the wrong memory (corrupting it). 2499 * 2500 * That should be rare for interrupt transfers, 2501 * except maybe high bandwidth ... 2502 */ 2503 2504 /* Tell the caller to start an unlink */ 2505 qh->needs_rescan = 1; 2506 break; 2507 /* otherwise, unlink already started */ 2508 } 2509 } 2510 2511 return count; 2512 } 2513 2514 /* reverse of qh_urb_transaction: free a list of TDs. 2515 * used for cleanup after errors, before HC sees an URB's TDs. 2516 */ 2517 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb, 2518 struct list_head *head) 2519 { 2520 struct fotg210_qtd *qtd, *temp; 2521 2522 list_for_each_entry_safe(qtd, temp, head, qtd_list) { 2523 list_del(&qtd->qtd_list); 2524 fotg210_qtd_free(fotg210, qtd); 2525 } 2526 } 2527 2528 /* create a list of filled qtds for this URB; won't link into qh. 2529 */ 2530 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210, 2531 struct urb *urb, struct list_head *head, gfp_t flags) 2532 { 2533 struct fotg210_qtd *qtd, *qtd_prev; 2534 dma_addr_t buf; 2535 int len, this_sg_len, maxpacket; 2536 int is_input; 2537 u32 token; 2538 int i; 2539 struct scatterlist *sg; 2540 2541 /* 2542 * URBs map to sequences of QTDs: one logical transaction 2543 */ 2544 qtd = fotg210_qtd_alloc(fotg210, flags); 2545 if (unlikely(!qtd)) 2546 return NULL; 2547 list_add_tail(&qtd->qtd_list, head); 2548 qtd->urb = urb; 2549 2550 token = QTD_STS_ACTIVE; 2551 token |= (FOTG210_TUNE_CERR << 10); 2552 /* for split transactions, SplitXState initialized to zero */ 2553 2554 len = urb->transfer_buffer_length; 2555 is_input = usb_pipein(urb->pipe); 2556 if (usb_pipecontrol(urb->pipe)) { 2557 /* SETUP pid */ 2558 qtd_fill(fotg210, qtd, urb->setup_dma, 2559 sizeof(struct usb_ctrlrequest), 2560 token | (2 /* "setup" */ << 8), 8); 2561 2562 /* ... and always at least one more pid */ 2563 token ^= QTD_TOGGLE; 2564 qtd_prev = qtd; 2565 qtd = fotg210_qtd_alloc(fotg210, flags); 2566 if (unlikely(!qtd)) 2567 goto cleanup; 2568 qtd->urb = urb; 2569 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2570 list_add_tail(&qtd->qtd_list, head); 2571 2572 /* for zero length DATA stages, STATUS is always IN */ 2573 if (len == 0) 2574 token |= (1 /* "in" */ << 8); 2575 } 2576 2577 /* 2578 * data transfer stage: buffer setup 2579 */ 2580 i = urb->num_mapped_sgs; 2581 if (len > 0 && i > 0) { 2582 sg = urb->sg; 2583 buf = sg_dma_address(sg); 2584 2585 /* urb->transfer_buffer_length may be smaller than the 2586 * size of the scatterlist (or vice versa) 2587 */ 2588 this_sg_len = min_t(int, sg_dma_len(sg), len); 2589 } else { 2590 sg = NULL; 2591 buf = urb->transfer_dma; 2592 this_sg_len = len; 2593 } 2594 2595 if (is_input) 2596 token |= (1 /* "in" */ << 8); 2597 /* else it's already initted to "out" pid (0 << 8) */ 2598 2599 maxpacket = usb_maxpacket(urb->dev, urb->pipe); 2600 2601 /* 2602 * buffer gets wrapped in one or more qtds; 2603 * last one may be "short" (including zero len) 2604 * and may serve as a control status ack 2605 */ 2606 for (;;) { 2607 int this_qtd_len; 2608 2609 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token, 2610 maxpacket); 2611 this_sg_len -= this_qtd_len; 2612 len -= this_qtd_len; 2613 buf += this_qtd_len; 2614 2615 /* 2616 * short reads advance to a "magic" dummy instead of the next 2617 * qtd ... that forces the queue to stop, for manual cleanup. 2618 * (this will usually be overridden later.) 2619 */ 2620 if (is_input) 2621 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next; 2622 2623 /* qh makes control packets use qtd toggle; maybe switch it */ 2624 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 2625 token ^= QTD_TOGGLE; 2626 2627 if (likely(this_sg_len <= 0)) { 2628 if (--i <= 0 || len <= 0) 2629 break; 2630 sg = sg_next(sg); 2631 buf = sg_dma_address(sg); 2632 this_sg_len = min_t(int, sg_dma_len(sg), len); 2633 } 2634 2635 qtd_prev = qtd; 2636 qtd = fotg210_qtd_alloc(fotg210, flags); 2637 if (unlikely(!qtd)) 2638 goto cleanup; 2639 qtd->urb = urb; 2640 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2641 list_add_tail(&qtd->qtd_list, head); 2642 } 2643 2644 /* 2645 * unless the caller requires manual cleanup after short reads, 2646 * have the alt_next mechanism keep the queue running after the 2647 * last data qtd (the only one, for control and most other cases). 2648 */ 2649 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 || 2650 usb_pipecontrol(urb->pipe))) 2651 qtd->hw_alt_next = FOTG210_LIST_END(fotg210); 2652 2653 /* 2654 * control requests may need a terminating data "status" ack; 2655 * other OUT ones may need a terminating short packet 2656 * (zero length). 2657 */ 2658 if (likely(urb->transfer_buffer_length != 0)) { 2659 int one_more = 0; 2660 2661 if (usb_pipecontrol(urb->pipe)) { 2662 one_more = 1; 2663 token ^= 0x0100; /* "in" <--> "out" */ 2664 token |= QTD_TOGGLE; /* force DATA1 */ 2665 } else if (usb_pipeout(urb->pipe) 2666 && (urb->transfer_flags & URB_ZERO_PACKET) 2667 && !(urb->transfer_buffer_length % maxpacket)) { 2668 one_more = 1; 2669 } 2670 if (one_more) { 2671 qtd_prev = qtd; 2672 qtd = fotg210_qtd_alloc(fotg210, flags); 2673 if (unlikely(!qtd)) 2674 goto cleanup; 2675 qtd->urb = urb; 2676 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2677 list_add_tail(&qtd->qtd_list, head); 2678 2679 /* never any data in such packets */ 2680 qtd_fill(fotg210, qtd, 0, 0, token, 0); 2681 } 2682 } 2683 2684 /* by default, enable interrupt on urb completion */ 2685 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) 2686 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC); 2687 return head; 2688 2689 cleanup: 2690 qtd_list_free(fotg210, urb, head); 2691 return NULL; 2692 } 2693 2694 /* Would be best to create all qh's from config descriptors, 2695 * when each interface/altsetting is established. Unlink 2696 * any previous qh and cancel its urbs first; endpoints are 2697 * implicitly reset then (data toggle too). 2698 * That'd mean updating how usbcore talks to HCDs. (2.7?) 2699 */ 2700 2701 2702 /* Each QH holds a qtd list; a QH is used for everything except iso. 2703 * 2704 * For interrupt urbs, the scheduler must set the microframe scheduling 2705 * mask(s) each time the QH gets scheduled. For highspeed, that's 2706 * just one microframe in the s-mask. For split interrupt transactions 2707 * there are additional complications: c-mask, maybe FSTNs. 2708 */ 2709 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb, 2710 gfp_t flags) 2711 { 2712 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags); 2713 struct usb_host_endpoint *ep; 2714 u32 info1 = 0, info2 = 0; 2715 int is_input, type; 2716 int maxp = 0; 2717 int mult; 2718 struct usb_tt *tt = urb->dev->tt; 2719 struct fotg210_qh_hw *hw; 2720 2721 if (!qh) 2722 return qh; 2723 2724 /* 2725 * init endpoint/device data for this QH 2726 */ 2727 info1 |= usb_pipeendpoint(urb->pipe) << 8; 2728 info1 |= usb_pipedevice(urb->pipe) << 0; 2729 2730 is_input = usb_pipein(urb->pipe); 2731 type = usb_pipetype(urb->pipe); 2732 ep = usb_pipe_endpoint(urb->dev, urb->pipe); 2733 maxp = usb_endpoint_maxp(&ep->desc); 2734 mult = usb_endpoint_maxp_mult(&ep->desc); 2735 2736 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth 2737 * acts like up to 3KB, but is built from smaller packets. 2738 */ 2739 if (maxp > 1024) { 2740 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp); 2741 goto done; 2742 } 2743 2744 /* Compute interrupt scheduling parameters just once, and save. 2745 * - allowing for high bandwidth, how many nsec/uframe are used? 2746 * - split transactions need a second CSPLIT uframe; same question 2747 * - splits also need a schedule gap (for full/low speed I/O) 2748 * - qh has a polling interval 2749 * 2750 * For control/bulk requests, the HC or TT handles these. 2751 */ 2752 if (type == PIPE_INTERRUPT) { 2753 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 2754 is_input, 0, mult * maxp)); 2755 qh->start = NO_FRAME; 2756 2757 if (urb->dev->speed == USB_SPEED_HIGH) { 2758 qh->c_usecs = 0; 2759 qh->gap_uf = 0; 2760 2761 qh->period = urb->interval >> 3; 2762 if (qh->period == 0 && urb->interval != 1) { 2763 /* NOTE interval 2 or 4 uframes could work. 2764 * But interval 1 scheduling is simpler, and 2765 * includes high bandwidth. 2766 */ 2767 urb->interval = 1; 2768 } else if (qh->period > fotg210->periodic_size) { 2769 qh->period = fotg210->periodic_size; 2770 urb->interval = qh->period << 3; 2771 } 2772 } else { 2773 int think_time; 2774 2775 /* gap is f(FS/LS transfer times) */ 2776 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 2777 is_input, 0, maxp) / (125 * 1000); 2778 2779 /* FIXME this just approximates SPLIT/CSPLIT times */ 2780 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 2781 qh->c_usecs = qh->usecs + HS_USECS(0); 2782 qh->usecs = HS_USECS(1); 2783 } else { /* SPLIT+DATA, gap, CSPLIT */ 2784 qh->usecs += HS_USECS(1); 2785 qh->c_usecs = HS_USECS(0); 2786 } 2787 2788 think_time = tt ? tt->think_time : 0; 2789 qh->tt_usecs = NS_TO_US(think_time + 2790 usb_calc_bus_time(urb->dev->speed, 2791 is_input, 0, maxp)); 2792 qh->period = urb->interval; 2793 if (qh->period > fotg210->periodic_size) { 2794 qh->period = fotg210->periodic_size; 2795 urb->interval = qh->period; 2796 } 2797 } 2798 } 2799 2800 /* support for tt scheduling, and access to toggles */ 2801 qh->dev = urb->dev; 2802 2803 /* using TT? */ 2804 switch (urb->dev->speed) { 2805 case USB_SPEED_LOW: 2806 info1 |= QH_LOW_SPEED; 2807 fallthrough; 2808 2809 case USB_SPEED_FULL: 2810 /* EPS 0 means "full" */ 2811 if (type != PIPE_INTERRUPT) 2812 info1 |= (FOTG210_TUNE_RL_TT << 28); 2813 if (type == PIPE_CONTROL) { 2814 info1 |= QH_CONTROL_EP; /* for TT */ 2815 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 2816 } 2817 info1 |= maxp << 16; 2818 2819 info2 |= (FOTG210_TUNE_MULT_TT << 30); 2820 2821 /* Some Freescale processors have an erratum in which the 2822 * port number in the queue head was 0..N-1 instead of 1..N. 2823 */ 2824 if (fotg210_has_fsl_portno_bug(fotg210)) 2825 info2 |= (urb->dev->ttport-1) << 23; 2826 else 2827 info2 |= urb->dev->ttport << 23; 2828 2829 /* set the address of the TT; for TDI's integrated 2830 * root hub tt, leave it zeroed. 2831 */ 2832 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub) 2833 info2 |= tt->hub->devnum << 16; 2834 2835 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 2836 2837 break; 2838 2839 case USB_SPEED_HIGH: /* no TT involved */ 2840 info1 |= QH_HIGH_SPEED; 2841 if (type == PIPE_CONTROL) { 2842 info1 |= (FOTG210_TUNE_RL_HS << 28); 2843 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 2844 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 2845 info2 |= (FOTG210_TUNE_MULT_HS << 30); 2846 } else if (type == PIPE_BULK) { 2847 info1 |= (FOTG210_TUNE_RL_HS << 28); 2848 /* The USB spec says that high speed bulk endpoints 2849 * always use 512 byte maxpacket. But some device 2850 * vendors decided to ignore that, and MSFT is happy 2851 * to help them do so. So now people expect to use 2852 * such nonconformant devices with Linux too; sigh. 2853 */ 2854 info1 |= maxp << 16; 2855 info2 |= (FOTG210_TUNE_MULT_HS << 30); 2856 } else { /* PIPE_INTERRUPT */ 2857 info1 |= maxp << 16; 2858 info2 |= mult << 30; 2859 } 2860 break; 2861 default: 2862 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev, 2863 urb->dev->speed); 2864 done: 2865 qh_destroy(fotg210, qh); 2866 return NULL; 2867 } 2868 2869 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 2870 2871 /* init as live, toggle clear, advance to dummy */ 2872 qh->qh_state = QH_STATE_IDLE; 2873 hw = qh->hw; 2874 hw->hw_info1 = cpu_to_hc32(fotg210, info1); 2875 hw->hw_info2 = cpu_to_hc32(fotg210, info2); 2876 qh->is_out = !is_input; 2877 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 2878 qh_refresh(fotg210, qh); 2879 return qh; 2880 } 2881 2882 static void enable_async(struct fotg210_hcd *fotg210) 2883 { 2884 if (fotg210->async_count++) 2885 return; 2886 2887 /* Stop waiting to turn off the async schedule */ 2888 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC); 2889 2890 /* Don't start the schedule until ASS is 0 */ 2891 fotg210_poll_ASS(fotg210); 2892 turn_on_io_watchdog(fotg210); 2893 } 2894 2895 static void disable_async(struct fotg210_hcd *fotg210) 2896 { 2897 if (--fotg210->async_count) 2898 return; 2899 2900 /* The async schedule and async_unlink list are supposed to be empty */ 2901 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink); 2902 2903 /* Don't turn off the schedule until ASS is 1 */ 2904 fotg210_poll_ASS(fotg210); 2905 } 2906 2907 /* move qh (and its qtds) onto async queue; maybe enable queue. */ 2908 2909 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 2910 { 2911 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma); 2912 struct fotg210_qh *head; 2913 2914 /* Don't link a QH if there's a Clear-TT-Buffer pending */ 2915 if (unlikely(qh->clearing_tt)) 2916 return; 2917 2918 WARN_ON(qh->qh_state != QH_STATE_IDLE); 2919 2920 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 2921 qh_refresh(fotg210, qh); 2922 2923 /* splice right after start */ 2924 head = fotg210->async; 2925 qh->qh_next = head->qh_next; 2926 qh->hw->hw_next = head->hw->hw_next; 2927 wmb(); 2928 2929 head->qh_next.qh = qh; 2930 head->hw->hw_next = dma; 2931 2932 qh->xacterrs = 0; 2933 qh->qh_state = QH_STATE_LINKED; 2934 /* qtd completions reported later by interrupt */ 2935 2936 enable_async(fotg210); 2937 } 2938 2939 /* For control/bulk/interrupt, return QH with these TDs appended. 2940 * Allocates and initializes the QH if necessary. 2941 * Returns null if it can't allocate a QH it needs to. 2942 * If the QH has TDs (urbs) already, that's great. 2943 */ 2944 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210, 2945 struct urb *urb, struct list_head *qtd_list, 2946 int epnum, void **ptr) 2947 { 2948 struct fotg210_qh *qh = NULL; 2949 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f); 2950 2951 qh = (struct fotg210_qh *) *ptr; 2952 if (unlikely(qh == NULL)) { 2953 /* can't sleep here, we have fotg210->lock... */ 2954 qh = qh_make(fotg210, urb, GFP_ATOMIC); 2955 *ptr = qh; 2956 } 2957 if (likely(qh != NULL)) { 2958 struct fotg210_qtd *qtd; 2959 2960 if (unlikely(list_empty(qtd_list))) 2961 qtd = NULL; 2962 else 2963 qtd = list_entry(qtd_list->next, struct fotg210_qtd, 2964 qtd_list); 2965 2966 /* control qh may need patching ... */ 2967 if (unlikely(epnum == 0)) { 2968 /* usb_reset_device() briefly reverts to address 0 */ 2969 if (usb_pipedevice(urb->pipe) == 0) 2970 qh->hw->hw_info1 &= ~qh_addr_mask; 2971 } 2972 2973 /* just one way to queue requests: swap with the dummy qtd. 2974 * only hc or qh_refresh() ever modify the overlay. 2975 */ 2976 if (likely(qtd != NULL)) { 2977 struct fotg210_qtd *dummy; 2978 dma_addr_t dma; 2979 __hc32 token; 2980 2981 /* to avoid racing the HC, use the dummy td instead of 2982 * the first td of our list (becomes new dummy). both 2983 * tds stay deactivated until we're done, when the 2984 * HC is allowed to fetch the old dummy (4.10.2). 2985 */ 2986 token = qtd->hw_token; 2987 qtd->hw_token = HALT_BIT(fotg210); 2988 2989 dummy = qh->dummy; 2990 2991 dma = dummy->qtd_dma; 2992 *dummy = *qtd; 2993 dummy->qtd_dma = dma; 2994 2995 list_del(&qtd->qtd_list); 2996 list_add(&dummy->qtd_list, qtd_list); 2997 list_splice_tail(qtd_list, &qh->qtd_list); 2998 2999 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma); 3000 qh->dummy = qtd; 3001 3002 /* hc must see the new dummy at list end */ 3003 dma = qtd->qtd_dma; 3004 qtd = list_entry(qh->qtd_list.prev, 3005 struct fotg210_qtd, qtd_list); 3006 qtd->hw_next = QTD_NEXT(fotg210, dma); 3007 3008 /* let the hc process these next qtds */ 3009 wmb(); 3010 dummy->hw_token = token; 3011 3012 urb->hcpriv = qh; 3013 } 3014 } 3015 return qh; 3016 } 3017 3018 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb, 3019 struct list_head *qtd_list, gfp_t mem_flags) 3020 { 3021 int epnum; 3022 unsigned long flags; 3023 struct fotg210_qh *qh = NULL; 3024 int rc; 3025 3026 epnum = urb->ep->desc.bEndpointAddress; 3027 3028 #ifdef FOTG210_URB_TRACE 3029 { 3030 struct fotg210_qtd *qtd; 3031 3032 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list); 3033 fotg210_dbg(fotg210, 3034 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 3035 __func__, urb->dev->devpath, urb, 3036 epnum & 0x0f, (epnum & USB_DIR_IN) 3037 ? "in" : "out", 3038 urb->transfer_buffer_length, 3039 qtd, urb->ep->hcpriv); 3040 } 3041 #endif 3042 3043 spin_lock_irqsave(&fotg210->lock, flags); 3044 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 3045 rc = -ESHUTDOWN; 3046 goto done; 3047 } 3048 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 3049 if (unlikely(rc)) 3050 goto done; 3051 3052 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); 3053 if (unlikely(qh == NULL)) { 3054 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 3055 rc = -ENOMEM; 3056 goto done; 3057 } 3058 3059 /* Control/bulk operations through TTs don't need scheduling, 3060 * the HC and TT handle it when the TT has a buffer ready. 3061 */ 3062 if (likely(qh->qh_state == QH_STATE_IDLE)) 3063 qh_link_async(fotg210, qh); 3064 done: 3065 spin_unlock_irqrestore(&fotg210->lock, flags); 3066 if (unlikely(qh == NULL)) 3067 qtd_list_free(fotg210, urb, qtd_list); 3068 return rc; 3069 } 3070 3071 static void single_unlink_async(struct fotg210_hcd *fotg210, 3072 struct fotg210_qh *qh) 3073 { 3074 struct fotg210_qh *prev; 3075 3076 /* Add to the end of the list of QHs waiting for the next IAAD */ 3077 qh->qh_state = QH_STATE_UNLINK; 3078 if (fotg210->async_unlink) 3079 fotg210->async_unlink_last->unlink_next = qh; 3080 else 3081 fotg210->async_unlink = qh; 3082 fotg210->async_unlink_last = qh; 3083 3084 /* Unlink it from the schedule */ 3085 prev = fotg210->async; 3086 while (prev->qh_next.qh != qh) 3087 prev = prev->qh_next.qh; 3088 3089 prev->hw->hw_next = qh->hw->hw_next; 3090 prev->qh_next = qh->qh_next; 3091 if (fotg210->qh_scan_next == qh) 3092 fotg210->qh_scan_next = qh->qh_next.qh; 3093 } 3094 3095 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested) 3096 { 3097 /* 3098 * Do nothing if an IAA cycle is already running or 3099 * if one will be started shortly. 3100 */ 3101 if (fotg210->async_iaa || fotg210->async_unlinking) 3102 return; 3103 3104 /* Do all the waiting QHs at once */ 3105 fotg210->async_iaa = fotg210->async_unlink; 3106 fotg210->async_unlink = NULL; 3107 3108 /* If the controller isn't running, we don't have to wait for it */ 3109 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) { 3110 if (!nested) /* Avoid recursion */ 3111 end_unlink_async(fotg210); 3112 3113 /* Otherwise start a new IAA cycle */ 3114 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) { 3115 /* Make sure the unlinks are all visible to the hardware */ 3116 wmb(); 3117 3118 fotg210_writel(fotg210, fotg210->command | CMD_IAAD, 3119 &fotg210->regs->command); 3120 fotg210_readl(fotg210, &fotg210->regs->command); 3121 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG, 3122 true); 3123 } 3124 } 3125 3126 /* the async qh for the qtds being unlinked are now gone from the HC */ 3127 3128 static void end_unlink_async(struct fotg210_hcd *fotg210) 3129 { 3130 struct fotg210_qh *qh; 3131 3132 /* Process the idle QHs */ 3133 restart: 3134 fotg210->async_unlinking = true; 3135 while (fotg210->async_iaa) { 3136 qh = fotg210->async_iaa; 3137 fotg210->async_iaa = qh->unlink_next; 3138 qh->unlink_next = NULL; 3139 3140 qh->qh_state = QH_STATE_IDLE; 3141 qh->qh_next.qh = NULL; 3142 3143 qh_completions(fotg210, qh); 3144 if (!list_empty(&qh->qtd_list) && 3145 fotg210->rh_state == FOTG210_RH_RUNNING) 3146 qh_link_async(fotg210, qh); 3147 disable_async(fotg210); 3148 } 3149 fotg210->async_unlinking = false; 3150 3151 /* Start a new IAA cycle if any QHs are waiting for it */ 3152 if (fotg210->async_unlink) { 3153 start_iaa_cycle(fotg210, true); 3154 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) 3155 goto restart; 3156 } 3157 } 3158 3159 static void unlink_empty_async(struct fotg210_hcd *fotg210) 3160 { 3161 struct fotg210_qh *qh, *next; 3162 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); 3163 bool check_unlinks_later = false; 3164 3165 /* Unlink all the async QHs that have been empty for a timer cycle */ 3166 next = fotg210->async->qh_next.qh; 3167 while (next) { 3168 qh = next; 3169 next = qh->qh_next.qh; 3170 3171 if (list_empty(&qh->qtd_list) && 3172 qh->qh_state == QH_STATE_LINKED) { 3173 if (!stopped && qh->unlink_cycle == 3174 fotg210->async_unlink_cycle) 3175 check_unlinks_later = true; 3176 else 3177 single_unlink_async(fotg210, qh); 3178 } 3179 } 3180 3181 /* Start a new IAA cycle if any QHs are waiting for it */ 3182 if (fotg210->async_unlink) 3183 start_iaa_cycle(fotg210, false); 3184 3185 /* QHs that haven't been empty for long enough will be handled later */ 3186 if (check_unlinks_later) { 3187 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, 3188 true); 3189 ++fotg210->async_unlink_cycle; 3190 } 3191 } 3192 3193 /* makes sure the async qh will become idle */ 3194 /* caller must own fotg210->lock */ 3195 3196 static void start_unlink_async(struct fotg210_hcd *fotg210, 3197 struct fotg210_qh *qh) 3198 { 3199 /* 3200 * If the QH isn't linked then there's nothing we can do 3201 * unless we were called during a giveback, in which case 3202 * qh_completions() has to deal with it. 3203 */ 3204 if (qh->qh_state != QH_STATE_LINKED) { 3205 if (qh->qh_state == QH_STATE_COMPLETING) 3206 qh->needs_rescan = 1; 3207 return; 3208 } 3209 3210 single_unlink_async(fotg210, qh); 3211 start_iaa_cycle(fotg210, false); 3212 } 3213 3214 static void scan_async(struct fotg210_hcd *fotg210) 3215 { 3216 struct fotg210_qh *qh; 3217 bool check_unlinks_later = false; 3218 3219 fotg210->qh_scan_next = fotg210->async->qh_next.qh; 3220 while (fotg210->qh_scan_next) { 3221 qh = fotg210->qh_scan_next; 3222 fotg210->qh_scan_next = qh->qh_next.qh; 3223 rescan: 3224 /* clean any finished work for this qh */ 3225 if (!list_empty(&qh->qtd_list)) { 3226 int temp; 3227 3228 /* 3229 * Unlinks could happen here; completion reporting 3230 * drops the lock. That's why fotg210->qh_scan_next 3231 * always holds the next qh to scan; if the next qh 3232 * gets unlinked then fotg210->qh_scan_next is adjusted 3233 * in single_unlink_async(). 3234 */ 3235 temp = qh_completions(fotg210, qh); 3236 if (qh->needs_rescan) { 3237 start_unlink_async(fotg210, qh); 3238 } else if (list_empty(&qh->qtd_list) 3239 && qh->qh_state == QH_STATE_LINKED) { 3240 qh->unlink_cycle = fotg210->async_unlink_cycle; 3241 check_unlinks_later = true; 3242 } else if (temp != 0) 3243 goto rescan; 3244 } 3245 } 3246 3247 /* 3248 * Unlink empty entries, reducing DMA usage as well 3249 * as HCD schedule-scanning costs. Delay for any qh 3250 * we just scanned, there's a not-unusual case that it 3251 * doesn't stay idle for long. 3252 */ 3253 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING && 3254 !(fotg210->enabled_hrtimer_events & 3255 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) { 3256 fotg210_enable_event(fotg210, 3257 FOTG210_HRTIMER_ASYNC_UNLINKS, true); 3258 ++fotg210->async_unlink_cycle; 3259 } 3260 } 3261 /* EHCI scheduled transaction support: interrupt, iso, split iso 3262 * These are called "periodic" transactions in the EHCI spec. 3263 * 3264 * Note that for interrupt transfers, the QH/QTD manipulation is shared 3265 * with the "asynchronous" transaction support (control/bulk transfers). 3266 * The only real difference is in how interrupt transfers are scheduled. 3267 * 3268 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 3269 * It keeps track of every ITD (or SITD) that's linked, and holds enough 3270 * pre-calculated schedule data to make appending to the queue be quick. 3271 */ 3272 static int fotg210_get_frame(struct usb_hcd *hcd); 3273 3274 /* periodic_next_shadow - return "next" pointer on shadow list 3275 * @periodic: host pointer to qh/itd 3276 * @tag: hardware tag for type of this record 3277 */ 3278 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210, 3279 union fotg210_shadow *periodic, __hc32 tag) 3280 { 3281 switch (hc32_to_cpu(fotg210, tag)) { 3282 case Q_TYPE_QH: 3283 return &periodic->qh->qh_next; 3284 case Q_TYPE_FSTN: 3285 return &periodic->fstn->fstn_next; 3286 default: 3287 return &periodic->itd->itd_next; 3288 } 3289 } 3290 3291 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210, 3292 union fotg210_shadow *periodic, __hc32 tag) 3293 { 3294 switch (hc32_to_cpu(fotg210, tag)) { 3295 /* our fotg210_shadow.qh is actually software part */ 3296 case Q_TYPE_QH: 3297 return &periodic->qh->hw->hw_next; 3298 /* others are hw parts */ 3299 default: 3300 return periodic->hw_next; 3301 } 3302 } 3303 3304 /* caller must hold fotg210->lock */ 3305 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame, 3306 void *ptr) 3307 { 3308 union fotg210_shadow *prev_p = &fotg210->pshadow[frame]; 3309 __hc32 *hw_p = &fotg210->periodic[frame]; 3310 union fotg210_shadow here = *prev_p; 3311 3312 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 3313 while (here.ptr && here.ptr != ptr) { 3314 prev_p = periodic_next_shadow(fotg210, prev_p, 3315 Q_NEXT_TYPE(fotg210, *hw_p)); 3316 hw_p = shadow_next_periodic(fotg210, &here, 3317 Q_NEXT_TYPE(fotg210, *hw_p)); 3318 here = *prev_p; 3319 } 3320 /* an interrupt entry (at list end) could have been shared */ 3321 if (!here.ptr) 3322 return; 3323 3324 /* update shadow and hardware lists ... the old "next" pointers 3325 * from ptr may still be in use, the caller updates them. 3326 */ 3327 *prev_p = *periodic_next_shadow(fotg210, &here, 3328 Q_NEXT_TYPE(fotg210, *hw_p)); 3329 3330 *hw_p = *shadow_next_periodic(fotg210, &here, 3331 Q_NEXT_TYPE(fotg210, *hw_p)); 3332 } 3333 3334 /* how many of the uframe's 125 usecs are allocated? */ 3335 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210, 3336 unsigned frame, unsigned uframe) 3337 { 3338 __hc32 *hw_p = &fotg210->periodic[frame]; 3339 union fotg210_shadow *q = &fotg210->pshadow[frame]; 3340 unsigned usecs = 0; 3341 struct fotg210_qh_hw *hw; 3342 3343 while (q->ptr) { 3344 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) { 3345 case Q_TYPE_QH: 3346 hw = q->qh->hw; 3347 /* is it in the S-mask? */ 3348 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe)) 3349 usecs += q->qh->usecs; 3350 /* ... or C-mask? */ 3351 if (hw->hw_info2 & cpu_to_hc32(fotg210, 3352 1 << (8 + uframe))) 3353 usecs += q->qh->c_usecs; 3354 hw_p = &hw->hw_next; 3355 q = &q->qh->qh_next; 3356 break; 3357 /* case Q_TYPE_FSTN: */ 3358 default: 3359 /* for "save place" FSTNs, count the relevant INTR 3360 * bandwidth from the previous frame 3361 */ 3362 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210)) 3363 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n"); 3364 3365 hw_p = &q->fstn->hw_next; 3366 q = &q->fstn->fstn_next; 3367 break; 3368 case Q_TYPE_ITD: 3369 if (q->itd->hw_transaction[uframe]) 3370 usecs += q->itd->stream->usecs; 3371 hw_p = &q->itd->hw_next; 3372 q = &q->itd->itd_next; 3373 break; 3374 } 3375 } 3376 if (usecs > fotg210->uframe_periodic_max) 3377 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n", 3378 frame * 8 + uframe, usecs); 3379 return usecs; 3380 } 3381 3382 static int same_tt(struct usb_device *dev1, struct usb_device *dev2) 3383 { 3384 if (!dev1->tt || !dev2->tt) 3385 return 0; 3386 if (dev1->tt != dev2->tt) 3387 return 0; 3388 if (dev1->tt->multi) 3389 return dev1->ttport == dev2->ttport; 3390 else 3391 return 1; 3392 } 3393 3394 /* return true iff the device's transaction translator is available 3395 * for a periodic transfer starting at the specified frame, using 3396 * all the uframes in the mask. 3397 */ 3398 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period, 3399 struct usb_device *dev, unsigned frame, u32 uf_mask) 3400 { 3401 if (period == 0) /* error */ 3402 return 0; 3403 3404 /* note bandwidth wastage: split never follows csplit 3405 * (different dev or endpoint) until the next uframe. 3406 * calling convention doesn't make that distinction. 3407 */ 3408 for (; frame < fotg210->periodic_size; frame += period) { 3409 union fotg210_shadow here; 3410 __hc32 type; 3411 struct fotg210_qh_hw *hw; 3412 3413 here = fotg210->pshadow[frame]; 3414 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]); 3415 while (here.ptr) { 3416 switch (hc32_to_cpu(fotg210, type)) { 3417 case Q_TYPE_ITD: 3418 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next); 3419 here = here.itd->itd_next; 3420 continue; 3421 case Q_TYPE_QH: 3422 hw = here.qh->hw; 3423 if (same_tt(dev, here.qh->dev)) { 3424 u32 mask; 3425 3426 mask = hc32_to_cpu(fotg210, 3427 hw->hw_info2); 3428 /* "knows" no gap is needed */ 3429 mask |= mask >> 8; 3430 if (mask & uf_mask) 3431 break; 3432 } 3433 type = Q_NEXT_TYPE(fotg210, hw->hw_next); 3434 here = here.qh->qh_next; 3435 continue; 3436 /* case Q_TYPE_FSTN: */ 3437 default: 3438 fotg210_dbg(fotg210, 3439 "periodic frame %d bogus type %d\n", 3440 frame, type); 3441 } 3442 3443 /* collision or error */ 3444 return 0; 3445 } 3446 } 3447 3448 /* no collision */ 3449 return 1; 3450 } 3451 3452 static void enable_periodic(struct fotg210_hcd *fotg210) 3453 { 3454 if (fotg210->periodic_count++) 3455 return; 3456 3457 /* Stop waiting to turn off the periodic schedule */ 3458 fotg210->enabled_hrtimer_events &= 3459 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC); 3460 3461 /* Don't start the schedule until PSS is 0 */ 3462 fotg210_poll_PSS(fotg210); 3463 turn_on_io_watchdog(fotg210); 3464 } 3465 3466 static void disable_periodic(struct fotg210_hcd *fotg210) 3467 { 3468 if (--fotg210->periodic_count) 3469 return; 3470 3471 /* Don't turn off the schedule until PSS is 1 */ 3472 fotg210_poll_PSS(fotg210); 3473 } 3474 3475 /* periodic schedule slots have iso tds (normal or split) first, then a 3476 * sparse tree for active interrupt transfers. 3477 * 3478 * this just links in a qh; caller guarantees uframe masks are set right. 3479 * no FSTN support (yet; fotg210 0.96+) 3480 */ 3481 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3482 { 3483 unsigned i; 3484 unsigned period = qh->period; 3485 3486 dev_dbg(&qh->dev->dev, 3487 "link qh%d-%04x/%p start %d [%d/%d us]\n", period, 3488 hc32_to_cpup(fotg210, &qh->hw->hw_info2) & 3489 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, 3490 qh->c_usecs); 3491 3492 /* high bandwidth, or otherwise every microframe */ 3493 if (period == 0) 3494 period = 1; 3495 3496 for (i = qh->start; i < fotg210->periodic_size; i += period) { 3497 union fotg210_shadow *prev = &fotg210->pshadow[i]; 3498 __hc32 *hw_p = &fotg210->periodic[i]; 3499 union fotg210_shadow here = *prev; 3500 __hc32 type = 0; 3501 3502 /* skip the iso nodes at list head */ 3503 while (here.ptr) { 3504 type = Q_NEXT_TYPE(fotg210, *hw_p); 3505 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) 3506 break; 3507 prev = periodic_next_shadow(fotg210, prev, type); 3508 hw_p = shadow_next_periodic(fotg210, &here, type); 3509 here = *prev; 3510 } 3511 3512 /* sorting each branch by period (slow-->fast) 3513 * enables sharing interior tree nodes 3514 */ 3515 while (here.ptr && qh != here.qh) { 3516 if (qh->period > here.qh->period) 3517 break; 3518 prev = &here.qh->qh_next; 3519 hw_p = &here.qh->hw->hw_next; 3520 here = *prev; 3521 } 3522 /* link in this qh, unless some earlier pass did that */ 3523 if (qh != here.qh) { 3524 qh->qh_next = here; 3525 if (here.qh) 3526 qh->hw->hw_next = *hw_p; 3527 wmb(); 3528 prev->qh = qh; 3529 *hw_p = QH_NEXT(fotg210, qh->qh_dma); 3530 } 3531 } 3532 qh->qh_state = QH_STATE_LINKED; 3533 qh->xacterrs = 0; 3534 3535 /* update per-qh bandwidth for usbfs */ 3536 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period 3537 ? ((qh->usecs + qh->c_usecs) / qh->period) 3538 : (qh->usecs * 8); 3539 3540 list_add(&qh->intr_node, &fotg210->intr_qh_list); 3541 3542 /* maybe enable periodic schedule processing */ 3543 ++fotg210->intr_count; 3544 enable_periodic(fotg210); 3545 } 3546 3547 static void qh_unlink_periodic(struct fotg210_hcd *fotg210, 3548 struct fotg210_qh *qh) 3549 { 3550 unsigned i; 3551 unsigned period; 3552 3553 /* 3554 * If qh is for a low/full-speed device, simply unlinking it 3555 * could interfere with an ongoing split transaction. To unlink 3556 * it safely would require setting the QH_INACTIVATE bit and 3557 * waiting at least one frame, as described in EHCI 4.12.2.5. 3558 * 3559 * We won't bother with any of this. Instead, we assume that the 3560 * only reason for unlinking an interrupt QH while the current URB 3561 * is still active is to dequeue all the URBs (flush the whole 3562 * endpoint queue). 3563 * 3564 * If rebalancing the periodic schedule is ever implemented, this 3565 * approach will no longer be valid. 3566 */ 3567 3568 /* high bandwidth, or otherwise part of every microframe */ 3569 period = qh->period; 3570 if (!period) 3571 period = 1; 3572 3573 for (i = qh->start; i < fotg210->periodic_size; i += period) 3574 periodic_unlink(fotg210, i, qh); 3575 3576 /* update per-qh bandwidth for usbfs */ 3577 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period 3578 ? ((qh->usecs + qh->c_usecs) / qh->period) 3579 : (qh->usecs * 8); 3580 3581 dev_dbg(&qh->dev->dev, 3582 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 3583 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) & 3584 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, 3585 qh->c_usecs); 3586 3587 /* qh->qh_next still "live" to HC */ 3588 qh->qh_state = QH_STATE_UNLINK; 3589 qh->qh_next.ptr = NULL; 3590 3591 if (fotg210->qh_scan_next == qh) 3592 fotg210->qh_scan_next = list_entry(qh->intr_node.next, 3593 struct fotg210_qh, intr_node); 3594 list_del(&qh->intr_node); 3595 } 3596 3597 static void start_unlink_intr(struct fotg210_hcd *fotg210, 3598 struct fotg210_qh *qh) 3599 { 3600 /* If the QH isn't linked then there's nothing we can do 3601 * unless we were called during a giveback, in which case 3602 * qh_completions() has to deal with it. 3603 */ 3604 if (qh->qh_state != QH_STATE_LINKED) { 3605 if (qh->qh_state == QH_STATE_COMPLETING) 3606 qh->needs_rescan = 1; 3607 return; 3608 } 3609 3610 qh_unlink_periodic(fotg210, qh); 3611 3612 /* Make sure the unlinks are visible before starting the timer */ 3613 wmb(); 3614 3615 /* 3616 * The EHCI spec doesn't say how long it takes the controller to 3617 * stop accessing an unlinked interrupt QH. The timer delay is 3618 * 9 uframes; presumably that will be long enough. 3619 */ 3620 qh->unlink_cycle = fotg210->intr_unlink_cycle; 3621 3622 /* New entries go at the end of the intr_unlink list */ 3623 if (fotg210->intr_unlink) 3624 fotg210->intr_unlink_last->unlink_next = qh; 3625 else 3626 fotg210->intr_unlink = qh; 3627 fotg210->intr_unlink_last = qh; 3628 3629 if (fotg210->intr_unlinking) 3630 ; /* Avoid recursive calls */ 3631 else if (fotg210->rh_state < FOTG210_RH_RUNNING) 3632 fotg210_handle_intr_unlinks(fotg210); 3633 else if (fotg210->intr_unlink == qh) { 3634 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, 3635 true); 3636 ++fotg210->intr_unlink_cycle; 3637 } 3638 } 3639 3640 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3641 { 3642 struct fotg210_qh_hw *hw = qh->hw; 3643 int rc; 3644 3645 qh->qh_state = QH_STATE_IDLE; 3646 hw->hw_next = FOTG210_LIST_END(fotg210); 3647 3648 qh_completions(fotg210, qh); 3649 3650 /* reschedule QH iff another request is queued */ 3651 if (!list_empty(&qh->qtd_list) && 3652 fotg210->rh_state == FOTG210_RH_RUNNING) { 3653 rc = qh_schedule(fotg210, qh); 3654 3655 /* An error here likely indicates handshake failure 3656 * or no space left in the schedule. Neither fault 3657 * should happen often ... 3658 * 3659 * FIXME kill the now-dysfunctional queued urbs 3660 */ 3661 if (rc != 0) 3662 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n", 3663 qh, rc); 3664 } 3665 3666 /* maybe turn off periodic schedule */ 3667 --fotg210->intr_count; 3668 disable_periodic(fotg210); 3669 } 3670 3671 static int check_period(struct fotg210_hcd *fotg210, unsigned frame, 3672 unsigned uframe, unsigned period, unsigned usecs) 3673 { 3674 int claimed; 3675 3676 /* complete split running into next frame? 3677 * given FSTN support, we could sometimes check... 3678 */ 3679 if (uframe >= 8) 3680 return 0; 3681 3682 /* convert "usecs we need" to "max already claimed" */ 3683 usecs = fotg210->uframe_periodic_max - usecs; 3684 3685 /* we "know" 2 and 4 uframe intervals were rejected; so 3686 * for period 0, check _every_ microframe in the schedule. 3687 */ 3688 if (unlikely(period == 0)) { 3689 do { 3690 for (uframe = 0; uframe < 7; uframe++) { 3691 claimed = periodic_usecs(fotg210, frame, 3692 uframe); 3693 if (claimed > usecs) 3694 return 0; 3695 } 3696 } while ((frame += 1) < fotg210->periodic_size); 3697 3698 /* just check the specified uframe, at that period */ 3699 } else { 3700 do { 3701 claimed = periodic_usecs(fotg210, frame, uframe); 3702 if (claimed > usecs) 3703 return 0; 3704 } while ((frame += period) < fotg210->periodic_size); 3705 } 3706 3707 /* success! */ 3708 return 1; 3709 } 3710 3711 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame, 3712 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp) 3713 { 3714 int retval = -ENOSPC; 3715 u8 mask = 0; 3716 3717 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 3718 goto done; 3719 3720 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs)) 3721 goto done; 3722 if (!qh->c_usecs) { 3723 retval = 0; 3724 *c_maskp = 0; 3725 goto done; 3726 } 3727 3728 /* Make sure this tt's buffer is also available for CSPLITs. 3729 * We pessimize a bit; probably the typical full speed case 3730 * doesn't need the second CSPLIT. 3731 * 3732 * NOTE: both SPLIT and CSPLIT could be checked in just 3733 * one smart pass... 3734 */ 3735 mask = 0x03 << (uframe + qh->gap_uf); 3736 *c_maskp = cpu_to_hc32(fotg210, mask << 8); 3737 3738 mask |= 1 << uframe; 3739 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) { 3740 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1, 3741 qh->period, qh->c_usecs)) 3742 goto done; 3743 if (!check_period(fotg210, frame, uframe + qh->gap_uf, 3744 qh->period, qh->c_usecs)) 3745 goto done; 3746 retval = 0; 3747 } 3748 done: 3749 return retval; 3750 } 3751 3752 /* "first fit" scheduling policy used the first time through, 3753 * or when the previous schedule slot can't be re-used. 3754 */ 3755 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3756 { 3757 int status; 3758 unsigned uframe; 3759 __hc32 c_mask; 3760 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 3761 struct fotg210_qh_hw *hw = qh->hw; 3762 3763 qh_refresh(fotg210, qh); 3764 hw->hw_next = FOTG210_LIST_END(fotg210); 3765 frame = qh->start; 3766 3767 /* reuse the previous schedule slots, if we can */ 3768 if (frame < qh->period) { 3769 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK); 3770 status = check_intr_schedule(fotg210, frame, --uframe, 3771 qh, &c_mask); 3772 } else { 3773 uframe = 0; 3774 c_mask = 0; 3775 status = -ENOSPC; 3776 } 3777 3778 /* else scan the schedule to find a group of slots such that all 3779 * uframes have enough periodic bandwidth available. 3780 */ 3781 if (status) { 3782 /* "normal" case, uframing flexible except with splits */ 3783 if (qh->period) { 3784 int i; 3785 3786 for (i = qh->period; status && i > 0; --i) { 3787 frame = ++fotg210->random_frame % qh->period; 3788 for (uframe = 0; uframe < 8; uframe++) { 3789 status = check_intr_schedule(fotg210, 3790 frame, uframe, qh, 3791 &c_mask); 3792 if (status == 0) 3793 break; 3794 } 3795 } 3796 3797 /* qh->period == 0 means every uframe */ 3798 } else { 3799 frame = 0; 3800 status = check_intr_schedule(fotg210, 0, 0, qh, 3801 &c_mask); 3802 } 3803 if (status) 3804 goto done; 3805 qh->start = frame; 3806 3807 /* reset S-frame and (maybe) C-frame masks */ 3808 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK)); 3809 hw->hw_info2 |= qh->period 3810 ? cpu_to_hc32(fotg210, 1 << uframe) 3811 : cpu_to_hc32(fotg210, QH_SMASK); 3812 hw->hw_info2 |= c_mask; 3813 } else 3814 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh); 3815 3816 /* stuff into the periodic schedule */ 3817 qh_link_periodic(fotg210, qh); 3818 done: 3819 return status; 3820 } 3821 3822 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb, 3823 struct list_head *qtd_list, gfp_t mem_flags) 3824 { 3825 unsigned epnum; 3826 unsigned long flags; 3827 struct fotg210_qh *qh; 3828 int status; 3829 struct list_head empty; 3830 3831 /* get endpoint and transfer/schedule data */ 3832 epnum = urb->ep->desc.bEndpointAddress; 3833 3834 spin_lock_irqsave(&fotg210->lock, flags); 3835 3836 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 3837 status = -ESHUTDOWN; 3838 goto done_not_linked; 3839 } 3840 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 3841 if (unlikely(status)) 3842 goto done_not_linked; 3843 3844 /* get qh and force any scheduling errors */ 3845 INIT_LIST_HEAD(&empty); 3846 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv); 3847 if (qh == NULL) { 3848 status = -ENOMEM; 3849 goto done; 3850 } 3851 if (qh->qh_state == QH_STATE_IDLE) { 3852 status = qh_schedule(fotg210, qh); 3853 if (status) 3854 goto done; 3855 } 3856 3857 /* then queue the urb's tds to the qh */ 3858 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); 3859 BUG_ON(qh == NULL); 3860 3861 /* ... update usbfs periodic stats */ 3862 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++; 3863 3864 done: 3865 if (unlikely(status)) 3866 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 3867 done_not_linked: 3868 spin_unlock_irqrestore(&fotg210->lock, flags); 3869 if (status) 3870 qtd_list_free(fotg210, urb, qtd_list); 3871 3872 return status; 3873 } 3874 3875 static void scan_intr(struct fotg210_hcd *fotg210) 3876 { 3877 struct fotg210_qh *qh; 3878 3879 list_for_each_entry_safe(qh, fotg210->qh_scan_next, 3880 &fotg210->intr_qh_list, intr_node) { 3881 rescan: 3882 /* clean any finished work for this qh */ 3883 if (!list_empty(&qh->qtd_list)) { 3884 int temp; 3885 3886 /* 3887 * Unlinks could happen here; completion reporting 3888 * drops the lock. That's why fotg210->qh_scan_next 3889 * always holds the next qh to scan; if the next qh 3890 * gets unlinked then fotg210->qh_scan_next is adjusted 3891 * in qh_unlink_periodic(). 3892 */ 3893 temp = qh_completions(fotg210, qh); 3894 if (unlikely(qh->needs_rescan || 3895 (list_empty(&qh->qtd_list) && 3896 qh->qh_state == QH_STATE_LINKED))) 3897 start_unlink_intr(fotg210, qh); 3898 else if (temp != 0) 3899 goto rescan; 3900 } 3901 } 3902 } 3903 3904 /* fotg210_iso_stream ops work with both ITD and SITD */ 3905 3906 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags) 3907 { 3908 struct fotg210_iso_stream *stream; 3909 3910 stream = kzalloc(sizeof(*stream), mem_flags); 3911 if (likely(stream != NULL)) { 3912 INIT_LIST_HEAD(&stream->td_list); 3913 INIT_LIST_HEAD(&stream->free_list); 3914 stream->next_uframe = -1; 3915 } 3916 return stream; 3917 } 3918 3919 static void iso_stream_init(struct fotg210_hcd *fotg210, 3920 struct fotg210_iso_stream *stream, struct usb_device *dev, 3921 int pipe, unsigned interval) 3922 { 3923 u32 buf1; 3924 unsigned epnum, maxp; 3925 int is_input; 3926 long bandwidth; 3927 unsigned multi; 3928 struct usb_host_endpoint *ep; 3929 3930 /* 3931 * this might be a "high bandwidth" highspeed endpoint, 3932 * as encoded in the ep descriptor's wMaxPacket field 3933 */ 3934 epnum = usb_pipeendpoint(pipe); 3935 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0; 3936 ep = usb_pipe_endpoint(dev, pipe); 3937 maxp = usb_endpoint_maxp(&ep->desc); 3938 if (is_input) 3939 buf1 = (1 << 11); 3940 else 3941 buf1 = 0; 3942 3943 multi = usb_endpoint_maxp_mult(&ep->desc); 3944 buf1 |= maxp; 3945 maxp *= multi; 3946 3947 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum); 3948 stream->buf1 = cpu_to_hc32(fotg210, buf1); 3949 stream->buf2 = cpu_to_hc32(fotg210, multi); 3950 3951 /* usbfs wants to report the average usecs per frame tied up 3952 * when transfers on this endpoint are scheduled ... 3953 */ 3954 if (dev->speed == USB_SPEED_FULL) { 3955 interval <<= 3; 3956 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed, 3957 is_input, 1, maxp)); 3958 stream->usecs /= 8; 3959 } else { 3960 stream->highspeed = 1; 3961 stream->usecs = HS_USECS_ISO(maxp); 3962 } 3963 bandwidth = stream->usecs * 8; 3964 bandwidth /= interval; 3965 3966 stream->bandwidth = bandwidth; 3967 stream->udev = dev; 3968 stream->bEndpointAddress = is_input | epnum; 3969 stream->interval = interval; 3970 stream->maxp = maxp; 3971 } 3972 3973 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210, 3974 struct urb *urb) 3975 { 3976 unsigned epnum; 3977 struct fotg210_iso_stream *stream; 3978 struct usb_host_endpoint *ep; 3979 unsigned long flags; 3980 3981 epnum = usb_pipeendpoint(urb->pipe); 3982 if (usb_pipein(urb->pipe)) 3983 ep = urb->dev->ep_in[epnum]; 3984 else 3985 ep = urb->dev->ep_out[epnum]; 3986 3987 spin_lock_irqsave(&fotg210->lock, flags); 3988 stream = ep->hcpriv; 3989 3990 if (unlikely(stream == NULL)) { 3991 stream = iso_stream_alloc(GFP_ATOMIC); 3992 if (likely(stream != NULL)) { 3993 ep->hcpriv = stream; 3994 stream->ep = ep; 3995 iso_stream_init(fotg210, stream, urb->dev, urb->pipe, 3996 urb->interval); 3997 } 3998 3999 /* if dev->ep[epnum] is a QH, hw is set */ 4000 } else if (unlikely(stream->hw != NULL)) { 4001 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n", 4002 urb->dev->devpath, epnum, 4003 usb_pipein(urb->pipe) ? "in" : "out"); 4004 stream = NULL; 4005 } 4006 4007 spin_unlock_irqrestore(&fotg210->lock, flags); 4008 return stream; 4009 } 4010 4011 /* fotg210_iso_sched ops can be ITD-only or SITD-only */ 4012 4013 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets, 4014 gfp_t mem_flags) 4015 { 4016 struct fotg210_iso_sched *iso_sched; 4017 4018 iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags); 4019 if (likely(iso_sched != NULL)) 4020 INIT_LIST_HEAD(&iso_sched->td_list); 4021 4022 return iso_sched; 4023 } 4024 4025 static inline void itd_sched_init(struct fotg210_hcd *fotg210, 4026 struct fotg210_iso_sched *iso_sched, 4027 struct fotg210_iso_stream *stream, struct urb *urb) 4028 { 4029 unsigned i; 4030 dma_addr_t dma = urb->transfer_dma; 4031 4032 /* how many uframes are needed for these transfers */ 4033 iso_sched->span = urb->number_of_packets * stream->interval; 4034 4035 /* figure out per-uframe itd fields that we'll need later 4036 * when we fit new itds into the schedule. 4037 */ 4038 for (i = 0; i < urb->number_of_packets; i++) { 4039 struct fotg210_iso_packet *uframe = &iso_sched->packet[i]; 4040 unsigned length; 4041 dma_addr_t buf; 4042 u32 trans; 4043 4044 length = urb->iso_frame_desc[i].length; 4045 buf = dma + urb->iso_frame_desc[i].offset; 4046 4047 trans = FOTG210_ISOC_ACTIVE; 4048 trans |= buf & 0x0fff; 4049 if (unlikely(((i + 1) == urb->number_of_packets)) 4050 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 4051 trans |= FOTG210_ITD_IOC; 4052 trans |= length << 16; 4053 uframe->transaction = cpu_to_hc32(fotg210, trans); 4054 4055 /* might need to cross a buffer page within a uframe */ 4056 uframe->bufp = (buf & ~(u64)0x0fff); 4057 buf += length; 4058 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) 4059 uframe->cross = 1; 4060 } 4061 } 4062 4063 static void iso_sched_free(struct fotg210_iso_stream *stream, 4064 struct fotg210_iso_sched *iso_sched) 4065 { 4066 if (!iso_sched) 4067 return; 4068 /* caller must hold fotg210->lock!*/ 4069 list_splice(&iso_sched->td_list, &stream->free_list); 4070 kfree(iso_sched); 4071 } 4072 4073 static int itd_urb_transaction(struct fotg210_iso_stream *stream, 4074 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags) 4075 { 4076 struct fotg210_itd *itd; 4077 dma_addr_t itd_dma; 4078 int i; 4079 unsigned num_itds; 4080 struct fotg210_iso_sched *sched; 4081 unsigned long flags; 4082 4083 sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 4084 if (unlikely(sched == NULL)) 4085 return -ENOMEM; 4086 4087 itd_sched_init(fotg210, sched, stream, urb); 4088 4089 if (urb->interval < 8) 4090 num_itds = 1 + (sched->span + 7) / 8; 4091 else 4092 num_itds = urb->number_of_packets; 4093 4094 /* allocate/init ITDs */ 4095 spin_lock_irqsave(&fotg210->lock, flags); 4096 for (i = 0; i < num_itds; i++) { 4097 4098 /* 4099 * Use iTDs from the free list, but not iTDs that may 4100 * still be in use by the hardware. 4101 */ 4102 if (likely(!list_empty(&stream->free_list))) { 4103 itd = list_first_entry(&stream->free_list, 4104 struct fotg210_itd, itd_list); 4105 if (itd->frame == fotg210->now_frame) 4106 goto alloc_itd; 4107 list_del(&itd->itd_list); 4108 itd_dma = itd->itd_dma; 4109 } else { 4110 alloc_itd: 4111 spin_unlock_irqrestore(&fotg210->lock, flags); 4112 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags, 4113 &itd_dma); 4114 spin_lock_irqsave(&fotg210->lock, flags); 4115 if (!itd) { 4116 iso_sched_free(stream, sched); 4117 spin_unlock_irqrestore(&fotg210->lock, flags); 4118 return -ENOMEM; 4119 } 4120 } 4121 4122 memset(itd, 0, sizeof(*itd)); 4123 itd->itd_dma = itd_dma; 4124 list_add(&itd->itd_list, &sched->td_list); 4125 } 4126 spin_unlock_irqrestore(&fotg210->lock, flags); 4127 4128 /* temporarily store schedule info in hcpriv */ 4129 urb->hcpriv = sched; 4130 urb->error_count = 0; 4131 return 0; 4132 } 4133 4134 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe, 4135 u8 usecs, u32 period) 4136 { 4137 uframe %= period; 4138 do { 4139 /* can't commit more than uframe_periodic_max usec */ 4140 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7) 4141 > (fotg210->uframe_periodic_max - usecs)) 4142 return 0; 4143 4144 /* we know urb->interval is 2^N uframes */ 4145 uframe += period; 4146 } while (uframe < mod); 4147 return 1; 4148 } 4149 4150 /* This scheduler plans almost as far into the future as it has actual 4151 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 4152 * "as small as possible" to be cache-friendlier.) That limits the size 4153 * transfers you can stream reliably; avoid more than 64 msec per urb. 4154 * Also avoid queue depths of less than fotg210's worst irq latency (affected 4155 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 4156 * and other factors); or more than about 230 msec total (for portability, 4157 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler! 4158 */ 4159 4160 #define SCHEDULE_SLOP 80 /* microframes */ 4161 4162 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb, 4163 struct fotg210_iso_stream *stream) 4164 { 4165 u32 now, next, start, period, span; 4166 int status; 4167 unsigned mod = fotg210->periodic_size << 3; 4168 struct fotg210_iso_sched *sched = urb->hcpriv; 4169 4170 period = urb->interval; 4171 span = sched->span; 4172 4173 if (span > mod - SCHEDULE_SLOP) { 4174 fotg210_dbg(fotg210, "iso request %p too long\n", urb); 4175 status = -EFBIG; 4176 goto fail; 4177 } 4178 4179 now = fotg210_read_frame_index(fotg210) & (mod - 1); 4180 4181 /* Typical case: reuse current schedule, stream is still active. 4182 * Hopefully there are no gaps from the host falling behind 4183 * (irq delays etc), but if there are we'll take the next 4184 * slot in the schedule, implicitly assuming URB_ISO_ASAP. 4185 */ 4186 if (likely(!list_empty(&stream->td_list))) { 4187 u32 excess; 4188 4189 /* For high speed devices, allow scheduling within the 4190 * isochronous scheduling threshold. For full speed devices 4191 * and Intel PCI-based controllers, don't (work around for 4192 * Intel ICH9 bug). 4193 */ 4194 if (!stream->highspeed && fotg210->fs_i_thresh) 4195 next = now + fotg210->i_thresh; 4196 else 4197 next = now; 4198 4199 /* Fell behind (by up to twice the slop amount)? 4200 * We decide based on the time of the last currently-scheduled 4201 * slot, not the time of the next available slot. 4202 */ 4203 excess = (stream->next_uframe - period - next) & (mod - 1); 4204 if (excess >= mod - 2 * SCHEDULE_SLOP) 4205 start = next + excess - mod + period * 4206 DIV_ROUND_UP(mod - excess, period); 4207 else 4208 start = next + excess + period; 4209 if (start - now >= mod) { 4210 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", 4211 urb, start - now - period, period, 4212 mod); 4213 status = -EFBIG; 4214 goto fail; 4215 } 4216 } 4217 4218 /* need to schedule; when's the next (u)frame we could start? 4219 * this is bigger than fotg210->i_thresh allows; scheduling itself 4220 * isn't free, the slop should handle reasonably slow cpus. it 4221 * can also help high bandwidth if the dma and irq loads don't 4222 * jump until after the queue is primed. 4223 */ 4224 else { 4225 int done = 0; 4226 4227 start = SCHEDULE_SLOP + (now & ~0x07); 4228 4229 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */ 4230 4231 /* find a uframe slot with enough bandwidth. 4232 * Early uframes are more precious because full-speed 4233 * iso IN transfers can't use late uframes, 4234 * and therefore they should be allocated last. 4235 */ 4236 next = start; 4237 start += period; 4238 do { 4239 start--; 4240 /* check schedule: enough space? */ 4241 if (itd_slot_ok(fotg210, mod, start, 4242 stream->usecs, period)) 4243 done = 1; 4244 } while (start > next && !done); 4245 4246 /* no room in the schedule */ 4247 if (!done) { 4248 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n", 4249 urb, now, now + mod); 4250 status = -ENOSPC; 4251 goto fail; 4252 } 4253 } 4254 4255 /* Tried to schedule too far into the future? */ 4256 if (unlikely(start - now + span - period >= 4257 mod - 2 * SCHEDULE_SLOP)) { 4258 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", 4259 urb, start - now, span - period, 4260 mod - 2 * SCHEDULE_SLOP); 4261 status = -EFBIG; 4262 goto fail; 4263 } 4264 4265 stream->next_uframe = start & (mod - 1); 4266 4267 /* report high speed start in uframes; full speed, in frames */ 4268 urb->start_frame = stream->next_uframe; 4269 if (!stream->highspeed) 4270 urb->start_frame >>= 3; 4271 4272 /* Make sure scan_isoc() sees these */ 4273 if (fotg210->isoc_count == 0) 4274 fotg210->next_frame = now >> 3; 4275 return 0; 4276 4277 fail: 4278 iso_sched_free(stream, sched); 4279 urb->hcpriv = NULL; 4280 return status; 4281 } 4282 4283 static inline void itd_init(struct fotg210_hcd *fotg210, 4284 struct fotg210_iso_stream *stream, struct fotg210_itd *itd) 4285 { 4286 int i; 4287 4288 /* it's been recently zeroed */ 4289 itd->hw_next = FOTG210_LIST_END(fotg210); 4290 itd->hw_bufp[0] = stream->buf0; 4291 itd->hw_bufp[1] = stream->buf1; 4292 itd->hw_bufp[2] = stream->buf2; 4293 4294 for (i = 0; i < 8; i++) 4295 itd->index[i] = -1; 4296 4297 /* All other fields are filled when scheduling */ 4298 } 4299 4300 static inline void itd_patch(struct fotg210_hcd *fotg210, 4301 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched, 4302 unsigned index, u16 uframe) 4303 { 4304 struct fotg210_iso_packet *uf = &iso_sched->packet[index]; 4305 unsigned pg = itd->pg; 4306 4307 uframe &= 0x07; 4308 itd->index[uframe] = index; 4309 4310 itd->hw_transaction[uframe] = uf->transaction; 4311 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12); 4312 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0); 4313 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32)); 4314 4315 /* iso_frame_desc[].offset must be strictly increasing */ 4316 if (unlikely(uf->cross)) { 4317 u64 bufp = uf->bufp + 4096; 4318 4319 itd->pg = ++pg; 4320 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0); 4321 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32)); 4322 } 4323 } 4324 4325 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame, 4326 struct fotg210_itd *itd) 4327 { 4328 union fotg210_shadow *prev = &fotg210->pshadow[frame]; 4329 __hc32 *hw_p = &fotg210->periodic[frame]; 4330 union fotg210_shadow here = *prev; 4331 __hc32 type = 0; 4332 4333 /* skip any iso nodes which might belong to previous microframes */ 4334 while (here.ptr) { 4335 type = Q_NEXT_TYPE(fotg210, *hw_p); 4336 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) 4337 break; 4338 prev = periodic_next_shadow(fotg210, prev, type); 4339 hw_p = shadow_next_periodic(fotg210, &here, type); 4340 here = *prev; 4341 } 4342 4343 itd->itd_next = here; 4344 itd->hw_next = *hw_p; 4345 prev->itd = itd; 4346 itd->frame = frame; 4347 wmb(); 4348 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD); 4349 } 4350 4351 /* fit urb's itds into the selected schedule slot; activate as needed */ 4352 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb, 4353 unsigned mod, struct fotg210_iso_stream *stream) 4354 { 4355 int packet; 4356 unsigned next_uframe, uframe, frame; 4357 struct fotg210_iso_sched *iso_sched = urb->hcpriv; 4358 struct fotg210_itd *itd; 4359 4360 next_uframe = stream->next_uframe & (mod - 1); 4361 4362 if (unlikely(list_empty(&stream->td_list))) { 4363 fotg210_to_hcd(fotg210)->self.bandwidth_allocated 4364 += stream->bandwidth; 4365 fotg210_dbg(fotg210, 4366 "schedule devp %s ep%d%s-iso period %d start %d.%d\n", 4367 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 4368 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 4369 urb->interval, 4370 next_uframe >> 3, next_uframe & 0x7); 4371 } 4372 4373 /* fill iTDs uframe by uframe */ 4374 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) { 4375 if (itd == NULL) { 4376 /* ASSERT: we have all necessary itds */ 4377 4378 /* ASSERT: no itds for this endpoint in this uframe */ 4379 4380 itd = list_entry(iso_sched->td_list.next, 4381 struct fotg210_itd, itd_list); 4382 list_move_tail(&itd->itd_list, &stream->td_list); 4383 itd->stream = stream; 4384 itd->urb = urb; 4385 itd_init(fotg210, stream, itd); 4386 } 4387 4388 uframe = next_uframe & 0x07; 4389 frame = next_uframe >> 3; 4390 4391 itd_patch(fotg210, itd, iso_sched, packet, uframe); 4392 4393 next_uframe += stream->interval; 4394 next_uframe &= mod - 1; 4395 packet++; 4396 4397 /* link completed itds into the schedule */ 4398 if (((next_uframe >> 3) != frame) 4399 || packet == urb->number_of_packets) { 4400 itd_link(fotg210, frame & (fotg210->periodic_size - 1), 4401 itd); 4402 itd = NULL; 4403 } 4404 } 4405 stream->next_uframe = next_uframe; 4406 4407 /* don't need that schedule data any more */ 4408 iso_sched_free(stream, iso_sched); 4409 urb->hcpriv = NULL; 4410 4411 ++fotg210->isoc_count; 4412 enable_periodic(fotg210); 4413 } 4414 4415 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\ 4416 FOTG210_ISOC_XACTERR) 4417 4418 /* Process and recycle a completed ITD. Return true iff its urb completed, 4419 * and hence its completion callback probably added things to the hardware 4420 * schedule. 4421 * 4422 * Note that we carefully avoid recycling this descriptor until after any 4423 * completion callback runs, so that it won't be reused quickly. That is, 4424 * assuming (a) no more than two urbs per frame on this endpoint, and also 4425 * (b) only this endpoint's completions submit URBs. It seems some silicon 4426 * corrupts things if you reuse completed descriptors very quickly... 4427 */ 4428 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd) 4429 { 4430 struct urb *urb = itd->urb; 4431 struct usb_iso_packet_descriptor *desc; 4432 u32 t; 4433 unsigned uframe; 4434 int urb_index = -1; 4435 struct fotg210_iso_stream *stream = itd->stream; 4436 struct usb_device *dev; 4437 bool retval = false; 4438 4439 /* for each uframe with a packet */ 4440 for (uframe = 0; uframe < 8; uframe++) { 4441 if (likely(itd->index[uframe] == -1)) 4442 continue; 4443 urb_index = itd->index[uframe]; 4444 desc = &urb->iso_frame_desc[urb_index]; 4445 4446 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]); 4447 itd->hw_transaction[uframe] = 0; 4448 4449 /* report transfer status */ 4450 if (unlikely(t & ISO_ERRS)) { 4451 urb->error_count++; 4452 if (t & FOTG210_ISOC_BUF_ERR) 4453 desc->status = usb_pipein(urb->pipe) 4454 ? -ENOSR /* hc couldn't read */ 4455 : -ECOMM; /* hc couldn't write */ 4456 else if (t & FOTG210_ISOC_BABBLE) 4457 desc->status = -EOVERFLOW; 4458 else /* (t & FOTG210_ISOC_XACTERR) */ 4459 desc->status = -EPROTO; 4460 4461 /* HC need not update length with this error */ 4462 if (!(t & FOTG210_ISOC_BABBLE)) { 4463 desc->actual_length = FOTG210_ITD_LENGTH(t); 4464 urb->actual_length += desc->actual_length; 4465 } 4466 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) { 4467 desc->status = 0; 4468 desc->actual_length = FOTG210_ITD_LENGTH(t); 4469 urb->actual_length += desc->actual_length; 4470 } else { 4471 /* URB was too late */ 4472 desc->status = -EXDEV; 4473 } 4474 } 4475 4476 /* handle completion now? */ 4477 if (likely((urb_index + 1) != urb->number_of_packets)) 4478 goto done; 4479 4480 /* ASSERT: it's really the last itd for this urb 4481 * list_for_each_entry (itd, &stream->td_list, itd_list) 4482 * BUG_ON (itd->urb == urb); 4483 */ 4484 4485 /* give urb back to the driver; completion often (re)submits */ 4486 dev = urb->dev; 4487 fotg210_urb_done(fotg210, urb, 0); 4488 retval = true; 4489 urb = NULL; 4490 4491 --fotg210->isoc_count; 4492 disable_periodic(fotg210); 4493 4494 if (unlikely(list_is_singular(&stream->td_list))) { 4495 fotg210_to_hcd(fotg210)->self.bandwidth_allocated 4496 -= stream->bandwidth; 4497 fotg210_dbg(fotg210, 4498 "deschedule devp %s ep%d%s-iso\n", 4499 dev->devpath, stream->bEndpointAddress & 0x0f, 4500 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 4501 } 4502 4503 done: 4504 itd->urb = NULL; 4505 4506 /* Add to the end of the free list for later reuse */ 4507 list_move_tail(&itd->itd_list, &stream->free_list); 4508 4509 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ 4510 if (list_empty(&stream->td_list)) { 4511 list_splice_tail_init(&stream->free_list, 4512 &fotg210->cached_itd_list); 4513 start_free_itds(fotg210); 4514 } 4515 4516 return retval; 4517 } 4518 4519 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb, 4520 gfp_t mem_flags) 4521 { 4522 int status = -EINVAL; 4523 unsigned long flags; 4524 struct fotg210_iso_stream *stream; 4525 4526 /* Get iso_stream head */ 4527 stream = iso_stream_find(fotg210, urb); 4528 if (unlikely(stream == NULL)) { 4529 fotg210_dbg(fotg210, "can't get iso stream\n"); 4530 return -ENOMEM; 4531 } 4532 if (unlikely(urb->interval != stream->interval && 4533 fotg210_port_speed(fotg210, 0) == 4534 USB_PORT_STAT_HIGH_SPEED)) { 4535 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n", 4536 stream->interval, urb->interval); 4537 goto done; 4538 } 4539 4540 #ifdef FOTG210_URB_TRACE 4541 fotg210_dbg(fotg210, 4542 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n", 4543 __func__, urb->dev->devpath, urb, 4544 usb_pipeendpoint(urb->pipe), 4545 usb_pipein(urb->pipe) ? "in" : "out", 4546 urb->transfer_buffer_length, 4547 urb->number_of_packets, urb->interval, 4548 stream); 4549 #endif 4550 4551 /* allocate ITDs w/o locking anything */ 4552 status = itd_urb_transaction(stream, fotg210, urb, mem_flags); 4553 if (unlikely(status < 0)) { 4554 fotg210_dbg(fotg210, "can't init itds\n"); 4555 goto done; 4556 } 4557 4558 /* schedule ... need to lock */ 4559 spin_lock_irqsave(&fotg210->lock, flags); 4560 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 4561 status = -ESHUTDOWN; 4562 goto done_not_linked; 4563 } 4564 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 4565 if (unlikely(status)) 4566 goto done_not_linked; 4567 status = iso_stream_schedule(fotg210, urb, stream); 4568 if (likely(status == 0)) 4569 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream); 4570 else 4571 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 4572 done_not_linked: 4573 spin_unlock_irqrestore(&fotg210->lock, flags); 4574 done: 4575 return status; 4576 } 4577 4578 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame, 4579 unsigned now_frame, bool live) 4580 { 4581 unsigned uf; 4582 bool modified; 4583 union fotg210_shadow q, *q_p; 4584 __hc32 type, *hw_p; 4585 4586 /* scan each element in frame's queue for completions */ 4587 q_p = &fotg210->pshadow[frame]; 4588 hw_p = &fotg210->periodic[frame]; 4589 q.ptr = q_p->ptr; 4590 type = Q_NEXT_TYPE(fotg210, *hw_p); 4591 modified = false; 4592 4593 while (q.ptr) { 4594 switch (hc32_to_cpu(fotg210, type)) { 4595 case Q_TYPE_ITD: 4596 /* If this ITD is still active, leave it for 4597 * later processing ... check the next entry. 4598 * No need to check for activity unless the 4599 * frame is current. 4600 */ 4601 if (frame == now_frame && live) { 4602 rmb(); 4603 for (uf = 0; uf < 8; uf++) { 4604 if (q.itd->hw_transaction[uf] & 4605 ITD_ACTIVE(fotg210)) 4606 break; 4607 } 4608 if (uf < 8) { 4609 q_p = &q.itd->itd_next; 4610 hw_p = &q.itd->hw_next; 4611 type = Q_NEXT_TYPE(fotg210, 4612 q.itd->hw_next); 4613 q = *q_p; 4614 break; 4615 } 4616 } 4617 4618 /* Take finished ITDs out of the schedule 4619 * and process them: recycle, maybe report 4620 * URB completion. HC won't cache the 4621 * pointer for much longer, if at all. 4622 */ 4623 *q_p = q.itd->itd_next; 4624 *hw_p = q.itd->hw_next; 4625 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next); 4626 wmb(); 4627 modified = itd_complete(fotg210, q.itd); 4628 q = *q_p; 4629 break; 4630 default: 4631 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n", 4632 type, frame, q.ptr); 4633 fallthrough; 4634 case Q_TYPE_QH: 4635 case Q_TYPE_FSTN: 4636 /* End of the iTDs and siTDs */ 4637 q.ptr = NULL; 4638 break; 4639 } 4640 4641 /* assume completion callbacks modify the queue */ 4642 if (unlikely(modified && fotg210->isoc_count > 0)) 4643 return -EINVAL; 4644 } 4645 return 0; 4646 } 4647 4648 static void scan_isoc(struct fotg210_hcd *fotg210) 4649 { 4650 unsigned uf, now_frame, frame, ret; 4651 unsigned fmask = fotg210->periodic_size - 1; 4652 bool live; 4653 4654 /* 4655 * When running, scan from last scan point up to "now" 4656 * else clean up by scanning everything that's left. 4657 * Touches as few pages as possible: cache-friendly. 4658 */ 4659 if (fotg210->rh_state >= FOTG210_RH_RUNNING) { 4660 uf = fotg210_read_frame_index(fotg210); 4661 now_frame = (uf >> 3) & fmask; 4662 live = true; 4663 } else { 4664 now_frame = (fotg210->next_frame - 1) & fmask; 4665 live = false; 4666 } 4667 fotg210->now_frame = now_frame; 4668 4669 frame = fotg210->next_frame; 4670 for (;;) { 4671 ret = 1; 4672 while (ret != 0) 4673 ret = scan_frame_queue(fotg210, frame, 4674 now_frame, live); 4675 4676 /* Stop when we have reached the current frame */ 4677 if (frame == now_frame) 4678 break; 4679 frame = (frame + 1) & fmask; 4680 } 4681 fotg210->next_frame = now_frame; 4682 } 4683 4684 /* Display / Set uframe_periodic_max 4685 */ 4686 static ssize_t uframe_periodic_max_show(struct device *dev, 4687 struct device_attribute *attr, char *buf) 4688 { 4689 struct fotg210_hcd *fotg210; 4690 int n; 4691 4692 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); 4693 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max); 4694 return n; 4695 } 4696 4697 4698 static ssize_t uframe_periodic_max_store(struct device *dev, 4699 struct device_attribute *attr, const char *buf, size_t count) 4700 { 4701 struct fotg210_hcd *fotg210; 4702 unsigned uframe_periodic_max; 4703 unsigned frame, uframe; 4704 unsigned short allocated_max; 4705 unsigned long flags; 4706 ssize_t ret; 4707 4708 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); 4709 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0) 4710 return -EINVAL; 4711 4712 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) { 4713 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n", 4714 uframe_periodic_max); 4715 return -EINVAL; 4716 } 4717 4718 ret = -EINVAL; 4719 4720 /* 4721 * lock, so that our checking does not race with possible periodic 4722 * bandwidth allocation through submitting new urbs. 4723 */ 4724 spin_lock_irqsave(&fotg210->lock, flags); 4725 4726 /* 4727 * for request to decrease max periodic bandwidth, we have to check 4728 * every microframe in the schedule to see whether the decrease is 4729 * possible. 4730 */ 4731 if (uframe_periodic_max < fotg210->uframe_periodic_max) { 4732 allocated_max = 0; 4733 4734 for (frame = 0; frame < fotg210->periodic_size; ++frame) 4735 for (uframe = 0; uframe < 7; ++uframe) 4736 allocated_max = max(allocated_max, 4737 periodic_usecs(fotg210, frame, 4738 uframe)); 4739 4740 if (allocated_max > uframe_periodic_max) { 4741 fotg210_info(fotg210, 4742 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n", 4743 allocated_max, uframe_periodic_max); 4744 goto out_unlock; 4745 } 4746 } 4747 4748 /* increasing is always ok */ 4749 4750 fotg210_info(fotg210, 4751 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n", 4752 100 * uframe_periodic_max/125, uframe_periodic_max); 4753 4754 if (uframe_periodic_max != 100) 4755 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n"); 4756 4757 fotg210->uframe_periodic_max = uframe_periodic_max; 4758 ret = count; 4759 4760 out_unlock: 4761 spin_unlock_irqrestore(&fotg210->lock, flags); 4762 return ret; 4763 } 4764 4765 static DEVICE_ATTR_RW(uframe_periodic_max); 4766 4767 static inline int create_sysfs_files(struct fotg210_hcd *fotg210) 4768 { 4769 struct device *controller = fotg210_to_hcd(fotg210)->self.controller; 4770 4771 return device_create_file(controller, &dev_attr_uframe_periodic_max); 4772 } 4773 4774 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210) 4775 { 4776 struct device *controller = fotg210_to_hcd(fotg210)->self.controller; 4777 4778 device_remove_file(controller, &dev_attr_uframe_periodic_max); 4779 } 4780 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 4781 * The firmware seems to think that powering off is a wakeup event! 4782 * This routine turns off remote wakeup and everything else, on all ports. 4783 */ 4784 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210) 4785 { 4786 u32 __iomem *status_reg = &fotg210->regs->port_status; 4787 4788 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg); 4789 } 4790 4791 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers. 4792 * Must be called with interrupts enabled and the lock not held. 4793 */ 4794 static void fotg210_silence_controller(struct fotg210_hcd *fotg210) 4795 { 4796 fotg210_halt(fotg210); 4797 4798 spin_lock_irq(&fotg210->lock); 4799 fotg210->rh_state = FOTG210_RH_HALTED; 4800 fotg210_turn_off_all_ports(fotg210); 4801 spin_unlock_irq(&fotg210->lock); 4802 } 4803 4804 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc). 4805 * This forcibly disables dma and IRQs, helping kexec and other cases 4806 * where the next system software may expect clean state. 4807 */ 4808 static void fotg210_shutdown(struct usb_hcd *hcd) 4809 { 4810 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4811 4812 spin_lock_irq(&fotg210->lock); 4813 fotg210->shutdown = true; 4814 fotg210->rh_state = FOTG210_RH_STOPPING; 4815 fotg210->enabled_hrtimer_events = 0; 4816 spin_unlock_irq(&fotg210->lock); 4817 4818 fotg210_silence_controller(fotg210); 4819 4820 hrtimer_cancel(&fotg210->hrtimer); 4821 } 4822 4823 /* fotg210_work is called from some interrupts, timers, and so on. 4824 * it calls driver completion functions, after dropping fotg210->lock. 4825 */ 4826 static void fotg210_work(struct fotg210_hcd *fotg210) 4827 { 4828 /* another CPU may drop fotg210->lock during a schedule scan while 4829 * it reports urb completions. this flag guards against bogus 4830 * attempts at re-entrant schedule scanning. 4831 */ 4832 if (fotg210->scanning) { 4833 fotg210->need_rescan = true; 4834 return; 4835 } 4836 fotg210->scanning = true; 4837 4838 rescan: 4839 fotg210->need_rescan = false; 4840 if (fotg210->async_count) 4841 scan_async(fotg210); 4842 if (fotg210->intr_count > 0) 4843 scan_intr(fotg210); 4844 if (fotg210->isoc_count > 0) 4845 scan_isoc(fotg210); 4846 if (fotg210->need_rescan) 4847 goto rescan; 4848 fotg210->scanning = false; 4849 4850 /* the IO watchdog guards against hardware or driver bugs that 4851 * misplace IRQs, and should let us run completely without IRQs. 4852 * such lossage has been observed on both VT6202 and VT8235. 4853 */ 4854 turn_on_io_watchdog(fotg210); 4855 } 4856 4857 /* Called when the fotg210_hcd module is removed. 4858 */ 4859 static void fotg210_stop(struct usb_hcd *hcd) 4860 { 4861 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4862 4863 fotg210_dbg(fotg210, "stop\n"); 4864 4865 /* no more interrupts ... */ 4866 4867 spin_lock_irq(&fotg210->lock); 4868 fotg210->enabled_hrtimer_events = 0; 4869 spin_unlock_irq(&fotg210->lock); 4870 4871 fotg210_quiesce(fotg210); 4872 fotg210_silence_controller(fotg210); 4873 fotg210_reset(fotg210); 4874 4875 hrtimer_cancel(&fotg210->hrtimer); 4876 remove_sysfs_files(fotg210); 4877 remove_debug_files(fotg210); 4878 4879 /* root hub is shut down separately (first, when possible) */ 4880 spin_lock_irq(&fotg210->lock); 4881 end_free_itds(fotg210); 4882 spin_unlock_irq(&fotg210->lock); 4883 fotg210_mem_cleanup(fotg210); 4884 4885 #ifdef FOTG210_STATS 4886 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n", 4887 fotg210->stats.normal, fotg210->stats.error, 4888 fotg210->stats.iaa, fotg210->stats.lost_iaa); 4889 fotg210_dbg(fotg210, "complete %ld unlink %ld\n", 4890 fotg210->stats.complete, fotg210->stats.unlink); 4891 #endif 4892 4893 dbg_status(fotg210, "fotg210_stop completed", 4894 fotg210_readl(fotg210, &fotg210->regs->status)); 4895 } 4896 4897 /* one-time init, only for memory state */ 4898 static int hcd_fotg210_init(struct usb_hcd *hcd) 4899 { 4900 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4901 u32 temp; 4902 int retval; 4903 u32 hcc_params; 4904 struct fotg210_qh_hw *hw; 4905 4906 spin_lock_init(&fotg210->lock); 4907 4908 /* 4909 * keep io watchdog by default, those good HCDs could turn off it later 4910 */ 4911 fotg210->need_io_watchdog = 1; 4912 4913 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 4914 fotg210->hrtimer.function = fotg210_hrtimer_func; 4915 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; 4916 4917 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 4918 4919 /* 4920 * by default set standard 80% (== 100 usec/uframe) max periodic 4921 * bandwidth as required by USB 2.0 4922 */ 4923 fotg210->uframe_periodic_max = 100; 4924 4925 /* 4926 * hw default: 1K periodic list heads, one per frame. 4927 * periodic_size can shrink by USBCMD update if hcc_params allows. 4928 */ 4929 fotg210->periodic_size = DEFAULT_I_TDPS; 4930 INIT_LIST_HEAD(&fotg210->intr_qh_list); 4931 INIT_LIST_HEAD(&fotg210->cached_itd_list); 4932 4933 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 4934 /* periodic schedule size can be smaller than default */ 4935 switch (FOTG210_TUNE_FLS) { 4936 case 0: 4937 fotg210->periodic_size = 1024; 4938 break; 4939 case 1: 4940 fotg210->periodic_size = 512; 4941 break; 4942 case 2: 4943 fotg210->periodic_size = 256; 4944 break; 4945 default: 4946 BUG(); 4947 } 4948 } 4949 retval = fotg210_mem_init(fotg210, GFP_KERNEL); 4950 if (retval < 0) 4951 return retval; 4952 4953 /* controllers may cache some of the periodic schedule ... */ 4954 fotg210->i_thresh = 2; 4955 4956 /* 4957 * dedicate a qh for the async ring head, since we couldn't unlink 4958 * a 'real' qh without stopping the async schedule [4.8]. use it 4959 * as the 'reclamation list head' too. 4960 * its dummy is used in hw_alt_next of many tds, to prevent the qh 4961 * from automatically advancing to the next td after short reads. 4962 */ 4963 fotg210->async->qh_next.qh = NULL; 4964 hw = fotg210->async->hw; 4965 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma); 4966 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD); 4967 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); 4968 hw->hw_qtd_next = FOTG210_LIST_END(fotg210); 4969 fotg210->async->qh_state = QH_STATE_LINKED; 4970 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma); 4971 4972 /* clear interrupt enables, set irq latency */ 4973 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 4974 log2_irq_thresh = 0; 4975 temp = 1 << (16 + log2_irq_thresh); 4976 if (HCC_CANPARK(hcc_params)) { 4977 /* HW default park == 3, on hardware that supports it (like 4978 * NVidia and ALI silicon), maximizes throughput on the async 4979 * schedule by avoiding QH fetches between transfers. 4980 * 4981 * With fast usb storage devices and NForce2, "park" seems to 4982 * make problems: throughput reduction (!), data errors... 4983 */ 4984 if (park) { 4985 park = min_t(unsigned, park, 3); 4986 temp |= CMD_PARK; 4987 temp |= park << 8; 4988 } 4989 fotg210_dbg(fotg210, "park %d\n", park); 4990 } 4991 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 4992 /* periodic schedule size can be smaller than default */ 4993 temp &= ~(3 << 2); 4994 temp |= (FOTG210_TUNE_FLS << 2); 4995 } 4996 fotg210->command = temp; 4997 4998 /* Accept arbitrarily long scatter-gather lists */ 4999 if (!hcd->localmem_pool) 5000 hcd->self.sg_tablesize = ~0; 5001 return 0; 5002 } 5003 5004 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */ 5005 static int fotg210_run(struct usb_hcd *hcd) 5006 { 5007 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5008 u32 temp; 5009 5010 hcd->uses_new_polling = 1; 5011 5012 /* EHCI spec section 4.1 */ 5013 5014 fotg210_writel(fotg210, fotg210->periodic_dma, 5015 &fotg210->regs->frame_list); 5016 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma, 5017 &fotg210->regs->async_next); 5018 5019 /* 5020 * hcc_params controls whether fotg210->regs->segment must (!!!) 5021 * be used; it constrains QH/ITD/SITD and QTD locations. 5022 * dma_pool consistent memory always uses segment zero. 5023 * streaming mappings for I/O buffers, like dma_map_single(), 5024 * can return segments above 4GB, if the device allows. 5025 * 5026 * NOTE: the dma mask is visible through dev->dma_mask, so 5027 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 5028 * Scsi_Host.highmem_io, and so forth. It's readonly to all 5029 * host side drivers though. 5030 */ 5031 fotg210_readl(fotg210, &fotg210->caps->hcc_params); 5032 5033 /* 5034 * Philips, Intel, and maybe others need CMD_RUN before the 5035 * root hub will detect new devices (why?); NEC doesn't 5036 */ 5037 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET); 5038 fotg210->command |= CMD_RUN; 5039 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 5040 dbg_cmd(fotg210, "init", fotg210->command); 5041 5042 /* 5043 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 5044 * are explicitly handed to companion controller(s), so no TT is 5045 * involved with the root hub. (Except where one is integrated, 5046 * and there's no companion controller unless maybe for USB OTG.) 5047 * 5048 * Turning on the CF flag will transfer ownership of all ports 5049 * from the companions to the EHCI controller. If any of the 5050 * companions are in the middle of a port reset at the time, it 5051 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem 5052 * guarantees that no resets are in progress. After we set CF, 5053 * a short delay lets the hardware catch up; new resets shouldn't 5054 * be started before the port switching actions could complete. 5055 */ 5056 down_write(&ehci_cf_port_reset_rwsem); 5057 fotg210->rh_state = FOTG210_RH_RUNNING; 5058 /* unblock posted writes */ 5059 fotg210_readl(fotg210, &fotg210->regs->command); 5060 usleep_range(5000, 10000); 5061 up_write(&ehci_cf_port_reset_rwsem); 5062 fotg210->last_periodic_enable = ktime_get_real(); 5063 5064 temp = HC_VERSION(fotg210, 5065 fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); 5066 fotg210_info(fotg210, 5067 "USB %x.%x started, EHCI %x.%02x\n", 5068 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f), 5069 temp >> 8, temp & 0xff); 5070 5071 fotg210_writel(fotg210, INTR_MASK, 5072 &fotg210->regs->intr_enable); /* Turn On Interrupts */ 5073 5074 /* GRR this is run-once init(), being done every time the HC starts. 5075 * So long as they're part of class devices, we can't do it init() 5076 * since the class device isn't created that early. 5077 */ 5078 create_debug_files(fotg210); 5079 create_sysfs_files(fotg210); 5080 5081 return 0; 5082 } 5083 5084 static int fotg210_setup(struct usb_hcd *hcd) 5085 { 5086 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5087 int retval; 5088 5089 fotg210->regs = (void __iomem *)fotg210->caps + 5090 HC_LENGTH(fotg210, 5091 fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); 5092 dbg_hcs_params(fotg210, "reset"); 5093 dbg_hcc_params(fotg210, "reset"); 5094 5095 /* cache this readonly data; minimize chip reads */ 5096 fotg210->hcs_params = fotg210_readl(fotg210, 5097 &fotg210->caps->hcs_params); 5098 5099 fotg210->sbrn = HCD_USB2; 5100 5101 /* data structure init */ 5102 retval = hcd_fotg210_init(hcd); 5103 if (retval) 5104 return retval; 5105 5106 retval = fotg210_halt(fotg210); 5107 if (retval) 5108 return retval; 5109 5110 fotg210_reset(fotg210); 5111 5112 return 0; 5113 } 5114 5115 static irqreturn_t fotg210_irq(struct usb_hcd *hcd) 5116 { 5117 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5118 u32 status, masked_status, pcd_status = 0, cmd; 5119 int bh; 5120 5121 spin_lock(&fotg210->lock); 5122 5123 status = fotg210_readl(fotg210, &fotg210->regs->status); 5124 5125 /* e.g. cardbus physical eject */ 5126 if (status == ~(u32) 0) { 5127 fotg210_dbg(fotg210, "device removed\n"); 5128 goto dead; 5129 } 5130 5131 /* 5132 * We don't use STS_FLR, but some controllers don't like it to 5133 * remain on, so mask it out along with the other status bits. 5134 */ 5135 masked_status = status & (INTR_MASK | STS_FLR); 5136 5137 /* Shared IRQ? */ 5138 if (!masked_status || 5139 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) { 5140 spin_unlock(&fotg210->lock); 5141 return IRQ_NONE; 5142 } 5143 5144 /* clear (just) interrupts */ 5145 fotg210_writel(fotg210, masked_status, &fotg210->regs->status); 5146 cmd = fotg210_readl(fotg210, &fotg210->regs->command); 5147 bh = 0; 5148 5149 /* unrequested/ignored: Frame List Rollover */ 5150 dbg_status(fotg210, "irq", status); 5151 5152 /* INT, ERR, and IAA interrupt rates can be throttled */ 5153 5154 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 5155 if (likely((status & (STS_INT|STS_ERR)) != 0)) { 5156 if (likely((status & STS_ERR) == 0)) 5157 INCR(fotg210->stats.normal); 5158 else 5159 INCR(fotg210->stats.error); 5160 bh = 1; 5161 } 5162 5163 /* complete the unlinking of some qh [4.15.2.3] */ 5164 if (status & STS_IAA) { 5165 5166 /* Turn off the IAA watchdog */ 5167 fotg210->enabled_hrtimer_events &= 5168 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG); 5169 5170 /* 5171 * Mild optimization: Allow another IAAD to reset the 5172 * hrtimer, if one occurs before the next expiration. 5173 * In theory we could always cancel the hrtimer, but 5174 * tests show that about half the time it will be reset 5175 * for some other event anyway. 5176 */ 5177 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG) 5178 ++fotg210->next_hrtimer_event; 5179 5180 /* guard against (alleged) silicon errata */ 5181 if (cmd & CMD_IAAD) 5182 fotg210_dbg(fotg210, "IAA with IAAD still set?\n"); 5183 if (fotg210->async_iaa) { 5184 INCR(fotg210->stats.iaa); 5185 end_unlink_async(fotg210); 5186 } else 5187 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n"); 5188 } 5189 5190 /* remote wakeup [4.3.1] */ 5191 if (status & STS_PCD) { 5192 int pstatus; 5193 u32 __iomem *status_reg = &fotg210->regs->port_status; 5194 5195 /* kick root hub later */ 5196 pcd_status = status; 5197 5198 /* resume root hub? */ 5199 if (fotg210->rh_state == FOTG210_RH_SUSPENDED) 5200 usb_hcd_resume_root_hub(hcd); 5201 5202 pstatus = fotg210_readl(fotg210, status_reg); 5203 5204 if (test_bit(0, &fotg210->suspended_ports) && 5205 ((pstatus & PORT_RESUME) || 5206 !(pstatus & PORT_SUSPEND)) && 5207 (pstatus & PORT_PE) && 5208 fotg210->reset_done[0] == 0) { 5209 5210 /* start 20 msec resume signaling from this port, 5211 * and make hub_wq collect PORT_STAT_C_SUSPEND to 5212 * stop that signaling. Use 5 ms extra for safety, 5213 * like usb_port_resume() does. 5214 */ 5215 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25); 5216 set_bit(0, &fotg210->resuming_ports); 5217 fotg210_dbg(fotg210, "port 1 remote wakeup\n"); 5218 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]); 5219 } 5220 } 5221 5222 /* PCI errors [4.15.2.4] */ 5223 if (unlikely((status & STS_FATAL) != 0)) { 5224 fotg210_err(fotg210, "fatal error\n"); 5225 dbg_cmd(fotg210, "fatal", cmd); 5226 dbg_status(fotg210, "fatal", status); 5227 dead: 5228 usb_hc_died(hcd); 5229 5230 /* Don't let the controller do anything more */ 5231 fotg210->shutdown = true; 5232 fotg210->rh_state = FOTG210_RH_STOPPING; 5233 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE); 5234 fotg210_writel(fotg210, fotg210->command, 5235 &fotg210->regs->command); 5236 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 5237 fotg210_handle_controller_death(fotg210); 5238 5239 /* Handle completions when the controller stops */ 5240 bh = 0; 5241 } 5242 5243 if (bh) 5244 fotg210_work(fotg210); 5245 spin_unlock(&fotg210->lock); 5246 if (pcd_status) 5247 usb_hcd_poll_rh_status(hcd); 5248 return IRQ_HANDLED; 5249 } 5250 5251 /* non-error returns are a promise to giveback() the urb later 5252 * we drop ownership so next owner (or urb unlink) can get it 5253 * 5254 * urb + dev is in hcd.self.controller.urb_list 5255 * we're queueing TDs onto software and hardware lists 5256 * 5257 * hcd-specific init for hcpriv hasn't been done yet 5258 * 5259 * NOTE: control, bulk, and interrupt share the same code to append TDs 5260 * to a (possibly active) QH, and the same QH scanning code. 5261 */ 5262 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 5263 gfp_t mem_flags) 5264 { 5265 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5266 struct list_head qtd_list; 5267 5268 INIT_LIST_HEAD(&qtd_list); 5269 5270 switch (usb_pipetype(urb->pipe)) { 5271 case PIPE_CONTROL: 5272 /* qh_completions() code doesn't handle all the fault cases 5273 * in multi-TD control transfers. Even 1KB is rare anyway. 5274 */ 5275 if (urb->transfer_buffer_length > (16 * 1024)) 5276 return -EMSGSIZE; 5277 fallthrough; 5278 /* case PIPE_BULK: */ 5279 default: 5280 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) 5281 return -ENOMEM; 5282 return submit_async(fotg210, urb, &qtd_list, mem_flags); 5283 5284 case PIPE_INTERRUPT: 5285 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) 5286 return -ENOMEM; 5287 return intr_submit(fotg210, urb, &qtd_list, mem_flags); 5288 5289 case PIPE_ISOCHRONOUS: 5290 return itd_submit(fotg210, urb, mem_flags); 5291 } 5292 } 5293 5294 /* remove from hardware lists 5295 * completions normally happen asynchronously 5296 */ 5297 5298 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 5299 { 5300 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5301 struct fotg210_qh *qh; 5302 unsigned long flags; 5303 int rc; 5304 5305 spin_lock_irqsave(&fotg210->lock, flags); 5306 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 5307 if (rc) 5308 goto done; 5309 5310 switch (usb_pipetype(urb->pipe)) { 5311 /* case PIPE_CONTROL: */ 5312 /* case PIPE_BULK:*/ 5313 default: 5314 qh = (struct fotg210_qh *) urb->hcpriv; 5315 if (!qh) 5316 break; 5317 switch (qh->qh_state) { 5318 case QH_STATE_LINKED: 5319 case QH_STATE_COMPLETING: 5320 start_unlink_async(fotg210, qh); 5321 break; 5322 case QH_STATE_UNLINK: 5323 case QH_STATE_UNLINK_WAIT: 5324 /* already started */ 5325 break; 5326 case QH_STATE_IDLE: 5327 /* QH might be waiting for a Clear-TT-Buffer */ 5328 qh_completions(fotg210, qh); 5329 break; 5330 } 5331 break; 5332 5333 case PIPE_INTERRUPT: 5334 qh = (struct fotg210_qh *) urb->hcpriv; 5335 if (!qh) 5336 break; 5337 switch (qh->qh_state) { 5338 case QH_STATE_LINKED: 5339 case QH_STATE_COMPLETING: 5340 start_unlink_intr(fotg210, qh); 5341 break; 5342 case QH_STATE_IDLE: 5343 qh_completions(fotg210, qh); 5344 break; 5345 default: 5346 fotg210_dbg(fotg210, "bogus qh %p state %d\n", 5347 qh, qh->qh_state); 5348 goto done; 5349 } 5350 break; 5351 5352 case PIPE_ISOCHRONOUS: 5353 /* itd... */ 5354 5355 /* wait till next completion, do it then. */ 5356 /* completion irqs can wait up to 1024 msec, */ 5357 break; 5358 } 5359 done: 5360 spin_unlock_irqrestore(&fotg210->lock, flags); 5361 return rc; 5362 } 5363 5364 /* bulk qh holds the data toggle */ 5365 5366 static void fotg210_endpoint_disable(struct usb_hcd *hcd, 5367 struct usb_host_endpoint *ep) 5368 { 5369 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5370 unsigned long flags; 5371 struct fotg210_qh *qh, *tmp; 5372 5373 /* ASSERT: any requests/urbs are being unlinked */ 5374 /* ASSERT: nobody can be submitting urbs for this any more */ 5375 5376 rescan: 5377 spin_lock_irqsave(&fotg210->lock, flags); 5378 qh = ep->hcpriv; 5379 if (!qh) 5380 goto done; 5381 5382 /* endpoints can be iso streams. for now, we don't 5383 * accelerate iso completions ... so spin a while. 5384 */ 5385 if (qh->hw == NULL) { 5386 struct fotg210_iso_stream *stream = ep->hcpriv; 5387 5388 if (!list_empty(&stream->td_list)) 5389 goto idle_timeout; 5390 5391 /* BUG_ON(!list_empty(&stream->free_list)); */ 5392 kfree(stream); 5393 goto done; 5394 } 5395 5396 if (fotg210->rh_state < FOTG210_RH_RUNNING) 5397 qh->qh_state = QH_STATE_IDLE; 5398 switch (qh->qh_state) { 5399 case QH_STATE_LINKED: 5400 case QH_STATE_COMPLETING: 5401 for (tmp = fotg210->async->qh_next.qh; 5402 tmp && tmp != qh; 5403 tmp = tmp->qh_next.qh) 5404 continue; 5405 /* periodic qh self-unlinks on empty, and a COMPLETING qh 5406 * may already be unlinked. 5407 */ 5408 if (tmp) 5409 start_unlink_async(fotg210, qh); 5410 fallthrough; 5411 case QH_STATE_UNLINK: /* wait for hw to finish? */ 5412 case QH_STATE_UNLINK_WAIT: 5413 idle_timeout: 5414 spin_unlock_irqrestore(&fotg210->lock, flags); 5415 schedule_timeout_uninterruptible(1); 5416 goto rescan; 5417 case QH_STATE_IDLE: /* fully unlinked */ 5418 if (qh->clearing_tt) 5419 goto idle_timeout; 5420 if (list_empty(&qh->qtd_list)) { 5421 qh_destroy(fotg210, qh); 5422 break; 5423 } 5424 fallthrough; 5425 default: 5426 /* caller was supposed to have unlinked any requests; 5427 * that's not our job. just leak this memory. 5428 */ 5429 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n", 5430 qh, ep->desc.bEndpointAddress, qh->qh_state, 5431 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 5432 break; 5433 } 5434 done: 5435 ep->hcpriv = NULL; 5436 spin_unlock_irqrestore(&fotg210->lock, flags); 5437 } 5438 5439 static void fotg210_endpoint_reset(struct usb_hcd *hcd, 5440 struct usb_host_endpoint *ep) 5441 { 5442 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5443 struct fotg210_qh *qh; 5444 int eptype = usb_endpoint_type(&ep->desc); 5445 int epnum = usb_endpoint_num(&ep->desc); 5446 int is_out = usb_endpoint_dir_out(&ep->desc); 5447 unsigned long flags; 5448 5449 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT) 5450 return; 5451 5452 spin_lock_irqsave(&fotg210->lock, flags); 5453 qh = ep->hcpriv; 5454 5455 /* For Bulk and Interrupt endpoints we maintain the toggle state 5456 * in the hardware; the toggle bits in udev aren't used at all. 5457 * When an endpoint is reset by usb_clear_halt() we must reset 5458 * the toggle bit in the QH. 5459 */ 5460 if (qh) { 5461 usb_settoggle(qh->dev, epnum, is_out, 0); 5462 if (!list_empty(&qh->qtd_list)) { 5463 WARN_ONCE(1, "clear_halt for a busy endpoint\n"); 5464 } else if (qh->qh_state == QH_STATE_LINKED || 5465 qh->qh_state == QH_STATE_COMPLETING) { 5466 5467 /* The toggle value in the QH can't be updated 5468 * while the QH is active. Unlink it now; 5469 * re-linking will call qh_refresh(). 5470 */ 5471 if (eptype == USB_ENDPOINT_XFER_BULK) 5472 start_unlink_async(fotg210, qh); 5473 else 5474 start_unlink_intr(fotg210, qh); 5475 } 5476 } 5477 spin_unlock_irqrestore(&fotg210->lock, flags); 5478 } 5479 5480 static int fotg210_get_frame(struct usb_hcd *hcd) 5481 { 5482 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5483 5484 return (fotg210_read_frame_index(fotg210) >> 3) % 5485 fotg210->periodic_size; 5486 } 5487 5488 /* The EHCI in ChipIdea HDRC cannot be a separate module or device, 5489 * because its registers (and irq) are shared between host/gadget/otg 5490 * functions and in order to facilitate role switching we cannot 5491 * give the fotg210 driver exclusive access to those. 5492 */ 5493 5494 static const struct hc_driver fotg210_fotg210_hc_driver = { 5495 .description = hcd_name, 5496 .product_desc = "Faraday USB2.0 Host Controller", 5497 .hcd_priv_size = sizeof(struct fotg210_hcd), 5498 5499 /* 5500 * generic hardware linkage 5501 */ 5502 .irq = fotg210_irq, 5503 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2, 5504 5505 /* 5506 * basic lifecycle operations 5507 */ 5508 .reset = hcd_fotg210_init, 5509 .start = fotg210_run, 5510 .stop = fotg210_stop, 5511 .shutdown = fotg210_shutdown, 5512 5513 /* 5514 * managing i/o requests and associated device resources 5515 */ 5516 .urb_enqueue = fotg210_urb_enqueue, 5517 .urb_dequeue = fotg210_urb_dequeue, 5518 .endpoint_disable = fotg210_endpoint_disable, 5519 .endpoint_reset = fotg210_endpoint_reset, 5520 5521 /* 5522 * scheduling support 5523 */ 5524 .get_frame_number = fotg210_get_frame, 5525 5526 /* 5527 * root hub support 5528 */ 5529 .hub_status_data = fotg210_hub_status_data, 5530 .hub_control = fotg210_hub_control, 5531 .bus_suspend = fotg210_bus_suspend, 5532 .bus_resume = fotg210_bus_resume, 5533 5534 .relinquish_port = fotg210_relinquish_port, 5535 .port_handed_over = fotg210_port_handed_over, 5536 5537 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete, 5538 }; 5539 5540 static void fotg210_init(struct fotg210_hcd *fotg210) 5541 { 5542 u32 value; 5543 5544 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY, 5545 &fotg210->regs->gmir); 5546 5547 value = ioread32(&fotg210->regs->otgcsr); 5548 value &= ~OTGCSR_A_BUS_DROP; 5549 value |= OTGCSR_A_BUS_REQ; 5550 iowrite32(value, &fotg210->regs->otgcsr); 5551 } 5552 5553 /* 5554 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs 5555 * 5556 * Allocates basic resources for this USB host controller, and 5557 * then invokes the start() method for the HCD associated with it 5558 * through the hotplug entry's driver_data. 5559 */ 5560 int fotg210_hcd_probe(struct platform_device *pdev) 5561 { 5562 struct device *dev = &pdev->dev; 5563 struct usb_hcd *hcd; 5564 struct resource *res; 5565 int irq; 5566 int retval; 5567 struct fotg210_hcd *fotg210; 5568 5569 if (usb_disabled()) 5570 return -ENODEV; 5571 5572 pdev->dev.power.power_state = PMSG_ON; 5573 5574 irq = platform_get_irq(pdev, 0); 5575 if (irq < 0) 5576 return irq; 5577 5578 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev, 5579 dev_name(dev)); 5580 if (!hcd) { 5581 dev_err(dev, "failed to create hcd\n"); 5582 retval = -ENOMEM; 5583 goto fail_create_hcd; 5584 } 5585 5586 hcd->has_tt = 1; 5587 5588 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 5589 hcd->regs = devm_ioremap_resource(&pdev->dev, res); 5590 if (IS_ERR(hcd->regs)) { 5591 retval = PTR_ERR(hcd->regs); 5592 goto failed_put_hcd; 5593 } 5594 5595 hcd->rsrc_start = res->start; 5596 hcd->rsrc_len = resource_size(res); 5597 5598 fotg210 = hcd_to_fotg210(hcd); 5599 5600 fotg210->caps = hcd->regs; 5601 5602 /* It's OK not to supply this clock */ 5603 fotg210->pclk = clk_get(dev, "PCLK"); 5604 if (!IS_ERR(fotg210->pclk)) { 5605 retval = clk_prepare_enable(fotg210->pclk); 5606 if (retval) { 5607 dev_err(dev, "failed to enable PCLK\n"); 5608 goto failed_put_hcd; 5609 } 5610 } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) { 5611 /* 5612 * Percolate deferrals, for anything else, 5613 * just live without the clocking. 5614 */ 5615 retval = PTR_ERR(fotg210->pclk); 5616 goto failed_dis_clk; 5617 } 5618 5619 retval = fotg210_setup(hcd); 5620 if (retval) 5621 goto failed_dis_clk; 5622 5623 fotg210_init(fotg210); 5624 5625 retval = usb_add_hcd(hcd, irq, IRQF_SHARED); 5626 if (retval) { 5627 dev_err(dev, "failed to add hcd with err %d\n", retval); 5628 goto failed_dis_clk; 5629 } 5630 device_wakeup_enable(hcd->self.controller); 5631 platform_set_drvdata(pdev, hcd); 5632 5633 return retval; 5634 5635 failed_dis_clk: 5636 if (!IS_ERR(fotg210->pclk)) { 5637 clk_disable_unprepare(fotg210->pclk); 5638 clk_put(fotg210->pclk); 5639 } 5640 failed_put_hcd: 5641 usb_put_hcd(hcd); 5642 fail_create_hcd: 5643 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval); 5644 return retval; 5645 } 5646 5647 /* 5648 * fotg210_hcd_remove - shutdown processing for EHCI HCDs 5649 * @dev: USB Host Controller being removed 5650 * 5651 */ 5652 int fotg210_hcd_remove(struct platform_device *pdev) 5653 { 5654 struct usb_hcd *hcd = platform_get_drvdata(pdev); 5655 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5656 5657 if (!IS_ERR(fotg210->pclk)) { 5658 clk_disable_unprepare(fotg210->pclk); 5659 clk_put(fotg210->pclk); 5660 } 5661 5662 usb_remove_hcd(hcd); 5663 usb_put_hcd(hcd); 5664 5665 return 0; 5666 } 5667 5668 int __init fotg210_hcd_init(void) 5669 { 5670 if (usb_disabled()) 5671 return -ENODEV; 5672 5673 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5674 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) || 5675 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded)) 5676 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n"); 5677 5678 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n", 5679 hcd_name, sizeof(struct fotg210_qh), 5680 sizeof(struct fotg210_qtd), 5681 sizeof(struct fotg210_itd)); 5682 5683 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root); 5684 5685 return 0; 5686 } 5687 5688 void __exit fotg210_hcd_cleanup(void) 5689 { 5690 debugfs_remove(fotg210_debug_root); 5691 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5692 } 5693