1 /* 2 * hcd.h - DesignWare HS OTG Controller host-mode declarations 3 * 4 * Copyright (C) 2004-2013 Synopsys, Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The names of the above-listed copyright holders may not be used 16 * to endorse or promote products derived from this software without 17 * specific prior written permission. 18 * 19 * ALTERNATIVELY, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") as published by the Free Software 21 * Foundation; either version 2 of the License, or (at your option) any 22 * later version. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 */ 36 #ifndef __DWC2_HCD_H__ 37 #define __DWC2_HCD_H__ 38 39 /* 40 * This file contains the structures, constants, and interfaces for the 41 * Host Contoller Driver (HCD) 42 * 43 * The Host Controller Driver (HCD) is responsible for translating requests 44 * from the USB Driver into the appropriate actions on the DWC_otg controller. 45 * It isolates the USBD from the specifics of the controller by providing an 46 * API to the USBD. 47 */ 48 49 struct dwc2_qh; 50 51 /** 52 * struct dwc2_host_chan - Software host channel descriptor 53 * 54 * @hc_num: Host channel number, used for register address lookup 55 * @dev_addr: Address of the device 56 * @ep_num: Endpoint of the device 57 * @ep_is_in: Endpoint direction 58 * @speed: Device speed. One of the following values: 59 * - USB_SPEED_LOW 60 * - USB_SPEED_FULL 61 * - USB_SPEED_HIGH 62 * @ep_type: Endpoint type. One of the following values: 63 * - USB_ENDPOINT_XFER_CONTROL: 0 64 * - USB_ENDPOINT_XFER_ISOC: 1 65 * - USB_ENDPOINT_XFER_BULK: 2 66 * - USB_ENDPOINT_XFER_INTR: 3 67 * @max_packet: Max packet size in bytes 68 * @data_pid_start: PID for initial transaction. 69 * 0: DATA0 70 * 1: DATA2 71 * 2: DATA1 72 * 3: MDATA (non-Control EP), 73 * SETUP (Control EP) 74 * @multi_count: Number of additional periodic transactions per 75 * (micro)frame 76 * @xfer_buf: Pointer to current transfer buffer position 77 * @xfer_dma: DMA address of xfer_buf 78 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not 79 * DWORD aligned 80 * @xfer_len: Total number of bytes to transfer 81 * @xfer_count: Number of bytes transferred so far 82 * @start_pkt_count: Packet count at start of transfer 83 * @xfer_started: True if the transfer has been started 84 * @ping: True if a PING request should be issued on this channel 85 * @error_state: True if the error count for this transaction is non-zero 86 * @halt_on_queue: True if this channel should be halted the next time a 87 * request is queued for the channel. This is necessary in 88 * slave mode if no request queue space is available when 89 * an attempt is made to halt the channel. 90 * @halt_pending: True if the host channel has been halted, but the core 91 * is not finished flushing queued requests 92 * @do_split: Enable split for the channel 93 * @complete_split: Enable complete split 94 * @hub_addr: Address of high speed hub for the split 95 * @hub_port: Port of the low/full speed device for the split 96 * @xact_pos: Split transaction position. One of the following values: 97 * - DWC2_HCSPLT_XACTPOS_MID 98 * - DWC2_HCSPLT_XACTPOS_BEGIN 99 * - DWC2_HCSPLT_XACTPOS_END 100 * - DWC2_HCSPLT_XACTPOS_ALL 101 * @requests: Number of requests issued for this channel since it was 102 * assigned to the current transfer (not counting PINGs) 103 * @schinfo: Scheduling micro-frame bitmap 104 * @ntd: Number of transfer descriptors for the transfer 105 * @halt_status: Reason for halting the host channel 106 * @hcint Contents of the HCINT register when the interrupt came 107 * @qh: QH for the transfer being processed by this channel 108 * @hc_list_entry: For linking to list of host channels 109 * @desc_list_addr: Current QH's descriptor list DMA address 110 * 111 * This structure represents the state of a single host channel when acting in 112 * host mode. It contains the data items needed to transfer packets to an 113 * endpoint via a host channel. 114 */ 115 struct dwc2_host_chan { 116 u8 hc_num; 117 118 unsigned dev_addr:7; 119 unsigned ep_num:4; 120 unsigned ep_is_in:1; 121 unsigned speed:4; 122 unsigned ep_type:2; 123 unsigned max_packet:11; 124 unsigned data_pid_start:2; 125 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0 126 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2 127 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1 128 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA 129 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP 130 131 unsigned multi_count:2; 132 133 u8 *xfer_buf; 134 dma_addr_t xfer_dma; 135 dma_addr_t align_buf; 136 u32 xfer_len; 137 u32 xfer_count; 138 u16 start_pkt_count; 139 u8 xfer_started; 140 u8 do_ping; 141 u8 error_state; 142 u8 halt_on_queue; 143 u8 halt_pending; 144 u8 do_split; 145 u8 complete_split; 146 u8 hub_addr; 147 u8 hub_port; 148 u8 xact_pos; 149 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID 150 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END 151 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN 152 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL 153 154 u8 requests; 155 u8 schinfo; 156 u16 ntd; 157 enum dwc2_halt_status halt_status; 158 u32 hcint; 159 struct dwc2_qh *qh; 160 struct list_head hc_list_entry; 161 dma_addr_t desc_list_addr; 162 }; 163 164 struct dwc2_hcd_pipe_info { 165 u8 dev_addr; 166 u8 ep_num; 167 u8 pipe_type; 168 u8 pipe_dir; 169 u16 mps; 170 }; 171 172 struct dwc2_hcd_iso_packet_desc { 173 u32 offset; 174 u32 length; 175 u32 actual_length; 176 u32 status; 177 }; 178 179 struct dwc2_qtd; 180 181 struct dwc2_hcd_urb { 182 void *priv; 183 struct dwc2_qtd *qtd; 184 void *buf; 185 dma_addr_t dma; 186 void *setup_packet; 187 dma_addr_t setup_dma; 188 u32 length; 189 u32 actual_length; 190 u32 status; 191 u32 error_count; 192 u32 packet_count; 193 u32 flags; 194 u16 interval; 195 struct dwc2_hcd_pipe_info pipe_info; 196 struct dwc2_hcd_iso_packet_desc iso_descs[0]; 197 }; 198 199 /* Phases for control transfers */ 200 enum dwc2_control_phase { 201 DWC2_CONTROL_SETUP, 202 DWC2_CONTROL_DATA, 203 DWC2_CONTROL_STATUS, 204 }; 205 206 /* Transaction types */ 207 enum dwc2_transaction_type { 208 DWC2_TRANSACTION_NONE, 209 DWC2_TRANSACTION_PERIODIC, 210 DWC2_TRANSACTION_NON_PERIODIC, 211 DWC2_TRANSACTION_ALL, 212 }; 213 214 /** 215 * struct dwc2_qh - Software queue head structure 216 * 217 * @ep_type: Endpoint type. One of the following values: 218 * - USB_ENDPOINT_XFER_CONTROL 219 * - USB_ENDPOINT_XFER_BULK 220 * - USB_ENDPOINT_XFER_INT 221 * - USB_ENDPOINT_XFER_ISOC 222 * @ep_is_in: Endpoint direction 223 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor 224 * @dev_speed: Device speed. One of the following values: 225 * - USB_SPEED_LOW 226 * - USB_SPEED_FULL 227 * - USB_SPEED_HIGH 228 * @data_toggle: Determines the PID of the next data packet for 229 * non-controltransfers. Ignored for control transfers. 230 * One of the following values: 231 * - DWC2_HC_PID_DATA0 232 * - DWC2_HC_PID_DATA1 233 * @ping_state: Ping state 234 * @do_split: Full/low speed endpoint on high-speed hub requires split 235 * @td_first: Index of first activated isochronous transfer descriptor 236 * @td_last: Index of last activated isochronous transfer descriptor 237 * @usecs: Bandwidth in microseconds per (micro)frame 238 * @interval: Interval between transfers in (micro)frames 239 * @sched_frame: (Micro)frame to initialize a periodic transfer. 240 * The transfer executes in the following (micro)frame. 241 * @frame_usecs: Internal variable used by the microframe scheduler 242 * @start_split_frame: (Micro)frame at which last start split was initialized 243 * @ntd: Actual number of transfer descriptors in a list 244 * @dw_align_buf: Used instead of original buffer if its physical address 245 * is not dword-aligned 246 * @dw_align_buf_size: Size of dw_align_buf 247 * @dw_align_buf_dma: DMA address for dw_align_buf 248 * @qtd_list: List of QTDs for this QH 249 * @channel: Host channel currently processing transfers for this QH 250 * @qh_list_entry: Entry for QH in either the periodic or non-periodic 251 * schedule 252 * @desc_list: List of transfer descriptors 253 * @desc_list_dma: Physical address of desc_list 254 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer 255 * descriptor and indicates original XferSize value for the 256 * descriptor 257 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending 258 * 259 * A Queue Head (QH) holds the static characteristics of an endpoint and 260 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may 261 * be entered in either the non-periodic or periodic schedule. 262 */ 263 struct dwc2_qh { 264 u8 ep_type; 265 u8 ep_is_in; 266 u16 maxp; 267 u8 dev_speed; 268 u8 data_toggle; 269 u8 ping_state; 270 u8 do_split; 271 u8 td_first; 272 u8 td_last; 273 u16 usecs; 274 u16 interval; 275 u16 sched_frame; 276 u16 frame_usecs[8]; 277 u16 start_split_frame; 278 u16 ntd; 279 u8 *dw_align_buf; 280 int dw_align_buf_size; 281 dma_addr_t dw_align_buf_dma; 282 struct list_head qtd_list; 283 struct dwc2_host_chan *channel; 284 struct list_head qh_list_entry; 285 struct dwc2_hcd_dma_desc *desc_list; 286 dma_addr_t desc_list_dma; 287 u32 *n_bytes; 288 unsigned tt_buffer_dirty:1; 289 }; 290 291 /** 292 * struct dwc2_qtd - Software queue transfer descriptor (QTD) 293 * 294 * @control_phase: Current phase for control transfers (Setup, Data, or 295 * Status) 296 * @in_process: Indicates if this QTD is currently processed by HW 297 * @data_toggle: Determines the PID of the next data packet for the 298 * data phase of control transfers. Ignored for other 299 * transfer types. One of the following values: 300 * - DWC2_HC_PID_DATA0 301 * - DWC2_HC_PID_DATA1 302 * @complete_split: Keeps track of the current split type for FS/LS 303 * endpoints on a HS Hub 304 * @isoc_split_pos: Position of the ISOC split in full/low speed 305 * @isoc_frame_index: Index of the next frame descriptor for an isochronous 306 * transfer. A frame descriptor describes the buffer 307 * position and length of the data to be transferred in the 308 * next scheduled (micro)frame of an isochronous transfer. 309 * It also holds status for that transaction. The frame 310 * index starts at 0. 311 * @isoc_split_offset: Position of the ISOC split in the buffer for the 312 * current frame 313 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT 314 * @error_count: Holds the number of bus errors that have occurred for 315 * a transaction within this transfer 316 * @n_desc: Number of DMA descriptors for this QTD 317 * @isoc_frame_index_last: Last activated frame (packet) index, used in 318 * descriptor DMA mode only 319 * @urb: URB for this transfer 320 * @qh: Queue head for this QTD 321 * @qtd_list_entry: For linking to the QH's list of QTDs 322 * 323 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, 324 * interrupt, or isochronous transfer. A single QTD is created for each URB 325 * (of one of these types) submitted to the HCD. The transfer associated with 326 * a QTD may require one or multiple transactions. 327 * 328 * A QTD is linked to a Queue Head, which is entered in either the 329 * non-periodic or periodic schedule for execution. When a QTD is chosen for 330 * execution, some or all of its transactions may be executed. After 331 * execution, the state of the QTD is updated. The QTD may be retired if all 332 * its transactions are complete or if an error occurred. Otherwise, it 333 * remains in the schedule so more transactions can be executed later. 334 */ 335 struct dwc2_qtd { 336 enum dwc2_control_phase control_phase; 337 u8 in_process; 338 u8 data_toggle; 339 u8 complete_split; 340 u8 isoc_split_pos; 341 u16 isoc_frame_index; 342 u16 isoc_split_offset; 343 u32 ssplit_out_xfer_count; 344 u8 error_count; 345 u8 n_desc; 346 u16 isoc_frame_index_last; 347 struct dwc2_hcd_urb *urb; 348 struct dwc2_qh *qh; 349 struct list_head qtd_list_entry; 350 }; 351 352 #ifdef DEBUG 353 struct hc_xfer_info { 354 struct dwc2_hsotg *hsotg; 355 struct dwc2_host_chan *chan; 356 }; 357 #endif 358 359 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */ 360 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg) 361 { 362 return (struct usb_hcd *)hsotg->priv; 363 } 364 365 /* 366 * Inline used to disable one channel interrupt. Channel interrupts are 367 * disabled when the channel is halted or released by the interrupt handler. 368 * There is no need to handle further interrupts of that type until the 369 * channel is re-assigned. In fact, subsequent handling may cause crashes 370 * because the channel structures are cleaned up when the channel is released. 371 */ 372 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr) 373 { 374 u32 mask = readl(hsotg->regs + HCINTMSK(chnum)); 375 376 mask &= ~intr; 377 writel(mask, hsotg->regs + HCINTMSK(chnum)); 378 } 379 380 /* 381 * Returns the mode of operation, host or device 382 */ 383 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg) 384 { 385 return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0; 386 } 387 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg) 388 { 389 return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0; 390 } 391 392 /* 393 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they 394 * are read as 1, they won't clear when written back. 395 */ 396 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg) 397 { 398 u32 hprt0 = readl(hsotg->regs + HPRT0); 399 400 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG); 401 return hprt0; 402 } 403 404 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe) 405 { 406 return pipe->ep_num; 407 } 408 409 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe) 410 { 411 return pipe->pipe_type; 412 } 413 414 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe) 415 { 416 return pipe->mps; 417 } 418 419 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe) 420 { 421 return pipe->dev_addr; 422 } 423 424 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe) 425 { 426 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC; 427 } 428 429 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe) 430 { 431 return pipe->pipe_type == USB_ENDPOINT_XFER_INT; 432 } 433 434 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe) 435 { 436 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK; 437 } 438 439 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe) 440 { 441 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL; 442 } 443 444 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe) 445 { 446 return pipe->pipe_dir == USB_DIR_IN; 447 } 448 449 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe) 450 { 451 return !dwc2_hcd_is_pipe_in(pipe); 452 } 453 454 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq, 455 const struct dwc2_core_params *params); 456 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg); 457 extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg, 458 const struct dwc2_core_params *params); 459 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value); 460 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg); 461 462 /* Transaction Execution Functions */ 463 extern enum dwc2_transaction_type dwc2_hcd_select_transactions( 464 struct dwc2_hsotg *hsotg); 465 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, 466 enum dwc2_transaction_type tr_type); 467 468 /* Schedule Queue Functions */ 469 /* Implemented in hcd_queue.c */ 470 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg); 471 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 472 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 473 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 474 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 475 int sched_csplit); 476 477 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb); 478 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 479 struct dwc2_qh **qh, gfp_t mem_flags); 480 481 /* Unlinks and frees a QTD */ 482 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg, 483 struct dwc2_qtd *qtd, 484 struct dwc2_qh *qh) 485 { 486 list_del(&qtd->qtd_list_entry); 487 kfree(qtd); 488 } 489 490 /* Descriptor DMA support functions */ 491 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, 492 struct dwc2_qh *qh); 493 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg, 494 struct dwc2_host_chan *chan, int chnum, 495 enum dwc2_halt_status halt_status); 496 497 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 498 gfp_t mem_flags); 499 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 500 501 /* Check if QH is non-periodic */ 502 #define dwc2_qh_is_non_per(_qh_ptr_) \ 503 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \ 504 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL) 505 506 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC 507 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; } 508 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; } 509 static inline bool dbg_urb(struct urb *urb) { return true; } 510 static inline bool dbg_perio(void) { return true; } 511 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */ 512 static inline bool dbg_hc(struct dwc2_host_chan *hc) 513 { 514 return hc->ep_type == USB_ENDPOINT_XFER_BULK || 515 hc->ep_type == USB_ENDPOINT_XFER_CONTROL; 516 } 517 518 static inline bool dbg_qh(struct dwc2_qh *qh) 519 { 520 return qh->ep_type == USB_ENDPOINT_XFER_BULK || 521 qh->ep_type == USB_ENDPOINT_XFER_CONTROL; 522 } 523 524 static inline bool dbg_urb(struct urb *urb) 525 { 526 return usb_pipetype(urb->pipe) == PIPE_BULK || 527 usb_pipetype(urb->pipe) == PIPE_CONTROL; 528 } 529 530 static inline bool dbg_perio(void) { return false; } 531 #endif 532 533 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */ 534 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03)) 535 536 /* Packet size for any kind of endpoint descriptor */ 537 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff) 538 539 /* 540 * Returns true if frame1 is less than or equal to frame2. The comparison is 541 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the 542 * frame number when the max frame number is reached. 543 */ 544 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2) 545 { 546 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1); 547 } 548 549 /* 550 * Returns true if frame1 is greater than frame2. The comparison is done 551 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame 552 * number when the max frame number is reached. 553 */ 554 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2) 555 { 556 return (frame1 != frame2) && 557 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1); 558 } 559 560 /* 561 * Increments frame by the amount specified by inc. The addition is done 562 * modulo HFNUM_MAX_FRNUM. Returns the incremented value. 563 */ 564 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc) 565 { 566 return (frame + inc) & HFNUM_MAX_FRNUM; 567 } 568 569 static inline u16 dwc2_full_frame_num(u16 frame) 570 { 571 return (frame & HFNUM_MAX_FRNUM) >> 3; 572 } 573 574 static inline u16 dwc2_micro_frame_num(u16 frame) 575 { 576 return frame & 0x7; 577 } 578 579 /* 580 * Returns the Core Interrupt Status register contents, ANDed with the Core 581 * Interrupt Mask register contents 582 */ 583 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg) 584 { 585 return readl(hsotg->regs + GINTSTS) & readl(hsotg->regs + GINTMSK); 586 } 587 588 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb) 589 { 590 return dwc2_urb->status; 591 } 592 593 static inline u32 dwc2_hcd_urb_get_actual_length( 594 struct dwc2_hcd_urb *dwc2_urb) 595 { 596 return dwc2_urb->actual_length; 597 } 598 599 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb) 600 { 601 return dwc2_urb->error_count; 602 } 603 604 static inline void dwc2_hcd_urb_set_iso_desc_params( 605 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset, 606 u32 length) 607 { 608 dwc2_urb->iso_descs[desc_num].offset = offset; 609 dwc2_urb->iso_descs[desc_num].length = length; 610 } 611 612 static inline u32 dwc2_hcd_urb_get_iso_desc_status( 613 struct dwc2_hcd_urb *dwc2_urb, int desc_num) 614 { 615 return dwc2_urb->iso_descs[desc_num].status; 616 } 617 618 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length( 619 struct dwc2_hcd_urb *dwc2_urb, int desc_num) 620 { 621 return dwc2_urb->iso_descs[desc_num].actual_length; 622 } 623 624 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg, 625 struct usb_host_endpoint *ep) 626 { 627 struct dwc2_qh *qh = ep->hcpriv; 628 629 if (qh && !list_empty(&qh->qh_list_entry)) 630 return 1; 631 632 return 0; 633 } 634 635 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg, 636 struct usb_host_endpoint *ep) 637 { 638 struct dwc2_qh *qh = ep->hcpriv; 639 640 if (!qh) { 641 WARN_ON(1); 642 return 0; 643 } 644 645 return qh->usecs; 646 } 647 648 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg, 649 struct dwc2_host_chan *chan, int chnum, 650 struct dwc2_qtd *qtd); 651 652 /* HCD Core API */ 653 654 /** 655 * dwc2_handle_hcd_intr() - Called on every hardware interrupt 656 * 657 * @hsotg: The DWC2 HCD 658 * 659 * Returns IRQ_HANDLED if interrupt is handled 660 * Return IRQ_NONE if interrupt is not handled 661 */ 662 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg); 663 664 /** 665 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation 666 * 667 * @hsotg: The DWC2 HCD 668 */ 669 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg); 670 671 /** 672 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host, 673 * and 0 otherwise 674 * 675 * @hsotg: The DWC2 HCD 676 */ 677 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg); 678 679 /** 680 * dwc2_hcd_dump_state() - Dumps hsotg state 681 * 682 * @hsotg: The DWC2 HCD 683 * 684 * NOTE: This function will be removed once the peripheral controller code 685 * is integrated and the driver is stable 686 */ 687 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg); 688 689 /** 690 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF 691 * 692 * @hsotg: The DWC2 HCD 693 * 694 * This can be used to determine average interrupt latency. Frame remaining is 695 * also shown for start transfer and two additional sample points. 696 * 697 * NOTE: This function will be removed once the peripheral controller code 698 * is integrated and the driver is stable 699 */ 700 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg); 701 702 /* URB interface */ 703 704 /* Transfer flags */ 705 #define URB_GIVEBACK_ASAP 0x1 706 #define URB_SEND_ZERO_PACKET 0x2 707 708 /* Host driver callbacks */ 709 710 extern void dwc2_host_start(struct dwc2_hsotg *hsotg); 711 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg); 712 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, 713 int *hub_addr, int *hub_port); 714 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context); 715 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 716 int status); 717 718 #ifdef DEBUG 719 /* 720 * Macro to sample the remaining PHY clocks left in the current frame. This 721 * may be used during debugging to determine the average time it takes to 722 * execute sections of code. There are two possible sample points, "a" and 723 * "b", so the _letter_ argument must be one of these values. 724 * 725 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For 726 * example, "cat /sys/devices/lm0/hcd_frrem". 727 */ 728 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \ 729 do { \ 730 struct hfnum_data _hfnum_; \ 731 struct dwc2_qtd *_qtd_; \ 732 \ 733 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \ 734 qtd_list_entry); \ 735 if (usb_pipeint(_qtd_->urb->pipe) && \ 736 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \ 737 _hfnum_.d32 = readl((_hcd_)->regs + HFNUM); \ 738 switch (_hfnum_.b.frnum & 0x7) { \ 739 case 7: \ 740 (_hcd_)->hfnum_7_samples_##_letter_++; \ 741 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \ 742 _hfnum_.b.frrem; \ 743 break; \ 744 case 0: \ 745 (_hcd_)->hfnum_0_samples_##_letter_++; \ 746 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \ 747 _hfnum_.b.frrem; \ 748 break; \ 749 default: \ 750 (_hcd_)->hfnum_other_samples_##_letter_++; \ 751 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \ 752 _hfnum_.b.frrem; \ 753 break; \ 754 } \ 755 } \ 756 } while (0) 757 #else 758 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0) 759 #endif 760 761 #endif /* __DWC2_HCD_H__ */ 762