1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3 *
4 * Copyright (c) 2013 Faraday Technology Corporation
5 *
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
9 *
10 * Most of code borrowed from the Linux-3.7 EHCI driver
11 */
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36
37 #include <asm/byteorder.h>
38 #include <asm/irq.h>
39 #include <asm/unaligned.h>
40
41 #include "fotg210.h"
42
43 static const char hcd_name[] = "fotg210_hcd";
44
45 #undef FOTG210_URB_TRACE
46 #define FOTG210_STATS
47
48 /* magic numbers that can affect system performance */
49 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
50 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
51 #define FOTG210_TUNE_RL_TT 0
52 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
53 #define FOTG210_TUNE_MULT_TT 1
54
55 /* Some drivers think it's safe to schedule isochronous transfers more than 256
56 * ms into the future (partly as a result of an old bug in the scheduling
57 * code). In an attempt to avoid trouble, we will use a minimum scheduling
58 * length of 512 frames instead of 256.
59 */
60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
61
62 /* Initial IRQ latency: faster than hw default */
63 static int log2_irq_thresh; /* 0 to 6 */
64 module_param(log2_irq_thresh, int, S_IRUGO);
65 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
66
67 /* initial park setting: slower than hw default */
68 static unsigned park;
69 module_param(park, uint, S_IRUGO);
70 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
71
72 /* for link power management(LPM) feature */
73 static unsigned int hird;
74 module_param(hird, int, S_IRUGO);
75 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
76
77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
78
79 #include "fotg210-hcd.h"
80
81 #define fotg210_dbg(fotg210, fmt, args...) \
82 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_err(fotg210, fmt, args...) \
84 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_info(fotg210, fmt, args...) \
86 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87 #define fotg210_warn(fotg210, fmt, args...) \
88 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
89
90 /* check the values in the HCSPARAMS register (host controller _Structural_
91 * parameters) see EHCI spec, Table 2-4 for each value
92 */
dbg_hcs_params(struct fotg210_hcd * fotg210,char * label)93 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
94 {
95 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
96
97 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
98 HCS_N_PORTS(params));
99 }
100
101 /* check the values in the HCCPARAMS register (host controller _Capability_
102 * parameters) see EHCI Spec, Table 2-5 for each value
103 */
dbg_hcc_params(struct fotg210_hcd * fotg210,char * label)104 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
105 {
106 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
107
108 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
109 params,
110 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
111 HCC_CANPARK(params) ? " park" : "");
112 }
113
114 static void __maybe_unused
dbg_qtd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)115 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
116 {
117 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
118 hc32_to_cpup(fotg210, &qtd->hw_next),
119 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
120 hc32_to_cpup(fotg210, &qtd->hw_token),
121 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
122 if (qtd->hw_buf[1])
123 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
124 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
125 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
126 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
127 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128 }
129
130 static void __maybe_unused
dbg_qh(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qh * qh)131 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
132 {
133 struct fotg210_qh_hw *hw = qh->hw;
134
135 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
136 hw->hw_next, hw->hw_info1, hw->hw_info2,
137 hw->hw_current);
138
139 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140 }
141
142 static void __maybe_unused
dbg_itd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_itd * itd)143 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
144 {
145 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
146 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
147 itd->urb);
148
149 fotg210_dbg(fotg210,
150 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
151 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
152 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
153 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
154 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
155 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
156 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
157 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
158 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
159
160 fotg210_dbg(fotg210,
161 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
162 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
163 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
164 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
165 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
166 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
167 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
168 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
169
170 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
171 itd->index[0], itd->index[1], itd->index[2],
172 itd->index[3], itd->index[4], itd->index[5],
173 itd->index[6], itd->index[7]);
174 }
175
176 static int __maybe_unused
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)177 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
178 {
179 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
180 label, label[0] ? " " : "", status,
181 (status & STS_ASS) ? " Async" : "",
182 (status & STS_PSS) ? " Periodic" : "",
183 (status & STS_RECL) ? " Recl" : "",
184 (status & STS_HALT) ? " Halt" : "",
185 (status & STS_IAA) ? " IAA" : "",
186 (status & STS_FATAL) ? " FATAL" : "",
187 (status & STS_FLR) ? " FLR" : "",
188 (status & STS_PCD) ? " PCD" : "",
189 (status & STS_ERR) ? " ERR" : "",
190 (status & STS_INT) ? " INT" : "");
191 }
192
193 static int __maybe_unused
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
195 {
196 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
197 label, label[0] ? " " : "", enable,
198 (enable & STS_IAA) ? " IAA" : "",
199 (enable & STS_FATAL) ? " FATAL" : "",
200 (enable & STS_FLR) ? " FLR" : "",
201 (enable & STS_PCD) ? " PCD" : "",
202 (enable & STS_ERR) ? " ERR" : "",
203 (enable & STS_INT) ? " INT" : "");
204 }
205
206 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
207
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)208 static int dbg_command_buf(char *buf, unsigned len, const char *label,
209 u32 command)
210 {
211 return scnprintf(buf, len,
212 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
213 label, label[0] ? " " : "", command,
214 (command & CMD_PARK) ? " park" : "(park)",
215 CMD_PARK_CNT(command),
216 (command >> 16) & 0x3f,
217 (command & CMD_IAAD) ? " IAAD" : "",
218 (command & CMD_ASE) ? " Async" : "",
219 (command & CMD_PSE) ? " Periodic" : "",
220 fls_strings[(command >> 2) & 0x3],
221 (command & CMD_RESET) ? " Reset" : "",
222 (command & CMD_RUN) ? "RUN" : "HALT");
223 }
224
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)225 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
226 u32 status)
227 {
228 char *sig;
229
230 /* signaling state */
231 switch (status & (3 << 10)) {
232 case 0 << 10:
233 sig = "se0";
234 break;
235 case 1 << 10:
236 sig = "k";
237 break; /* low speed */
238 case 2 << 10:
239 sig = "j";
240 break;
241 default:
242 sig = "?";
243 break;
244 }
245
246 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
247 label, label[0] ? " " : "", port, status,
248 status >> 25, /*device address */
249 sig,
250 (status & PORT_RESET) ? " RESET" : "",
251 (status & PORT_SUSPEND) ? " SUSPEND" : "",
252 (status & PORT_RESUME) ? " RESUME" : "",
253 (status & PORT_PEC) ? " PEC" : "",
254 (status & PORT_PE) ? " PE" : "",
255 (status & PORT_CSC) ? " CSC" : "",
256 (status & PORT_CONNECT) ? " CONNECT" : "");
257
258 return buf;
259 }
260
261 /* functions have the "wrong" filename when they're output... */
262 #define dbg_status(fotg210, label, status) { \
263 char _buf[80]; \
264 dbg_status_buf(_buf, sizeof(_buf), label, status); \
265 fotg210_dbg(fotg210, "%s\n", _buf); \
266 }
267
268 #define dbg_cmd(fotg210, label, command) { \
269 char _buf[80]; \
270 dbg_command_buf(_buf, sizeof(_buf), label, command); \
271 fotg210_dbg(fotg210, "%s\n", _buf); \
272 }
273
274 #define dbg_port(fotg210, label, port, status) { \
275 char _buf[80]; \
276 fotg210_dbg(fotg210, "%s\n", \
277 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278 }
279
280 /* troubleshooting help: expose state in debugfs */
281 static int debug_async_open(struct inode *, struct file *);
282 static int debug_periodic_open(struct inode *, struct file *);
283 static int debug_registers_open(struct inode *, struct file *);
284 static int debug_async_open(struct inode *, struct file *);
285
286 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
287 static int debug_close(struct inode *, struct file *);
288
289 static const struct file_operations debug_async_fops = {
290 .owner = THIS_MODULE,
291 .open = debug_async_open,
292 .read = debug_output,
293 .release = debug_close,
294 .llseek = default_llseek,
295 };
296 static const struct file_operations debug_periodic_fops = {
297 .owner = THIS_MODULE,
298 .open = debug_periodic_open,
299 .read = debug_output,
300 .release = debug_close,
301 .llseek = default_llseek,
302 };
303 static const struct file_operations debug_registers_fops = {
304 .owner = THIS_MODULE,
305 .open = debug_registers_open,
306 .read = debug_output,
307 .release = debug_close,
308 .llseek = default_llseek,
309 };
310
311 static struct dentry *fotg210_debug_root;
312
313 struct debug_buffer {
314 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
315 struct usb_bus *bus;
316 struct mutex mutex; /* protect filling of buffer */
317 size_t count; /* number of characters filled into buffer */
318 char *output_buf;
319 size_t alloc_size;
320 };
321
speed_char(u32 scratch)322 static inline char speed_char(u32 scratch)
323 {
324 switch (scratch & (3 << 12)) {
325 case QH_FULL_SPEED:
326 return 'f';
327
328 case QH_LOW_SPEED:
329 return 'l';
330
331 case QH_HIGH_SPEED:
332 return 'h';
333
334 default:
335 return '?';
336 }
337 }
338
token_mark(struct fotg210_hcd * fotg210,__hc32 token)339 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
340 {
341 __u32 v = hc32_to_cpu(fotg210, token);
342
343 if (v & QTD_STS_ACTIVE)
344 return '*';
345 if (v & QTD_STS_HALT)
346 return '-';
347 if (!IS_SHORT_READ(v))
348 return ' ';
349 /* tries to advance through hw_alt_next */
350 return '/';
351 }
352
qh_lines(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,char ** nextp,unsigned * sizep)353 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
354 char **nextp, unsigned *sizep)
355 {
356 u32 scratch;
357 u32 hw_curr;
358 struct fotg210_qtd *td;
359 unsigned temp;
360 unsigned size = *sizep;
361 char *next = *nextp;
362 char mark;
363 __le32 list_end = FOTG210_LIST_END(fotg210);
364 struct fotg210_qh_hw *hw = qh->hw;
365
366 if (hw->hw_qtd_next == list_end) /* NEC does this */
367 mark = '@';
368 else
369 mark = token_mark(fotg210, hw->hw_token);
370 if (mark == '/') { /* qh_alt_next controls qh advance? */
371 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
372 fotg210->async->hw->hw_alt_next)
373 mark = '#'; /* blocked */
374 else if (hw->hw_alt_next == list_end)
375 mark = '.'; /* use hw_qtd_next */
376 /* else alt_next points to some other qtd */
377 }
378 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
379 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
380 temp = scnprintf(next, size,
381 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
382 qh, scratch & 0x007f,
383 speed_char(scratch),
384 (scratch >> 8) & 0x000f,
385 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
386 hc32_to_cpup(fotg210, &hw->hw_token), mark,
387 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
388 ? "data1" : "data0",
389 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
390 size -= temp;
391 next += temp;
392
393 /* hc may be modifying the list as we read it ... */
394 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
395 scratch = hc32_to_cpup(fotg210, &td->hw_token);
396 mark = ' ';
397 if (hw_curr == td->qtd_dma)
398 mark = '*';
399 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
400 mark = '+';
401 else if (QTD_LENGTH(scratch)) {
402 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
403 mark = '#';
404 else if (td->hw_alt_next != list_end)
405 mark = '/';
406 }
407 temp = snprintf(next, size,
408 "\n\t%p%c%s len=%d %08x urb %p",
409 td, mark, ({ char *tmp;
410 switch ((scratch>>8)&0x03) {
411 case 0:
412 tmp = "out";
413 break;
414 case 1:
415 tmp = "in";
416 break;
417 case 2:
418 tmp = "setup";
419 break;
420 default:
421 tmp = "?";
422 break;
423 } tmp; }),
424 (scratch >> 16) & 0x7fff,
425 scratch,
426 td->urb);
427 if (size < temp)
428 temp = size;
429 size -= temp;
430 next += temp;
431 }
432
433 temp = snprintf(next, size, "\n");
434 if (size < temp)
435 temp = size;
436
437 size -= temp;
438 next += temp;
439
440 *sizep = size;
441 *nextp = next;
442 }
443
fill_async_buffer(struct debug_buffer * buf)444 static ssize_t fill_async_buffer(struct debug_buffer *buf)
445 {
446 struct usb_hcd *hcd;
447 struct fotg210_hcd *fotg210;
448 unsigned long flags;
449 unsigned temp, size;
450 char *next;
451 struct fotg210_qh *qh;
452
453 hcd = bus_to_hcd(buf->bus);
454 fotg210 = hcd_to_fotg210(hcd);
455 next = buf->output_buf;
456 size = buf->alloc_size;
457
458 *next = 0;
459
460 /* dumps a snapshot of the async schedule.
461 * usually empty except for long-term bulk reads, or head.
462 * one QH per line, and TDs we know about
463 */
464 spin_lock_irqsave(&fotg210->lock, flags);
465 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
466 qh = qh->qh_next.qh)
467 qh_lines(fotg210, qh, &next, &size);
468 if (fotg210->async_unlink && size > 0) {
469 temp = scnprintf(next, size, "\nunlink =\n");
470 size -= temp;
471 next += temp;
472
473 for (qh = fotg210->async_unlink; size > 0 && qh;
474 qh = qh->unlink_next)
475 qh_lines(fotg210, qh, &next, &size);
476 }
477 spin_unlock_irqrestore(&fotg210->lock, flags);
478
479 return strlen(buf->output_buf);
480 }
481
482 /* count tds, get ep direction */
output_buf_tds_dir(char * buf,struct fotg210_hcd * fotg210,struct fotg210_qh_hw * hw,struct fotg210_qh * qh,unsigned size)483 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
484 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
485 {
486 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
487 struct fotg210_qtd *qtd;
488 char *type = "";
489 unsigned temp = 0;
490
491 /* count tds, get ep direction */
492 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
493 temp++;
494 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
495 case 0:
496 type = "out";
497 continue;
498 case 1:
499 type = "in";
500 continue;
501 }
502 }
503
504 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
505 speed_char(scratch), scratch & 0x007f,
506 (scratch >> 8) & 0x000f, type, qh->usecs,
507 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
508 }
509
510 #define DBG_SCHED_LIMIT 64
fill_periodic_buffer(struct debug_buffer * buf)511 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
512 {
513 struct usb_hcd *hcd;
514 struct fotg210_hcd *fotg210;
515 unsigned long flags;
516 union fotg210_shadow p, *seen;
517 unsigned temp, size, seen_count;
518 char *next;
519 unsigned i;
520 __hc32 tag;
521
522 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
523 if (!seen)
524 return 0;
525
526 seen_count = 0;
527
528 hcd = bus_to_hcd(buf->bus);
529 fotg210 = hcd_to_fotg210(hcd);
530 next = buf->output_buf;
531 size = buf->alloc_size;
532
533 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
534 size -= temp;
535 next += temp;
536
537 /* dump a snapshot of the periodic schedule.
538 * iso changes, interrupt usually doesn't.
539 */
540 spin_lock_irqsave(&fotg210->lock, flags);
541 for (i = 0; i < fotg210->periodic_size; i++) {
542 p = fotg210->pshadow[i];
543 if (likely(!p.ptr))
544 continue;
545
546 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
547
548 temp = scnprintf(next, size, "%4d: ", i);
549 size -= temp;
550 next += temp;
551
552 do {
553 struct fotg210_qh_hw *hw;
554
555 switch (hc32_to_cpu(fotg210, tag)) {
556 case Q_TYPE_QH:
557 hw = p.qh->hw;
558 temp = scnprintf(next, size, " qh%d-%04x/%p",
559 p.qh->period,
560 hc32_to_cpup(fotg210,
561 &hw->hw_info2)
562 /* uframe masks */
563 & (QH_CMASK | QH_SMASK),
564 p.qh);
565 size -= temp;
566 next += temp;
567 /* don't repeat what follows this qh */
568 for (temp = 0; temp < seen_count; temp++) {
569 if (seen[temp].ptr != p.ptr)
570 continue;
571 if (p.qh->qh_next.ptr) {
572 temp = scnprintf(next, size,
573 " ...");
574 size -= temp;
575 next += temp;
576 }
577 break;
578 }
579 /* show more info the first time around */
580 if (temp == seen_count) {
581 temp = output_buf_tds_dir(next,
582 fotg210, hw,
583 p.qh, size);
584
585 if (seen_count < DBG_SCHED_LIMIT)
586 seen[seen_count++].qh = p.qh;
587 } else
588 temp = 0;
589 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
590 p = p.qh->qh_next;
591 break;
592 case Q_TYPE_FSTN:
593 temp = scnprintf(next, size,
594 " fstn-%8x/%p",
595 p.fstn->hw_prev, p.fstn);
596 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
597 p = p.fstn->fstn_next;
598 break;
599 case Q_TYPE_ITD:
600 temp = scnprintf(next, size,
601 " itd/%p", p.itd);
602 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
603 p = p.itd->itd_next;
604 break;
605 }
606 size -= temp;
607 next += temp;
608 } while (p.ptr);
609
610 temp = scnprintf(next, size, "\n");
611 size -= temp;
612 next += temp;
613 }
614 spin_unlock_irqrestore(&fotg210->lock, flags);
615 kfree(seen);
616
617 return buf->alloc_size - size;
618 }
619 #undef DBG_SCHED_LIMIT
620
rh_state_string(struct fotg210_hcd * fotg210)621 static const char *rh_state_string(struct fotg210_hcd *fotg210)
622 {
623 switch (fotg210->rh_state) {
624 case FOTG210_RH_HALTED:
625 return "halted";
626 case FOTG210_RH_SUSPENDED:
627 return "suspended";
628 case FOTG210_RH_RUNNING:
629 return "running";
630 case FOTG210_RH_STOPPING:
631 return "stopping";
632 }
633 return "?";
634 }
635
fill_registers_buffer(struct debug_buffer * buf)636 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
637 {
638 struct usb_hcd *hcd;
639 struct fotg210_hcd *fotg210;
640 unsigned long flags;
641 unsigned temp, size, i;
642 char *next, scratch[80];
643 static const char fmt[] = "%*s\n";
644 static const char label[] = "";
645
646 hcd = bus_to_hcd(buf->bus);
647 fotg210 = hcd_to_fotg210(hcd);
648 next = buf->output_buf;
649 size = buf->alloc_size;
650
651 spin_lock_irqsave(&fotg210->lock, flags);
652
653 if (!HCD_HW_ACCESSIBLE(hcd)) {
654 size = scnprintf(next, size,
655 "bus %s, device %s\n"
656 "%s\n"
657 "SUSPENDED(no register access)\n",
658 hcd->self.controller->bus->name,
659 dev_name(hcd->self.controller),
660 hcd->product_desc);
661 goto done;
662 }
663
664 /* Capability Registers */
665 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
666 &fotg210->caps->hc_capbase));
667 temp = scnprintf(next, size,
668 "bus %s, device %s\n"
669 "%s\n"
670 "EHCI %x.%02x, rh state %s\n",
671 hcd->self.controller->bus->name,
672 dev_name(hcd->self.controller),
673 hcd->product_desc,
674 i >> 8, i & 0x0ff, rh_state_string(fotg210));
675 size -= temp;
676 next += temp;
677
678 /* FIXME interpret both types of params */
679 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
680 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
681 size -= temp;
682 next += temp;
683
684 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
685 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
686 size -= temp;
687 next += temp;
688
689 /* Operational Registers */
690 temp = dbg_status_buf(scratch, sizeof(scratch), label,
691 fotg210_readl(fotg210, &fotg210->regs->status));
692 temp = scnprintf(next, size, fmt, temp, scratch);
693 size -= temp;
694 next += temp;
695
696 temp = dbg_command_buf(scratch, sizeof(scratch), label,
697 fotg210_readl(fotg210, &fotg210->regs->command));
698 temp = scnprintf(next, size, fmt, temp, scratch);
699 size -= temp;
700 next += temp;
701
702 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
703 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
704 temp = scnprintf(next, size, fmt, temp, scratch);
705 size -= temp;
706 next += temp;
707
708 temp = scnprintf(next, size, "uframe %04x\n",
709 fotg210_read_frame_index(fotg210));
710 size -= temp;
711 next += temp;
712
713 if (fotg210->async_unlink) {
714 temp = scnprintf(next, size, "async unlink qh %p\n",
715 fotg210->async_unlink);
716 size -= temp;
717 next += temp;
718 }
719
720 #ifdef FOTG210_STATS
721 temp = scnprintf(next, size,
722 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
723 fotg210->stats.normal, fotg210->stats.error,
724 fotg210->stats.iaa, fotg210->stats.lost_iaa);
725 size -= temp;
726 next += temp;
727
728 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
729 fotg210->stats.complete, fotg210->stats.unlink);
730 size -= temp;
731 next += temp;
732 #endif
733
734 done:
735 spin_unlock_irqrestore(&fotg210->lock, flags);
736
737 return buf->alloc_size - size;
738 }
739
740 static struct debug_buffer
alloc_buffer(struct usb_bus * bus,ssize_t (* fill_func)(struct debug_buffer *))741 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
742 {
743 struct debug_buffer *buf;
744
745 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
746
747 if (buf) {
748 buf->bus = bus;
749 buf->fill_func = fill_func;
750 mutex_init(&buf->mutex);
751 buf->alloc_size = PAGE_SIZE;
752 }
753
754 return buf;
755 }
756
fill_buffer(struct debug_buffer * buf)757 static int fill_buffer(struct debug_buffer *buf)
758 {
759 int ret = 0;
760
761 if (!buf->output_buf)
762 buf->output_buf = vmalloc(buf->alloc_size);
763
764 if (!buf->output_buf) {
765 ret = -ENOMEM;
766 goto out;
767 }
768
769 ret = buf->fill_func(buf);
770
771 if (ret >= 0) {
772 buf->count = ret;
773 ret = 0;
774 }
775
776 out:
777 return ret;
778 }
779
debug_output(struct file * file,char __user * user_buf,size_t len,loff_t * offset)780 static ssize_t debug_output(struct file *file, char __user *user_buf,
781 size_t len, loff_t *offset)
782 {
783 struct debug_buffer *buf = file->private_data;
784 int ret = 0;
785
786 mutex_lock(&buf->mutex);
787 if (buf->count == 0) {
788 ret = fill_buffer(buf);
789 if (ret != 0) {
790 mutex_unlock(&buf->mutex);
791 goto out;
792 }
793 }
794 mutex_unlock(&buf->mutex);
795
796 ret = simple_read_from_buffer(user_buf, len, offset,
797 buf->output_buf, buf->count);
798
799 out:
800 return ret;
801
802 }
803
debug_close(struct inode * inode,struct file * file)804 static int debug_close(struct inode *inode, struct file *file)
805 {
806 struct debug_buffer *buf = file->private_data;
807
808 if (buf) {
809 vfree(buf->output_buf);
810 kfree(buf);
811 }
812
813 return 0;
814 }
debug_async_open(struct inode * inode,struct file * file)815 static int debug_async_open(struct inode *inode, struct file *file)
816 {
817 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
818
819 return file->private_data ? 0 : -ENOMEM;
820 }
821
debug_periodic_open(struct inode * inode,struct file * file)822 static int debug_periodic_open(struct inode *inode, struct file *file)
823 {
824 struct debug_buffer *buf;
825
826 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
827 if (!buf)
828 return -ENOMEM;
829
830 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
831 file->private_data = buf;
832 return 0;
833 }
834
debug_registers_open(struct inode * inode,struct file * file)835 static int debug_registers_open(struct inode *inode, struct file *file)
836 {
837 file->private_data = alloc_buffer(inode->i_private,
838 fill_registers_buffer);
839
840 return file->private_data ? 0 : -ENOMEM;
841 }
842
create_debug_files(struct fotg210_hcd * fotg210)843 static inline void create_debug_files(struct fotg210_hcd *fotg210)
844 {
845 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
846 struct dentry *root;
847
848 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
849
850 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
851 debugfs_create_file("periodic", S_IRUGO, root, bus,
852 &debug_periodic_fops);
853 debugfs_create_file("registers", S_IRUGO, root, bus,
854 &debug_registers_fops);
855 }
856
remove_debug_files(struct fotg210_hcd * fotg210)857 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
858 {
859 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
860
861 debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root);
862 }
863
864 /* handshake - spin reading hc until handshake completes or fails
865 * @ptr: address of hc register to be read
866 * @mask: bits to look at in result of read
867 * @done: value of those bits when handshake succeeds
868 * @usec: timeout in microseconds
869 *
870 * Returns negative errno, or zero on success
871 *
872 * Success happens when the "mask" bits have the specified value (hardware
873 * handshake done). There are two failure modes: "usec" have passed (major
874 * hardware flakeout), or the register reads as all-ones (hardware removed).
875 *
876 * That last failure should_only happen in cases like physical cardbus eject
877 * before driver shutdown. But it also seems to be caused by bugs in cardbus
878 * bridge shutdown: shutting down the bridge before the devices using it.
879 */
handshake(struct fotg210_hcd * fotg210,void __iomem * ptr,u32 mask,u32 done,int usec)880 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
881 u32 mask, u32 done, int usec)
882 {
883 u32 result;
884 int ret;
885
886 ret = readl_poll_timeout_atomic(ptr, result,
887 ((result & mask) == done ||
888 result == U32_MAX), 1, usec);
889 if (result == U32_MAX) /* card removed */
890 return -ENODEV;
891
892 return ret;
893 }
894
895 /* Force HC to halt state from unknown (EHCI spec section 2.3).
896 * Must be called with interrupts enabled and the lock not held.
897 */
fotg210_halt(struct fotg210_hcd * fotg210)898 static int fotg210_halt(struct fotg210_hcd *fotg210)
899 {
900 u32 temp;
901
902 spin_lock_irq(&fotg210->lock);
903
904 /* disable any irqs left enabled by previous code */
905 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
906
907 /*
908 * This routine gets called during probe before fotg210->command
909 * has been initialized, so we can't rely on its value.
910 */
911 fotg210->command &= ~CMD_RUN;
912 temp = fotg210_readl(fotg210, &fotg210->regs->command);
913 temp &= ~(CMD_RUN | CMD_IAAD);
914 fotg210_writel(fotg210, temp, &fotg210->regs->command);
915
916 spin_unlock_irq(&fotg210->lock);
917 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
918
919 return handshake(fotg210, &fotg210->regs->status,
920 STS_HALT, STS_HALT, 16 * 125);
921 }
922
923 /* Reset a non-running (STS_HALT == 1) controller.
924 * Must be called with interrupts enabled and the lock not held.
925 */
fotg210_reset(struct fotg210_hcd * fotg210)926 static int fotg210_reset(struct fotg210_hcd *fotg210)
927 {
928 int retval;
929 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
930
931 /* If the EHCI debug controller is active, special care must be
932 * taken before and after a host controller reset
933 */
934 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
935 fotg210->debug = NULL;
936
937 command |= CMD_RESET;
938 dbg_cmd(fotg210, "reset", command);
939 fotg210_writel(fotg210, command, &fotg210->regs->command);
940 fotg210->rh_state = FOTG210_RH_HALTED;
941 fotg210->next_statechange = jiffies;
942 retval = handshake(fotg210, &fotg210->regs->command,
943 CMD_RESET, 0, 250 * 1000);
944
945 if (retval)
946 return retval;
947
948 if (fotg210->debug)
949 dbgp_external_startup(fotg210_to_hcd(fotg210));
950
951 fotg210->port_c_suspend = fotg210->suspended_ports =
952 fotg210->resuming_ports = 0;
953 return retval;
954 }
955
956 /* Idle the controller (turn off the schedules).
957 * Must be called with interrupts enabled and the lock not held.
958 */
fotg210_quiesce(struct fotg210_hcd * fotg210)959 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
960 {
961 u32 temp;
962
963 if (fotg210->rh_state != FOTG210_RH_RUNNING)
964 return;
965
966 /* wait for any schedule enables/disables to take effect */
967 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
968 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
969 16 * 125);
970
971 /* then disable anything that's still active */
972 spin_lock_irq(&fotg210->lock);
973 fotg210->command &= ~(CMD_ASE | CMD_PSE);
974 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
975 spin_unlock_irq(&fotg210->lock);
976
977 /* hardware can take 16 microframes to turn off ... */
978 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
979 16 * 125);
980 }
981
982 static void end_unlink_async(struct fotg210_hcd *fotg210);
983 static void unlink_empty_async(struct fotg210_hcd *fotg210);
984 static void fotg210_work(struct fotg210_hcd *fotg210);
985 static void start_unlink_intr(struct fotg210_hcd *fotg210,
986 struct fotg210_qh *qh);
987 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
988
989 /* Set a bit in the USBCMD register */
fotg210_set_command_bit(struct fotg210_hcd * fotg210,u32 bit)990 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
991 {
992 fotg210->command |= bit;
993 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
994
995 /* unblock posted write */
996 fotg210_readl(fotg210, &fotg210->regs->command);
997 }
998
999 /* Clear a bit in the USBCMD register */
fotg210_clear_command_bit(struct fotg210_hcd * fotg210,u32 bit)1000 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1001 {
1002 fotg210->command &= ~bit;
1003 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1004
1005 /* unblock posted write */
1006 fotg210_readl(fotg210, &fotg210->regs->command);
1007 }
1008
1009 /* EHCI timer support... Now using hrtimers.
1010 *
1011 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1012 * the timer routine runs, it checks each possible event; events that are
1013 * currently enabled and whose expiration time has passed get handled.
1014 * The set of enabled events is stored as a collection of bitflags in
1015 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1016 * increasing delay values (ranging between 1 ms and 100 ms).
1017 *
1018 * Rather than implementing a sorted list or tree of all pending events,
1019 * we keep track only of the lowest-numbered pending event, in
1020 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1021 * expiration time is set to the timeout value for this event.
1022 *
1023 * As a result, events might not get handled right away; the actual delay
1024 * could be anywhere up to twice the requested delay. This doesn't
1025 * matter, because none of the events are especially time-critical. The
1026 * ones that matter most all have a delay of 1 ms, so they will be
1027 * handled after 2 ms at most, which is okay. In addition to this, we
1028 * allow for an expiration range of 1 ms.
1029 */
1030
1031 /* Delay lengths for the hrtimer event types.
1032 * Keep this list sorted by delay length, in the same order as
1033 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1034 */
1035 static unsigned event_delays_ns[] = {
1036 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1037 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1038 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1039 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1040 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1041 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1042 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1043 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1044 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1045 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1046 };
1047
1048 /* Enable a pending hrtimer event */
fotg210_enable_event(struct fotg210_hcd * fotg210,unsigned event,bool resched)1049 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1050 bool resched)
1051 {
1052 ktime_t *timeout = &fotg210->hr_timeouts[event];
1053
1054 if (resched)
1055 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1056 fotg210->enabled_hrtimer_events |= (1 << event);
1057
1058 /* Track only the lowest-numbered pending event */
1059 if (event < fotg210->next_hrtimer_event) {
1060 fotg210->next_hrtimer_event = event;
1061 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1062 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1063 }
1064 }
1065
1066
1067 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
fotg210_poll_ASS(struct fotg210_hcd * fotg210)1068 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1069 {
1070 unsigned actual, want;
1071
1072 /* Don't enable anything if the controller isn't running (e.g., died) */
1073 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1074 return;
1075
1076 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1077 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1078
1079 if (want != actual) {
1080
1081 /* Poll again later, but give up after about 20 ms */
1082 if (fotg210->ASS_poll_count++ < 20) {
1083 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1084 true);
1085 return;
1086 }
1087 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1088 want, actual);
1089 }
1090 fotg210->ASS_poll_count = 0;
1091
1092 /* The status is up-to-date; restart or stop the schedule as needed */
1093 if (want == 0) { /* Stopped */
1094 if (fotg210->async_count > 0)
1095 fotg210_set_command_bit(fotg210, CMD_ASE);
1096
1097 } else { /* Running */
1098 if (fotg210->async_count == 0) {
1099
1100 /* Turn off the schedule after a while */
1101 fotg210_enable_event(fotg210,
1102 FOTG210_HRTIMER_DISABLE_ASYNC,
1103 true);
1104 }
1105 }
1106 }
1107
1108 /* Turn off the async schedule after a brief delay */
fotg210_disable_ASE(struct fotg210_hcd * fotg210)1109 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1110 {
1111 fotg210_clear_command_bit(fotg210, CMD_ASE);
1112 }
1113
1114
1115 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
fotg210_poll_PSS(struct fotg210_hcd * fotg210)1116 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1117 {
1118 unsigned actual, want;
1119
1120 /* Don't do anything if the controller isn't running (e.g., died) */
1121 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1122 return;
1123
1124 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1125 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1126
1127 if (want != actual) {
1128
1129 /* Poll again later, but give up after about 20 ms */
1130 if (fotg210->PSS_poll_count++ < 20) {
1131 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1132 true);
1133 return;
1134 }
1135 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1136 want, actual);
1137 }
1138 fotg210->PSS_poll_count = 0;
1139
1140 /* The status is up-to-date; restart or stop the schedule as needed */
1141 if (want == 0) { /* Stopped */
1142 if (fotg210->periodic_count > 0)
1143 fotg210_set_command_bit(fotg210, CMD_PSE);
1144
1145 } else { /* Running */
1146 if (fotg210->periodic_count == 0) {
1147
1148 /* Turn off the schedule after a while */
1149 fotg210_enable_event(fotg210,
1150 FOTG210_HRTIMER_DISABLE_PERIODIC,
1151 true);
1152 }
1153 }
1154 }
1155
1156 /* Turn off the periodic schedule after a brief delay */
fotg210_disable_PSE(struct fotg210_hcd * fotg210)1157 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1158 {
1159 fotg210_clear_command_bit(fotg210, CMD_PSE);
1160 }
1161
1162
1163 /* Poll the STS_HALT status bit; see when a dead controller stops */
fotg210_handle_controller_death(struct fotg210_hcd * fotg210)1164 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1165 {
1166 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1167
1168 /* Give up after a few milliseconds */
1169 if (fotg210->died_poll_count++ < 5) {
1170 /* Try again later */
1171 fotg210_enable_event(fotg210,
1172 FOTG210_HRTIMER_POLL_DEAD, true);
1173 return;
1174 }
1175 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1176 }
1177
1178 /* Clean up the mess */
1179 fotg210->rh_state = FOTG210_RH_HALTED;
1180 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1181 fotg210_work(fotg210);
1182 end_unlink_async(fotg210);
1183
1184 /* Not in process context, so don't try to reset the controller */
1185 }
1186
1187
1188 /* Handle unlinked interrupt QHs once they are gone from the hardware */
fotg210_handle_intr_unlinks(struct fotg210_hcd * fotg210)1189 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1190 {
1191 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1192
1193 /*
1194 * Process all the QHs on the intr_unlink list that were added
1195 * before the current unlink cycle began. The list is in
1196 * temporal order, so stop when we reach the first entry in the
1197 * current cycle. But if the root hub isn't running then
1198 * process all the QHs on the list.
1199 */
1200 fotg210->intr_unlinking = true;
1201 while (fotg210->intr_unlink) {
1202 struct fotg210_qh *qh = fotg210->intr_unlink;
1203
1204 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1205 break;
1206 fotg210->intr_unlink = qh->unlink_next;
1207 qh->unlink_next = NULL;
1208 end_unlink_intr(fotg210, qh);
1209 }
1210
1211 /* Handle remaining entries later */
1212 if (fotg210->intr_unlink) {
1213 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1214 true);
1215 ++fotg210->intr_unlink_cycle;
1216 }
1217 fotg210->intr_unlinking = false;
1218 }
1219
1220
1221 /* Start another free-iTDs/siTDs cycle */
start_free_itds(struct fotg210_hcd * fotg210)1222 static void start_free_itds(struct fotg210_hcd *fotg210)
1223 {
1224 if (!(fotg210->enabled_hrtimer_events &
1225 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1226 fotg210->last_itd_to_free = list_entry(
1227 fotg210->cached_itd_list.prev,
1228 struct fotg210_itd, itd_list);
1229 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1230 }
1231 }
1232
1233 /* Wait for controller to stop using old iTDs and siTDs */
end_free_itds(struct fotg210_hcd * fotg210)1234 static void end_free_itds(struct fotg210_hcd *fotg210)
1235 {
1236 struct fotg210_itd *itd, *n;
1237
1238 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1239 fotg210->last_itd_to_free = NULL;
1240
1241 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1242 list_del(&itd->itd_list);
1243 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1244 if (itd == fotg210->last_itd_to_free)
1245 break;
1246 }
1247
1248 if (!list_empty(&fotg210->cached_itd_list))
1249 start_free_itds(fotg210);
1250 }
1251
1252
1253 /* Handle lost (or very late) IAA interrupts */
fotg210_iaa_watchdog(struct fotg210_hcd * fotg210)1254 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1255 {
1256 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1257 return;
1258
1259 /*
1260 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1261 * So we need this watchdog, but must protect it against both
1262 * (a) SMP races against real IAA firing and retriggering, and
1263 * (b) clean HC shutdown, when IAA watchdog was pending.
1264 */
1265 if (fotg210->async_iaa) {
1266 u32 cmd, status;
1267
1268 /* If we get here, IAA is *REALLY* late. It's barely
1269 * conceivable that the system is so busy that CMD_IAAD
1270 * is still legitimately set, so let's be sure it's
1271 * clear before we read STS_IAA. (The HC should clear
1272 * CMD_IAAD when it sets STS_IAA.)
1273 */
1274 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1275
1276 /*
1277 * If IAA is set here it either legitimately triggered
1278 * after the watchdog timer expired (_way_ late, so we'll
1279 * still count it as lost) ... or a silicon erratum:
1280 * - VIA seems to set IAA without triggering the IRQ;
1281 * - IAAD potentially cleared without setting IAA.
1282 */
1283 status = fotg210_readl(fotg210, &fotg210->regs->status);
1284 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1285 INCR(fotg210->stats.lost_iaa);
1286 fotg210_writel(fotg210, STS_IAA,
1287 &fotg210->regs->status);
1288 }
1289
1290 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1291 status, cmd);
1292 end_unlink_async(fotg210);
1293 }
1294 }
1295
1296
1297 /* Enable the I/O watchdog, if appropriate */
turn_on_io_watchdog(struct fotg210_hcd * fotg210)1298 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1299 {
1300 /* Not needed if the controller isn't running or it's already enabled */
1301 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1302 (fotg210->enabled_hrtimer_events &
1303 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1304 return;
1305
1306 /*
1307 * Isochronous transfers always need the watchdog.
1308 * For other sorts we use it only if the flag is set.
1309 */
1310 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1311 fotg210->async_count + fotg210->intr_count > 0))
1312 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1313 true);
1314 }
1315
1316
1317 /* Handler functions for the hrtimer event types.
1318 * Keep this array in the same order as the event types indexed by
1319 * enum fotg210_hrtimer_event in fotg210.h.
1320 */
1321 static void (*event_handlers[])(struct fotg210_hcd *) = {
1322 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1323 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1324 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1325 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1326 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1327 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1328 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1329 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1330 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1331 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1332 };
1333
fotg210_hrtimer_func(struct hrtimer * t)1334 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1335 {
1336 struct fotg210_hcd *fotg210 =
1337 container_of(t, struct fotg210_hcd, hrtimer);
1338 ktime_t now;
1339 unsigned long events;
1340 unsigned long flags;
1341 unsigned e;
1342
1343 spin_lock_irqsave(&fotg210->lock, flags);
1344
1345 events = fotg210->enabled_hrtimer_events;
1346 fotg210->enabled_hrtimer_events = 0;
1347 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1348
1349 /*
1350 * Check each pending event. If its time has expired, handle
1351 * the event; otherwise re-enable it.
1352 */
1353 now = ktime_get();
1354 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1355 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1356 event_handlers[e](fotg210);
1357 else
1358 fotg210_enable_event(fotg210, e, false);
1359 }
1360
1361 spin_unlock_irqrestore(&fotg210->lock, flags);
1362 return HRTIMER_NORESTART;
1363 }
1364
1365 #define fotg210_bus_suspend NULL
1366 #define fotg210_bus_resume NULL
1367
check_reset_complete(struct fotg210_hcd * fotg210,int index,u32 __iomem * status_reg,int port_status)1368 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1369 u32 __iomem *status_reg, int port_status)
1370 {
1371 if (!(port_status & PORT_CONNECT))
1372 return port_status;
1373
1374 /* if reset finished and it's still not enabled -- handoff */
1375 if (!(port_status & PORT_PE))
1376 /* with integrated TT, there's nobody to hand it to! */
1377 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1378 index + 1);
1379 else
1380 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1381 index + 1);
1382
1383 return port_status;
1384 }
1385
1386
1387 /* build "status change" packet (one or two bytes) from HC registers */
1388
fotg210_hub_status_data(struct usb_hcd * hcd,char * buf)1389 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1390 {
1391 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1392 u32 temp, status;
1393 u32 mask;
1394 int retval = 1;
1395 unsigned long flags;
1396
1397 /* init status to no-changes */
1398 buf[0] = 0;
1399
1400 /* Inform the core about resumes-in-progress by returning
1401 * a non-zero value even if there are no status changes.
1402 */
1403 status = fotg210->resuming_ports;
1404
1405 mask = PORT_CSC | PORT_PEC;
1406 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1407
1408 /* no hub change reports (bit 0) for now (power, ...) */
1409
1410 /* port N changes (bit N)? */
1411 spin_lock_irqsave(&fotg210->lock, flags);
1412
1413 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1414
1415 /*
1416 * Return status information even for ports with OWNER set.
1417 * Otherwise hub_wq wouldn't see the disconnect event when a
1418 * high-speed device is switched over to the companion
1419 * controller by the user.
1420 */
1421
1422 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1423 (fotg210->reset_done[0] &&
1424 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1425 buf[0] |= 1 << 1;
1426 status = STS_PCD;
1427 }
1428 /* FIXME autosuspend idle root hubs */
1429 spin_unlock_irqrestore(&fotg210->lock, flags);
1430 return status ? retval : 0;
1431 }
1432
fotg210_hub_descriptor(struct fotg210_hcd * fotg210,struct usb_hub_descriptor * desc)1433 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1434 struct usb_hub_descriptor *desc)
1435 {
1436 int ports = HCS_N_PORTS(fotg210->hcs_params);
1437 u16 temp;
1438
1439 desc->bDescriptorType = USB_DT_HUB;
1440 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1441 desc->bHubContrCurrent = 0;
1442
1443 desc->bNbrPorts = ports;
1444 temp = 1 + (ports / 8);
1445 desc->bDescLength = 7 + 2 * temp;
1446
1447 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1448 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1449 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1450
1451 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1452 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1453 desc->wHubCharacteristics = cpu_to_le16(temp);
1454 }
1455
fotg210_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)1456 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1457 u16 wIndex, char *buf, u16 wLength)
1458 {
1459 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1460 int ports = HCS_N_PORTS(fotg210->hcs_params);
1461 u32 __iomem *status_reg = &fotg210->regs->port_status;
1462 u32 temp, temp1, status;
1463 unsigned long flags;
1464 int retval = 0;
1465 unsigned selector;
1466
1467 /*
1468 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1469 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1470 * (track current state ourselves) ... blink for diagnostics,
1471 * power, "this is the one", etc. EHCI spec supports this.
1472 */
1473
1474 spin_lock_irqsave(&fotg210->lock, flags);
1475 switch (typeReq) {
1476 case ClearHubFeature:
1477 switch (wValue) {
1478 case C_HUB_LOCAL_POWER:
1479 case C_HUB_OVER_CURRENT:
1480 /* no hub-wide feature/status flags */
1481 break;
1482 default:
1483 goto error;
1484 }
1485 break;
1486 case ClearPortFeature:
1487 if (!wIndex || wIndex > ports)
1488 goto error;
1489 wIndex--;
1490 temp = fotg210_readl(fotg210, status_reg);
1491 temp &= ~PORT_RWC_BITS;
1492
1493 /*
1494 * Even if OWNER is set, so the port is owned by the
1495 * companion controller, hub_wq needs to be able to clear
1496 * the port-change status bits (especially
1497 * USB_PORT_STAT_C_CONNECTION).
1498 */
1499
1500 switch (wValue) {
1501 case USB_PORT_FEAT_ENABLE:
1502 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1503 break;
1504 case USB_PORT_FEAT_C_ENABLE:
1505 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1506 break;
1507 case USB_PORT_FEAT_SUSPEND:
1508 if (temp & PORT_RESET)
1509 goto error;
1510 if (!(temp & PORT_SUSPEND))
1511 break;
1512 if ((temp & PORT_PE) == 0)
1513 goto error;
1514
1515 /* resume signaling for 20 msec */
1516 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1517 fotg210->reset_done[wIndex] = jiffies
1518 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1519 break;
1520 case USB_PORT_FEAT_C_SUSPEND:
1521 clear_bit(wIndex, &fotg210->port_c_suspend);
1522 break;
1523 case USB_PORT_FEAT_C_CONNECTION:
1524 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1525 break;
1526 case USB_PORT_FEAT_C_OVER_CURRENT:
1527 fotg210_writel(fotg210, temp | OTGISR_OVC,
1528 &fotg210->regs->otgisr);
1529 break;
1530 case USB_PORT_FEAT_C_RESET:
1531 /* GetPortStatus clears reset */
1532 break;
1533 default:
1534 goto error;
1535 }
1536 fotg210_readl(fotg210, &fotg210->regs->command);
1537 break;
1538 case GetHubDescriptor:
1539 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1540 buf);
1541 break;
1542 case GetHubStatus:
1543 /* no hub-wide feature/status flags */
1544 memset(buf, 0, 4);
1545 /*cpu_to_le32s ((u32 *) buf); */
1546 break;
1547 case GetPortStatus:
1548 if (!wIndex || wIndex > ports)
1549 goto error;
1550 wIndex--;
1551 status = 0;
1552 temp = fotg210_readl(fotg210, status_reg);
1553
1554 /* wPortChange bits */
1555 if (temp & PORT_CSC)
1556 status |= USB_PORT_STAT_C_CONNECTION << 16;
1557 if (temp & PORT_PEC)
1558 status |= USB_PORT_STAT_C_ENABLE << 16;
1559
1560 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1561 if (temp1 & OTGISR_OVC)
1562 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1563
1564 /* whoever resumes must GetPortStatus to complete it!! */
1565 if (temp & PORT_RESUME) {
1566
1567 /* Remote Wakeup received? */
1568 if (!fotg210->reset_done[wIndex]) {
1569 /* resume signaling for 20 msec */
1570 fotg210->reset_done[wIndex] = jiffies
1571 + msecs_to_jiffies(20);
1572 /* check the port again */
1573 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1574 fotg210->reset_done[wIndex]);
1575 }
1576
1577 /* resume completed? */
1578 else if (time_after_eq(jiffies,
1579 fotg210->reset_done[wIndex])) {
1580 clear_bit(wIndex, &fotg210->suspended_ports);
1581 set_bit(wIndex, &fotg210->port_c_suspend);
1582 fotg210->reset_done[wIndex] = 0;
1583
1584 /* stop resume signaling */
1585 temp = fotg210_readl(fotg210, status_reg);
1586 fotg210_writel(fotg210, temp &
1587 ~(PORT_RWC_BITS | PORT_RESUME),
1588 status_reg);
1589 clear_bit(wIndex, &fotg210->resuming_ports);
1590 retval = handshake(fotg210, status_reg,
1591 PORT_RESUME, 0, 2000);/* 2ms */
1592 if (retval != 0) {
1593 fotg210_err(fotg210,
1594 "port %d resume error %d\n",
1595 wIndex + 1, retval);
1596 goto error;
1597 }
1598 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1599 }
1600 }
1601
1602 /* whoever resets must GetPortStatus to complete it!! */
1603 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1604 fotg210->reset_done[wIndex])) {
1605 status |= USB_PORT_STAT_C_RESET << 16;
1606 fotg210->reset_done[wIndex] = 0;
1607 clear_bit(wIndex, &fotg210->resuming_ports);
1608
1609 /* force reset to complete */
1610 fotg210_writel(fotg210,
1611 temp & ~(PORT_RWC_BITS | PORT_RESET),
1612 status_reg);
1613 /* REVISIT: some hardware needs 550+ usec to clear
1614 * this bit; seems too long to spin routinely...
1615 */
1616 retval = handshake(fotg210, status_reg,
1617 PORT_RESET, 0, 1000);
1618 if (retval != 0) {
1619 fotg210_err(fotg210, "port %d reset error %d\n",
1620 wIndex + 1, retval);
1621 goto error;
1622 }
1623
1624 /* see what we found out */
1625 temp = check_reset_complete(fotg210, wIndex, status_reg,
1626 fotg210_readl(fotg210, status_reg));
1627
1628 /* restart schedule */
1629 fotg210->command |= CMD_RUN;
1630 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1631 }
1632
1633 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1634 fotg210->reset_done[wIndex] = 0;
1635 clear_bit(wIndex, &fotg210->resuming_ports);
1636 }
1637
1638 /* transfer dedicated ports to the companion hc */
1639 if ((temp & PORT_CONNECT) &&
1640 test_bit(wIndex, &fotg210->companion_ports)) {
1641 temp &= ~PORT_RWC_BITS;
1642 fotg210_writel(fotg210, temp, status_reg);
1643 fotg210_dbg(fotg210, "port %d --> companion\n",
1644 wIndex + 1);
1645 temp = fotg210_readl(fotg210, status_reg);
1646 }
1647
1648 /*
1649 * Even if OWNER is set, there's no harm letting hub_wq
1650 * see the wPortStatus values (they should all be 0 except
1651 * for PORT_POWER anyway).
1652 */
1653
1654 if (temp & PORT_CONNECT) {
1655 status |= USB_PORT_STAT_CONNECTION;
1656 status |= fotg210_port_speed(fotg210, temp);
1657 }
1658 if (temp & PORT_PE)
1659 status |= USB_PORT_STAT_ENABLE;
1660
1661 /* maybe the port was unsuspended without our knowledge */
1662 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1663 status |= USB_PORT_STAT_SUSPEND;
1664 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1665 clear_bit(wIndex, &fotg210->suspended_ports);
1666 clear_bit(wIndex, &fotg210->resuming_ports);
1667 fotg210->reset_done[wIndex] = 0;
1668 if (temp & PORT_PE)
1669 set_bit(wIndex, &fotg210->port_c_suspend);
1670 }
1671
1672 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1673 if (temp1 & OTGISR_OVC)
1674 status |= USB_PORT_STAT_OVERCURRENT;
1675 if (temp & PORT_RESET)
1676 status |= USB_PORT_STAT_RESET;
1677 if (test_bit(wIndex, &fotg210->port_c_suspend))
1678 status |= USB_PORT_STAT_C_SUSPEND << 16;
1679
1680 if (status & ~0xffff) /* only if wPortChange is interesting */
1681 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1682 put_unaligned_le32(status, buf);
1683 break;
1684 case SetHubFeature:
1685 switch (wValue) {
1686 case C_HUB_LOCAL_POWER:
1687 case C_HUB_OVER_CURRENT:
1688 /* no hub-wide feature/status flags */
1689 break;
1690 default:
1691 goto error;
1692 }
1693 break;
1694 case SetPortFeature:
1695 selector = wIndex >> 8;
1696 wIndex &= 0xff;
1697
1698 if (!wIndex || wIndex > ports)
1699 goto error;
1700 wIndex--;
1701 temp = fotg210_readl(fotg210, status_reg);
1702 temp &= ~PORT_RWC_BITS;
1703 switch (wValue) {
1704 case USB_PORT_FEAT_SUSPEND:
1705 if ((temp & PORT_PE) == 0
1706 || (temp & PORT_RESET) != 0)
1707 goto error;
1708
1709 /* After above check the port must be connected.
1710 * Set appropriate bit thus could put phy into low power
1711 * mode if we have hostpc feature
1712 */
1713 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1714 status_reg);
1715 set_bit(wIndex, &fotg210->suspended_ports);
1716 break;
1717 case USB_PORT_FEAT_RESET:
1718 if (temp & PORT_RESUME)
1719 goto error;
1720 /* line status bits may report this as low speed,
1721 * which can be fine if this root hub has a
1722 * transaction translator built in.
1723 */
1724 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1725 temp |= PORT_RESET;
1726 temp &= ~PORT_PE;
1727
1728 /*
1729 * caller must wait, then call GetPortStatus
1730 * usb 2.0 spec says 50 ms resets on root
1731 */
1732 fotg210->reset_done[wIndex] = jiffies
1733 + msecs_to_jiffies(50);
1734 fotg210_writel(fotg210, temp, status_reg);
1735 break;
1736
1737 /* For downstream facing ports (these): one hub port is put
1738 * into test mode according to USB2 11.24.2.13, then the hub
1739 * must be reset (which for root hub now means rmmod+modprobe,
1740 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1741 * about the EHCI-specific stuff.
1742 */
1743 case USB_PORT_FEAT_TEST:
1744 if (!selector || selector > 5)
1745 goto error;
1746 spin_unlock_irqrestore(&fotg210->lock, flags);
1747 fotg210_quiesce(fotg210);
1748 spin_lock_irqsave(&fotg210->lock, flags);
1749
1750 /* Put all enabled ports into suspend */
1751 temp = fotg210_readl(fotg210, status_reg) &
1752 ~PORT_RWC_BITS;
1753 if (temp & PORT_PE)
1754 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1755 status_reg);
1756
1757 spin_unlock_irqrestore(&fotg210->lock, flags);
1758 fotg210_halt(fotg210);
1759 spin_lock_irqsave(&fotg210->lock, flags);
1760
1761 temp = fotg210_readl(fotg210, status_reg);
1762 temp |= selector << 16;
1763 fotg210_writel(fotg210, temp, status_reg);
1764 break;
1765
1766 default:
1767 goto error;
1768 }
1769 fotg210_readl(fotg210, &fotg210->regs->command);
1770 break;
1771
1772 default:
1773 error:
1774 /* "stall" on error */
1775 retval = -EPIPE;
1776 }
1777 spin_unlock_irqrestore(&fotg210->lock, flags);
1778 return retval;
1779 }
1780
fotg210_relinquish_port(struct usb_hcd * hcd,int portnum)1781 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1782 int portnum)
1783 {
1784 return;
1785 }
1786
fotg210_port_handed_over(struct usb_hcd * hcd,int portnum)1787 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1788 int portnum)
1789 {
1790 return 0;
1791 }
1792
1793 /* There's basically three types of memory:
1794 * - data used only by the HCD ... kmalloc is fine
1795 * - async and periodic schedules, shared by HC and HCD ... these
1796 * need to use dma_pool or dma_alloc_coherent
1797 * - driver buffers, read/written by HC ... single shot DMA mapped
1798 *
1799 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1800 * No memory seen by this driver is pageable.
1801 */
1802
1803 /* Allocate the key transfer structures from the previously allocated pool */
fotg210_qtd_init(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t dma)1804 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1805 struct fotg210_qtd *qtd, dma_addr_t dma)
1806 {
1807 memset(qtd, 0, sizeof(*qtd));
1808 qtd->qtd_dma = dma;
1809 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1810 qtd->hw_next = FOTG210_LIST_END(fotg210);
1811 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1812 INIT_LIST_HEAD(&qtd->qtd_list);
1813 }
1814
fotg210_qtd_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1815 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1816 gfp_t flags)
1817 {
1818 struct fotg210_qtd *qtd;
1819 dma_addr_t dma;
1820
1821 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1822 if (qtd != NULL)
1823 fotg210_qtd_init(fotg210, qtd, dma);
1824
1825 return qtd;
1826 }
1827
fotg210_qtd_free(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)1828 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1829 struct fotg210_qtd *qtd)
1830 {
1831 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1832 }
1833
1834
qh_destroy(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)1835 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1836 {
1837 /* clean qtds first, and know this is not linked */
1838 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1839 fotg210_dbg(fotg210, "unused qh not empty!\n");
1840 BUG();
1841 }
1842 if (qh->dummy)
1843 fotg210_qtd_free(fotg210, qh->dummy);
1844 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1845 kfree(qh);
1846 }
1847
fotg210_qh_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1848 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1849 gfp_t flags)
1850 {
1851 struct fotg210_qh *qh;
1852 dma_addr_t dma;
1853
1854 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1855 if (!qh)
1856 goto done;
1857 qh->hw = (struct fotg210_qh_hw *)
1858 dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1859 if (!qh->hw)
1860 goto fail;
1861 qh->qh_dma = dma;
1862 INIT_LIST_HEAD(&qh->qtd_list);
1863
1864 /* dummy td enables safe urb queuing */
1865 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1866 if (qh->dummy == NULL) {
1867 fotg210_dbg(fotg210, "no dummy td\n");
1868 goto fail1;
1869 }
1870 done:
1871 return qh;
1872 fail1:
1873 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1874 fail:
1875 kfree(qh);
1876 return NULL;
1877 }
1878
1879 /* The queue heads and transfer descriptors are managed from pools tied
1880 * to each of the "per device" structures.
1881 * This is the initialisation and cleanup code.
1882 */
1883
fotg210_mem_cleanup(struct fotg210_hcd * fotg210)1884 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1885 {
1886 if (fotg210->async)
1887 qh_destroy(fotg210, fotg210->async);
1888 fotg210->async = NULL;
1889
1890 if (fotg210->dummy)
1891 qh_destroy(fotg210, fotg210->dummy);
1892 fotg210->dummy = NULL;
1893
1894 /* DMA consistent memory and pools */
1895 dma_pool_destroy(fotg210->qtd_pool);
1896 fotg210->qtd_pool = NULL;
1897
1898 dma_pool_destroy(fotg210->qh_pool);
1899 fotg210->qh_pool = NULL;
1900
1901 dma_pool_destroy(fotg210->itd_pool);
1902 fotg210->itd_pool = NULL;
1903
1904 if (fotg210->periodic)
1905 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1906 fotg210->periodic_size * sizeof(u32),
1907 fotg210->periodic, fotg210->periodic_dma);
1908 fotg210->periodic = NULL;
1909
1910 /* shadow periodic table */
1911 kfree(fotg210->pshadow);
1912 fotg210->pshadow = NULL;
1913 }
1914
1915 /* remember to add cleanup code (above) if you add anything here */
fotg210_mem_init(struct fotg210_hcd * fotg210,gfp_t flags)1916 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1917 {
1918 int i;
1919
1920 /* QTDs for control/bulk/intr transfers */
1921 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1922 fotg210_to_hcd(fotg210)->self.controller,
1923 sizeof(struct fotg210_qtd),
1924 32 /* byte alignment (for hw parts) */,
1925 4096 /* can't cross 4K */);
1926 if (!fotg210->qtd_pool)
1927 goto fail;
1928
1929 /* QHs for control/bulk/intr transfers */
1930 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1931 fotg210_to_hcd(fotg210)->self.controller,
1932 sizeof(struct fotg210_qh_hw),
1933 32 /* byte alignment (for hw parts) */,
1934 4096 /* can't cross 4K */);
1935 if (!fotg210->qh_pool)
1936 goto fail;
1937
1938 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1939 if (!fotg210->async)
1940 goto fail;
1941
1942 /* ITD for high speed ISO transfers */
1943 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1944 fotg210_to_hcd(fotg210)->self.controller,
1945 sizeof(struct fotg210_itd),
1946 64 /* byte alignment (for hw parts) */,
1947 4096 /* can't cross 4K */);
1948 if (!fotg210->itd_pool)
1949 goto fail;
1950
1951 /* Hardware periodic table */
1952 fotg210->periodic =
1953 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1954 fotg210->periodic_size * sizeof(__le32),
1955 &fotg210->periodic_dma, 0);
1956 if (fotg210->periodic == NULL)
1957 goto fail;
1958
1959 for (i = 0; i < fotg210->periodic_size; i++)
1960 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1961
1962 /* software shadow of hardware table */
1963 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1964 flags);
1965 if (fotg210->pshadow != NULL)
1966 return 0;
1967
1968 fail:
1969 fotg210_dbg(fotg210, "couldn't init memory\n");
1970 fotg210_mem_cleanup(fotg210);
1971 return -ENOMEM;
1972 }
1973 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1974 *
1975 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1976 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1977 * buffers needed for the larger number). We use one QH per endpoint, queue
1978 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1979 *
1980 * ISO traffic uses "ISO TD" (itd) records, and (along with
1981 * interrupts) needs careful scheduling. Performance improvements can be
1982 * an ongoing challenge. That's in "ehci-sched.c".
1983 *
1984 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1985 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1986 * (b) special fields in qh entries or (c) split iso entries. TTs will
1987 * buffer low/full speed data so the host collects it at high speed.
1988 */
1989
1990 /* fill a qtd, returning how much of the buffer we were able to queue up */
qtd_fill(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1991 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1992 dma_addr_t buf, size_t len, int token, int maxpacket)
1993 {
1994 int i, count;
1995 u64 addr = buf;
1996
1997 /* one buffer entry per 4K ... first might be short or unaligned */
1998 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1999 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2000 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2001 if (likely(len < count)) /* ... iff needed */
2002 count = len;
2003 else {
2004 buf += 0x1000;
2005 buf &= ~0x0fff;
2006
2007 /* per-qtd limit: from 16K to 20K (best alignment) */
2008 for (i = 1; count < len && i < 5; i++) {
2009 addr = buf;
2010 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2011 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2012 (u32)(addr >> 32));
2013 buf += 0x1000;
2014 if ((count + 0x1000) < len)
2015 count += 0x1000;
2016 else
2017 count = len;
2018 }
2019
2020 /* short packets may only terminate transfers */
2021 if (count != len)
2022 count -= (count % maxpacket);
2023 }
2024 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2025 qtd->length = count;
2026
2027 return count;
2028 }
2029
qh_update(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct fotg210_qtd * qtd)2030 static inline void qh_update(struct fotg210_hcd *fotg210,
2031 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2032 {
2033 struct fotg210_qh_hw *hw = qh->hw;
2034
2035 /* writes to an active overlay are unsafe */
2036 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2037
2038 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2039 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2040
2041 /* Except for control endpoints, we make hardware maintain data
2042 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2043 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2044 * ever clear it.
2045 */
2046 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2047 unsigned is_out, epnum;
2048
2049 is_out = qh->is_out;
2050 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2051 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2052 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2053 usb_settoggle(qh->dev, epnum, is_out, 1);
2054 }
2055 }
2056
2057 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2058 }
2059
2060 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2061 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2062 * recovery (including urb dequeue) would need software changes to a QH...
2063 */
qh_refresh(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2064 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2065 {
2066 struct fotg210_qtd *qtd;
2067
2068 if (list_empty(&qh->qtd_list))
2069 qtd = qh->dummy;
2070 else {
2071 qtd = list_entry(qh->qtd_list.next,
2072 struct fotg210_qtd, qtd_list);
2073 /*
2074 * first qtd may already be partially processed.
2075 * If we come here during unlink, the QH overlay region
2076 * might have reference to the just unlinked qtd. The
2077 * qtd is updated in qh_completions(). Update the QH
2078 * overlay here.
2079 */
2080 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2081 qh->hw->hw_qtd_next = qtd->hw_next;
2082 qtd = NULL;
2083 }
2084 }
2085
2086 if (qtd)
2087 qh_update(fotg210, qh, qtd);
2088 }
2089
2090 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2091
fotg210_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2092 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2093 struct usb_host_endpoint *ep)
2094 {
2095 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2096 struct fotg210_qh *qh = ep->hcpriv;
2097 unsigned long flags;
2098
2099 spin_lock_irqsave(&fotg210->lock, flags);
2100 qh->clearing_tt = 0;
2101 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2102 && fotg210->rh_state == FOTG210_RH_RUNNING)
2103 qh_link_async(fotg210, qh);
2104 spin_unlock_irqrestore(&fotg210->lock, flags);
2105 }
2106
fotg210_clear_tt_buffer(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct urb * urb,u32 token)2107 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2108 struct fotg210_qh *qh, struct urb *urb, u32 token)
2109 {
2110
2111 /* If an async split transaction gets an error or is unlinked,
2112 * the TT buffer may be left in an indeterminate state. We
2113 * have to clear the TT buffer.
2114 *
2115 * Note: this routine is never called for Isochronous transfers.
2116 */
2117 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2118 struct usb_device *tt = urb->dev->tt->hub;
2119
2120 dev_dbg(&tt->dev,
2121 "clear tt buffer port %d, a%d ep%d t%08x\n",
2122 urb->dev->ttport, urb->dev->devnum,
2123 usb_pipeendpoint(urb->pipe), token);
2124
2125 if (urb->dev->tt->hub !=
2126 fotg210_to_hcd(fotg210)->self.root_hub) {
2127 if (usb_hub_clear_tt_buffer(urb) == 0)
2128 qh->clearing_tt = 1;
2129 }
2130 }
2131 }
2132
qtd_copy_status(struct fotg210_hcd * fotg210,struct urb * urb,size_t length,u32 token)2133 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2134 size_t length, u32 token)
2135 {
2136 int status = -EINPROGRESS;
2137
2138 /* count IN/OUT bytes, not SETUP (even short packets) */
2139 if (likely(QTD_PID(token) != 2))
2140 urb->actual_length += length - QTD_LENGTH(token);
2141
2142 /* don't modify error codes */
2143 if (unlikely(urb->unlinked))
2144 return status;
2145
2146 /* force cleanup after short read; not always an error */
2147 if (unlikely(IS_SHORT_READ(token)))
2148 status = -EREMOTEIO;
2149
2150 /* serious "can't proceed" faults reported by the hardware */
2151 if (token & QTD_STS_HALT) {
2152 if (token & QTD_STS_BABBLE) {
2153 /* FIXME "must" disable babbling device's port too */
2154 status = -EOVERFLOW;
2155 /* CERR nonzero + halt --> stall */
2156 } else if (QTD_CERR(token)) {
2157 status = -EPIPE;
2158
2159 /* In theory, more than one of the following bits can be set
2160 * since they are sticky and the transaction is retried.
2161 * Which to test first is rather arbitrary.
2162 */
2163 } else if (token & QTD_STS_MMF) {
2164 /* fs/ls interrupt xfer missed the complete-split */
2165 status = -EPROTO;
2166 } else if (token & QTD_STS_DBE) {
2167 status = (QTD_PID(token) == 1) /* IN ? */
2168 ? -ENOSR /* hc couldn't read data */
2169 : -ECOMM; /* hc couldn't write data */
2170 } else if (token & QTD_STS_XACT) {
2171 /* timeout, bad CRC, wrong PID, etc */
2172 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2173 urb->dev->devpath,
2174 usb_pipeendpoint(urb->pipe),
2175 usb_pipein(urb->pipe) ? "in" : "out");
2176 status = -EPROTO;
2177 } else { /* unknown */
2178 status = -EPROTO;
2179 }
2180
2181 fotg210_dbg(fotg210,
2182 "dev%d ep%d%s qtd token %08x --> status %d\n",
2183 usb_pipedevice(urb->pipe),
2184 usb_pipeendpoint(urb->pipe),
2185 usb_pipein(urb->pipe) ? "in" : "out",
2186 token, status);
2187 }
2188
2189 return status;
2190 }
2191
fotg210_urb_done(struct fotg210_hcd * fotg210,struct urb * urb,int status)2192 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2193 int status)
2194 __releases(fotg210->lock)
2195 __acquires(fotg210->lock)
2196 {
2197 if (likely(urb->hcpriv != NULL)) {
2198 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2199
2200 /* S-mask in a QH means it's an interrupt urb */
2201 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2202
2203 /* ... update hc-wide periodic stats (for usbfs) */
2204 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2205 }
2206 }
2207
2208 if (unlikely(urb->unlinked)) {
2209 INCR(fotg210->stats.unlink);
2210 } else {
2211 /* report non-error and short read status as zero */
2212 if (status == -EINPROGRESS || status == -EREMOTEIO)
2213 status = 0;
2214 INCR(fotg210->stats.complete);
2215 }
2216
2217 #ifdef FOTG210_URB_TRACE
2218 fotg210_dbg(fotg210,
2219 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2220 __func__, urb->dev->devpath, urb,
2221 usb_pipeendpoint(urb->pipe),
2222 usb_pipein(urb->pipe) ? "in" : "out",
2223 status,
2224 urb->actual_length, urb->transfer_buffer_length);
2225 #endif
2226
2227 /* complete() can reenter this HCD */
2228 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2229 spin_unlock(&fotg210->lock);
2230 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2231 spin_lock(&fotg210->lock);
2232 }
2233
2234 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2235
2236 /* Process and free completed qtds for a qh, returning URBs to drivers.
2237 * Chases up to qh->hw_current. Returns number of completions called,
2238 * indicating how much "real" work we did.
2239 */
qh_completions(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2240 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2241 struct fotg210_qh *qh)
2242 {
2243 struct fotg210_qtd *last, *end = qh->dummy;
2244 struct fotg210_qtd *qtd, *tmp;
2245 int last_status;
2246 int stopped;
2247 unsigned count = 0;
2248 u8 state;
2249 struct fotg210_qh_hw *hw = qh->hw;
2250
2251 if (unlikely(list_empty(&qh->qtd_list)))
2252 return count;
2253
2254 /* completions (or tasks on other cpus) must never clobber HALT
2255 * till we've gone through and cleaned everything up, even when
2256 * they add urbs to this qh's queue or mark them for unlinking.
2257 *
2258 * NOTE: unlinking expects to be done in queue order.
2259 *
2260 * It's a bug for qh->qh_state to be anything other than
2261 * QH_STATE_IDLE, unless our caller is scan_async() or
2262 * scan_intr().
2263 */
2264 state = qh->qh_state;
2265 qh->qh_state = QH_STATE_COMPLETING;
2266 stopped = (state == QH_STATE_IDLE);
2267
2268 rescan:
2269 last = NULL;
2270 last_status = -EINPROGRESS;
2271 qh->needs_rescan = 0;
2272
2273 /* remove de-activated QTDs from front of queue.
2274 * after faults (including short reads), cleanup this urb
2275 * then let the queue advance.
2276 * if queue is stopped, handles unlinks.
2277 */
2278 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2279 struct urb *urb;
2280 u32 token = 0;
2281
2282 urb = qtd->urb;
2283
2284 /* clean up any state from previous QTD ...*/
2285 if (last) {
2286 if (likely(last->urb != urb)) {
2287 fotg210_urb_done(fotg210, last->urb,
2288 last_status);
2289 count++;
2290 last_status = -EINPROGRESS;
2291 }
2292 fotg210_qtd_free(fotg210, last);
2293 last = NULL;
2294 }
2295
2296 /* ignore urbs submitted during completions we reported */
2297 if (qtd == end)
2298 break;
2299
2300 /* hardware copies qtd out of qh overlay */
2301 rmb();
2302 token = hc32_to_cpu(fotg210, qtd->hw_token);
2303
2304 /* always clean up qtds the hc de-activated */
2305 retry_xacterr:
2306 if ((token & QTD_STS_ACTIVE) == 0) {
2307
2308 /* Report Data Buffer Error: non-fatal but useful */
2309 if (token & QTD_STS_DBE)
2310 fotg210_dbg(fotg210,
2311 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2312 urb, usb_endpoint_num(&urb->ep->desc),
2313 usb_endpoint_dir_in(&urb->ep->desc)
2314 ? "in" : "out",
2315 urb->transfer_buffer_length, qtd, qh);
2316
2317 /* on STALL, error, and short reads this urb must
2318 * complete and all its qtds must be recycled.
2319 */
2320 if ((token & QTD_STS_HALT) != 0) {
2321
2322 /* retry transaction errors until we
2323 * reach the software xacterr limit
2324 */
2325 if ((token & QTD_STS_XACT) &&
2326 QTD_CERR(token) == 0 &&
2327 ++qh->xacterrs < QH_XACTERR_MAX &&
2328 !urb->unlinked) {
2329 fotg210_dbg(fotg210,
2330 "detected XactErr len %zu/%zu retry %d\n",
2331 qtd->length - QTD_LENGTH(token),
2332 qtd->length,
2333 qh->xacterrs);
2334
2335 /* reset the token in the qtd and the
2336 * qh overlay (which still contains
2337 * the qtd) so that we pick up from
2338 * where we left off
2339 */
2340 token &= ~QTD_STS_HALT;
2341 token |= QTD_STS_ACTIVE |
2342 (FOTG210_TUNE_CERR << 10);
2343 qtd->hw_token = cpu_to_hc32(fotg210,
2344 token);
2345 wmb();
2346 hw->hw_token = cpu_to_hc32(fotg210,
2347 token);
2348 goto retry_xacterr;
2349 }
2350 stopped = 1;
2351
2352 /* magic dummy for some short reads; qh won't advance.
2353 * that silicon quirk can kick in with this dummy too.
2354 *
2355 * other short reads won't stop the queue, including
2356 * control transfers (status stage handles that) or
2357 * most other single-qtd reads ... the queue stops if
2358 * URB_SHORT_NOT_OK was set so the driver submitting
2359 * the urbs could clean it up.
2360 */
2361 } else if (IS_SHORT_READ(token) &&
2362 !(qtd->hw_alt_next &
2363 FOTG210_LIST_END(fotg210))) {
2364 stopped = 1;
2365 }
2366
2367 /* stop scanning when we reach qtds the hc is using */
2368 } else if (likely(!stopped
2369 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2370 break;
2371
2372 /* scan the whole queue for unlinks whenever it stops */
2373 } else {
2374 stopped = 1;
2375
2376 /* cancel everything if we halt, suspend, etc */
2377 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2378 last_status = -ESHUTDOWN;
2379
2380 /* this qtd is active; skip it unless a previous qtd
2381 * for its urb faulted, or its urb was canceled.
2382 */
2383 else if (last_status == -EINPROGRESS && !urb->unlinked)
2384 continue;
2385
2386 /* qh unlinked; token in overlay may be most current */
2387 if (state == QH_STATE_IDLE &&
2388 cpu_to_hc32(fotg210, qtd->qtd_dma)
2389 == hw->hw_current) {
2390 token = hc32_to_cpu(fotg210, hw->hw_token);
2391
2392 /* An unlink may leave an incomplete
2393 * async transaction in the TT buffer.
2394 * We have to clear it.
2395 */
2396 fotg210_clear_tt_buffer(fotg210, qh, urb,
2397 token);
2398 }
2399 }
2400
2401 /* unless we already know the urb's status, collect qtd status
2402 * and update count of bytes transferred. in common short read
2403 * cases with only one data qtd (including control transfers),
2404 * queue processing won't halt. but with two or more qtds (for
2405 * example, with a 32 KB transfer), when the first qtd gets a
2406 * short read the second must be removed by hand.
2407 */
2408 if (last_status == -EINPROGRESS) {
2409 last_status = qtd_copy_status(fotg210, urb,
2410 qtd->length, token);
2411 if (last_status == -EREMOTEIO &&
2412 (qtd->hw_alt_next &
2413 FOTG210_LIST_END(fotg210)))
2414 last_status = -EINPROGRESS;
2415
2416 /* As part of low/full-speed endpoint-halt processing
2417 * we must clear the TT buffer (11.17.5).
2418 */
2419 if (unlikely(last_status != -EINPROGRESS &&
2420 last_status != -EREMOTEIO)) {
2421 /* The TT's in some hubs malfunction when they
2422 * receive this request following a STALL (they
2423 * stop sending isochronous packets). Since a
2424 * STALL can't leave the TT buffer in a busy
2425 * state (if you believe Figures 11-48 - 11-51
2426 * in the USB 2.0 spec), we won't clear the TT
2427 * buffer in this case. Strictly speaking this
2428 * is a violation of the spec.
2429 */
2430 if (last_status != -EPIPE)
2431 fotg210_clear_tt_buffer(fotg210, qh,
2432 urb, token);
2433 }
2434 }
2435
2436 /* if we're removing something not at the queue head,
2437 * patch the hardware queue pointer.
2438 */
2439 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2440 last = list_entry(qtd->qtd_list.prev,
2441 struct fotg210_qtd, qtd_list);
2442 last->hw_next = qtd->hw_next;
2443 }
2444
2445 /* remove qtd; it's recycled after possible urb completion */
2446 list_del(&qtd->qtd_list);
2447 last = qtd;
2448
2449 /* reinit the xacterr counter for the next qtd */
2450 qh->xacterrs = 0;
2451 }
2452
2453 /* last urb's completion might still need calling */
2454 if (likely(last != NULL)) {
2455 fotg210_urb_done(fotg210, last->urb, last_status);
2456 count++;
2457 fotg210_qtd_free(fotg210, last);
2458 }
2459
2460 /* Do we need to rescan for URBs dequeued during a giveback? */
2461 if (unlikely(qh->needs_rescan)) {
2462 /* If the QH is already unlinked, do the rescan now. */
2463 if (state == QH_STATE_IDLE)
2464 goto rescan;
2465
2466 /* Otherwise we have to wait until the QH is fully unlinked.
2467 * Our caller will start an unlink if qh->needs_rescan is
2468 * set. But if an unlink has already started, nothing needs
2469 * to be done.
2470 */
2471 if (state != QH_STATE_LINKED)
2472 qh->needs_rescan = 0;
2473 }
2474
2475 /* restore original state; caller must unlink or relink */
2476 qh->qh_state = state;
2477
2478 /* be sure the hardware's done with the qh before refreshing
2479 * it after fault cleanup, or recovering from silicon wrongly
2480 * overlaying the dummy qtd (which reduces DMA chatter).
2481 */
2482 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2483 switch (state) {
2484 case QH_STATE_IDLE:
2485 qh_refresh(fotg210, qh);
2486 break;
2487 case QH_STATE_LINKED:
2488 /* We won't refresh a QH that's linked (after the HC
2489 * stopped the queue). That avoids a race:
2490 * - HC reads first part of QH;
2491 * - CPU updates that first part and the token;
2492 * - HC reads rest of that QH, including token
2493 * Result: HC gets an inconsistent image, and then
2494 * DMAs to/from the wrong memory (corrupting it).
2495 *
2496 * That should be rare for interrupt transfers,
2497 * except maybe high bandwidth ...
2498 */
2499
2500 /* Tell the caller to start an unlink */
2501 qh->needs_rescan = 1;
2502 break;
2503 /* otherwise, unlink already started */
2504 }
2505 }
2506
2507 return count;
2508 }
2509
2510 /* reverse of qh_urb_transaction: free a list of TDs.
2511 * used for cleanup after errors, before HC sees an URB's TDs.
2512 */
qtd_list_free(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head)2513 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2514 struct list_head *head)
2515 {
2516 struct fotg210_qtd *qtd, *temp;
2517
2518 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2519 list_del(&qtd->qtd_list);
2520 fotg210_qtd_free(fotg210, qtd);
2521 }
2522 }
2523
2524 /* create a list of filled qtds for this URB; won't link into qh.
2525 */
qh_urb_transaction(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head,gfp_t flags)2526 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2527 struct urb *urb, struct list_head *head, gfp_t flags)
2528 {
2529 struct fotg210_qtd *qtd, *qtd_prev;
2530 dma_addr_t buf;
2531 int len, this_sg_len, maxpacket;
2532 int is_input;
2533 u32 token;
2534 int i;
2535 struct scatterlist *sg;
2536
2537 /*
2538 * URBs map to sequences of QTDs: one logical transaction
2539 */
2540 qtd = fotg210_qtd_alloc(fotg210, flags);
2541 if (unlikely(!qtd))
2542 return NULL;
2543 list_add_tail(&qtd->qtd_list, head);
2544 qtd->urb = urb;
2545
2546 token = QTD_STS_ACTIVE;
2547 token |= (FOTG210_TUNE_CERR << 10);
2548 /* for split transactions, SplitXState initialized to zero */
2549
2550 len = urb->transfer_buffer_length;
2551 is_input = usb_pipein(urb->pipe);
2552 if (usb_pipecontrol(urb->pipe)) {
2553 /* SETUP pid */
2554 qtd_fill(fotg210, qtd, urb->setup_dma,
2555 sizeof(struct usb_ctrlrequest),
2556 token | (2 /* "setup" */ << 8), 8);
2557
2558 /* ... and always at least one more pid */
2559 token ^= QTD_TOGGLE;
2560 qtd_prev = qtd;
2561 qtd = fotg210_qtd_alloc(fotg210, flags);
2562 if (unlikely(!qtd))
2563 goto cleanup;
2564 qtd->urb = urb;
2565 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2566 list_add_tail(&qtd->qtd_list, head);
2567
2568 /* for zero length DATA stages, STATUS is always IN */
2569 if (len == 0)
2570 token |= (1 /* "in" */ << 8);
2571 }
2572
2573 /*
2574 * data transfer stage: buffer setup
2575 */
2576 i = urb->num_mapped_sgs;
2577 if (len > 0 && i > 0) {
2578 sg = urb->sg;
2579 buf = sg_dma_address(sg);
2580
2581 /* urb->transfer_buffer_length may be smaller than the
2582 * size of the scatterlist (or vice versa)
2583 */
2584 this_sg_len = min_t(int, sg_dma_len(sg), len);
2585 } else {
2586 sg = NULL;
2587 buf = urb->transfer_dma;
2588 this_sg_len = len;
2589 }
2590
2591 if (is_input)
2592 token |= (1 /* "in" */ << 8);
2593 /* else it's already initted to "out" pid (0 << 8) */
2594
2595 maxpacket = usb_maxpacket(urb->dev, urb->pipe);
2596
2597 /*
2598 * buffer gets wrapped in one or more qtds;
2599 * last one may be "short" (including zero len)
2600 * and may serve as a control status ack
2601 */
2602 for (;;) {
2603 int this_qtd_len;
2604
2605 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2606 maxpacket);
2607 this_sg_len -= this_qtd_len;
2608 len -= this_qtd_len;
2609 buf += this_qtd_len;
2610
2611 /*
2612 * short reads advance to a "magic" dummy instead of the next
2613 * qtd ... that forces the queue to stop, for manual cleanup.
2614 * (this will usually be overridden later.)
2615 */
2616 if (is_input)
2617 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2618
2619 /* qh makes control packets use qtd toggle; maybe switch it */
2620 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2621 token ^= QTD_TOGGLE;
2622
2623 if (likely(this_sg_len <= 0)) {
2624 if (--i <= 0 || len <= 0)
2625 break;
2626 sg = sg_next(sg);
2627 buf = sg_dma_address(sg);
2628 this_sg_len = min_t(int, sg_dma_len(sg), len);
2629 }
2630
2631 qtd_prev = qtd;
2632 qtd = fotg210_qtd_alloc(fotg210, flags);
2633 if (unlikely(!qtd))
2634 goto cleanup;
2635 qtd->urb = urb;
2636 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2637 list_add_tail(&qtd->qtd_list, head);
2638 }
2639
2640 /*
2641 * unless the caller requires manual cleanup after short reads,
2642 * have the alt_next mechanism keep the queue running after the
2643 * last data qtd (the only one, for control and most other cases).
2644 */
2645 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2646 usb_pipecontrol(urb->pipe)))
2647 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2648
2649 /*
2650 * control requests may need a terminating data "status" ack;
2651 * other OUT ones may need a terminating short packet
2652 * (zero length).
2653 */
2654 if (likely(urb->transfer_buffer_length != 0)) {
2655 int one_more = 0;
2656
2657 if (usb_pipecontrol(urb->pipe)) {
2658 one_more = 1;
2659 token ^= 0x0100; /* "in" <--> "out" */
2660 token |= QTD_TOGGLE; /* force DATA1 */
2661 } else if (usb_pipeout(urb->pipe)
2662 && (urb->transfer_flags & URB_ZERO_PACKET)
2663 && !(urb->transfer_buffer_length % maxpacket)) {
2664 one_more = 1;
2665 }
2666 if (one_more) {
2667 qtd_prev = qtd;
2668 qtd = fotg210_qtd_alloc(fotg210, flags);
2669 if (unlikely(!qtd))
2670 goto cleanup;
2671 qtd->urb = urb;
2672 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2673 list_add_tail(&qtd->qtd_list, head);
2674
2675 /* never any data in such packets */
2676 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2677 }
2678 }
2679
2680 /* by default, enable interrupt on urb completion */
2681 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2682 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2683 return head;
2684
2685 cleanup:
2686 qtd_list_free(fotg210, urb, head);
2687 return NULL;
2688 }
2689
2690 /* Would be best to create all qh's from config descriptors,
2691 * when each interface/altsetting is established. Unlink
2692 * any previous qh and cancel its urbs first; endpoints are
2693 * implicitly reset then (data toggle too).
2694 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2695 */
2696
2697
2698 /* Each QH holds a qtd list; a QH is used for everything except iso.
2699 *
2700 * For interrupt urbs, the scheduler must set the microframe scheduling
2701 * mask(s) each time the QH gets scheduled. For highspeed, that's
2702 * just one microframe in the s-mask. For split interrupt transactions
2703 * there are additional complications: c-mask, maybe FSTNs.
2704 */
qh_make(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t flags)2705 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2706 gfp_t flags)
2707 {
2708 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2709 struct usb_host_endpoint *ep;
2710 u32 info1 = 0, info2 = 0;
2711 int is_input, type;
2712 int maxp = 0;
2713 int mult;
2714 struct usb_tt *tt = urb->dev->tt;
2715 struct fotg210_qh_hw *hw;
2716
2717 if (!qh)
2718 return qh;
2719
2720 /*
2721 * init endpoint/device data for this QH
2722 */
2723 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2724 info1 |= usb_pipedevice(urb->pipe) << 0;
2725
2726 is_input = usb_pipein(urb->pipe);
2727 type = usb_pipetype(urb->pipe);
2728 ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2729 maxp = usb_endpoint_maxp(&ep->desc);
2730 mult = usb_endpoint_maxp_mult(&ep->desc);
2731
2732 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2733 * acts like up to 3KB, but is built from smaller packets.
2734 */
2735 if (maxp > 1024) {
2736 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2737 goto done;
2738 }
2739
2740 /* Compute interrupt scheduling parameters just once, and save.
2741 * - allowing for high bandwidth, how many nsec/uframe are used?
2742 * - split transactions need a second CSPLIT uframe; same question
2743 * - splits also need a schedule gap (for full/low speed I/O)
2744 * - qh has a polling interval
2745 *
2746 * For control/bulk requests, the HC or TT handles these.
2747 */
2748 if (type == PIPE_INTERRUPT) {
2749 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2750 is_input, 0, mult * maxp));
2751 qh->start = NO_FRAME;
2752
2753 if (urb->dev->speed == USB_SPEED_HIGH) {
2754 qh->c_usecs = 0;
2755 qh->gap_uf = 0;
2756
2757 qh->period = urb->interval >> 3;
2758 if (qh->period == 0 && urb->interval != 1) {
2759 /* NOTE interval 2 or 4 uframes could work.
2760 * But interval 1 scheduling is simpler, and
2761 * includes high bandwidth.
2762 */
2763 urb->interval = 1;
2764 } else if (qh->period > fotg210->periodic_size) {
2765 qh->period = fotg210->periodic_size;
2766 urb->interval = qh->period << 3;
2767 }
2768 } else {
2769 int think_time;
2770
2771 /* gap is f(FS/LS transfer times) */
2772 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2773 is_input, 0, maxp) / (125 * 1000);
2774
2775 /* FIXME this just approximates SPLIT/CSPLIT times */
2776 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2777 qh->c_usecs = qh->usecs + HS_USECS(0);
2778 qh->usecs = HS_USECS(1);
2779 } else { /* SPLIT+DATA, gap, CSPLIT */
2780 qh->usecs += HS_USECS(1);
2781 qh->c_usecs = HS_USECS(0);
2782 }
2783
2784 think_time = tt ? tt->think_time : 0;
2785 qh->tt_usecs = NS_TO_US(think_time +
2786 usb_calc_bus_time(urb->dev->speed,
2787 is_input, 0, maxp));
2788 qh->period = urb->interval;
2789 if (qh->period > fotg210->periodic_size) {
2790 qh->period = fotg210->periodic_size;
2791 urb->interval = qh->period;
2792 }
2793 }
2794 }
2795
2796 /* support for tt scheduling, and access to toggles */
2797 qh->dev = urb->dev;
2798
2799 /* using TT? */
2800 switch (urb->dev->speed) {
2801 case USB_SPEED_LOW:
2802 info1 |= QH_LOW_SPEED;
2803 fallthrough;
2804
2805 case USB_SPEED_FULL:
2806 /* EPS 0 means "full" */
2807 if (type != PIPE_INTERRUPT)
2808 info1 |= (FOTG210_TUNE_RL_TT << 28);
2809 if (type == PIPE_CONTROL) {
2810 info1 |= QH_CONTROL_EP; /* for TT */
2811 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2812 }
2813 info1 |= maxp << 16;
2814
2815 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2816
2817 /* Some Freescale processors have an erratum in which the
2818 * port number in the queue head was 0..N-1 instead of 1..N.
2819 */
2820 if (fotg210_has_fsl_portno_bug(fotg210))
2821 info2 |= (urb->dev->ttport-1) << 23;
2822 else
2823 info2 |= urb->dev->ttport << 23;
2824
2825 /* set the address of the TT; for TDI's integrated
2826 * root hub tt, leave it zeroed.
2827 */
2828 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2829 info2 |= tt->hub->devnum << 16;
2830
2831 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2832
2833 break;
2834
2835 case USB_SPEED_HIGH: /* no TT involved */
2836 info1 |= QH_HIGH_SPEED;
2837 if (type == PIPE_CONTROL) {
2838 info1 |= (FOTG210_TUNE_RL_HS << 28);
2839 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2840 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2841 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2842 } else if (type == PIPE_BULK) {
2843 info1 |= (FOTG210_TUNE_RL_HS << 28);
2844 /* The USB spec says that high speed bulk endpoints
2845 * always use 512 byte maxpacket. But some device
2846 * vendors decided to ignore that, and MSFT is happy
2847 * to help them do so. So now people expect to use
2848 * such nonconformant devices with Linux too; sigh.
2849 */
2850 info1 |= maxp << 16;
2851 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2852 } else { /* PIPE_INTERRUPT */
2853 info1 |= maxp << 16;
2854 info2 |= mult << 30;
2855 }
2856 break;
2857 default:
2858 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2859 urb->dev->speed);
2860 done:
2861 qh_destroy(fotg210, qh);
2862 return NULL;
2863 }
2864
2865 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2866
2867 /* init as live, toggle clear, advance to dummy */
2868 qh->qh_state = QH_STATE_IDLE;
2869 hw = qh->hw;
2870 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2871 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2872 qh->is_out = !is_input;
2873 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2874 qh_refresh(fotg210, qh);
2875 return qh;
2876 }
2877
enable_async(struct fotg210_hcd * fotg210)2878 static void enable_async(struct fotg210_hcd *fotg210)
2879 {
2880 if (fotg210->async_count++)
2881 return;
2882
2883 /* Stop waiting to turn off the async schedule */
2884 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2885
2886 /* Don't start the schedule until ASS is 0 */
2887 fotg210_poll_ASS(fotg210);
2888 turn_on_io_watchdog(fotg210);
2889 }
2890
disable_async(struct fotg210_hcd * fotg210)2891 static void disable_async(struct fotg210_hcd *fotg210)
2892 {
2893 if (--fotg210->async_count)
2894 return;
2895
2896 /* The async schedule and async_unlink list are supposed to be empty */
2897 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2898
2899 /* Don't turn off the schedule until ASS is 1 */
2900 fotg210_poll_ASS(fotg210);
2901 }
2902
2903 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2904
qh_link_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2905 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2906 {
2907 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2908 struct fotg210_qh *head;
2909
2910 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2911 if (unlikely(qh->clearing_tt))
2912 return;
2913
2914 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2915
2916 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2917 qh_refresh(fotg210, qh);
2918
2919 /* splice right after start */
2920 head = fotg210->async;
2921 qh->qh_next = head->qh_next;
2922 qh->hw->hw_next = head->hw->hw_next;
2923 wmb();
2924
2925 head->qh_next.qh = qh;
2926 head->hw->hw_next = dma;
2927
2928 qh->xacterrs = 0;
2929 qh->qh_state = QH_STATE_LINKED;
2930 /* qtd completions reported later by interrupt */
2931
2932 enable_async(fotg210);
2933 }
2934
2935 /* For control/bulk/interrupt, return QH with these TDs appended.
2936 * Allocates and initializes the QH if necessary.
2937 * Returns null if it can't allocate a QH it needs to.
2938 * If the QH has TDs (urbs) already, that's great.
2939 */
qh_append_tds(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)2940 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2941 struct urb *urb, struct list_head *qtd_list,
2942 int epnum, void **ptr)
2943 {
2944 struct fotg210_qh *qh = NULL;
2945 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2946
2947 qh = (struct fotg210_qh *) *ptr;
2948 if (unlikely(qh == NULL)) {
2949 /* can't sleep here, we have fotg210->lock... */
2950 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2951 *ptr = qh;
2952 }
2953 if (likely(qh != NULL)) {
2954 struct fotg210_qtd *qtd;
2955
2956 if (unlikely(list_empty(qtd_list)))
2957 qtd = NULL;
2958 else
2959 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2960 qtd_list);
2961
2962 /* control qh may need patching ... */
2963 if (unlikely(epnum == 0)) {
2964 /* usb_reset_device() briefly reverts to address 0 */
2965 if (usb_pipedevice(urb->pipe) == 0)
2966 qh->hw->hw_info1 &= ~qh_addr_mask;
2967 }
2968
2969 /* just one way to queue requests: swap with the dummy qtd.
2970 * only hc or qh_refresh() ever modify the overlay.
2971 */
2972 if (likely(qtd != NULL)) {
2973 struct fotg210_qtd *dummy;
2974 dma_addr_t dma;
2975 __hc32 token;
2976
2977 /* to avoid racing the HC, use the dummy td instead of
2978 * the first td of our list (becomes new dummy). both
2979 * tds stay deactivated until we're done, when the
2980 * HC is allowed to fetch the old dummy (4.10.2).
2981 */
2982 token = qtd->hw_token;
2983 qtd->hw_token = HALT_BIT(fotg210);
2984
2985 dummy = qh->dummy;
2986
2987 dma = dummy->qtd_dma;
2988 *dummy = *qtd;
2989 dummy->qtd_dma = dma;
2990
2991 list_del(&qtd->qtd_list);
2992 list_add(&dummy->qtd_list, qtd_list);
2993 list_splice_tail(qtd_list, &qh->qtd_list);
2994
2995 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2996 qh->dummy = qtd;
2997
2998 /* hc must see the new dummy at list end */
2999 dma = qtd->qtd_dma;
3000 qtd = list_entry(qh->qtd_list.prev,
3001 struct fotg210_qtd, qtd_list);
3002 qtd->hw_next = QTD_NEXT(fotg210, dma);
3003
3004 /* let the hc process these next qtds */
3005 wmb();
3006 dummy->hw_token = token;
3007
3008 urb->hcpriv = qh;
3009 }
3010 }
3011 return qh;
3012 }
3013
submit_async(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3014 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3015 struct list_head *qtd_list, gfp_t mem_flags)
3016 {
3017 int epnum;
3018 unsigned long flags;
3019 struct fotg210_qh *qh = NULL;
3020 int rc;
3021
3022 epnum = urb->ep->desc.bEndpointAddress;
3023
3024 #ifdef FOTG210_URB_TRACE
3025 {
3026 struct fotg210_qtd *qtd;
3027
3028 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3029 fotg210_dbg(fotg210,
3030 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3031 __func__, urb->dev->devpath, urb,
3032 epnum & 0x0f, (epnum & USB_DIR_IN)
3033 ? "in" : "out",
3034 urb->transfer_buffer_length,
3035 qtd, urb->ep->hcpriv);
3036 }
3037 #endif
3038
3039 spin_lock_irqsave(&fotg210->lock, flags);
3040 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3041 rc = -ESHUTDOWN;
3042 goto done;
3043 }
3044 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3045 if (unlikely(rc))
3046 goto done;
3047
3048 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3049 if (unlikely(qh == NULL)) {
3050 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3051 rc = -ENOMEM;
3052 goto done;
3053 }
3054
3055 /* Control/bulk operations through TTs don't need scheduling,
3056 * the HC and TT handle it when the TT has a buffer ready.
3057 */
3058 if (likely(qh->qh_state == QH_STATE_IDLE))
3059 qh_link_async(fotg210, qh);
3060 done:
3061 spin_unlock_irqrestore(&fotg210->lock, flags);
3062 if (unlikely(qh == NULL))
3063 qtd_list_free(fotg210, urb, qtd_list);
3064 return rc;
3065 }
3066
single_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3067 static void single_unlink_async(struct fotg210_hcd *fotg210,
3068 struct fotg210_qh *qh)
3069 {
3070 struct fotg210_qh *prev;
3071
3072 /* Add to the end of the list of QHs waiting for the next IAAD */
3073 qh->qh_state = QH_STATE_UNLINK;
3074 if (fotg210->async_unlink)
3075 fotg210->async_unlink_last->unlink_next = qh;
3076 else
3077 fotg210->async_unlink = qh;
3078 fotg210->async_unlink_last = qh;
3079
3080 /* Unlink it from the schedule */
3081 prev = fotg210->async;
3082 while (prev->qh_next.qh != qh)
3083 prev = prev->qh_next.qh;
3084
3085 prev->hw->hw_next = qh->hw->hw_next;
3086 prev->qh_next = qh->qh_next;
3087 if (fotg210->qh_scan_next == qh)
3088 fotg210->qh_scan_next = qh->qh_next.qh;
3089 }
3090
start_iaa_cycle(struct fotg210_hcd * fotg210,bool nested)3091 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3092 {
3093 /*
3094 * Do nothing if an IAA cycle is already running or
3095 * if one will be started shortly.
3096 */
3097 if (fotg210->async_iaa || fotg210->async_unlinking)
3098 return;
3099
3100 /* Do all the waiting QHs at once */
3101 fotg210->async_iaa = fotg210->async_unlink;
3102 fotg210->async_unlink = NULL;
3103
3104 /* If the controller isn't running, we don't have to wait for it */
3105 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3106 if (!nested) /* Avoid recursion */
3107 end_unlink_async(fotg210);
3108
3109 /* Otherwise start a new IAA cycle */
3110 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3111 /* Make sure the unlinks are all visible to the hardware */
3112 wmb();
3113
3114 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3115 &fotg210->regs->command);
3116 fotg210_readl(fotg210, &fotg210->regs->command);
3117 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3118 true);
3119 }
3120 }
3121
3122 /* the async qh for the qtds being unlinked are now gone from the HC */
3123
end_unlink_async(struct fotg210_hcd * fotg210)3124 static void end_unlink_async(struct fotg210_hcd *fotg210)
3125 {
3126 struct fotg210_qh *qh;
3127
3128 /* Process the idle QHs */
3129 restart:
3130 fotg210->async_unlinking = true;
3131 while (fotg210->async_iaa) {
3132 qh = fotg210->async_iaa;
3133 fotg210->async_iaa = qh->unlink_next;
3134 qh->unlink_next = NULL;
3135
3136 qh->qh_state = QH_STATE_IDLE;
3137 qh->qh_next.qh = NULL;
3138
3139 qh_completions(fotg210, qh);
3140 if (!list_empty(&qh->qtd_list) &&
3141 fotg210->rh_state == FOTG210_RH_RUNNING)
3142 qh_link_async(fotg210, qh);
3143 disable_async(fotg210);
3144 }
3145 fotg210->async_unlinking = false;
3146
3147 /* Start a new IAA cycle if any QHs are waiting for it */
3148 if (fotg210->async_unlink) {
3149 start_iaa_cycle(fotg210, true);
3150 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3151 goto restart;
3152 }
3153 }
3154
unlink_empty_async(struct fotg210_hcd * fotg210)3155 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3156 {
3157 struct fotg210_qh *qh, *next;
3158 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3159 bool check_unlinks_later = false;
3160
3161 /* Unlink all the async QHs that have been empty for a timer cycle */
3162 next = fotg210->async->qh_next.qh;
3163 while (next) {
3164 qh = next;
3165 next = qh->qh_next.qh;
3166
3167 if (list_empty(&qh->qtd_list) &&
3168 qh->qh_state == QH_STATE_LINKED) {
3169 if (!stopped && qh->unlink_cycle ==
3170 fotg210->async_unlink_cycle)
3171 check_unlinks_later = true;
3172 else
3173 single_unlink_async(fotg210, qh);
3174 }
3175 }
3176
3177 /* Start a new IAA cycle if any QHs are waiting for it */
3178 if (fotg210->async_unlink)
3179 start_iaa_cycle(fotg210, false);
3180
3181 /* QHs that haven't been empty for long enough will be handled later */
3182 if (check_unlinks_later) {
3183 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3184 true);
3185 ++fotg210->async_unlink_cycle;
3186 }
3187 }
3188
3189 /* makes sure the async qh will become idle */
3190 /* caller must own fotg210->lock */
3191
start_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3192 static void start_unlink_async(struct fotg210_hcd *fotg210,
3193 struct fotg210_qh *qh)
3194 {
3195 /*
3196 * If the QH isn't linked then there's nothing we can do
3197 * unless we were called during a giveback, in which case
3198 * qh_completions() has to deal with it.
3199 */
3200 if (qh->qh_state != QH_STATE_LINKED) {
3201 if (qh->qh_state == QH_STATE_COMPLETING)
3202 qh->needs_rescan = 1;
3203 return;
3204 }
3205
3206 single_unlink_async(fotg210, qh);
3207 start_iaa_cycle(fotg210, false);
3208 }
3209
scan_async(struct fotg210_hcd * fotg210)3210 static void scan_async(struct fotg210_hcd *fotg210)
3211 {
3212 struct fotg210_qh *qh;
3213 bool check_unlinks_later = false;
3214
3215 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3216 while (fotg210->qh_scan_next) {
3217 qh = fotg210->qh_scan_next;
3218 fotg210->qh_scan_next = qh->qh_next.qh;
3219 rescan:
3220 /* clean any finished work for this qh */
3221 if (!list_empty(&qh->qtd_list)) {
3222 int temp;
3223
3224 /*
3225 * Unlinks could happen here; completion reporting
3226 * drops the lock. That's why fotg210->qh_scan_next
3227 * always holds the next qh to scan; if the next qh
3228 * gets unlinked then fotg210->qh_scan_next is adjusted
3229 * in single_unlink_async().
3230 */
3231 temp = qh_completions(fotg210, qh);
3232 if (qh->needs_rescan) {
3233 start_unlink_async(fotg210, qh);
3234 } else if (list_empty(&qh->qtd_list)
3235 && qh->qh_state == QH_STATE_LINKED) {
3236 qh->unlink_cycle = fotg210->async_unlink_cycle;
3237 check_unlinks_later = true;
3238 } else if (temp != 0)
3239 goto rescan;
3240 }
3241 }
3242
3243 /*
3244 * Unlink empty entries, reducing DMA usage as well
3245 * as HCD schedule-scanning costs. Delay for any qh
3246 * we just scanned, there's a not-unusual case that it
3247 * doesn't stay idle for long.
3248 */
3249 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3250 !(fotg210->enabled_hrtimer_events &
3251 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3252 fotg210_enable_event(fotg210,
3253 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3254 ++fotg210->async_unlink_cycle;
3255 }
3256 }
3257 /* EHCI scheduled transaction support: interrupt, iso, split iso
3258 * These are called "periodic" transactions in the EHCI spec.
3259 *
3260 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3261 * with the "asynchronous" transaction support (control/bulk transfers).
3262 * The only real difference is in how interrupt transfers are scheduled.
3263 *
3264 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3265 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3266 * pre-calculated schedule data to make appending to the queue be quick.
3267 */
3268 static int fotg210_get_frame(struct usb_hcd *hcd);
3269
3270 /* periodic_next_shadow - return "next" pointer on shadow list
3271 * @periodic: host pointer to qh/itd
3272 * @tag: hardware tag for type of this record
3273 */
periodic_next_shadow(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3274 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3275 union fotg210_shadow *periodic, __hc32 tag)
3276 {
3277 switch (hc32_to_cpu(fotg210, tag)) {
3278 case Q_TYPE_QH:
3279 return &periodic->qh->qh_next;
3280 case Q_TYPE_FSTN:
3281 return &periodic->fstn->fstn_next;
3282 default:
3283 return &periodic->itd->itd_next;
3284 }
3285 }
3286
shadow_next_periodic(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3287 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3288 union fotg210_shadow *periodic, __hc32 tag)
3289 {
3290 switch (hc32_to_cpu(fotg210, tag)) {
3291 /* our fotg210_shadow.qh is actually software part */
3292 case Q_TYPE_QH:
3293 return &periodic->qh->hw->hw_next;
3294 /* others are hw parts */
3295 default:
3296 return periodic->hw_next;
3297 }
3298 }
3299
3300 /* caller must hold fotg210->lock */
periodic_unlink(struct fotg210_hcd * fotg210,unsigned frame,void * ptr)3301 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3302 void *ptr)
3303 {
3304 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3305 __hc32 *hw_p = &fotg210->periodic[frame];
3306 union fotg210_shadow here = *prev_p;
3307
3308 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3309 while (here.ptr && here.ptr != ptr) {
3310 prev_p = periodic_next_shadow(fotg210, prev_p,
3311 Q_NEXT_TYPE(fotg210, *hw_p));
3312 hw_p = shadow_next_periodic(fotg210, &here,
3313 Q_NEXT_TYPE(fotg210, *hw_p));
3314 here = *prev_p;
3315 }
3316 /* an interrupt entry (at list end) could have been shared */
3317 if (!here.ptr)
3318 return;
3319
3320 /* update shadow and hardware lists ... the old "next" pointers
3321 * from ptr may still be in use, the caller updates them.
3322 */
3323 *prev_p = *periodic_next_shadow(fotg210, &here,
3324 Q_NEXT_TYPE(fotg210, *hw_p));
3325
3326 *hw_p = *shadow_next_periodic(fotg210, &here,
3327 Q_NEXT_TYPE(fotg210, *hw_p));
3328 }
3329
3330 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe)3331 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3332 unsigned frame, unsigned uframe)
3333 {
3334 __hc32 *hw_p = &fotg210->periodic[frame];
3335 union fotg210_shadow *q = &fotg210->pshadow[frame];
3336 unsigned usecs = 0;
3337 struct fotg210_qh_hw *hw;
3338
3339 while (q->ptr) {
3340 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3341 case Q_TYPE_QH:
3342 hw = q->qh->hw;
3343 /* is it in the S-mask? */
3344 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3345 usecs += q->qh->usecs;
3346 /* ... or C-mask? */
3347 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3348 1 << (8 + uframe)))
3349 usecs += q->qh->c_usecs;
3350 hw_p = &hw->hw_next;
3351 q = &q->qh->qh_next;
3352 break;
3353 /* case Q_TYPE_FSTN: */
3354 default:
3355 /* for "save place" FSTNs, count the relevant INTR
3356 * bandwidth from the previous frame
3357 */
3358 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3359 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3360
3361 hw_p = &q->fstn->hw_next;
3362 q = &q->fstn->fstn_next;
3363 break;
3364 case Q_TYPE_ITD:
3365 if (q->itd->hw_transaction[uframe])
3366 usecs += q->itd->stream->usecs;
3367 hw_p = &q->itd->hw_next;
3368 q = &q->itd->itd_next;
3369 break;
3370 }
3371 }
3372 if (usecs > fotg210->uframe_periodic_max)
3373 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3374 frame * 8 + uframe, usecs);
3375 return usecs;
3376 }
3377
same_tt(struct usb_device * dev1,struct usb_device * dev2)3378 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3379 {
3380 if (!dev1->tt || !dev2->tt)
3381 return 0;
3382 if (dev1->tt != dev2->tt)
3383 return 0;
3384 if (dev1->tt->multi)
3385 return dev1->ttport == dev2->ttport;
3386 else
3387 return 1;
3388 }
3389
3390 /* return true iff the device's transaction translator is available
3391 * for a periodic transfer starting at the specified frame, using
3392 * all the uframes in the mask.
3393 */
tt_no_collision(struct fotg210_hcd * fotg210,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)3394 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3395 struct usb_device *dev, unsigned frame, u32 uf_mask)
3396 {
3397 if (period == 0) /* error */
3398 return 0;
3399
3400 /* note bandwidth wastage: split never follows csplit
3401 * (different dev or endpoint) until the next uframe.
3402 * calling convention doesn't make that distinction.
3403 */
3404 for (; frame < fotg210->periodic_size; frame += period) {
3405 union fotg210_shadow here;
3406 __hc32 type;
3407 struct fotg210_qh_hw *hw;
3408
3409 here = fotg210->pshadow[frame];
3410 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3411 while (here.ptr) {
3412 switch (hc32_to_cpu(fotg210, type)) {
3413 case Q_TYPE_ITD:
3414 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3415 here = here.itd->itd_next;
3416 continue;
3417 case Q_TYPE_QH:
3418 hw = here.qh->hw;
3419 if (same_tt(dev, here.qh->dev)) {
3420 u32 mask;
3421
3422 mask = hc32_to_cpu(fotg210,
3423 hw->hw_info2);
3424 /* "knows" no gap is needed */
3425 mask |= mask >> 8;
3426 if (mask & uf_mask)
3427 break;
3428 }
3429 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3430 here = here.qh->qh_next;
3431 continue;
3432 /* case Q_TYPE_FSTN: */
3433 default:
3434 fotg210_dbg(fotg210,
3435 "periodic frame %d bogus type %d\n",
3436 frame, type);
3437 }
3438
3439 /* collision or error */
3440 return 0;
3441 }
3442 }
3443
3444 /* no collision */
3445 return 1;
3446 }
3447
enable_periodic(struct fotg210_hcd * fotg210)3448 static void enable_periodic(struct fotg210_hcd *fotg210)
3449 {
3450 if (fotg210->periodic_count++)
3451 return;
3452
3453 /* Stop waiting to turn off the periodic schedule */
3454 fotg210->enabled_hrtimer_events &=
3455 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3456
3457 /* Don't start the schedule until PSS is 0 */
3458 fotg210_poll_PSS(fotg210);
3459 turn_on_io_watchdog(fotg210);
3460 }
3461
disable_periodic(struct fotg210_hcd * fotg210)3462 static void disable_periodic(struct fotg210_hcd *fotg210)
3463 {
3464 if (--fotg210->periodic_count)
3465 return;
3466
3467 /* Don't turn off the schedule until PSS is 1 */
3468 fotg210_poll_PSS(fotg210);
3469 }
3470
3471 /* periodic schedule slots have iso tds (normal or split) first, then a
3472 * sparse tree for active interrupt transfers.
3473 *
3474 * this just links in a qh; caller guarantees uframe masks are set right.
3475 * no FSTN support (yet; fotg210 0.96+)
3476 */
qh_link_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3477 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3478 {
3479 unsigned i;
3480 unsigned period = qh->period;
3481
3482 dev_dbg(&qh->dev->dev,
3483 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3484 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3485 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3486 qh->c_usecs);
3487
3488 /* high bandwidth, or otherwise every microframe */
3489 if (period == 0)
3490 period = 1;
3491
3492 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3493 union fotg210_shadow *prev = &fotg210->pshadow[i];
3494 __hc32 *hw_p = &fotg210->periodic[i];
3495 union fotg210_shadow here = *prev;
3496 __hc32 type = 0;
3497
3498 /* skip the iso nodes at list head */
3499 while (here.ptr) {
3500 type = Q_NEXT_TYPE(fotg210, *hw_p);
3501 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3502 break;
3503 prev = periodic_next_shadow(fotg210, prev, type);
3504 hw_p = shadow_next_periodic(fotg210, &here, type);
3505 here = *prev;
3506 }
3507
3508 /* sorting each branch by period (slow-->fast)
3509 * enables sharing interior tree nodes
3510 */
3511 while (here.ptr && qh != here.qh) {
3512 if (qh->period > here.qh->period)
3513 break;
3514 prev = &here.qh->qh_next;
3515 hw_p = &here.qh->hw->hw_next;
3516 here = *prev;
3517 }
3518 /* link in this qh, unless some earlier pass did that */
3519 if (qh != here.qh) {
3520 qh->qh_next = here;
3521 if (here.qh)
3522 qh->hw->hw_next = *hw_p;
3523 wmb();
3524 prev->qh = qh;
3525 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3526 }
3527 }
3528 qh->qh_state = QH_STATE_LINKED;
3529 qh->xacterrs = 0;
3530
3531 /* update per-qh bandwidth for usbfs */
3532 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3533 ? ((qh->usecs + qh->c_usecs) / qh->period)
3534 : (qh->usecs * 8);
3535
3536 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3537
3538 /* maybe enable periodic schedule processing */
3539 ++fotg210->intr_count;
3540 enable_periodic(fotg210);
3541 }
3542
qh_unlink_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3543 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3544 struct fotg210_qh *qh)
3545 {
3546 unsigned i;
3547 unsigned period;
3548
3549 /*
3550 * If qh is for a low/full-speed device, simply unlinking it
3551 * could interfere with an ongoing split transaction. To unlink
3552 * it safely would require setting the QH_INACTIVATE bit and
3553 * waiting at least one frame, as described in EHCI 4.12.2.5.
3554 *
3555 * We won't bother with any of this. Instead, we assume that the
3556 * only reason for unlinking an interrupt QH while the current URB
3557 * is still active is to dequeue all the URBs (flush the whole
3558 * endpoint queue).
3559 *
3560 * If rebalancing the periodic schedule is ever implemented, this
3561 * approach will no longer be valid.
3562 */
3563
3564 /* high bandwidth, or otherwise part of every microframe */
3565 period = qh->period;
3566 if (!period)
3567 period = 1;
3568
3569 for (i = qh->start; i < fotg210->periodic_size; i += period)
3570 periodic_unlink(fotg210, i, qh);
3571
3572 /* update per-qh bandwidth for usbfs */
3573 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3574 ? ((qh->usecs + qh->c_usecs) / qh->period)
3575 : (qh->usecs * 8);
3576
3577 dev_dbg(&qh->dev->dev,
3578 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3579 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3580 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3581 qh->c_usecs);
3582
3583 /* qh->qh_next still "live" to HC */
3584 qh->qh_state = QH_STATE_UNLINK;
3585 qh->qh_next.ptr = NULL;
3586
3587 if (fotg210->qh_scan_next == qh)
3588 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3589 struct fotg210_qh, intr_node);
3590 list_del(&qh->intr_node);
3591 }
3592
start_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3593 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3594 struct fotg210_qh *qh)
3595 {
3596 /* If the QH isn't linked then there's nothing we can do
3597 * unless we were called during a giveback, in which case
3598 * qh_completions() has to deal with it.
3599 */
3600 if (qh->qh_state != QH_STATE_LINKED) {
3601 if (qh->qh_state == QH_STATE_COMPLETING)
3602 qh->needs_rescan = 1;
3603 return;
3604 }
3605
3606 qh_unlink_periodic(fotg210, qh);
3607
3608 /* Make sure the unlinks are visible before starting the timer */
3609 wmb();
3610
3611 /*
3612 * The EHCI spec doesn't say how long it takes the controller to
3613 * stop accessing an unlinked interrupt QH. The timer delay is
3614 * 9 uframes; presumably that will be long enough.
3615 */
3616 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3617
3618 /* New entries go at the end of the intr_unlink list */
3619 if (fotg210->intr_unlink)
3620 fotg210->intr_unlink_last->unlink_next = qh;
3621 else
3622 fotg210->intr_unlink = qh;
3623 fotg210->intr_unlink_last = qh;
3624
3625 if (fotg210->intr_unlinking)
3626 ; /* Avoid recursive calls */
3627 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3628 fotg210_handle_intr_unlinks(fotg210);
3629 else if (fotg210->intr_unlink == qh) {
3630 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3631 true);
3632 ++fotg210->intr_unlink_cycle;
3633 }
3634 }
3635
end_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3636 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3637 {
3638 struct fotg210_qh_hw *hw = qh->hw;
3639 int rc;
3640
3641 qh->qh_state = QH_STATE_IDLE;
3642 hw->hw_next = FOTG210_LIST_END(fotg210);
3643
3644 qh_completions(fotg210, qh);
3645
3646 /* reschedule QH iff another request is queued */
3647 if (!list_empty(&qh->qtd_list) &&
3648 fotg210->rh_state == FOTG210_RH_RUNNING) {
3649 rc = qh_schedule(fotg210, qh);
3650
3651 /* An error here likely indicates handshake failure
3652 * or no space left in the schedule. Neither fault
3653 * should happen often ...
3654 *
3655 * FIXME kill the now-dysfunctional queued urbs
3656 */
3657 if (rc != 0)
3658 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3659 qh, rc);
3660 }
3661
3662 /* maybe turn off periodic schedule */
3663 --fotg210->intr_count;
3664 disable_periodic(fotg210);
3665 }
3666
check_period(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)3667 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3668 unsigned uframe, unsigned period, unsigned usecs)
3669 {
3670 int claimed;
3671
3672 /* complete split running into next frame?
3673 * given FSTN support, we could sometimes check...
3674 */
3675 if (uframe >= 8)
3676 return 0;
3677
3678 /* convert "usecs we need" to "max already claimed" */
3679 usecs = fotg210->uframe_periodic_max - usecs;
3680
3681 /* we "know" 2 and 4 uframe intervals were rejected; so
3682 * for period 0, check _every_ microframe in the schedule.
3683 */
3684 if (unlikely(period == 0)) {
3685 do {
3686 for (uframe = 0; uframe < 7; uframe++) {
3687 claimed = periodic_usecs(fotg210, frame,
3688 uframe);
3689 if (claimed > usecs)
3690 return 0;
3691 }
3692 } while ((frame += 1) < fotg210->periodic_size);
3693
3694 /* just check the specified uframe, at that period */
3695 } else {
3696 do {
3697 claimed = periodic_usecs(fotg210, frame, uframe);
3698 if (claimed > usecs)
3699 return 0;
3700 } while ((frame += period) < fotg210->periodic_size);
3701 }
3702
3703 /* success! */
3704 return 1;
3705 }
3706
check_intr_schedule(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,const struct fotg210_qh * qh,__hc32 * c_maskp)3707 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3708 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3709 {
3710 int retval = -ENOSPC;
3711 u8 mask = 0;
3712
3713 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3714 goto done;
3715
3716 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3717 goto done;
3718 if (!qh->c_usecs) {
3719 retval = 0;
3720 *c_maskp = 0;
3721 goto done;
3722 }
3723
3724 /* Make sure this tt's buffer is also available for CSPLITs.
3725 * We pessimize a bit; probably the typical full speed case
3726 * doesn't need the second CSPLIT.
3727 *
3728 * NOTE: both SPLIT and CSPLIT could be checked in just
3729 * one smart pass...
3730 */
3731 mask = 0x03 << (uframe + qh->gap_uf);
3732 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3733
3734 mask |= 1 << uframe;
3735 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3736 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3737 qh->period, qh->c_usecs))
3738 goto done;
3739 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3740 qh->period, qh->c_usecs))
3741 goto done;
3742 retval = 0;
3743 }
3744 done:
3745 return retval;
3746 }
3747
3748 /* "first fit" scheduling policy used the first time through,
3749 * or when the previous schedule slot can't be re-used.
3750 */
qh_schedule(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3751 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3752 {
3753 int status;
3754 unsigned uframe;
3755 __hc32 c_mask;
3756 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3757 struct fotg210_qh_hw *hw = qh->hw;
3758
3759 qh_refresh(fotg210, qh);
3760 hw->hw_next = FOTG210_LIST_END(fotg210);
3761 frame = qh->start;
3762
3763 /* reuse the previous schedule slots, if we can */
3764 if (frame < qh->period) {
3765 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3766 status = check_intr_schedule(fotg210, frame, --uframe,
3767 qh, &c_mask);
3768 } else {
3769 uframe = 0;
3770 c_mask = 0;
3771 status = -ENOSPC;
3772 }
3773
3774 /* else scan the schedule to find a group of slots such that all
3775 * uframes have enough periodic bandwidth available.
3776 */
3777 if (status) {
3778 /* "normal" case, uframing flexible except with splits */
3779 if (qh->period) {
3780 int i;
3781
3782 for (i = qh->period; status && i > 0; --i) {
3783 frame = ++fotg210->random_frame % qh->period;
3784 for (uframe = 0; uframe < 8; uframe++) {
3785 status = check_intr_schedule(fotg210,
3786 frame, uframe, qh,
3787 &c_mask);
3788 if (status == 0)
3789 break;
3790 }
3791 }
3792
3793 /* qh->period == 0 means every uframe */
3794 } else {
3795 frame = 0;
3796 status = check_intr_schedule(fotg210, 0, 0, qh,
3797 &c_mask);
3798 }
3799 if (status)
3800 goto done;
3801 qh->start = frame;
3802
3803 /* reset S-frame and (maybe) C-frame masks */
3804 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3805 hw->hw_info2 |= qh->period
3806 ? cpu_to_hc32(fotg210, 1 << uframe)
3807 : cpu_to_hc32(fotg210, QH_SMASK);
3808 hw->hw_info2 |= c_mask;
3809 } else
3810 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3811
3812 /* stuff into the periodic schedule */
3813 qh_link_periodic(fotg210, qh);
3814 done:
3815 return status;
3816 }
3817
intr_submit(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3818 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3819 struct list_head *qtd_list, gfp_t mem_flags)
3820 {
3821 unsigned epnum;
3822 unsigned long flags;
3823 struct fotg210_qh *qh;
3824 int status;
3825 struct list_head empty;
3826
3827 /* get endpoint and transfer/schedule data */
3828 epnum = urb->ep->desc.bEndpointAddress;
3829
3830 spin_lock_irqsave(&fotg210->lock, flags);
3831
3832 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3833 status = -ESHUTDOWN;
3834 goto done_not_linked;
3835 }
3836 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3837 if (unlikely(status))
3838 goto done_not_linked;
3839
3840 /* get qh and force any scheduling errors */
3841 INIT_LIST_HEAD(&empty);
3842 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3843 if (qh == NULL) {
3844 status = -ENOMEM;
3845 goto done;
3846 }
3847 if (qh->qh_state == QH_STATE_IDLE) {
3848 status = qh_schedule(fotg210, qh);
3849 if (status)
3850 goto done;
3851 }
3852
3853 /* then queue the urb's tds to the qh */
3854 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3855 BUG_ON(qh == NULL);
3856
3857 /* ... update usbfs periodic stats */
3858 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3859
3860 done:
3861 if (unlikely(status))
3862 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3863 done_not_linked:
3864 spin_unlock_irqrestore(&fotg210->lock, flags);
3865 if (status)
3866 qtd_list_free(fotg210, urb, qtd_list);
3867
3868 return status;
3869 }
3870
scan_intr(struct fotg210_hcd * fotg210)3871 static void scan_intr(struct fotg210_hcd *fotg210)
3872 {
3873 struct fotg210_qh *qh;
3874
3875 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3876 &fotg210->intr_qh_list, intr_node) {
3877 rescan:
3878 /* clean any finished work for this qh */
3879 if (!list_empty(&qh->qtd_list)) {
3880 int temp;
3881
3882 /*
3883 * Unlinks could happen here; completion reporting
3884 * drops the lock. That's why fotg210->qh_scan_next
3885 * always holds the next qh to scan; if the next qh
3886 * gets unlinked then fotg210->qh_scan_next is adjusted
3887 * in qh_unlink_periodic().
3888 */
3889 temp = qh_completions(fotg210, qh);
3890 if (unlikely(qh->needs_rescan ||
3891 (list_empty(&qh->qtd_list) &&
3892 qh->qh_state == QH_STATE_LINKED)))
3893 start_unlink_intr(fotg210, qh);
3894 else if (temp != 0)
3895 goto rescan;
3896 }
3897 }
3898 }
3899
3900 /* fotg210_iso_stream ops work with both ITD and SITD */
3901
iso_stream_alloc(gfp_t mem_flags)3902 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3903 {
3904 struct fotg210_iso_stream *stream;
3905
3906 stream = kzalloc(sizeof(*stream), mem_flags);
3907 if (likely(stream != NULL)) {
3908 INIT_LIST_HEAD(&stream->td_list);
3909 INIT_LIST_HEAD(&stream->free_list);
3910 stream->next_uframe = -1;
3911 }
3912 return stream;
3913 }
3914
iso_stream_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)3915 static void iso_stream_init(struct fotg210_hcd *fotg210,
3916 struct fotg210_iso_stream *stream, struct usb_device *dev,
3917 int pipe, unsigned interval)
3918 {
3919 u32 buf1;
3920 unsigned epnum, maxp;
3921 int is_input;
3922 long bandwidth;
3923 unsigned multi;
3924 struct usb_host_endpoint *ep;
3925
3926 /*
3927 * this might be a "high bandwidth" highspeed endpoint,
3928 * as encoded in the ep descriptor's wMaxPacket field
3929 */
3930 epnum = usb_pipeendpoint(pipe);
3931 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3932 ep = usb_pipe_endpoint(dev, pipe);
3933 maxp = usb_endpoint_maxp(&ep->desc);
3934 if (is_input)
3935 buf1 = (1 << 11);
3936 else
3937 buf1 = 0;
3938
3939 multi = usb_endpoint_maxp_mult(&ep->desc);
3940 buf1 |= maxp;
3941 maxp *= multi;
3942
3943 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3944 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3945 stream->buf2 = cpu_to_hc32(fotg210, multi);
3946
3947 /* usbfs wants to report the average usecs per frame tied up
3948 * when transfers on this endpoint are scheduled ...
3949 */
3950 if (dev->speed == USB_SPEED_FULL) {
3951 interval <<= 3;
3952 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3953 is_input, 1, maxp));
3954 stream->usecs /= 8;
3955 } else {
3956 stream->highspeed = 1;
3957 stream->usecs = HS_USECS_ISO(maxp);
3958 }
3959 bandwidth = stream->usecs * 8;
3960 bandwidth /= interval;
3961
3962 stream->bandwidth = bandwidth;
3963 stream->udev = dev;
3964 stream->bEndpointAddress = is_input | epnum;
3965 stream->interval = interval;
3966 stream->maxp = maxp;
3967 }
3968
iso_stream_find(struct fotg210_hcd * fotg210,struct urb * urb)3969 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3970 struct urb *urb)
3971 {
3972 unsigned epnum;
3973 struct fotg210_iso_stream *stream;
3974 struct usb_host_endpoint *ep;
3975 unsigned long flags;
3976
3977 epnum = usb_pipeendpoint(urb->pipe);
3978 if (usb_pipein(urb->pipe))
3979 ep = urb->dev->ep_in[epnum];
3980 else
3981 ep = urb->dev->ep_out[epnum];
3982
3983 spin_lock_irqsave(&fotg210->lock, flags);
3984 stream = ep->hcpriv;
3985
3986 if (unlikely(stream == NULL)) {
3987 stream = iso_stream_alloc(GFP_ATOMIC);
3988 if (likely(stream != NULL)) {
3989 ep->hcpriv = stream;
3990 stream->ep = ep;
3991 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3992 urb->interval);
3993 }
3994
3995 /* if dev->ep[epnum] is a QH, hw is set */
3996 } else if (unlikely(stream->hw != NULL)) {
3997 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3998 urb->dev->devpath, epnum,
3999 usb_pipein(urb->pipe) ? "in" : "out");
4000 stream = NULL;
4001 }
4002
4003 spin_unlock_irqrestore(&fotg210->lock, flags);
4004 return stream;
4005 }
4006
4007 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4008
iso_sched_alloc(unsigned packets,gfp_t mem_flags)4009 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4010 gfp_t mem_flags)
4011 {
4012 struct fotg210_iso_sched *iso_sched;
4013
4014 iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
4015 if (likely(iso_sched != NULL))
4016 INIT_LIST_HEAD(&iso_sched->td_list);
4017
4018 return iso_sched;
4019 }
4020
itd_sched_init(struct fotg210_hcd * fotg210,struct fotg210_iso_sched * iso_sched,struct fotg210_iso_stream * stream,struct urb * urb)4021 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4022 struct fotg210_iso_sched *iso_sched,
4023 struct fotg210_iso_stream *stream, struct urb *urb)
4024 {
4025 unsigned i;
4026 dma_addr_t dma = urb->transfer_dma;
4027
4028 /* how many uframes are needed for these transfers */
4029 iso_sched->span = urb->number_of_packets * stream->interval;
4030
4031 /* figure out per-uframe itd fields that we'll need later
4032 * when we fit new itds into the schedule.
4033 */
4034 for (i = 0; i < urb->number_of_packets; i++) {
4035 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4036 unsigned length;
4037 dma_addr_t buf;
4038 u32 trans;
4039
4040 length = urb->iso_frame_desc[i].length;
4041 buf = dma + urb->iso_frame_desc[i].offset;
4042
4043 trans = FOTG210_ISOC_ACTIVE;
4044 trans |= buf & 0x0fff;
4045 if (unlikely(((i + 1) == urb->number_of_packets))
4046 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4047 trans |= FOTG210_ITD_IOC;
4048 trans |= length << 16;
4049 uframe->transaction = cpu_to_hc32(fotg210, trans);
4050
4051 /* might need to cross a buffer page within a uframe */
4052 uframe->bufp = (buf & ~(u64)0x0fff);
4053 buf += length;
4054 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4055 uframe->cross = 1;
4056 }
4057 }
4058
iso_sched_free(struct fotg210_iso_stream * stream,struct fotg210_iso_sched * iso_sched)4059 static void iso_sched_free(struct fotg210_iso_stream *stream,
4060 struct fotg210_iso_sched *iso_sched)
4061 {
4062 if (!iso_sched)
4063 return;
4064 /* caller must hold fotg210->lock!*/
4065 list_splice(&iso_sched->td_list, &stream->free_list);
4066 kfree(iso_sched);
4067 }
4068
itd_urb_transaction(struct fotg210_iso_stream * stream,struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4069 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4070 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4071 {
4072 struct fotg210_itd *itd;
4073 dma_addr_t itd_dma;
4074 int i;
4075 unsigned num_itds;
4076 struct fotg210_iso_sched *sched;
4077 unsigned long flags;
4078
4079 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4080 if (unlikely(sched == NULL))
4081 return -ENOMEM;
4082
4083 itd_sched_init(fotg210, sched, stream, urb);
4084
4085 if (urb->interval < 8)
4086 num_itds = 1 + (sched->span + 7) / 8;
4087 else
4088 num_itds = urb->number_of_packets;
4089
4090 /* allocate/init ITDs */
4091 spin_lock_irqsave(&fotg210->lock, flags);
4092 for (i = 0; i < num_itds; i++) {
4093
4094 /*
4095 * Use iTDs from the free list, but not iTDs that may
4096 * still be in use by the hardware.
4097 */
4098 if (likely(!list_empty(&stream->free_list))) {
4099 itd = list_first_entry(&stream->free_list,
4100 struct fotg210_itd, itd_list);
4101 if (itd->frame == fotg210->now_frame)
4102 goto alloc_itd;
4103 list_del(&itd->itd_list);
4104 itd_dma = itd->itd_dma;
4105 } else {
4106 alloc_itd:
4107 spin_unlock_irqrestore(&fotg210->lock, flags);
4108 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4109 &itd_dma);
4110 spin_lock_irqsave(&fotg210->lock, flags);
4111 if (!itd) {
4112 iso_sched_free(stream, sched);
4113 spin_unlock_irqrestore(&fotg210->lock, flags);
4114 return -ENOMEM;
4115 }
4116 }
4117
4118 memset(itd, 0, sizeof(*itd));
4119 itd->itd_dma = itd_dma;
4120 list_add(&itd->itd_list, &sched->td_list);
4121 }
4122 spin_unlock_irqrestore(&fotg210->lock, flags);
4123
4124 /* temporarily store schedule info in hcpriv */
4125 urb->hcpriv = sched;
4126 urb->error_count = 0;
4127 return 0;
4128 }
4129
itd_slot_ok(struct fotg210_hcd * fotg210,u32 mod,u32 uframe,u8 usecs,u32 period)4130 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4131 u8 usecs, u32 period)
4132 {
4133 uframe %= period;
4134 do {
4135 /* can't commit more than uframe_periodic_max usec */
4136 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4137 > (fotg210->uframe_periodic_max - usecs))
4138 return 0;
4139
4140 /* we know urb->interval is 2^N uframes */
4141 uframe += period;
4142 } while (uframe < mod);
4143 return 1;
4144 }
4145
4146 /* This scheduler plans almost as far into the future as it has actual
4147 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4148 * "as small as possible" to be cache-friendlier.) That limits the size
4149 * transfers you can stream reliably; avoid more than 64 msec per urb.
4150 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4151 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4152 * and other factors); or more than about 230 msec total (for portability,
4153 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4154 */
4155
4156 #define SCHEDULE_SLOP 80 /* microframes */
4157
iso_stream_schedule(struct fotg210_hcd * fotg210,struct urb * urb,struct fotg210_iso_stream * stream)4158 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4159 struct fotg210_iso_stream *stream)
4160 {
4161 u32 now, next, start, period, span;
4162 int status;
4163 unsigned mod = fotg210->periodic_size << 3;
4164 struct fotg210_iso_sched *sched = urb->hcpriv;
4165
4166 period = urb->interval;
4167 span = sched->span;
4168
4169 if (span > mod - SCHEDULE_SLOP) {
4170 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4171 status = -EFBIG;
4172 goto fail;
4173 }
4174
4175 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4176
4177 /* Typical case: reuse current schedule, stream is still active.
4178 * Hopefully there are no gaps from the host falling behind
4179 * (irq delays etc), but if there are we'll take the next
4180 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4181 */
4182 if (likely(!list_empty(&stream->td_list))) {
4183 u32 excess;
4184
4185 /* For high speed devices, allow scheduling within the
4186 * isochronous scheduling threshold. For full speed devices
4187 * and Intel PCI-based controllers, don't (work around for
4188 * Intel ICH9 bug).
4189 */
4190 if (!stream->highspeed && fotg210->fs_i_thresh)
4191 next = now + fotg210->i_thresh;
4192 else
4193 next = now;
4194
4195 /* Fell behind (by up to twice the slop amount)?
4196 * We decide based on the time of the last currently-scheduled
4197 * slot, not the time of the next available slot.
4198 */
4199 excess = (stream->next_uframe - period - next) & (mod - 1);
4200 if (excess >= mod - 2 * SCHEDULE_SLOP)
4201 start = next + excess - mod + period *
4202 DIV_ROUND_UP(mod - excess, period);
4203 else
4204 start = next + excess + period;
4205 if (start - now >= mod) {
4206 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4207 urb, start - now - period, period,
4208 mod);
4209 status = -EFBIG;
4210 goto fail;
4211 }
4212 }
4213
4214 /* need to schedule; when's the next (u)frame we could start?
4215 * this is bigger than fotg210->i_thresh allows; scheduling itself
4216 * isn't free, the slop should handle reasonably slow cpus. it
4217 * can also help high bandwidth if the dma and irq loads don't
4218 * jump until after the queue is primed.
4219 */
4220 else {
4221 int done = 0;
4222
4223 start = SCHEDULE_SLOP + (now & ~0x07);
4224
4225 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4226
4227 /* find a uframe slot with enough bandwidth.
4228 * Early uframes are more precious because full-speed
4229 * iso IN transfers can't use late uframes,
4230 * and therefore they should be allocated last.
4231 */
4232 next = start;
4233 start += period;
4234 do {
4235 start--;
4236 /* check schedule: enough space? */
4237 if (itd_slot_ok(fotg210, mod, start,
4238 stream->usecs, period))
4239 done = 1;
4240 } while (start > next && !done);
4241
4242 /* no room in the schedule */
4243 if (!done) {
4244 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4245 urb, now, now + mod);
4246 status = -ENOSPC;
4247 goto fail;
4248 }
4249 }
4250
4251 /* Tried to schedule too far into the future? */
4252 if (unlikely(start - now + span - period >=
4253 mod - 2 * SCHEDULE_SLOP)) {
4254 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4255 urb, start - now, span - period,
4256 mod - 2 * SCHEDULE_SLOP);
4257 status = -EFBIG;
4258 goto fail;
4259 }
4260
4261 stream->next_uframe = start & (mod - 1);
4262
4263 /* report high speed start in uframes; full speed, in frames */
4264 urb->start_frame = stream->next_uframe;
4265 if (!stream->highspeed)
4266 urb->start_frame >>= 3;
4267
4268 /* Make sure scan_isoc() sees these */
4269 if (fotg210->isoc_count == 0)
4270 fotg210->next_frame = now >> 3;
4271 return 0;
4272
4273 fail:
4274 iso_sched_free(stream, sched);
4275 urb->hcpriv = NULL;
4276 return status;
4277 }
4278
itd_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct fotg210_itd * itd)4279 static inline void itd_init(struct fotg210_hcd *fotg210,
4280 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4281 {
4282 int i;
4283
4284 /* it's been recently zeroed */
4285 itd->hw_next = FOTG210_LIST_END(fotg210);
4286 itd->hw_bufp[0] = stream->buf0;
4287 itd->hw_bufp[1] = stream->buf1;
4288 itd->hw_bufp[2] = stream->buf2;
4289
4290 for (i = 0; i < 8; i++)
4291 itd->index[i] = -1;
4292
4293 /* All other fields are filled when scheduling */
4294 }
4295
itd_patch(struct fotg210_hcd * fotg210,struct fotg210_itd * itd,struct fotg210_iso_sched * iso_sched,unsigned index,u16 uframe)4296 static inline void itd_patch(struct fotg210_hcd *fotg210,
4297 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4298 unsigned index, u16 uframe)
4299 {
4300 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4301 unsigned pg = itd->pg;
4302
4303 uframe &= 0x07;
4304 itd->index[uframe] = index;
4305
4306 itd->hw_transaction[uframe] = uf->transaction;
4307 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4308 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4309 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4310
4311 /* iso_frame_desc[].offset must be strictly increasing */
4312 if (unlikely(uf->cross)) {
4313 u64 bufp = uf->bufp + 4096;
4314
4315 itd->pg = ++pg;
4316 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4317 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4318 }
4319 }
4320
itd_link(struct fotg210_hcd * fotg210,unsigned frame,struct fotg210_itd * itd)4321 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4322 struct fotg210_itd *itd)
4323 {
4324 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4325 __hc32 *hw_p = &fotg210->periodic[frame];
4326 union fotg210_shadow here = *prev;
4327 __hc32 type = 0;
4328
4329 /* skip any iso nodes which might belong to previous microframes */
4330 while (here.ptr) {
4331 type = Q_NEXT_TYPE(fotg210, *hw_p);
4332 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4333 break;
4334 prev = periodic_next_shadow(fotg210, prev, type);
4335 hw_p = shadow_next_periodic(fotg210, &here, type);
4336 here = *prev;
4337 }
4338
4339 itd->itd_next = here;
4340 itd->hw_next = *hw_p;
4341 prev->itd = itd;
4342 itd->frame = frame;
4343 wmb();
4344 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4345 }
4346
4347 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct fotg210_hcd * fotg210,struct urb * urb,unsigned mod,struct fotg210_iso_stream * stream)4348 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4349 unsigned mod, struct fotg210_iso_stream *stream)
4350 {
4351 int packet;
4352 unsigned next_uframe, uframe, frame;
4353 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4354 struct fotg210_itd *itd;
4355
4356 next_uframe = stream->next_uframe & (mod - 1);
4357
4358 if (unlikely(list_empty(&stream->td_list))) {
4359 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4360 += stream->bandwidth;
4361 fotg210_dbg(fotg210,
4362 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4363 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4364 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4365 urb->interval,
4366 next_uframe >> 3, next_uframe & 0x7);
4367 }
4368
4369 /* fill iTDs uframe by uframe */
4370 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4371 if (itd == NULL) {
4372 /* ASSERT: we have all necessary itds */
4373
4374 /* ASSERT: no itds for this endpoint in this uframe */
4375
4376 itd = list_entry(iso_sched->td_list.next,
4377 struct fotg210_itd, itd_list);
4378 list_move_tail(&itd->itd_list, &stream->td_list);
4379 itd->stream = stream;
4380 itd->urb = urb;
4381 itd_init(fotg210, stream, itd);
4382 }
4383
4384 uframe = next_uframe & 0x07;
4385 frame = next_uframe >> 3;
4386
4387 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4388
4389 next_uframe += stream->interval;
4390 next_uframe &= mod - 1;
4391 packet++;
4392
4393 /* link completed itds into the schedule */
4394 if (((next_uframe >> 3) != frame)
4395 || packet == urb->number_of_packets) {
4396 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4397 itd);
4398 itd = NULL;
4399 }
4400 }
4401 stream->next_uframe = next_uframe;
4402
4403 /* don't need that schedule data any more */
4404 iso_sched_free(stream, iso_sched);
4405 urb->hcpriv = NULL;
4406
4407 ++fotg210->isoc_count;
4408 enable_periodic(fotg210);
4409 }
4410
4411 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4412 FOTG210_ISOC_XACTERR)
4413
4414 /* Process and recycle a completed ITD. Return true iff its urb completed,
4415 * and hence its completion callback probably added things to the hardware
4416 * schedule.
4417 *
4418 * Note that we carefully avoid recycling this descriptor until after any
4419 * completion callback runs, so that it won't be reused quickly. That is,
4420 * assuming (a) no more than two urbs per frame on this endpoint, and also
4421 * (b) only this endpoint's completions submit URBs. It seems some silicon
4422 * corrupts things if you reuse completed descriptors very quickly...
4423 */
itd_complete(struct fotg210_hcd * fotg210,struct fotg210_itd * itd)4424 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4425 {
4426 struct urb *urb = itd->urb;
4427 struct usb_iso_packet_descriptor *desc;
4428 u32 t;
4429 unsigned uframe;
4430 int urb_index = -1;
4431 struct fotg210_iso_stream *stream = itd->stream;
4432 struct usb_device *dev;
4433 bool retval = false;
4434
4435 /* for each uframe with a packet */
4436 for (uframe = 0; uframe < 8; uframe++) {
4437 if (likely(itd->index[uframe] == -1))
4438 continue;
4439 urb_index = itd->index[uframe];
4440 desc = &urb->iso_frame_desc[urb_index];
4441
4442 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4443 itd->hw_transaction[uframe] = 0;
4444
4445 /* report transfer status */
4446 if (unlikely(t & ISO_ERRS)) {
4447 urb->error_count++;
4448 if (t & FOTG210_ISOC_BUF_ERR)
4449 desc->status = usb_pipein(urb->pipe)
4450 ? -ENOSR /* hc couldn't read */
4451 : -ECOMM; /* hc couldn't write */
4452 else if (t & FOTG210_ISOC_BABBLE)
4453 desc->status = -EOVERFLOW;
4454 else /* (t & FOTG210_ISOC_XACTERR) */
4455 desc->status = -EPROTO;
4456
4457 /* HC need not update length with this error */
4458 if (!(t & FOTG210_ISOC_BABBLE)) {
4459 desc->actual_length = FOTG210_ITD_LENGTH(t);
4460 urb->actual_length += desc->actual_length;
4461 }
4462 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4463 desc->status = 0;
4464 desc->actual_length = FOTG210_ITD_LENGTH(t);
4465 urb->actual_length += desc->actual_length;
4466 } else {
4467 /* URB was too late */
4468 desc->status = -EXDEV;
4469 }
4470 }
4471
4472 /* handle completion now? */
4473 if (likely((urb_index + 1) != urb->number_of_packets))
4474 goto done;
4475
4476 /* ASSERT: it's really the last itd for this urb
4477 * list_for_each_entry (itd, &stream->td_list, itd_list)
4478 * BUG_ON (itd->urb == urb);
4479 */
4480
4481 /* give urb back to the driver; completion often (re)submits */
4482 dev = urb->dev;
4483 fotg210_urb_done(fotg210, urb, 0);
4484 retval = true;
4485 urb = NULL;
4486
4487 --fotg210->isoc_count;
4488 disable_periodic(fotg210);
4489
4490 if (unlikely(list_is_singular(&stream->td_list))) {
4491 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4492 -= stream->bandwidth;
4493 fotg210_dbg(fotg210,
4494 "deschedule devp %s ep%d%s-iso\n",
4495 dev->devpath, stream->bEndpointAddress & 0x0f,
4496 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4497 }
4498
4499 done:
4500 itd->urb = NULL;
4501
4502 /* Add to the end of the free list for later reuse */
4503 list_move_tail(&itd->itd_list, &stream->free_list);
4504
4505 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4506 if (list_empty(&stream->td_list)) {
4507 list_splice_tail_init(&stream->free_list,
4508 &fotg210->cached_itd_list);
4509 start_free_itds(fotg210);
4510 }
4511
4512 return retval;
4513 }
4514
itd_submit(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4515 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4516 gfp_t mem_flags)
4517 {
4518 int status = -EINVAL;
4519 unsigned long flags;
4520 struct fotg210_iso_stream *stream;
4521
4522 /* Get iso_stream head */
4523 stream = iso_stream_find(fotg210, urb);
4524 if (unlikely(stream == NULL)) {
4525 fotg210_dbg(fotg210, "can't get iso stream\n");
4526 return -ENOMEM;
4527 }
4528 if (unlikely(urb->interval != stream->interval &&
4529 fotg210_port_speed(fotg210, 0) ==
4530 USB_PORT_STAT_HIGH_SPEED)) {
4531 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4532 stream->interval, urb->interval);
4533 goto done;
4534 }
4535
4536 #ifdef FOTG210_URB_TRACE
4537 fotg210_dbg(fotg210,
4538 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4539 __func__, urb->dev->devpath, urb,
4540 usb_pipeendpoint(urb->pipe),
4541 usb_pipein(urb->pipe) ? "in" : "out",
4542 urb->transfer_buffer_length,
4543 urb->number_of_packets, urb->interval,
4544 stream);
4545 #endif
4546
4547 /* allocate ITDs w/o locking anything */
4548 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4549 if (unlikely(status < 0)) {
4550 fotg210_dbg(fotg210, "can't init itds\n");
4551 goto done;
4552 }
4553
4554 /* schedule ... need to lock */
4555 spin_lock_irqsave(&fotg210->lock, flags);
4556 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4557 status = -ESHUTDOWN;
4558 goto done_not_linked;
4559 }
4560 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4561 if (unlikely(status))
4562 goto done_not_linked;
4563 status = iso_stream_schedule(fotg210, urb, stream);
4564 if (likely(status == 0))
4565 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4566 else
4567 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4568 done_not_linked:
4569 spin_unlock_irqrestore(&fotg210->lock, flags);
4570 done:
4571 return status;
4572 }
4573
scan_frame_queue(struct fotg210_hcd * fotg210,unsigned frame,unsigned now_frame,bool live)4574 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4575 unsigned now_frame, bool live)
4576 {
4577 unsigned uf;
4578 bool modified;
4579 union fotg210_shadow q, *q_p;
4580 __hc32 type, *hw_p;
4581
4582 /* scan each element in frame's queue for completions */
4583 q_p = &fotg210->pshadow[frame];
4584 hw_p = &fotg210->periodic[frame];
4585 q.ptr = q_p->ptr;
4586 type = Q_NEXT_TYPE(fotg210, *hw_p);
4587 modified = false;
4588
4589 while (q.ptr) {
4590 switch (hc32_to_cpu(fotg210, type)) {
4591 case Q_TYPE_ITD:
4592 /* If this ITD is still active, leave it for
4593 * later processing ... check the next entry.
4594 * No need to check for activity unless the
4595 * frame is current.
4596 */
4597 if (frame == now_frame && live) {
4598 rmb();
4599 for (uf = 0; uf < 8; uf++) {
4600 if (q.itd->hw_transaction[uf] &
4601 ITD_ACTIVE(fotg210))
4602 break;
4603 }
4604 if (uf < 8) {
4605 q_p = &q.itd->itd_next;
4606 hw_p = &q.itd->hw_next;
4607 type = Q_NEXT_TYPE(fotg210,
4608 q.itd->hw_next);
4609 q = *q_p;
4610 break;
4611 }
4612 }
4613
4614 /* Take finished ITDs out of the schedule
4615 * and process them: recycle, maybe report
4616 * URB completion. HC won't cache the
4617 * pointer for much longer, if at all.
4618 */
4619 *q_p = q.itd->itd_next;
4620 *hw_p = q.itd->hw_next;
4621 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4622 wmb();
4623 modified = itd_complete(fotg210, q.itd);
4624 q = *q_p;
4625 break;
4626 default:
4627 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4628 type, frame, q.ptr);
4629 fallthrough;
4630 case Q_TYPE_QH:
4631 case Q_TYPE_FSTN:
4632 /* End of the iTDs and siTDs */
4633 q.ptr = NULL;
4634 break;
4635 }
4636
4637 /* assume completion callbacks modify the queue */
4638 if (unlikely(modified && fotg210->isoc_count > 0))
4639 return -EINVAL;
4640 }
4641 return 0;
4642 }
4643
scan_isoc(struct fotg210_hcd * fotg210)4644 static void scan_isoc(struct fotg210_hcd *fotg210)
4645 {
4646 unsigned uf, now_frame, frame, ret;
4647 unsigned fmask = fotg210->periodic_size - 1;
4648 bool live;
4649
4650 /*
4651 * When running, scan from last scan point up to "now"
4652 * else clean up by scanning everything that's left.
4653 * Touches as few pages as possible: cache-friendly.
4654 */
4655 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4656 uf = fotg210_read_frame_index(fotg210);
4657 now_frame = (uf >> 3) & fmask;
4658 live = true;
4659 } else {
4660 now_frame = (fotg210->next_frame - 1) & fmask;
4661 live = false;
4662 }
4663 fotg210->now_frame = now_frame;
4664
4665 frame = fotg210->next_frame;
4666 for (;;) {
4667 ret = 1;
4668 while (ret != 0)
4669 ret = scan_frame_queue(fotg210, frame,
4670 now_frame, live);
4671
4672 /* Stop when we have reached the current frame */
4673 if (frame == now_frame)
4674 break;
4675 frame = (frame + 1) & fmask;
4676 }
4677 fotg210->next_frame = now_frame;
4678 }
4679
4680 /* Display / Set uframe_periodic_max
4681 */
uframe_periodic_max_show(struct device * dev,struct device_attribute * attr,char * buf)4682 static ssize_t uframe_periodic_max_show(struct device *dev,
4683 struct device_attribute *attr, char *buf)
4684 {
4685 struct fotg210_hcd *fotg210;
4686
4687 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4688 return sysfs_emit(buf, "%d\n", fotg210->uframe_periodic_max);
4689 }
4690
uframe_periodic_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4691 static ssize_t uframe_periodic_max_store(struct device *dev,
4692 struct device_attribute *attr, const char *buf, size_t count)
4693 {
4694 struct fotg210_hcd *fotg210;
4695 unsigned uframe_periodic_max;
4696 unsigned frame, uframe;
4697 unsigned short allocated_max;
4698 unsigned long flags;
4699 ssize_t ret;
4700
4701 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4702
4703 ret = kstrtouint(buf, 0, &uframe_periodic_max);
4704 if (ret)
4705 return ret;
4706
4707 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4708 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4709 uframe_periodic_max);
4710 return -EINVAL;
4711 }
4712
4713 ret = -EINVAL;
4714
4715 /*
4716 * lock, so that our checking does not race with possible periodic
4717 * bandwidth allocation through submitting new urbs.
4718 */
4719 spin_lock_irqsave(&fotg210->lock, flags);
4720
4721 /*
4722 * for request to decrease max periodic bandwidth, we have to check
4723 * every microframe in the schedule to see whether the decrease is
4724 * possible.
4725 */
4726 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4727 allocated_max = 0;
4728
4729 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4730 for (uframe = 0; uframe < 7; ++uframe)
4731 allocated_max = max(allocated_max,
4732 periodic_usecs(fotg210, frame,
4733 uframe));
4734
4735 if (allocated_max > uframe_periodic_max) {
4736 fotg210_info(fotg210,
4737 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4738 allocated_max, uframe_periodic_max);
4739 goto out_unlock;
4740 }
4741 }
4742
4743 /* increasing is always ok */
4744
4745 fotg210_info(fotg210,
4746 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4747 100 * uframe_periodic_max/125, uframe_periodic_max);
4748
4749 if (uframe_periodic_max != 100)
4750 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4751
4752 fotg210->uframe_periodic_max = uframe_periodic_max;
4753 ret = count;
4754
4755 out_unlock:
4756 spin_unlock_irqrestore(&fotg210->lock, flags);
4757 return ret;
4758 }
4759
4760 static DEVICE_ATTR_RW(uframe_periodic_max);
4761
create_sysfs_files(struct fotg210_hcd * fotg210)4762 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4763 {
4764 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4765
4766 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4767 }
4768
remove_sysfs_files(struct fotg210_hcd * fotg210)4769 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4770 {
4771 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4772
4773 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4774 }
4775 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4776 * The firmware seems to think that powering off is a wakeup event!
4777 * This routine turns off remote wakeup and everything else, on all ports.
4778 */
fotg210_turn_off_all_ports(struct fotg210_hcd * fotg210)4779 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4780 {
4781 u32 __iomem *status_reg = &fotg210->regs->port_status;
4782
4783 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4784 }
4785
4786 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4787 * Must be called with interrupts enabled and the lock not held.
4788 */
fotg210_silence_controller(struct fotg210_hcd * fotg210)4789 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4790 {
4791 fotg210_halt(fotg210);
4792
4793 spin_lock_irq(&fotg210->lock);
4794 fotg210->rh_state = FOTG210_RH_HALTED;
4795 fotg210_turn_off_all_ports(fotg210);
4796 spin_unlock_irq(&fotg210->lock);
4797 }
4798
4799 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4800 * This forcibly disables dma and IRQs, helping kexec and other cases
4801 * where the next system software may expect clean state.
4802 */
fotg210_shutdown(struct usb_hcd * hcd)4803 static void fotg210_shutdown(struct usb_hcd *hcd)
4804 {
4805 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4806
4807 spin_lock_irq(&fotg210->lock);
4808 fotg210->shutdown = true;
4809 fotg210->rh_state = FOTG210_RH_STOPPING;
4810 fotg210->enabled_hrtimer_events = 0;
4811 spin_unlock_irq(&fotg210->lock);
4812
4813 fotg210_silence_controller(fotg210);
4814
4815 hrtimer_cancel(&fotg210->hrtimer);
4816 }
4817
4818 /* fotg210_work is called from some interrupts, timers, and so on.
4819 * it calls driver completion functions, after dropping fotg210->lock.
4820 */
fotg210_work(struct fotg210_hcd * fotg210)4821 static void fotg210_work(struct fotg210_hcd *fotg210)
4822 {
4823 /* another CPU may drop fotg210->lock during a schedule scan while
4824 * it reports urb completions. this flag guards against bogus
4825 * attempts at re-entrant schedule scanning.
4826 */
4827 if (fotg210->scanning) {
4828 fotg210->need_rescan = true;
4829 return;
4830 }
4831 fotg210->scanning = true;
4832
4833 rescan:
4834 fotg210->need_rescan = false;
4835 if (fotg210->async_count)
4836 scan_async(fotg210);
4837 if (fotg210->intr_count > 0)
4838 scan_intr(fotg210);
4839 if (fotg210->isoc_count > 0)
4840 scan_isoc(fotg210);
4841 if (fotg210->need_rescan)
4842 goto rescan;
4843 fotg210->scanning = false;
4844
4845 /* the IO watchdog guards against hardware or driver bugs that
4846 * misplace IRQs, and should let us run completely without IRQs.
4847 * such lossage has been observed on both VT6202 and VT8235.
4848 */
4849 turn_on_io_watchdog(fotg210);
4850 }
4851
4852 /* Called when the fotg210_hcd module is removed.
4853 */
fotg210_stop(struct usb_hcd * hcd)4854 static void fotg210_stop(struct usb_hcd *hcd)
4855 {
4856 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4857
4858 fotg210_dbg(fotg210, "stop\n");
4859
4860 /* no more interrupts ... */
4861
4862 spin_lock_irq(&fotg210->lock);
4863 fotg210->enabled_hrtimer_events = 0;
4864 spin_unlock_irq(&fotg210->lock);
4865
4866 fotg210_quiesce(fotg210);
4867 fotg210_silence_controller(fotg210);
4868 fotg210_reset(fotg210);
4869
4870 hrtimer_cancel(&fotg210->hrtimer);
4871 remove_sysfs_files(fotg210);
4872 remove_debug_files(fotg210);
4873
4874 /* root hub is shut down separately (first, when possible) */
4875 spin_lock_irq(&fotg210->lock);
4876 end_free_itds(fotg210);
4877 spin_unlock_irq(&fotg210->lock);
4878 fotg210_mem_cleanup(fotg210);
4879
4880 #ifdef FOTG210_STATS
4881 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4882 fotg210->stats.normal, fotg210->stats.error,
4883 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4884 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4885 fotg210->stats.complete, fotg210->stats.unlink);
4886 #endif
4887
4888 dbg_status(fotg210, "fotg210_stop completed",
4889 fotg210_readl(fotg210, &fotg210->regs->status));
4890 }
4891
4892 /* one-time init, only for memory state */
hcd_fotg210_init(struct usb_hcd * hcd)4893 static int hcd_fotg210_init(struct usb_hcd *hcd)
4894 {
4895 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4896 u32 temp;
4897 int retval;
4898 u32 hcc_params;
4899 struct fotg210_qh_hw *hw;
4900
4901 spin_lock_init(&fotg210->lock);
4902
4903 /*
4904 * keep io watchdog by default, those good HCDs could turn off it later
4905 */
4906 fotg210->need_io_watchdog = 1;
4907
4908 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4909 fotg210->hrtimer.function = fotg210_hrtimer_func;
4910 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4911
4912 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4913
4914 /*
4915 * by default set standard 80% (== 100 usec/uframe) max periodic
4916 * bandwidth as required by USB 2.0
4917 */
4918 fotg210->uframe_periodic_max = 100;
4919
4920 /*
4921 * hw default: 1K periodic list heads, one per frame.
4922 * periodic_size can shrink by USBCMD update if hcc_params allows.
4923 */
4924 fotg210->periodic_size = DEFAULT_I_TDPS;
4925 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4926 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4927
4928 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4929 /* periodic schedule size can be smaller than default */
4930 switch (FOTG210_TUNE_FLS) {
4931 case 0:
4932 fotg210->periodic_size = 1024;
4933 break;
4934 case 1:
4935 fotg210->periodic_size = 512;
4936 break;
4937 case 2:
4938 fotg210->periodic_size = 256;
4939 break;
4940 default:
4941 BUG();
4942 }
4943 }
4944 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4945 if (retval < 0)
4946 return retval;
4947
4948 /* controllers may cache some of the periodic schedule ... */
4949 fotg210->i_thresh = 2;
4950
4951 /*
4952 * dedicate a qh for the async ring head, since we couldn't unlink
4953 * a 'real' qh without stopping the async schedule [4.8]. use it
4954 * as the 'reclamation list head' too.
4955 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4956 * from automatically advancing to the next td after short reads.
4957 */
4958 fotg210->async->qh_next.qh = NULL;
4959 hw = fotg210->async->hw;
4960 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4961 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4962 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4963 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4964 fotg210->async->qh_state = QH_STATE_LINKED;
4965 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4966
4967 /* clear interrupt enables, set irq latency */
4968 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4969 log2_irq_thresh = 0;
4970 temp = 1 << (16 + log2_irq_thresh);
4971 if (HCC_CANPARK(hcc_params)) {
4972 /* HW default park == 3, on hardware that supports it (like
4973 * NVidia and ALI silicon), maximizes throughput on the async
4974 * schedule by avoiding QH fetches between transfers.
4975 *
4976 * With fast usb storage devices and NForce2, "park" seems to
4977 * make problems: throughput reduction (!), data errors...
4978 */
4979 if (park) {
4980 park = min_t(unsigned, park, 3);
4981 temp |= CMD_PARK;
4982 temp |= park << 8;
4983 }
4984 fotg210_dbg(fotg210, "park %d\n", park);
4985 }
4986 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4987 /* periodic schedule size can be smaller than default */
4988 temp &= ~(3 << 2);
4989 temp |= (FOTG210_TUNE_FLS << 2);
4990 }
4991 fotg210->command = temp;
4992
4993 /* Accept arbitrarily long scatter-gather lists */
4994 if (!hcd->localmem_pool)
4995 hcd->self.sg_tablesize = ~0;
4996 return 0;
4997 }
4998
4999 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
fotg210_run(struct usb_hcd * hcd)5000 static int fotg210_run(struct usb_hcd *hcd)
5001 {
5002 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5003 u32 temp;
5004
5005 hcd->uses_new_polling = 1;
5006
5007 /* EHCI spec section 4.1 */
5008
5009 fotg210_writel(fotg210, fotg210->periodic_dma,
5010 &fotg210->regs->frame_list);
5011 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5012 &fotg210->regs->async_next);
5013
5014 /*
5015 * hcc_params controls whether fotg210->regs->segment must (!!!)
5016 * be used; it constrains QH/ITD/SITD and QTD locations.
5017 * dma_pool consistent memory always uses segment zero.
5018 * streaming mappings for I/O buffers, like dma_map_single(),
5019 * can return segments above 4GB, if the device allows.
5020 *
5021 * NOTE: the dma mask is visible through dev->dma_mask, so
5022 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5023 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5024 * host side drivers though.
5025 */
5026 fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5027
5028 /*
5029 * Philips, Intel, and maybe others need CMD_RUN before the
5030 * root hub will detect new devices (why?); NEC doesn't
5031 */
5032 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5033 fotg210->command |= CMD_RUN;
5034 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5035 dbg_cmd(fotg210, "init", fotg210->command);
5036
5037 /*
5038 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5039 * are explicitly handed to companion controller(s), so no TT is
5040 * involved with the root hub. (Except where one is integrated,
5041 * and there's no companion controller unless maybe for USB OTG.)
5042 *
5043 * Turning on the CF flag will transfer ownership of all ports
5044 * from the companions to the EHCI controller. If any of the
5045 * companions are in the middle of a port reset at the time, it
5046 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5047 * guarantees that no resets are in progress. After we set CF,
5048 * a short delay lets the hardware catch up; new resets shouldn't
5049 * be started before the port switching actions could complete.
5050 */
5051 down_write(&ehci_cf_port_reset_rwsem);
5052 fotg210->rh_state = FOTG210_RH_RUNNING;
5053 /* unblock posted writes */
5054 fotg210_readl(fotg210, &fotg210->regs->command);
5055 usleep_range(5000, 10000);
5056 up_write(&ehci_cf_port_reset_rwsem);
5057 fotg210->last_periodic_enable = ktime_get_real();
5058
5059 temp = HC_VERSION(fotg210,
5060 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5061 fotg210_info(fotg210,
5062 "USB %x.%x started, EHCI %x.%02x\n",
5063 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5064 temp >> 8, temp & 0xff);
5065
5066 fotg210_writel(fotg210, INTR_MASK,
5067 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5068
5069 /* GRR this is run-once init(), being done every time the HC starts.
5070 * So long as they're part of class devices, we can't do it init()
5071 * since the class device isn't created that early.
5072 */
5073 create_debug_files(fotg210);
5074 create_sysfs_files(fotg210);
5075
5076 return 0;
5077 }
5078
fotg210_setup(struct usb_hcd * hcd)5079 static int fotg210_setup(struct usb_hcd *hcd)
5080 {
5081 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5082 int retval;
5083
5084 fotg210->regs = (void __iomem *)fotg210->caps +
5085 HC_LENGTH(fotg210,
5086 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5087 dbg_hcs_params(fotg210, "reset");
5088 dbg_hcc_params(fotg210, "reset");
5089
5090 /* cache this readonly data; minimize chip reads */
5091 fotg210->hcs_params = fotg210_readl(fotg210,
5092 &fotg210->caps->hcs_params);
5093
5094 fotg210->sbrn = HCD_USB2;
5095
5096 /* data structure init */
5097 retval = hcd_fotg210_init(hcd);
5098 if (retval)
5099 return retval;
5100
5101 retval = fotg210_halt(fotg210);
5102 if (retval)
5103 return retval;
5104
5105 fotg210_reset(fotg210);
5106
5107 return 0;
5108 }
5109
fotg210_irq(struct usb_hcd * hcd)5110 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5111 {
5112 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5113 u32 status, masked_status, pcd_status = 0, cmd;
5114 int bh;
5115
5116 spin_lock(&fotg210->lock);
5117
5118 status = fotg210_readl(fotg210, &fotg210->regs->status);
5119
5120 /* e.g. cardbus physical eject */
5121 if (status == ~(u32) 0) {
5122 fotg210_dbg(fotg210, "device removed\n");
5123 goto dead;
5124 }
5125
5126 /*
5127 * We don't use STS_FLR, but some controllers don't like it to
5128 * remain on, so mask it out along with the other status bits.
5129 */
5130 masked_status = status & (INTR_MASK | STS_FLR);
5131
5132 /* Shared IRQ? */
5133 if (!masked_status ||
5134 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5135 spin_unlock(&fotg210->lock);
5136 return IRQ_NONE;
5137 }
5138
5139 /* clear (just) interrupts */
5140 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5141 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5142 bh = 0;
5143
5144 /* unrequested/ignored: Frame List Rollover */
5145 dbg_status(fotg210, "irq", status);
5146
5147 /* INT, ERR, and IAA interrupt rates can be throttled */
5148
5149 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5150 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5151 if (likely((status & STS_ERR) == 0))
5152 INCR(fotg210->stats.normal);
5153 else
5154 INCR(fotg210->stats.error);
5155 bh = 1;
5156 }
5157
5158 /* complete the unlinking of some qh [4.15.2.3] */
5159 if (status & STS_IAA) {
5160
5161 /* Turn off the IAA watchdog */
5162 fotg210->enabled_hrtimer_events &=
5163 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5164
5165 /*
5166 * Mild optimization: Allow another IAAD to reset the
5167 * hrtimer, if one occurs before the next expiration.
5168 * In theory we could always cancel the hrtimer, but
5169 * tests show that about half the time it will be reset
5170 * for some other event anyway.
5171 */
5172 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5173 ++fotg210->next_hrtimer_event;
5174
5175 /* guard against (alleged) silicon errata */
5176 if (cmd & CMD_IAAD)
5177 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5178 if (fotg210->async_iaa) {
5179 INCR(fotg210->stats.iaa);
5180 end_unlink_async(fotg210);
5181 } else
5182 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5183 }
5184
5185 /* remote wakeup [4.3.1] */
5186 if (status & STS_PCD) {
5187 int pstatus;
5188 u32 __iomem *status_reg = &fotg210->regs->port_status;
5189
5190 /* kick root hub later */
5191 pcd_status = status;
5192
5193 /* resume root hub? */
5194 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5195 usb_hcd_resume_root_hub(hcd);
5196
5197 pstatus = fotg210_readl(fotg210, status_reg);
5198
5199 if (test_bit(0, &fotg210->suspended_ports) &&
5200 ((pstatus & PORT_RESUME) ||
5201 !(pstatus & PORT_SUSPEND)) &&
5202 (pstatus & PORT_PE) &&
5203 fotg210->reset_done[0] == 0) {
5204
5205 /* start 20 msec resume signaling from this port,
5206 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5207 * stop that signaling. Use 5 ms extra for safety,
5208 * like usb_port_resume() does.
5209 */
5210 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5211 set_bit(0, &fotg210->resuming_ports);
5212 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5213 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5214 }
5215 }
5216
5217 /* PCI errors [4.15.2.4] */
5218 if (unlikely((status & STS_FATAL) != 0)) {
5219 fotg210_err(fotg210, "fatal error\n");
5220 dbg_cmd(fotg210, "fatal", cmd);
5221 dbg_status(fotg210, "fatal", status);
5222 dead:
5223 usb_hc_died(hcd);
5224
5225 /* Don't let the controller do anything more */
5226 fotg210->shutdown = true;
5227 fotg210->rh_state = FOTG210_RH_STOPPING;
5228 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5229 fotg210_writel(fotg210, fotg210->command,
5230 &fotg210->regs->command);
5231 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5232 fotg210_handle_controller_death(fotg210);
5233
5234 /* Handle completions when the controller stops */
5235 bh = 0;
5236 }
5237
5238 if (bh)
5239 fotg210_work(fotg210);
5240 spin_unlock(&fotg210->lock);
5241 if (pcd_status)
5242 usb_hcd_poll_rh_status(hcd);
5243 return IRQ_HANDLED;
5244 }
5245
5246 /* non-error returns are a promise to giveback() the urb later
5247 * we drop ownership so next owner (or urb unlink) can get it
5248 *
5249 * urb + dev is in hcd.self.controller.urb_list
5250 * we're queueing TDs onto software and hardware lists
5251 *
5252 * hcd-specific init for hcpriv hasn't been done yet
5253 *
5254 * NOTE: control, bulk, and interrupt share the same code to append TDs
5255 * to a (possibly active) QH, and the same QH scanning code.
5256 */
fotg210_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)5257 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5258 gfp_t mem_flags)
5259 {
5260 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5261 struct list_head qtd_list;
5262
5263 INIT_LIST_HEAD(&qtd_list);
5264
5265 switch (usb_pipetype(urb->pipe)) {
5266 case PIPE_CONTROL:
5267 /* qh_completions() code doesn't handle all the fault cases
5268 * in multi-TD control transfers. Even 1KB is rare anyway.
5269 */
5270 if (urb->transfer_buffer_length > (16 * 1024))
5271 return -EMSGSIZE;
5272 fallthrough;
5273 /* case PIPE_BULK: */
5274 default:
5275 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5276 return -ENOMEM;
5277 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5278
5279 case PIPE_INTERRUPT:
5280 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5281 return -ENOMEM;
5282 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5283
5284 case PIPE_ISOCHRONOUS:
5285 return itd_submit(fotg210, urb, mem_flags);
5286 }
5287 }
5288
5289 /* remove from hardware lists
5290 * completions normally happen asynchronously
5291 */
5292
fotg210_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)5293 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5294 {
5295 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5296 struct fotg210_qh *qh;
5297 unsigned long flags;
5298 int rc;
5299
5300 spin_lock_irqsave(&fotg210->lock, flags);
5301 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5302 if (rc)
5303 goto done;
5304
5305 switch (usb_pipetype(urb->pipe)) {
5306 /* case PIPE_CONTROL: */
5307 /* case PIPE_BULK:*/
5308 default:
5309 qh = (struct fotg210_qh *) urb->hcpriv;
5310 if (!qh)
5311 break;
5312 switch (qh->qh_state) {
5313 case QH_STATE_LINKED:
5314 case QH_STATE_COMPLETING:
5315 start_unlink_async(fotg210, qh);
5316 break;
5317 case QH_STATE_UNLINK:
5318 case QH_STATE_UNLINK_WAIT:
5319 /* already started */
5320 break;
5321 case QH_STATE_IDLE:
5322 /* QH might be waiting for a Clear-TT-Buffer */
5323 qh_completions(fotg210, qh);
5324 break;
5325 }
5326 break;
5327
5328 case PIPE_INTERRUPT:
5329 qh = (struct fotg210_qh *) urb->hcpriv;
5330 if (!qh)
5331 break;
5332 switch (qh->qh_state) {
5333 case QH_STATE_LINKED:
5334 case QH_STATE_COMPLETING:
5335 start_unlink_intr(fotg210, qh);
5336 break;
5337 case QH_STATE_IDLE:
5338 qh_completions(fotg210, qh);
5339 break;
5340 default:
5341 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5342 qh, qh->qh_state);
5343 goto done;
5344 }
5345 break;
5346
5347 case PIPE_ISOCHRONOUS:
5348 /* itd... */
5349
5350 /* wait till next completion, do it then. */
5351 /* completion irqs can wait up to 1024 msec, */
5352 break;
5353 }
5354 done:
5355 spin_unlock_irqrestore(&fotg210->lock, flags);
5356 return rc;
5357 }
5358
5359 /* bulk qh holds the data toggle */
5360
fotg210_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5361 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5362 struct usb_host_endpoint *ep)
5363 {
5364 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5365 unsigned long flags;
5366 struct fotg210_qh *qh, *tmp;
5367
5368 /* ASSERT: any requests/urbs are being unlinked */
5369 /* ASSERT: nobody can be submitting urbs for this any more */
5370
5371 rescan:
5372 spin_lock_irqsave(&fotg210->lock, flags);
5373 qh = ep->hcpriv;
5374 if (!qh)
5375 goto done;
5376
5377 /* endpoints can be iso streams. for now, we don't
5378 * accelerate iso completions ... so spin a while.
5379 */
5380 if (qh->hw == NULL) {
5381 struct fotg210_iso_stream *stream = ep->hcpriv;
5382
5383 if (!list_empty(&stream->td_list))
5384 goto idle_timeout;
5385
5386 /* BUG_ON(!list_empty(&stream->free_list)); */
5387 kfree(stream);
5388 goto done;
5389 }
5390
5391 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5392 qh->qh_state = QH_STATE_IDLE;
5393 switch (qh->qh_state) {
5394 case QH_STATE_LINKED:
5395 case QH_STATE_COMPLETING:
5396 for (tmp = fotg210->async->qh_next.qh;
5397 tmp && tmp != qh;
5398 tmp = tmp->qh_next.qh)
5399 continue;
5400 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5401 * may already be unlinked.
5402 */
5403 if (tmp)
5404 start_unlink_async(fotg210, qh);
5405 fallthrough;
5406 case QH_STATE_UNLINK: /* wait for hw to finish? */
5407 case QH_STATE_UNLINK_WAIT:
5408 idle_timeout:
5409 spin_unlock_irqrestore(&fotg210->lock, flags);
5410 schedule_timeout_uninterruptible(1);
5411 goto rescan;
5412 case QH_STATE_IDLE: /* fully unlinked */
5413 if (qh->clearing_tt)
5414 goto idle_timeout;
5415 if (list_empty(&qh->qtd_list)) {
5416 qh_destroy(fotg210, qh);
5417 break;
5418 }
5419 fallthrough;
5420 default:
5421 /* caller was supposed to have unlinked any requests;
5422 * that's not our job. just leak this memory.
5423 */
5424 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5425 qh, ep->desc.bEndpointAddress, qh->qh_state,
5426 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5427 break;
5428 }
5429 done:
5430 ep->hcpriv = NULL;
5431 spin_unlock_irqrestore(&fotg210->lock, flags);
5432 }
5433
fotg210_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5434 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5435 struct usb_host_endpoint *ep)
5436 {
5437 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5438 struct fotg210_qh *qh;
5439 int eptype = usb_endpoint_type(&ep->desc);
5440 int epnum = usb_endpoint_num(&ep->desc);
5441 int is_out = usb_endpoint_dir_out(&ep->desc);
5442 unsigned long flags;
5443
5444 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5445 return;
5446
5447 spin_lock_irqsave(&fotg210->lock, flags);
5448 qh = ep->hcpriv;
5449
5450 /* For Bulk and Interrupt endpoints we maintain the toggle state
5451 * in the hardware; the toggle bits in udev aren't used at all.
5452 * When an endpoint is reset by usb_clear_halt() we must reset
5453 * the toggle bit in the QH.
5454 */
5455 if (qh) {
5456 usb_settoggle(qh->dev, epnum, is_out, 0);
5457 if (!list_empty(&qh->qtd_list)) {
5458 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5459 } else if (qh->qh_state == QH_STATE_LINKED ||
5460 qh->qh_state == QH_STATE_COMPLETING) {
5461
5462 /* The toggle value in the QH can't be updated
5463 * while the QH is active. Unlink it now;
5464 * re-linking will call qh_refresh().
5465 */
5466 if (eptype == USB_ENDPOINT_XFER_BULK)
5467 start_unlink_async(fotg210, qh);
5468 else
5469 start_unlink_intr(fotg210, qh);
5470 }
5471 }
5472 spin_unlock_irqrestore(&fotg210->lock, flags);
5473 }
5474
fotg210_get_frame(struct usb_hcd * hcd)5475 static int fotg210_get_frame(struct usb_hcd *hcd)
5476 {
5477 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5478
5479 return (fotg210_read_frame_index(fotg210) >> 3) %
5480 fotg210->periodic_size;
5481 }
5482
5483 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5484 * because its registers (and irq) are shared between host/gadget/otg
5485 * functions and in order to facilitate role switching we cannot
5486 * give the fotg210 driver exclusive access to those.
5487 */
5488
5489 static const struct hc_driver fotg210_fotg210_hc_driver = {
5490 .description = hcd_name,
5491 .product_desc = "Faraday USB2.0 Host Controller",
5492 .hcd_priv_size = sizeof(struct fotg210_hcd),
5493
5494 /*
5495 * generic hardware linkage
5496 */
5497 .irq = fotg210_irq,
5498 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
5499
5500 /*
5501 * basic lifecycle operations
5502 */
5503 .reset = hcd_fotg210_init,
5504 .start = fotg210_run,
5505 .stop = fotg210_stop,
5506 .shutdown = fotg210_shutdown,
5507
5508 /*
5509 * managing i/o requests and associated device resources
5510 */
5511 .urb_enqueue = fotg210_urb_enqueue,
5512 .urb_dequeue = fotg210_urb_dequeue,
5513 .endpoint_disable = fotg210_endpoint_disable,
5514 .endpoint_reset = fotg210_endpoint_reset,
5515
5516 /*
5517 * scheduling support
5518 */
5519 .get_frame_number = fotg210_get_frame,
5520
5521 /*
5522 * root hub support
5523 */
5524 .hub_status_data = fotg210_hub_status_data,
5525 .hub_control = fotg210_hub_control,
5526 .bus_suspend = fotg210_bus_suspend,
5527 .bus_resume = fotg210_bus_resume,
5528
5529 .relinquish_port = fotg210_relinquish_port,
5530 .port_handed_over = fotg210_port_handed_over,
5531
5532 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5533 };
5534
fotg210_init(struct fotg210_hcd * fotg210)5535 static void fotg210_init(struct fotg210_hcd *fotg210)
5536 {
5537 u32 value;
5538
5539 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5540 &fotg210->regs->gmir);
5541
5542 value = ioread32(&fotg210->regs->otgcsr);
5543 value &= ~OTGCSR_A_BUS_DROP;
5544 value |= OTGCSR_A_BUS_REQ;
5545 iowrite32(value, &fotg210->regs->otgcsr);
5546 }
5547
5548 /*
5549 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5550 *
5551 * Allocates basic resources for this USB host controller, and
5552 * then invokes the start() method for the HCD associated with it
5553 * through the hotplug entry's driver_data.
5554 */
fotg210_hcd_probe(struct platform_device * pdev,struct fotg210 * fotg)5555 int fotg210_hcd_probe(struct platform_device *pdev, struct fotg210 *fotg)
5556 {
5557 struct device *dev = &pdev->dev;
5558 struct usb_hcd *hcd;
5559 int irq;
5560 int retval;
5561 struct fotg210_hcd *fotg210;
5562
5563 if (usb_disabled())
5564 return -ENODEV;
5565
5566 pdev->dev.power.power_state = PMSG_ON;
5567
5568 irq = platform_get_irq(pdev, 0);
5569 if (irq < 0)
5570 return irq;
5571
5572 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5573 dev_name(dev));
5574 if (!hcd) {
5575 retval = dev_err_probe(dev, -ENOMEM, "failed to create hcd\n");
5576 goto fail_create_hcd;
5577 }
5578
5579 hcd->has_tt = 1;
5580
5581 hcd->regs = fotg->base;
5582
5583 hcd->rsrc_start = fotg->res->start;
5584 hcd->rsrc_len = resource_size(fotg->res);
5585
5586 fotg210 = hcd_to_fotg210(hcd);
5587
5588 fotg210->fotg = fotg;
5589 fotg210->caps = hcd->regs;
5590
5591 retval = fotg210_setup(hcd);
5592 if (retval)
5593 goto failed_put_hcd;
5594
5595 fotg210_init(fotg210);
5596
5597 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5598 if (retval) {
5599 dev_err_probe(dev, retval, "failed to add hcd\n");
5600 goto failed_put_hcd;
5601 }
5602 device_wakeup_enable(hcd->self.controller);
5603 platform_set_drvdata(pdev, hcd);
5604
5605 return retval;
5606
5607 failed_put_hcd:
5608 usb_put_hcd(hcd);
5609 fail_create_hcd:
5610 return dev_err_probe(dev, retval, "init %s fail\n", dev_name(dev));
5611 }
5612
5613 /*
5614 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5615 * @dev: USB Host Controller being removed
5616 *
5617 */
fotg210_hcd_remove(struct platform_device * pdev)5618 int fotg210_hcd_remove(struct platform_device *pdev)
5619 {
5620 struct usb_hcd *hcd = platform_get_drvdata(pdev);
5621
5622 usb_remove_hcd(hcd);
5623 usb_put_hcd(hcd);
5624
5625 return 0;
5626 }
5627
fotg210_hcd_init(void)5628 int __init fotg210_hcd_init(void)
5629 {
5630 if (usb_disabled())
5631 return -ENODEV;
5632
5633 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5634 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5635 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5636 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5637
5638 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5639 hcd_name, sizeof(struct fotg210_qh),
5640 sizeof(struct fotg210_qtd),
5641 sizeof(struct fotg210_itd));
5642
5643 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5644
5645 return 0;
5646 }
5647
fotg210_hcd_cleanup(void)5648 void __exit fotg210_hcd_cleanup(void)
5649 {
5650 debugfs_remove(fotg210_debug_root);
5651 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5652 }
5653