1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines 4 * 5 * Copyright (C) 2004-2013 Synopsys, Inc. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The names of the above-listed copyright holders may not be used 17 * to endorse or promote products derived from this software without 18 * specific prior written permission. 19 * 20 * ALTERNATIVELY, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any 23 * later version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * This file contains the functions to manage Queue Heads and Queue 40 * Transfer Descriptors for Host mode 41 */ 42 #include <linux/gcd.h> 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/spinlock.h> 46 #include <linux/interrupt.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/io.h> 49 #include <linux/slab.h> 50 #include <linux/usb.h> 51 52 #include <linux/usb/hcd.h> 53 #include <linux/usb/ch11.h> 54 55 #include "core.h" 56 #include "hcd.h" 57 58 /* Wait this long before releasing periodic reservation */ 59 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5)) 60 61 /** 62 * dwc2_periodic_channel_available() - Checks that a channel is available for a 63 * periodic transfer 64 * 65 * @hsotg: The HCD state structure for the DWC OTG controller 66 * 67 * Return: 0 if successful, negative error code otherwise 68 */ 69 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg) 70 { 71 /* 72 * Currently assuming that there is a dedicated host channel for 73 * each periodic transaction plus at least one host channel for 74 * non-periodic transactions 75 */ 76 int status; 77 int num_channels; 78 79 num_channels = hsotg->params.host_channels; 80 if ((hsotg->periodic_channels + hsotg->non_periodic_channels < 81 num_channels) && (hsotg->periodic_channels < num_channels - 1)) { 82 status = 0; 83 } else { 84 dev_dbg(hsotg->dev, 85 "%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n", 86 __func__, num_channels, 87 hsotg->periodic_channels, hsotg->non_periodic_channels); 88 status = -ENOSPC; 89 } 90 91 return status; 92 } 93 94 /** 95 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth 96 * for the specified QH in the periodic schedule 97 * 98 * @hsotg: The HCD state structure for the DWC OTG controller 99 * @qh: QH containing periodic bandwidth required 100 * 101 * Return: 0 if successful, negative error code otherwise 102 * 103 * For simplicity, this calculation assumes that all the transfers in the 104 * periodic schedule may occur in the same (micro)frame 105 */ 106 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg, 107 struct dwc2_qh *qh) 108 { 109 int status; 110 s16 max_claimed_usecs; 111 112 status = 0; 113 114 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) { 115 /* 116 * High speed mode 117 * Max periodic usecs is 80% x 125 usec = 100 usec 118 */ 119 max_claimed_usecs = 100 - qh->host_us; 120 } else { 121 /* 122 * Full speed mode 123 * Max periodic usecs is 90% x 1000 usec = 900 usec 124 */ 125 max_claimed_usecs = 900 - qh->host_us; 126 } 127 128 if (hsotg->periodic_usecs > max_claimed_usecs) { 129 dev_err(hsotg->dev, 130 "%s: already claimed usecs %d, required usecs %d\n", 131 __func__, hsotg->periodic_usecs, qh->host_us); 132 status = -ENOSPC; 133 } 134 135 return status; 136 } 137 138 /** 139 * pmap_schedule() - Schedule time in a periodic bitmap (pmap). 140 * 141 * @map: The bitmap representing the schedule; will be updated 142 * upon success. 143 * @bits_per_period: The schedule represents several periods. This is how many 144 * bits are in each period. It's assumed that the beginning 145 * of the schedule will repeat after its end. 146 * @periods_in_map: The number of periods in the schedule. 147 * @num_bits: The number of bits we need per period we want to reserve 148 * in this function call. 149 * @interval: How often we need to be scheduled for the reservation this 150 * time. 1 means every period. 2 means every other period. 151 * ...you get the picture? 152 * @start: The bit number to start at. Normally 0. Must be within 153 * the interval or we return failure right away. 154 * @only_one_period: Normally we'll allow picking a start anywhere within the 155 * first interval, since we can still make all repetition 156 * requirements by doing that. However, if you pass true 157 * here then we'll return failure if we can't fit within 158 * the period that "start" is in. 159 * 160 * The idea here is that we want to schedule time for repeating events that all 161 * want the same resource. The resource is divided into fixed-sized periods 162 * and the events want to repeat every "interval" periods. The schedule 163 * granularity is one bit. 164 * 165 * To keep things "simple", we'll represent our schedule with a bitmap that 166 * contains a fixed number of periods. This gets rid of a lot of complexity 167 * but does mean that we need to handle things specially (and non-ideally) if 168 * the number of the periods in the schedule doesn't match well with the 169 * intervals that we're trying to schedule. 170 * 171 * Here's an explanation of the scheme we'll implement, assuming 8 periods. 172 * - If interval is 1, we need to take up space in each of the 8 173 * periods we're scheduling. Easy. 174 * - If interval is 2, we need to take up space in half of the 175 * periods. Again, easy. 176 * - If interval is 3, we actually need to fall back to interval 1. 177 * Why? Because we might need time in any period. AKA for the 178 * first 8 periods, we'll be in slot 0, 3, 6. Then we'll be 179 * in slot 1, 4, 7. Then we'll be in 2, 5. Then we'll be back to 180 * 0, 3, and 6. Since we could be in any frame we need to reserve 181 * for all of them. Sucks, but that's what you gotta do. Note that 182 * if we were instead scheduling 8 * 3 = 24 we'd do much better, but 183 * then we need more memory and time to do scheduling. 184 * - If interval is 4, easy. 185 * - If interval is 5, we again need interval 1. The schedule will be 186 * 0, 5, 2, 7, 4, 1, 6, 3, 0 187 * - If interval is 6, we need interval 2. 0, 6, 4, 2. 188 * - If interval is 7, we need interval 1. 189 * - If interval is 8, we need interval 8. 190 * 191 * If you do the math, you'll see that we need to pretend that interval is 192 * equal to the greatest_common_divisor(interval, periods_in_map). 193 * 194 * Note that at the moment this function tends to front-pack the schedule. 195 * In some cases that's really non-ideal (it's hard to schedule things that 196 * need to repeat every period). In other cases it's perfect (you can easily 197 * schedule bigger, less often repeating things). 198 * 199 * Here's the algorithm in action (8 periods, 5 bits per period): 200 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0 201 * |*****| ***|*****| ***|*****| ***|*****| ***| OK 3 bits, intv 3 at 2 202 * |*****|* ***|*****| ***|*****|* ***|*****| ***| OK 1 bits, intv 4 at 5 203 * |** |* |** | |** |* |** | | Remv 3 bits, intv 3 at 2 204 * |*** |* |*** | |*** |* |*** | | OK 1 bits, intv 6 at 2 205 * |**** |* * |**** | * |**** |* * |**** | * | OK 1 bits, intv 1 at 3 206 * |**** |**** |**** | *** |**** |**** |**** | *** | OK 2 bits, intv 2 at 6 207 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 1 at 4 208 * |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1 209 * | ***|*****| ***| ****| ***|*****| ***| ****| Remv 2 bits, intv 2 at 0 210 * | ***| ****| ***| ****| ***| ****| ***| ****| Remv 1 bits, intv 4 at 5 211 * | **| ****| **| ****| **| ****| **| ****| Remv 1 bits, intv 6 at 2 212 * | *| ** *| *| ** *| *| ** *| *| ** *| Remv 1 bits, intv 1 at 3 213 * | *| *| *| *| *| *| *| *| Remv 2 bits, intv 2 at 6 214 * | | | | | | | | | Remv 1 bits, intv 1 at 4 215 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0 216 * |*** | |** | |*** | |** | | OK 1 bits, intv 4 at 2 217 * |*****| |** **| |*****| |** **| | OK 2 bits, intv 2 at 3 218 * |*****|* |** **| |*****|* |** **| | OK 1 bits, intv 4 at 5 219 * |*****|*** |** **| ** |*****|*** |** **| ** | OK 2 bits, intv 2 at 6 220 * |*****|*****|** **| ****|*****|*****|** **| ****| OK 2 bits, intv 2 at 8 221 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 4 at 12 222 * 223 * This function is pretty generic and could be easily abstracted if anything 224 * needed similar scheduling. 225 * 226 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the 227 * unschedule routine. The map bitmap will be updated on a non-error result. 228 */ 229 static int pmap_schedule(unsigned long *map, int bits_per_period, 230 int periods_in_map, int num_bits, 231 int interval, int start, bool only_one_period) 232 { 233 int interval_bits; 234 int to_reserve; 235 int first_end; 236 int i; 237 238 if (num_bits > bits_per_period) 239 return -ENOSPC; 240 241 /* Adjust interval as per description */ 242 interval = gcd(interval, periods_in_map); 243 244 interval_bits = bits_per_period * interval; 245 to_reserve = periods_in_map / interval; 246 247 /* If start has gotten us past interval then we can't schedule */ 248 if (start >= interval_bits) 249 return -ENOSPC; 250 251 if (only_one_period) 252 /* Must fit within same period as start; end at begin of next */ 253 first_end = (start / bits_per_period + 1) * bits_per_period; 254 else 255 /* Can fit anywhere in the first interval */ 256 first_end = interval_bits; 257 258 /* 259 * We'll try to pick the first repetition, then see if that time 260 * is free for each of the subsequent repetitions. If it's not 261 * we'll adjust the start time for the next search of the first 262 * repetition. 263 */ 264 while (start + num_bits <= first_end) { 265 int end; 266 267 /* Need to stay within this period */ 268 end = (start / bits_per_period + 1) * bits_per_period; 269 270 /* Look for num_bits us in this microframe starting at start */ 271 start = bitmap_find_next_zero_area(map, end, start, num_bits, 272 0); 273 274 /* 275 * We should get start >= end if we fail. We might be 276 * able to check the next microframe depending on the 277 * interval, so continue on (start already updated). 278 */ 279 if (start >= end) { 280 start = end; 281 continue; 282 } 283 284 /* At this point we have a valid point for first one */ 285 for (i = 1; i < to_reserve; i++) { 286 int ith_start = start + interval_bits * i; 287 int ith_end = end + interval_bits * i; 288 int ret; 289 290 /* Use this as a dumb "check if bits are 0" */ 291 ret = bitmap_find_next_zero_area( 292 map, ith_start + num_bits, ith_start, num_bits, 293 0); 294 295 /* We got the right place, continue checking */ 296 if (ret == ith_start) 297 continue; 298 299 /* Move start up for next time and exit for loop */ 300 ith_start = bitmap_find_next_zero_area( 301 map, ith_end, ith_start, num_bits, 0); 302 if (ith_start >= ith_end) 303 /* Need a while new period next time */ 304 start = end; 305 else 306 start = ith_start - interval_bits * i; 307 break; 308 } 309 310 /* If didn't exit the for loop with a break, we have success */ 311 if (i == to_reserve) 312 break; 313 } 314 315 if (start + num_bits > first_end) 316 return -ENOSPC; 317 318 for (i = 0; i < to_reserve; i++) { 319 int ith_start = start + interval_bits * i; 320 321 bitmap_set(map, ith_start, num_bits); 322 } 323 324 return start; 325 } 326 327 /** 328 * pmap_unschedule() - Undo work done by pmap_schedule() 329 * 330 * @map: See pmap_schedule(). 331 * @bits_per_period: See pmap_schedule(). 332 * @periods_in_map: See pmap_schedule(). 333 * @num_bits: The number of bits that was passed to schedule. 334 * @interval: The interval that was passed to schedule. 335 * @start: The return value from pmap_schedule(). 336 */ 337 static void pmap_unschedule(unsigned long *map, int bits_per_period, 338 int periods_in_map, int num_bits, 339 int interval, int start) 340 { 341 int interval_bits; 342 int to_release; 343 int i; 344 345 /* Adjust interval as per description in pmap_schedule() */ 346 interval = gcd(interval, periods_in_map); 347 348 interval_bits = bits_per_period * interval; 349 to_release = periods_in_map / interval; 350 351 for (i = 0; i < to_release; i++) { 352 int ith_start = start + interval_bits * i; 353 354 bitmap_clear(map, ith_start, num_bits); 355 } 356 } 357 358 /** 359 * dwc2_get_ls_map() - Get the map used for the given qh 360 * 361 * @hsotg: The HCD state structure for the DWC OTG controller. 362 * @qh: QH for the periodic transfer. 363 * 364 * We'll always get the periodic map out of our TT. Note that even if we're 365 * running the host straight in low speed / full speed mode it appears as if 366 * a TT is allocated for us, so we'll use it. If that ever changes we can 367 * add logic here to get a map out of "hsotg" if !qh->do_split. 368 * 369 * Returns: the map or NULL if a map couldn't be found. 370 */ 371 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg, 372 struct dwc2_qh *qh) 373 { 374 unsigned long *map; 375 376 /* Don't expect to be missing a TT and be doing low speed scheduling */ 377 if (WARN_ON(!qh->dwc_tt)) 378 return NULL; 379 380 /* Get the map and adjust if this is a multi_tt hub */ 381 map = qh->dwc_tt->periodic_bitmaps; 382 if (qh->dwc_tt->usb_tt->multi) 383 map += DWC2_ELEMENTS_PER_LS_BITMAP * qh->ttport; 384 385 return map; 386 } 387 388 #ifdef DWC2_PRINT_SCHEDULE 389 /* 390 * cat_printf() - A printf() + strcat() helper 391 * 392 * This is useful for concatenating a bunch of strings where each string is 393 * constructed using printf. 394 * 395 * @buf: The destination buffer; will be updated to point after the printed 396 * data. 397 * @size: The number of bytes in the buffer (includes space for '\0'). 398 * @fmt: The format for printf. 399 * @...: The args for printf. 400 */ 401 static __printf(3, 4) 402 void cat_printf(char **buf, size_t *size, const char *fmt, ...) 403 { 404 va_list args; 405 int i; 406 407 if (*size == 0) 408 return; 409 410 va_start(args, fmt); 411 i = vsnprintf(*buf, *size, fmt, args); 412 va_end(args); 413 414 if (i >= *size) { 415 (*buf)[*size - 1] = '\0'; 416 *buf += *size; 417 *size = 0; 418 } else { 419 *buf += i; 420 *size -= i; 421 } 422 } 423 424 /* 425 * pmap_print() - Print the given periodic map 426 * 427 * Will attempt to print out the periodic schedule. 428 * 429 * @map: See pmap_schedule(). 430 * @bits_per_period: See pmap_schedule(). 431 * @periods_in_map: See pmap_schedule(). 432 * @period_name: The name of 1 period, like "uFrame" 433 * @units: The name of the units, like "us". 434 * @print_fn: The function to call for printing. 435 * @print_data: Opaque data to pass to the print function. 436 */ 437 static void pmap_print(unsigned long *map, int bits_per_period, 438 int periods_in_map, const char *period_name, 439 const char *units, 440 void (*print_fn)(const char *str, void *data), 441 void *print_data) 442 { 443 int period; 444 445 for (period = 0; period < periods_in_map; period++) { 446 char tmp[64]; 447 char *buf = tmp; 448 size_t buf_size = sizeof(tmp); 449 int period_start = period * bits_per_period; 450 int period_end = period_start + bits_per_period; 451 int start = 0; 452 int count = 0; 453 bool printed = false; 454 int i; 455 456 for (i = period_start; i < period_end + 1; i++) { 457 /* Handle case when ith bit is set */ 458 if (i < period_end && 459 bitmap_find_next_zero_area(map, i + 1, 460 i, 1, 0) != i) { 461 if (count == 0) 462 start = i - period_start; 463 count++; 464 continue; 465 } 466 467 /* ith bit isn't set; don't care if count == 0 */ 468 if (count == 0) 469 continue; 470 471 if (!printed) 472 cat_printf(&buf, &buf_size, "%s %d: ", 473 period_name, period); 474 else 475 cat_printf(&buf, &buf_size, ", "); 476 printed = true; 477 478 cat_printf(&buf, &buf_size, "%d %s -%3d %s", start, 479 units, start + count - 1, units); 480 count = 0; 481 } 482 483 if (printed) 484 print_fn(tmp, print_data); 485 } 486 } 487 488 struct dwc2_qh_print_data { 489 struct dwc2_hsotg *hsotg; 490 struct dwc2_qh *qh; 491 }; 492 493 /** 494 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print() 495 * 496 * @str: The string to print 497 * @data: A pointer to a struct dwc2_qh_print_data 498 */ 499 static void dwc2_qh_print(const char *str, void *data) 500 { 501 struct dwc2_qh_print_data *print_data = data; 502 503 dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str); 504 } 505 506 /** 507 * dwc2_qh_schedule_print() - Print the periodic schedule 508 * 509 * @hsotg: The HCD state structure for the DWC OTG controller. 510 * @qh: QH to print. 511 */ 512 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg, 513 struct dwc2_qh *qh) 514 { 515 struct dwc2_qh_print_data print_data = { hsotg, qh }; 516 int i; 517 518 /* 519 * The printing functions are quite slow and inefficient. 520 * If we don't have tracing turned on, don't run unless the special 521 * define is turned on. 522 */ 523 524 if (qh->schedule_low_speed) { 525 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 526 527 dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us", 528 qh, qh->device_us, 529 DWC2_ROUND_US_TO_SLICE(qh->device_us), 530 DWC2_US_PER_SLICE * qh->ls_start_schedule_slice); 531 532 if (map) { 533 dwc2_sch_dbg(hsotg, 534 "QH=%p Whole low/full speed map %p now:\n", 535 qh, map); 536 pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 537 DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices", 538 dwc2_qh_print, &print_data); 539 } 540 } 541 542 for (i = 0; i < qh->num_hs_transfers; i++) { 543 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i; 544 int uframe = trans_time->start_schedule_us / 545 DWC2_HS_PERIODIC_US_PER_UFRAME; 546 int rel_us = trans_time->start_schedule_us % 547 DWC2_HS_PERIODIC_US_PER_UFRAME; 548 549 dwc2_sch_dbg(hsotg, 550 "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n", 551 qh, i, trans_time->duration_us, uframe, rel_us); 552 } 553 if (qh->num_hs_transfers) { 554 dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh); 555 pmap_print(hsotg->hs_periodic_bitmap, 556 DWC2_HS_PERIODIC_US_PER_UFRAME, 557 DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us", 558 dwc2_qh_print, &print_data); 559 } 560 } 561 #else 562 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg, 563 struct dwc2_qh *qh) {}; 564 #endif 565 566 /** 567 * dwc2_ls_pmap_schedule() - Schedule a low speed QH 568 * 569 * @hsotg: The HCD state structure for the DWC OTG controller. 570 * @qh: QH for the periodic transfer. 571 * @search_slice: We'll start trying to schedule at the passed slice. 572 * Remember that slices are the units of the low speed 573 * schedule (think 25us or so). 574 * 575 * Wraps pmap_schedule() with the right parameters for low speed scheduling. 576 * 577 * Normally we schedule low speed devices on the map associated with the TT. 578 * 579 * Returns: 0 for success or an error code. 580 */ 581 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 582 int search_slice) 583 { 584 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE); 585 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 586 int slice; 587 588 if (!map) 589 return -EINVAL; 590 591 /* 592 * Schedule on the proper low speed map with our low speed scheduling 593 * parameters. Note that we use the "device_interval" here since 594 * we want the low speed interval and the only way we'd be in this 595 * function is if the device is low speed. 596 * 597 * If we happen to be doing low speed and high speed scheduling for the 598 * same transaction (AKA we have a split) we always do low speed first. 599 * That means we can always pass "false" for only_one_period (that 600 * parameters is only useful when we're trying to get one schedule to 601 * match what we already planned in the other schedule). 602 */ 603 slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 604 DWC2_LS_SCHEDULE_FRAMES, slices, 605 qh->device_interval, search_slice, false); 606 607 if (slice < 0) 608 return slice; 609 610 qh->ls_start_schedule_slice = slice; 611 return 0; 612 } 613 614 /** 615 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule() 616 * 617 * @hsotg: The HCD state structure for the DWC OTG controller. 618 * @qh: QH for the periodic transfer. 619 */ 620 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg, 621 struct dwc2_qh *qh) 622 { 623 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE); 624 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 625 626 /* Schedule should have failed, so no worries about no error code */ 627 if (!map) 628 return; 629 630 pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 631 DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval, 632 qh->ls_start_schedule_slice); 633 } 634 635 /** 636 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule 637 * 638 * This will schedule something on the main dwc2 schedule. 639 * 640 * We'll start looking in qh->hs_transfers[index].start_schedule_us. We'll 641 * update this with the result upon success. We also use the duration from 642 * the same structure. 643 * 644 * @hsotg: The HCD state structure for the DWC OTG controller. 645 * @qh: QH for the periodic transfer. 646 * @only_one_period: If true we will limit ourselves to just looking at 647 * one period (aka one 100us chunk). This is used if we have 648 * already scheduled something on the low speed schedule and 649 * need to find something that matches on the high speed one. 650 * @index: The index into qh->hs_transfers that we're working with. 651 * 652 * Returns: 0 for success or an error code. Upon success the 653 * dwc2_hs_transfer_time specified by "index" will be updated. 654 */ 655 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 656 bool only_one_period, int index) 657 { 658 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index; 659 int us; 660 661 us = pmap_schedule(hsotg->hs_periodic_bitmap, 662 DWC2_HS_PERIODIC_US_PER_UFRAME, 663 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us, 664 qh->host_interval, trans_time->start_schedule_us, 665 only_one_period); 666 667 if (us < 0) 668 return us; 669 670 trans_time->start_schedule_us = us; 671 return 0; 672 } 673 674 /** 675 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule() 676 * 677 * @hsotg: The HCD state structure for the DWC OTG controller. 678 * @qh: QH for the periodic transfer. 679 */ 680 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg, 681 struct dwc2_qh *qh, int index) 682 { 683 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index; 684 685 pmap_unschedule(hsotg->hs_periodic_bitmap, 686 DWC2_HS_PERIODIC_US_PER_UFRAME, 687 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us, 688 qh->host_interval, trans_time->start_schedule_us); 689 } 690 691 /** 692 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer. 693 * 694 * This is the most complicated thing in USB. We have to find matching time 695 * in both the global high speed schedule for the port and the low speed 696 * schedule for the TT associated with the given device. 697 * 698 * Being here means that the host must be running in high speed mode and the 699 * device is in low or full speed mode (and behind a hub). 700 * 701 * @hsotg: The HCD state structure for the DWC OTG controller. 702 * @qh: QH for the periodic transfer. 703 */ 704 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg, 705 struct dwc2_qh *qh) 706 { 707 int bytecount = dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp); 708 int ls_search_slice; 709 int err = 0; 710 int host_interval_in_sched; 711 712 /* 713 * The interval (how often to repeat) in the actual host schedule. 714 * See pmap_schedule() for gcd() explanation. 715 */ 716 host_interval_in_sched = gcd(qh->host_interval, 717 DWC2_HS_SCHEDULE_UFRAMES); 718 719 /* 720 * We always try to find space in the low speed schedule first, then 721 * try to find high speed time that matches. If we don't, we'll bump 722 * up the place we start searching in the low speed schedule and try 723 * again. To start we'll look right at the beginning of the low speed 724 * schedule. 725 * 726 * Note that this will tend to front-load the high speed schedule. 727 * We may eventually want to try to avoid this by either considering 728 * both schedules together or doing some sort of round robin. 729 */ 730 ls_search_slice = 0; 731 732 while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) { 733 int start_s_uframe; 734 int ssplit_s_uframe; 735 int second_s_uframe; 736 int rel_uframe; 737 int first_count; 738 int middle_count; 739 int end_count; 740 int first_data_bytes; 741 int other_data_bytes; 742 int i; 743 744 if (qh->schedule_low_speed) { 745 err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice); 746 747 /* 748 * If we got an error here there's no other magic we 749 * can do, so bail. All the looping above is only 750 * helpful to redo things if we got a low speed slot 751 * and then couldn't find a matching high speed slot. 752 */ 753 if (err) 754 return err; 755 } else { 756 /* Must be missing the tt structure? Why? */ 757 WARN_ON_ONCE(1); 758 } 759 760 /* 761 * This will give us a number 0 - 7 if 762 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ... 763 */ 764 start_s_uframe = qh->ls_start_schedule_slice / 765 DWC2_SLICES_PER_UFRAME; 766 767 /* Get a number that's always 0 - 7 */ 768 rel_uframe = (start_s_uframe % 8); 769 770 /* 771 * If we were going to start in uframe 7 then we would need to 772 * issue a start split in uframe 6, which spec says is not OK. 773 * Move on to the next full frame (assuming there is one). 774 * 775 * See 11.18.4 Host Split Transaction Scheduling Requirements 776 * bullet 1. 777 */ 778 if (rel_uframe == 7) { 779 if (qh->schedule_low_speed) 780 dwc2_ls_pmap_unschedule(hsotg, qh); 781 ls_search_slice = 782 (qh->ls_start_schedule_slice / 783 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) * 784 DWC2_LS_PERIODIC_SLICES_PER_FRAME; 785 continue; 786 } 787 788 /* 789 * For ISOC in: 790 * - start split (frame -1) 791 * - complete split w/ data (frame +1) 792 * - complete split w/ data (frame +2) 793 * - ... 794 * - complete split w/ data (frame +num_data_packets) 795 * - complete split w/ data (frame +num_data_packets+1) 796 * - complete split w/ data (frame +num_data_packets+2, max 8) 797 * ...though if frame was "0" then max is 7... 798 * 799 * For ISOC out we might need to do: 800 * - start split w/ data (frame -1) 801 * - start split w/ data (frame +0) 802 * - ... 803 * - start split w/ data (frame +num_data_packets-2) 804 * 805 * For INTERRUPT in we might need to do: 806 * - start split (frame -1) 807 * - complete split w/ data (frame +1) 808 * - complete split w/ data (frame +2) 809 * - complete split w/ data (frame +3, max 8) 810 * 811 * For INTERRUPT out we might need to do: 812 * - start split w/ data (frame -1) 813 * - complete split (frame +1) 814 * - complete split (frame +2) 815 * - complete split (frame +3, max 8) 816 * 817 * Start adjusting! 818 */ 819 ssplit_s_uframe = (start_s_uframe + 820 host_interval_in_sched - 1) % 821 host_interval_in_sched; 822 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in) 823 second_s_uframe = start_s_uframe; 824 else 825 second_s_uframe = start_s_uframe + 1; 826 827 /* First data transfer might not be all 188 bytes. */ 828 first_data_bytes = 188 - 829 DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice % 830 DWC2_SLICES_PER_UFRAME), 831 DWC2_SLICES_PER_UFRAME); 832 if (first_data_bytes > bytecount) 833 first_data_bytes = bytecount; 834 other_data_bytes = bytecount - first_data_bytes; 835 836 /* 837 * For now, skip OUT xfers where first xfer is partial 838 * 839 * Main dwc2 code assumes: 840 * - INT transfers never get split in two. 841 * - ISOC transfers can always transfer 188 bytes the first 842 * time. 843 * 844 * Until that code is fixed, try again if the first transfer 845 * couldn't transfer everything. 846 * 847 * This code can be removed if/when the rest of dwc2 handles 848 * the above cases. Until it's fixed we just won't be able 849 * to schedule quite as tightly. 850 */ 851 if (!qh->ep_is_in && 852 (first_data_bytes != min_t(int, 188, bytecount))) { 853 dwc2_sch_dbg(hsotg, 854 "QH=%p avoiding broken 1st xfer (%d, %d)\n", 855 qh, first_data_bytes, bytecount); 856 if (qh->schedule_low_speed) 857 dwc2_ls_pmap_unschedule(hsotg, qh); 858 ls_search_slice = (start_s_uframe + 1) * 859 DWC2_SLICES_PER_UFRAME; 860 continue; 861 } 862 863 /* Start by assuming transfers for the bytes */ 864 qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188); 865 866 /* 867 * Everything except ISOC OUT has extra transfers. Rules are 868 * complicated. See 11.18.4 Host Split Transaction Scheduling 869 * Requirements bullet 3. 870 */ 871 if (qh->ep_type == USB_ENDPOINT_XFER_INT) { 872 if (rel_uframe == 6) 873 qh->num_hs_transfers += 2; 874 else 875 qh->num_hs_transfers += 3; 876 877 if (qh->ep_is_in) { 878 /* 879 * First is start split, middle/end is data. 880 * Allocate full data bytes for all data. 881 */ 882 first_count = 4; 883 middle_count = bytecount; 884 end_count = bytecount; 885 } else { 886 /* 887 * First is data, middle/end is complete. 888 * First transfer and second can have data. 889 * Rest should just have complete split. 890 */ 891 first_count = first_data_bytes; 892 middle_count = max_t(int, 4, other_data_bytes); 893 end_count = 4; 894 } 895 } else { 896 if (qh->ep_is_in) { 897 int last; 898 899 /* Account for the start split */ 900 qh->num_hs_transfers++; 901 902 /* Calculate "L" value from spec */ 903 last = rel_uframe + qh->num_hs_transfers + 1; 904 905 /* Start with basic case */ 906 if (last <= 6) 907 qh->num_hs_transfers += 2; 908 else 909 qh->num_hs_transfers += 1; 910 911 /* Adjust downwards */ 912 if (last >= 6 && rel_uframe == 0) 913 qh->num_hs_transfers--; 914 915 /* 1st = start; rest can contain data */ 916 first_count = 4; 917 middle_count = min_t(int, 188, bytecount); 918 end_count = middle_count; 919 } else { 920 /* All contain data, last might be smaller */ 921 first_count = first_data_bytes; 922 middle_count = min_t(int, 188, 923 other_data_bytes); 924 end_count = other_data_bytes % 188; 925 } 926 } 927 928 /* Assign durations per uFrame */ 929 qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count); 930 for (i = 1; i < qh->num_hs_transfers - 1; i++) 931 qh->hs_transfers[i].duration_us = 932 HS_USECS_ISO(middle_count); 933 if (qh->num_hs_transfers > 1) 934 qh->hs_transfers[qh->num_hs_transfers - 1].duration_us = 935 HS_USECS_ISO(end_count); 936 937 /* 938 * Assign start us. The call below to dwc2_hs_pmap_schedule() 939 * will start with these numbers but may adjust within the same 940 * microframe. 941 */ 942 qh->hs_transfers[0].start_schedule_us = 943 ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME; 944 for (i = 1; i < qh->num_hs_transfers; i++) 945 qh->hs_transfers[i].start_schedule_us = 946 ((second_s_uframe + i - 1) % 947 DWC2_HS_SCHEDULE_UFRAMES) * 948 DWC2_HS_PERIODIC_US_PER_UFRAME; 949 950 /* Try to schedule with filled in hs_transfers above */ 951 for (i = 0; i < qh->num_hs_transfers; i++) { 952 err = dwc2_hs_pmap_schedule(hsotg, qh, true, i); 953 if (err) 954 break; 955 } 956 957 /* If we scheduled all w/out breaking out then we're all good */ 958 if (i == qh->num_hs_transfers) 959 break; 960 961 for (; i >= 0; i--) 962 dwc2_hs_pmap_unschedule(hsotg, qh, i); 963 964 if (qh->schedule_low_speed) 965 dwc2_ls_pmap_unschedule(hsotg, qh); 966 967 /* Try again starting in the next microframe */ 968 ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME; 969 } 970 971 if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES) 972 return -ENOSPC; 973 974 return 0; 975 } 976 977 /** 978 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer. 979 * 980 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean 981 * interface. 982 * 983 * @hsotg: The HCD state structure for the DWC OTG controller. 984 * @qh: QH for the periodic transfer. 985 */ 986 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 987 { 988 /* In non-split host and device time are the same */ 989 WARN_ON(qh->host_us != qh->device_us); 990 WARN_ON(qh->host_interval != qh->device_interval); 991 WARN_ON(qh->num_hs_transfers != 1); 992 993 /* We'll have one transfer; init start to 0 before calling scheduler */ 994 qh->hs_transfers[0].start_schedule_us = 0; 995 qh->hs_transfers[0].duration_us = qh->host_us; 996 997 return dwc2_hs_pmap_schedule(hsotg, qh, false, 0); 998 } 999 1000 /** 1001 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer. 1002 * 1003 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean 1004 * interface. 1005 * 1006 * @hsotg: The HCD state structure for the DWC OTG controller. 1007 * @qh: QH for the periodic transfer. 1008 */ 1009 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1010 { 1011 /* In non-split host and device time are the same */ 1012 WARN_ON(qh->host_us != qh->device_us); 1013 WARN_ON(qh->host_interval != qh->device_interval); 1014 WARN_ON(!qh->schedule_low_speed); 1015 1016 /* Run on the main low speed schedule (no split = no hub = no TT) */ 1017 return dwc2_ls_pmap_schedule(hsotg, qh, 0); 1018 } 1019 1020 /** 1021 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer. 1022 * 1023 * Calls one of the 3 sub-function depending on what type of transfer this QH 1024 * is for. Also adds some printing. 1025 * 1026 * @hsotg: The HCD state structure for the DWC OTG controller. 1027 * @qh: QH for the periodic transfer. 1028 */ 1029 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1030 { 1031 int ret; 1032 1033 if (qh->dev_speed == USB_SPEED_HIGH) 1034 ret = dwc2_uframe_schedule_hs(hsotg, qh); 1035 else if (!qh->do_split) 1036 ret = dwc2_uframe_schedule_ls(hsotg, qh); 1037 else 1038 ret = dwc2_uframe_schedule_split(hsotg, qh); 1039 1040 if (ret) 1041 dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret); 1042 else 1043 dwc2_qh_schedule_print(hsotg, qh); 1044 1045 return ret; 1046 } 1047 1048 /** 1049 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule(). 1050 * 1051 * @hsotg: The HCD state structure for the DWC OTG controller. 1052 * @qh: QH for the periodic transfer. 1053 */ 1054 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1055 { 1056 int i; 1057 1058 for (i = 0; i < qh->num_hs_transfers; i++) 1059 dwc2_hs_pmap_unschedule(hsotg, qh, i); 1060 1061 if (qh->schedule_low_speed) 1062 dwc2_ls_pmap_unschedule(hsotg, qh); 1063 1064 dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh); 1065 } 1066 1067 /** 1068 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled 1069 * 1070 * Takes a qh that has already been scheduled (which means we know we have the 1071 * bandwdith reserved for us) and set the next_active_frame and the 1072 * start_active_frame. 1073 * 1074 * This is expected to be called on qh's that weren't previously actively 1075 * running. It just picks the next frame that we can fit into without any 1076 * thought about the past. 1077 * 1078 * @hsotg: The HCD state structure for the DWC OTG controller 1079 * @qh: QH for a periodic endpoint 1080 * 1081 */ 1082 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1083 { 1084 u16 frame_number; 1085 u16 earliest_frame; 1086 u16 next_active_frame; 1087 u16 relative_frame; 1088 u16 interval; 1089 1090 /* 1091 * Use the real frame number rather than the cached value as of the 1092 * last SOF to give us a little extra slop. 1093 */ 1094 frame_number = dwc2_hcd_get_frame_number(hsotg); 1095 1096 /* 1097 * We wouldn't want to start any earlier than the next frame just in 1098 * case the frame number ticks as we're doing this calculation. 1099 * 1100 * NOTE: if we could quantify how long till we actually get scheduled 1101 * we might be able to avoid the "+ 1" by looking at the upper part of 1102 * HFNUM (the FRREM field). For now we'll just use the + 1 though. 1103 */ 1104 earliest_frame = dwc2_frame_num_inc(frame_number, 1); 1105 next_active_frame = earliest_frame; 1106 1107 /* Get the "no microframe schduler" out of the way... */ 1108 if (!hsotg->params.uframe_sched) { 1109 if (qh->do_split) 1110 /* Splits are active at microframe 0 minus 1 */ 1111 next_active_frame |= 0x7; 1112 goto exit; 1113 } 1114 1115 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) { 1116 /* 1117 * We're either at high speed or we're doing a split (which 1118 * means we're talking high speed to a hub). In any case 1119 * the first frame should be based on when the first scheduled 1120 * event is. 1121 */ 1122 WARN_ON(qh->num_hs_transfers < 1); 1123 1124 relative_frame = qh->hs_transfers[0].start_schedule_us / 1125 DWC2_HS_PERIODIC_US_PER_UFRAME; 1126 1127 /* Adjust interval as per high speed schedule */ 1128 interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES); 1129 1130 } else { 1131 /* 1132 * Low or full speed directly on dwc2. Just about the same 1133 * as high speed but on a different schedule and with slightly 1134 * different adjustments. Note that this works because when 1135 * the host and device are both low speed then frames in the 1136 * controller tick at low speed. 1137 */ 1138 relative_frame = qh->ls_start_schedule_slice / 1139 DWC2_LS_PERIODIC_SLICES_PER_FRAME; 1140 interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES); 1141 } 1142 1143 /* Scheduler messed up if frame is past interval */ 1144 WARN_ON(relative_frame >= interval); 1145 1146 /* 1147 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've 1148 * done the gcd(), so it's safe to move to the beginning of the current 1149 * interval like this. 1150 * 1151 * After this we might be before earliest_frame, but don't worry, 1152 * we'll fix it... 1153 */ 1154 next_active_frame = (next_active_frame / interval) * interval; 1155 1156 /* 1157 * Actually choose to start at the frame number we've been 1158 * scheduled for. 1159 */ 1160 next_active_frame = dwc2_frame_num_inc(next_active_frame, 1161 relative_frame); 1162 1163 /* 1164 * We actually need 1 frame before since the next_active_frame is 1165 * the frame number we'll be put on the ready list and we won't be on 1166 * the bus until 1 frame later. 1167 */ 1168 next_active_frame = dwc2_frame_num_dec(next_active_frame, 1); 1169 1170 /* 1171 * By now we might actually be before the earliest_frame. Let's move 1172 * up intervals until we're not. 1173 */ 1174 while (dwc2_frame_num_gt(earliest_frame, next_active_frame)) 1175 next_active_frame = dwc2_frame_num_inc(next_active_frame, 1176 interval); 1177 1178 exit: 1179 qh->next_active_frame = next_active_frame; 1180 qh->start_active_frame = next_active_frame; 1181 1182 dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n", 1183 qh, frame_number, qh->next_active_frame); 1184 } 1185 1186 /** 1187 * dwc2_do_reserve() - Make a periodic reservation 1188 * 1189 * Try to allocate space in the periodic schedule. Depending on parameters 1190 * this might use the microframe scheduler or the dumb scheduler. 1191 * 1192 * @hsotg: The HCD state structure for the DWC OTG controller 1193 * @qh: QH for the periodic transfer. 1194 * 1195 * Returns: 0 upon success; error upon failure. 1196 */ 1197 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1198 { 1199 int status; 1200 1201 if (hsotg->params.uframe_sched) { 1202 status = dwc2_uframe_schedule(hsotg, qh); 1203 } else { 1204 status = dwc2_periodic_channel_available(hsotg); 1205 if (status) { 1206 dev_info(hsotg->dev, 1207 "%s: No host channel available for periodic transfer\n", 1208 __func__); 1209 return status; 1210 } 1211 1212 status = dwc2_check_periodic_bandwidth(hsotg, qh); 1213 } 1214 1215 if (status) { 1216 dev_dbg(hsotg->dev, 1217 "%s: Insufficient periodic bandwidth for periodic transfer\n", 1218 __func__); 1219 return status; 1220 } 1221 1222 if (!hsotg->params.uframe_sched) 1223 /* Reserve periodic channel */ 1224 hsotg->periodic_channels++; 1225 1226 /* Update claimed usecs per (micro)frame */ 1227 hsotg->periodic_usecs += qh->host_us; 1228 1229 dwc2_pick_first_frame(hsotg, qh); 1230 1231 return 0; 1232 } 1233 1234 /** 1235 * dwc2_do_unreserve() - Actually release the periodic reservation 1236 * 1237 * This function actually releases the periodic bandwidth that was reserved 1238 * by the given qh. 1239 * 1240 * @hsotg: The HCD state structure for the DWC OTG controller 1241 * @qh: QH for the periodic transfer. 1242 */ 1243 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1244 { 1245 assert_spin_locked(&hsotg->lock); 1246 1247 WARN_ON(!qh->unreserve_pending); 1248 1249 /* No more unreserve pending--we're doing it */ 1250 qh->unreserve_pending = false; 1251 1252 if (WARN_ON(!list_empty(&qh->qh_list_entry))) 1253 list_del_init(&qh->qh_list_entry); 1254 1255 /* Update claimed usecs per (micro)frame */ 1256 hsotg->periodic_usecs -= qh->host_us; 1257 1258 if (hsotg->params.uframe_sched) { 1259 dwc2_uframe_unschedule(hsotg, qh); 1260 } else { 1261 /* Release periodic channel reservation */ 1262 hsotg->periodic_channels--; 1263 } 1264 } 1265 1266 /** 1267 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation 1268 * 1269 * According to the kernel doc for usb_submit_urb() (specifically the part about 1270 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as 1271 * long as a device driver keeps submitting. Since we're using HCD_BH to give 1272 * back the URB we need to give the driver a little bit of time before we 1273 * release the reservation. This worker is called after the appropriate 1274 * delay. 1275 * 1276 * @work: Pointer to a qh unreserve_work. 1277 */ 1278 static void dwc2_unreserve_timer_fn(struct timer_list *t) 1279 { 1280 struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer); 1281 struct dwc2_hsotg *hsotg = qh->hsotg; 1282 unsigned long flags; 1283 1284 /* 1285 * Wait for the lock, or for us to be scheduled again. We 1286 * could be scheduled again if: 1287 * - We started executing but didn't get the lock yet. 1288 * - A new reservation came in, but cancel didn't take effect 1289 * because we already started executing. 1290 * - The timer has been kicked again. 1291 * In that case cancel and wait for the next call. 1292 */ 1293 while (!spin_trylock_irqsave(&hsotg->lock, flags)) { 1294 if (timer_pending(&qh->unreserve_timer)) 1295 return; 1296 } 1297 1298 /* 1299 * Might be no more unreserve pending if: 1300 * - We started executing but didn't get the lock yet. 1301 * - A new reservation came in, but cancel didn't take effect 1302 * because we already started executing. 1303 * 1304 * We can't put this in the loop above because unreserve_pending needs 1305 * to be accessed under lock, so we can only check it once we got the 1306 * lock. 1307 */ 1308 if (qh->unreserve_pending) 1309 dwc2_do_unreserve(hsotg, qh); 1310 1311 spin_unlock_irqrestore(&hsotg->lock, flags); 1312 } 1313 1314 /** 1315 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a 1316 * host channel is large enough to handle the maximum data transfer in a single 1317 * (micro)frame for a periodic transfer 1318 * 1319 * @hsotg: The HCD state structure for the DWC OTG controller 1320 * @qh: QH for a periodic endpoint 1321 * 1322 * Return: 0 if successful, negative error code otherwise 1323 */ 1324 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg, 1325 struct dwc2_qh *qh) 1326 { 1327 u32 max_xfer_size; 1328 u32 max_channel_xfer_size; 1329 int status = 0; 1330 1331 max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp); 1332 max_channel_xfer_size = hsotg->params.max_transfer_size; 1333 1334 if (max_xfer_size > max_channel_xfer_size) { 1335 dev_err(hsotg->dev, 1336 "%s: Periodic xfer length %d > max xfer length for channel %d\n", 1337 __func__, max_xfer_size, max_channel_xfer_size); 1338 status = -ENOSPC; 1339 } 1340 1341 return status; 1342 } 1343 1344 /** 1345 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in 1346 * the periodic schedule 1347 * 1348 * @hsotg: The HCD state structure for the DWC OTG controller 1349 * @qh: QH for the periodic transfer. The QH should already contain the 1350 * scheduling information. 1351 * 1352 * Return: 0 if successful, negative error code otherwise 1353 */ 1354 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1355 { 1356 int status; 1357 1358 status = dwc2_check_max_xfer_size(hsotg, qh); 1359 if (status) { 1360 dev_dbg(hsotg->dev, 1361 "%s: Channel max transfer size too small for periodic transfer\n", 1362 __func__); 1363 return status; 1364 } 1365 1366 /* Cancel pending unreserve; if canceled OK, unreserve was pending */ 1367 if (del_timer(&qh->unreserve_timer)) 1368 WARN_ON(!qh->unreserve_pending); 1369 1370 /* 1371 * Only need to reserve if there's not an unreserve pending, since if an 1372 * unreserve is pending then by definition our old reservation is still 1373 * valid. Unreserve might still be pending even if we didn't cancel if 1374 * dwc2_unreserve_timer_fn() already started. Code in the timer handles 1375 * that case. 1376 */ 1377 if (!qh->unreserve_pending) { 1378 status = dwc2_do_reserve(hsotg, qh); 1379 if (status) 1380 return status; 1381 } else { 1382 /* 1383 * It might have been a while, so make sure that frame_number 1384 * is still good. Note: we could also try to use the similar 1385 * dwc2_next_periodic_start() but that schedules much more 1386 * tightly and we might need to hurry and queue things up. 1387 */ 1388 if (dwc2_frame_num_le(qh->next_active_frame, 1389 hsotg->frame_number)) 1390 dwc2_pick_first_frame(hsotg, qh); 1391 } 1392 1393 qh->unreserve_pending = 0; 1394 1395 if (hsotg->params.dma_desc_enable) 1396 /* Don't rely on SOF and start in ready schedule */ 1397 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready); 1398 else 1399 /* Always start in inactive schedule */ 1400 list_add_tail(&qh->qh_list_entry, 1401 &hsotg->periodic_sched_inactive); 1402 1403 return 0; 1404 } 1405 1406 /** 1407 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer 1408 * from the periodic schedule 1409 * 1410 * @hsotg: The HCD state structure for the DWC OTG controller 1411 * @qh: QH for the periodic transfer 1412 */ 1413 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg, 1414 struct dwc2_qh *qh) 1415 { 1416 bool did_modify; 1417 1418 assert_spin_locked(&hsotg->lock); 1419 1420 /* 1421 * Schedule the unreserve to happen in a little bit. Cases here: 1422 * - Unreserve worker might be sitting there waiting to grab the lock. 1423 * In this case it will notice it's been schedule again and will 1424 * quit. 1425 * - Unreserve worker might not be scheduled. 1426 * 1427 * We should never already be scheduled since dwc2_schedule_periodic() 1428 * should have canceled the scheduled unreserve timer (hence the 1429 * warning on did_modify). 1430 * 1431 * We add + 1 to the timer to guarantee that at least 1 jiffy has 1432 * passed (otherwise if the jiffy counter might tick right after we 1433 * read it and we'll get no delay). 1434 */ 1435 did_modify = mod_timer(&qh->unreserve_timer, 1436 jiffies + DWC2_UNRESERVE_DELAY + 1); 1437 WARN_ON(did_modify); 1438 qh->unreserve_pending = 1; 1439 1440 list_del_init(&qh->qh_list_entry); 1441 } 1442 1443 /** 1444 * dwc2_qh_init() - Initializes a QH structure 1445 * 1446 * @hsotg: The HCD state structure for the DWC OTG controller 1447 * @qh: The QH to init 1448 * @urb: Holds the information about the device/endpoint needed to initialize 1449 * the QH 1450 * @mem_flags: Flags for allocating memory. 1451 */ 1452 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 1453 struct dwc2_hcd_urb *urb, gfp_t mem_flags) 1454 { 1455 int dev_speed = dwc2_host_get_speed(hsotg, urb->priv); 1456 u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info); 1457 bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info); 1458 bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC); 1459 bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT); 1460 u32 hprt = dwc2_readl(hsotg->regs + HPRT0); 1461 u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 1462 bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED && 1463 dev_speed != USB_SPEED_HIGH); 1464 int maxp = dwc2_hcd_get_mps(&urb->pipe_info); 1465 int bytecount = dwc2_hb_mult(maxp) * dwc2_max_packet(maxp); 1466 char *speed, *type; 1467 1468 /* Initialize QH */ 1469 qh->hsotg = hsotg; 1470 timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0); 1471 qh->ep_type = ep_type; 1472 qh->ep_is_in = ep_is_in; 1473 1474 qh->data_toggle = DWC2_HC_PID_DATA0; 1475 qh->maxp = maxp; 1476 INIT_LIST_HEAD(&qh->qtd_list); 1477 INIT_LIST_HEAD(&qh->qh_list_entry); 1478 1479 qh->do_split = do_split; 1480 qh->dev_speed = dev_speed; 1481 1482 if (ep_is_int || ep_is_isoc) { 1483 /* Compute scheduling parameters once and save them */ 1484 int host_speed = do_split ? USB_SPEED_HIGH : dev_speed; 1485 struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv, 1486 mem_flags, 1487 &qh->ttport); 1488 int device_ns; 1489 1490 qh->dwc_tt = dwc_tt; 1491 1492 qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in, 1493 ep_is_isoc, bytecount)); 1494 device_ns = usb_calc_bus_time(dev_speed, ep_is_in, 1495 ep_is_isoc, bytecount); 1496 1497 if (do_split && dwc_tt) 1498 device_ns += dwc_tt->usb_tt->think_time; 1499 qh->device_us = NS_TO_US(device_ns); 1500 1501 qh->device_interval = urb->interval; 1502 qh->host_interval = urb->interval * (do_split ? 8 : 1); 1503 1504 /* 1505 * Schedule low speed if we're running the host in low or 1506 * full speed OR if we've got a "TT" to deal with to access this 1507 * device. 1508 */ 1509 qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED || 1510 dwc_tt; 1511 1512 if (do_split) { 1513 /* We won't know num transfers until we schedule */ 1514 qh->num_hs_transfers = -1; 1515 } else if (dev_speed == USB_SPEED_HIGH) { 1516 qh->num_hs_transfers = 1; 1517 } else { 1518 qh->num_hs_transfers = 0; 1519 } 1520 1521 /* We'll schedule later when we have something to do */ 1522 } 1523 1524 switch (dev_speed) { 1525 case USB_SPEED_LOW: 1526 speed = "low"; 1527 break; 1528 case USB_SPEED_FULL: 1529 speed = "full"; 1530 break; 1531 case USB_SPEED_HIGH: 1532 speed = "high"; 1533 break; 1534 default: 1535 speed = "?"; 1536 break; 1537 } 1538 1539 switch (qh->ep_type) { 1540 case USB_ENDPOINT_XFER_ISOC: 1541 type = "isochronous"; 1542 break; 1543 case USB_ENDPOINT_XFER_INT: 1544 type = "interrupt"; 1545 break; 1546 case USB_ENDPOINT_XFER_CONTROL: 1547 type = "control"; 1548 break; 1549 case USB_ENDPOINT_XFER_BULK: 1550 type = "bulk"; 1551 break; 1552 default: 1553 type = "?"; 1554 break; 1555 } 1556 1557 dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type, 1558 speed, bytecount); 1559 dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh, 1560 dwc2_hcd_get_dev_addr(&urb->pipe_info), 1561 dwc2_hcd_get_ep_num(&urb->pipe_info), 1562 ep_is_in ? "IN" : "OUT"); 1563 if (ep_is_int || ep_is_isoc) { 1564 dwc2_sch_dbg(hsotg, 1565 "QH=%p ...duration: host=%d us, device=%d us\n", 1566 qh, qh->host_us, qh->device_us); 1567 dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n", 1568 qh, qh->host_interval, qh->device_interval); 1569 if (qh->schedule_low_speed) 1570 dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n", 1571 qh, dwc2_get_ls_map(hsotg, qh)); 1572 } 1573 } 1574 1575 /** 1576 * dwc2_hcd_qh_create() - Allocates and initializes a QH 1577 * 1578 * @hsotg: The HCD state structure for the DWC OTG controller 1579 * @urb: Holds the information about the device/endpoint needed 1580 * to initialize the QH 1581 * @atomic_alloc: Flag to do atomic allocation if needed 1582 * 1583 * Return: Pointer to the newly allocated QH, or NULL on error 1584 */ 1585 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg, 1586 struct dwc2_hcd_urb *urb, 1587 gfp_t mem_flags) 1588 { 1589 struct dwc2_qh *qh; 1590 1591 if (!urb->priv) 1592 return NULL; 1593 1594 /* Allocate memory */ 1595 qh = kzalloc(sizeof(*qh), mem_flags); 1596 if (!qh) 1597 return NULL; 1598 1599 dwc2_qh_init(hsotg, qh, urb, mem_flags); 1600 1601 if (hsotg->params.dma_desc_enable && 1602 dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) { 1603 dwc2_hcd_qh_free(hsotg, qh); 1604 return NULL; 1605 } 1606 1607 return qh; 1608 } 1609 1610 /** 1611 * dwc2_hcd_qh_free() - Frees the QH 1612 * 1613 * @hsotg: HCD instance 1614 * @qh: The QH to free 1615 * 1616 * QH should already be removed from the list. QTD list should already be empty 1617 * if called from URB Dequeue. 1618 * 1619 * Must NOT be called with interrupt disabled or spinlock held 1620 */ 1621 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1622 { 1623 /* Make sure any unreserve work is finished. */ 1624 if (del_timer_sync(&qh->unreserve_timer)) { 1625 unsigned long flags; 1626 1627 spin_lock_irqsave(&hsotg->lock, flags); 1628 dwc2_do_unreserve(hsotg, qh); 1629 spin_unlock_irqrestore(&hsotg->lock, flags); 1630 } 1631 dwc2_host_put_tt_info(hsotg, qh->dwc_tt); 1632 1633 if (qh->desc_list) 1634 dwc2_hcd_qh_free_ddma(hsotg, qh); 1635 kfree(qh); 1636 } 1637 1638 /** 1639 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic 1640 * schedule if it is not already in the schedule. If the QH is already in 1641 * the schedule, no action is taken. 1642 * 1643 * @hsotg: The HCD state structure for the DWC OTG controller 1644 * @qh: The QH to add 1645 * 1646 * Return: 0 if successful, negative error code otherwise 1647 */ 1648 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1649 { 1650 int status; 1651 u32 intr_mask; 1652 1653 if (dbg_qh(qh)) 1654 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1655 1656 if (!list_empty(&qh->qh_list_entry)) 1657 /* QH already in a schedule */ 1658 return 0; 1659 1660 /* Add the new QH to the appropriate schedule */ 1661 if (dwc2_qh_is_non_per(qh)) { 1662 /* Schedule right away */ 1663 qh->start_active_frame = hsotg->frame_number; 1664 qh->next_active_frame = qh->start_active_frame; 1665 1666 /* Always start in inactive schedule */ 1667 list_add_tail(&qh->qh_list_entry, 1668 &hsotg->non_periodic_sched_inactive); 1669 return 0; 1670 } 1671 1672 status = dwc2_schedule_periodic(hsotg, qh); 1673 if (status) 1674 return status; 1675 if (!hsotg->periodic_qh_count) { 1676 intr_mask = dwc2_readl(hsotg->regs + GINTMSK); 1677 intr_mask |= GINTSTS_SOF; 1678 dwc2_writel(intr_mask, hsotg->regs + GINTMSK); 1679 } 1680 hsotg->periodic_qh_count++; 1681 1682 return 0; 1683 } 1684 1685 /** 1686 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic 1687 * schedule. Memory is not freed. 1688 * 1689 * @hsotg: The HCD state structure 1690 * @qh: QH to remove from schedule 1691 */ 1692 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1693 { 1694 u32 intr_mask; 1695 1696 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1697 1698 if (list_empty(&qh->qh_list_entry)) 1699 /* QH is not in a schedule */ 1700 return; 1701 1702 if (dwc2_qh_is_non_per(qh)) { 1703 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry) 1704 hsotg->non_periodic_qh_ptr = 1705 hsotg->non_periodic_qh_ptr->next; 1706 list_del_init(&qh->qh_list_entry); 1707 return; 1708 } 1709 1710 dwc2_deschedule_periodic(hsotg, qh); 1711 hsotg->periodic_qh_count--; 1712 if (!hsotg->periodic_qh_count && 1713 !hsotg->params.dma_desc_enable) { 1714 intr_mask = dwc2_readl(hsotg->regs + GINTMSK); 1715 intr_mask &= ~GINTSTS_SOF; 1716 dwc2_writel(intr_mask, hsotg->regs + GINTMSK); 1717 } 1718 } 1719 1720 /** 1721 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split. 1722 * 1723 * This is called for setting next_active_frame for periodic splits for all but 1724 * the first packet of the split. Confusing? I thought so... 1725 * 1726 * Periodic splits are single low/full speed transfers that we end up splitting 1727 * up into several high speed transfers. They always fit into one full (1 ms) 1728 * frame but might be split over several microframes (125 us each). We to put 1729 * each of the parts on a very specific high speed frame. 1730 * 1731 * This function figures out where the next active uFrame needs to be. 1732 * 1733 * @hsotg: The HCD state structure 1734 * @qh: QH for the periodic transfer. 1735 * @frame_number: The current frame number. 1736 * 1737 * Return: number missed by (or 0 if we didn't miss). 1738 */ 1739 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg, 1740 struct dwc2_qh *qh, u16 frame_number) 1741 { 1742 u16 old_frame = qh->next_active_frame; 1743 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1); 1744 int missed = 0; 1745 u16 incr; 1746 1747 /* 1748 * See dwc2_uframe_schedule_split() for split scheduling. 1749 * 1750 * Basically: increment 1 normally, but 2 right after the start split 1751 * (except for ISOC out). 1752 */ 1753 if (old_frame == qh->start_active_frame && 1754 !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)) 1755 incr = 2; 1756 else 1757 incr = 1; 1758 1759 qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr); 1760 1761 /* 1762 * Note that it's OK for frame_number to be 1 frame past 1763 * next_active_frame. Remember that next_active_frame is supposed to 1764 * be 1 frame _before_ when we want to be scheduled. If we're 1 frame 1765 * past it just means schedule ASAP. 1766 * 1767 * It's _not_ OK, however, if we're more than one frame past. 1768 */ 1769 if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) { 1770 /* 1771 * OOPS, we missed. That's actually pretty bad since 1772 * the hub will be unhappy; try ASAP I guess. 1773 */ 1774 missed = dwc2_frame_num_dec(prev_frame_number, 1775 qh->next_active_frame); 1776 qh->next_active_frame = frame_number; 1777 } 1778 1779 return missed; 1780 } 1781 1782 /** 1783 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start 1784 * 1785 * This is called for setting next_active_frame for a periodic transfer for 1786 * all cases other than midway through a periodic split. This will also update 1787 * start_active_frame. 1788 * 1789 * Since we _always_ keep start_active_frame as the start of the previous 1790 * transfer this is normally pretty easy: we just add our interval to 1791 * start_active_frame and we've got our answer. 1792 * 1793 * The tricks come into play if we miss. In that case we'll look for the next 1794 * slot we can fit into. 1795 * 1796 * @hsotg: The HCD state structure 1797 * @qh: QH for the periodic transfer. 1798 * @frame_number: The current frame number. 1799 * 1800 * Return: number missed by (or 0 if we didn't miss). 1801 */ 1802 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg, 1803 struct dwc2_qh *qh, u16 frame_number) 1804 { 1805 int missed = 0; 1806 u16 interval = qh->host_interval; 1807 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1); 1808 1809 qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame, 1810 interval); 1811 1812 /* 1813 * The dwc2_frame_num_gt() function used below won't work terribly well 1814 * with if we just incremented by a really large intervals since the 1815 * frame counter only goes to 0x3fff. It's terribly unlikely that we 1816 * will have missed in this case anyway. Just go to exit. If we want 1817 * to try to do better we'll need to keep track of a bigger counter 1818 * somewhere in the driver and handle overflows. 1819 */ 1820 if (interval >= 0x1000) 1821 goto exit; 1822 1823 /* 1824 * Test for misses, which is when it's too late to schedule. 1825 * 1826 * A few things to note: 1827 * - We compare against prev_frame_number since start_active_frame 1828 * and next_active_frame are always 1 frame before we want things 1829 * to be active and we assume we can still get scheduled in the 1830 * current frame number. 1831 * - It's possible for start_active_frame (now incremented) to be 1832 * next_active_frame if we got an EO MISS (even_odd miss) which 1833 * basically means that we detected there wasn't enough time for 1834 * the last packet and dwc2_hc_set_even_odd_frame() rescheduled us 1835 * at the last second. We want to make sure we don't schedule 1836 * another transfer for the same frame. My test webcam doesn't seem 1837 * terribly upset by missing a transfer but really doesn't like when 1838 * we do two transfers in the same frame. 1839 * - Some misses are expected. Specifically, in order to work 1840 * perfectly dwc2 really needs quite spectacular interrupt latency 1841 * requirements. It needs to be able to handle its interrupts 1842 * completely within 125 us of them being asserted. That not only 1843 * means that the dwc2 interrupt handler needs to be fast but it 1844 * means that nothing else in the system has to block dwc2 for a long 1845 * time. We can help with the dwc2 parts of this, but it's hard to 1846 * guarantee that a system will have interrupt latency < 125 us, so 1847 * we have to be robust to some misses. 1848 */ 1849 if (qh->start_active_frame == qh->next_active_frame || 1850 dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) { 1851 u16 ideal_start = qh->start_active_frame; 1852 int periods_in_map; 1853 1854 /* 1855 * Adjust interval as per gcd with map size. 1856 * See pmap_schedule() for more details here. 1857 */ 1858 if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH) 1859 periods_in_map = DWC2_HS_SCHEDULE_UFRAMES; 1860 else 1861 periods_in_map = DWC2_LS_SCHEDULE_FRAMES; 1862 interval = gcd(interval, periods_in_map); 1863 1864 do { 1865 qh->start_active_frame = dwc2_frame_num_inc( 1866 qh->start_active_frame, interval); 1867 } while (dwc2_frame_num_gt(prev_frame_number, 1868 qh->start_active_frame)); 1869 1870 missed = dwc2_frame_num_dec(qh->start_active_frame, 1871 ideal_start); 1872 } 1873 1874 exit: 1875 qh->next_active_frame = qh->start_active_frame; 1876 1877 return missed; 1878 } 1879 1880 /* 1881 * Deactivates a QH. For non-periodic QHs, removes the QH from the active 1882 * non-periodic schedule. The QH is added to the inactive non-periodic 1883 * schedule if any QTDs are still attached to the QH. 1884 * 1885 * For periodic QHs, the QH is removed from the periodic queued schedule. If 1886 * there are any QTDs still attached to the QH, the QH is added to either the 1887 * periodic inactive schedule or the periodic ready schedule and its next 1888 * scheduled frame is calculated. The QH is placed in the ready schedule if 1889 * the scheduled frame has been reached already. Otherwise it's placed in the 1890 * inactive schedule. If there are no QTDs attached to the QH, the QH is 1891 * completely removed from the periodic schedule. 1892 */ 1893 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 1894 int sched_next_periodic_split) 1895 { 1896 u16 old_frame = qh->next_active_frame; 1897 u16 frame_number; 1898 int missed; 1899 1900 if (dbg_qh(qh)) 1901 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1902 1903 if (dwc2_qh_is_non_per(qh)) { 1904 dwc2_hcd_qh_unlink(hsotg, qh); 1905 if (!list_empty(&qh->qtd_list)) 1906 /* Add back to inactive non-periodic schedule */ 1907 dwc2_hcd_qh_add(hsotg, qh); 1908 return; 1909 } 1910 1911 /* 1912 * Use the real frame number rather than the cached value as of the 1913 * last SOF just to get us a little closer to reality. Note that 1914 * means we don't actually know if we've already handled the SOF 1915 * interrupt for this frame. 1916 */ 1917 frame_number = dwc2_hcd_get_frame_number(hsotg); 1918 1919 if (sched_next_periodic_split) 1920 missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number); 1921 else 1922 missed = dwc2_next_periodic_start(hsotg, qh, frame_number); 1923 1924 dwc2_sch_vdbg(hsotg, 1925 "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n", 1926 qh, sched_next_periodic_split, frame_number, old_frame, 1927 qh->next_active_frame, 1928 dwc2_frame_num_dec(qh->next_active_frame, old_frame), 1929 missed, missed ? "MISS" : ""); 1930 1931 if (list_empty(&qh->qtd_list)) { 1932 dwc2_hcd_qh_unlink(hsotg, qh); 1933 return; 1934 } 1935 1936 /* 1937 * Remove from periodic_sched_queued and move to 1938 * appropriate queue 1939 * 1940 * Note: we purposely use the frame_number from the "hsotg" structure 1941 * since we know SOF interrupt will handle future frames. 1942 */ 1943 if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number)) 1944 list_move_tail(&qh->qh_list_entry, 1945 &hsotg->periodic_sched_ready); 1946 else 1947 list_move_tail(&qh->qh_list_entry, 1948 &hsotg->periodic_sched_inactive); 1949 } 1950 1951 /** 1952 * dwc2_hcd_qtd_init() - Initializes a QTD structure 1953 * 1954 * @qtd: The QTD to initialize 1955 * @urb: The associated URB 1956 */ 1957 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) 1958 { 1959 qtd->urb = urb; 1960 if (dwc2_hcd_get_pipe_type(&urb->pipe_info) == 1961 USB_ENDPOINT_XFER_CONTROL) { 1962 /* 1963 * The only time the QTD data toggle is used is on the data 1964 * phase of control transfers. This phase always starts with 1965 * DATA1. 1966 */ 1967 qtd->data_toggle = DWC2_HC_PID_DATA1; 1968 qtd->control_phase = DWC2_CONTROL_SETUP; 1969 } 1970 1971 /* Start split */ 1972 qtd->complete_split = 0; 1973 qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL; 1974 qtd->isoc_split_offset = 0; 1975 qtd->in_process = 0; 1976 1977 /* Store the qtd ptr in the urb to reference the QTD */ 1978 urb->qtd = qtd; 1979 } 1980 1981 /** 1982 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH 1983 * Caller must hold driver lock. 1984 * 1985 * @hsotg: The DWC HCD structure 1986 * @qtd: The QTD to add 1987 * @qh: Queue head to add qtd to 1988 * 1989 * Return: 0 if successful, negative error code otherwise 1990 * 1991 * If the QH to which the QTD is added is not currently scheduled, it is placed 1992 * into the proper schedule based on its EP type. 1993 */ 1994 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 1995 struct dwc2_qh *qh) 1996 { 1997 int retval; 1998 1999 if (unlikely(!qh)) { 2000 dev_err(hsotg->dev, "%s: Invalid QH\n", __func__); 2001 retval = -EINVAL; 2002 goto fail; 2003 } 2004 2005 retval = dwc2_hcd_qh_add(hsotg, qh); 2006 if (retval) 2007 goto fail; 2008 2009 qtd->qh = qh; 2010 list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list); 2011 2012 return 0; 2013 fail: 2014 return retval; 2015 } 2016