xref: /openbmc/linux/drivers/usb/dwc2/hcd_queue.c (revision 49f3806d89e4cf9e330b6f2e39db1c913a8fd25a)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  */
7 
8 /*
9  * This file contains the functions to manage Queue Heads and Queue
10  * Transfer Descriptors for Host mode
11  */
12 #include <linux/gcd.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <linux/usb.h>
21 
22 #include <linux/usb/hcd.h>
23 #include <linux/usb/ch11.h>
24 
25 #include "core.h"
26 #include "hcd.h"
27 
28 /* Wait this long before releasing periodic reservation */
29 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
30 
31 /* If we get a NAK, wait this long before retrying */
32 #define DWC2_RETRY_WAIT_DELAY (1 * NSEC_PER_MSEC)
33 
34 /**
35  * dwc2_periodic_channel_available() - Checks that a channel is available for a
36  * periodic transfer
37  *
38  * @hsotg: The HCD state structure for the DWC OTG controller
39  *
40  * Return: 0 if successful, negative error code otherwise
41  */
42 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
43 {
44 	/*
45 	 * Currently assuming that there is a dedicated host channel for
46 	 * each periodic transaction plus at least one host channel for
47 	 * non-periodic transactions
48 	 */
49 	int status;
50 	int num_channels;
51 
52 	num_channels = hsotg->params.host_channels;
53 	if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
54 	     num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
55 		status = 0;
56 	} else {
57 		dev_dbg(hsotg->dev,
58 			"%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
59 			__func__, num_channels,
60 			hsotg->periodic_channels, hsotg->non_periodic_channels);
61 		status = -ENOSPC;
62 	}
63 
64 	return status;
65 }
66 
67 /**
68  * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
69  * for the specified QH in the periodic schedule
70  *
71  * @hsotg: The HCD state structure for the DWC OTG controller
72  * @qh:    QH containing periodic bandwidth required
73  *
74  * Return: 0 if successful, negative error code otherwise
75  *
76  * For simplicity, this calculation assumes that all the transfers in the
77  * periodic schedule may occur in the same (micro)frame
78  */
79 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
80 					 struct dwc2_qh *qh)
81 {
82 	int status;
83 	s16 max_claimed_usecs;
84 
85 	status = 0;
86 
87 	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
88 		/*
89 		 * High speed mode
90 		 * Max periodic usecs is 80% x 125 usec = 100 usec
91 		 */
92 		max_claimed_usecs = 100 - qh->host_us;
93 	} else {
94 		/*
95 		 * Full speed mode
96 		 * Max periodic usecs is 90% x 1000 usec = 900 usec
97 		 */
98 		max_claimed_usecs = 900 - qh->host_us;
99 	}
100 
101 	if (hsotg->periodic_usecs > max_claimed_usecs) {
102 		dev_err(hsotg->dev,
103 			"%s: already claimed usecs %d, required usecs %d\n",
104 			__func__, hsotg->periodic_usecs, qh->host_us);
105 		status = -ENOSPC;
106 	}
107 
108 	return status;
109 }
110 
111 /**
112  * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
113  *
114  * @map:             The bitmap representing the schedule; will be updated
115  *                   upon success.
116  * @bits_per_period: The schedule represents several periods.  This is how many
117  *                   bits are in each period.  It's assumed that the beginning
118  *                   of the schedule will repeat after its end.
119  * @periods_in_map:  The number of periods in the schedule.
120  * @num_bits:        The number of bits we need per period we want to reserve
121  *                   in this function call.
122  * @interval:        How often we need to be scheduled for the reservation this
123  *                   time.  1 means every period.  2 means every other period.
124  *                   ...you get the picture?
125  * @start:           The bit number to start at.  Normally 0.  Must be within
126  *                   the interval or we return failure right away.
127  * @only_one_period: Normally we'll allow picking a start anywhere within the
128  *                   first interval, since we can still make all repetition
129  *                   requirements by doing that.  However, if you pass true
130  *                   here then we'll return failure if we can't fit within
131  *                   the period that "start" is in.
132  *
133  * The idea here is that we want to schedule time for repeating events that all
134  * want the same resource.  The resource is divided into fixed-sized periods
135  * and the events want to repeat every "interval" periods.  The schedule
136  * granularity is one bit.
137  *
138  * To keep things "simple", we'll represent our schedule with a bitmap that
139  * contains a fixed number of periods.  This gets rid of a lot of complexity
140  * but does mean that we need to handle things specially (and non-ideally) if
141  * the number of the periods in the schedule doesn't match well with the
142  * intervals that we're trying to schedule.
143  *
144  * Here's an explanation of the scheme we'll implement, assuming 8 periods.
145  * - If interval is 1, we need to take up space in each of the 8
146  *   periods we're scheduling.  Easy.
147  * - If interval is 2, we need to take up space in half of the
148  *   periods.  Again, easy.
149  * - If interval is 3, we actually need to fall back to interval 1.
150  *   Why?  Because we might need time in any period.  AKA for the
151  *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
152  *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
153  *   0, 3, and 6.  Since we could be in any frame we need to reserve
154  *   for all of them.  Sucks, but that's what you gotta do.  Note that
155  *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
156  *   then we need more memory and time to do scheduling.
157  * - If interval is 4, easy.
158  * - If interval is 5, we again need interval 1.  The schedule will be
159  *   0, 5, 2, 7, 4, 1, 6, 3, 0
160  * - If interval is 6, we need interval 2.  0, 6, 4, 2.
161  * - If interval is 7, we need interval 1.
162  * - If interval is 8, we need interval 8.
163  *
164  * If you do the math, you'll see that we need to pretend that interval is
165  * equal to the greatest_common_divisor(interval, periods_in_map).
166  *
167  * Note that at the moment this function tends to front-pack the schedule.
168  * In some cases that's really non-ideal (it's hard to schedule things that
169  * need to repeat every period).  In other cases it's perfect (you can easily
170  * schedule bigger, less often repeating things).
171  *
172  * Here's the algorithm in action (8 periods, 5 bits per period):
173  *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
174  *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
175  *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
176  *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
177  *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
178  *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
179  *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
180  *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
181  *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
182  *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
183  *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
184  *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
185  *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
186  *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
187  *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
188  *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
189  *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
190  *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
191  *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
192  *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
193  *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
194  *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
195  *
196  * This function is pretty generic and could be easily abstracted if anything
197  * needed similar scheduling.
198  *
199  * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
200  * unschedule routine.  The map bitmap will be updated on a non-error result.
201  */
202 static int pmap_schedule(unsigned long *map, int bits_per_period,
203 			 int periods_in_map, int num_bits,
204 			 int interval, int start, bool only_one_period)
205 {
206 	int interval_bits;
207 	int to_reserve;
208 	int first_end;
209 	int i;
210 
211 	if (num_bits > bits_per_period)
212 		return -ENOSPC;
213 
214 	/* Adjust interval as per description */
215 	interval = gcd(interval, periods_in_map);
216 
217 	interval_bits = bits_per_period * interval;
218 	to_reserve = periods_in_map / interval;
219 
220 	/* If start has gotten us past interval then we can't schedule */
221 	if (start >= interval_bits)
222 		return -ENOSPC;
223 
224 	if (only_one_period)
225 		/* Must fit within same period as start; end at begin of next */
226 		first_end = (start / bits_per_period + 1) * bits_per_period;
227 	else
228 		/* Can fit anywhere in the first interval */
229 		first_end = interval_bits;
230 
231 	/*
232 	 * We'll try to pick the first repetition, then see if that time
233 	 * is free for each of the subsequent repetitions.  If it's not
234 	 * we'll adjust the start time for the next search of the first
235 	 * repetition.
236 	 */
237 	while (start + num_bits <= first_end) {
238 		int end;
239 
240 		/* Need to stay within this period */
241 		end = (start / bits_per_period + 1) * bits_per_period;
242 
243 		/* Look for num_bits us in this microframe starting at start */
244 		start = bitmap_find_next_zero_area(map, end, start, num_bits,
245 						   0);
246 
247 		/*
248 		 * We should get start >= end if we fail.  We might be
249 		 * able to check the next microframe depending on the
250 		 * interval, so continue on (start already updated).
251 		 */
252 		if (start >= end) {
253 			start = end;
254 			continue;
255 		}
256 
257 		/* At this point we have a valid point for first one */
258 		for (i = 1; i < to_reserve; i++) {
259 			int ith_start = start + interval_bits * i;
260 			int ith_end = end + interval_bits * i;
261 			int ret;
262 
263 			/* Use this as a dumb "check if bits are 0" */
264 			ret = bitmap_find_next_zero_area(
265 				map, ith_start + num_bits, ith_start, num_bits,
266 				0);
267 
268 			/* We got the right place, continue checking */
269 			if (ret == ith_start)
270 				continue;
271 
272 			/* Move start up for next time and exit for loop */
273 			ith_start = bitmap_find_next_zero_area(
274 				map, ith_end, ith_start, num_bits, 0);
275 			if (ith_start >= ith_end)
276 				/* Need a while new period next time */
277 				start = end;
278 			else
279 				start = ith_start - interval_bits * i;
280 			break;
281 		}
282 
283 		/* If didn't exit the for loop with a break, we have success */
284 		if (i == to_reserve)
285 			break;
286 	}
287 
288 	if (start + num_bits > first_end)
289 		return -ENOSPC;
290 
291 	for (i = 0; i < to_reserve; i++) {
292 		int ith_start = start + interval_bits * i;
293 
294 		bitmap_set(map, ith_start, num_bits);
295 	}
296 
297 	return start;
298 }
299 
300 /**
301  * pmap_unschedule() - Undo work done by pmap_schedule()
302  *
303  * @map:             See pmap_schedule().
304  * @bits_per_period: See pmap_schedule().
305  * @periods_in_map:  See pmap_schedule().
306  * @num_bits:        The number of bits that was passed to schedule.
307  * @interval:        The interval that was passed to schedule.
308  * @start:           The return value from pmap_schedule().
309  */
310 static void pmap_unschedule(unsigned long *map, int bits_per_period,
311 			    int periods_in_map, int num_bits,
312 			    int interval, int start)
313 {
314 	int interval_bits;
315 	int to_release;
316 	int i;
317 
318 	/* Adjust interval as per description in pmap_schedule() */
319 	interval = gcd(interval, periods_in_map);
320 
321 	interval_bits = bits_per_period * interval;
322 	to_release = periods_in_map / interval;
323 
324 	for (i = 0; i < to_release; i++) {
325 		int ith_start = start + interval_bits * i;
326 
327 		bitmap_clear(map, ith_start, num_bits);
328 	}
329 }
330 
331 /**
332  * dwc2_get_ls_map() - Get the map used for the given qh
333  *
334  * @hsotg: The HCD state structure for the DWC OTG controller.
335  * @qh:    QH for the periodic transfer.
336  *
337  * We'll always get the periodic map out of our TT.  Note that even if we're
338  * running the host straight in low speed / full speed mode it appears as if
339  * a TT is allocated for us, so we'll use it.  If that ever changes we can
340  * add logic here to get a map out of "hsotg" if !qh->do_split.
341  *
342  * Returns: the map or NULL if a map couldn't be found.
343  */
344 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
345 				      struct dwc2_qh *qh)
346 {
347 	unsigned long *map;
348 
349 	/* Don't expect to be missing a TT and be doing low speed scheduling */
350 	if (WARN_ON(!qh->dwc_tt))
351 		return NULL;
352 
353 	/* Get the map and adjust if this is a multi_tt hub */
354 	map = qh->dwc_tt->periodic_bitmaps;
355 	if (qh->dwc_tt->usb_tt->multi)
356 		map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
357 
358 	return map;
359 }
360 
361 #ifdef DWC2_PRINT_SCHEDULE
362 /*
363  * cat_printf() - A printf() + strcat() helper
364  *
365  * This is useful for concatenating a bunch of strings where each string is
366  * constructed using printf.
367  *
368  * @buf:   The destination buffer; will be updated to point after the printed
369  *         data.
370  * @size:  The number of bytes in the buffer (includes space for '\0').
371  * @fmt:   The format for printf.
372  * @...:   The args for printf.
373  */
374 static __printf(3, 4)
375 void cat_printf(char **buf, size_t *size, const char *fmt, ...)
376 {
377 	va_list args;
378 	int i;
379 
380 	if (*size == 0)
381 		return;
382 
383 	va_start(args, fmt);
384 	i = vsnprintf(*buf, *size, fmt, args);
385 	va_end(args);
386 
387 	if (i >= *size) {
388 		(*buf)[*size - 1] = '\0';
389 		*buf += *size;
390 		*size = 0;
391 	} else {
392 		*buf += i;
393 		*size -= i;
394 	}
395 }
396 
397 /*
398  * pmap_print() - Print the given periodic map
399  *
400  * Will attempt to print out the periodic schedule.
401  *
402  * @map:             See pmap_schedule().
403  * @bits_per_period: See pmap_schedule().
404  * @periods_in_map:  See pmap_schedule().
405  * @period_name:     The name of 1 period, like "uFrame"
406  * @units:           The name of the units, like "us".
407  * @print_fn:        The function to call for printing.
408  * @print_data:      Opaque data to pass to the print function.
409  */
410 static void pmap_print(unsigned long *map, int bits_per_period,
411 		       int periods_in_map, const char *period_name,
412 		       const char *units,
413 		       void (*print_fn)(const char *str, void *data),
414 		       void *print_data)
415 {
416 	int period;
417 
418 	for (period = 0; period < periods_in_map; period++) {
419 		char tmp[64];
420 		char *buf = tmp;
421 		size_t buf_size = sizeof(tmp);
422 		int period_start = period * bits_per_period;
423 		int period_end = period_start + bits_per_period;
424 		int start = 0;
425 		int count = 0;
426 		bool printed = false;
427 		int i;
428 
429 		for (i = period_start; i < period_end + 1; i++) {
430 			/* Handle case when ith bit is set */
431 			if (i < period_end &&
432 			    bitmap_find_next_zero_area(map, i + 1,
433 						       i, 1, 0) != i) {
434 				if (count == 0)
435 					start = i - period_start;
436 				count++;
437 				continue;
438 			}
439 
440 			/* ith bit isn't set; don't care if count == 0 */
441 			if (count == 0)
442 				continue;
443 
444 			if (!printed)
445 				cat_printf(&buf, &buf_size, "%s %d: ",
446 					   period_name, period);
447 			else
448 				cat_printf(&buf, &buf_size, ", ");
449 			printed = true;
450 
451 			cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
452 				   units, start + count - 1, units);
453 			count = 0;
454 		}
455 
456 		if (printed)
457 			print_fn(tmp, print_data);
458 	}
459 }
460 
461 struct dwc2_qh_print_data {
462 	struct dwc2_hsotg *hsotg;
463 	struct dwc2_qh *qh;
464 };
465 
466 /**
467  * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
468  *
469  * @str:  The string to print
470  * @data: A pointer to a struct dwc2_qh_print_data
471  */
472 static void dwc2_qh_print(const char *str, void *data)
473 {
474 	struct dwc2_qh_print_data *print_data = data;
475 
476 	dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
477 }
478 
479 /**
480  * dwc2_qh_schedule_print() - Print the periodic schedule
481  *
482  * @hsotg: The HCD state structure for the DWC OTG controller.
483  * @qh:    QH to print.
484  */
485 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
486 				   struct dwc2_qh *qh)
487 {
488 	struct dwc2_qh_print_data print_data = { hsotg, qh };
489 	int i;
490 
491 	/*
492 	 * The printing functions are quite slow and inefficient.
493 	 * If we don't have tracing turned on, don't run unless the special
494 	 * define is turned on.
495 	 */
496 
497 	if (qh->schedule_low_speed) {
498 		unsigned long *map = dwc2_get_ls_map(hsotg, qh);
499 
500 		dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
501 			     qh, qh->device_us,
502 			     DWC2_ROUND_US_TO_SLICE(qh->device_us),
503 			     DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
504 
505 		if (map) {
506 			dwc2_sch_dbg(hsotg,
507 				     "QH=%p Whole low/full speed map %p now:\n",
508 				     qh, map);
509 			pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
510 				   DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
511 				   dwc2_qh_print, &print_data);
512 		}
513 	}
514 
515 	for (i = 0; i < qh->num_hs_transfers; i++) {
516 		struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
517 		int uframe = trans_time->start_schedule_us /
518 			     DWC2_HS_PERIODIC_US_PER_UFRAME;
519 		int rel_us = trans_time->start_schedule_us %
520 			     DWC2_HS_PERIODIC_US_PER_UFRAME;
521 
522 		dwc2_sch_dbg(hsotg,
523 			     "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
524 			     qh, i, trans_time->duration_us, uframe, rel_us);
525 	}
526 	if (qh->num_hs_transfers) {
527 		dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
528 		pmap_print(hsotg->hs_periodic_bitmap,
529 			   DWC2_HS_PERIODIC_US_PER_UFRAME,
530 			   DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
531 			   dwc2_qh_print, &print_data);
532 	}
533 }
534 #else
535 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
536 					  struct dwc2_qh *qh) {};
537 #endif
538 
539 /**
540  * dwc2_ls_pmap_schedule() - Schedule a low speed QH
541  *
542  * @hsotg:        The HCD state structure for the DWC OTG controller.
543  * @qh:           QH for the periodic transfer.
544  * @search_slice: We'll start trying to schedule at the passed slice.
545  *                Remember that slices are the units of the low speed
546  *                schedule (think 25us or so).
547  *
548  * Wraps pmap_schedule() with the right parameters for low speed scheduling.
549  *
550  * Normally we schedule low speed devices on the map associated with the TT.
551  *
552  * Returns: 0 for success or an error code.
553  */
554 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
555 				 int search_slice)
556 {
557 	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
558 	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
559 	int slice;
560 
561 	if (!map)
562 		return -EINVAL;
563 
564 	/*
565 	 * Schedule on the proper low speed map with our low speed scheduling
566 	 * parameters.  Note that we use the "device_interval" here since
567 	 * we want the low speed interval and the only way we'd be in this
568 	 * function is if the device is low speed.
569 	 *
570 	 * If we happen to be doing low speed and high speed scheduling for the
571 	 * same transaction (AKA we have a split) we always do low speed first.
572 	 * That means we can always pass "false" for only_one_period (that
573 	 * parameters is only useful when we're trying to get one schedule to
574 	 * match what we already planned in the other schedule).
575 	 */
576 	slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
577 			      DWC2_LS_SCHEDULE_FRAMES, slices,
578 			      qh->device_interval, search_slice, false);
579 
580 	if (slice < 0)
581 		return slice;
582 
583 	qh->ls_start_schedule_slice = slice;
584 	return 0;
585 }
586 
587 /**
588  * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
589  *
590  * @hsotg:       The HCD state structure for the DWC OTG controller.
591  * @qh:          QH for the periodic transfer.
592  */
593 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
594 				    struct dwc2_qh *qh)
595 {
596 	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
597 	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
598 
599 	/* Schedule should have failed, so no worries about no error code */
600 	if (!map)
601 		return;
602 
603 	pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
604 			DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
605 			qh->ls_start_schedule_slice);
606 }
607 
608 /**
609  * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
610  *
611  * This will schedule something on the main dwc2 schedule.
612  *
613  * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
614  * update this with the result upon success.  We also use the duration from
615  * the same structure.
616  *
617  * @hsotg:           The HCD state structure for the DWC OTG controller.
618  * @qh:              QH for the periodic transfer.
619  * @only_one_period: If true we will limit ourselves to just looking at
620  *                   one period (aka one 100us chunk).  This is used if we have
621  *                   already scheduled something on the low speed schedule and
622  *                   need to find something that matches on the high speed one.
623  * @index:           The index into qh->hs_transfers that we're working with.
624  *
625  * Returns: 0 for success or an error code.  Upon success the
626  *          dwc2_hs_transfer_time specified by "index" will be updated.
627  */
628 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
629 				 bool only_one_period, int index)
630 {
631 	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
632 	int us;
633 
634 	us = pmap_schedule(hsotg->hs_periodic_bitmap,
635 			   DWC2_HS_PERIODIC_US_PER_UFRAME,
636 			   DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
637 			   qh->host_interval, trans_time->start_schedule_us,
638 			   only_one_period);
639 
640 	if (us < 0)
641 		return us;
642 
643 	trans_time->start_schedule_us = us;
644 	return 0;
645 }
646 
647 /**
648  * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
649  *
650  * @hsotg:       The HCD state structure for the DWC OTG controller.
651  * @qh:          QH for the periodic transfer.
652  * @index:       Transfer index
653  */
654 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
655 				    struct dwc2_qh *qh, int index)
656 {
657 	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
658 
659 	pmap_unschedule(hsotg->hs_periodic_bitmap,
660 			DWC2_HS_PERIODIC_US_PER_UFRAME,
661 			DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
662 			qh->host_interval, trans_time->start_schedule_us);
663 }
664 
665 /**
666  * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
667  *
668  * This is the most complicated thing in USB.  We have to find matching time
669  * in both the global high speed schedule for the port and the low speed
670  * schedule for the TT associated with the given device.
671  *
672  * Being here means that the host must be running in high speed mode and the
673  * device is in low or full speed mode (and behind a hub).
674  *
675  * @hsotg:       The HCD state structure for the DWC OTG controller.
676  * @qh:          QH for the periodic transfer.
677  */
678 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
679 				      struct dwc2_qh *qh)
680 {
681 	int bytecount = qh->maxp_mult * qh->maxp;
682 	int ls_search_slice;
683 	int err = 0;
684 	int host_interval_in_sched;
685 
686 	/*
687 	 * The interval (how often to repeat) in the actual host schedule.
688 	 * See pmap_schedule() for gcd() explanation.
689 	 */
690 	host_interval_in_sched = gcd(qh->host_interval,
691 				     DWC2_HS_SCHEDULE_UFRAMES);
692 
693 	/*
694 	 * We always try to find space in the low speed schedule first, then
695 	 * try to find high speed time that matches.  If we don't, we'll bump
696 	 * up the place we start searching in the low speed schedule and try
697 	 * again.  To start we'll look right at the beginning of the low speed
698 	 * schedule.
699 	 *
700 	 * Note that this will tend to front-load the high speed schedule.
701 	 * We may eventually want to try to avoid this by either considering
702 	 * both schedules together or doing some sort of round robin.
703 	 */
704 	ls_search_slice = 0;
705 
706 	while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
707 		int start_s_uframe;
708 		int ssplit_s_uframe;
709 		int second_s_uframe;
710 		int rel_uframe;
711 		int first_count;
712 		int middle_count;
713 		int end_count;
714 		int first_data_bytes;
715 		int other_data_bytes;
716 		int i;
717 
718 		if (qh->schedule_low_speed) {
719 			err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
720 
721 			/*
722 			 * If we got an error here there's no other magic we
723 			 * can do, so bail.  All the looping above is only
724 			 * helpful to redo things if we got a low speed slot
725 			 * and then couldn't find a matching high speed slot.
726 			 */
727 			if (err)
728 				return err;
729 		} else {
730 			/* Must be missing the tt structure?  Why? */
731 			WARN_ON_ONCE(1);
732 		}
733 
734 		/*
735 		 * This will give us a number 0 - 7 if
736 		 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
737 		 */
738 		start_s_uframe = qh->ls_start_schedule_slice /
739 				 DWC2_SLICES_PER_UFRAME;
740 
741 		/* Get a number that's always 0 - 7 */
742 		rel_uframe = (start_s_uframe % 8);
743 
744 		/*
745 		 * If we were going to start in uframe 7 then we would need to
746 		 * issue a start split in uframe 6, which spec says is not OK.
747 		 * Move on to the next full frame (assuming there is one).
748 		 *
749 		 * See 11.18.4 Host Split Transaction Scheduling Requirements
750 		 * bullet 1.
751 		 */
752 		if (rel_uframe == 7) {
753 			if (qh->schedule_low_speed)
754 				dwc2_ls_pmap_unschedule(hsotg, qh);
755 			ls_search_slice =
756 				(qh->ls_start_schedule_slice /
757 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
758 				DWC2_LS_PERIODIC_SLICES_PER_FRAME;
759 			continue;
760 		}
761 
762 		/*
763 		 * For ISOC in:
764 		 * - start split            (frame -1)
765 		 * - complete split w/ data (frame +1)
766 		 * - complete split w/ data (frame +2)
767 		 * - ...
768 		 * - complete split w/ data (frame +num_data_packets)
769 		 * - complete split w/ data (frame +num_data_packets+1)
770 		 * - complete split w/ data (frame +num_data_packets+2, max 8)
771 		 *   ...though if frame was "0" then max is 7...
772 		 *
773 		 * For ISOC out we might need to do:
774 		 * - start split w/ data    (frame -1)
775 		 * - start split w/ data    (frame +0)
776 		 * - ...
777 		 * - start split w/ data    (frame +num_data_packets-2)
778 		 *
779 		 * For INTERRUPT in we might need to do:
780 		 * - start split            (frame -1)
781 		 * - complete split w/ data (frame +1)
782 		 * - complete split w/ data (frame +2)
783 		 * - complete split w/ data (frame +3, max 8)
784 		 *
785 		 * For INTERRUPT out we might need to do:
786 		 * - start split w/ data    (frame -1)
787 		 * - complete split         (frame +1)
788 		 * - complete split         (frame +2)
789 		 * - complete split         (frame +3, max 8)
790 		 *
791 		 * Start adjusting!
792 		 */
793 		ssplit_s_uframe = (start_s_uframe +
794 				   host_interval_in_sched - 1) %
795 				  host_interval_in_sched;
796 		if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
797 			second_s_uframe = start_s_uframe;
798 		else
799 			second_s_uframe = start_s_uframe + 1;
800 
801 		/* First data transfer might not be all 188 bytes. */
802 		first_data_bytes = 188 -
803 			DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
804 					    DWC2_SLICES_PER_UFRAME),
805 				     DWC2_SLICES_PER_UFRAME);
806 		if (first_data_bytes > bytecount)
807 			first_data_bytes = bytecount;
808 		other_data_bytes = bytecount - first_data_bytes;
809 
810 		/*
811 		 * For now, skip OUT xfers where first xfer is partial
812 		 *
813 		 * Main dwc2 code assumes:
814 		 * - INT transfers never get split in two.
815 		 * - ISOC transfers can always transfer 188 bytes the first
816 		 *   time.
817 		 *
818 		 * Until that code is fixed, try again if the first transfer
819 		 * couldn't transfer everything.
820 		 *
821 		 * This code can be removed if/when the rest of dwc2 handles
822 		 * the above cases.  Until it's fixed we just won't be able
823 		 * to schedule quite as tightly.
824 		 */
825 		if (!qh->ep_is_in &&
826 		    (first_data_bytes != min_t(int, 188, bytecount))) {
827 			dwc2_sch_dbg(hsotg,
828 				     "QH=%p avoiding broken 1st xfer (%d, %d)\n",
829 				     qh, first_data_bytes, bytecount);
830 			if (qh->schedule_low_speed)
831 				dwc2_ls_pmap_unschedule(hsotg, qh);
832 			ls_search_slice = (start_s_uframe + 1) *
833 				DWC2_SLICES_PER_UFRAME;
834 			continue;
835 		}
836 
837 		/* Start by assuming transfers for the bytes */
838 		qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
839 
840 		/*
841 		 * Everything except ISOC OUT has extra transfers.  Rules are
842 		 * complicated.  See 11.18.4 Host Split Transaction Scheduling
843 		 * Requirements bullet 3.
844 		 */
845 		if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
846 			if (rel_uframe == 6)
847 				qh->num_hs_transfers += 2;
848 			else
849 				qh->num_hs_transfers += 3;
850 
851 			if (qh->ep_is_in) {
852 				/*
853 				 * First is start split, middle/end is data.
854 				 * Allocate full data bytes for all data.
855 				 */
856 				first_count = 4;
857 				middle_count = bytecount;
858 				end_count = bytecount;
859 			} else {
860 				/*
861 				 * First is data, middle/end is complete.
862 				 * First transfer and second can have data.
863 				 * Rest should just have complete split.
864 				 */
865 				first_count = first_data_bytes;
866 				middle_count = max_t(int, 4, other_data_bytes);
867 				end_count = 4;
868 			}
869 		} else {
870 			if (qh->ep_is_in) {
871 				int last;
872 
873 				/* Account for the start split */
874 				qh->num_hs_transfers++;
875 
876 				/* Calculate "L" value from spec */
877 				last = rel_uframe + qh->num_hs_transfers + 1;
878 
879 				/* Start with basic case */
880 				if (last <= 6)
881 					qh->num_hs_transfers += 2;
882 				else
883 					qh->num_hs_transfers += 1;
884 
885 				/* Adjust downwards */
886 				if (last >= 6 && rel_uframe == 0)
887 					qh->num_hs_transfers--;
888 
889 				/* 1st = start; rest can contain data */
890 				first_count = 4;
891 				middle_count = min_t(int, 188, bytecount);
892 				end_count = middle_count;
893 			} else {
894 				/* All contain data, last might be smaller */
895 				first_count = first_data_bytes;
896 				middle_count = min_t(int, 188,
897 						     other_data_bytes);
898 				end_count = other_data_bytes % 188;
899 			}
900 		}
901 
902 		/* Assign durations per uFrame */
903 		qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
904 		for (i = 1; i < qh->num_hs_transfers - 1; i++)
905 			qh->hs_transfers[i].duration_us =
906 				HS_USECS_ISO(middle_count);
907 		if (qh->num_hs_transfers > 1)
908 			qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
909 				HS_USECS_ISO(end_count);
910 
911 		/*
912 		 * Assign start us.  The call below to dwc2_hs_pmap_schedule()
913 		 * will start with these numbers but may adjust within the same
914 		 * microframe.
915 		 */
916 		qh->hs_transfers[0].start_schedule_us =
917 			ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
918 		for (i = 1; i < qh->num_hs_transfers; i++)
919 			qh->hs_transfers[i].start_schedule_us =
920 				((second_s_uframe + i - 1) %
921 				 DWC2_HS_SCHEDULE_UFRAMES) *
922 				DWC2_HS_PERIODIC_US_PER_UFRAME;
923 
924 		/* Try to schedule with filled in hs_transfers above */
925 		for (i = 0; i < qh->num_hs_transfers; i++) {
926 			err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
927 			if (err)
928 				break;
929 		}
930 
931 		/* If we scheduled all w/out breaking out then we're all good */
932 		if (i == qh->num_hs_transfers)
933 			break;
934 
935 		for (; i >= 0; i--)
936 			dwc2_hs_pmap_unschedule(hsotg, qh, i);
937 
938 		if (qh->schedule_low_speed)
939 			dwc2_ls_pmap_unschedule(hsotg, qh);
940 
941 		/* Try again starting in the next microframe */
942 		ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
943 	}
944 
945 	if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
946 		return -ENOSPC;
947 
948 	return 0;
949 }
950 
951 /**
952  * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
953  *
954  * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
955  * interface.
956  *
957  * @hsotg:       The HCD state structure for the DWC OTG controller.
958  * @qh:          QH for the periodic transfer.
959  */
960 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
961 {
962 	/* In non-split host and device time are the same */
963 	WARN_ON(qh->host_us != qh->device_us);
964 	WARN_ON(qh->host_interval != qh->device_interval);
965 	WARN_ON(qh->num_hs_transfers != 1);
966 
967 	/* We'll have one transfer; init start to 0 before calling scheduler */
968 	qh->hs_transfers[0].start_schedule_us = 0;
969 	qh->hs_transfers[0].duration_us = qh->host_us;
970 
971 	return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
972 }
973 
974 /**
975  * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
976  *
977  * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
978  * interface.
979  *
980  * @hsotg:       The HCD state structure for the DWC OTG controller.
981  * @qh:          QH for the periodic transfer.
982  */
983 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
984 {
985 	/* In non-split host and device time are the same */
986 	WARN_ON(qh->host_us != qh->device_us);
987 	WARN_ON(qh->host_interval != qh->device_interval);
988 	WARN_ON(!qh->schedule_low_speed);
989 
990 	/* Run on the main low speed schedule (no split = no hub = no TT) */
991 	return dwc2_ls_pmap_schedule(hsotg, qh, 0);
992 }
993 
994 /**
995  * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
996  *
997  * Calls one of the 3 sub-function depending on what type of transfer this QH
998  * is for.  Also adds some printing.
999  *
1000  * @hsotg:       The HCD state structure for the DWC OTG controller.
1001  * @qh:          QH for the periodic transfer.
1002  */
1003 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1004 {
1005 	int ret;
1006 
1007 	if (qh->dev_speed == USB_SPEED_HIGH)
1008 		ret = dwc2_uframe_schedule_hs(hsotg, qh);
1009 	else if (!qh->do_split)
1010 		ret = dwc2_uframe_schedule_ls(hsotg, qh);
1011 	else
1012 		ret = dwc2_uframe_schedule_split(hsotg, qh);
1013 
1014 	if (ret)
1015 		dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1016 	else
1017 		dwc2_qh_schedule_print(hsotg, qh);
1018 
1019 	return ret;
1020 }
1021 
1022 /**
1023  * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1024  *
1025  * @hsotg:       The HCD state structure for the DWC OTG controller.
1026  * @qh:          QH for the periodic transfer.
1027  */
1028 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < qh->num_hs_transfers; i++)
1033 		dwc2_hs_pmap_unschedule(hsotg, qh, i);
1034 
1035 	if (qh->schedule_low_speed)
1036 		dwc2_ls_pmap_unschedule(hsotg, qh);
1037 
1038 	dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1039 }
1040 
1041 /**
1042  * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1043  *
1044  * Takes a qh that has already been scheduled (which means we know we have the
1045  * bandwdith reserved for us) and set the next_active_frame and the
1046  * start_active_frame.
1047  *
1048  * This is expected to be called on qh's that weren't previously actively
1049  * running.  It just picks the next frame that we can fit into without any
1050  * thought about the past.
1051  *
1052  * @hsotg: The HCD state structure for the DWC OTG controller
1053  * @qh:    QH for a periodic endpoint
1054  *
1055  */
1056 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1057 {
1058 	u16 frame_number;
1059 	u16 earliest_frame;
1060 	u16 next_active_frame;
1061 	u16 relative_frame;
1062 	u16 interval;
1063 
1064 	/*
1065 	 * Use the real frame number rather than the cached value as of the
1066 	 * last SOF to give us a little extra slop.
1067 	 */
1068 	frame_number = dwc2_hcd_get_frame_number(hsotg);
1069 
1070 	/*
1071 	 * We wouldn't want to start any earlier than the next frame just in
1072 	 * case the frame number ticks as we're doing this calculation.
1073 	 *
1074 	 * NOTE: if we could quantify how long till we actually get scheduled
1075 	 * we might be able to avoid the "+ 1" by looking at the upper part of
1076 	 * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
1077 	 */
1078 	earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1079 	next_active_frame = earliest_frame;
1080 
1081 	/* Get the "no microframe scheduler" out of the way... */
1082 	if (!hsotg->params.uframe_sched) {
1083 		if (qh->do_split)
1084 			/* Splits are active at microframe 0 minus 1 */
1085 			next_active_frame |= 0x7;
1086 		goto exit;
1087 	}
1088 
1089 	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1090 		/*
1091 		 * We're either at high speed or we're doing a split (which
1092 		 * means we're talking high speed to a hub).  In any case
1093 		 * the first frame should be based on when the first scheduled
1094 		 * event is.
1095 		 */
1096 		WARN_ON(qh->num_hs_transfers < 1);
1097 
1098 		relative_frame = qh->hs_transfers[0].start_schedule_us /
1099 				 DWC2_HS_PERIODIC_US_PER_UFRAME;
1100 
1101 		/* Adjust interval as per high speed schedule */
1102 		interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1103 
1104 	} else {
1105 		/*
1106 		 * Low or full speed directly on dwc2.  Just about the same
1107 		 * as high speed but on a different schedule and with slightly
1108 		 * different adjustments.  Note that this works because when
1109 		 * the host and device are both low speed then frames in the
1110 		 * controller tick at low speed.
1111 		 */
1112 		relative_frame = qh->ls_start_schedule_slice /
1113 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1114 		interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1115 	}
1116 
1117 	/* Scheduler messed up if frame is past interval */
1118 	WARN_ON(relative_frame >= interval);
1119 
1120 	/*
1121 	 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1122 	 * done the gcd(), so it's safe to move to the beginning of the current
1123 	 * interval like this.
1124 	 *
1125 	 * After this we might be before earliest_frame, but don't worry,
1126 	 * we'll fix it...
1127 	 */
1128 	next_active_frame = (next_active_frame / interval) * interval;
1129 
1130 	/*
1131 	 * Actually choose to start at the frame number we've been
1132 	 * scheduled for.
1133 	 */
1134 	next_active_frame = dwc2_frame_num_inc(next_active_frame,
1135 					       relative_frame);
1136 
1137 	/*
1138 	 * We actually need 1 frame before since the next_active_frame is
1139 	 * the frame number we'll be put on the ready list and we won't be on
1140 	 * the bus until 1 frame later.
1141 	 */
1142 	next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1143 
1144 	/*
1145 	 * By now we might actually be before the earliest_frame.  Let's move
1146 	 * up intervals until we're not.
1147 	 */
1148 	while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1149 		next_active_frame = dwc2_frame_num_inc(next_active_frame,
1150 						       interval);
1151 
1152 exit:
1153 	qh->next_active_frame = next_active_frame;
1154 	qh->start_active_frame = next_active_frame;
1155 
1156 	dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1157 		      qh, frame_number, qh->next_active_frame);
1158 }
1159 
1160 /**
1161  * dwc2_do_reserve() - Make a periodic reservation
1162  *
1163  * Try to allocate space in the periodic schedule.  Depending on parameters
1164  * this might use the microframe scheduler or the dumb scheduler.
1165  *
1166  * @hsotg: The HCD state structure for the DWC OTG controller
1167  * @qh:    QH for the periodic transfer.
1168  *
1169  * Returns: 0 upon success; error upon failure.
1170  */
1171 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1172 {
1173 	int status;
1174 
1175 	if (hsotg->params.uframe_sched) {
1176 		status = dwc2_uframe_schedule(hsotg, qh);
1177 	} else {
1178 		status = dwc2_periodic_channel_available(hsotg);
1179 		if (status) {
1180 			dev_info(hsotg->dev,
1181 				 "%s: No host channel available for periodic transfer\n",
1182 				 __func__);
1183 			return status;
1184 		}
1185 
1186 		status = dwc2_check_periodic_bandwidth(hsotg, qh);
1187 	}
1188 
1189 	if (status) {
1190 		dev_dbg(hsotg->dev,
1191 			"%s: Insufficient periodic bandwidth for periodic transfer\n",
1192 			__func__);
1193 		return status;
1194 	}
1195 
1196 	if (!hsotg->params.uframe_sched)
1197 		/* Reserve periodic channel */
1198 		hsotg->periodic_channels++;
1199 
1200 	/* Update claimed usecs per (micro)frame */
1201 	hsotg->periodic_usecs += qh->host_us;
1202 
1203 	dwc2_pick_first_frame(hsotg, qh);
1204 
1205 	return 0;
1206 }
1207 
1208 /**
1209  * dwc2_do_unreserve() - Actually release the periodic reservation
1210  *
1211  * This function actually releases the periodic bandwidth that was reserved
1212  * by the given qh.
1213  *
1214  * @hsotg: The HCD state structure for the DWC OTG controller
1215  * @qh:    QH for the periodic transfer.
1216  */
1217 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1218 {
1219 	assert_spin_locked(&hsotg->lock);
1220 
1221 	WARN_ON(!qh->unreserve_pending);
1222 
1223 	/* No more unreserve pending--we're doing it */
1224 	qh->unreserve_pending = false;
1225 
1226 	if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1227 		list_del_init(&qh->qh_list_entry);
1228 
1229 	/* Update claimed usecs per (micro)frame */
1230 	hsotg->periodic_usecs -= qh->host_us;
1231 
1232 	if (hsotg->params.uframe_sched) {
1233 		dwc2_uframe_unschedule(hsotg, qh);
1234 	} else {
1235 		/* Release periodic channel reservation */
1236 		hsotg->periodic_channels--;
1237 	}
1238 }
1239 
1240 /**
1241  * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1242  *
1243  * According to the kernel doc for usb_submit_urb() (specifically the part about
1244  * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1245  * long as a device driver keeps submitting.  Since we're using HCD_BH to give
1246  * back the URB we need to give the driver a little bit of time before we
1247  * release the reservation.  This worker is called after the appropriate
1248  * delay.
1249  *
1250  * @t: Address to a qh unreserve_work.
1251  */
1252 static void dwc2_unreserve_timer_fn(struct timer_list *t)
1253 {
1254 	struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer);
1255 	struct dwc2_hsotg *hsotg = qh->hsotg;
1256 	unsigned long flags;
1257 
1258 	/*
1259 	 * Wait for the lock, or for us to be scheduled again.  We
1260 	 * could be scheduled again if:
1261 	 * - We started executing but didn't get the lock yet.
1262 	 * - A new reservation came in, but cancel didn't take effect
1263 	 *   because we already started executing.
1264 	 * - The timer has been kicked again.
1265 	 * In that case cancel and wait for the next call.
1266 	 */
1267 	while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1268 		if (timer_pending(&qh->unreserve_timer))
1269 			return;
1270 	}
1271 
1272 	/*
1273 	 * Might be no more unreserve pending if:
1274 	 * - We started executing but didn't get the lock yet.
1275 	 * - A new reservation came in, but cancel didn't take effect
1276 	 *   because we already started executing.
1277 	 *
1278 	 * We can't put this in the loop above because unreserve_pending needs
1279 	 * to be accessed under lock, so we can only check it once we got the
1280 	 * lock.
1281 	 */
1282 	if (qh->unreserve_pending)
1283 		dwc2_do_unreserve(hsotg, qh);
1284 
1285 	spin_unlock_irqrestore(&hsotg->lock, flags);
1286 }
1287 
1288 /**
1289  * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1290  * host channel is large enough to handle the maximum data transfer in a single
1291  * (micro)frame for a periodic transfer
1292  *
1293  * @hsotg: The HCD state structure for the DWC OTG controller
1294  * @qh:    QH for a periodic endpoint
1295  *
1296  * Return: 0 if successful, negative error code otherwise
1297  */
1298 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1299 				    struct dwc2_qh *qh)
1300 {
1301 	u32 max_xfer_size;
1302 	u32 max_channel_xfer_size;
1303 	int status = 0;
1304 
1305 	max_xfer_size = qh->maxp * qh->maxp_mult;
1306 	max_channel_xfer_size = hsotg->params.max_transfer_size;
1307 
1308 	if (max_xfer_size > max_channel_xfer_size) {
1309 		dev_err(hsotg->dev,
1310 			"%s: Periodic xfer length %d > max xfer length for channel %d\n",
1311 			__func__, max_xfer_size, max_channel_xfer_size);
1312 		status = -ENOSPC;
1313 	}
1314 
1315 	return status;
1316 }
1317 
1318 /**
1319  * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1320  * the periodic schedule
1321  *
1322  * @hsotg: The HCD state structure for the DWC OTG controller
1323  * @qh:    QH for the periodic transfer. The QH should already contain the
1324  *         scheduling information.
1325  *
1326  * Return: 0 if successful, negative error code otherwise
1327  */
1328 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1329 {
1330 	int status;
1331 
1332 	status = dwc2_check_max_xfer_size(hsotg, qh);
1333 	if (status) {
1334 		dev_dbg(hsotg->dev,
1335 			"%s: Channel max transfer size too small for periodic transfer\n",
1336 			__func__);
1337 		return status;
1338 	}
1339 
1340 	/* Cancel pending unreserve; if canceled OK, unreserve was pending */
1341 	if (del_timer(&qh->unreserve_timer))
1342 		WARN_ON(!qh->unreserve_pending);
1343 
1344 	/*
1345 	 * Only need to reserve if there's not an unreserve pending, since if an
1346 	 * unreserve is pending then by definition our old reservation is still
1347 	 * valid.  Unreserve might still be pending even if we didn't cancel if
1348 	 * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
1349 	 * that case.
1350 	 */
1351 	if (!qh->unreserve_pending) {
1352 		status = dwc2_do_reserve(hsotg, qh);
1353 		if (status)
1354 			return status;
1355 	} else {
1356 		/*
1357 		 * It might have been a while, so make sure that frame_number
1358 		 * is still good.  Note: we could also try to use the similar
1359 		 * dwc2_next_periodic_start() but that schedules much more
1360 		 * tightly and we might need to hurry and queue things up.
1361 		 */
1362 		if (dwc2_frame_num_le(qh->next_active_frame,
1363 				      hsotg->frame_number))
1364 			dwc2_pick_first_frame(hsotg, qh);
1365 	}
1366 
1367 	qh->unreserve_pending = 0;
1368 
1369 	if (hsotg->params.dma_desc_enable)
1370 		/* Don't rely on SOF and start in ready schedule */
1371 		list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1372 	else
1373 		/* Always start in inactive schedule */
1374 		list_add_tail(&qh->qh_list_entry,
1375 			      &hsotg->periodic_sched_inactive);
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1382  * from the periodic schedule
1383  *
1384  * @hsotg: The HCD state structure for the DWC OTG controller
1385  * @qh:	   QH for the periodic transfer
1386  */
1387 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1388 				     struct dwc2_qh *qh)
1389 {
1390 	bool did_modify;
1391 
1392 	assert_spin_locked(&hsotg->lock);
1393 
1394 	/*
1395 	 * Schedule the unreserve to happen in a little bit.  Cases here:
1396 	 * - Unreserve worker might be sitting there waiting to grab the lock.
1397 	 *   In this case it will notice it's been schedule again and will
1398 	 *   quit.
1399 	 * - Unreserve worker might not be scheduled.
1400 	 *
1401 	 * We should never already be scheduled since dwc2_schedule_periodic()
1402 	 * should have canceled the scheduled unreserve timer (hence the
1403 	 * warning on did_modify).
1404 	 *
1405 	 * We add + 1 to the timer to guarantee that at least 1 jiffy has
1406 	 * passed (otherwise if the jiffy counter might tick right after we
1407 	 * read it and we'll get no delay).
1408 	 */
1409 	did_modify = mod_timer(&qh->unreserve_timer,
1410 			       jiffies + DWC2_UNRESERVE_DELAY + 1);
1411 	WARN_ON(did_modify);
1412 	qh->unreserve_pending = 1;
1413 
1414 	list_del_init(&qh->qh_list_entry);
1415 }
1416 
1417 /**
1418  * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
1419  *
1420  * As per the spec, a NAK indicates that "a function is temporarily unable to
1421  * transmit or receive data, but will eventually be able to do so without need
1422  * of host intervention".
1423  *
1424  * That means that when we encounter a NAK we're supposed to retry.
1425  *
1426  * ...but if we retry right away (from the interrupt handler that saw the NAK)
1427  * then we can end up with an interrupt storm (if the other side keeps NAKing
1428  * us) because on slow enough CPUs it could take us longer to get out of the
1429  * interrupt routine than it takes for the device to send another NAK.  That
1430  * leads to a constant stream of NAK interrupts and the CPU locks.
1431  *
1432  * ...so instead of retrying right away in the case of a NAK we'll set a timer
1433  * to retry some time later.  This function handles that timer and moves the
1434  * qh back to the "inactive" list, then queues transactions.
1435  *
1436  * @t: Pointer to wait_timer in a qh.
1437  *
1438  * Return: HRTIMER_NORESTART to not automatically restart this timer.
1439  */
1440 static enum hrtimer_restart dwc2_wait_timer_fn(struct hrtimer *t)
1441 {
1442 	struct dwc2_qh *qh = container_of(t, struct dwc2_qh, wait_timer);
1443 	struct dwc2_hsotg *hsotg = qh->hsotg;
1444 	unsigned long flags;
1445 
1446 	spin_lock_irqsave(&hsotg->lock, flags);
1447 
1448 	/*
1449 	 * We'll set wait_timer_cancel to true if we want to cancel this
1450 	 * operation in dwc2_hcd_qh_unlink().
1451 	 */
1452 	if (!qh->wait_timer_cancel) {
1453 		enum dwc2_transaction_type tr_type;
1454 
1455 		qh->want_wait = false;
1456 
1457 		list_move(&qh->qh_list_entry,
1458 			  &hsotg->non_periodic_sched_inactive);
1459 
1460 		tr_type = dwc2_hcd_select_transactions(hsotg);
1461 		if (tr_type != DWC2_TRANSACTION_NONE)
1462 			dwc2_hcd_queue_transactions(hsotg, tr_type);
1463 	}
1464 
1465 	spin_unlock_irqrestore(&hsotg->lock, flags);
1466 	return HRTIMER_NORESTART;
1467 }
1468 
1469 /**
1470  * dwc2_qh_init() - Initializes a QH structure
1471  *
1472  * @hsotg: The HCD state structure for the DWC OTG controller
1473  * @qh:    The QH to init
1474  * @urb:   Holds the information about the device/endpoint needed to initialize
1475  *         the QH
1476  * @mem_flags: Flags for allocating memory.
1477  */
1478 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1479 			 struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1480 {
1481 	int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1482 	u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1483 	bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1484 	bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1485 	bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1486 	u32 hprt = dwc2_readl(hsotg, HPRT0);
1487 	u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1488 	bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1489 			 dev_speed != USB_SPEED_HIGH);
1490 	int maxp = dwc2_hcd_get_maxp(&urb->pipe_info);
1491 	int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info);
1492 	int bytecount = maxp_mult * maxp;
1493 	char *speed, *type;
1494 
1495 	/* Initialize QH */
1496 	qh->hsotg = hsotg;
1497 	timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0);
1498 	hrtimer_init(&qh->wait_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1499 	qh->wait_timer.function = &dwc2_wait_timer_fn;
1500 	qh->ep_type = ep_type;
1501 	qh->ep_is_in = ep_is_in;
1502 
1503 	qh->data_toggle = DWC2_HC_PID_DATA0;
1504 	qh->maxp = maxp;
1505 	qh->maxp_mult = maxp_mult;
1506 	INIT_LIST_HEAD(&qh->qtd_list);
1507 	INIT_LIST_HEAD(&qh->qh_list_entry);
1508 
1509 	qh->do_split = do_split;
1510 	qh->dev_speed = dev_speed;
1511 
1512 	if (ep_is_int || ep_is_isoc) {
1513 		/* Compute scheduling parameters once and save them */
1514 		int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1515 		struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1516 							       mem_flags,
1517 							       &qh->ttport);
1518 		int device_ns;
1519 
1520 		qh->dwc_tt = dwc_tt;
1521 
1522 		qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1523 				       ep_is_isoc, bytecount));
1524 		device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1525 					      ep_is_isoc, bytecount);
1526 
1527 		if (do_split && dwc_tt)
1528 			device_ns += dwc_tt->usb_tt->think_time;
1529 		qh->device_us = NS_TO_US(device_ns);
1530 
1531 		qh->device_interval = urb->interval;
1532 		qh->host_interval = urb->interval * (do_split ? 8 : 1);
1533 
1534 		/*
1535 		 * Schedule low speed if we're running the host in low or
1536 		 * full speed OR if we've got a "TT" to deal with to access this
1537 		 * device.
1538 		 */
1539 		qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1540 					 dwc_tt;
1541 
1542 		if (do_split) {
1543 			/* We won't know num transfers until we schedule */
1544 			qh->num_hs_transfers = -1;
1545 		} else if (dev_speed == USB_SPEED_HIGH) {
1546 			qh->num_hs_transfers = 1;
1547 		} else {
1548 			qh->num_hs_transfers = 0;
1549 		}
1550 
1551 		/* We'll schedule later when we have something to do */
1552 	}
1553 
1554 	switch (dev_speed) {
1555 	case USB_SPEED_LOW:
1556 		speed = "low";
1557 		break;
1558 	case USB_SPEED_FULL:
1559 		speed = "full";
1560 		break;
1561 	case USB_SPEED_HIGH:
1562 		speed = "high";
1563 		break;
1564 	default:
1565 		speed = "?";
1566 		break;
1567 	}
1568 
1569 	switch (qh->ep_type) {
1570 	case USB_ENDPOINT_XFER_ISOC:
1571 		type = "isochronous";
1572 		break;
1573 	case USB_ENDPOINT_XFER_INT:
1574 		type = "interrupt";
1575 		break;
1576 	case USB_ENDPOINT_XFER_CONTROL:
1577 		type = "control";
1578 		break;
1579 	case USB_ENDPOINT_XFER_BULK:
1580 		type = "bulk";
1581 		break;
1582 	default:
1583 		type = "?";
1584 		break;
1585 	}
1586 
1587 	dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1588 		     speed, bytecount);
1589 	dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1590 		     dwc2_hcd_get_dev_addr(&urb->pipe_info),
1591 		     dwc2_hcd_get_ep_num(&urb->pipe_info),
1592 		     ep_is_in ? "IN" : "OUT");
1593 	if (ep_is_int || ep_is_isoc) {
1594 		dwc2_sch_dbg(hsotg,
1595 			     "QH=%p ...duration: host=%d us, device=%d us\n",
1596 			     qh, qh->host_us, qh->device_us);
1597 		dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1598 			     qh, qh->host_interval, qh->device_interval);
1599 		if (qh->schedule_low_speed)
1600 			dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1601 				     qh, dwc2_get_ls_map(hsotg, qh));
1602 	}
1603 }
1604 
1605 /**
1606  * dwc2_hcd_qh_create() - Allocates and initializes a QH
1607  *
1608  * @hsotg:        The HCD state structure for the DWC OTG controller
1609  * @urb:          Holds the information about the device/endpoint needed
1610  *                to initialize the QH
1611  * @mem_flags:   Flags for allocating memory.
1612  *
1613  * Return: Pointer to the newly allocated QH, or NULL on error
1614  */
1615 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1616 				   struct dwc2_hcd_urb *urb,
1617 					  gfp_t mem_flags)
1618 {
1619 	struct dwc2_qh *qh;
1620 
1621 	if (!urb->priv)
1622 		return NULL;
1623 
1624 	/* Allocate memory */
1625 	qh = kzalloc(sizeof(*qh), mem_flags);
1626 	if (!qh)
1627 		return NULL;
1628 
1629 	dwc2_qh_init(hsotg, qh, urb, mem_flags);
1630 
1631 	if (hsotg->params.dma_desc_enable &&
1632 	    dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1633 		dwc2_hcd_qh_free(hsotg, qh);
1634 		return NULL;
1635 	}
1636 
1637 	return qh;
1638 }
1639 
1640 /**
1641  * dwc2_hcd_qh_free() - Frees the QH
1642  *
1643  * @hsotg: HCD instance
1644  * @qh:    The QH to free
1645  *
1646  * QH should already be removed from the list. QTD list should already be empty
1647  * if called from URB Dequeue.
1648  *
1649  * Must NOT be called with interrupt disabled or spinlock held
1650  */
1651 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1652 {
1653 	/* Make sure any unreserve work is finished. */
1654 	if (del_timer_sync(&qh->unreserve_timer)) {
1655 		unsigned long flags;
1656 
1657 		spin_lock_irqsave(&hsotg->lock, flags);
1658 		dwc2_do_unreserve(hsotg, qh);
1659 		spin_unlock_irqrestore(&hsotg->lock, flags);
1660 	}
1661 
1662 	/*
1663 	 * We don't have the lock so we can safely wait until the wait timer
1664 	 * finishes.  Of course, at this point in time we'd better have set
1665 	 * wait_timer_active to false so if this timer was still pending it
1666 	 * won't do anything anyway, but we want it to finish before we free
1667 	 * memory.
1668 	 */
1669 	hrtimer_cancel(&qh->wait_timer);
1670 
1671 	dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1672 
1673 	if (qh->desc_list)
1674 		dwc2_hcd_qh_free_ddma(hsotg, qh);
1675 	else if (hsotg->unaligned_cache && qh->dw_align_buf)
1676 		kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf);
1677 
1678 	kfree(qh);
1679 }
1680 
1681 /**
1682  * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1683  * schedule if it is not already in the schedule. If the QH is already in
1684  * the schedule, no action is taken.
1685  *
1686  * @hsotg: The HCD state structure for the DWC OTG controller
1687  * @qh:    The QH to add
1688  *
1689  * Return: 0 if successful, negative error code otherwise
1690  */
1691 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1692 {
1693 	int status;
1694 	u32 intr_mask;
1695 	ktime_t delay;
1696 
1697 	if (dbg_qh(qh))
1698 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1699 
1700 	if (!list_empty(&qh->qh_list_entry))
1701 		/* QH already in a schedule */
1702 		return 0;
1703 
1704 	/* Add the new QH to the appropriate schedule */
1705 	if (dwc2_qh_is_non_per(qh)) {
1706 		/* Schedule right away */
1707 		qh->start_active_frame = hsotg->frame_number;
1708 		qh->next_active_frame = qh->start_active_frame;
1709 
1710 		if (qh->want_wait) {
1711 			list_add_tail(&qh->qh_list_entry,
1712 				      &hsotg->non_periodic_sched_waiting);
1713 			qh->wait_timer_cancel = false;
1714 			delay = ktime_set(0, DWC2_RETRY_WAIT_DELAY);
1715 			hrtimer_start(&qh->wait_timer, delay, HRTIMER_MODE_REL);
1716 		} else {
1717 			list_add_tail(&qh->qh_list_entry,
1718 				      &hsotg->non_periodic_sched_inactive);
1719 		}
1720 		return 0;
1721 	}
1722 
1723 	status = dwc2_schedule_periodic(hsotg, qh);
1724 	if (status)
1725 		return status;
1726 	if (!hsotg->periodic_qh_count) {
1727 		intr_mask = dwc2_readl(hsotg, GINTMSK);
1728 		intr_mask |= GINTSTS_SOF;
1729 		dwc2_writel(hsotg, intr_mask, GINTMSK);
1730 	}
1731 	hsotg->periodic_qh_count++;
1732 
1733 	return 0;
1734 }
1735 
1736 /**
1737  * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1738  * schedule. Memory is not freed.
1739  *
1740  * @hsotg: The HCD state structure
1741  * @qh:    QH to remove from schedule
1742  */
1743 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1744 {
1745 	u32 intr_mask;
1746 
1747 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
1748 
1749 	/* If the wait_timer is pending, this will stop it from acting */
1750 	qh->wait_timer_cancel = true;
1751 
1752 	if (list_empty(&qh->qh_list_entry))
1753 		/* QH is not in a schedule */
1754 		return;
1755 
1756 	if (dwc2_qh_is_non_per(qh)) {
1757 		if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1758 			hsotg->non_periodic_qh_ptr =
1759 					hsotg->non_periodic_qh_ptr->next;
1760 		list_del_init(&qh->qh_list_entry);
1761 		return;
1762 	}
1763 
1764 	dwc2_deschedule_periodic(hsotg, qh);
1765 	hsotg->periodic_qh_count--;
1766 	if (!hsotg->periodic_qh_count &&
1767 	    !hsotg->params.dma_desc_enable) {
1768 		intr_mask = dwc2_readl(hsotg, GINTMSK);
1769 		intr_mask &= ~GINTSTS_SOF;
1770 		dwc2_writel(hsotg, intr_mask, GINTMSK);
1771 	}
1772 }
1773 
1774 /**
1775  * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1776  *
1777  * This is called for setting next_active_frame for periodic splits for all but
1778  * the first packet of the split.  Confusing?  I thought so...
1779  *
1780  * Periodic splits are single low/full speed transfers that we end up splitting
1781  * up into several high speed transfers.  They always fit into one full (1 ms)
1782  * frame but might be split over several microframes (125 us each).  We to put
1783  * each of the parts on a very specific high speed frame.
1784  *
1785  * This function figures out where the next active uFrame needs to be.
1786  *
1787  * @hsotg:        The HCD state structure
1788  * @qh:           QH for the periodic transfer.
1789  * @frame_number: The current frame number.
1790  *
1791  * Return: number missed by (or 0 if we didn't miss).
1792  */
1793 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1794 					struct dwc2_qh *qh, u16 frame_number)
1795 {
1796 	u16 old_frame = qh->next_active_frame;
1797 	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1798 	int missed = 0;
1799 	u16 incr;
1800 
1801 	/*
1802 	 * See dwc2_uframe_schedule_split() for split scheduling.
1803 	 *
1804 	 * Basically: increment 1 normally, but 2 right after the start split
1805 	 * (except for ISOC out).
1806 	 */
1807 	if (old_frame == qh->start_active_frame &&
1808 	    !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1809 		incr = 2;
1810 	else
1811 		incr = 1;
1812 
1813 	qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1814 
1815 	/*
1816 	 * Note that it's OK for frame_number to be 1 frame past
1817 	 * next_active_frame.  Remember that next_active_frame is supposed to
1818 	 * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
1819 	 * past it just means schedule ASAP.
1820 	 *
1821 	 * It's _not_ OK, however, if we're more than one frame past.
1822 	 */
1823 	if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1824 		/*
1825 		 * OOPS, we missed.  That's actually pretty bad since
1826 		 * the hub will be unhappy; try ASAP I guess.
1827 		 */
1828 		missed = dwc2_frame_num_dec(prev_frame_number,
1829 					    qh->next_active_frame);
1830 		qh->next_active_frame = frame_number;
1831 	}
1832 
1833 	return missed;
1834 }
1835 
1836 /**
1837  * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1838  *
1839  * This is called for setting next_active_frame for a periodic transfer for
1840  * all cases other than midway through a periodic split.  This will also update
1841  * start_active_frame.
1842  *
1843  * Since we _always_ keep start_active_frame as the start of the previous
1844  * transfer this is normally pretty easy: we just add our interval to
1845  * start_active_frame and we've got our answer.
1846  *
1847  * The tricks come into play if we miss.  In that case we'll look for the next
1848  * slot we can fit into.
1849  *
1850  * @hsotg:        The HCD state structure
1851  * @qh:           QH for the periodic transfer.
1852  * @frame_number: The current frame number.
1853  *
1854  * Return: number missed by (or 0 if we didn't miss).
1855  */
1856 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1857 				    struct dwc2_qh *qh, u16 frame_number)
1858 {
1859 	int missed = 0;
1860 	u16 interval = qh->host_interval;
1861 	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1862 
1863 	qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1864 						    interval);
1865 
1866 	/*
1867 	 * The dwc2_frame_num_gt() function used below won't work terribly well
1868 	 * with if we just incremented by a really large intervals since the
1869 	 * frame counter only goes to 0x3fff.  It's terribly unlikely that we
1870 	 * will have missed in this case anyway.  Just go to exit.  If we want
1871 	 * to try to do better we'll need to keep track of a bigger counter
1872 	 * somewhere in the driver and handle overflows.
1873 	 */
1874 	if (interval >= 0x1000)
1875 		goto exit;
1876 
1877 	/*
1878 	 * Test for misses, which is when it's too late to schedule.
1879 	 *
1880 	 * A few things to note:
1881 	 * - We compare against prev_frame_number since start_active_frame
1882 	 *   and next_active_frame are always 1 frame before we want things
1883 	 *   to be active and we assume we can still get scheduled in the
1884 	 *   current frame number.
1885 	 * - It's possible for start_active_frame (now incremented) to be
1886 	 *   next_active_frame if we got an EO MISS (even_odd miss) which
1887 	 *   basically means that we detected there wasn't enough time for
1888 	 *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1889 	 *   at the last second.  We want to make sure we don't schedule
1890 	 *   another transfer for the same frame.  My test webcam doesn't seem
1891 	 *   terribly upset by missing a transfer but really doesn't like when
1892 	 *   we do two transfers in the same frame.
1893 	 * - Some misses are expected.  Specifically, in order to work
1894 	 *   perfectly dwc2 really needs quite spectacular interrupt latency
1895 	 *   requirements.  It needs to be able to handle its interrupts
1896 	 *   completely within 125 us of them being asserted. That not only
1897 	 *   means that the dwc2 interrupt handler needs to be fast but it
1898 	 *   means that nothing else in the system has to block dwc2 for a long
1899 	 *   time.  We can help with the dwc2 parts of this, but it's hard to
1900 	 *   guarantee that a system will have interrupt latency < 125 us, so
1901 	 *   we have to be robust to some misses.
1902 	 */
1903 	if (qh->start_active_frame == qh->next_active_frame ||
1904 	    dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1905 		u16 ideal_start = qh->start_active_frame;
1906 		int periods_in_map;
1907 
1908 		/*
1909 		 * Adjust interval as per gcd with map size.
1910 		 * See pmap_schedule() for more details here.
1911 		 */
1912 		if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1913 			periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1914 		else
1915 			periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1916 		interval = gcd(interval, periods_in_map);
1917 
1918 		do {
1919 			qh->start_active_frame = dwc2_frame_num_inc(
1920 				qh->start_active_frame, interval);
1921 		} while (dwc2_frame_num_gt(prev_frame_number,
1922 					   qh->start_active_frame));
1923 
1924 		missed = dwc2_frame_num_dec(qh->start_active_frame,
1925 					    ideal_start);
1926 	}
1927 
1928 exit:
1929 	qh->next_active_frame = qh->start_active_frame;
1930 
1931 	return missed;
1932 }
1933 
1934 /*
1935  * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1936  * non-periodic schedule. The QH is added to the inactive non-periodic
1937  * schedule if any QTDs are still attached to the QH.
1938  *
1939  * For periodic QHs, the QH is removed from the periodic queued schedule. If
1940  * there are any QTDs still attached to the QH, the QH is added to either the
1941  * periodic inactive schedule or the periodic ready schedule and its next
1942  * scheduled frame is calculated. The QH is placed in the ready schedule if
1943  * the scheduled frame has been reached already. Otherwise it's placed in the
1944  * inactive schedule. If there are no QTDs attached to the QH, the QH is
1945  * completely removed from the periodic schedule.
1946  */
1947 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1948 			    int sched_next_periodic_split)
1949 {
1950 	u16 old_frame = qh->next_active_frame;
1951 	u16 frame_number;
1952 	int missed;
1953 
1954 	if (dbg_qh(qh))
1955 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1956 
1957 	if (dwc2_qh_is_non_per(qh)) {
1958 		dwc2_hcd_qh_unlink(hsotg, qh);
1959 		if (!list_empty(&qh->qtd_list))
1960 			/* Add back to inactive/waiting non-periodic schedule */
1961 			dwc2_hcd_qh_add(hsotg, qh);
1962 		return;
1963 	}
1964 
1965 	/*
1966 	 * Use the real frame number rather than the cached value as of the
1967 	 * last SOF just to get us a little closer to reality.  Note that
1968 	 * means we don't actually know if we've already handled the SOF
1969 	 * interrupt for this frame.
1970 	 */
1971 	frame_number = dwc2_hcd_get_frame_number(hsotg);
1972 
1973 	if (sched_next_periodic_split)
1974 		missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
1975 	else
1976 		missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
1977 
1978 	dwc2_sch_vdbg(hsotg,
1979 		      "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
1980 		     qh, sched_next_periodic_split, frame_number, old_frame,
1981 		     qh->next_active_frame,
1982 		     dwc2_frame_num_dec(qh->next_active_frame, old_frame),
1983 		missed, missed ? "MISS" : "");
1984 
1985 	if (list_empty(&qh->qtd_list)) {
1986 		dwc2_hcd_qh_unlink(hsotg, qh);
1987 		return;
1988 	}
1989 
1990 	/*
1991 	 * Remove from periodic_sched_queued and move to
1992 	 * appropriate queue
1993 	 *
1994 	 * Note: we purposely use the frame_number from the "hsotg" structure
1995 	 * since we know SOF interrupt will handle future frames.
1996 	 */
1997 	if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
1998 		list_move_tail(&qh->qh_list_entry,
1999 			       &hsotg->periodic_sched_ready);
2000 	else
2001 		list_move_tail(&qh->qh_list_entry,
2002 			       &hsotg->periodic_sched_inactive);
2003 }
2004 
2005 /**
2006  * dwc2_hcd_qtd_init() - Initializes a QTD structure
2007  *
2008  * @qtd: The QTD to initialize
2009  * @urb: The associated URB
2010  */
2011 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2012 {
2013 	qtd->urb = urb;
2014 	if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
2015 			USB_ENDPOINT_XFER_CONTROL) {
2016 		/*
2017 		 * The only time the QTD data toggle is used is on the data
2018 		 * phase of control transfers. This phase always starts with
2019 		 * DATA1.
2020 		 */
2021 		qtd->data_toggle = DWC2_HC_PID_DATA1;
2022 		qtd->control_phase = DWC2_CONTROL_SETUP;
2023 	}
2024 
2025 	/* Start split */
2026 	qtd->complete_split = 0;
2027 	qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
2028 	qtd->isoc_split_offset = 0;
2029 	qtd->in_process = 0;
2030 
2031 	/* Store the qtd ptr in the urb to reference the QTD */
2032 	urb->qtd = qtd;
2033 }
2034 
2035 /**
2036  * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
2037  *			Caller must hold driver lock.
2038  *
2039  * @hsotg:        The DWC HCD structure
2040  * @qtd:          The QTD to add
2041  * @qh:           Queue head to add qtd to
2042  *
2043  * Return: 0 if successful, negative error code otherwise
2044  *
2045  * If the QH to which the QTD is added is not currently scheduled, it is placed
2046  * into the proper schedule based on its EP type.
2047  */
2048 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2049 		     struct dwc2_qh *qh)
2050 {
2051 	int retval;
2052 
2053 	if (unlikely(!qh)) {
2054 		dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2055 		retval = -EINVAL;
2056 		goto fail;
2057 	}
2058 
2059 	retval = dwc2_hcd_qh_add(hsotg, qh);
2060 	if (retval)
2061 		goto fail;
2062 
2063 	qtd->qh = qh;
2064 	list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2065 
2066 	return 0;
2067 fail:
2068 	return retval;
2069 }
2070