xref: /openbmc/linux/drivers/usb/dwc2/hcd.h (revision 6391503b)
1 /*
2  * hcd.h - DesignWare HS OTG Controller host-mode declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
38 
39 /*
40  * This file contains the structures, constants, and interfaces for the
41  * Host Contoller Driver (HCD)
42  *
43  * The Host Controller Driver (HCD) is responsible for translating requests
44  * from the USB Driver into the appropriate actions on the DWC_otg controller.
45  * It isolates the USBD from the specifics of the controller by providing an
46  * API to the USBD.
47  */
48 
49 struct dwc2_qh;
50 
51 /**
52  * struct dwc2_host_chan - Software host channel descriptor
53  *
54  * @hc_num:             Host channel number, used for register address lookup
55  * @dev_addr:           Address of the device
56  * @ep_num:             Endpoint of the device
57  * @ep_is_in:           Endpoint direction
58  * @speed:              Device speed. One of the following values:
59  *                       - USB_SPEED_LOW
60  *                       - USB_SPEED_FULL
61  *                       - USB_SPEED_HIGH
62  * @ep_type:            Endpoint type. One of the following values:
63  *                       - USB_ENDPOINT_XFER_CONTROL: 0
64  *                       - USB_ENDPOINT_XFER_ISOC:    1
65  *                       - USB_ENDPOINT_XFER_BULK:    2
66  *                       - USB_ENDPOINT_XFER_INTR:    3
67  * @max_packet:         Max packet size in bytes
68  * @data_pid_start:     PID for initial transaction.
69  *                       0: DATA0
70  *                       1: DATA2
71  *                       2: DATA1
72  *                       3: MDATA (non-Control EP),
73  *                          SETUP (Control EP)
74  * @multi_count:        Number of additional periodic transactions per
75  *                      (micro)frame
76  * @xfer_buf:           Pointer to current transfer buffer position
77  * @xfer_dma:           DMA address of xfer_buf
78  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
79  *                      DWORD aligned
80  * @xfer_len:           Total number of bytes to transfer
81  * @xfer_count:         Number of bytes transferred so far
82  * @start_pkt_count:    Packet count at start of transfer
83  * @xfer_started:       True if the transfer has been started
84  * @ping:               True if a PING request should be issued on this channel
85  * @error_state:        True if the error count for this transaction is non-zero
86  * @halt_on_queue:      True if this channel should be halted the next time a
87  *                      request is queued for the channel. This is necessary in
88  *                      slave mode if no request queue space is available when
89  *                      an attempt is made to halt the channel.
90  * @halt_pending:       True if the host channel has been halted, but the core
91  *                      is not finished flushing queued requests
92  * @do_split:           Enable split for the channel
93  * @complete_split:     Enable complete split
94  * @hub_addr:           Address of high speed hub for the split
95  * @hub_port:           Port of the low/full speed device for the split
96  * @xact_pos:           Split transaction position. One of the following values:
97  *                       - DWC2_HCSPLT_XACTPOS_MID
98  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
99  *                       - DWC2_HCSPLT_XACTPOS_END
100  *                       - DWC2_HCSPLT_XACTPOS_ALL
101  * @requests:           Number of requests issued for this channel since it was
102  *                      assigned to the current transfer (not counting PINGs)
103  * @schinfo:            Scheduling micro-frame bitmap
104  * @ntd:                Number of transfer descriptors for the transfer
105  * @halt_status:        Reason for halting the host channel
106  * @hcint               Contents of the HCINT register when the interrupt came
107  * @qh:                 QH for the transfer being processed by this channel
108  * @hc_list_entry:      For linking to list of host channels
109  * @desc_list_addr:     Current QH's descriptor list DMA address
110  * @desc_list_sz:       Current QH's descriptor list size
111  *
112  * This structure represents the state of a single host channel when acting in
113  * host mode. It contains the data items needed to transfer packets to an
114  * endpoint via a host channel.
115  */
116 struct dwc2_host_chan {
117 	u8 hc_num;
118 
119 	unsigned dev_addr:7;
120 	unsigned ep_num:4;
121 	unsigned ep_is_in:1;
122 	unsigned speed:4;
123 	unsigned ep_type:2;
124 	unsigned max_packet:11;
125 	unsigned data_pid_start:2;
126 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
127 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
128 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
129 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
130 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
131 
132 	unsigned multi_count:2;
133 
134 	u8 *xfer_buf;
135 	dma_addr_t xfer_dma;
136 	dma_addr_t align_buf;
137 	u32 xfer_len;
138 	u32 xfer_count;
139 	u16 start_pkt_count;
140 	u8 xfer_started;
141 	u8 do_ping;
142 	u8 error_state;
143 	u8 halt_on_queue;
144 	u8 halt_pending;
145 	u8 do_split;
146 	u8 complete_split;
147 	u8 hub_addr;
148 	u8 hub_port;
149 	u8 xact_pos;
150 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
151 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
152 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
153 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
154 
155 	u8 requests;
156 	u8 schinfo;
157 	u16 ntd;
158 	enum dwc2_halt_status halt_status;
159 	u32 hcint;
160 	struct dwc2_qh *qh;
161 	struct list_head hc_list_entry;
162 	dma_addr_t desc_list_addr;
163 	u32 desc_list_sz;
164 };
165 
166 struct dwc2_hcd_pipe_info {
167 	u8 dev_addr;
168 	u8 ep_num;
169 	u8 pipe_type;
170 	u8 pipe_dir;
171 	u16 mps;
172 };
173 
174 struct dwc2_hcd_iso_packet_desc {
175 	u32 offset;
176 	u32 length;
177 	u32 actual_length;
178 	u32 status;
179 };
180 
181 struct dwc2_qtd;
182 
183 struct dwc2_hcd_urb {
184 	void *priv;
185 	struct dwc2_qtd *qtd;
186 	void *buf;
187 	dma_addr_t dma;
188 	void *setup_packet;
189 	dma_addr_t setup_dma;
190 	u32 length;
191 	u32 actual_length;
192 	u32 status;
193 	u32 error_count;
194 	u32 packet_count;
195 	u32 flags;
196 	u16 interval;
197 	struct dwc2_hcd_pipe_info pipe_info;
198 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
199 };
200 
201 /* Phases for control transfers */
202 enum dwc2_control_phase {
203 	DWC2_CONTROL_SETUP,
204 	DWC2_CONTROL_DATA,
205 	DWC2_CONTROL_STATUS,
206 };
207 
208 /* Transaction types */
209 enum dwc2_transaction_type {
210 	DWC2_TRANSACTION_NONE,
211 	DWC2_TRANSACTION_PERIODIC,
212 	DWC2_TRANSACTION_NON_PERIODIC,
213 	DWC2_TRANSACTION_ALL,
214 };
215 
216 /**
217  * struct dwc2_qh - Software queue head structure
218  *
219  * @ep_type:            Endpoint type. One of the following values:
220  *                       - USB_ENDPOINT_XFER_CONTROL
221  *                       - USB_ENDPOINT_XFER_BULK
222  *                       - USB_ENDPOINT_XFER_INT
223  *                       - USB_ENDPOINT_XFER_ISOC
224  * @ep_is_in:           Endpoint direction
225  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
226  * @dev_speed:          Device speed. One of the following values:
227  *                       - USB_SPEED_LOW
228  *                       - USB_SPEED_FULL
229  *                       - USB_SPEED_HIGH
230  * @data_toggle:        Determines the PID of the next data packet for
231  *                      non-controltransfers. Ignored for control transfers.
232  *                      One of the following values:
233  *                       - DWC2_HC_PID_DATA0
234  *                       - DWC2_HC_PID_DATA1
235  * @ping_state:         Ping state
236  * @do_split:           Full/low speed endpoint on high-speed hub requires split
237  * @td_first:           Index of first activated isochronous transfer descriptor
238  * @td_last:            Index of last activated isochronous transfer descriptor
239  * @usecs:              Bandwidth in microseconds per (micro)frame
240  * @interval:           Interval between transfers in (micro)frames
241  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
242  *                      The transfer executes in the following (micro)frame.
243  * @frame_usecs:        Internal variable used by the microframe scheduler
244  * @start_split_frame:  (Micro)frame at which last start split was initialized
245  * @ntd:                Actual number of transfer descriptors in a list
246  * @dw_align_buf:       Used instead of original buffer if its physical address
247  *                      is not dword-aligned
248  * @dw_align_buf_size:  Size of dw_align_buf
249  * @dw_align_buf_dma:   DMA address for dw_align_buf
250  * @qtd_list:           List of QTDs for this QH
251  * @channel:            Host channel currently processing transfers for this QH
252  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
253  *                      schedule
254  * @desc_list:          List of transfer descriptors
255  * @desc_list_dma:      Physical address of desc_list
256  * @desc_list_sz:       Size of descriptors list
257  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
258  *                      descriptor and indicates original XferSize value for the
259  *                      descriptor
260  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
261  *
262  * A Queue Head (QH) holds the static characteristics of an endpoint and
263  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
264  * be entered in either the non-periodic or periodic schedule.
265  */
266 struct dwc2_qh {
267 	u8 ep_type;
268 	u8 ep_is_in;
269 	u16 maxp;
270 	u8 dev_speed;
271 	u8 data_toggle;
272 	u8 ping_state;
273 	u8 do_split;
274 	u8 td_first;
275 	u8 td_last;
276 	u16 usecs;
277 	u16 interval;
278 	u16 sched_frame;
279 	u16 frame_usecs[8];
280 	u16 start_split_frame;
281 	u16 ntd;
282 	u8 *dw_align_buf;
283 	int dw_align_buf_size;
284 	dma_addr_t dw_align_buf_dma;
285 	struct list_head qtd_list;
286 	struct dwc2_host_chan *channel;
287 	struct list_head qh_list_entry;
288 	struct dwc2_hcd_dma_desc *desc_list;
289 	dma_addr_t desc_list_dma;
290 	u32 desc_list_sz;
291 	u32 *n_bytes;
292 	unsigned tt_buffer_dirty:1;
293 };
294 
295 /**
296  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
297  *
298  * @control_phase:      Current phase for control transfers (Setup, Data, or
299  *                      Status)
300  * @in_process:         Indicates if this QTD is currently processed by HW
301  * @data_toggle:        Determines the PID of the next data packet for the
302  *                      data phase of control transfers. Ignored for other
303  *                      transfer types. One of the following values:
304  *                       - DWC2_HC_PID_DATA0
305  *                       - DWC2_HC_PID_DATA1
306  * @complete_split:     Keeps track of the current split type for FS/LS
307  *                      endpoints on a HS Hub
308  * @isoc_split_pos:     Position of the ISOC split in full/low speed
309  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
310  *                      transfer. A frame descriptor describes the buffer
311  *                      position and length of the data to be transferred in the
312  *                      next scheduled (micro)frame of an isochronous transfer.
313  *                      It also holds status for that transaction. The frame
314  *                      index starts at 0.
315  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
316  *                      current frame
317  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
318  * @error_count:        Holds the number of bus errors that have occurred for
319  *                      a transaction within this transfer
320  * @n_desc:             Number of DMA descriptors for this QTD
321  * @isoc_frame_index_last: Last activated frame (packet) index, used in
322  *                      descriptor DMA mode only
323  * @urb:                URB for this transfer
324  * @qh:                 Queue head for this QTD
325  * @qtd_list_entry:     For linking to the QH's list of QTDs
326  *
327  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
328  * interrupt, or isochronous transfer. A single QTD is created for each URB
329  * (of one of these types) submitted to the HCD. The transfer associated with
330  * a QTD may require one or multiple transactions.
331  *
332  * A QTD is linked to a Queue Head, which is entered in either the
333  * non-periodic or periodic schedule for execution. When a QTD is chosen for
334  * execution, some or all of its transactions may be executed. After
335  * execution, the state of the QTD is updated. The QTD may be retired if all
336  * its transactions are complete or if an error occurred. Otherwise, it
337  * remains in the schedule so more transactions can be executed later.
338  */
339 struct dwc2_qtd {
340 	enum dwc2_control_phase control_phase;
341 	u8 in_process;
342 	u8 data_toggle;
343 	u8 complete_split;
344 	u8 isoc_split_pos;
345 	u16 isoc_frame_index;
346 	u16 isoc_split_offset;
347 	u16 isoc_td_last;
348 	u16 isoc_td_first;
349 	u32 ssplit_out_xfer_count;
350 	u8 error_count;
351 	u8 n_desc;
352 	u16 isoc_frame_index_last;
353 	struct dwc2_hcd_urb *urb;
354 	struct dwc2_qh *qh;
355 	struct list_head qtd_list_entry;
356 };
357 
358 #ifdef DEBUG
359 struct hc_xfer_info {
360 	struct dwc2_hsotg *hsotg;
361 	struct dwc2_host_chan *chan;
362 };
363 #endif
364 
365 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
366 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
367 {
368 	return (struct usb_hcd *)hsotg->priv;
369 }
370 
371 /*
372  * Inline used to disable one channel interrupt. Channel interrupts are
373  * disabled when the channel is halted or released by the interrupt handler.
374  * There is no need to handle further interrupts of that type until the
375  * channel is re-assigned. In fact, subsequent handling may cause crashes
376  * because the channel structures are cleaned up when the channel is released.
377  */
378 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
379 {
380 	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
381 
382 	mask &= ~intr;
383 	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
384 }
385 
386 /*
387  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
388  * are read as 1, they won't clear when written back.
389  */
390 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
391 {
392 	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
393 
394 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
395 	return hprt0;
396 }
397 
398 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
399 {
400 	return pipe->ep_num;
401 }
402 
403 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
404 {
405 	return pipe->pipe_type;
406 }
407 
408 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
409 {
410 	return pipe->mps;
411 }
412 
413 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
414 {
415 	return pipe->dev_addr;
416 }
417 
418 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
419 {
420 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
421 }
422 
423 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
424 {
425 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
426 }
427 
428 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
429 {
430 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
431 }
432 
433 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
434 {
435 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
436 }
437 
438 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
439 {
440 	return pipe->pipe_dir == USB_DIR_IN;
441 }
442 
443 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
444 {
445 	return !dwc2_hcd_is_pipe_in(pipe);
446 }
447 
448 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
449 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
450 
451 /* Transaction Execution Functions */
452 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
453 						struct dwc2_hsotg *hsotg);
454 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
455 					enum dwc2_transaction_type tr_type);
456 
457 /* Schedule Queue Functions */
458 /* Implemented in hcd_queue.c */
459 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
460 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
461 					  struct dwc2_hcd_urb *urb,
462 					  gfp_t mem_flags);
463 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
464 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
465 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
466 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
467 				   int sched_csplit);
468 
469 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
470 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
471 			    struct dwc2_qh *qh);
472 
473 /* Unlinks and frees a QTD */
474 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
475 						struct dwc2_qtd *qtd,
476 						struct dwc2_qh *qh)
477 {
478 	list_del(&qtd->qtd_list_entry);
479 	kfree(qtd);
480 }
481 
482 /* Descriptor DMA support functions */
483 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
484 				     struct dwc2_qh *qh);
485 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
486 					struct dwc2_host_chan *chan, int chnum,
487 					enum dwc2_halt_status halt_status);
488 
489 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
490 				 gfp_t mem_flags);
491 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
492 
493 /* Check if QH is non-periodic */
494 #define dwc2_qh_is_non_per(_qh_ptr_) \
495 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
496 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
497 
498 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
499 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
500 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
501 static inline bool dbg_urb(struct urb *urb) { return true; }
502 static inline bool dbg_perio(void) { return true; }
503 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
504 static inline bool dbg_hc(struct dwc2_host_chan *hc)
505 {
506 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
507 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
508 }
509 
510 static inline bool dbg_qh(struct dwc2_qh *qh)
511 {
512 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
513 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
514 }
515 
516 static inline bool dbg_urb(struct urb *urb)
517 {
518 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
519 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
520 }
521 
522 static inline bool dbg_perio(void) { return false; }
523 #endif
524 
525 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
526 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
527 
528 /* Packet size for any kind of endpoint descriptor */
529 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
530 
531 /*
532  * Returns true if frame1 index is greater than frame2 index. The comparison
533  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
534  * frame number when the max index frame number is reached.
535  */
536 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
537 {
538 	u16 diff = fr_idx1 - fr_idx2;
539 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
540 
541 	return diff && !sign;
542 }
543 
544 /*
545  * Returns true if frame1 is less than or equal to frame2. The comparison is
546  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
547  * frame number when the max frame number is reached.
548  */
549 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
550 {
551 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
552 }
553 
554 /*
555  * Returns true if frame1 is greater than frame2. The comparison is done
556  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
557  * number when the max frame number is reached.
558  */
559 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
560 {
561 	return (frame1 != frame2) &&
562 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
563 }
564 
565 /*
566  * Increments frame by the amount specified by inc. The addition is done
567  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
568  */
569 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
570 {
571 	return (frame + inc) & HFNUM_MAX_FRNUM;
572 }
573 
574 static inline u16 dwc2_full_frame_num(u16 frame)
575 {
576 	return (frame & HFNUM_MAX_FRNUM) >> 3;
577 }
578 
579 static inline u16 dwc2_micro_frame_num(u16 frame)
580 {
581 	return frame & 0x7;
582 }
583 
584 /*
585  * Returns the Core Interrupt Status register contents, ANDed with the Core
586  * Interrupt Mask register contents
587  */
588 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
589 {
590 	return dwc2_readl(hsotg->regs + GINTSTS) &
591 	       dwc2_readl(hsotg->regs + GINTMSK);
592 }
593 
594 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
595 {
596 	return dwc2_urb->status;
597 }
598 
599 static inline u32 dwc2_hcd_urb_get_actual_length(
600 		struct dwc2_hcd_urb *dwc2_urb)
601 {
602 	return dwc2_urb->actual_length;
603 }
604 
605 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
606 {
607 	return dwc2_urb->error_count;
608 }
609 
610 static inline void dwc2_hcd_urb_set_iso_desc_params(
611 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
612 		u32 length)
613 {
614 	dwc2_urb->iso_descs[desc_num].offset = offset;
615 	dwc2_urb->iso_descs[desc_num].length = length;
616 }
617 
618 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
619 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
620 {
621 	return dwc2_urb->iso_descs[desc_num].status;
622 }
623 
624 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
625 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
626 {
627 	return dwc2_urb->iso_descs[desc_num].actual_length;
628 }
629 
630 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
631 						  struct usb_host_endpoint *ep)
632 {
633 	struct dwc2_qh *qh = ep->hcpriv;
634 
635 	if (qh && !list_empty(&qh->qh_list_entry))
636 		return 1;
637 
638 	return 0;
639 }
640 
641 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
642 					    struct usb_host_endpoint *ep)
643 {
644 	struct dwc2_qh *qh = ep->hcpriv;
645 
646 	if (!qh) {
647 		WARN_ON(1);
648 		return 0;
649 	}
650 
651 	return qh->usecs;
652 }
653 
654 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
655 				      struct dwc2_host_chan *chan, int chnum,
656 				      struct dwc2_qtd *qtd);
657 
658 /* HCD Core API */
659 
660 /**
661  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
662  *
663  * @hsotg: The DWC2 HCD
664  *
665  * Returns IRQ_HANDLED if interrupt is handled
666  * Return IRQ_NONE if interrupt is not handled
667  */
668 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
669 
670 /**
671  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
672  *
673  * @hsotg: The DWC2 HCD
674  */
675 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
676 
677 /**
678  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
679  * and 0 otherwise
680  *
681  * @hsotg: The DWC2 HCD
682  */
683 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
684 
685 /**
686  * dwc2_hcd_dump_state() - Dumps hsotg state
687  *
688  * @hsotg: The DWC2 HCD
689  *
690  * NOTE: This function will be removed once the peripheral controller code
691  * is integrated and the driver is stable
692  */
693 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
694 
695 /**
696  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
697  *
698  * @hsotg: The DWC2 HCD
699  *
700  * This can be used to determine average interrupt latency. Frame remaining is
701  * also shown for start transfer and two additional sample points.
702  *
703  * NOTE: This function will be removed once the peripheral controller code
704  * is integrated and the driver is stable
705  */
706 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
707 
708 /* URB interface */
709 
710 /* Transfer flags */
711 #define URB_GIVEBACK_ASAP	0x1
712 #define URB_SEND_ZERO_PACKET	0x2
713 
714 /* Host driver callbacks */
715 
716 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
717 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
718 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
719 			       int *hub_addr, int *hub_port);
720 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
721 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
722 			       int status);
723 
724 #ifdef DEBUG
725 /*
726  * Macro to sample the remaining PHY clocks left in the current frame. This
727  * may be used during debugging to determine the average time it takes to
728  * execute sections of code. There are two possible sample points, "a" and
729  * "b", so the _letter_ argument must be one of these values.
730  *
731  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
732  * example, "cat /sys/devices/lm0/hcd_frrem".
733  */
734 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
735 do {									\
736 	struct hfnum_data _hfnum_;					\
737 	struct dwc2_qtd *_qtd_;						\
738 									\
739 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
740 			   qtd_list_entry);				\
741 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
742 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
743 		_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);	\
744 		switch (_hfnum_.b.frnum & 0x7) {			\
745 		case 7:							\
746 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
747 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
748 				_hfnum_.b.frrem;			\
749 			break;						\
750 		case 0:							\
751 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
752 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
753 				_hfnum_.b.frrem;			\
754 			break;						\
755 		default:						\
756 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
757 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
758 				_hfnum_.b.frrem;			\
759 			break;						\
760 		}							\
761 	}								\
762 } while (0)
763 #else
764 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
765 #endif
766 
767 #endif /* __DWC2_HCD_H__ */
768