1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Faraday FOTG210 EHCI-like driver 3 * 4 * Copyright (c) 2013 Faraday Technology Corporation 5 * 6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com> 7 * Feng-Hsin Chiang <john453@faraday-tech.com> 8 * Po-Yu Chuang <ratbert.chuang@gmail.com> 9 * 10 * Most of code borrowed from the Linux-3.7 EHCI driver 11 */ 12 #include <linux/module.h> 13 #include <linux/of.h> 14 #include <linux/device.h> 15 #include <linux/dmapool.h> 16 #include <linux/kernel.h> 17 #include <linux/delay.h> 18 #include <linux/ioport.h> 19 #include <linux/sched.h> 20 #include <linux/vmalloc.h> 21 #include <linux/errno.h> 22 #include <linux/init.h> 23 #include <linux/hrtimer.h> 24 #include <linux/list.h> 25 #include <linux/interrupt.h> 26 #include <linux/usb.h> 27 #include <linux/usb/hcd.h> 28 #include <linux/moduleparam.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/debugfs.h> 31 #include <linux/slab.h> 32 #include <linux/uaccess.h> 33 #include <linux/platform_device.h> 34 #include <linux/io.h> 35 #include <linux/iopoll.h> 36 37 #include <asm/byteorder.h> 38 #include <asm/irq.h> 39 #include <asm/unaligned.h> 40 41 #include "fotg210.h" 42 43 static const char hcd_name[] = "fotg210_hcd"; 44 45 #undef FOTG210_URB_TRACE 46 #define FOTG210_STATS 47 48 /* magic numbers that can affect system performance */ 49 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ 50 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ 51 #define FOTG210_TUNE_RL_TT 0 52 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ 53 #define FOTG210_TUNE_MULT_TT 1 54 55 /* Some drivers think it's safe to schedule isochronous transfers more than 256 56 * ms into the future (partly as a result of an old bug in the scheduling 57 * code). In an attempt to avoid trouble, we will use a minimum scheduling 58 * length of 512 frames instead of 256. 59 */ 60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */ 61 62 /* Initial IRQ latency: faster than hw default */ 63 static int log2_irq_thresh; /* 0 to 6 */ 64 module_param(log2_irq_thresh, int, S_IRUGO); 65 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 66 67 /* initial park setting: slower than hw default */ 68 static unsigned park; 69 module_param(park, uint, S_IRUGO); 70 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 71 72 /* for link power management(LPM) feature */ 73 static unsigned int hird; 74 module_param(hird, int, S_IRUGO); 75 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us"); 76 77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) 78 79 #include "fotg210-hcd.h" 80 81 #define fotg210_dbg(fotg210, fmt, args...) \ 82 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 83 #define fotg210_err(fotg210, fmt, args...) \ 84 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 85 #define fotg210_info(fotg210, fmt, args...) \ 86 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 87 #define fotg210_warn(fotg210, fmt, args...) \ 88 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 89 90 /* check the values in the HCSPARAMS register (host controller _Structural_ 91 * parameters) see EHCI spec, Table 2-4 for each value 92 */ 93 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label) 94 { 95 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params); 96 97 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params, 98 HCS_N_PORTS(params)); 99 } 100 101 /* check the values in the HCCPARAMS register (host controller _Capability_ 102 * parameters) see EHCI Spec, Table 2-5 for each value 103 */ 104 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label) 105 { 106 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 107 108 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label, 109 params, 110 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024", 111 HCC_CANPARK(params) ? " park" : ""); 112 } 113 114 static void __maybe_unused 115 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd) 116 { 117 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd, 118 hc32_to_cpup(fotg210, &qtd->hw_next), 119 hc32_to_cpup(fotg210, &qtd->hw_alt_next), 120 hc32_to_cpup(fotg210, &qtd->hw_token), 121 hc32_to_cpup(fotg210, &qtd->hw_buf[0])); 122 if (qtd->hw_buf[1]) 123 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n", 124 hc32_to_cpup(fotg210, &qtd->hw_buf[1]), 125 hc32_to_cpup(fotg210, &qtd->hw_buf[2]), 126 hc32_to_cpup(fotg210, &qtd->hw_buf[3]), 127 hc32_to_cpup(fotg210, &qtd->hw_buf[4])); 128 } 129 130 static void __maybe_unused 131 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 132 { 133 struct fotg210_qh_hw *hw = qh->hw; 134 135 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh, 136 hw->hw_next, hw->hw_info1, hw->hw_info2, 137 hw->hw_current); 138 139 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next); 140 } 141 142 static void __maybe_unused 143 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd) 144 { 145 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label, 146 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next), 147 itd->urb); 148 149 fotg210_dbg(fotg210, 150 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n", 151 hc32_to_cpu(fotg210, itd->hw_transaction[0]), 152 hc32_to_cpu(fotg210, itd->hw_transaction[1]), 153 hc32_to_cpu(fotg210, itd->hw_transaction[2]), 154 hc32_to_cpu(fotg210, itd->hw_transaction[3]), 155 hc32_to_cpu(fotg210, itd->hw_transaction[4]), 156 hc32_to_cpu(fotg210, itd->hw_transaction[5]), 157 hc32_to_cpu(fotg210, itd->hw_transaction[6]), 158 hc32_to_cpu(fotg210, itd->hw_transaction[7])); 159 160 fotg210_dbg(fotg210, 161 " buf: %08x %08x %08x %08x %08x %08x %08x\n", 162 hc32_to_cpu(fotg210, itd->hw_bufp[0]), 163 hc32_to_cpu(fotg210, itd->hw_bufp[1]), 164 hc32_to_cpu(fotg210, itd->hw_bufp[2]), 165 hc32_to_cpu(fotg210, itd->hw_bufp[3]), 166 hc32_to_cpu(fotg210, itd->hw_bufp[4]), 167 hc32_to_cpu(fotg210, itd->hw_bufp[5]), 168 hc32_to_cpu(fotg210, itd->hw_bufp[6])); 169 170 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n", 171 itd->index[0], itd->index[1], itd->index[2], 172 itd->index[3], itd->index[4], itd->index[5], 173 itd->index[6], itd->index[7]); 174 } 175 176 static int __maybe_unused 177 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 178 { 179 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 180 label, label[0] ? " " : "", status, 181 (status & STS_ASS) ? " Async" : "", 182 (status & STS_PSS) ? " Periodic" : "", 183 (status & STS_RECL) ? " Recl" : "", 184 (status & STS_HALT) ? " Halt" : "", 185 (status & STS_IAA) ? " IAA" : "", 186 (status & STS_FATAL) ? " FATAL" : "", 187 (status & STS_FLR) ? " FLR" : "", 188 (status & STS_PCD) ? " PCD" : "", 189 (status & STS_ERR) ? " ERR" : "", 190 (status & STS_INT) ? " INT" : ""); 191 } 192 193 static int __maybe_unused 194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 195 { 196 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 197 label, label[0] ? " " : "", enable, 198 (enable & STS_IAA) ? " IAA" : "", 199 (enable & STS_FATAL) ? " FATAL" : "", 200 (enable & STS_FLR) ? " FLR" : "", 201 (enable & STS_PCD) ? " PCD" : "", 202 (enable & STS_ERR) ? " ERR" : "", 203 (enable & STS_INT) ? " INT" : ""); 204 } 205 206 static const char *const fls_strings[] = { "1024", "512", "256", "??" }; 207 208 static int dbg_command_buf(char *buf, unsigned len, const char *label, 209 u32 command) 210 { 211 return scnprintf(buf, len, 212 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s", 213 label, label[0] ? " " : "", command, 214 (command & CMD_PARK) ? " park" : "(park)", 215 CMD_PARK_CNT(command), 216 (command >> 16) & 0x3f, 217 (command & CMD_IAAD) ? " IAAD" : "", 218 (command & CMD_ASE) ? " Async" : "", 219 (command & CMD_PSE) ? " Periodic" : "", 220 fls_strings[(command >> 2) & 0x3], 221 (command & CMD_RESET) ? " Reset" : "", 222 (command & CMD_RUN) ? "RUN" : "HALT"); 223 } 224 225 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port, 226 u32 status) 227 { 228 char *sig; 229 230 /* signaling state */ 231 switch (status & (3 << 10)) { 232 case 0 << 10: 233 sig = "se0"; 234 break; 235 case 1 << 10: 236 sig = "k"; 237 break; /* low speed */ 238 case 2 << 10: 239 sig = "j"; 240 break; 241 default: 242 sig = "?"; 243 break; 244 } 245 246 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s", 247 label, label[0] ? " " : "", port, status, 248 status >> 25, /*device address */ 249 sig, 250 (status & PORT_RESET) ? " RESET" : "", 251 (status & PORT_SUSPEND) ? " SUSPEND" : "", 252 (status & PORT_RESUME) ? " RESUME" : "", 253 (status & PORT_PEC) ? " PEC" : "", 254 (status & PORT_PE) ? " PE" : "", 255 (status & PORT_CSC) ? " CSC" : "", 256 (status & PORT_CONNECT) ? " CONNECT" : ""); 257 258 return buf; 259 } 260 261 /* functions have the "wrong" filename when they're output... */ 262 #define dbg_status(fotg210, label, status) { \ 263 char _buf[80]; \ 264 dbg_status_buf(_buf, sizeof(_buf), label, status); \ 265 fotg210_dbg(fotg210, "%s\n", _buf); \ 266 } 267 268 #define dbg_cmd(fotg210, label, command) { \ 269 char _buf[80]; \ 270 dbg_command_buf(_buf, sizeof(_buf), label, command); \ 271 fotg210_dbg(fotg210, "%s\n", _buf); \ 272 } 273 274 #define dbg_port(fotg210, label, port, status) { \ 275 char _buf[80]; \ 276 fotg210_dbg(fotg210, "%s\n", \ 277 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\ 278 } 279 280 /* troubleshooting help: expose state in debugfs */ 281 static int debug_async_open(struct inode *, struct file *); 282 static int debug_periodic_open(struct inode *, struct file *); 283 static int debug_registers_open(struct inode *, struct file *); 284 static int debug_async_open(struct inode *, struct file *); 285 286 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*); 287 static int debug_close(struct inode *, struct file *); 288 289 static const struct file_operations debug_async_fops = { 290 .owner = THIS_MODULE, 291 .open = debug_async_open, 292 .read = debug_output, 293 .release = debug_close, 294 .llseek = default_llseek, 295 }; 296 static const struct file_operations debug_periodic_fops = { 297 .owner = THIS_MODULE, 298 .open = debug_periodic_open, 299 .read = debug_output, 300 .release = debug_close, 301 .llseek = default_llseek, 302 }; 303 static const struct file_operations debug_registers_fops = { 304 .owner = THIS_MODULE, 305 .open = debug_registers_open, 306 .read = debug_output, 307 .release = debug_close, 308 .llseek = default_llseek, 309 }; 310 311 static struct dentry *fotg210_debug_root; 312 313 struct debug_buffer { 314 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */ 315 struct usb_bus *bus; 316 struct mutex mutex; /* protect filling of buffer */ 317 size_t count; /* number of characters filled into buffer */ 318 char *output_buf; 319 size_t alloc_size; 320 }; 321 322 static inline char speed_char(u32 scratch) 323 { 324 switch (scratch & (3 << 12)) { 325 case QH_FULL_SPEED: 326 return 'f'; 327 328 case QH_LOW_SPEED: 329 return 'l'; 330 331 case QH_HIGH_SPEED: 332 return 'h'; 333 334 default: 335 return '?'; 336 } 337 } 338 339 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token) 340 { 341 __u32 v = hc32_to_cpu(fotg210, token); 342 343 if (v & QTD_STS_ACTIVE) 344 return '*'; 345 if (v & QTD_STS_HALT) 346 return '-'; 347 if (!IS_SHORT_READ(v)) 348 return ' '; 349 /* tries to advance through hw_alt_next */ 350 return '/'; 351 } 352 353 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh, 354 char **nextp, unsigned *sizep) 355 { 356 u32 scratch; 357 u32 hw_curr; 358 struct fotg210_qtd *td; 359 unsigned temp; 360 unsigned size = *sizep; 361 char *next = *nextp; 362 char mark; 363 __le32 list_end = FOTG210_LIST_END(fotg210); 364 struct fotg210_qh_hw *hw = qh->hw; 365 366 if (hw->hw_qtd_next == list_end) /* NEC does this */ 367 mark = '@'; 368 else 369 mark = token_mark(fotg210, hw->hw_token); 370 if (mark == '/') { /* qh_alt_next controls qh advance? */ 371 if ((hw->hw_alt_next & QTD_MASK(fotg210)) == 372 fotg210->async->hw->hw_alt_next) 373 mark = '#'; /* blocked */ 374 else if (hw->hw_alt_next == list_end) 375 mark = '.'; /* use hw_qtd_next */ 376 /* else alt_next points to some other qtd */ 377 } 378 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); 379 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0; 380 temp = scnprintf(next, size, 381 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)", 382 qh, scratch & 0x007f, 383 speed_char(scratch), 384 (scratch >> 8) & 0x000f, 385 scratch, hc32_to_cpup(fotg210, &hw->hw_info2), 386 hc32_to_cpup(fotg210, &hw->hw_token), mark, 387 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token) 388 ? "data1" : "data0", 389 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f); 390 size -= temp; 391 next += temp; 392 393 /* hc may be modifying the list as we read it ... */ 394 list_for_each_entry(td, &qh->qtd_list, qtd_list) { 395 scratch = hc32_to_cpup(fotg210, &td->hw_token); 396 mark = ' '; 397 if (hw_curr == td->qtd_dma) 398 mark = '*'; 399 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma)) 400 mark = '+'; 401 else if (QTD_LENGTH(scratch)) { 402 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next) 403 mark = '#'; 404 else if (td->hw_alt_next != list_end) 405 mark = '/'; 406 } 407 temp = snprintf(next, size, 408 "\n\t%p%c%s len=%d %08x urb %p", 409 td, mark, ({ char *tmp; 410 switch ((scratch>>8)&0x03) { 411 case 0: 412 tmp = "out"; 413 break; 414 case 1: 415 tmp = "in"; 416 break; 417 case 2: 418 tmp = "setup"; 419 break; 420 default: 421 tmp = "?"; 422 break; 423 } tmp; }), 424 (scratch >> 16) & 0x7fff, 425 scratch, 426 td->urb); 427 if (size < temp) 428 temp = size; 429 size -= temp; 430 next += temp; 431 } 432 433 temp = snprintf(next, size, "\n"); 434 if (size < temp) 435 temp = size; 436 437 size -= temp; 438 next += temp; 439 440 *sizep = size; 441 *nextp = next; 442 } 443 444 static ssize_t fill_async_buffer(struct debug_buffer *buf) 445 { 446 struct usb_hcd *hcd; 447 struct fotg210_hcd *fotg210; 448 unsigned long flags; 449 unsigned temp, size; 450 char *next; 451 struct fotg210_qh *qh; 452 453 hcd = bus_to_hcd(buf->bus); 454 fotg210 = hcd_to_fotg210(hcd); 455 next = buf->output_buf; 456 size = buf->alloc_size; 457 458 *next = 0; 459 460 /* dumps a snapshot of the async schedule. 461 * usually empty except for long-term bulk reads, or head. 462 * one QH per line, and TDs we know about 463 */ 464 spin_lock_irqsave(&fotg210->lock, flags); 465 for (qh = fotg210->async->qh_next.qh; size > 0 && qh; 466 qh = qh->qh_next.qh) 467 qh_lines(fotg210, qh, &next, &size); 468 if (fotg210->async_unlink && size > 0) { 469 temp = scnprintf(next, size, "\nunlink =\n"); 470 size -= temp; 471 next += temp; 472 473 for (qh = fotg210->async_unlink; size > 0 && qh; 474 qh = qh->unlink_next) 475 qh_lines(fotg210, qh, &next, &size); 476 } 477 spin_unlock_irqrestore(&fotg210->lock, flags); 478 479 return strlen(buf->output_buf); 480 } 481 482 /* count tds, get ep direction */ 483 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210, 484 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size) 485 { 486 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); 487 struct fotg210_qtd *qtd; 488 char *type = ""; 489 unsigned temp = 0; 490 491 /* count tds, get ep direction */ 492 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) { 493 temp++; 494 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) { 495 case 0: 496 type = "out"; 497 continue; 498 case 1: 499 type = "in"; 500 continue; 501 } 502 } 503 504 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)", 505 speed_char(scratch), scratch & 0x007f, 506 (scratch >> 8) & 0x000f, type, qh->usecs, 507 qh->c_usecs, temp, (scratch >> 16) & 0x7ff); 508 } 509 510 #define DBG_SCHED_LIMIT 64 511 static ssize_t fill_periodic_buffer(struct debug_buffer *buf) 512 { 513 struct usb_hcd *hcd; 514 struct fotg210_hcd *fotg210; 515 unsigned long flags; 516 union fotg210_shadow p, *seen; 517 unsigned temp, size, seen_count; 518 char *next; 519 unsigned i; 520 __hc32 tag; 521 522 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC); 523 if (!seen) 524 return 0; 525 526 seen_count = 0; 527 528 hcd = bus_to_hcd(buf->bus); 529 fotg210 = hcd_to_fotg210(hcd); 530 next = buf->output_buf; 531 size = buf->alloc_size; 532 533 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size); 534 size -= temp; 535 next += temp; 536 537 /* dump a snapshot of the periodic schedule. 538 * iso changes, interrupt usually doesn't. 539 */ 540 spin_lock_irqsave(&fotg210->lock, flags); 541 for (i = 0; i < fotg210->periodic_size; i++) { 542 p = fotg210->pshadow[i]; 543 if (likely(!p.ptr)) 544 continue; 545 546 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]); 547 548 temp = scnprintf(next, size, "%4d: ", i); 549 size -= temp; 550 next += temp; 551 552 do { 553 struct fotg210_qh_hw *hw; 554 555 switch (hc32_to_cpu(fotg210, tag)) { 556 case Q_TYPE_QH: 557 hw = p.qh->hw; 558 temp = scnprintf(next, size, " qh%d-%04x/%p", 559 p.qh->period, 560 hc32_to_cpup(fotg210, 561 &hw->hw_info2) 562 /* uframe masks */ 563 & (QH_CMASK | QH_SMASK), 564 p.qh); 565 size -= temp; 566 next += temp; 567 /* don't repeat what follows this qh */ 568 for (temp = 0; temp < seen_count; temp++) { 569 if (seen[temp].ptr != p.ptr) 570 continue; 571 if (p.qh->qh_next.ptr) { 572 temp = scnprintf(next, size, 573 " ..."); 574 size -= temp; 575 next += temp; 576 } 577 break; 578 } 579 /* show more info the first time around */ 580 if (temp == seen_count) { 581 temp = output_buf_tds_dir(next, 582 fotg210, hw, 583 p.qh, size); 584 585 if (seen_count < DBG_SCHED_LIMIT) 586 seen[seen_count++].qh = p.qh; 587 } else 588 temp = 0; 589 tag = Q_NEXT_TYPE(fotg210, hw->hw_next); 590 p = p.qh->qh_next; 591 break; 592 case Q_TYPE_FSTN: 593 temp = scnprintf(next, size, 594 " fstn-%8x/%p", 595 p.fstn->hw_prev, p.fstn); 596 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next); 597 p = p.fstn->fstn_next; 598 break; 599 case Q_TYPE_ITD: 600 temp = scnprintf(next, size, 601 " itd/%p", p.itd); 602 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next); 603 p = p.itd->itd_next; 604 break; 605 } 606 size -= temp; 607 next += temp; 608 } while (p.ptr); 609 610 temp = scnprintf(next, size, "\n"); 611 size -= temp; 612 next += temp; 613 } 614 spin_unlock_irqrestore(&fotg210->lock, flags); 615 kfree(seen); 616 617 return buf->alloc_size - size; 618 } 619 #undef DBG_SCHED_LIMIT 620 621 static const char *rh_state_string(struct fotg210_hcd *fotg210) 622 { 623 switch (fotg210->rh_state) { 624 case FOTG210_RH_HALTED: 625 return "halted"; 626 case FOTG210_RH_SUSPENDED: 627 return "suspended"; 628 case FOTG210_RH_RUNNING: 629 return "running"; 630 case FOTG210_RH_STOPPING: 631 return "stopping"; 632 } 633 return "?"; 634 } 635 636 static ssize_t fill_registers_buffer(struct debug_buffer *buf) 637 { 638 struct usb_hcd *hcd; 639 struct fotg210_hcd *fotg210; 640 unsigned long flags; 641 unsigned temp, size, i; 642 char *next, scratch[80]; 643 static const char fmt[] = "%*s\n"; 644 static const char label[] = ""; 645 646 hcd = bus_to_hcd(buf->bus); 647 fotg210 = hcd_to_fotg210(hcd); 648 next = buf->output_buf; 649 size = buf->alloc_size; 650 651 spin_lock_irqsave(&fotg210->lock, flags); 652 653 if (!HCD_HW_ACCESSIBLE(hcd)) { 654 size = scnprintf(next, size, 655 "bus %s, device %s\n" 656 "%s\n" 657 "SUSPENDED(no register access)\n", 658 hcd->self.controller->bus->name, 659 dev_name(hcd->self.controller), 660 hcd->product_desc); 661 goto done; 662 } 663 664 /* Capability Registers */ 665 i = HC_VERSION(fotg210, fotg210_readl(fotg210, 666 &fotg210->caps->hc_capbase)); 667 temp = scnprintf(next, size, 668 "bus %s, device %s\n" 669 "%s\n" 670 "EHCI %x.%02x, rh state %s\n", 671 hcd->self.controller->bus->name, 672 dev_name(hcd->self.controller), 673 hcd->product_desc, 674 i >> 8, i & 0x0ff, rh_state_string(fotg210)); 675 size -= temp; 676 next += temp; 677 678 /* FIXME interpret both types of params */ 679 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params); 680 temp = scnprintf(next, size, "structural params 0x%08x\n", i); 681 size -= temp; 682 next += temp; 683 684 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 685 temp = scnprintf(next, size, "capability params 0x%08x\n", i); 686 size -= temp; 687 next += temp; 688 689 /* Operational Registers */ 690 temp = dbg_status_buf(scratch, sizeof(scratch), label, 691 fotg210_readl(fotg210, &fotg210->regs->status)); 692 temp = scnprintf(next, size, fmt, temp, scratch); 693 size -= temp; 694 next += temp; 695 696 temp = dbg_command_buf(scratch, sizeof(scratch), label, 697 fotg210_readl(fotg210, &fotg210->regs->command)); 698 temp = scnprintf(next, size, fmt, temp, scratch); 699 size -= temp; 700 next += temp; 701 702 temp = dbg_intr_buf(scratch, sizeof(scratch), label, 703 fotg210_readl(fotg210, &fotg210->regs->intr_enable)); 704 temp = scnprintf(next, size, fmt, temp, scratch); 705 size -= temp; 706 next += temp; 707 708 temp = scnprintf(next, size, "uframe %04x\n", 709 fotg210_read_frame_index(fotg210)); 710 size -= temp; 711 next += temp; 712 713 if (fotg210->async_unlink) { 714 temp = scnprintf(next, size, "async unlink qh %p\n", 715 fotg210->async_unlink); 716 size -= temp; 717 next += temp; 718 } 719 720 #ifdef FOTG210_STATS 721 temp = scnprintf(next, size, 722 "irq normal %ld err %ld iaa %ld(lost %ld)\n", 723 fotg210->stats.normal, fotg210->stats.error, 724 fotg210->stats.iaa, fotg210->stats.lost_iaa); 725 size -= temp; 726 next += temp; 727 728 temp = scnprintf(next, size, "complete %ld unlink %ld\n", 729 fotg210->stats.complete, fotg210->stats.unlink); 730 size -= temp; 731 next += temp; 732 #endif 733 734 done: 735 spin_unlock_irqrestore(&fotg210->lock, flags); 736 737 return buf->alloc_size - size; 738 } 739 740 static struct debug_buffer 741 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *)) 742 { 743 struct debug_buffer *buf; 744 745 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL); 746 747 if (buf) { 748 buf->bus = bus; 749 buf->fill_func = fill_func; 750 mutex_init(&buf->mutex); 751 buf->alloc_size = PAGE_SIZE; 752 } 753 754 return buf; 755 } 756 757 static int fill_buffer(struct debug_buffer *buf) 758 { 759 int ret = 0; 760 761 if (!buf->output_buf) 762 buf->output_buf = vmalloc(buf->alloc_size); 763 764 if (!buf->output_buf) { 765 ret = -ENOMEM; 766 goto out; 767 } 768 769 ret = buf->fill_func(buf); 770 771 if (ret >= 0) { 772 buf->count = ret; 773 ret = 0; 774 } 775 776 out: 777 return ret; 778 } 779 780 static ssize_t debug_output(struct file *file, char __user *user_buf, 781 size_t len, loff_t *offset) 782 { 783 struct debug_buffer *buf = file->private_data; 784 int ret = 0; 785 786 mutex_lock(&buf->mutex); 787 if (buf->count == 0) { 788 ret = fill_buffer(buf); 789 if (ret != 0) { 790 mutex_unlock(&buf->mutex); 791 goto out; 792 } 793 } 794 mutex_unlock(&buf->mutex); 795 796 ret = simple_read_from_buffer(user_buf, len, offset, 797 buf->output_buf, buf->count); 798 799 out: 800 return ret; 801 802 } 803 804 static int debug_close(struct inode *inode, struct file *file) 805 { 806 struct debug_buffer *buf = file->private_data; 807 808 if (buf) { 809 vfree(buf->output_buf); 810 kfree(buf); 811 } 812 813 return 0; 814 } 815 static int debug_async_open(struct inode *inode, struct file *file) 816 { 817 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer); 818 819 return file->private_data ? 0 : -ENOMEM; 820 } 821 822 static int debug_periodic_open(struct inode *inode, struct file *file) 823 { 824 struct debug_buffer *buf; 825 826 buf = alloc_buffer(inode->i_private, fill_periodic_buffer); 827 if (!buf) 828 return -ENOMEM; 829 830 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE; 831 file->private_data = buf; 832 return 0; 833 } 834 835 static int debug_registers_open(struct inode *inode, struct file *file) 836 { 837 file->private_data = alloc_buffer(inode->i_private, 838 fill_registers_buffer); 839 840 return file->private_data ? 0 : -ENOMEM; 841 } 842 843 static inline void create_debug_files(struct fotg210_hcd *fotg210) 844 { 845 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; 846 struct dentry *root; 847 848 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root); 849 850 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops); 851 debugfs_create_file("periodic", S_IRUGO, root, bus, 852 &debug_periodic_fops); 853 debugfs_create_file("registers", S_IRUGO, root, bus, 854 &debug_registers_fops); 855 } 856 857 static inline void remove_debug_files(struct fotg210_hcd *fotg210) 858 { 859 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; 860 861 debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root); 862 } 863 864 /* handshake - spin reading hc until handshake completes or fails 865 * @ptr: address of hc register to be read 866 * @mask: bits to look at in result of read 867 * @done: value of those bits when handshake succeeds 868 * @usec: timeout in microseconds 869 * 870 * Returns negative errno, or zero on success 871 * 872 * Success happens when the "mask" bits have the specified value (hardware 873 * handshake done). There are two failure modes: "usec" have passed (major 874 * hardware flakeout), or the register reads as all-ones (hardware removed). 875 * 876 * That last failure should_only happen in cases like physical cardbus eject 877 * before driver shutdown. But it also seems to be caused by bugs in cardbus 878 * bridge shutdown: shutting down the bridge before the devices using it. 879 */ 880 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr, 881 u32 mask, u32 done, int usec) 882 { 883 u32 result; 884 int ret; 885 886 ret = readl_poll_timeout_atomic(ptr, result, 887 ((result & mask) == done || 888 result == U32_MAX), 1, usec); 889 if (result == U32_MAX) /* card removed */ 890 return -ENODEV; 891 892 return ret; 893 } 894 895 /* Force HC to halt state from unknown (EHCI spec section 2.3). 896 * Must be called with interrupts enabled and the lock not held. 897 */ 898 static int fotg210_halt(struct fotg210_hcd *fotg210) 899 { 900 u32 temp; 901 902 spin_lock_irq(&fotg210->lock); 903 904 /* disable any irqs left enabled by previous code */ 905 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 906 907 /* 908 * This routine gets called during probe before fotg210->command 909 * has been initialized, so we can't rely on its value. 910 */ 911 fotg210->command &= ~CMD_RUN; 912 temp = fotg210_readl(fotg210, &fotg210->regs->command); 913 temp &= ~(CMD_RUN | CMD_IAAD); 914 fotg210_writel(fotg210, temp, &fotg210->regs->command); 915 916 spin_unlock_irq(&fotg210->lock); 917 synchronize_irq(fotg210_to_hcd(fotg210)->irq); 918 919 return handshake(fotg210, &fotg210->regs->status, 920 STS_HALT, STS_HALT, 16 * 125); 921 } 922 923 /* Reset a non-running (STS_HALT == 1) controller. 924 * Must be called with interrupts enabled and the lock not held. 925 */ 926 static int fotg210_reset(struct fotg210_hcd *fotg210) 927 { 928 int retval; 929 u32 command = fotg210_readl(fotg210, &fotg210->regs->command); 930 931 /* If the EHCI debug controller is active, special care must be 932 * taken before and after a host controller reset 933 */ 934 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210))) 935 fotg210->debug = NULL; 936 937 command |= CMD_RESET; 938 dbg_cmd(fotg210, "reset", command); 939 fotg210_writel(fotg210, command, &fotg210->regs->command); 940 fotg210->rh_state = FOTG210_RH_HALTED; 941 fotg210->next_statechange = jiffies; 942 retval = handshake(fotg210, &fotg210->regs->command, 943 CMD_RESET, 0, 250 * 1000); 944 945 if (retval) 946 return retval; 947 948 if (fotg210->debug) 949 dbgp_external_startup(fotg210_to_hcd(fotg210)); 950 951 fotg210->port_c_suspend = fotg210->suspended_ports = 952 fotg210->resuming_ports = 0; 953 return retval; 954 } 955 956 /* Idle the controller (turn off the schedules). 957 * Must be called with interrupts enabled and the lock not held. 958 */ 959 static void fotg210_quiesce(struct fotg210_hcd *fotg210) 960 { 961 u32 temp; 962 963 if (fotg210->rh_state != FOTG210_RH_RUNNING) 964 return; 965 966 /* wait for any schedule enables/disables to take effect */ 967 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS); 968 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp, 969 16 * 125); 970 971 /* then disable anything that's still active */ 972 spin_lock_irq(&fotg210->lock); 973 fotg210->command &= ~(CMD_ASE | CMD_PSE); 974 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 975 spin_unlock_irq(&fotg210->lock); 976 977 /* hardware can take 16 microframes to turn off ... */ 978 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0, 979 16 * 125); 980 } 981 982 static void end_unlink_async(struct fotg210_hcd *fotg210); 983 static void unlink_empty_async(struct fotg210_hcd *fotg210); 984 static void fotg210_work(struct fotg210_hcd *fotg210); 985 static void start_unlink_intr(struct fotg210_hcd *fotg210, 986 struct fotg210_qh *qh); 987 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 988 989 /* Set a bit in the USBCMD register */ 990 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit) 991 { 992 fotg210->command |= bit; 993 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 994 995 /* unblock posted write */ 996 fotg210_readl(fotg210, &fotg210->regs->command); 997 } 998 999 /* Clear a bit in the USBCMD register */ 1000 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit) 1001 { 1002 fotg210->command &= ~bit; 1003 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1004 1005 /* unblock posted write */ 1006 fotg210_readl(fotg210, &fotg210->regs->command); 1007 } 1008 1009 /* EHCI timer support... Now using hrtimers. 1010 * 1011 * Lots of different events are triggered from fotg210->hrtimer. Whenever 1012 * the timer routine runs, it checks each possible event; events that are 1013 * currently enabled and whose expiration time has passed get handled. 1014 * The set of enabled events is stored as a collection of bitflags in 1015 * fotg210->enabled_hrtimer_events, and they are numbered in order of 1016 * increasing delay values (ranging between 1 ms and 100 ms). 1017 * 1018 * Rather than implementing a sorted list or tree of all pending events, 1019 * we keep track only of the lowest-numbered pending event, in 1020 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its 1021 * expiration time is set to the timeout value for this event. 1022 * 1023 * As a result, events might not get handled right away; the actual delay 1024 * could be anywhere up to twice the requested delay. This doesn't 1025 * matter, because none of the events are especially time-critical. The 1026 * ones that matter most all have a delay of 1 ms, so they will be 1027 * handled after 2 ms at most, which is okay. In addition to this, we 1028 * allow for an expiration range of 1 ms. 1029 */ 1030 1031 /* Delay lengths for the hrtimer event types. 1032 * Keep this list sorted by delay length, in the same order as 1033 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h. 1034 */ 1035 static unsigned event_delays_ns[] = { 1036 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */ 1037 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */ 1038 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */ 1039 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */ 1040 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */ 1041 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 1042 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 1043 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 1044 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 1045 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */ 1046 }; 1047 1048 /* Enable a pending hrtimer event */ 1049 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event, 1050 bool resched) 1051 { 1052 ktime_t *timeout = &fotg210->hr_timeouts[event]; 1053 1054 if (resched) 1055 *timeout = ktime_add(ktime_get(), event_delays_ns[event]); 1056 fotg210->enabled_hrtimer_events |= (1 << event); 1057 1058 /* Track only the lowest-numbered pending event */ 1059 if (event < fotg210->next_hrtimer_event) { 1060 fotg210->next_hrtimer_event = event; 1061 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout, 1062 NSEC_PER_MSEC, HRTIMER_MODE_ABS); 1063 } 1064 } 1065 1066 1067 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */ 1068 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210) 1069 { 1070 unsigned actual, want; 1071 1072 /* Don't enable anything if the controller isn't running (e.g., died) */ 1073 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1074 return; 1075 1076 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0; 1077 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS; 1078 1079 if (want != actual) { 1080 1081 /* Poll again later, but give up after about 20 ms */ 1082 if (fotg210->ASS_poll_count++ < 20) { 1083 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS, 1084 true); 1085 return; 1086 } 1087 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n", 1088 want, actual); 1089 } 1090 fotg210->ASS_poll_count = 0; 1091 1092 /* The status is up-to-date; restart or stop the schedule as needed */ 1093 if (want == 0) { /* Stopped */ 1094 if (fotg210->async_count > 0) 1095 fotg210_set_command_bit(fotg210, CMD_ASE); 1096 1097 } else { /* Running */ 1098 if (fotg210->async_count == 0) { 1099 1100 /* Turn off the schedule after a while */ 1101 fotg210_enable_event(fotg210, 1102 FOTG210_HRTIMER_DISABLE_ASYNC, 1103 true); 1104 } 1105 } 1106 } 1107 1108 /* Turn off the async schedule after a brief delay */ 1109 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210) 1110 { 1111 fotg210_clear_command_bit(fotg210, CMD_ASE); 1112 } 1113 1114 1115 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */ 1116 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210) 1117 { 1118 unsigned actual, want; 1119 1120 /* Don't do anything if the controller isn't running (e.g., died) */ 1121 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1122 return; 1123 1124 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0; 1125 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS; 1126 1127 if (want != actual) { 1128 1129 /* Poll again later, but give up after about 20 ms */ 1130 if (fotg210->PSS_poll_count++ < 20) { 1131 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS, 1132 true); 1133 return; 1134 } 1135 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n", 1136 want, actual); 1137 } 1138 fotg210->PSS_poll_count = 0; 1139 1140 /* The status is up-to-date; restart or stop the schedule as needed */ 1141 if (want == 0) { /* Stopped */ 1142 if (fotg210->periodic_count > 0) 1143 fotg210_set_command_bit(fotg210, CMD_PSE); 1144 1145 } else { /* Running */ 1146 if (fotg210->periodic_count == 0) { 1147 1148 /* Turn off the schedule after a while */ 1149 fotg210_enable_event(fotg210, 1150 FOTG210_HRTIMER_DISABLE_PERIODIC, 1151 true); 1152 } 1153 } 1154 } 1155 1156 /* Turn off the periodic schedule after a brief delay */ 1157 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210) 1158 { 1159 fotg210_clear_command_bit(fotg210, CMD_PSE); 1160 } 1161 1162 1163 /* Poll the STS_HALT status bit; see when a dead controller stops */ 1164 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210) 1165 { 1166 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) { 1167 1168 /* Give up after a few milliseconds */ 1169 if (fotg210->died_poll_count++ < 5) { 1170 /* Try again later */ 1171 fotg210_enable_event(fotg210, 1172 FOTG210_HRTIMER_POLL_DEAD, true); 1173 return; 1174 } 1175 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n"); 1176 } 1177 1178 /* Clean up the mess */ 1179 fotg210->rh_state = FOTG210_RH_HALTED; 1180 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 1181 fotg210_work(fotg210); 1182 end_unlink_async(fotg210); 1183 1184 /* Not in process context, so don't try to reset the controller */ 1185 } 1186 1187 1188 /* Handle unlinked interrupt QHs once they are gone from the hardware */ 1189 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210) 1190 { 1191 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); 1192 1193 /* 1194 * Process all the QHs on the intr_unlink list that were added 1195 * before the current unlink cycle began. The list is in 1196 * temporal order, so stop when we reach the first entry in the 1197 * current cycle. But if the root hub isn't running then 1198 * process all the QHs on the list. 1199 */ 1200 fotg210->intr_unlinking = true; 1201 while (fotg210->intr_unlink) { 1202 struct fotg210_qh *qh = fotg210->intr_unlink; 1203 1204 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle) 1205 break; 1206 fotg210->intr_unlink = qh->unlink_next; 1207 qh->unlink_next = NULL; 1208 end_unlink_intr(fotg210, qh); 1209 } 1210 1211 /* Handle remaining entries later */ 1212 if (fotg210->intr_unlink) { 1213 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, 1214 true); 1215 ++fotg210->intr_unlink_cycle; 1216 } 1217 fotg210->intr_unlinking = false; 1218 } 1219 1220 1221 /* Start another free-iTDs/siTDs cycle */ 1222 static void start_free_itds(struct fotg210_hcd *fotg210) 1223 { 1224 if (!(fotg210->enabled_hrtimer_events & 1225 BIT(FOTG210_HRTIMER_FREE_ITDS))) { 1226 fotg210->last_itd_to_free = list_entry( 1227 fotg210->cached_itd_list.prev, 1228 struct fotg210_itd, itd_list); 1229 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true); 1230 } 1231 } 1232 1233 /* Wait for controller to stop using old iTDs and siTDs */ 1234 static void end_free_itds(struct fotg210_hcd *fotg210) 1235 { 1236 struct fotg210_itd *itd, *n; 1237 1238 if (fotg210->rh_state < FOTG210_RH_RUNNING) 1239 fotg210->last_itd_to_free = NULL; 1240 1241 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) { 1242 list_del(&itd->itd_list); 1243 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma); 1244 if (itd == fotg210->last_itd_to_free) 1245 break; 1246 } 1247 1248 if (!list_empty(&fotg210->cached_itd_list)) 1249 start_free_itds(fotg210); 1250 } 1251 1252 1253 /* Handle lost (or very late) IAA interrupts */ 1254 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210) 1255 { 1256 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1257 return; 1258 1259 /* 1260 * Lost IAA irqs wedge things badly; seen first with a vt8235. 1261 * So we need this watchdog, but must protect it against both 1262 * (a) SMP races against real IAA firing and retriggering, and 1263 * (b) clean HC shutdown, when IAA watchdog was pending. 1264 */ 1265 if (fotg210->async_iaa) { 1266 u32 cmd, status; 1267 1268 /* If we get here, IAA is *REALLY* late. It's barely 1269 * conceivable that the system is so busy that CMD_IAAD 1270 * is still legitimately set, so let's be sure it's 1271 * clear before we read STS_IAA. (The HC should clear 1272 * CMD_IAAD when it sets STS_IAA.) 1273 */ 1274 cmd = fotg210_readl(fotg210, &fotg210->regs->command); 1275 1276 /* 1277 * If IAA is set here it either legitimately triggered 1278 * after the watchdog timer expired (_way_ late, so we'll 1279 * still count it as lost) ... or a silicon erratum: 1280 * - VIA seems to set IAA without triggering the IRQ; 1281 * - IAAD potentially cleared without setting IAA. 1282 */ 1283 status = fotg210_readl(fotg210, &fotg210->regs->status); 1284 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) { 1285 INCR(fotg210->stats.lost_iaa); 1286 fotg210_writel(fotg210, STS_IAA, 1287 &fotg210->regs->status); 1288 } 1289 1290 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n", 1291 status, cmd); 1292 end_unlink_async(fotg210); 1293 } 1294 } 1295 1296 1297 /* Enable the I/O watchdog, if appropriate */ 1298 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210) 1299 { 1300 /* Not needed if the controller isn't running or it's already enabled */ 1301 if (fotg210->rh_state != FOTG210_RH_RUNNING || 1302 (fotg210->enabled_hrtimer_events & 1303 BIT(FOTG210_HRTIMER_IO_WATCHDOG))) 1304 return; 1305 1306 /* 1307 * Isochronous transfers always need the watchdog. 1308 * For other sorts we use it only if the flag is set. 1309 */ 1310 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog && 1311 fotg210->async_count + fotg210->intr_count > 0)) 1312 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG, 1313 true); 1314 } 1315 1316 1317 /* Handler functions for the hrtimer event types. 1318 * Keep this array in the same order as the event types indexed by 1319 * enum fotg210_hrtimer_event in fotg210.h. 1320 */ 1321 static void (*event_handlers[])(struct fotg210_hcd *) = { 1322 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */ 1323 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */ 1324 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */ 1325 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */ 1326 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */ 1327 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 1328 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 1329 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 1330 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 1331 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */ 1332 }; 1333 1334 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t) 1335 { 1336 struct fotg210_hcd *fotg210 = 1337 container_of(t, struct fotg210_hcd, hrtimer); 1338 ktime_t now; 1339 unsigned long events; 1340 unsigned long flags; 1341 unsigned e; 1342 1343 spin_lock_irqsave(&fotg210->lock, flags); 1344 1345 events = fotg210->enabled_hrtimer_events; 1346 fotg210->enabled_hrtimer_events = 0; 1347 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; 1348 1349 /* 1350 * Check each pending event. If its time has expired, handle 1351 * the event; otherwise re-enable it. 1352 */ 1353 now = ktime_get(); 1354 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) { 1355 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0) 1356 event_handlers[e](fotg210); 1357 else 1358 fotg210_enable_event(fotg210, e, false); 1359 } 1360 1361 spin_unlock_irqrestore(&fotg210->lock, flags); 1362 return HRTIMER_NORESTART; 1363 } 1364 1365 #define fotg210_bus_suspend NULL 1366 #define fotg210_bus_resume NULL 1367 1368 static int check_reset_complete(struct fotg210_hcd *fotg210, int index, 1369 u32 __iomem *status_reg, int port_status) 1370 { 1371 if (!(port_status & PORT_CONNECT)) 1372 return port_status; 1373 1374 /* if reset finished and it's still not enabled -- handoff */ 1375 if (!(port_status & PORT_PE)) 1376 /* with integrated TT, there's nobody to hand it to! */ 1377 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n", 1378 index + 1); 1379 else 1380 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n", 1381 index + 1); 1382 1383 return port_status; 1384 } 1385 1386 1387 /* build "status change" packet (one or two bytes) from HC registers */ 1388 1389 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf) 1390 { 1391 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 1392 u32 temp, status; 1393 u32 mask; 1394 int retval = 1; 1395 unsigned long flags; 1396 1397 /* init status to no-changes */ 1398 buf[0] = 0; 1399 1400 /* Inform the core about resumes-in-progress by returning 1401 * a non-zero value even if there are no status changes. 1402 */ 1403 status = fotg210->resuming_ports; 1404 1405 mask = PORT_CSC | PORT_PEC; 1406 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */ 1407 1408 /* no hub change reports (bit 0) for now (power, ...) */ 1409 1410 /* port N changes (bit N)? */ 1411 spin_lock_irqsave(&fotg210->lock, flags); 1412 1413 temp = fotg210_readl(fotg210, &fotg210->regs->port_status); 1414 1415 /* 1416 * Return status information even for ports with OWNER set. 1417 * Otherwise hub_wq wouldn't see the disconnect event when a 1418 * high-speed device is switched over to the companion 1419 * controller by the user. 1420 */ 1421 1422 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) || 1423 (fotg210->reset_done[0] && 1424 time_after_eq(jiffies, fotg210->reset_done[0]))) { 1425 buf[0] |= 1 << 1; 1426 status = STS_PCD; 1427 } 1428 /* FIXME autosuspend idle root hubs */ 1429 spin_unlock_irqrestore(&fotg210->lock, flags); 1430 return status ? retval : 0; 1431 } 1432 1433 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210, 1434 struct usb_hub_descriptor *desc) 1435 { 1436 int ports = HCS_N_PORTS(fotg210->hcs_params); 1437 u16 temp; 1438 1439 desc->bDescriptorType = USB_DT_HUB; 1440 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */ 1441 desc->bHubContrCurrent = 0; 1442 1443 desc->bNbrPorts = ports; 1444 temp = 1 + (ports / 8); 1445 desc->bDescLength = 7 + 2 * temp; 1446 1447 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 1448 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 1449 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 1450 1451 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 1452 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 1453 desc->wHubCharacteristics = cpu_to_le16(temp); 1454 } 1455 1456 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, 1457 u16 wIndex, char *buf, u16 wLength) 1458 { 1459 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 1460 int ports = HCS_N_PORTS(fotg210->hcs_params); 1461 u32 __iomem *status_reg = &fotg210->regs->port_status; 1462 u32 temp, temp1, status; 1463 unsigned long flags; 1464 int retval = 0; 1465 unsigned selector; 1466 1467 /* 1468 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 1469 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 1470 * (track current state ourselves) ... blink for diagnostics, 1471 * power, "this is the one", etc. EHCI spec supports this. 1472 */ 1473 1474 spin_lock_irqsave(&fotg210->lock, flags); 1475 switch (typeReq) { 1476 case ClearHubFeature: 1477 switch (wValue) { 1478 case C_HUB_LOCAL_POWER: 1479 case C_HUB_OVER_CURRENT: 1480 /* no hub-wide feature/status flags */ 1481 break; 1482 default: 1483 goto error; 1484 } 1485 break; 1486 case ClearPortFeature: 1487 if (!wIndex || wIndex > ports) 1488 goto error; 1489 wIndex--; 1490 temp = fotg210_readl(fotg210, status_reg); 1491 temp &= ~PORT_RWC_BITS; 1492 1493 /* 1494 * Even if OWNER is set, so the port is owned by the 1495 * companion controller, hub_wq needs to be able to clear 1496 * the port-change status bits (especially 1497 * USB_PORT_STAT_C_CONNECTION). 1498 */ 1499 1500 switch (wValue) { 1501 case USB_PORT_FEAT_ENABLE: 1502 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg); 1503 break; 1504 case USB_PORT_FEAT_C_ENABLE: 1505 fotg210_writel(fotg210, temp | PORT_PEC, status_reg); 1506 break; 1507 case USB_PORT_FEAT_SUSPEND: 1508 if (temp & PORT_RESET) 1509 goto error; 1510 if (!(temp & PORT_SUSPEND)) 1511 break; 1512 if ((temp & PORT_PE) == 0) 1513 goto error; 1514 1515 /* resume signaling for 20 msec */ 1516 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg); 1517 fotg210->reset_done[wIndex] = jiffies 1518 + msecs_to_jiffies(USB_RESUME_TIMEOUT); 1519 break; 1520 case USB_PORT_FEAT_C_SUSPEND: 1521 clear_bit(wIndex, &fotg210->port_c_suspend); 1522 break; 1523 case USB_PORT_FEAT_C_CONNECTION: 1524 fotg210_writel(fotg210, temp | PORT_CSC, status_reg); 1525 break; 1526 case USB_PORT_FEAT_C_OVER_CURRENT: 1527 fotg210_writel(fotg210, temp | OTGISR_OVC, 1528 &fotg210->regs->otgisr); 1529 break; 1530 case USB_PORT_FEAT_C_RESET: 1531 /* GetPortStatus clears reset */ 1532 break; 1533 default: 1534 goto error; 1535 } 1536 fotg210_readl(fotg210, &fotg210->regs->command); 1537 break; 1538 case GetHubDescriptor: 1539 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *) 1540 buf); 1541 break; 1542 case GetHubStatus: 1543 /* no hub-wide feature/status flags */ 1544 memset(buf, 0, 4); 1545 /*cpu_to_le32s ((u32 *) buf); */ 1546 break; 1547 case GetPortStatus: 1548 if (!wIndex || wIndex > ports) 1549 goto error; 1550 wIndex--; 1551 status = 0; 1552 temp = fotg210_readl(fotg210, status_reg); 1553 1554 /* wPortChange bits */ 1555 if (temp & PORT_CSC) 1556 status |= USB_PORT_STAT_C_CONNECTION << 16; 1557 if (temp & PORT_PEC) 1558 status |= USB_PORT_STAT_C_ENABLE << 16; 1559 1560 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); 1561 if (temp1 & OTGISR_OVC) 1562 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 1563 1564 /* whoever resumes must GetPortStatus to complete it!! */ 1565 if (temp & PORT_RESUME) { 1566 1567 /* Remote Wakeup received? */ 1568 if (!fotg210->reset_done[wIndex]) { 1569 /* resume signaling for 20 msec */ 1570 fotg210->reset_done[wIndex] = jiffies 1571 + msecs_to_jiffies(20); 1572 /* check the port again */ 1573 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer, 1574 fotg210->reset_done[wIndex]); 1575 } 1576 1577 /* resume completed? */ 1578 else if (time_after_eq(jiffies, 1579 fotg210->reset_done[wIndex])) { 1580 clear_bit(wIndex, &fotg210->suspended_ports); 1581 set_bit(wIndex, &fotg210->port_c_suspend); 1582 fotg210->reset_done[wIndex] = 0; 1583 1584 /* stop resume signaling */ 1585 temp = fotg210_readl(fotg210, status_reg); 1586 fotg210_writel(fotg210, temp & 1587 ~(PORT_RWC_BITS | PORT_RESUME), 1588 status_reg); 1589 clear_bit(wIndex, &fotg210->resuming_ports); 1590 retval = handshake(fotg210, status_reg, 1591 PORT_RESUME, 0, 2000);/* 2ms */ 1592 if (retval != 0) { 1593 fotg210_err(fotg210, 1594 "port %d resume error %d\n", 1595 wIndex + 1, retval); 1596 goto error; 1597 } 1598 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 1599 } 1600 } 1601 1602 /* whoever resets must GetPortStatus to complete it!! */ 1603 if ((temp & PORT_RESET) && time_after_eq(jiffies, 1604 fotg210->reset_done[wIndex])) { 1605 status |= USB_PORT_STAT_C_RESET << 16; 1606 fotg210->reset_done[wIndex] = 0; 1607 clear_bit(wIndex, &fotg210->resuming_ports); 1608 1609 /* force reset to complete */ 1610 fotg210_writel(fotg210, 1611 temp & ~(PORT_RWC_BITS | PORT_RESET), 1612 status_reg); 1613 /* REVISIT: some hardware needs 550+ usec to clear 1614 * this bit; seems too long to spin routinely... 1615 */ 1616 retval = handshake(fotg210, status_reg, 1617 PORT_RESET, 0, 1000); 1618 if (retval != 0) { 1619 fotg210_err(fotg210, "port %d reset error %d\n", 1620 wIndex + 1, retval); 1621 goto error; 1622 } 1623 1624 /* see what we found out */ 1625 temp = check_reset_complete(fotg210, wIndex, status_reg, 1626 fotg210_readl(fotg210, status_reg)); 1627 1628 /* restart schedule */ 1629 fotg210->command |= CMD_RUN; 1630 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1631 } 1632 1633 if (!(temp & (PORT_RESUME|PORT_RESET))) { 1634 fotg210->reset_done[wIndex] = 0; 1635 clear_bit(wIndex, &fotg210->resuming_ports); 1636 } 1637 1638 /* transfer dedicated ports to the companion hc */ 1639 if ((temp & PORT_CONNECT) && 1640 test_bit(wIndex, &fotg210->companion_ports)) { 1641 temp &= ~PORT_RWC_BITS; 1642 fotg210_writel(fotg210, temp, status_reg); 1643 fotg210_dbg(fotg210, "port %d --> companion\n", 1644 wIndex + 1); 1645 temp = fotg210_readl(fotg210, status_reg); 1646 } 1647 1648 /* 1649 * Even if OWNER is set, there's no harm letting hub_wq 1650 * see the wPortStatus values (they should all be 0 except 1651 * for PORT_POWER anyway). 1652 */ 1653 1654 if (temp & PORT_CONNECT) { 1655 status |= USB_PORT_STAT_CONNECTION; 1656 status |= fotg210_port_speed(fotg210, temp); 1657 } 1658 if (temp & PORT_PE) 1659 status |= USB_PORT_STAT_ENABLE; 1660 1661 /* maybe the port was unsuspended without our knowledge */ 1662 if (temp & (PORT_SUSPEND|PORT_RESUME)) { 1663 status |= USB_PORT_STAT_SUSPEND; 1664 } else if (test_bit(wIndex, &fotg210->suspended_ports)) { 1665 clear_bit(wIndex, &fotg210->suspended_ports); 1666 clear_bit(wIndex, &fotg210->resuming_ports); 1667 fotg210->reset_done[wIndex] = 0; 1668 if (temp & PORT_PE) 1669 set_bit(wIndex, &fotg210->port_c_suspend); 1670 } 1671 1672 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); 1673 if (temp1 & OTGISR_OVC) 1674 status |= USB_PORT_STAT_OVERCURRENT; 1675 if (temp & PORT_RESET) 1676 status |= USB_PORT_STAT_RESET; 1677 if (test_bit(wIndex, &fotg210->port_c_suspend)) 1678 status |= USB_PORT_STAT_C_SUSPEND << 16; 1679 1680 if (status & ~0xffff) /* only if wPortChange is interesting */ 1681 dbg_port(fotg210, "GetStatus", wIndex + 1, temp); 1682 put_unaligned_le32(status, buf); 1683 break; 1684 case SetHubFeature: 1685 switch (wValue) { 1686 case C_HUB_LOCAL_POWER: 1687 case C_HUB_OVER_CURRENT: 1688 /* no hub-wide feature/status flags */ 1689 break; 1690 default: 1691 goto error; 1692 } 1693 break; 1694 case SetPortFeature: 1695 selector = wIndex >> 8; 1696 wIndex &= 0xff; 1697 1698 if (!wIndex || wIndex > ports) 1699 goto error; 1700 wIndex--; 1701 temp = fotg210_readl(fotg210, status_reg); 1702 temp &= ~PORT_RWC_BITS; 1703 switch (wValue) { 1704 case USB_PORT_FEAT_SUSPEND: 1705 if ((temp & PORT_PE) == 0 1706 || (temp & PORT_RESET) != 0) 1707 goto error; 1708 1709 /* After above check the port must be connected. 1710 * Set appropriate bit thus could put phy into low power 1711 * mode if we have hostpc feature 1712 */ 1713 fotg210_writel(fotg210, temp | PORT_SUSPEND, 1714 status_reg); 1715 set_bit(wIndex, &fotg210->suspended_ports); 1716 break; 1717 case USB_PORT_FEAT_RESET: 1718 if (temp & PORT_RESUME) 1719 goto error; 1720 /* line status bits may report this as low speed, 1721 * which can be fine if this root hub has a 1722 * transaction translator built in. 1723 */ 1724 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1); 1725 temp |= PORT_RESET; 1726 temp &= ~PORT_PE; 1727 1728 /* 1729 * caller must wait, then call GetPortStatus 1730 * usb 2.0 spec says 50 ms resets on root 1731 */ 1732 fotg210->reset_done[wIndex] = jiffies 1733 + msecs_to_jiffies(50); 1734 fotg210_writel(fotg210, temp, status_reg); 1735 break; 1736 1737 /* For downstream facing ports (these): one hub port is put 1738 * into test mode according to USB2 11.24.2.13, then the hub 1739 * must be reset (which for root hub now means rmmod+modprobe, 1740 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 1741 * about the EHCI-specific stuff. 1742 */ 1743 case USB_PORT_FEAT_TEST: 1744 if (!selector || selector > 5) 1745 goto error; 1746 spin_unlock_irqrestore(&fotg210->lock, flags); 1747 fotg210_quiesce(fotg210); 1748 spin_lock_irqsave(&fotg210->lock, flags); 1749 1750 /* Put all enabled ports into suspend */ 1751 temp = fotg210_readl(fotg210, status_reg) & 1752 ~PORT_RWC_BITS; 1753 if (temp & PORT_PE) 1754 fotg210_writel(fotg210, temp | PORT_SUSPEND, 1755 status_reg); 1756 1757 spin_unlock_irqrestore(&fotg210->lock, flags); 1758 fotg210_halt(fotg210); 1759 spin_lock_irqsave(&fotg210->lock, flags); 1760 1761 temp = fotg210_readl(fotg210, status_reg); 1762 temp |= selector << 16; 1763 fotg210_writel(fotg210, temp, status_reg); 1764 break; 1765 1766 default: 1767 goto error; 1768 } 1769 fotg210_readl(fotg210, &fotg210->regs->command); 1770 break; 1771 1772 default: 1773 error: 1774 /* "stall" on error */ 1775 retval = -EPIPE; 1776 } 1777 spin_unlock_irqrestore(&fotg210->lock, flags); 1778 return retval; 1779 } 1780 1781 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd, 1782 int portnum) 1783 { 1784 return; 1785 } 1786 1787 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd, 1788 int portnum) 1789 { 1790 return 0; 1791 } 1792 1793 /* There's basically three types of memory: 1794 * - data used only by the HCD ... kmalloc is fine 1795 * - async and periodic schedules, shared by HC and HCD ... these 1796 * need to use dma_pool or dma_alloc_coherent 1797 * - driver buffers, read/written by HC ... single shot DMA mapped 1798 * 1799 * There's also "register" data (e.g. PCI or SOC), which is memory mapped. 1800 * No memory seen by this driver is pageable. 1801 */ 1802 1803 /* Allocate the key transfer structures from the previously allocated pool */ 1804 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210, 1805 struct fotg210_qtd *qtd, dma_addr_t dma) 1806 { 1807 memset(qtd, 0, sizeof(*qtd)); 1808 qtd->qtd_dma = dma; 1809 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); 1810 qtd->hw_next = FOTG210_LIST_END(fotg210); 1811 qtd->hw_alt_next = FOTG210_LIST_END(fotg210); 1812 INIT_LIST_HEAD(&qtd->qtd_list); 1813 } 1814 1815 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210, 1816 gfp_t flags) 1817 { 1818 struct fotg210_qtd *qtd; 1819 dma_addr_t dma; 1820 1821 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma); 1822 if (qtd != NULL) 1823 fotg210_qtd_init(fotg210, qtd, dma); 1824 1825 return qtd; 1826 } 1827 1828 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210, 1829 struct fotg210_qtd *qtd) 1830 { 1831 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma); 1832 } 1833 1834 1835 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 1836 { 1837 /* clean qtds first, and know this is not linked */ 1838 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 1839 fotg210_dbg(fotg210, "unused qh not empty!\n"); 1840 BUG(); 1841 } 1842 if (qh->dummy) 1843 fotg210_qtd_free(fotg210, qh->dummy); 1844 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); 1845 kfree(qh); 1846 } 1847 1848 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210, 1849 gfp_t flags) 1850 { 1851 struct fotg210_qh *qh; 1852 dma_addr_t dma; 1853 1854 qh = kzalloc(sizeof(*qh), GFP_ATOMIC); 1855 if (!qh) 1856 goto done; 1857 qh->hw = (struct fotg210_qh_hw *) 1858 dma_pool_zalloc(fotg210->qh_pool, flags, &dma); 1859 if (!qh->hw) 1860 goto fail; 1861 qh->qh_dma = dma; 1862 INIT_LIST_HEAD(&qh->qtd_list); 1863 1864 /* dummy td enables safe urb queuing */ 1865 qh->dummy = fotg210_qtd_alloc(fotg210, flags); 1866 if (qh->dummy == NULL) { 1867 fotg210_dbg(fotg210, "no dummy td\n"); 1868 goto fail1; 1869 } 1870 done: 1871 return qh; 1872 fail1: 1873 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); 1874 fail: 1875 kfree(qh); 1876 return NULL; 1877 } 1878 1879 /* The queue heads and transfer descriptors are managed from pools tied 1880 * to each of the "per device" structures. 1881 * This is the initialisation and cleanup code. 1882 */ 1883 1884 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210) 1885 { 1886 if (fotg210->async) 1887 qh_destroy(fotg210, fotg210->async); 1888 fotg210->async = NULL; 1889 1890 if (fotg210->dummy) 1891 qh_destroy(fotg210, fotg210->dummy); 1892 fotg210->dummy = NULL; 1893 1894 /* DMA consistent memory and pools */ 1895 dma_pool_destroy(fotg210->qtd_pool); 1896 fotg210->qtd_pool = NULL; 1897 1898 dma_pool_destroy(fotg210->qh_pool); 1899 fotg210->qh_pool = NULL; 1900 1901 dma_pool_destroy(fotg210->itd_pool); 1902 fotg210->itd_pool = NULL; 1903 1904 if (fotg210->periodic) 1905 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller, 1906 fotg210->periodic_size * sizeof(u32), 1907 fotg210->periodic, fotg210->periodic_dma); 1908 fotg210->periodic = NULL; 1909 1910 /* shadow periodic table */ 1911 kfree(fotg210->pshadow); 1912 fotg210->pshadow = NULL; 1913 } 1914 1915 /* remember to add cleanup code (above) if you add anything here */ 1916 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags) 1917 { 1918 int i; 1919 1920 /* QTDs for control/bulk/intr transfers */ 1921 fotg210->qtd_pool = dma_pool_create("fotg210_qtd", 1922 fotg210_to_hcd(fotg210)->self.controller, 1923 sizeof(struct fotg210_qtd), 1924 32 /* byte alignment (for hw parts) */, 1925 4096 /* can't cross 4K */); 1926 if (!fotg210->qtd_pool) 1927 goto fail; 1928 1929 /* QHs for control/bulk/intr transfers */ 1930 fotg210->qh_pool = dma_pool_create("fotg210_qh", 1931 fotg210_to_hcd(fotg210)->self.controller, 1932 sizeof(struct fotg210_qh_hw), 1933 32 /* byte alignment (for hw parts) */, 1934 4096 /* can't cross 4K */); 1935 if (!fotg210->qh_pool) 1936 goto fail; 1937 1938 fotg210->async = fotg210_qh_alloc(fotg210, flags); 1939 if (!fotg210->async) 1940 goto fail; 1941 1942 /* ITD for high speed ISO transfers */ 1943 fotg210->itd_pool = dma_pool_create("fotg210_itd", 1944 fotg210_to_hcd(fotg210)->self.controller, 1945 sizeof(struct fotg210_itd), 1946 64 /* byte alignment (for hw parts) */, 1947 4096 /* can't cross 4K */); 1948 if (!fotg210->itd_pool) 1949 goto fail; 1950 1951 /* Hardware periodic table */ 1952 fotg210->periodic = 1953 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller, 1954 fotg210->periodic_size * sizeof(__le32), 1955 &fotg210->periodic_dma, 0); 1956 if (fotg210->periodic == NULL) 1957 goto fail; 1958 1959 for (i = 0; i < fotg210->periodic_size; i++) 1960 fotg210->periodic[i] = FOTG210_LIST_END(fotg210); 1961 1962 /* software shadow of hardware table */ 1963 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *), 1964 flags); 1965 if (fotg210->pshadow != NULL) 1966 return 0; 1967 1968 fail: 1969 fotg210_dbg(fotg210, "couldn't init memory\n"); 1970 fotg210_mem_cleanup(fotg210); 1971 return -ENOMEM; 1972 } 1973 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation. 1974 * 1975 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" 1976 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned 1977 * buffers needed for the larger number). We use one QH per endpoint, queue 1978 * multiple urbs (all three types) per endpoint. URBs may need several qtds. 1979 * 1980 * ISO traffic uses "ISO TD" (itd) records, and (along with 1981 * interrupts) needs careful scheduling. Performance improvements can be 1982 * an ongoing challenge. That's in "ehci-sched.c". 1983 * 1984 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, 1985 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using 1986 * (b) special fields in qh entries or (c) split iso entries. TTs will 1987 * buffer low/full speed data so the host collects it at high speed. 1988 */ 1989 1990 /* fill a qtd, returning how much of the buffer we were able to queue up */ 1991 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, 1992 dma_addr_t buf, size_t len, int token, int maxpacket) 1993 { 1994 int i, count; 1995 u64 addr = buf; 1996 1997 /* one buffer entry per 4K ... first might be short or unaligned */ 1998 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr); 1999 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32)); 2000 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 2001 if (likely(len < count)) /* ... iff needed */ 2002 count = len; 2003 else { 2004 buf += 0x1000; 2005 buf &= ~0x0fff; 2006 2007 /* per-qtd limit: from 16K to 20K (best alignment) */ 2008 for (i = 1; count < len && i < 5; i++) { 2009 addr = buf; 2010 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr); 2011 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210, 2012 (u32)(addr >> 32)); 2013 buf += 0x1000; 2014 if ((count + 0x1000) < len) 2015 count += 0x1000; 2016 else 2017 count = len; 2018 } 2019 2020 /* short packets may only terminate transfers */ 2021 if (count != len) 2022 count -= (count % maxpacket); 2023 } 2024 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token); 2025 qtd->length = count; 2026 2027 return count; 2028 } 2029 2030 static inline void qh_update(struct fotg210_hcd *fotg210, 2031 struct fotg210_qh *qh, struct fotg210_qtd *qtd) 2032 { 2033 struct fotg210_qh_hw *hw = qh->hw; 2034 2035 /* writes to an active overlay are unsafe */ 2036 BUG_ON(qh->qh_state != QH_STATE_IDLE); 2037 2038 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2039 hw->hw_alt_next = FOTG210_LIST_END(fotg210); 2040 2041 /* Except for control endpoints, we make hardware maintain data 2042 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 2043 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 2044 * ever clear it. 2045 */ 2046 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) { 2047 unsigned is_out, epnum; 2048 2049 is_out = qh->is_out; 2050 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f; 2051 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 2052 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE); 2053 usb_settoggle(qh->dev, epnum, is_out, 1); 2054 } 2055 } 2056 2057 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING); 2058 } 2059 2060 /* if it weren't for a common silicon quirk (writing the dummy into the qh 2061 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 2062 * recovery (including urb dequeue) would need software changes to a QH... 2063 */ 2064 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 2065 { 2066 struct fotg210_qtd *qtd; 2067 2068 if (list_empty(&qh->qtd_list)) 2069 qtd = qh->dummy; 2070 else { 2071 qtd = list_entry(qh->qtd_list.next, 2072 struct fotg210_qtd, qtd_list); 2073 /* 2074 * first qtd may already be partially processed. 2075 * If we come here during unlink, the QH overlay region 2076 * might have reference to the just unlinked qtd. The 2077 * qtd is updated in qh_completions(). Update the QH 2078 * overlay here. 2079 */ 2080 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) { 2081 qh->hw->hw_qtd_next = qtd->hw_next; 2082 qtd = NULL; 2083 } 2084 } 2085 2086 if (qtd) 2087 qh_update(fotg210, qh, qtd); 2088 } 2089 2090 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 2091 2092 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd, 2093 struct usb_host_endpoint *ep) 2094 { 2095 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 2096 struct fotg210_qh *qh = ep->hcpriv; 2097 unsigned long flags; 2098 2099 spin_lock_irqsave(&fotg210->lock, flags); 2100 qh->clearing_tt = 0; 2101 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) 2102 && fotg210->rh_state == FOTG210_RH_RUNNING) 2103 qh_link_async(fotg210, qh); 2104 spin_unlock_irqrestore(&fotg210->lock, flags); 2105 } 2106 2107 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210, 2108 struct fotg210_qh *qh, struct urb *urb, u32 token) 2109 { 2110 2111 /* If an async split transaction gets an error or is unlinked, 2112 * the TT buffer may be left in an indeterminate state. We 2113 * have to clear the TT buffer. 2114 * 2115 * Note: this routine is never called for Isochronous transfers. 2116 */ 2117 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { 2118 struct usb_device *tt = urb->dev->tt->hub; 2119 2120 dev_dbg(&tt->dev, 2121 "clear tt buffer port %d, a%d ep%d t%08x\n", 2122 urb->dev->ttport, urb->dev->devnum, 2123 usb_pipeendpoint(urb->pipe), token); 2124 2125 if (urb->dev->tt->hub != 2126 fotg210_to_hcd(fotg210)->self.root_hub) { 2127 if (usb_hub_clear_tt_buffer(urb) == 0) 2128 qh->clearing_tt = 1; 2129 } 2130 } 2131 } 2132 2133 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb, 2134 size_t length, u32 token) 2135 { 2136 int status = -EINPROGRESS; 2137 2138 /* count IN/OUT bytes, not SETUP (even short packets) */ 2139 if (likely(QTD_PID(token) != 2)) 2140 urb->actual_length += length - QTD_LENGTH(token); 2141 2142 /* don't modify error codes */ 2143 if (unlikely(urb->unlinked)) 2144 return status; 2145 2146 /* force cleanup after short read; not always an error */ 2147 if (unlikely(IS_SHORT_READ(token))) 2148 status = -EREMOTEIO; 2149 2150 /* serious "can't proceed" faults reported by the hardware */ 2151 if (token & QTD_STS_HALT) { 2152 if (token & QTD_STS_BABBLE) { 2153 /* FIXME "must" disable babbling device's port too */ 2154 status = -EOVERFLOW; 2155 /* CERR nonzero + halt --> stall */ 2156 } else if (QTD_CERR(token)) { 2157 status = -EPIPE; 2158 2159 /* In theory, more than one of the following bits can be set 2160 * since they are sticky and the transaction is retried. 2161 * Which to test first is rather arbitrary. 2162 */ 2163 } else if (token & QTD_STS_MMF) { 2164 /* fs/ls interrupt xfer missed the complete-split */ 2165 status = -EPROTO; 2166 } else if (token & QTD_STS_DBE) { 2167 status = (QTD_PID(token) == 1) /* IN ? */ 2168 ? -ENOSR /* hc couldn't read data */ 2169 : -ECOMM; /* hc couldn't write data */ 2170 } else if (token & QTD_STS_XACT) { 2171 /* timeout, bad CRC, wrong PID, etc */ 2172 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n", 2173 urb->dev->devpath, 2174 usb_pipeendpoint(urb->pipe), 2175 usb_pipein(urb->pipe) ? "in" : "out"); 2176 status = -EPROTO; 2177 } else { /* unknown */ 2178 status = -EPROTO; 2179 } 2180 2181 fotg210_dbg(fotg210, 2182 "dev%d ep%d%s qtd token %08x --> status %d\n", 2183 usb_pipedevice(urb->pipe), 2184 usb_pipeendpoint(urb->pipe), 2185 usb_pipein(urb->pipe) ? "in" : "out", 2186 token, status); 2187 } 2188 2189 return status; 2190 } 2191 2192 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, 2193 int status) 2194 __releases(fotg210->lock) 2195 __acquires(fotg210->lock) 2196 { 2197 if (likely(urb->hcpriv != NULL)) { 2198 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv; 2199 2200 /* S-mask in a QH means it's an interrupt urb */ 2201 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) { 2202 2203 /* ... update hc-wide periodic stats (for usbfs) */ 2204 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--; 2205 } 2206 } 2207 2208 if (unlikely(urb->unlinked)) { 2209 INCR(fotg210->stats.unlink); 2210 } else { 2211 /* report non-error and short read status as zero */ 2212 if (status == -EINPROGRESS || status == -EREMOTEIO) 2213 status = 0; 2214 INCR(fotg210->stats.complete); 2215 } 2216 2217 #ifdef FOTG210_URB_TRACE 2218 fotg210_dbg(fotg210, 2219 "%s %s urb %p ep%d%s status %d len %d/%d\n", 2220 __func__, urb->dev->devpath, urb, 2221 usb_pipeendpoint(urb->pipe), 2222 usb_pipein(urb->pipe) ? "in" : "out", 2223 status, 2224 urb->actual_length, urb->transfer_buffer_length); 2225 #endif 2226 2227 /* complete() can reenter this HCD */ 2228 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 2229 spin_unlock(&fotg210->lock); 2230 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status); 2231 spin_lock(&fotg210->lock); 2232 } 2233 2234 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 2235 2236 /* Process and free completed qtds for a qh, returning URBs to drivers. 2237 * Chases up to qh->hw_current. Returns number of completions called, 2238 * indicating how much "real" work we did. 2239 */ 2240 static unsigned qh_completions(struct fotg210_hcd *fotg210, 2241 struct fotg210_qh *qh) 2242 { 2243 struct fotg210_qtd *last, *end = qh->dummy; 2244 struct fotg210_qtd *qtd, *tmp; 2245 int last_status; 2246 int stopped; 2247 unsigned count = 0; 2248 u8 state; 2249 struct fotg210_qh_hw *hw = qh->hw; 2250 2251 if (unlikely(list_empty(&qh->qtd_list))) 2252 return count; 2253 2254 /* completions (or tasks on other cpus) must never clobber HALT 2255 * till we've gone through and cleaned everything up, even when 2256 * they add urbs to this qh's queue or mark them for unlinking. 2257 * 2258 * NOTE: unlinking expects to be done in queue order. 2259 * 2260 * It's a bug for qh->qh_state to be anything other than 2261 * QH_STATE_IDLE, unless our caller is scan_async() or 2262 * scan_intr(). 2263 */ 2264 state = qh->qh_state; 2265 qh->qh_state = QH_STATE_COMPLETING; 2266 stopped = (state == QH_STATE_IDLE); 2267 2268 rescan: 2269 last = NULL; 2270 last_status = -EINPROGRESS; 2271 qh->needs_rescan = 0; 2272 2273 /* remove de-activated QTDs from front of queue. 2274 * after faults (including short reads), cleanup this urb 2275 * then let the queue advance. 2276 * if queue is stopped, handles unlinks. 2277 */ 2278 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { 2279 struct urb *urb; 2280 u32 token = 0; 2281 2282 urb = qtd->urb; 2283 2284 /* clean up any state from previous QTD ...*/ 2285 if (last) { 2286 if (likely(last->urb != urb)) { 2287 fotg210_urb_done(fotg210, last->urb, 2288 last_status); 2289 count++; 2290 last_status = -EINPROGRESS; 2291 } 2292 fotg210_qtd_free(fotg210, last); 2293 last = NULL; 2294 } 2295 2296 /* ignore urbs submitted during completions we reported */ 2297 if (qtd == end) 2298 break; 2299 2300 /* hardware copies qtd out of qh overlay */ 2301 rmb(); 2302 token = hc32_to_cpu(fotg210, qtd->hw_token); 2303 2304 /* always clean up qtds the hc de-activated */ 2305 retry_xacterr: 2306 if ((token & QTD_STS_ACTIVE) == 0) { 2307 2308 /* Report Data Buffer Error: non-fatal but useful */ 2309 if (token & QTD_STS_DBE) 2310 fotg210_dbg(fotg210, 2311 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", 2312 urb, usb_endpoint_num(&urb->ep->desc), 2313 usb_endpoint_dir_in(&urb->ep->desc) 2314 ? "in" : "out", 2315 urb->transfer_buffer_length, qtd, qh); 2316 2317 /* on STALL, error, and short reads this urb must 2318 * complete and all its qtds must be recycled. 2319 */ 2320 if ((token & QTD_STS_HALT) != 0) { 2321 2322 /* retry transaction errors until we 2323 * reach the software xacterr limit 2324 */ 2325 if ((token & QTD_STS_XACT) && 2326 QTD_CERR(token) == 0 && 2327 ++qh->xacterrs < QH_XACTERR_MAX && 2328 !urb->unlinked) { 2329 fotg210_dbg(fotg210, 2330 "detected XactErr len %zu/%zu retry %d\n", 2331 qtd->length - QTD_LENGTH(token), 2332 qtd->length, 2333 qh->xacterrs); 2334 2335 /* reset the token in the qtd and the 2336 * qh overlay (which still contains 2337 * the qtd) so that we pick up from 2338 * where we left off 2339 */ 2340 token &= ~QTD_STS_HALT; 2341 token |= QTD_STS_ACTIVE | 2342 (FOTG210_TUNE_CERR << 10); 2343 qtd->hw_token = cpu_to_hc32(fotg210, 2344 token); 2345 wmb(); 2346 hw->hw_token = cpu_to_hc32(fotg210, 2347 token); 2348 goto retry_xacterr; 2349 } 2350 stopped = 1; 2351 2352 /* magic dummy for some short reads; qh won't advance. 2353 * that silicon quirk can kick in with this dummy too. 2354 * 2355 * other short reads won't stop the queue, including 2356 * control transfers (status stage handles that) or 2357 * most other single-qtd reads ... the queue stops if 2358 * URB_SHORT_NOT_OK was set so the driver submitting 2359 * the urbs could clean it up. 2360 */ 2361 } else if (IS_SHORT_READ(token) && 2362 !(qtd->hw_alt_next & 2363 FOTG210_LIST_END(fotg210))) { 2364 stopped = 1; 2365 } 2366 2367 /* stop scanning when we reach qtds the hc is using */ 2368 } else if (likely(!stopped 2369 && fotg210->rh_state >= FOTG210_RH_RUNNING)) { 2370 break; 2371 2372 /* scan the whole queue for unlinks whenever it stops */ 2373 } else { 2374 stopped = 1; 2375 2376 /* cancel everything if we halt, suspend, etc */ 2377 if (fotg210->rh_state < FOTG210_RH_RUNNING) 2378 last_status = -ESHUTDOWN; 2379 2380 /* this qtd is active; skip it unless a previous qtd 2381 * for its urb faulted, or its urb was canceled. 2382 */ 2383 else if (last_status == -EINPROGRESS && !urb->unlinked) 2384 continue; 2385 2386 /* qh unlinked; token in overlay may be most current */ 2387 if (state == QH_STATE_IDLE && 2388 cpu_to_hc32(fotg210, qtd->qtd_dma) 2389 == hw->hw_current) { 2390 token = hc32_to_cpu(fotg210, hw->hw_token); 2391 2392 /* An unlink may leave an incomplete 2393 * async transaction in the TT buffer. 2394 * We have to clear it. 2395 */ 2396 fotg210_clear_tt_buffer(fotg210, qh, urb, 2397 token); 2398 } 2399 } 2400 2401 /* unless we already know the urb's status, collect qtd status 2402 * and update count of bytes transferred. in common short read 2403 * cases with only one data qtd (including control transfers), 2404 * queue processing won't halt. but with two or more qtds (for 2405 * example, with a 32 KB transfer), when the first qtd gets a 2406 * short read the second must be removed by hand. 2407 */ 2408 if (last_status == -EINPROGRESS) { 2409 last_status = qtd_copy_status(fotg210, urb, 2410 qtd->length, token); 2411 if (last_status == -EREMOTEIO && 2412 (qtd->hw_alt_next & 2413 FOTG210_LIST_END(fotg210))) 2414 last_status = -EINPROGRESS; 2415 2416 /* As part of low/full-speed endpoint-halt processing 2417 * we must clear the TT buffer (11.17.5). 2418 */ 2419 if (unlikely(last_status != -EINPROGRESS && 2420 last_status != -EREMOTEIO)) { 2421 /* The TT's in some hubs malfunction when they 2422 * receive this request following a STALL (they 2423 * stop sending isochronous packets). Since a 2424 * STALL can't leave the TT buffer in a busy 2425 * state (if you believe Figures 11-48 - 11-51 2426 * in the USB 2.0 spec), we won't clear the TT 2427 * buffer in this case. Strictly speaking this 2428 * is a violation of the spec. 2429 */ 2430 if (last_status != -EPIPE) 2431 fotg210_clear_tt_buffer(fotg210, qh, 2432 urb, token); 2433 } 2434 } 2435 2436 /* if we're removing something not at the queue head, 2437 * patch the hardware queue pointer. 2438 */ 2439 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 2440 last = list_entry(qtd->qtd_list.prev, 2441 struct fotg210_qtd, qtd_list); 2442 last->hw_next = qtd->hw_next; 2443 } 2444 2445 /* remove qtd; it's recycled after possible urb completion */ 2446 list_del(&qtd->qtd_list); 2447 last = qtd; 2448 2449 /* reinit the xacterr counter for the next qtd */ 2450 qh->xacterrs = 0; 2451 } 2452 2453 /* last urb's completion might still need calling */ 2454 if (likely(last != NULL)) { 2455 fotg210_urb_done(fotg210, last->urb, last_status); 2456 count++; 2457 fotg210_qtd_free(fotg210, last); 2458 } 2459 2460 /* Do we need to rescan for URBs dequeued during a giveback? */ 2461 if (unlikely(qh->needs_rescan)) { 2462 /* If the QH is already unlinked, do the rescan now. */ 2463 if (state == QH_STATE_IDLE) 2464 goto rescan; 2465 2466 /* Otherwise we have to wait until the QH is fully unlinked. 2467 * Our caller will start an unlink if qh->needs_rescan is 2468 * set. But if an unlink has already started, nothing needs 2469 * to be done. 2470 */ 2471 if (state != QH_STATE_LINKED) 2472 qh->needs_rescan = 0; 2473 } 2474 2475 /* restore original state; caller must unlink or relink */ 2476 qh->qh_state = state; 2477 2478 /* be sure the hardware's done with the qh before refreshing 2479 * it after fault cleanup, or recovering from silicon wrongly 2480 * overlaying the dummy qtd (which reduces DMA chatter). 2481 */ 2482 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) { 2483 switch (state) { 2484 case QH_STATE_IDLE: 2485 qh_refresh(fotg210, qh); 2486 break; 2487 case QH_STATE_LINKED: 2488 /* We won't refresh a QH that's linked (after the HC 2489 * stopped the queue). That avoids a race: 2490 * - HC reads first part of QH; 2491 * - CPU updates that first part and the token; 2492 * - HC reads rest of that QH, including token 2493 * Result: HC gets an inconsistent image, and then 2494 * DMAs to/from the wrong memory (corrupting it). 2495 * 2496 * That should be rare for interrupt transfers, 2497 * except maybe high bandwidth ... 2498 */ 2499 2500 /* Tell the caller to start an unlink */ 2501 qh->needs_rescan = 1; 2502 break; 2503 /* otherwise, unlink already started */ 2504 } 2505 } 2506 2507 return count; 2508 } 2509 2510 /* reverse of qh_urb_transaction: free a list of TDs. 2511 * used for cleanup after errors, before HC sees an URB's TDs. 2512 */ 2513 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb, 2514 struct list_head *head) 2515 { 2516 struct fotg210_qtd *qtd, *temp; 2517 2518 list_for_each_entry_safe(qtd, temp, head, qtd_list) { 2519 list_del(&qtd->qtd_list); 2520 fotg210_qtd_free(fotg210, qtd); 2521 } 2522 } 2523 2524 /* create a list of filled qtds for this URB; won't link into qh. 2525 */ 2526 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210, 2527 struct urb *urb, struct list_head *head, gfp_t flags) 2528 { 2529 struct fotg210_qtd *qtd, *qtd_prev; 2530 dma_addr_t buf; 2531 int len, this_sg_len, maxpacket; 2532 int is_input; 2533 u32 token; 2534 int i; 2535 struct scatterlist *sg; 2536 2537 /* 2538 * URBs map to sequences of QTDs: one logical transaction 2539 */ 2540 qtd = fotg210_qtd_alloc(fotg210, flags); 2541 if (unlikely(!qtd)) 2542 return NULL; 2543 list_add_tail(&qtd->qtd_list, head); 2544 qtd->urb = urb; 2545 2546 token = QTD_STS_ACTIVE; 2547 token |= (FOTG210_TUNE_CERR << 10); 2548 /* for split transactions, SplitXState initialized to zero */ 2549 2550 len = urb->transfer_buffer_length; 2551 is_input = usb_pipein(urb->pipe); 2552 if (usb_pipecontrol(urb->pipe)) { 2553 /* SETUP pid */ 2554 qtd_fill(fotg210, qtd, urb->setup_dma, 2555 sizeof(struct usb_ctrlrequest), 2556 token | (2 /* "setup" */ << 8), 8); 2557 2558 /* ... and always at least one more pid */ 2559 token ^= QTD_TOGGLE; 2560 qtd_prev = qtd; 2561 qtd = fotg210_qtd_alloc(fotg210, flags); 2562 if (unlikely(!qtd)) 2563 goto cleanup; 2564 qtd->urb = urb; 2565 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2566 list_add_tail(&qtd->qtd_list, head); 2567 2568 /* for zero length DATA stages, STATUS is always IN */ 2569 if (len == 0) 2570 token |= (1 /* "in" */ << 8); 2571 } 2572 2573 /* 2574 * data transfer stage: buffer setup 2575 */ 2576 i = urb->num_mapped_sgs; 2577 if (len > 0 && i > 0) { 2578 sg = urb->sg; 2579 buf = sg_dma_address(sg); 2580 2581 /* urb->transfer_buffer_length may be smaller than the 2582 * size of the scatterlist (or vice versa) 2583 */ 2584 this_sg_len = min_t(int, sg_dma_len(sg), len); 2585 } else { 2586 sg = NULL; 2587 buf = urb->transfer_dma; 2588 this_sg_len = len; 2589 } 2590 2591 if (is_input) 2592 token |= (1 /* "in" */ << 8); 2593 /* else it's already initted to "out" pid (0 << 8) */ 2594 2595 maxpacket = usb_maxpacket(urb->dev, urb->pipe); 2596 2597 /* 2598 * buffer gets wrapped in one or more qtds; 2599 * last one may be "short" (including zero len) 2600 * and may serve as a control status ack 2601 */ 2602 for (;;) { 2603 int this_qtd_len; 2604 2605 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token, 2606 maxpacket); 2607 this_sg_len -= this_qtd_len; 2608 len -= this_qtd_len; 2609 buf += this_qtd_len; 2610 2611 /* 2612 * short reads advance to a "magic" dummy instead of the next 2613 * qtd ... that forces the queue to stop, for manual cleanup. 2614 * (this will usually be overridden later.) 2615 */ 2616 if (is_input) 2617 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next; 2618 2619 /* qh makes control packets use qtd toggle; maybe switch it */ 2620 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 2621 token ^= QTD_TOGGLE; 2622 2623 if (likely(this_sg_len <= 0)) { 2624 if (--i <= 0 || len <= 0) 2625 break; 2626 sg = sg_next(sg); 2627 buf = sg_dma_address(sg); 2628 this_sg_len = min_t(int, sg_dma_len(sg), len); 2629 } 2630 2631 qtd_prev = qtd; 2632 qtd = fotg210_qtd_alloc(fotg210, flags); 2633 if (unlikely(!qtd)) 2634 goto cleanup; 2635 qtd->urb = urb; 2636 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2637 list_add_tail(&qtd->qtd_list, head); 2638 } 2639 2640 /* 2641 * unless the caller requires manual cleanup after short reads, 2642 * have the alt_next mechanism keep the queue running after the 2643 * last data qtd (the only one, for control and most other cases). 2644 */ 2645 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 || 2646 usb_pipecontrol(urb->pipe))) 2647 qtd->hw_alt_next = FOTG210_LIST_END(fotg210); 2648 2649 /* 2650 * control requests may need a terminating data "status" ack; 2651 * other OUT ones may need a terminating short packet 2652 * (zero length). 2653 */ 2654 if (likely(urb->transfer_buffer_length != 0)) { 2655 int one_more = 0; 2656 2657 if (usb_pipecontrol(urb->pipe)) { 2658 one_more = 1; 2659 token ^= 0x0100; /* "in" <--> "out" */ 2660 token |= QTD_TOGGLE; /* force DATA1 */ 2661 } else if (usb_pipeout(urb->pipe) 2662 && (urb->transfer_flags & URB_ZERO_PACKET) 2663 && !(urb->transfer_buffer_length % maxpacket)) { 2664 one_more = 1; 2665 } 2666 if (one_more) { 2667 qtd_prev = qtd; 2668 qtd = fotg210_qtd_alloc(fotg210, flags); 2669 if (unlikely(!qtd)) 2670 goto cleanup; 2671 qtd->urb = urb; 2672 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2673 list_add_tail(&qtd->qtd_list, head); 2674 2675 /* never any data in such packets */ 2676 qtd_fill(fotg210, qtd, 0, 0, token, 0); 2677 } 2678 } 2679 2680 /* by default, enable interrupt on urb completion */ 2681 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) 2682 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC); 2683 return head; 2684 2685 cleanup: 2686 qtd_list_free(fotg210, urb, head); 2687 return NULL; 2688 } 2689 2690 /* Would be best to create all qh's from config descriptors, 2691 * when each interface/altsetting is established. Unlink 2692 * any previous qh and cancel its urbs first; endpoints are 2693 * implicitly reset then (data toggle too). 2694 * That'd mean updating how usbcore talks to HCDs. (2.7?) 2695 */ 2696 2697 2698 /* Each QH holds a qtd list; a QH is used for everything except iso. 2699 * 2700 * For interrupt urbs, the scheduler must set the microframe scheduling 2701 * mask(s) each time the QH gets scheduled. For highspeed, that's 2702 * just one microframe in the s-mask. For split interrupt transactions 2703 * there are additional complications: c-mask, maybe FSTNs. 2704 */ 2705 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb, 2706 gfp_t flags) 2707 { 2708 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags); 2709 struct usb_host_endpoint *ep; 2710 u32 info1 = 0, info2 = 0; 2711 int is_input, type; 2712 int maxp = 0; 2713 int mult; 2714 struct usb_tt *tt = urb->dev->tt; 2715 struct fotg210_qh_hw *hw; 2716 2717 if (!qh) 2718 return qh; 2719 2720 /* 2721 * init endpoint/device data for this QH 2722 */ 2723 info1 |= usb_pipeendpoint(urb->pipe) << 8; 2724 info1 |= usb_pipedevice(urb->pipe) << 0; 2725 2726 is_input = usb_pipein(urb->pipe); 2727 type = usb_pipetype(urb->pipe); 2728 ep = usb_pipe_endpoint(urb->dev, urb->pipe); 2729 maxp = usb_endpoint_maxp(&ep->desc); 2730 mult = usb_endpoint_maxp_mult(&ep->desc); 2731 2732 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth 2733 * acts like up to 3KB, but is built from smaller packets. 2734 */ 2735 if (maxp > 1024) { 2736 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp); 2737 goto done; 2738 } 2739 2740 /* Compute interrupt scheduling parameters just once, and save. 2741 * - allowing for high bandwidth, how many nsec/uframe are used? 2742 * - split transactions need a second CSPLIT uframe; same question 2743 * - splits also need a schedule gap (for full/low speed I/O) 2744 * - qh has a polling interval 2745 * 2746 * For control/bulk requests, the HC or TT handles these. 2747 */ 2748 if (type == PIPE_INTERRUPT) { 2749 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 2750 is_input, 0, mult * maxp)); 2751 qh->start = NO_FRAME; 2752 2753 if (urb->dev->speed == USB_SPEED_HIGH) { 2754 qh->c_usecs = 0; 2755 qh->gap_uf = 0; 2756 2757 qh->period = urb->interval >> 3; 2758 if (qh->period == 0 && urb->interval != 1) { 2759 /* NOTE interval 2 or 4 uframes could work. 2760 * But interval 1 scheduling is simpler, and 2761 * includes high bandwidth. 2762 */ 2763 urb->interval = 1; 2764 } else if (qh->period > fotg210->periodic_size) { 2765 qh->period = fotg210->periodic_size; 2766 urb->interval = qh->period << 3; 2767 } 2768 } else { 2769 int think_time; 2770 2771 /* gap is f(FS/LS transfer times) */ 2772 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 2773 is_input, 0, maxp) / (125 * 1000); 2774 2775 /* FIXME this just approximates SPLIT/CSPLIT times */ 2776 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 2777 qh->c_usecs = qh->usecs + HS_USECS(0); 2778 qh->usecs = HS_USECS(1); 2779 } else { /* SPLIT+DATA, gap, CSPLIT */ 2780 qh->usecs += HS_USECS(1); 2781 qh->c_usecs = HS_USECS(0); 2782 } 2783 2784 think_time = tt ? tt->think_time : 0; 2785 qh->tt_usecs = NS_TO_US(think_time + 2786 usb_calc_bus_time(urb->dev->speed, 2787 is_input, 0, maxp)); 2788 qh->period = urb->interval; 2789 if (qh->period > fotg210->periodic_size) { 2790 qh->period = fotg210->periodic_size; 2791 urb->interval = qh->period; 2792 } 2793 } 2794 } 2795 2796 /* support for tt scheduling, and access to toggles */ 2797 qh->dev = urb->dev; 2798 2799 /* using TT? */ 2800 switch (urb->dev->speed) { 2801 case USB_SPEED_LOW: 2802 info1 |= QH_LOW_SPEED; 2803 fallthrough; 2804 2805 case USB_SPEED_FULL: 2806 /* EPS 0 means "full" */ 2807 if (type != PIPE_INTERRUPT) 2808 info1 |= (FOTG210_TUNE_RL_TT << 28); 2809 if (type == PIPE_CONTROL) { 2810 info1 |= QH_CONTROL_EP; /* for TT */ 2811 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 2812 } 2813 info1 |= maxp << 16; 2814 2815 info2 |= (FOTG210_TUNE_MULT_TT << 30); 2816 2817 /* Some Freescale processors have an erratum in which the 2818 * port number in the queue head was 0..N-1 instead of 1..N. 2819 */ 2820 if (fotg210_has_fsl_portno_bug(fotg210)) 2821 info2 |= (urb->dev->ttport-1) << 23; 2822 else 2823 info2 |= urb->dev->ttport << 23; 2824 2825 /* set the address of the TT; for TDI's integrated 2826 * root hub tt, leave it zeroed. 2827 */ 2828 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub) 2829 info2 |= tt->hub->devnum << 16; 2830 2831 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 2832 2833 break; 2834 2835 case USB_SPEED_HIGH: /* no TT involved */ 2836 info1 |= QH_HIGH_SPEED; 2837 if (type == PIPE_CONTROL) { 2838 info1 |= (FOTG210_TUNE_RL_HS << 28); 2839 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 2840 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 2841 info2 |= (FOTG210_TUNE_MULT_HS << 30); 2842 } else if (type == PIPE_BULK) { 2843 info1 |= (FOTG210_TUNE_RL_HS << 28); 2844 /* The USB spec says that high speed bulk endpoints 2845 * always use 512 byte maxpacket. But some device 2846 * vendors decided to ignore that, and MSFT is happy 2847 * to help them do so. So now people expect to use 2848 * such nonconformant devices with Linux too; sigh. 2849 */ 2850 info1 |= maxp << 16; 2851 info2 |= (FOTG210_TUNE_MULT_HS << 30); 2852 } else { /* PIPE_INTERRUPT */ 2853 info1 |= maxp << 16; 2854 info2 |= mult << 30; 2855 } 2856 break; 2857 default: 2858 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev, 2859 urb->dev->speed); 2860 done: 2861 qh_destroy(fotg210, qh); 2862 return NULL; 2863 } 2864 2865 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 2866 2867 /* init as live, toggle clear, advance to dummy */ 2868 qh->qh_state = QH_STATE_IDLE; 2869 hw = qh->hw; 2870 hw->hw_info1 = cpu_to_hc32(fotg210, info1); 2871 hw->hw_info2 = cpu_to_hc32(fotg210, info2); 2872 qh->is_out = !is_input; 2873 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 2874 qh_refresh(fotg210, qh); 2875 return qh; 2876 } 2877 2878 static void enable_async(struct fotg210_hcd *fotg210) 2879 { 2880 if (fotg210->async_count++) 2881 return; 2882 2883 /* Stop waiting to turn off the async schedule */ 2884 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC); 2885 2886 /* Don't start the schedule until ASS is 0 */ 2887 fotg210_poll_ASS(fotg210); 2888 turn_on_io_watchdog(fotg210); 2889 } 2890 2891 static void disable_async(struct fotg210_hcd *fotg210) 2892 { 2893 if (--fotg210->async_count) 2894 return; 2895 2896 /* The async schedule and async_unlink list are supposed to be empty */ 2897 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink); 2898 2899 /* Don't turn off the schedule until ASS is 1 */ 2900 fotg210_poll_ASS(fotg210); 2901 } 2902 2903 /* move qh (and its qtds) onto async queue; maybe enable queue. */ 2904 2905 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 2906 { 2907 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma); 2908 struct fotg210_qh *head; 2909 2910 /* Don't link a QH if there's a Clear-TT-Buffer pending */ 2911 if (unlikely(qh->clearing_tt)) 2912 return; 2913 2914 WARN_ON(qh->qh_state != QH_STATE_IDLE); 2915 2916 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 2917 qh_refresh(fotg210, qh); 2918 2919 /* splice right after start */ 2920 head = fotg210->async; 2921 qh->qh_next = head->qh_next; 2922 qh->hw->hw_next = head->hw->hw_next; 2923 wmb(); 2924 2925 head->qh_next.qh = qh; 2926 head->hw->hw_next = dma; 2927 2928 qh->xacterrs = 0; 2929 qh->qh_state = QH_STATE_LINKED; 2930 /* qtd completions reported later by interrupt */ 2931 2932 enable_async(fotg210); 2933 } 2934 2935 /* For control/bulk/interrupt, return QH with these TDs appended. 2936 * Allocates and initializes the QH if necessary. 2937 * Returns null if it can't allocate a QH it needs to. 2938 * If the QH has TDs (urbs) already, that's great. 2939 */ 2940 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210, 2941 struct urb *urb, struct list_head *qtd_list, 2942 int epnum, void **ptr) 2943 { 2944 struct fotg210_qh *qh = NULL; 2945 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f); 2946 2947 qh = (struct fotg210_qh *) *ptr; 2948 if (unlikely(qh == NULL)) { 2949 /* can't sleep here, we have fotg210->lock... */ 2950 qh = qh_make(fotg210, urb, GFP_ATOMIC); 2951 *ptr = qh; 2952 } 2953 if (likely(qh != NULL)) { 2954 struct fotg210_qtd *qtd; 2955 2956 if (unlikely(list_empty(qtd_list))) 2957 qtd = NULL; 2958 else 2959 qtd = list_entry(qtd_list->next, struct fotg210_qtd, 2960 qtd_list); 2961 2962 /* control qh may need patching ... */ 2963 if (unlikely(epnum == 0)) { 2964 /* usb_reset_device() briefly reverts to address 0 */ 2965 if (usb_pipedevice(urb->pipe) == 0) 2966 qh->hw->hw_info1 &= ~qh_addr_mask; 2967 } 2968 2969 /* just one way to queue requests: swap with the dummy qtd. 2970 * only hc or qh_refresh() ever modify the overlay. 2971 */ 2972 if (likely(qtd != NULL)) { 2973 struct fotg210_qtd *dummy; 2974 dma_addr_t dma; 2975 __hc32 token; 2976 2977 /* to avoid racing the HC, use the dummy td instead of 2978 * the first td of our list (becomes new dummy). both 2979 * tds stay deactivated until we're done, when the 2980 * HC is allowed to fetch the old dummy (4.10.2). 2981 */ 2982 token = qtd->hw_token; 2983 qtd->hw_token = HALT_BIT(fotg210); 2984 2985 dummy = qh->dummy; 2986 2987 dma = dummy->qtd_dma; 2988 *dummy = *qtd; 2989 dummy->qtd_dma = dma; 2990 2991 list_del(&qtd->qtd_list); 2992 list_add(&dummy->qtd_list, qtd_list); 2993 list_splice_tail(qtd_list, &qh->qtd_list); 2994 2995 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma); 2996 qh->dummy = qtd; 2997 2998 /* hc must see the new dummy at list end */ 2999 dma = qtd->qtd_dma; 3000 qtd = list_entry(qh->qtd_list.prev, 3001 struct fotg210_qtd, qtd_list); 3002 qtd->hw_next = QTD_NEXT(fotg210, dma); 3003 3004 /* let the hc process these next qtds */ 3005 wmb(); 3006 dummy->hw_token = token; 3007 3008 urb->hcpriv = qh; 3009 } 3010 } 3011 return qh; 3012 } 3013 3014 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb, 3015 struct list_head *qtd_list, gfp_t mem_flags) 3016 { 3017 int epnum; 3018 unsigned long flags; 3019 struct fotg210_qh *qh = NULL; 3020 int rc; 3021 3022 epnum = urb->ep->desc.bEndpointAddress; 3023 3024 #ifdef FOTG210_URB_TRACE 3025 { 3026 struct fotg210_qtd *qtd; 3027 3028 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list); 3029 fotg210_dbg(fotg210, 3030 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 3031 __func__, urb->dev->devpath, urb, 3032 epnum & 0x0f, (epnum & USB_DIR_IN) 3033 ? "in" : "out", 3034 urb->transfer_buffer_length, 3035 qtd, urb->ep->hcpriv); 3036 } 3037 #endif 3038 3039 spin_lock_irqsave(&fotg210->lock, flags); 3040 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 3041 rc = -ESHUTDOWN; 3042 goto done; 3043 } 3044 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 3045 if (unlikely(rc)) 3046 goto done; 3047 3048 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); 3049 if (unlikely(qh == NULL)) { 3050 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 3051 rc = -ENOMEM; 3052 goto done; 3053 } 3054 3055 /* Control/bulk operations through TTs don't need scheduling, 3056 * the HC and TT handle it when the TT has a buffer ready. 3057 */ 3058 if (likely(qh->qh_state == QH_STATE_IDLE)) 3059 qh_link_async(fotg210, qh); 3060 done: 3061 spin_unlock_irqrestore(&fotg210->lock, flags); 3062 if (unlikely(qh == NULL)) 3063 qtd_list_free(fotg210, urb, qtd_list); 3064 return rc; 3065 } 3066 3067 static void single_unlink_async(struct fotg210_hcd *fotg210, 3068 struct fotg210_qh *qh) 3069 { 3070 struct fotg210_qh *prev; 3071 3072 /* Add to the end of the list of QHs waiting for the next IAAD */ 3073 qh->qh_state = QH_STATE_UNLINK; 3074 if (fotg210->async_unlink) 3075 fotg210->async_unlink_last->unlink_next = qh; 3076 else 3077 fotg210->async_unlink = qh; 3078 fotg210->async_unlink_last = qh; 3079 3080 /* Unlink it from the schedule */ 3081 prev = fotg210->async; 3082 while (prev->qh_next.qh != qh) 3083 prev = prev->qh_next.qh; 3084 3085 prev->hw->hw_next = qh->hw->hw_next; 3086 prev->qh_next = qh->qh_next; 3087 if (fotg210->qh_scan_next == qh) 3088 fotg210->qh_scan_next = qh->qh_next.qh; 3089 } 3090 3091 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested) 3092 { 3093 /* 3094 * Do nothing if an IAA cycle is already running or 3095 * if one will be started shortly. 3096 */ 3097 if (fotg210->async_iaa || fotg210->async_unlinking) 3098 return; 3099 3100 /* Do all the waiting QHs at once */ 3101 fotg210->async_iaa = fotg210->async_unlink; 3102 fotg210->async_unlink = NULL; 3103 3104 /* If the controller isn't running, we don't have to wait for it */ 3105 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) { 3106 if (!nested) /* Avoid recursion */ 3107 end_unlink_async(fotg210); 3108 3109 /* Otherwise start a new IAA cycle */ 3110 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) { 3111 /* Make sure the unlinks are all visible to the hardware */ 3112 wmb(); 3113 3114 fotg210_writel(fotg210, fotg210->command | CMD_IAAD, 3115 &fotg210->regs->command); 3116 fotg210_readl(fotg210, &fotg210->regs->command); 3117 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG, 3118 true); 3119 } 3120 } 3121 3122 /* the async qh for the qtds being unlinked are now gone from the HC */ 3123 3124 static void end_unlink_async(struct fotg210_hcd *fotg210) 3125 { 3126 struct fotg210_qh *qh; 3127 3128 /* Process the idle QHs */ 3129 restart: 3130 fotg210->async_unlinking = true; 3131 while (fotg210->async_iaa) { 3132 qh = fotg210->async_iaa; 3133 fotg210->async_iaa = qh->unlink_next; 3134 qh->unlink_next = NULL; 3135 3136 qh->qh_state = QH_STATE_IDLE; 3137 qh->qh_next.qh = NULL; 3138 3139 qh_completions(fotg210, qh); 3140 if (!list_empty(&qh->qtd_list) && 3141 fotg210->rh_state == FOTG210_RH_RUNNING) 3142 qh_link_async(fotg210, qh); 3143 disable_async(fotg210); 3144 } 3145 fotg210->async_unlinking = false; 3146 3147 /* Start a new IAA cycle if any QHs are waiting for it */ 3148 if (fotg210->async_unlink) { 3149 start_iaa_cycle(fotg210, true); 3150 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) 3151 goto restart; 3152 } 3153 } 3154 3155 static void unlink_empty_async(struct fotg210_hcd *fotg210) 3156 { 3157 struct fotg210_qh *qh, *next; 3158 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); 3159 bool check_unlinks_later = false; 3160 3161 /* Unlink all the async QHs that have been empty for a timer cycle */ 3162 next = fotg210->async->qh_next.qh; 3163 while (next) { 3164 qh = next; 3165 next = qh->qh_next.qh; 3166 3167 if (list_empty(&qh->qtd_list) && 3168 qh->qh_state == QH_STATE_LINKED) { 3169 if (!stopped && qh->unlink_cycle == 3170 fotg210->async_unlink_cycle) 3171 check_unlinks_later = true; 3172 else 3173 single_unlink_async(fotg210, qh); 3174 } 3175 } 3176 3177 /* Start a new IAA cycle if any QHs are waiting for it */ 3178 if (fotg210->async_unlink) 3179 start_iaa_cycle(fotg210, false); 3180 3181 /* QHs that haven't been empty for long enough will be handled later */ 3182 if (check_unlinks_later) { 3183 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, 3184 true); 3185 ++fotg210->async_unlink_cycle; 3186 } 3187 } 3188 3189 /* makes sure the async qh will become idle */ 3190 /* caller must own fotg210->lock */ 3191 3192 static void start_unlink_async(struct fotg210_hcd *fotg210, 3193 struct fotg210_qh *qh) 3194 { 3195 /* 3196 * If the QH isn't linked then there's nothing we can do 3197 * unless we were called during a giveback, in which case 3198 * qh_completions() has to deal with it. 3199 */ 3200 if (qh->qh_state != QH_STATE_LINKED) { 3201 if (qh->qh_state == QH_STATE_COMPLETING) 3202 qh->needs_rescan = 1; 3203 return; 3204 } 3205 3206 single_unlink_async(fotg210, qh); 3207 start_iaa_cycle(fotg210, false); 3208 } 3209 3210 static void scan_async(struct fotg210_hcd *fotg210) 3211 { 3212 struct fotg210_qh *qh; 3213 bool check_unlinks_later = false; 3214 3215 fotg210->qh_scan_next = fotg210->async->qh_next.qh; 3216 while (fotg210->qh_scan_next) { 3217 qh = fotg210->qh_scan_next; 3218 fotg210->qh_scan_next = qh->qh_next.qh; 3219 rescan: 3220 /* clean any finished work for this qh */ 3221 if (!list_empty(&qh->qtd_list)) { 3222 int temp; 3223 3224 /* 3225 * Unlinks could happen here; completion reporting 3226 * drops the lock. That's why fotg210->qh_scan_next 3227 * always holds the next qh to scan; if the next qh 3228 * gets unlinked then fotg210->qh_scan_next is adjusted 3229 * in single_unlink_async(). 3230 */ 3231 temp = qh_completions(fotg210, qh); 3232 if (qh->needs_rescan) { 3233 start_unlink_async(fotg210, qh); 3234 } else if (list_empty(&qh->qtd_list) 3235 && qh->qh_state == QH_STATE_LINKED) { 3236 qh->unlink_cycle = fotg210->async_unlink_cycle; 3237 check_unlinks_later = true; 3238 } else if (temp != 0) 3239 goto rescan; 3240 } 3241 } 3242 3243 /* 3244 * Unlink empty entries, reducing DMA usage as well 3245 * as HCD schedule-scanning costs. Delay for any qh 3246 * we just scanned, there's a not-unusual case that it 3247 * doesn't stay idle for long. 3248 */ 3249 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING && 3250 !(fotg210->enabled_hrtimer_events & 3251 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) { 3252 fotg210_enable_event(fotg210, 3253 FOTG210_HRTIMER_ASYNC_UNLINKS, true); 3254 ++fotg210->async_unlink_cycle; 3255 } 3256 } 3257 /* EHCI scheduled transaction support: interrupt, iso, split iso 3258 * These are called "periodic" transactions in the EHCI spec. 3259 * 3260 * Note that for interrupt transfers, the QH/QTD manipulation is shared 3261 * with the "asynchronous" transaction support (control/bulk transfers). 3262 * The only real difference is in how interrupt transfers are scheduled. 3263 * 3264 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 3265 * It keeps track of every ITD (or SITD) that's linked, and holds enough 3266 * pre-calculated schedule data to make appending to the queue be quick. 3267 */ 3268 static int fotg210_get_frame(struct usb_hcd *hcd); 3269 3270 /* periodic_next_shadow - return "next" pointer on shadow list 3271 * @periodic: host pointer to qh/itd 3272 * @tag: hardware tag for type of this record 3273 */ 3274 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210, 3275 union fotg210_shadow *periodic, __hc32 tag) 3276 { 3277 switch (hc32_to_cpu(fotg210, tag)) { 3278 case Q_TYPE_QH: 3279 return &periodic->qh->qh_next; 3280 case Q_TYPE_FSTN: 3281 return &periodic->fstn->fstn_next; 3282 default: 3283 return &periodic->itd->itd_next; 3284 } 3285 } 3286 3287 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210, 3288 union fotg210_shadow *periodic, __hc32 tag) 3289 { 3290 switch (hc32_to_cpu(fotg210, tag)) { 3291 /* our fotg210_shadow.qh is actually software part */ 3292 case Q_TYPE_QH: 3293 return &periodic->qh->hw->hw_next; 3294 /* others are hw parts */ 3295 default: 3296 return periodic->hw_next; 3297 } 3298 } 3299 3300 /* caller must hold fotg210->lock */ 3301 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame, 3302 void *ptr) 3303 { 3304 union fotg210_shadow *prev_p = &fotg210->pshadow[frame]; 3305 __hc32 *hw_p = &fotg210->periodic[frame]; 3306 union fotg210_shadow here = *prev_p; 3307 3308 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 3309 while (here.ptr && here.ptr != ptr) { 3310 prev_p = periodic_next_shadow(fotg210, prev_p, 3311 Q_NEXT_TYPE(fotg210, *hw_p)); 3312 hw_p = shadow_next_periodic(fotg210, &here, 3313 Q_NEXT_TYPE(fotg210, *hw_p)); 3314 here = *prev_p; 3315 } 3316 /* an interrupt entry (at list end) could have been shared */ 3317 if (!here.ptr) 3318 return; 3319 3320 /* update shadow and hardware lists ... the old "next" pointers 3321 * from ptr may still be in use, the caller updates them. 3322 */ 3323 *prev_p = *periodic_next_shadow(fotg210, &here, 3324 Q_NEXT_TYPE(fotg210, *hw_p)); 3325 3326 *hw_p = *shadow_next_periodic(fotg210, &here, 3327 Q_NEXT_TYPE(fotg210, *hw_p)); 3328 } 3329 3330 /* how many of the uframe's 125 usecs are allocated? */ 3331 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210, 3332 unsigned frame, unsigned uframe) 3333 { 3334 __hc32 *hw_p = &fotg210->periodic[frame]; 3335 union fotg210_shadow *q = &fotg210->pshadow[frame]; 3336 unsigned usecs = 0; 3337 struct fotg210_qh_hw *hw; 3338 3339 while (q->ptr) { 3340 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) { 3341 case Q_TYPE_QH: 3342 hw = q->qh->hw; 3343 /* is it in the S-mask? */ 3344 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe)) 3345 usecs += q->qh->usecs; 3346 /* ... or C-mask? */ 3347 if (hw->hw_info2 & cpu_to_hc32(fotg210, 3348 1 << (8 + uframe))) 3349 usecs += q->qh->c_usecs; 3350 hw_p = &hw->hw_next; 3351 q = &q->qh->qh_next; 3352 break; 3353 /* case Q_TYPE_FSTN: */ 3354 default: 3355 /* for "save place" FSTNs, count the relevant INTR 3356 * bandwidth from the previous frame 3357 */ 3358 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210)) 3359 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n"); 3360 3361 hw_p = &q->fstn->hw_next; 3362 q = &q->fstn->fstn_next; 3363 break; 3364 case Q_TYPE_ITD: 3365 if (q->itd->hw_transaction[uframe]) 3366 usecs += q->itd->stream->usecs; 3367 hw_p = &q->itd->hw_next; 3368 q = &q->itd->itd_next; 3369 break; 3370 } 3371 } 3372 if (usecs > fotg210->uframe_periodic_max) 3373 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n", 3374 frame * 8 + uframe, usecs); 3375 return usecs; 3376 } 3377 3378 static int same_tt(struct usb_device *dev1, struct usb_device *dev2) 3379 { 3380 if (!dev1->tt || !dev2->tt) 3381 return 0; 3382 if (dev1->tt != dev2->tt) 3383 return 0; 3384 if (dev1->tt->multi) 3385 return dev1->ttport == dev2->ttport; 3386 else 3387 return 1; 3388 } 3389 3390 /* return true iff the device's transaction translator is available 3391 * for a periodic transfer starting at the specified frame, using 3392 * all the uframes in the mask. 3393 */ 3394 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period, 3395 struct usb_device *dev, unsigned frame, u32 uf_mask) 3396 { 3397 if (period == 0) /* error */ 3398 return 0; 3399 3400 /* note bandwidth wastage: split never follows csplit 3401 * (different dev or endpoint) until the next uframe. 3402 * calling convention doesn't make that distinction. 3403 */ 3404 for (; frame < fotg210->periodic_size; frame += period) { 3405 union fotg210_shadow here; 3406 __hc32 type; 3407 struct fotg210_qh_hw *hw; 3408 3409 here = fotg210->pshadow[frame]; 3410 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]); 3411 while (here.ptr) { 3412 switch (hc32_to_cpu(fotg210, type)) { 3413 case Q_TYPE_ITD: 3414 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next); 3415 here = here.itd->itd_next; 3416 continue; 3417 case Q_TYPE_QH: 3418 hw = here.qh->hw; 3419 if (same_tt(dev, here.qh->dev)) { 3420 u32 mask; 3421 3422 mask = hc32_to_cpu(fotg210, 3423 hw->hw_info2); 3424 /* "knows" no gap is needed */ 3425 mask |= mask >> 8; 3426 if (mask & uf_mask) 3427 break; 3428 } 3429 type = Q_NEXT_TYPE(fotg210, hw->hw_next); 3430 here = here.qh->qh_next; 3431 continue; 3432 /* case Q_TYPE_FSTN: */ 3433 default: 3434 fotg210_dbg(fotg210, 3435 "periodic frame %d bogus type %d\n", 3436 frame, type); 3437 } 3438 3439 /* collision or error */ 3440 return 0; 3441 } 3442 } 3443 3444 /* no collision */ 3445 return 1; 3446 } 3447 3448 static void enable_periodic(struct fotg210_hcd *fotg210) 3449 { 3450 if (fotg210->periodic_count++) 3451 return; 3452 3453 /* Stop waiting to turn off the periodic schedule */ 3454 fotg210->enabled_hrtimer_events &= 3455 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC); 3456 3457 /* Don't start the schedule until PSS is 0 */ 3458 fotg210_poll_PSS(fotg210); 3459 turn_on_io_watchdog(fotg210); 3460 } 3461 3462 static void disable_periodic(struct fotg210_hcd *fotg210) 3463 { 3464 if (--fotg210->periodic_count) 3465 return; 3466 3467 /* Don't turn off the schedule until PSS is 1 */ 3468 fotg210_poll_PSS(fotg210); 3469 } 3470 3471 /* periodic schedule slots have iso tds (normal or split) first, then a 3472 * sparse tree for active interrupt transfers. 3473 * 3474 * this just links in a qh; caller guarantees uframe masks are set right. 3475 * no FSTN support (yet; fotg210 0.96+) 3476 */ 3477 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3478 { 3479 unsigned i; 3480 unsigned period = qh->period; 3481 3482 dev_dbg(&qh->dev->dev, 3483 "link qh%d-%04x/%p start %d [%d/%d us]\n", period, 3484 hc32_to_cpup(fotg210, &qh->hw->hw_info2) & 3485 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, 3486 qh->c_usecs); 3487 3488 /* high bandwidth, or otherwise every microframe */ 3489 if (period == 0) 3490 period = 1; 3491 3492 for (i = qh->start; i < fotg210->periodic_size; i += period) { 3493 union fotg210_shadow *prev = &fotg210->pshadow[i]; 3494 __hc32 *hw_p = &fotg210->periodic[i]; 3495 union fotg210_shadow here = *prev; 3496 __hc32 type = 0; 3497 3498 /* skip the iso nodes at list head */ 3499 while (here.ptr) { 3500 type = Q_NEXT_TYPE(fotg210, *hw_p); 3501 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) 3502 break; 3503 prev = periodic_next_shadow(fotg210, prev, type); 3504 hw_p = shadow_next_periodic(fotg210, &here, type); 3505 here = *prev; 3506 } 3507 3508 /* sorting each branch by period (slow-->fast) 3509 * enables sharing interior tree nodes 3510 */ 3511 while (here.ptr && qh != here.qh) { 3512 if (qh->period > here.qh->period) 3513 break; 3514 prev = &here.qh->qh_next; 3515 hw_p = &here.qh->hw->hw_next; 3516 here = *prev; 3517 } 3518 /* link in this qh, unless some earlier pass did that */ 3519 if (qh != here.qh) { 3520 qh->qh_next = here; 3521 if (here.qh) 3522 qh->hw->hw_next = *hw_p; 3523 wmb(); 3524 prev->qh = qh; 3525 *hw_p = QH_NEXT(fotg210, qh->qh_dma); 3526 } 3527 } 3528 qh->qh_state = QH_STATE_LINKED; 3529 qh->xacterrs = 0; 3530 3531 /* update per-qh bandwidth for usbfs */ 3532 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period 3533 ? ((qh->usecs + qh->c_usecs) / qh->period) 3534 : (qh->usecs * 8); 3535 3536 list_add(&qh->intr_node, &fotg210->intr_qh_list); 3537 3538 /* maybe enable periodic schedule processing */ 3539 ++fotg210->intr_count; 3540 enable_periodic(fotg210); 3541 } 3542 3543 static void qh_unlink_periodic(struct fotg210_hcd *fotg210, 3544 struct fotg210_qh *qh) 3545 { 3546 unsigned i; 3547 unsigned period; 3548 3549 /* 3550 * If qh is for a low/full-speed device, simply unlinking it 3551 * could interfere with an ongoing split transaction. To unlink 3552 * it safely would require setting the QH_INACTIVATE bit and 3553 * waiting at least one frame, as described in EHCI 4.12.2.5. 3554 * 3555 * We won't bother with any of this. Instead, we assume that the 3556 * only reason for unlinking an interrupt QH while the current URB 3557 * is still active is to dequeue all the URBs (flush the whole 3558 * endpoint queue). 3559 * 3560 * If rebalancing the periodic schedule is ever implemented, this 3561 * approach will no longer be valid. 3562 */ 3563 3564 /* high bandwidth, or otherwise part of every microframe */ 3565 period = qh->period; 3566 if (!period) 3567 period = 1; 3568 3569 for (i = qh->start; i < fotg210->periodic_size; i += period) 3570 periodic_unlink(fotg210, i, qh); 3571 3572 /* update per-qh bandwidth for usbfs */ 3573 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period 3574 ? ((qh->usecs + qh->c_usecs) / qh->period) 3575 : (qh->usecs * 8); 3576 3577 dev_dbg(&qh->dev->dev, 3578 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 3579 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) & 3580 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, 3581 qh->c_usecs); 3582 3583 /* qh->qh_next still "live" to HC */ 3584 qh->qh_state = QH_STATE_UNLINK; 3585 qh->qh_next.ptr = NULL; 3586 3587 if (fotg210->qh_scan_next == qh) 3588 fotg210->qh_scan_next = list_entry(qh->intr_node.next, 3589 struct fotg210_qh, intr_node); 3590 list_del(&qh->intr_node); 3591 } 3592 3593 static void start_unlink_intr(struct fotg210_hcd *fotg210, 3594 struct fotg210_qh *qh) 3595 { 3596 /* If the QH isn't linked then there's nothing we can do 3597 * unless we were called during a giveback, in which case 3598 * qh_completions() has to deal with it. 3599 */ 3600 if (qh->qh_state != QH_STATE_LINKED) { 3601 if (qh->qh_state == QH_STATE_COMPLETING) 3602 qh->needs_rescan = 1; 3603 return; 3604 } 3605 3606 qh_unlink_periodic(fotg210, qh); 3607 3608 /* Make sure the unlinks are visible before starting the timer */ 3609 wmb(); 3610 3611 /* 3612 * The EHCI spec doesn't say how long it takes the controller to 3613 * stop accessing an unlinked interrupt QH. The timer delay is 3614 * 9 uframes; presumably that will be long enough. 3615 */ 3616 qh->unlink_cycle = fotg210->intr_unlink_cycle; 3617 3618 /* New entries go at the end of the intr_unlink list */ 3619 if (fotg210->intr_unlink) 3620 fotg210->intr_unlink_last->unlink_next = qh; 3621 else 3622 fotg210->intr_unlink = qh; 3623 fotg210->intr_unlink_last = qh; 3624 3625 if (fotg210->intr_unlinking) 3626 ; /* Avoid recursive calls */ 3627 else if (fotg210->rh_state < FOTG210_RH_RUNNING) 3628 fotg210_handle_intr_unlinks(fotg210); 3629 else if (fotg210->intr_unlink == qh) { 3630 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, 3631 true); 3632 ++fotg210->intr_unlink_cycle; 3633 } 3634 } 3635 3636 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3637 { 3638 struct fotg210_qh_hw *hw = qh->hw; 3639 int rc; 3640 3641 qh->qh_state = QH_STATE_IDLE; 3642 hw->hw_next = FOTG210_LIST_END(fotg210); 3643 3644 qh_completions(fotg210, qh); 3645 3646 /* reschedule QH iff another request is queued */ 3647 if (!list_empty(&qh->qtd_list) && 3648 fotg210->rh_state == FOTG210_RH_RUNNING) { 3649 rc = qh_schedule(fotg210, qh); 3650 3651 /* An error here likely indicates handshake failure 3652 * or no space left in the schedule. Neither fault 3653 * should happen often ... 3654 * 3655 * FIXME kill the now-dysfunctional queued urbs 3656 */ 3657 if (rc != 0) 3658 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n", 3659 qh, rc); 3660 } 3661 3662 /* maybe turn off periodic schedule */ 3663 --fotg210->intr_count; 3664 disable_periodic(fotg210); 3665 } 3666 3667 static int check_period(struct fotg210_hcd *fotg210, unsigned frame, 3668 unsigned uframe, unsigned period, unsigned usecs) 3669 { 3670 int claimed; 3671 3672 /* complete split running into next frame? 3673 * given FSTN support, we could sometimes check... 3674 */ 3675 if (uframe >= 8) 3676 return 0; 3677 3678 /* convert "usecs we need" to "max already claimed" */ 3679 usecs = fotg210->uframe_periodic_max - usecs; 3680 3681 /* we "know" 2 and 4 uframe intervals were rejected; so 3682 * for period 0, check _every_ microframe in the schedule. 3683 */ 3684 if (unlikely(period == 0)) { 3685 do { 3686 for (uframe = 0; uframe < 7; uframe++) { 3687 claimed = periodic_usecs(fotg210, frame, 3688 uframe); 3689 if (claimed > usecs) 3690 return 0; 3691 } 3692 } while ((frame += 1) < fotg210->periodic_size); 3693 3694 /* just check the specified uframe, at that period */ 3695 } else { 3696 do { 3697 claimed = periodic_usecs(fotg210, frame, uframe); 3698 if (claimed > usecs) 3699 return 0; 3700 } while ((frame += period) < fotg210->periodic_size); 3701 } 3702 3703 /* success! */ 3704 return 1; 3705 } 3706 3707 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame, 3708 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp) 3709 { 3710 int retval = -ENOSPC; 3711 u8 mask = 0; 3712 3713 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 3714 goto done; 3715 3716 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs)) 3717 goto done; 3718 if (!qh->c_usecs) { 3719 retval = 0; 3720 *c_maskp = 0; 3721 goto done; 3722 } 3723 3724 /* Make sure this tt's buffer is also available for CSPLITs. 3725 * We pessimize a bit; probably the typical full speed case 3726 * doesn't need the second CSPLIT. 3727 * 3728 * NOTE: both SPLIT and CSPLIT could be checked in just 3729 * one smart pass... 3730 */ 3731 mask = 0x03 << (uframe + qh->gap_uf); 3732 *c_maskp = cpu_to_hc32(fotg210, mask << 8); 3733 3734 mask |= 1 << uframe; 3735 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) { 3736 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1, 3737 qh->period, qh->c_usecs)) 3738 goto done; 3739 if (!check_period(fotg210, frame, uframe + qh->gap_uf, 3740 qh->period, qh->c_usecs)) 3741 goto done; 3742 retval = 0; 3743 } 3744 done: 3745 return retval; 3746 } 3747 3748 /* "first fit" scheduling policy used the first time through, 3749 * or when the previous schedule slot can't be re-used. 3750 */ 3751 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3752 { 3753 int status; 3754 unsigned uframe; 3755 __hc32 c_mask; 3756 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 3757 struct fotg210_qh_hw *hw = qh->hw; 3758 3759 qh_refresh(fotg210, qh); 3760 hw->hw_next = FOTG210_LIST_END(fotg210); 3761 frame = qh->start; 3762 3763 /* reuse the previous schedule slots, if we can */ 3764 if (frame < qh->period) { 3765 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK); 3766 status = check_intr_schedule(fotg210, frame, --uframe, 3767 qh, &c_mask); 3768 } else { 3769 uframe = 0; 3770 c_mask = 0; 3771 status = -ENOSPC; 3772 } 3773 3774 /* else scan the schedule to find a group of slots such that all 3775 * uframes have enough periodic bandwidth available. 3776 */ 3777 if (status) { 3778 /* "normal" case, uframing flexible except with splits */ 3779 if (qh->period) { 3780 int i; 3781 3782 for (i = qh->period; status && i > 0; --i) { 3783 frame = ++fotg210->random_frame % qh->period; 3784 for (uframe = 0; uframe < 8; uframe++) { 3785 status = check_intr_schedule(fotg210, 3786 frame, uframe, qh, 3787 &c_mask); 3788 if (status == 0) 3789 break; 3790 } 3791 } 3792 3793 /* qh->period == 0 means every uframe */ 3794 } else { 3795 frame = 0; 3796 status = check_intr_schedule(fotg210, 0, 0, qh, 3797 &c_mask); 3798 } 3799 if (status) 3800 goto done; 3801 qh->start = frame; 3802 3803 /* reset S-frame and (maybe) C-frame masks */ 3804 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK)); 3805 hw->hw_info2 |= qh->period 3806 ? cpu_to_hc32(fotg210, 1 << uframe) 3807 : cpu_to_hc32(fotg210, QH_SMASK); 3808 hw->hw_info2 |= c_mask; 3809 } else 3810 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh); 3811 3812 /* stuff into the periodic schedule */ 3813 qh_link_periodic(fotg210, qh); 3814 done: 3815 return status; 3816 } 3817 3818 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb, 3819 struct list_head *qtd_list, gfp_t mem_flags) 3820 { 3821 unsigned epnum; 3822 unsigned long flags; 3823 struct fotg210_qh *qh; 3824 int status; 3825 struct list_head empty; 3826 3827 /* get endpoint and transfer/schedule data */ 3828 epnum = urb->ep->desc.bEndpointAddress; 3829 3830 spin_lock_irqsave(&fotg210->lock, flags); 3831 3832 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 3833 status = -ESHUTDOWN; 3834 goto done_not_linked; 3835 } 3836 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 3837 if (unlikely(status)) 3838 goto done_not_linked; 3839 3840 /* get qh and force any scheduling errors */ 3841 INIT_LIST_HEAD(&empty); 3842 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv); 3843 if (qh == NULL) { 3844 status = -ENOMEM; 3845 goto done; 3846 } 3847 if (qh->qh_state == QH_STATE_IDLE) { 3848 status = qh_schedule(fotg210, qh); 3849 if (status) 3850 goto done; 3851 } 3852 3853 /* then queue the urb's tds to the qh */ 3854 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); 3855 BUG_ON(qh == NULL); 3856 3857 /* ... update usbfs periodic stats */ 3858 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++; 3859 3860 done: 3861 if (unlikely(status)) 3862 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 3863 done_not_linked: 3864 spin_unlock_irqrestore(&fotg210->lock, flags); 3865 if (status) 3866 qtd_list_free(fotg210, urb, qtd_list); 3867 3868 return status; 3869 } 3870 3871 static void scan_intr(struct fotg210_hcd *fotg210) 3872 { 3873 struct fotg210_qh *qh; 3874 3875 list_for_each_entry_safe(qh, fotg210->qh_scan_next, 3876 &fotg210->intr_qh_list, intr_node) { 3877 rescan: 3878 /* clean any finished work for this qh */ 3879 if (!list_empty(&qh->qtd_list)) { 3880 int temp; 3881 3882 /* 3883 * Unlinks could happen here; completion reporting 3884 * drops the lock. That's why fotg210->qh_scan_next 3885 * always holds the next qh to scan; if the next qh 3886 * gets unlinked then fotg210->qh_scan_next is adjusted 3887 * in qh_unlink_periodic(). 3888 */ 3889 temp = qh_completions(fotg210, qh); 3890 if (unlikely(qh->needs_rescan || 3891 (list_empty(&qh->qtd_list) && 3892 qh->qh_state == QH_STATE_LINKED))) 3893 start_unlink_intr(fotg210, qh); 3894 else if (temp != 0) 3895 goto rescan; 3896 } 3897 } 3898 } 3899 3900 /* fotg210_iso_stream ops work with both ITD and SITD */ 3901 3902 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags) 3903 { 3904 struct fotg210_iso_stream *stream; 3905 3906 stream = kzalloc(sizeof(*stream), mem_flags); 3907 if (likely(stream != NULL)) { 3908 INIT_LIST_HEAD(&stream->td_list); 3909 INIT_LIST_HEAD(&stream->free_list); 3910 stream->next_uframe = -1; 3911 } 3912 return stream; 3913 } 3914 3915 static void iso_stream_init(struct fotg210_hcd *fotg210, 3916 struct fotg210_iso_stream *stream, struct usb_device *dev, 3917 int pipe, unsigned interval) 3918 { 3919 u32 buf1; 3920 unsigned epnum, maxp; 3921 int is_input; 3922 long bandwidth; 3923 unsigned multi; 3924 struct usb_host_endpoint *ep; 3925 3926 /* 3927 * this might be a "high bandwidth" highspeed endpoint, 3928 * as encoded in the ep descriptor's wMaxPacket field 3929 */ 3930 epnum = usb_pipeendpoint(pipe); 3931 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0; 3932 ep = usb_pipe_endpoint(dev, pipe); 3933 maxp = usb_endpoint_maxp(&ep->desc); 3934 if (is_input) 3935 buf1 = (1 << 11); 3936 else 3937 buf1 = 0; 3938 3939 multi = usb_endpoint_maxp_mult(&ep->desc); 3940 buf1 |= maxp; 3941 maxp *= multi; 3942 3943 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum); 3944 stream->buf1 = cpu_to_hc32(fotg210, buf1); 3945 stream->buf2 = cpu_to_hc32(fotg210, multi); 3946 3947 /* usbfs wants to report the average usecs per frame tied up 3948 * when transfers on this endpoint are scheduled ... 3949 */ 3950 if (dev->speed == USB_SPEED_FULL) { 3951 interval <<= 3; 3952 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed, 3953 is_input, 1, maxp)); 3954 stream->usecs /= 8; 3955 } else { 3956 stream->highspeed = 1; 3957 stream->usecs = HS_USECS_ISO(maxp); 3958 } 3959 bandwidth = stream->usecs * 8; 3960 bandwidth /= interval; 3961 3962 stream->bandwidth = bandwidth; 3963 stream->udev = dev; 3964 stream->bEndpointAddress = is_input | epnum; 3965 stream->interval = interval; 3966 stream->maxp = maxp; 3967 } 3968 3969 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210, 3970 struct urb *urb) 3971 { 3972 unsigned epnum; 3973 struct fotg210_iso_stream *stream; 3974 struct usb_host_endpoint *ep; 3975 unsigned long flags; 3976 3977 epnum = usb_pipeendpoint(urb->pipe); 3978 if (usb_pipein(urb->pipe)) 3979 ep = urb->dev->ep_in[epnum]; 3980 else 3981 ep = urb->dev->ep_out[epnum]; 3982 3983 spin_lock_irqsave(&fotg210->lock, flags); 3984 stream = ep->hcpriv; 3985 3986 if (unlikely(stream == NULL)) { 3987 stream = iso_stream_alloc(GFP_ATOMIC); 3988 if (likely(stream != NULL)) { 3989 ep->hcpriv = stream; 3990 stream->ep = ep; 3991 iso_stream_init(fotg210, stream, urb->dev, urb->pipe, 3992 urb->interval); 3993 } 3994 3995 /* if dev->ep[epnum] is a QH, hw is set */ 3996 } else if (unlikely(stream->hw != NULL)) { 3997 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n", 3998 urb->dev->devpath, epnum, 3999 usb_pipein(urb->pipe) ? "in" : "out"); 4000 stream = NULL; 4001 } 4002 4003 spin_unlock_irqrestore(&fotg210->lock, flags); 4004 return stream; 4005 } 4006 4007 /* fotg210_iso_sched ops can be ITD-only or SITD-only */ 4008 4009 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets, 4010 gfp_t mem_flags) 4011 { 4012 struct fotg210_iso_sched *iso_sched; 4013 4014 iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags); 4015 if (likely(iso_sched != NULL)) 4016 INIT_LIST_HEAD(&iso_sched->td_list); 4017 4018 return iso_sched; 4019 } 4020 4021 static inline void itd_sched_init(struct fotg210_hcd *fotg210, 4022 struct fotg210_iso_sched *iso_sched, 4023 struct fotg210_iso_stream *stream, struct urb *urb) 4024 { 4025 unsigned i; 4026 dma_addr_t dma = urb->transfer_dma; 4027 4028 /* how many uframes are needed for these transfers */ 4029 iso_sched->span = urb->number_of_packets * stream->interval; 4030 4031 /* figure out per-uframe itd fields that we'll need later 4032 * when we fit new itds into the schedule. 4033 */ 4034 for (i = 0; i < urb->number_of_packets; i++) { 4035 struct fotg210_iso_packet *uframe = &iso_sched->packet[i]; 4036 unsigned length; 4037 dma_addr_t buf; 4038 u32 trans; 4039 4040 length = urb->iso_frame_desc[i].length; 4041 buf = dma + urb->iso_frame_desc[i].offset; 4042 4043 trans = FOTG210_ISOC_ACTIVE; 4044 trans |= buf & 0x0fff; 4045 if (unlikely(((i + 1) == urb->number_of_packets)) 4046 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 4047 trans |= FOTG210_ITD_IOC; 4048 trans |= length << 16; 4049 uframe->transaction = cpu_to_hc32(fotg210, trans); 4050 4051 /* might need to cross a buffer page within a uframe */ 4052 uframe->bufp = (buf & ~(u64)0x0fff); 4053 buf += length; 4054 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) 4055 uframe->cross = 1; 4056 } 4057 } 4058 4059 static void iso_sched_free(struct fotg210_iso_stream *stream, 4060 struct fotg210_iso_sched *iso_sched) 4061 { 4062 if (!iso_sched) 4063 return; 4064 /* caller must hold fotg210->lock!*/ 4065 list_splice(&iso_sched->td_list, &stream->free_list); 4066 kfree(iso_sched); 4067 } 4068 4069 static int itd_urb_transaction(struct fotg210_iso_stream *stream, 4070 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags) 4071 { 4072 struct fotg210_itd *itd; 4073 dma_addr_t itd_dma; 4074 int i; 4075 unsigned num_itds; 4076 struct fotg210_iso_sched *sched; 4077 unsigned long flags; 4078 4079 sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 4080 if (unlikely(sched == NULL)) 4081 return -ENOMEM; 4082 4083 itd_sched_init(fotg210, sched, stream, urb); 4084 4085 if (urb->interval < 8) 4086 num_itds = 1 + (sched->span + 7) / 8; 4087 else 4088 num_itds = urb->number_of_packets; 4089 4090 /* allocate/init ITDs */ 4091 spin_lock_irqsave(&fotg210->lock, flags); 4092 for (i = 0; i < num_itds; i++) { 4093 4094 /* 4095 * Use iTDs from the free list, but not iTDs that may 4096 * still be in use by the hardware. 4097 */ 4098 if (likely(!list_empty(&stream->free_list))) { 4099 itd = list_first_entry(&stream->free_list, 4100 struct fotg210_itd, itd_list); 4101 if (itd->frame == fotg210->now_frame) 4102 goto alloc_itd; 4103 list_del(&itd->itd_list); 4104 itd_dma = itd->itd_dma; 4105 } else { 4106 alloc_itd: 4107 spin_unlock_irqrestore(&fotg210->lock, flags); 4108 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags, 4109 &itd_dma); 4110 spin_lock_irqsave(&fotg210->lock, flags); 4111 if (!itd) { 4112 iso_sched_free(stream, sched); 4113 spin_unlock_irqrestore(&fotg210->lock, flags); 4114 return -ENOMEM; 4115 } 4116 } 4117 4118 memset(itd, 0, sizeof(*itd)); 4119 itd->itd_dma = itd_dma; 4120 list_add(&itd->itd_list, &sched->td_list); 4121 } 4122 spin_unlock_irqrestore(&fotg210->lock, flags); 4123 4124 /* temporarily store schedule info in hcpriv */ 4125 urb->hcpriv = sched; 4126 urb->error_count = 0; 4127 return 0; 4128 } 4129 4130 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe, 4131 u8 usecs, u32 period) 4132 { 4133 uframe %= period; 4134 do { 4135 /* can't commit more than uframe_periodic_max usec */ 4136 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7) 4137 > (fotg210->uframe_periodic_max - usecs)) 4138 return 0; 4139 4140 /* we know urb->interval is 2^N uframes */ 4141 uframe += period; 4142 } while (uframe < mod); 4143 return 1; 4144 } 4145 4146 /* This scheduler plans almost as far into the future as it has actual 4147 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 4148 * "as small as possible" to be cache-friendlier.) That limits the size 4149 * transfers you can stream reliably; avoid more than 64 msec per urb. 4150 * Also avoid queue depths of less than fotg210's worst irq latency (affected 4151 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 4152 * and other factors); or more than about 230 msec total (for portability, 4153 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler! 4154 */ 4155 4156 #define SCHEDULE_SLOP 80 /* microframes */ 4157 4158 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb, 4159 struct fotg210_iso_stream *stream) 4160 { 4161 u32 now, next, start, period, span; 4162 int status; 4163 unsigned mod = fotg210->periodic_size << 3; 4164 struct fotg210_iso_sched *sched = urb->hcpriv; 4165 4166 period = urb->interval; 4167 span = sched->span; 4168 4169 if (span > mod - SCHEDULE_SLOP) { 4170 fotg210_dbg(fotg210, "iso request %p too long\n", urb); 4171 status = -EFBIG; 4172 goto fail; 4173 } 4174 4175 now = fotg210_read_frame_index(fotg210) & (mod - 1); 4176 4177 /* Typical case: reuse current schedule, stream is still active. 4178 * Hopefully there are no gaps from the host falling behind 4179 * (irq delays etc), but if there are we'll take the next 4180 * slot in the schedule, implicitly assuming URB_ISO_ASAP. 4181 */ 4182 if (likely(!list_empty(&stream->td_list))) { 4183 u32 excess; 4184 4185 /* For high speed devices, allow scheduling within the 4186 * isochronous scheduling threshold. For full speed devices 4187 * and Intel PCI-based controllers, don't (work around for 4188 * Intel ICH9 bug). 4189 */ 4190 if (!stream->highspeed && fotg210->fs_i_thresh) 4191 next = now + fotg210->i_thresh; 4192 else 4193 next = now; 4194 4195 /* Fell behind (by up to twice the slop amount)? 4196 * We decide based on the time of the last currently-scheduled 4197 * slot, not the time of the next available slot. 4198 */ 4199 excess = (stream->next_uframe - period - next) & (mod - 1); 4200 if (excess >= mod - 2 * SCHEDULE_SLOP) 4201 start = next + excess - mod + period * 4202 DIV_ROUND_UP(mod - excess, period); 4203 else 4204 start = next + excess + period; 4205 if (start - now >= mod) { 4206 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", 4207 urb, start - now - period, period, 4208 mod); 4209 status = -EFBIG; 4210 goto fail; 4211 } 4212 } 4213 4214 /* need to schedule; when's the next (u)frame we could start? 4215 * this is bigger than fotg210->i_thresh allows; scheduling itself 4216 * isn't free, the slop should handle reasonably slow cpus. it 4217 * can also help high bandwidth if the dma and irq loads don't 4218 * jump until after the queue is primed. 4219 */ 4220 else { 4221 int done = 0; 4222 4223 start = SCHEDULE_SLOP + (now & ~0x07); 4224 4225 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */ 4226 4227 /* find a uframe slot with enough bandwidth. 4228 * Early uframes are more precious because full-speed 4229 * iso IN transfers can't use late uframes, 4230 * and therefore they should be allocated last. 4231 */ 4232 next = start; 4233 start += period; 4234 do { 4235 start--; 4236 /* check schedule: enough space? */ 4237 if (itd_slot_ok(fotg210, mod, start, 4238 stream->usecs, period)) 4239 done = 1; 4240 } while (start > next && !done); 4241 4242 /* no room in the schedule */ 4243 if (!done) { 4244 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n", 4245 urb, now, now + mod); 4246 status = -ENOSPC; 4247 goto fail; 4248 } 4249 } 4250 4251 /* Tried to schedule too far into the future? */ 4252 if (unlikely(start - now + span - period >= 4253 mod - 2 * SCHEDULE_SLOP)) { 4254 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", 4255 urb, start - now, span - period, 4256 mod - 2 * SCHEDULE_SLOP); 4257 status = -EFBIG; 4258 goto fail; 4259 } 4260 4261 stream->next_uframe = start & (mod - 1); 4262 4263 /* report high speed start in uframes; full speed, in frames */ 4264 urb->start_frame = stream->next_uframe; 4265 if (!stream->highspeed) 4266 urb->start_frame >>= 3; 4267 4268 /* Make sure scan_isoc() sees these */ 4269 if (fotg210->isoc_count == 0) 4270 fotg210->next_frame = now >> 3; 4271 return 0; 4272 4273 fail: 4274 iso_sched_free(stream, sched); 4275 urb->hcpriv = NULL; 4276 return status; 4277 } 4278 4279 static inline void itd_init(struct fotg210_hcd *fotg210, 4280 struct fotg210_iso_stream *stream, struct fotg210_itd *itd) 4281 { 4282 int i; 4283 4284 /* it's been recently zeroed */ 4285 itd->hw_next = FOTG210_LIST_END(fotg210); 4286 itd->hw_bufp[0] = stream->buf0; 4287 itd->hw_bufp[1] = stream->buf1; 4288 itd->hw_bufp[2] = stream->buf2; 4289 4290 for (i = 0; i < 8; i++) 4291 itd->index[i] = -1; 4292 4293 /* All other fields are filled when scheduling */ 4294 } 4295 4296 static inline void itd_patch(struct fotg210_hcd *fotg210, 4297 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched, 4298 unsigned index, u16 uframe) 4299 { 4300 struct fotg210_iso_packet *uf = &iso_sched->packet[index]; 4301 unsigned pg = itd->pg; 4302 4303 uframe &= 0x07; 4304 itd->index[uframe] = index; 4305 4306 itd->hw_transaction[uframe] = uf->transaction; 4307 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12); 4308 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0); 4309 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32)); 4310 4311 /* iso_frame_desc[].offset must be strictly increasing */ 4312 if (unlikely(uf->cross)) { 4313 u64 bufp = uf->bufp + 4096; 4314 4315 itd->pg = ++pg; 4316 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0); 4317 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32)); 4318 } 4319 } 4320 4321 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame, 4322 struct fotg210_itd *itd) 4323 { 4324 union fotg210_shadow *prev = &fotg210->pshadow[frame]; 4325 __hc32 *hw_p = &fotg210->periodic[frame]; 4326 union fotg210_shadow here = *prev; 4327 __hc32 type = 0; 4328 4329 /* skip any iso nodes which might belong to previous microframes */ 4330 while (here.ptr) { 4331 type = Q_NEXT_TYPE(fotg210, *hw_p); 4332 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) 4333 break; 4334 prev = periodic_next_shadow(fotg210, prev, type); 4335 hw_p = shadow_next_periodic(fotg210, &here, type); 4336 here = *prev; 4337 } 4338 4339 itd->itd_next = here; 4340 itd->hw_next = *hw_p; 4341 prev->itd = itd; 4342 itd->frame = frame; 4343 wmb(); 4344 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD); 4345 } 4346 4347 /* fit urb's itds into the selected schedule slot; activate as needed */ 4348 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb, 4349 unsigned mod, struct fotg210_iso_stream *stream) 4350 { 4351 int packet; 4352 unsigned next_uframe, uframe, frame; 4353 struct fotg210_iso_sched *iso_sched = urb->hcpriv; 4354 struct fotg210_itd *itd; 4355 4356 next_uframe = stream->next_uframe & (mod - 1); 4357 4358 if (unlikely(list_empty(&stream->td_list))) { 4359 fotg210_to_hcd(fotg210)->self.bandwidth_allocated 4360 += stream->bandwidth; 4361 fotg210_dbg(fotg210, 4362 "schedule devp %s ep%d%s-iso period %d start %d.%d\n", 4363 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 4364 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 4365 urb->interval, 4366 next_uframe >> 3, next_uframe & 0x7); 4367 } 4368 4369 /* fill iTDs uframe by uframe */ 4370 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) { 4371 if (itd == NULL) { 4372 /* ASSERT: we have all necessary itds */ 4373 4374 /* ASSERT: no itds for this endpoint in this uframe */ 4375 4376 itd = list_entry(iso_sched->td_list.next, 4377 struct fotg210_itd, itd_list); 4378 list_move_tail(&itd->itd_list, &stream->td_list); 4379 itd->stream = stream; 4380 itd->urb = urb; 4381 itd_init(fotg210, stream, itd); 4382 } 4383 4384 uframe = next_uframe & 0x07; 4385 frame = next_uframe >> 3; 4386 4387 itd_patch(fotg210, itd, iso_sched, packet, uframe); 4388 4389 next_uframe += stream->interval; 4390 next_uframe &= mod - 1; 4391 packet++; 4392 4393 /* link completed itds into the schedule */ 4394 if (((next_uframe >> 3) != frame) 4395 || packet == urb->number_of_packets) { 4396 itd_link(fotg210, frame & (fotg210->periodic_size - 1), 4397 itd); 4398 itd = NULL; 4399 } 4400 } 4401 stream->next_uframe = next_uframe; 4402 4403 /* don't need that schedule data any more */ 4404 iso_sched_free(stream, iso_sched); 4405 urb->hcpriv = NULL; 4406 4407 ++fotg210->isoc_count; 4408 enable_periodic(fotg210); 4409 } 4410 4411 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\ 4412 FOTG210_ISOC_XACTERR) 4413 4414 /* Process and recycle a completed ITD. Return true iff its urb completed, 4415 * and hence its completion callback probably added things to the hardware 4416 * schedule. 4417 * 4418 * Note that we carefully avoid recycling this descriptor until after any 4419 * completion callback runs, so that it won't be reused quickly. That is, 4420 * assuming (a) no more than two urbs per frame on this endpoint, and also 4421 * (b) only this endpoint's completions submit URBs. It seems some silicon 4422 * corrupts things if you reuse completed descriptors very quickly... 4423 */ 4424 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd) 4425 { 4426 struct urb *urb = itd->urb; 4427 struct usb_iso_packet_descriptor *desc; 4428 u32 t; 4429 unsigned uframe; 4430 int urb_index = -1; 4431 struct fotg210_iso_stream *stream = itd->stream; 4432 struct usb_device *dev; 4433 bool retval = false; 4434 4435 /* for each uframe with a packet */ 4436 for (uframe = 0; uframe < 8; uframe++) { 4437 if (likely(itd->index[uframe] == -1)) 4438 continue; 4439 urb_index = itd->index[uframe]; 4440 desc = &urb->iso_frame_desc[urb_index]; 4441 4442 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]); 4443 itd->hw_transaction[uframe] = 0; 4444 4445 /* report transfer status */ 4446 if (unlikely(t & ISO_ERRS)) { 4447 urb->error_count++; 4448 if (t & FOTG210_ISOC_BUF_ERR) 4449 desc->status = usb_pipein(urb->pipe) 4450 ? -ENOSR /* hc couldn't read */ 4451 : -ECOMM; /* hc couldn't write */ 4452 else if (t & FOTG210_ISOC_BABBLE) 4453 desc->status = -EOVERFLOW; 4454 else /* (t & FOTG210_ISOC_XACTERR) */ 4455 desc->status = -EPROTO; 4456 4457 /* HC need not update length with this error */ 4458 if (!(t & FOTG210_ISOC_BABBLE)) { 4459 desc->actual_length = FOTG210_ITD_LENGTH(t); 4460 urb->actual_length += desc->actual_length; 4461 } 4462 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) { 4463 desc->status = 0; 4464 desc->actual_length = FOTG210_ITD_LENGTH(t); 4465 urb->actual_length += desc->actual_length; 4466 } else { 4467 /* URB was too late */ 4468 desc->status = -EXDEV; 4469 } 4470 } 4471 4472 /* handle completion now? */ 4473 if (likely((urb_index + 1) != urb->number_of_packets)) 4474 goto done; 4475 4476 /* ASSERT: it's really the last itd for this urb 4477 * list_for_each_entry (itd, &stream->td_list, itd_list) 4478 * BUG_ON (itd->urb == urb); 4479 */ 4480 4481 /* give urb back to the driver; completion often (re)submits */ 4482 dev = urb->dev; 4483 fotg210_urb_done(fotg210, urb, 0); 4484 retval = true; 4485 urb = NULL; 4486 4487 --fotg210->isoc_count; 4488 disable_periodic(fotg210); 4489 4490 if (unlikely(list_is_singular(&stream->td_list))) { 4491 fotg210_to_hcd(fotg210)->self.bandwidth_allocated 4492 -= stream->bandwidth; 4493 fotg210_dbg(fotg210, 4494 "deschedule devp %s ep%d%s-iso\n", 4495 dev->devpath, stream->bEndpointAddress & 0x0f, 4496 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 4497 } 4498 4499 done: 4500 itd->urb = NULL; 4501 4502 /* Add to the end of the free list for later reuse */ 4503 list_move_tail(&itd->itd_list, &stream->free_list); 4504 4505 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ 4506 if (list_empty(&stream->td_list)) { 4507 list_splice_tail_init(&stream->free_list, 4508 &fotg210->cached_itd_list); 4509 start_free_itds(fotg210); 4510 } 4511 4512 return retval; 4513 } 4514 4515 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb, 4516 gfp_t mem_flags) 4517 { 4518 int status = -EINVAL; 4519 unsigned long flags; 4520 struct fotg210_iso_stream *stream; 4521 4522 /* Get iso_stream head */ 4523 stream = iso_stream_find(fotg210, urb); 4524 if (unlikely(stream == NULL)) { 4525 fotg210_dbg(fotg210, "can't get iso stream\n"); 4526 return -ENOMEM; 4527 } 4528 if (unlikely(urb->interval != stream->interval && 4529 fotg210_port_speed(fotg210, 0) == 4530 USB_PORT_STAT_HIGH_SPEED)) { 4531 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n", 4532 stream->interval, urb->interval); 4533 goto done; 4534 } 4535 4536 #ifdef FOTG210_URB_TRACE 4537 fotg210_dbg(fotg210, 4538 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n", 4539 __func__, urb->dev->devpath, urb, 4540 usb_pipeendpoint(urb->pipe), 4541 usb_pipein(urb->pipe) ? "in" : "out", 4542 urb->transfer_buffer_length, 4543 urb->number_of_packets, urb->interval, 4544 stream); 4545 #endif 4546 4547 /* allocate ITDs w/o locking anything */ 4548 status = itd_urb_transaction(stream, fotg210, urb, mem_flags); 4549 if (unlikely(status < 0)) { 4550 fotg210_dbg(fotg210, "can't init itds\n"); 4551 goto done; 4552 } 4553 4554 /* schedule ... need to lock */ 4555 spin_lock_irqsave(&fotg210->lock, flags); 4556 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 4557 status = -ESHUTDOWN; 4558 goto done_not_linked; 4559 } 4560 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 4561 if (unlikely(status)) 4562 goto done_not_linked; 4563 status = iso_stream_schedule(fotg210, urb, stream); 4564 if (likely(status == 0)) 4565 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream); 4566 else 4567 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 4568 done_not_linked: 4569 spin_unlock_irqrestore(&fotg210->lock, flags); 4570 done: 4571 return status; 4572 } 4573 4574 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame, 4575 unsigned now_frame, bool live) 4576 { 4577 unsigned uf; 4578 bool modified; 4579 union fotg210_shadow q, *q_p; 4580 __hc32 type, *hw_p; 4581 4582 /* scan each element in frame's queue for completions */ 4583 q_p = &fotg210->pshadow[frame]; 4584 hw_p = &fotg210->periodic[frame]; 4585 q.ptr = q_p->ptr; 4586 type = Q_NEXT_TYPE(fotg210, *hw_p); 4587 modified = false; 4588 4589 while (q.ptr) { 4590 switch (hc32_to_cpu(fotg210, type)) { 4591 case Q_TYPE_ITD: 4592 /* If this ITD is still active, leave it for 4593 * later processing ... check the next entry. 4594 * No need to check for activity unless the 4595 * frame is current. 4596 */ 4597 if (frame == now_frame && live) { 4598 rmb(); 4599 for (uf = 0; uf < 8; uf++) { 4600 if (q.itd->hw_transaction[uf] & 4601 ITD_ACTIVE(fotg210)) 4602 break; 4603 } 4604 if (uf < 8) { 4605 q_p = &q.itd->itd_next; 4606 hw_p = &q.itd->hw_next; 4607 type = Q_NEXT_TYPE(fotg210, 4608 q.itd->hw_next); 4609 q = *q_p; 4610 break; 4611 } 4612 } 4613 4614 /* Take finished ITDs out of the schedule 4615 * and process them: recycle, maybe report 4616 * URB completion. HC won't cache the 4617 * pointer for much longer, if at all. 4618 */ 4619 *q_p = q.itd->itd_next; 4620 *hw_p = q.itd->hw_next; 4621 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next); 4622 wmb(); 4623 modified = itd_complete(fotg210, q.itd); 4624 q = *q_p; 4625 break; 4626 default: 4627 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n", 4628 type, frame, q.ptr); 4629 fallthrough; 4630 case Q_TYPE_QH: 4631 case Q_TYPE_FSTN: 4632 /* End of the iTDs and siTDs */ 4633 q.ptr = NULL; 4634 break; 4635 } 4636 4637 /* assume completion callbacks modify the queue */ 4638 if (unlikely(modified && fotg210->isoc_count > 0)) 4639 return -EINVAL; 4640 } 4641 return 0; 4642 } 4643 4644 static void scan_isoc(struct fotg210_hcd *fotg210) 4645 { 4646 unsigned uf, now_frame, frame, ret; 4647 unsigned fmask = fotg210->periodic_size - 1; 4648 bool live; 4649 4650 /* 4651 * When running, scan from last scan point up to "now" 4652 * else clean up by scanning everything that's left. 4653 * Touches as few pages as possible: cache-friendly. 4654 */ 4655 if (fotg210->rh_state >= FOTG210_RH_RUNNING) { 4656 uf = fotg210_read_frame_index(fotg210); 4657 now_frame = (uf >> 3) & fmask; 4658 live = true; 4659 } else { 4660 now_frame = (fotg210->next_frame - 1) & fmask; 4661 live = false; 4662 } 4663 fotg210->now_frame = now_frame; 4664 4665 frame = fotg210->next_frame; 4666 for (;;) { 4667 ret = 1; 4668 while (ret != 0) 4669 ret = scan_frame_queue(fotg210, frame, 4670 now_frame, live); 4671 4672 /* Stop when we have reached the current frame */ 4673 if (frame == now_frame) 4674 break; 4675 frame = (frame + 1) & fmask; 4676 } 4677 fotg210->next_frame = now_frame; 4678 } 4679 4680 /* Display / Set uframe_periodic_max 4681 */ 4682 static ssize_t uframe_periodic_max_show(struct device *dev, 4683 struct device_attribute *attr, char *buf) 4684 { 4685 struct fotg210_hcd *fotg210; 4686 4687 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); 4688 return sysfs_emit(buf, "%d\n", fotg210->uframe_periodic_max); 4689 } 4690 4691 static ssize_t uframe_periodic_max_store(struct device *dev, 4692 struct device_attribute *attr, const char *buf, size_t count) 4693 { 4694 struct fotg210_hcd *fotg210; 4695 unsigned uframe_periodic_max; 4696 unsigned frame, uframe; 4697 unsigned short allocated_max; 4698 unsigned long flags; 4699 ssize_t ret; 4700 4701 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); 4702 4703 ret = kstrtouint(buf, 0, &uframe_periodic_max); 4704 if (ret) 4705 return ret; 4706 4707 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) { 4708 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n", 4709 uframe_periodic_max); 4710 return -EINVAL; 4711 } 4712 4713 ret = -EINVAL; 4714 4715 /* 4716 * lock, so that our checking does not race with possible periodic 4717 * bandwidth allocation through submitting new urbs. 4718 */ 4719 spin_lock_irqsave(&fotg210->lock, flags); 4720 4721 /* 4722 * for request to decrease max periodic bandwidth, we have to check 4723 * every microframe in the schedule to see whether the decrease is 4724 * possible. 4725 */ 4726 if (uframe_periodic_max < fotg210->uframe_periodic_max) { 4727 allocated_max = 0; 4728 4729 for (frame = 0; frame < fotg210->periodic_size; ++frame) 4730 for (uframe = 0; uframe < 7; ++uframe) 4731 allocated_max = max(allocated_max, 4732 periodic_usecs(fotg210, frame, 4733 uframe)); 4734 4735 if (allocated_max > uframe_periodic_max) { 4736 fotg210_info(fotg210, 4737 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n", 4738 allocated_max, uframe_periodic_max); 4739 goto out_unlock; 4740 } 4741 } 4742 4743 /* increasing is always ok */ 4744 4745 fotg210_info(fotg210, 4746 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n", 4747 100 * uframe_periodic_max/125, uframe_periodic_max); 4748 4749 if (uframe_periodic_max != 100) 4750 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n"); 4751 4752 fotg210->uframe_periodic_max = uframe_periodic_max; 4753 ret = count; 4754 4755 out_unlock: 4756 spin_unlock_irqrestore(&fotg210->lock, flags); 4757 return ret; 4758 } 4759 4760 static DEVICE_ATTR_RW(uframe_periodic_max); 4761 4762 static inline int create_sysfs_files(struct fotg210_hcd *fotg210) 4763 { 4764 struct device *controller = fotg210_to_hcd(fotg210)->self.controller; 4765 4766 return device_create_file(controller, &dev_attr_uframe_periodic_max); 4767 } 4768 4769 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210) 4770 { 4771 struct device *controller = fotg210_to_hcd(fotg210)->self.controller; 4772 4773 device_remove_file(controller, &dev_attr_uframe_periodic_max); 4774 } 4775 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 4776 * The firmware seems to think that powering off is a wakeup event! 4777 * This routine turns off remote wakeup and everything else, on all ports. 4778 */ 4779 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210) 4780 { 4781 u32 __iomem *status_reg = &fotg210->regs->port_status; 4782 4783 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg); 4784 } 4785 4786 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers. 4787 * Must be called with interrupts enabled and the lock not held. 4788 */ 4789 static void fotg210_silence_controller(struct fotg210_hcd *fotg210) 4790 { 4791 fotg210_halt(fotg210); 4792 4793 spin_lock_irq(&fotg210->lock); 4794 fotg210->rh_state = FOTG210_RH_HALTED; 4795 fotg210_turn_off_all_ports(fotg210); 4796 spin_unlock_irq(&fotg210->lock); 4797 } 4798 4799 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc). 4800 * This forcibly disables dma and IRQs, helping kexec and other cases 4801 * where the next system software may expect clean state. 4802 */ 4803 static void fotg210_shutdown(struct usb_hcd *hcd) 4804 { 4805 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4806 4807 spin_lock_irq(&fotg210->lock); 4808 fotg210->shutdown = true; 4809 fotg210->rh_state = FOTG210_RH_STOPPING; 4810 fotg210->enabled_hrtimer_events = 0; 4811 spin_unlock_irq(&fotg210->lock); 4812 4813 fotg210_silence_controller(fotg210); 4814 4815 hrtimer_cancel(&fotg210->hrtimer); 4816 } 4817 4818 /* fotg210_work is called from some interrupts, timers, and so on. 4819 * it calls driver completion functions, after dropping fotg210->lock. 4820 */ 4821 static void fotg210_work(struct fotg210_hcd *fotg210) 4822 { 4823 /* another CPU may drop fotg210->lock during a schedule scan while 4824 * it reports urb completions. this flag guards against bogus 4825 * attempts at re-entrant schedule scanning. 4826 */ 4827 if (fotg210->scanning) { 4828 fotg210->need_rescan = true; 4829 return; 4830 } 4831 fotg210->scanning = true; 4832 4833 rescan: 4834 fotg210->need_rescan = false; 4835 if (fotg210->async_count) 4836 scan_async(fotg210); 4837 if (fotg210->intr_count > 0) 4838 scan_intr(fotg210); 4839 if (fotg210->isoc_count > 0) 4840 scan_isoc(fotg210); 4841 if (fotg210->need_rescan) 4842 goto rescan; 4843 fotg210->scanning = false; 4844 4845 /* the IO watchdog guards against hardware or driver bugs that 4846 * misplace IRQs, and should let us run completely without IRQs. 4847 * such lossage has been observed on both VT6202 and VT8235. 4848 */ 4849 turn_on_io_watchdog(fotg210); 4850 } 4851 4852 /* Called when the fotg210_hcd module is removed. 4853 */ 4854 static void fotg210_stop(struct usb_hcd *hcd) 4855 { 4856 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4857 4858 fotg210_dbg(fotg210, "stop\n"); 4859 4860 /* no more interrupts ... */ 4861 4862 spin_lock_irq(&fotg210->lock); 4863 fotg210->enabled_hrtimer_events = 0; 4864 spin_unlock_irq(&fotg210->lock); 4865 4866 fotg210_quiesce(fotg210); 4867 fotg210_silence_controller(fotg210); 4868 fotg210_reset(fotg210); 4869 4870 hrtimer_cancel(&fotg210->hrtimer); 4871 remove_sysfs_files(fotg210); 4872 remove_debug_files(fotg210); 4873 4874 /* root hub is shut down separately (first, when possible) */ 4875 spin_lock_irq(&fotg210->lock); 4876 end_free_itds(fotg210); 4877 spin_unlock_irq(&fotg210->lock); 4878 fotg210_mem_cleanup(fotg210); 4879 4880 #ifdef FOTG210_STATS 4881 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n", 4882 fotg210->stats.normal, fotg210->stats.error, 4883 fotg210->stats.iaa, fotg210->stats.lost_iaa); 4884 fotg210_dbg(fotg210, "complete %ld unlink %ld\n", 4885 fotg210->stats.complete, fotg210->stats.unlink); 4886 #endif 4887 4888 dbg_status(fotg210, "fotg210_stop completed", 4889 fotg210_readl(fotg210, &fotg210->regs->status)); 4890 } 4891 4892 /* one-time init, only for memory state */ 4893 static int hcd_fotg210_init(struct usb_hcd *hcd) 4894 { 4895 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4896 u32 temp; 4897 int retval; 4898 u32 hcc_params; 4899 struct fotg210_qh_hw *hw; 4900 4901 spin_lock_init(&fotg210->lock); 4902 4903 /* 4904 * keep io watchdog by default, those good HCDs could turn off it later 4905 */ 4906 fotg210->need_io_watchdog = 1; 4907 4908 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 4909 fotg210->hrtimer.function = fotg210_hrtimer_func; 4910 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; 4911 4912 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 4913 4914 /* 4915 * by default set standard 80% (== 100 usec/uframe) max periodic 4916 * bandwidth as required by USB 2.0 4917 */ 4918 fotg210->uframe_periodic_max = 100; 4919 4920 /* 4921 * hw default: 1K periodic list heads, one per frame. 4922 * periodic_size can shrink by USBCMD update if hcc_params allows. 4923 */ 4924 fotg210->periodic_size = DEFAULT_I_TDPS; 4925 INIT_LIST_HEAD(&fotg210->intr_qh_list); 4926 INIT_LIST_HEAD(&fotg210->cached_itd_list); 4927 4928 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 4929 /* periodic schedule size can be smaller than default */ 4930 switch (FOTG210_TUNE_FLS) { 4931 case 0: 4932 fotg210->periodic_size = 1024; 4933 break; 4934 case 1: 4935 fotg210->periodic_size = 512; 4936 break; 4937 case 2: 4938 fotg210->periodic_size = 256; 4939 break; 4940 default: 4941 BUG(); 4942 } 4943 } 4944 retval = fotg210_mem_init(fotg210, GFP_KERNEL); 4945 if (retval < 0) 4946 return retval; 4947 4948 /* controllers may cache some of the periodic schedule ... */ 4949 fotg210->i_thresh = 2; 4950 4951 /* 4952 * dedicate a qh for the async ring head, since we couldn't unlink 4953 * a 'real' qh without stopping the async schedule [4.8]. use it 4954 * as the 'reclamation list head' too. 4955 * its dummy is used in hw_alt_next of many tds, to prevent the qh 4956 * from automatically advancing to the next td after short reads. 4957 */ 4958 fotg210->async->qh_next.qh = NULL; 4959 hw = fotg210->async->hw; 4960 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma); 4961 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD); 4962 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); 4963 hw->hw_qtd_next = FOTG210_LIST_END(fotg210); 4964 fotg210->async->qh_state = QH_STATE_LINKED; 4965 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma); 4966 4967 /* clear interrupt enables, set irq latency */ 4968 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 4969 log2_irq_thresh = 0; 4970 temp = 1 << (16 + log2_irq_thresh); 4971 if (HCC_CANPARK(hcc_params)) { 4972 /* HW default park == 3, on hardware that supports it (like 4973 * NVidia and ALI silicon), maximizes throughput on the async 4974 * schedule by avoiding QH fetches between transfers. 4975 * 4976 * With fast usb storage devices and NForce2, "park" seems to 4977 * make problems: throughput reduction (!), data errors... 4978 */ 4979 if (park) { 4980 park = min_t(unsigned, park, 3); 4981 temp |= CMD_PARK; 4982 temp |= park << 8; 4983 } 4984 fotg210_dbg(fotg210, "park %d\n", park); 4985 } 4986 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 4987 /* periodic schedule size can be smaller than default */ 4988 temp &= ~(3 << 2); 4989 temp |= (FOTG210_TUNE_FLS << 2); 4990 } 4991 fotg210->command = temp; 4992 4993 /* Accept arbitrarily long scatter-gather lists */ 4994 if (!hcd->localmem_pool) 4995 hcd->self.sg_tablesize = ~0; 4996 return 0; 4997 } 4998 4999 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */ 5000 static int fotg210_run(struct usb_hcd *hcd) 5001 { 5002 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5003 u32 temp; 5004 5005 hcd->uses_new_polling = 1; 5006 5007 /* EHCI spec section 4.1 */ 5008 5009 fotg210_writel(fotg210, fotg210->periodic_dma, 5010 &fotg210->regs->frame_list); 5011 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma, 5012 &fotg210->regs->async_next); 5013 5014 /* 5015 * hcc_params controls whether fotg210->regs->segment must (!!!) 5016 * be used; it constrains QH/ITD/SITD and QTD locations. 5017 * dma_pool consistent memory always uses segment zero. 5018 * streaming mappings for I/O buffers, like dma_map_single(), 5019 * can return segments above 4GB, if the device allows. 5020 * 5021 * NOTE: the dma mask is visible through dev->dma_mask, so 5022 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 5023 * Scsi_Host.highmem_io, and so forth. It's readonly to all 5024 * host side drivers though. 5025 */ 5026 fotg210_readl(fotg210, &fotg210->caps->hcc_params); 5027 5028 /* 5029 * Philips, Intel, and maybe others need CMD_RUN before the 5030 * root hub will detect new devices (why?); NEC doesn't 5031 */ 5032 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET); 5033 fotg210->command |= CMD_RUN; 5034 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 5035 dbg_cmd(fotg210, "init", fotg210->command); 5036 5037 /* 5038 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 5039 * are explicitly handed to companion controller(s), so no TT is 5040 * involved with the root hub. (Except where one is integrated, 5041 * and there's no companion controller unless maybe for USB OTG.) 5042 * 5043 * Turning on the CF flag will transfer ownership of all ports 5044 * from the companions to the EHCI controller. If any of the 5045 * companions are in the middle of a port reset at the time, it 5046 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem 5047 * guarantees that no resets are in progress. After we set CF, 5048 * a short delay lets the hardware catch up; new resets shouldn't 5049 * be started before the port switching actions could complete. 5050 */ 5051 down_write(&ehci_cf_port_reset_rwsem); 5052 fotg210->rh_state = FOTG210_RH_RUNNING; 5053 /* unblock posted writes */ 5054 fotg210_readl(fotg210, &fotg210->regs->command); 5055 usleep_range(5000, 10000); 5056 up_write(&ehci_cf_port_reset_rwsem); 5057 fotg210->last_periodic_enable = ktime_get_real(); 5058 5059 temp = HC_VERSION(fotg210, 5060 fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); 5061 fotg210_info(fotg210, 5062 "USB %x.%x started, EHCI %x.%02x\n", 5063 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f), 5064 temp >> 8, temp & 0xff); 5065 5066 fotg210_writel(fotg210, INTR_MASK, 5067 &fotg210->regs->intr_enable); /* Turn On Interrupts */ 5068 5069 /* GRR this is run-once init(), being done every time the HC starts. 5070 * So long as they're part of class devices, we can't do it init() 5071 * since the class device isn't created that early. 5072 */ 5073 create_debug_files(fotg210); 5074 create_sysfs_files(fotg210); 5075 5076 return 0; 5077 } 5078 5079 static int fotg210_setup(struct usb_hcd *hcd) 5080 { 5081 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5082 int retval; 5083 5084 fotg210->regs = (void __iomem *)fotg210->caps + 5085 HC_LENGTH(fotg210, 5086 fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); 5087 dbg_hcs_params(fotg210, "reset"); 5088 dbg_hcc_params(fotg210, "reset"); 5089 5090 /* cache this readonly data; minimize chip reads */ 5091 fotg210->hcs_params = fotg210_readl(fotg210, 5092 &fotg210->caps->hcs_params); 5093 5094 fotg210->sbrn = HCD_USB2; 5095 5096 /* data structure init */ 5097 retval = hcd_fotg210_init(hcd); 5098 if (retval) 5099 return retval; 5100 5101 retval = fotg210_halt(fotg210); 5102 if (retval) 5103 return retval; 5104 5105 fotg210_reset(fotg210); 5106 5107 return 0; 5108 } 5109 5110 static irqreturn_t fotg210_irq(struct usb_hcd *hcd) 5111 { 5112 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5113 u32 status, masked_status, pcd_status = 0, cmd; 5114 int bh; 5115 5116 spin_lock(&fotg210->lock); 5117 5118 status = fotg210_readl(fotg210, &fotg210->regs->status); 5119 5120 /* e.g. cardbus physical eject */ 5121 if (status == ~(u32) 0) { 5122 fotg210_dbg(fotg210, "device removed\n"); 5123 goto dead; 5124 } 5125 5126 /* 5127 * We don't use STS_FLR, but some controllers don't like it to 5128 * remain on, so mask it out along with the other status bits. 5129 */ 5130 masked_status = status & (INTR_MASK | STS_FLR); 5131 5132 /* Shared IRQ? */ 5133 if (!masked_status || 5134 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) { 5135 spin_unlock(&fotg210->lock); 5136 return IRQ_NONE; 5137 } 5138 5139 /* clear (just) interrupts */ 5140 fotg210_writel(fotg210, masked_status, &fotg210->regs->status); 5141 cmd = fotg210_readl(fotg210, &fotg210->regs->command); 5142 bh = 0; 5143 5144 /* unrequested/ignored: Frame List Rollover */ 5145 dbg_status(fotg210, "irq", status); 5146 5147 /* INT, ERR, and IAA interrupt rates can be throttled */ 5148 5149 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 5150 if (likely((status & (STS_INT|STS_ERR)) != 0)) { 5151 if (likely((status & STS_ERR) == 0)) 5152 INCR(fotg210->stats.normal); 5153 else 5154 INCR(fotg210->stats.error); 5155 bh = 1; 5156 } 5157 5158 /* complete the unlinking of some qh [4.15.2.3] */ 5159 if (status & STS_IAA) { 5160 5161 /* Turn off the IAA watchdog */ 5162 fotg210->enabled_hrtimer_events &= 5163 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG); 5164 5165 /* 5166 * Mild optimization: Allow another IAAD to reset the 5167 * hrtimer, if one occurs before the next expiration. 5168 * In theory we could always cancel the hrtimer, but 5169 * tests show that about half the time it will be reset 5170 * for some other event anyway. 5171 */ 5172 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG) 5173 ++fotg210->next_hrtimer_event; 5174 5175 /* guard against (alleged) silicon errata */ 5176 if (cmd & CMD_IAAD) 5177 fotg210_dbg(fotg210, "IAA with IAAD still set?\n"); 5178 if (fotg210->async_iaa) { 5179 INCR(fotg210->stats.iaa); 5180 end_unlink_async(fotg210); 5181 } else 5182 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n"); 5183 } 5184 5185 /* remote wakeup [4.3.1] */ 5186 if (status & STS_PCD) { 5187 int pstatus; 5188 u32 __iomem *status_reg = &fotg210->regs->port_status; 5189 5190 /* kick root hub later */ 5191 pcd_status = status; 5192 5193 /* resume root hub? */ 5194 if (fotg210->rh_state == FOTG210_RH_SUSPENDED) 5195 usb_hcd_resume_root_hub(hcd); 5196 5197 pstatus = fotg210_readl(fotg210, status_reg); 5198 5199 if (test_bit(0, &fotg210->suspended_ports) && 5200 ((pstatus & PORT_RESUME) || 5201 !(pstatus & PORT_SUSPEND)) && 5202 (pstatus & PORT_PE) && 5203 fotg210->reset_done[0] == 0) { 5204 5205 /* start 20 msec resume signaling from this port, 5206 * and make hub_wq collect PORT_STAT_C_SUSPEND to 5207 * stop that signaling. Use 5 ms extra for safety, 5208 * like usb_port_resume() does. 5209 */ 5210 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25); 5211 set_bit(0, &fotg210->resuming_ports); 5212 fotg210_dbg(fotg210, "port 1 remote wakeup\n"); 5213 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]); 5214 } 5215 } 5216 5217 /* PCI errors [4.15.2.4] */ 5218 if (unlikely((status & STS_FATAL) != 0)) { 5219 fotg210_err(fotg210, "fatal error\n"); 5220 dbg_cmd(fotg210, "fatal", cmd); 5221 dbg_status(fotg210, "fatal", status); 5222 dead: 5223 usb_hc_died(hcd); 5224 5225 /* Don't let the controller do anything more */ 5226 fotg210->shutdown = true; 5227 fotg210->rh_state = FOTG210_RH_STOPPING; 5228 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE); 5229 fotg210_writel(fotg210, fotg210->command, 5230 &fotg210->regs->command); 5231 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 5232 fotg210_handle_controller_death(fotg210); 5233 5234 /* Handle completions when the controller stops */ 5235 bh = 0; 5236 } 5237 5238 if (bh) 5239 fotg210_work(fotg210); 5240 spin_unlock(&fotg210->lock); 5241 if (pcd_status) 5242 usb_hcd_poll_rh_status(hcd); 5243 return IRQ_HANDLED; 5244 } 5245 5246 /* non-error returns are a promise to giveback() the urb later 5247 * we drop ownership so next owner (or urb unlink) can get it 5248 * 5249 * urb + dev is in hcd.self.controller.urb_list 5250 * we're queueing TDs onto software and hardware lists 5251 * 5252 * hcd-specific init for hcpriv hasn't been done yet 5253 * 5254 * NOTE: control, bulk, and interrupt share the same code to append TDs 5255 * to a (possibly active) QH, and the same QH scanning code. 5256 */ 5257 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 5258 gfp_t mem_flags) 5259 { 5260 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5261 struct list_head qtd_list; 5262 5263 INIT_LIST_HEAD(&qtd_list); 5264 5265 switch (usb_pipetype(urb->pipe)) { 5266 case PIPE_CONTROL: 5267 /* qh_completions() code doesn't handle all the fault cases 5268 * in multi-TD control transfers. Even 1KB is rare anyway. 5269 */ 5270 if (urb->transfer_buffer_length > (16 * 1024)) 5271 return -EMSGSIZE; 5272 fallthrough; 5273 /* case PIPE_BULK: */ 5274 default: 5275 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) 5276 return -ENOMEM; 5277 return submit_async(fotg210, urb, &qtd_list, mem_flags); 5278 5279 case PIPE_INTERRUPT: 5280 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) 5281 return -ENOMEM; 5282 return intr_submit(fotg210, urb, &qtd_list, mem_flags); 5283 5284 case PIPE_ISOCHRONOUS: 5285 return itd_submit(fotg210, urb, mem_flags); 5286 } 5287 } 5288 5289 /* remove from hardware lists 5290 * completions normally happen asynchronously 5291 */ 5292 5293 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 5294 { 5295 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5296 struct fotg210_qh *qh; 5297 unsigned long flags; 5298 int rc; 5299 5300 spin_lock_irqsave(&fotg210->lock, flags); 5301 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 5302 if (rc) 5303 goto done; 5304 5305 switch (usb_pipetype(urb->pipe)) { 5306 /* case PIPE_CONTROL: */ 5307 /* case PIPE_BULK:*/ 5308 default: 5309 qh = (struct fotg210_qh *) urb->hcpriv; 5310 if (!qh) 5311 break; 5312 switch (qh->qh_state) { 5313 case QH_STATE_LINKED: 5314 case QH_STATE_COMPLETING: 5315 start_unlink_async(fotg210, qh); 5316 break; 5317 case QH_STATE_UNLINK: 5318 case QH_STATE_UNLINK_WAIT: 5319 /* already started */ 5320 break; 5321 case QH_STATE_IDLE: 5322 /* QH might be waiting for a Clear-TT-Buffer */ 5323 qh_completions(fotg210, qh); 5324 break; 5325 } 5326 break; 5327 5328 case PIPE_INTERRUPT: 5329 qh = (struct fotg210_qh *) urb->hcpriv; 5330 if (!qh) 5331 break; 5332 switch (qh->qh_state) { 5333 case QH_STATE_LINKED: 5334 case QH_STATE_COMPLETING: 5335 start_unlink_intr(fotg210, qh); 5336 break; 5337 case QH_STATE_IDLE: 5338 qh_completions(fotg210, qh); 5339 break; 5340 default: 5341 fotg210_dbg(fotg210, "bogus qh %p state %d\n", 5342 qh, qh->qh_state); 5343 goto done; 5344 } 5345 break; 5346 5347 case PIPE_ISOCHRONOUS: 5348 /* itd... */ 5349 5350 /* wait till next completion, do it then. */ 5351 /* completion irqs can wait up to 1024 msec, */ 5352 break; 5353 } 5354 done: 5355 spin_unlock_irqrestore(&fotg210->lock, flags); 5356 return rc; 5357 } 5358 5359 /* bulk qh holds the data toggle */ 5360 5361 static void fotg210_endpoint_disable(struct usb_hcd *hcd, 5362 struct usb_host_endpoint *ep) 5363 { 5364 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5365 unsigned long flags; 5366 struct fotg210_qh *qh, *tmp; 5367 5368 /* ASSERT: any requests/urbs are being unlinked */ 5369 /* ASSERT: nobody can be submitting urbs for this any more */ 5370 5371 rescan: 5372 spin_lock_irqsave(&fotg210->lock, flags); 5373 qh = ep->hcpriv; 5374 if (!qh) 5375 goto done; 5376 5377 /* endpoints can be iso streams. for now, we don't 5378 * accelerate iso completions ... so spin a while. 5379 */ 5380 if (qh->hw == NULL) { 5381 struct fotg210_iso_stream *stream = ep->hcpriv; 5382 5383 if (!list_empty(&stream->td_list)) 5384 goto idle_timeout; 5385 5386 /* BUG_ON(!list_empty(&stream->free_list)); */ 5387 kfree(stream); 5388 goto done; 5389 } 5390 5391 if (fotg210->rh_state < FOTG210_RH_RUNNING) 5392 qh->qh_state = QH_STATE_IDLE; 5393 switch (qh->qh_state) { 5394 case QH_STATE_LINKED: 5395 case QH_STATE_COMPLETING: 5396 for (tmp = fotg210->async->qh_next.qh; 5397 tmp && tmp != qh; 5398 tmp = tmp->qh_next.qh) 5399 continue; 5400 /* periodic qh self-unlinks on empty, and a COMPLETING qh 5401 * may already be unlinked. 5402 */ 5403 if (tmp) 5404 start_unlink_async(fotg210, qh); 5405 fallthrough; 5406 case QH_STATE_UNLINK: /* wait for hw to finish? */ 5407 case QH_STATE_UNLINK_WAIT: 5408 idle_timeout: 5409 spin_unlock_irqrestore(&fotg210->lock, flags); 5410 schedule_timeout_uninterruptible(1); 5411 goto rescan; 5412 case QH_STATE_IDLE: /* fully unlinked */ 5413 if (qh->clearing_tt) 5414 goto idle_timeout; 5415 if (list_empty(&qh->qtd_list)) { 5416 qh_destroy(fotg210, qh); 5417 break; 5418 } 5419 fallthrough; 5420 default: 5421 /* caller was supposed to have unlinked any requests; 5422 * that's not our job. just leak this memory. 5423 */ 5424 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n", 5425 qh, ep->desc.bEndpointAddress, qh->qh_state, 5426 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 5427 break; 5428 } 5429 done: 5430 ep->hcpriv = NULL; 5431 spin_unlock_irqrestore(&fotg210->lock, flags); 5432 } 5433 5434 static void fotg210_endpoint_reset(struct usb_hcd *hcd, 5435 struct usb_host_endpoint *ep) 5436 { 5437 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5438 struct fotg210_qh *qh; 5439 int eptype = usb_endpoint_type(&ep->desc); 5440 int epnum = usb_endpoint_num(&ep->desc); 5441 int is_out = usb_endpoint_dir_out(&ep->desc); 5442 unsigned long flags; 5443 5444 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT) 5445 return; 5446 5447 spin_lock_irqsave(&fotg210->lock, flags); 5448 qh = ep->hcpriv; 5449 5450 /* For Bulk and Interrupt endpoints we maintain the toggle state 5451 * in the hardware; the toggle bits in udev aren't used at all. 5452 * When an endpoint is reset by usb_clear_halt() we must reset 5453 * the toggle bit in the QH. 5454 */ 5455 if (qh) { 5456 usb_settoggle(qh->dev, epnum, is_out, 0); 5457 if (!list_empty(&qh->qtd_list)) { 5458 WARN_ONCE(1, "clear_halt for a busy endpoint\n"); 5459 } else if (qh->qh_state == QH_STATE_LINKED || 5460 qh->qh_state == QH_STATE_COMPLETING) { 5461 5462 /* The toggle value in the QH can't be updated 5463 * while the QH is active. Unlink it now; 5464 * re-linking will call qh_refresh(). 5465 */ 5466 if (eptype == USB_ENDPOINT_XFER_BULK) 5467 start_unlink_async(fotg210, qh); 5468 else 5469 start_unlink_intr(fotg210, qh); 5470 } 5471 } 5472 spin_unlock_irqrestore(&fotg210->lock, flags); 5473 } 5474 5475 static int fotg210_get_frame(struct usb_hcd *hcd) 5476 { 5477 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5478 5479 return (fotg210_read_frame_index(fotg210) >> 3) % 5480 fotg210->periodic_size; 5481 } 5482 5483 /* The EHCI in ChipIdea HDRC cannot be a separate module or device, 5484 * because its registers (and irq) are shared between host/gadget/otg 5485 * functions and in order to facilitate role switching we cannot 5486 * give the fotg210 driver exclusive access to those. 5487 */ 5488 5489 static const struct hc_driver fotg210_fotg210_hc_driver = { 5490 .description = hcd_name, 5491 .product_desc = "Faraday USB2.0 Host Controller", 5492 .hcd_priv_size = sizeof(struct fotg210_hcd), 5493 5494 /* 5495 * generic hardware linkage 5496 */ 5497 .irq = fotg210_irq, 5498 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2, 5499 5500 /* 5501 * basic lifecycle operations 5502 */ 5503 .reset = hcd_fotg210_init, 5504 .start = fotg210_run, 5505 .stop = fotg210_stop, 5506 .shutdown = fotg210_shutdown, 5507 5508 /* 5509 * managing i/o requests and associated device resources 5510 */ 5511 .urb_enqueue = fotg210_urb_enqueue, 5512 .urb_dequeue = fotg210_urb_dequeue, 5513 .endpoint_disable = fotg210_endpoint_disable, 5514 .endpoint_reset = fotg210_endpoint_reset, 5515 5516 /* 5517 * scheduling support 5518 */ 5519 .get_frame_number = fotg210_get_frame, 5520 5521 /* 5522 * root hub support 5523 */ 5524 .hub_status_data = fotg210_hub_status_data, 5525 .hub_control = fotg210_hub_control, 5526 .bus_suspend = fotg210_bus_suspend, 5527 .bus_resume = fotg210_bus_resume, 5528 5529 .relinquish_port = fotg210_relinquish_port, 5530 .port_handed_over = fotg210_port_handed_over, 5531 5532 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete, 5533 }; 5534 5535 static void fotg210_init(struct fotg210_hcd *fotg210) 5536 { 5537 u32 value; 5538 5539 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY, 5540 &fotg210->regs->gmir); 5541 5542 value = ioread32(&fotg210->regs->otgcsr); 5543 value &= ~OTGCSR_A_BUS_DROP; 5544 value |= OTGCSR_A_BUS_REQ; 5545 iowrite32(value, &fotg210->regs->otgcsr); 5546 } 5547 5548 /* 5549 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs 5550 * 5551 * Allocates basic resources for this USB host controller, and 5552 * then invokes the start() method for the HCD associated with it 5553 * through the hotplug entry's driver_data. 5554 */ 5555 int fotg210_hcd_probe(struct platform_device *pdev, struct fotg210 *fotg) 5556 { 5557 struct device *dev = &pdev->dev; 5558 struct usb_hcd *hcd; 5559 int irq; 5560 int retval; 5561 struct fotg210_hcd *fotg210; 5562 5563 if (usb_disabled()) 5564 return -ENODEV; 5565 5566 pdev->dev.power.power_state = PMSG_ON; 5567 5568 irq = platform_get_irq(pdev, 0); 5569 if (irq < 0) 5570 return irq; 5571 5572 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev, 5573 dev_name(dev)); 5574 if (!hcd) { 5575 retval = dev_err_probe(dev, -ENOMEM, "failed to create hcd\n"); 5576 goto fail_create_hcd; 5577 } 5578 5579 hcd->has_tt = 1; 5580 5581 hcd->regs = fotg->base; 5582 5583 hcd->rsrc_start = fotg->res->start; 5584 hcd->rsrc_len = resource_size(fotg->res); 5585 5586 fotg210 = hcd_to_fotg210(hcd); 5587 5588 fotg210->fotg = fotg; 5589 fotg210->caps = hcd->regs; 5590 5591 retval = fotg210_setup(hcd); 5592 if (retval) 5593 goto failed_put_hcd; 5594 5595 fotg210_init(fotg210); 5596 5597 retval = usb_add_hcd(hcd, irq, IRQF_SHARED); 5598 if (retval) { 5599 dev_err_probe(dev, retval, "failed to add hcd\n"); 5600 goto failed_put_hcd; 5601 } 5602 device_wakeup_enable(hcd->self.controller); 5603 platform_set_drvdata(pdev, hcd); 5604 5605 return retval; 5606 5607 failed_put_hcd: 5608 usb_put_hcd(hcd); 5609 fail_create_hcd: 5610 return dev_err_probe(dev, retval, "init %s fail\n", dev_name(dev)); 5611 } 5612 5613 /* 5614 * fotg210_hcd_remove - shutdown processing for EHCI HCDs 5615 * @dev: USB Host Controller being removed 5616 * 5617 */ 5618 int fotg210_hcd_remove(struct platform_device *pdev) 5619 { 5620 struct usb_hcd *hcd = platform_get_drvdata(pdev); 5621 5622 usb_remove_hcd(hcd); 5623 usb_put_hcd(hcd); 5624 5625 return 0; 5626 } 5627 5628 int __init fotg210_hcd_init(void) 5629 { 5630 if (usb_disabled()) 5631 return -ENODEV; 5632 5633 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5634 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) || 5635 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded)) 5636 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n"); 5637 5638 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n", 5639 hcd_name, sizeof(struct fotg210_qh), 5640 sizeof(struct fotg210_qtd), 5641 sizeof(struct fotg210_itd)); 5642 5643 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root); 5644 5645 return 0; 5646 } 5647 5648 void __exit fotg210_hcd_cleanup(void) 5649 { 5650 debugfs_remove(fotg210_debug_root); 5651 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5652 } 5653