xref: /openbmc/linux/drivers/usb/dwc2/hcd.h (revision 98ddec80)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.h - DesignWare HS OTG Controller host-mode declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 #ifndef __DWC2_HCD_H__
38 #define __DWC2_HCD_H__
39 
40 /*
41  * This file contains the structures, constants, and interfaces for the
42  * Host Contoller Driver (HCD)
43  *
44  * The Host Controller Driver (HCD) is responsible for translating requests
45  * from the USB Driver into the appropriate actions on the DWC_otg controller.
46  * It isolates the USBD from the specifics of the controller by providing an
47  * API to the USBD.
48  */
49 
50 struct dwc2_qh;
51 
52 /**
53  * struct dwc2_host_chan - Software host channel descriptor
54  *
55  * @hc_num:             Host channel number, used for register address lookup
56  * @dev_addr:           Address of the device
57  * @ep_num:             Endpoint of the device
58  * @ep_is_in:           Endpoint direction
59  * @speed:              Device speed. One of the following values:
60  *                       - USB_SPEED_LOW
61  *                       - USB_SPEED_FULL
62  *                       - USB_SPEED_HIGH
63  * @ep_type:            Endpoint type. One of the following values:
64  *                       - USB_ENDPOINT_XFER_CONTROL: 0
65  *                       - USB_ENDPOINT_XFER_ISOC:    1
66  *                       - USB_ENDPOINT_XFER_BULK:    2
67  *                       - USB_ENDPOINT_XFER_INTR:    3
68  * @max_packet:         Max packet size in bytes
69  * @data_pid_start:     PID for initial transaction.
70  *                       0: DATA0
71  *                       1: DATA2
72  *                       2: DATA1
73  *                       3: MDATA (non-Control EP),
74  *                          SETUP (Control EP)
75  * @multi_count:        Number of additional periodic transactions per
76  *                      (micro)frame
77  * @xfer_buf:           Pointer to current transfer buffer position
78  * @xfer_dma:           DMA address of xfer_buf
79  * @xfer_len:           Total number of bytes to transfer
80  * @xfer_count:         Number of bytes transferred so far
81  * @start_pkt_count:    Packet count at start of transfer
82  * @xfer_started:       True if the transfer has been started
83  * @do_ping:            True if a PING request should be issued on this channel
84  * @error_state:        True if the error count for this transaction is non-zero
85  * @halt_on_queue:      True if this channel should be halted the next time a
86  *                      request is queued for the channel. This is necessary in
87  *                      slave mode if no request queue space is available when
88  *                      an attempt is made to halt the channel.
89  * @halt_pending:       True if the host channel has been halted, but the core
90  *                      is not finished flushing queued requests
91  * @do_split:           Enable split for the channel
92  * @complete_split:     Enable complete split
93  * @hub_addr:           Address of high speed hub for the split
94  * @hub_port:           Port of the low/full speed device for the split
95  * @xact_pos:           Split transaction position. One of the following values:
96  *                       - DWC2_HCSPLT_XACTPOS_MID
97  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
98  *                       - DWC2_HCSPLT_XACTPOS_END
99  *                       - DWC2_HCSPLT_XACTPOS_ALL
100  * @requests:           Number of requests issued for this channel since it was
101  *                      assigned to the current transfer (not counting PINGs)
102  * @schinfo:            Scheduling micro-frame bitmap
103  * @ntd:                Number of transfer descriptors for the transfer
104  * @halt_status:        Reason for halting the host channel
105  * @hcint:               Contents of the HCINT register when the interrupt came
106  * @qh:                 QH for the transfer being processed by this channel
107  * @hc_list_entry:      For linking to list of host channels
108  * @desc_list_addr:     Current QH's descriptor list DMA address
109  * @desc_list_sz:       Current QH's descriptor list size
110  * @split_order_list_entry: List entry for keeping track of the order of splits
111  *
112  * This structure represents the state of a single host channel when acting in
113  * host mode. It contains the data items needed to transfer packets to an
114  * endpoint via a host channel.
115  */
116 struct dwc2_host_chan {
117 	u8 hc_num;
118 
119 	unsigned dev_addr:7;
120 	unsigned ep_num:4;
121 	unsigned ep_is_in:1;
122 	unsigned speed:4;
123 	unsigned ep_type:2;
124 	unsigned max_packet:11;
125 	unsigned data_pid_start:2;
126 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
127 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
128 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
129 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
130 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
131 
132 	unsigned multi_count:2;
133 
134 	u8 *xfer_buf;
135 	dma_addr_t xfer_dma;
136 	u32 xfer_len;
137 	u32 xfer_count;
138 	u16 start_pkt_count;
139 	u8 xfer_started;
140 	u8 do_ping;
141 	u8 error_state;
142 	u8 halt_on_queue;
143 	u8 halt_pending;
144 	u8 do_split;
145 	u8 complete_split;
146 	u8 hub_addr;
147 	u8 hub_port;
148 	u8 xact_pos;
149 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
150 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
151 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
153 
154 	u8 requests;
155 	u8 schinfo;
156 	u16 ntd;
157 	enum dwc2_halt_status halt_status;
158 	u32 hcint;
159 	struct dwc2_qh *qh;
160 	struct list_head hc_list_entry;
161 	dma_addr_t desc_list_addr;
162 	u32 desc_list_sz;
163 	struct list_head split_order_list_entry;
164 };
165 
166 struct dwc2_hcd_pipe_info {
167 	u8 dev_addr;
168 	u8 ep_num;
169 	u8 pipe_type;
170 	u8 pipe_dir;
171 	u16 mps;
172 };
173 
174 struct dwc2_hcd_iso_packet_desc {
175 	u32 offset;
176 	u32 length;
177 	u32 actual_length;
178 	u32 status;
179 };
180 
181 struct dwc2_qtd;
182 
183 struct dwc2_hcd_urb {
184 	void *priv;
185 	struct dwc2_qtd *qtd;
186 	void *buf;
187 	dma_addr_t dma;
188 	void *setup_packet;
189 	dma_addr_t setup_dma;
190 	u32 length;
191 	u32 actual_length;
192 	u32 status;
193 	u32 error_count;
194 	u32 packet_count;
195 	u32 flags;
196 	u16 interval;
197 	struct dwc2_hcd_pipe_info pipe_info;
198 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
199 };
200 
201 /* Phases for control transfers */
202 enum dwc2_control_phase {
203 	DWC2_CONTROL_SETUP,
204 	DWC2_CONTROL_DATA,
205 	DWC2_CONTROL_STATUS,
206 };
207 
208 /* Transaction types */
209 enum dwc2_transaction_type {
210 	DWC2_TRANSACTION_NONE,
211 	DWC2_TRANSACTION_PERIODIC,
212 	DWC2_TRANSACTION_NON_PERIODIC,
213 	DWC2_TRANSACTION_ALL,
214 };
215 
216 /* The number of elements per LS bitmap (per port on multi_tt) */
217 #define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
218 						     BITS_PER_LONG)
219 
220 /**
221  * struct dwc2_tt - dwc2 data associated with a usb_tt
222  *
223  * @refcount:           Number of Queue Heads (QHs) holding a reference.
224  * @usb_tt:             Pointer back to the official usb_tt.
225  * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
226  *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
227  *			elements (so sizeof(long) times that in bytes).
228  *
229  * This structure is stored in the hcpriv of the official usb_tt.
230  */
231 struct dwc2_tt {
232 	int refcount;
233 	struct usb_tt *usb_tt;
234 	unsigned long periodic_bitmaps[];
235 };
236 
237 /**
238  * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
239  *
240  * @start_schedule_us:  The start time on the main bus schedule.  Note that
241  *                         the main bus schedule is tightly packed and this
242  *			   time should be interpreted as tightly packed (so
243  *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
244  *			   instead of 125 us).
245  * @duration_us:           How long this transfer goes.
246  */
247 
248 struct dwc2_hs_transfer_time {
249 	u32 start_schedule_us;
250 	u16 duration_us;
251 };
252 
253 /**
254  * struct dwc2_qh - Software queue head structure
255  *
256  * @hsotg:              The HCD state structure for the DWC OTG controller
257  * @ep_type:            Endpoint type. One of the following values:
258  *                       - USB_ENDPOINT_XFER_CONTROL
259  *                       - USB_ENDPOINT_XFER_BULK
260  *                       - USB_ENDPOINT_XFER_INT
261  *                       - USB_ENDPOINT_XFER_ISOC
262  * @ep_is_in:           Endpoint direction
263  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
264  * @dev_speed:          Device speed. One of the following values:
265  *                       - USB_SPEED_LOW
266  *                       - USB_SPEED_FULL
267  *                       - USB_SPEED_HIGH
268  * @data_toggle:        Determines the PID of the next data packet for
269  *                      non-controltransfers. Ignored for control transfers.
270  *                      One of the following values:
271  *                       - DWC2_HC_PID_DATA0
272  *                       - DWC2_HC_PID_DATA1
273  * @ping_state:         Ping state
274  * @do_split:           Full/low speed endpoint on high-speed hub requires split
275  * @td_first:           Index of first activated isochronous transfer descriptor
276  * @td_last:            Index of last activated isochronous transfer descriptor
277  * @host_us:            Bandwidth in microseconds per transfer as seen by host
278  * @device_us:          Bandwidth in microseconds per transfer as seen by device
279  * @host_interval:      Interval between transfers as seen by the host.  If
280  *                      the host is high speed and the device is low speed this
281  *                      will be 8 times device interval.
282  * @device_interval:    Interval between transfers as seen by the device.
283  *                      interval.
284  * @next_active_frame:  (Micro)frame _before_ we next need to put something on
285  *                      the bus.  We'll move the qh to active here.  If the
286  *                      host is in high speed mode this will be a uframe.  If
287  *                      the host is in low speed mode this will be a full frame.
288  * @start_active_frame: If we are partway through a split transfer, this will be
289  *			what next_active_frame was when we started.  Otherwise
290  *			it should always be the same as next_active_frame.
291  * @num_hs_transfers:   Number of transfers in hs_transfers.
292  *                      Normally this is 1 but can be more than one for splits.
293  *                      Always >= 1 unless the host is in low/full speed mode.
294  * @hs_transfers:       Transfers that are scheduled as seen by the high speed
295  *                      bus.  Not used if host is in low or full speed mode (but
296  *                      note that it IS USED if the device is low or full speed
297  *                      as long as the HOST is in high speed mode).
298  * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
299  *                           schedule that's being used by this device.  This
300  *			     will be on the periodic_bitmap in a
301  *                           "struct dwc2_tt".  Not used if this device is high
302  *                           speed.  Note that this is in "schedule slice" which
303  *                           is tightly packed.
304  * @ntd:                Actual number of transfer descriptors in a list
305  * @qtd_list:           List of QTDs for this QH
306  * @channel:            Host channel currently processing transfers for this QH
307  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
308  *                      schedule
309  * @desc_list:          List of transfer descriptors
310  * @desc_list_dma:      Physical address of desc_list
311  * @desc_list_sz:       Size of descriptors list
312  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
313  *                      descriptor and indicates original XferSize value for the
314  *                      descriptor
315  * @unreserve_timer:    Timer for releasing periodic reservation.
316  * @wait_timer:         Timer used to wait before re-queuing.
317  * @dwc_tt:            Pointer to our tt info (or NULL if no tt).
318  * @ttport:             Port number within our tt.
319  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
320  * @unreserve_pending:  True if we planned to unreserve but haven't yet.
321  * @schedule_low_speed: True if we have a low/full speed component (either the
322  *			host is in low/full speed mode or do_split).
323  * @want_wait:          We should wait before re-queuing; only matters for non-
324  *                      periodic transfers and is ignored for periodic ones.
325  * @wait_timer_cancel:  Set to true to cancel the wait_timer.
326  *
327  * @tt_buffer_dirty:	True if EP's TT buffer is not clean.
328  * A Queue Head (QH) holds the static characteristics of an endpoint and
329  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
330  * be entered in either the non-periodic or periodic schedule.
331  */
332 struct dwc2_qh {
333 	struct dwc2_hsotg *hsotg;
334 	u8 ep_type;
335 	u8 ep_is_in;
336 	u16 maxp;
337 	u8 dev_speed;
338 	u8 data_toggle;
339 	u8 ping_state;
340 	u8 do_split;
341 	u8 td_first;
342 	u8 td_last;
343 	u16 host_us;
344 	u16 device_us;
345 	u16 host_interval;
346 	u16 device_interval;
347 	u16 next_active_frame;
348 	u16 start_active_frame;
349 	s16 num_hs_transfers;
350 	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
351 	u32 ls_start_schedule_slice;
352 	u16 ntd;
353 	struct list_head qtd_list;
354 	struct dwc2_host_chan *channel;
355 	struct list_head qh_list_entry;
356 	struct dwc2_dma_desc *desc_list;
357 	dma_addr_t desc_list_dma;
358 	u32 desc_list_sz;
359 	u32 *n_bytes;
360 	struct timer_list unreserve_timer;
361 	struct timer_list wait_timer;
362 	struct dwc2_tt *dwc_tt;
363 	int ttport;
364 	unsigned tt_buffer_dirty:1;
365 	unsigned unreserve_pending:1;
366 	unsigned schedule_low_speed:1;
367 	unsigned want_wait:1;
368 	unsigned wait_timer_cancel:1;
369 };
370 
371 /**
372  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
373  *
374  * @control_phase:      Current phase for control transfers (Setup, Data, or
375  *                      Status)
376  * @in_process:         Indicates if this QTD is currently processed by HW
377  * @data_toggle:        Determines the PID of the next data packet for the
378  *                      data phase of control transfers. Ignored for other
379  *                      transfer types. One of the following values:
380  *                       - DWC2_HC_PID_DATA0
381  *                       - DWC2_HC_PID_DATA1
382  * @complete_split:     Keeps track of the current split type for FS/LS
383  *                      endpoints on a HS Hub
384  * @isoc_split_pos:     Position of the ISOC split in full/low speed
385  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
386  *                      transfer. A frame descriptor describes the buffer
387  *                      position and length of the data to be transferred in the
388  *                      next scheduled (micro)frame of an isochronous transfer.
389  *                      It also holds status for that transaction. The frame
390  *                      index starts at 0.
391  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
392  *                      current frame
393  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
394  * @error_count:        Holds the number of bus errors that have occurred for
395  *                      a transaction within this transfer
396  * @n_desc:             Number of DMA descriptors for this QTD
397  * @isoc_frame_index_last: Last activated frame (packet) index, used in
398  *                      descriptor DMA mode only
399  * @num_naks:           Number of NAKs received on this QTD.
400  * @urb:                URB for this transfer
401  * @qh:                 Queue head for this QTD
402  * @qtd_list_entry:     For linking to the QH's list of QTDs
403  * @isoc_td_first:	Index of first activated isochronous transfer
404  *			descriptor in Descriptor DMA mode
405  * @isoc_td_last:	Index of last activated isochronous transfer
406  *			descriptor in Descriptor DMA mode
407  *
408  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
409  * interrupt, or isochronous transfer. A single QTD is created for each URB
410  * (of one of these types) submitted to the HCD. The transfer associated with
411  * a QTD may require one or multiple transactions.
412  *
413  * A QTD is linked to a Queue Head, which is entered in either the
414  * non-periodic or periodic schedule for execution. When a QTD is chosen for
415  * execution, some or all of its transactions may be executed. After
416  * execution, the state of the QTD is updated. The QTD may be retired if all
417  * its transactions are complete or if an error occurred. Otherwise, it
418  * remains in the schedule so more transactions can be executed later.
419  */
420 struct dwc2_qtd {
421 	enum dwc2_control_phase control_phase;
422 	u8 in_process;
423 	u8 data_toggle;
424 	u8 complete_split;
425 	u8 isoc_split_pos;
426 	u16 isoc_frame_index;
427 	u16 isoc_split_offset;
428 	u16 isoc_td_last;
429 	u16 isoc_td_first;
430 	u32 ssplit_out_xfer_count;
431 	u8 error_count;
432 	u8 n_desc;
433 	u16 isoc_frame_index_last;
434 	u16 num_naks;
435 	struct dwc2_hcd_urb *urb;
436 	struct dwc2_qh *qh;
437 	struct list_head qtd_list_entry;
438 };
439 
440 #ifdef DEBUG
441 struct hc_xfer_info {
442 	struct dwc2_hsotg *hsotg;
443 	struct dwc2_host_chan *chan;
444 };
445 #endif
446 
447 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
448 
449 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
450 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
451 {
452 	return (struct usb_hcd *)hsotg->priv;
453 }
454 
455 /*
456  * Inline used to disable one channel interrupt. Channel interrupts are
457  * disabled when the channel is halted or released by the interrupt handler.
458  * There is no need to handle further interrupts of that type until the
459  * channel is re-assigned. In fact, subsequent handling may cause crashes
460  * because the channel structures are cleaned up when the channel is released.
461  */
462 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
463 {
464 	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
465 
466 	mask &= ~intr;
467 	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
468 }
469 
470 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
471 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
472 		  enum dwc2_halt_status halt_status);
473 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
474 				 struct dwc2_host_chan *chan);
475 
476 /*
477  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
478  * are read as 1, they won't clear when written back.
479  */
480 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
481 {
482 	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
483 
484 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
485 	return hprt0;
486 }
487 
488 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
489 {
490 	return pipe->ep_num;
491 }
492 
493 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
494 {
495 	return pipe->pipe_type;
496 }
497 
498 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
499 {
500 	return pipe->mps;
501 }
502 
503 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
504 {
505 	return pipe->dev_addr;
506 }
507 
508 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
509 {
510 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
511 }
512 
513 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
514 {
515 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
516 }
517 
518 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
519 {
520 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
521 }
522 
523 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
524 {
525 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
526 }
527 
528 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
529 {
530 	return pipe->pipe_dir == USB_DIR_IN;
531 }
532 
533 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
534 {
535 	return !dwc2_hcd_is_pipe_in(pipe);
536 }
537 
538 int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
539 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
540 
541 /* Transaction Execution Functions */
542 enum dwc2_transaction_type dwc2_hcd_select_transactions(
543 						struct dwc2_hsotg *hsotg);
544 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
545 				 enum dwc2_transaction_type tr_type);
546 
547 /* Schedule Queue Functions */
548 /* Implemented in hcd_queue.c */
549 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
550 				   struct dwc2_hcd_urb *urb,
551 					  gfp_t mem_flags);
552 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
553 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
554 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
555 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
556 			    int sched_csplit);
557 
558 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
559 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
560 		     struct dwc2_qh *qh);
561 
562 /* Unlinks and frees a QTD */
563 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
564 						struct dwc2_qtd *qtd,
565 						struct dwc2_qh *qh)
566 {
567 	list_del(&qtd->qtd_list_entry);
568 	kfree(qtd);
569 	qtd = NULL;
570 }
571 
572 /* Descriptor DMA support functions */
573 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
574 			      struct dwc2_qh *qh);
575 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
576 				 struct dwc2_host_chan *chan, int chnum,
577 					enum dwc2_halt_status halt_status);
578 
579 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
580 			  gfp_t mem_flags);
581 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
582 
583 /* Check if QH is non-periodic */
584 #define dwc2_qh_is_non_per(_qh_ptr_) \
585 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
586 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
587 
588 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
589 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
590 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
591 static inline bool dbg_urb(struct urb *urb) { return true; }
592 static inline bool dbg_perio(void) { return true; }
593 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
594 static inline bool dbg_hc(struct dwc2_host_chan *hc)
595 {
596 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
597 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
598 }
599 
600 static inline bool dbg_qh(struct dwc2_qh *qh)
601 {
602 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
603 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
604 }
605 
606 static inline bool dbg_urb(struct urb *urb)
607 {
608 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
609 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
610 }
611 
612 static inline bool dbg_perio(void) { return false; }
613 #endif
614 
615 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
616 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
617 
618 /* Packet size for any kind of endpoint descriptor */
619 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
620 
621 /*
622  * Returns true if frame1 index is greater than frame2 index. The comparison
623  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
624  * frame number when the max index frame number is reached.
625  */
626 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
627 {
628 	u16 diff = fr_idx1 - fr_idx2;
629 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
630 
631 	return diff && !sign;
632 }
633 
634 /*
635  * Returns true if frame1 is less than or equal to frame2. The comparison is
636  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
637  * frame number when the max frame number is reached.
638  */
639 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
640 {
641 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
642 }
643 
644 /*
645  * Returns true if frame1 is greater than frame2. The comparison is done
646  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
647  * number when the max frame number is reached.
648  */
649 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
650 {
651 	return (frame1 != frame2) &&
652 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
653 }
654 
655 /*
656  * Increments frame by the amount specified by inc. The addition is done
657  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
658  */
659 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
660 {
661 	return (frame + inc) & HFNUM_MAX_FRNUM;
662 }
663 
664 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
665 {
666 	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
667 }
668 
669 static inline u16 dwc2_full_frame_num(u16 frame)
670 {
671 	return (frame & HFNUM_MAX_FRNUM) >> 3;
672 }
673 
674 static inline u16 dwc2_micro_frame_num(u16 frame)
675 {
676 	return frame & 0x7;
677 }
678 
679 /*
680  * Returns the Core Interrupt Status register contents, ANDed with the Core
681  * Interrupt Mask register contents
682  */
683 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
684 {
685 	return dwc2_readl(hsotg->regs + GINTSTS) &
686 	       dwc2_readl(hsotg->regs + GINTMSK);
687 }
688 
689 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
690 {
691 	return dwc2_urb->status;
692 }
693 
694 static inline u32 dwc2_hcd_urb_get_actual_length(
695 		struct dwc2_hcd_urb *dwc2_urb)
696 {
697 	return dwc2_urb->actual_length;
698 }
699 
700 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
701 {
702 	return dwc2_urb->error_count;
703 }
704 
705 static inline void dwc2_hcd_urb_set_iso_desc_params(
706 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
707 		u32 length)
708 {
709 	dwc2_urb->iso_descs[desc_num].offset = offset;
710 	dwc2_urb->iso_descs[desc_num].length = length;
711 }
712 
713 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
714 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
715 {
716 	return dwc2_urb->iso_descs[desc_num].status;
717 }
718 
719 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
720 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
721 {
722 	return dwc2_urb->iso_descs[desc_num].actual_length;
723 }
724 
725 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
726 						  struct usb_host_endpoint *ep)
727 {
728 	struct dwc2_qh *qh = ep->hcpriv;
729 
730 	if (qh && !list_empty(&qh->qh_list_entry))
731 		return 1;
732 
733 	return 0;
734 }
735 
736 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
737 					    struct usb_host_endpoint *ep)
738 {
739 	struct dwc2_qh *qh = ep->hcpriv;
740 
741 	if (!qh) {
742 		WARN_ON(1);
743 		return 0;
744 	}
745 
746 	return qh->host_us;
747 }
748 
749 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
750 			       struct dwc2_host_chan *chan, int chnum,
751 				      struct dwc2_qtd *qtd);
752 
753 /* HCD Core API */
754 
755 /**
756  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
757  *
758  * @hsotg: The DWC2 HCD
759  *
760  * Returns IRQ_HANDLED if interrupt is handled
761  * Return IRQ_NONE if interrupt is not handled
762  */
763 irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
764 
765 /**
766  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
767  *
768  * @hsotg: The DWC2 HCD
769  */
770 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
771 
772 /**
773  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
774  * and 0 otherwise
775  *
776  * @hsotg: The DWC2 HCD
777  */
778 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
779 
780 /**
781  * dwc2_hcd_dump_state() - Dumps hsotg state
782  *
783  * @hsotg: The DWC2 HCD
784  *
785  * NOTE: This function will be removed once the peripheral controller code
786  * is integrated and the driver is stable
787  */
788 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
789 
790 /* URB interface */
791 
792 /* Transfer flags */
793 #define URB_GIVEBACK_ASAP	0x1
794 #define URB_SEND_ZERO_PACKET	0x2
795 
796 /* Host driver callbacks */
797 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
798 				      void *context, gfp_t mem_flags,
799 				      int *ttport);
800 
801 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
802 			   struct dwc2_tt *dwc_tt);
803 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
804 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
805 			int status);
806 
807 #endif /* __DWC2_HCD_H__ */
808