xref: /openbmc/linux/drivers/usb/dwc2/hcd.h (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * hcd.h - DesignWare HS OTG Controller host-mode declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
38 
39 /*
40  * This file contains the structures, constants, and interfaces for the
41  * Host Contoller Driver (HCD)
42  *
43  * The Host Controller Driver (HCD) is responsible for translating requests
44  * from the USB Driver into the appropriate actions on the DWC_otg controller.
45  * It isolates the USBD from the specifics of the controller by providing an
46  * API to the USBD.
47  */
48 
49 struct dwc2_qh;
50 
51 /**
52  * struct dwc2_host_chan - Software host channel descriptor
53  *
54  * @hc_num:             Host channel number, used for register address lookup
55  * @dev_addr:           Address of the device
56  * @ep_num:             Endpoint of the device
57  * @ep_is_in:           Endpoint direction
58  * @speed:              Device speed. One of the following values:
59  *                       - USB_SPEED_LOW
60  *                       - USB_SPEED_FULL
61  *                       - USB_SPEED_HIGH
62  * @ep_type:            Endpoint type. One of the following values:
63  *                       - USB_ENDPOINT_XFER_CONTROL: 0
64  *                       - USB_ENDPOINT_XFER_ISOC:    1
65  *                       - USB_ENDPOINT_XFER_BULK:    2
66  *                       - USB_ENDPOINT_XFER_INTR:    3
67  * @max_packet:         Max packet size in bytes
68  * @data_pid_start:     PID for initial transaction.
69  *                       0: DATA0
70  *                       1: DATA2
71  *                       2: DATA1
72  *                       3: MDATA (non-Control EP),
73  *                          SETUP (Control EP)
74  * @multi_count:        Number of additional periodic transactions per
75  *                      (micro)frame
76  * @xfer_buf:           Pointer to current transfer buffer position
77  * @xfer_dma:           DMA address of xfer_buf
78  * @xfer_len:           Total number of bytes to transfer
79  * @xfer_count:         Number of bytes transferred so far
80  * @start_pkt_count:    Packet count at start of transfer
81  * @xfer_started:       True if the transfer has been started
82  * @ping:               True if a PING request should be issued on this channel
83  * @error_state:        True if the error count for this transaction is non-zero
84  * @halt_on_queue:      True if this channel should be halted the next time a
85  *                      request is queued for the channel. This is necessary in
86  *                      slave mode if no request queue space is available when
87  *                      an attempt is made to halt the channel.
88  * @halt_pending:       True if the host channel has been halted, but the core
89  *                      is not finished flushing queued requests
90  * @do_split:           Enable split for the channel
91  * @complete_split:     Enable complete split
92  * @hub_addr:           Address of high speed hub for the split
93  * @hub_port:           Port of the low/full speed device for the split
94  * @xact_pos:           Split transaction position. One of the following values:
95  *                       - DWC2_HCSPLT_XACTPOS_MID
96  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
97  *                       - DWC2_HCSPLT_XACTPOS_END
98  *                       - DWC2_HCSPLT_XACTPOS_ALL
99  * @requests:           Number of requests issued for this channel since it was
100  *                      assigned to the current transfer (not counting PINGs)
101  * @schinfo:            Scheduling micro-frame bitmap
102  * @ntd:                Number of transfer descriptors for the transfer
103  * @halt_status:        Reason for halting the host channel
104  * @hcint               Contents of the HCINT register when the interrupt came
105  * @qh:                 QH for the transfer being processed by this channel
106  * @hc_list_entry:      For linking to list of host channels
107  * @desc_list_addr:     Current QH's descriptor list DMA address
108  * @desc_list_sz:       Current QH's descriptor list size
109  * @split_order_list_entry: List entry for keeping track of the order of splits
110  *
111  * This structure represents the state of a single host channel when acting in
112  * host mode. It contains the data items needed to transfer packets to an
113  * endpoint via a host channel.
114  */
115 struct dwc2_host_chan {
116 	u8 hc_num;
117 
118 	unsigned dev_addr:7;
119 	unsigned ep_num:4;
120 	unsigned ep_is_in:1;
121 	unsigned speed:4;
122 	unsigned ep_type:2;
123 	unsigned max_packet:11;
124 	unsigned data_pid_start:2;
125 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
126 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
127 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
128 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
129 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
130 
131 	unsigned multi_count:2;
132 
133 	u8 *xfer_buf;
134 	dma_addr_t xfer_dma;
135 	u32 xfer_len;
136 	u32 xfer_count;
137 	u16 start_pkt_count;
138 	u8 xfer_started;
139 	u8 do_ping;
140 	u8 error_state;
141 	u8 halt_on_queue;
142 	u8 halt_pending;
143 	u8 do_split;
144 	u8 complete_split;
145 	u8 hub_addr;
146 	u8 hub_port;
147 	u8 xact_pos;
148 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
149 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
150 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
151 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
152 
153 	u8 requests;
154 	u8 schinfo;
155 	u16 ntd;
156 	enum dwc2_halt_status halt_status;
157 	u32 hcint;
158 	struct dwc2_qh *qh;
159 	struct list_head hc_list_entry;
160 	dma_addr_t desc_list_addr;
161 	u32 desc_list_sz;
162 	struct list_head split_order_list_entry;
163 };
164 
165 struct dwc2_hcd_pipe_info {
166 	u8 dev_addr;
167 	u8 ep_num;
168 	u8 pipe_type;
169 	u8 pipe_dir;
170 	u16 mps;
171 };
172 
173 struct dwc2_hcd_iso_packet_desc {
174 	u32 offset;
175 	u32 length;
176 	u32 actual_length;
177 	u32 status;
178 };
179 
180 struct dwc2_qtd;
181 
182 struct dwc2_hcd_urb {
183 	void *priv;
184 	struct dwc2_qtd *qtd;
185 	void *buf;
186 	dma_addr_t dma;
187 	void *setup_packet;
188 	dma_addr_t setup_dma;
189 	u32 length;
190 	u32 actual_length;
191 	u32 status;
192 	u32 error_count;
193 	u32 packet_count;
194 	u32 flags;
195 	u16 interval;
196 	struct dwc2_hcd_pipe_info pipe_info;
197 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
198 };
199 
200 /* Phases for control transfers */
201 enum dwc2_control_phase {
202 	DWC2_CONTROL_SETUP,
203 	DWC2_CONTROL_DATA,
204 	DWC2_CONTROL_STATUS,
205 };
206 
207 /* Transaction types */
208 enum dwc2_transaction_type {
209 	DWC2_TRANSACTION_NONE,
210 	DWC2_TRANSACTION_PERIODIC,
211 	DWC2_TRANSACTION_NON_PERIODIC,
212 	DWC2_TRANSACTION_ALL,
213 };
214 
215 /* The number of elements per LS bitmap (per port on multi_tt) */
216 #define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
217 						     BITS_PER_LONG)
218 
219 /**
220  * struct dwc2_tt - dwc2 data associated with a usb_tt
221  *
222  * @refcount:           Number of Queue Heads (QHs) holding a reference.
223  * @usb_tt:             Pointer back to the official usb_tt.
224  * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
225  *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
226  *			elements (so sizeof(long) times that in bytes).
227  *
228  * This structure is stored in the hcpriv of the official usb_tt.
229  */
230 struct dwc2_tt {
231 	int refcount;
232 	struct usb_tt *usb_tt;
233 	unsigned long periodic_bitmaps[];
234 };
235 
236 /**
237  * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
238  *
239  * @start_schedule_usecs:  The start time on the main bus schedule.  Note that
240  *                         the main bus schedule is tightly packed and this
241  *			   time should be interpreted as tightly packed (so
242  *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
243  *			   instead of 125 us).
244  * @duration_us:           How long this transfer goes.
245  */
246 
247 struct dwc2_hs_transfer_time {
248 	u32 start_schedule_us;
249 	u16 duration_us;
250 };
251 
252 /**
253  * struct dwc2_qh - Software queue head structure
254  *
255  * @hsotg:              The HCD state structure for the DWC OTG controller
256  * @ep_type:            Endpoint type. One of the following values:
257  *                       - USB_ENDPOINT_XFER_CONTROL
258  *                       - USB_ENDPOINT_XFER_BULK
259  *                       - USB_ENDPOINT_XFER_INT
260  *                       - USB_ENDPOINT_XFER_ISOC
261  * @ep_is_in:           Endpoint direction
262  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
263  * @dev_speed:          Device speed. One of the following values:
264  *                       - USB_SPEED_LOW
265  *                       - USB_SPEED_FULL
266  *                       - USB_SPEED_HIGH
267  * @data_toggle:        Determines the PID of the next data packet for
268  *                      non-controltransfers. Ignored for control transfers.
269  *                      One of the following values:
270  *                       - DWC2_HC_PID_DATA0
271  *                       - DWC2_HC_PID_DATA1
272  * @ping_state:         Ping state
273  * @do_split:           Full/low speed endpoint on high-speed hub requires split
274  * @td_first:           Index of first activated isochronous transfer descriptor
275  * @td_last:            Index of last activated isochronous transfer descriptor
276  * @host_us:            Bandwidth in microseconds per transfer as seen by host
277  * @device_us:          Bandwidth in microseconds per transfer as seen by device
278  * @host_interval:      Interval between transfers as seen by the host.  If
279  *                      the host is high speed and the device is low speed this
280  *                      will be 8 times device interval.
281  * @device_interval:    Interval between transfers as seen by the device.
282  *                      interval.
283  * @next_active_frame:  (Micro)frame _before_ we next need to put something on
284  *                      the bus.  We'll move the qh to active here.  If the
285  *                      host is in high speed mode this will be a uframe.  If
286  *                      the host is in low speed mode this will be a full frame.
287  * @start_active_frame: If we are partway through a split transfer, this will be
288  *			what next_active_frame was when we started.  Otherwise
289  *			it should always be the same as next_active_frame.
290  * @num_hs_transfers:   Number of transfers in hs_transfers.
291  *                      Normally this is 1 but can be more than one for splits.
292  *                      Always >= 1 unless the host is in low/full speed mode.
293  * @hs_transfers:       Transfers that are scheduled as seen by the high speed
294  *                      bus.  Not used if host is in low or full speed mode (but
295  *                      note that it IS USED if the device is low or full speed
296  *                      as long as the HOST is in high speed mode).
297  * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
298  *                           schedule that's being used by this device.  This
299  *			     will be on the periodic_bitmap in a
300  *                           "struct dwc2_tt".  Not used if this device is high
301  *                           speed.  Note that this is in "schedule slice" which
302  *                           is tightly packed.
303  * @ls_duration_us:     Duration on the low speed bus schedule.
304  * @ntd:                Actual number of transfer descriptors in a list
305  * @qtd_list:           List of QTDs for this QH
306  * @channel:            Host channel currently processing transfers for this QH
307  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
308  *                      schedule
309  * @desc_list:          List of transfer descriptors
310  * @desc_list_dma:      Physical address of desc_list
311  * @desc_list_sz:       Size of descriptors list
312  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
313  *                      descriptor and indicates original XferSize value for the
314  *                      descriptor
315  * @unreserve_timer:    Timer for releasing periodic reservation.
316  * @dwc2_tt:            Pointer to our tt info (or NULL if no tt).
317  * @ttport:             Port number within our tt.
318  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
319  * @unreserve_pending:  True if we planned to unreserve but haven't yet.
320  * @schedule_low_speed: True if we have a low/full speed component (either the
321  *			host is in low/full speed mode or do_split).
322  *
323  * A Queue Head (QH) holds the static characteristics of an endpoint and
324  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
325  * be entered in either the non-periodic or periodic schedule.
326  */
327 struct dwc2_qh {
328 	struct dwc2_hsotg *hsotg;
329 	u8 ep_type;
330 	u8 ep_is_in;
331 	u16 maxp;
332 	u8 dev_speed;
333 	u8 data_toggle;
334 	u8 ping_state;
335 	u8 do_split;
336 	u8 td_first;
337 	u8 td_last;
338 	u16 host_us;
339 	u16 device_us;
340 	u16 host_interval;
341 	u16 device_interval;
342 	u16 next_active_frame;
343 	u16 start_active_frame;
344 	s16 num_hs_transfers;
345 	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
346 	u32 ls_start_schedule_slice;
347 	u16 ntd;
348 	struct list_head qtd_list;
349 	struct dwc2_host_chan *channel;
350 	struct list_head qh_list_entry;
351 	struct dwc2_dma_desc *desc_list;
352 	dma_addr_t desc_list_dma;
353 	u32 desc_list_sz;
354 	u32 *n_bytes;
355 	struct timer_list unreserve_timer;
356 	struct dwc2_tt *dwc_tt;
357 	int ttport;
358 	unsigned tt_buffer_dirty:1;
359 	unsigned unreserve_pending:1;
360 	unsigned schedule_low_speed:1;
361 };
362 
363 /**
364  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
365  *
366  * @control_phase:      Current phase for control transfers (Setup, Data, or
367  *                      Status)
368  * @in_process:         Indicates if this QTD is currently processed by HW
369  * @data_toggle:        Determines the PID of the next data packet for the
370  *                      data phase of control transfers. Ignored for other
371  *                      transfer types. One of the following values:
372  *                       - DWC2_HC_PID_DATA0
373  *                       - DWC2_HC_PID_DATA1
374  * @complete_split:     Keeps track of the current split type for FS/LS
375  *                      endpoints on a HS Hub
376  * @isoc_split_pos:     Position of the ISOC split in full/low speed
377  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
378  *                      transfer. A frame descriptor describes the buffer
379  *                      position and length of the data to be transferred in the
380  *                      next scheduled (micro)frame of an isochronous transfer.
381  *                      It also holds status for that transaction. The frame
382  *                      index starts at 0.
383  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
384  *                      current frame
385  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
386  * @error_count:        Holds the number of bus errors that have occurred for
387  *                      a transaction within this transfer
388  * @n_desc:             Number of DMA descriptors for this QTD
389  * @isoc_frame_index_last: Last activated frame (packet) index, used in
390  *                      descriptor DMA mode only
391  * @urb:                URB for this transfer
392  * @qh:                 Queue head for this QTD
393  * @qtd_list_entry:     For linking to the QH's list of QTDs
394  *
395  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
396  * interrupt, or isochronous transfer. A single QTD is created for each URB
397  * (of one of these types) submitted to the HCD. The transfer associated with
398  * a QTD may require one or multiple transactions.
399  *
400  * A QTD is linked to a Queue Head, which is entered in either the
401  * non-periodic or periodic schedule for execution. When a QTD is chosen for
402  * execution, some or all of its transactions may be executed. After
403  * execution, the state of the QTD is updated. The QTD may be retired if all
404  * its transactions are complete or if an error occurred. Otherwise, it
405  * remains in the schedule so more transactions can be executed later.
406  */
407 struct dwc2_qtd {
408 	enum dwc2_control_phase control_phase;
409 	u8 in_process;
410 	u8 data_toggle;
411 	u8 complete_split;
412 	u8 isoc_split_pos;
413 	u16 isoc_frame_index;
414 	u16 isoc_split_offset;
415 	u16 isoc_td_last;
416 	u16 isoc_td_first;
417 	u32 ssplit_out_xfer_count;
418 	u8 error_count;
419 	u8 n_desc;
420 	u16 isoc_frame_index_last;
421 	struct dwc2_hcd_urb *urb;
422 	struct dwc2_qh *qh;
423 	struct list_head qtd_list_entry;
424 };
425 
426 #ifdef DEBUG
427 struct hc_xfer_info {
428 	struct dwc2_hsotg *hsotg;
429 	struct dwc2_host_chan *chan;
430 };
431 #endif
432 
433 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
434 
435 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
436 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
437 {
438 	return (struct usb_hcd *)hsotg->priv;
439 }
440 
441 /*
442  * Inline used to disable one channel interrupt. Channel interrupts are
443  * disabled when the channel is halted or released by the interrupt handler.
444  * There is no need to handle further interrupts of that type until the
445  * channel is re-assigned. In fact, subsequent handling may cause crashes
446  * because the channel structures are cleaned up when the channel is released.
447  */
448 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
449 {
450 	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
451 
452 	mask &= ~intr;
453 	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
454 }
455 
456 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
457 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
458 		  enum dwc2_halt_status halt_status);
459 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
460 				 struct dwc2_host_chan *chan);
461 
462 /*
463  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
464  * are read as 1, they won't clear when written back.
465  */
466 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
467 {
468 	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
469 
470 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
471 	return hprt0;
472 }
473 
474 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
475 {
476 	return pipe->ep_num;
477 }
478 
479 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
480 {
481 	return pipe->pipe_type;
482 }
483 
484 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
485 {
486 	return pipe->mps;
487 }
488 
489 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
490 {
491 	return pipe->dev_addr;
492 }
493 
494 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
495 {
496 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
497 }
498 
499 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
500 {
501 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
502 }
503 
504 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
505 {
506 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
507 }
508 
509 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
510 {
511 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
512 }
513 
514 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
515 {
516 	return pipe->pipe_dir == USB_DIR_IN;
517 }
518 
519 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
520 {
521 	return !dwc2_hcd_is_pipe_in(pipe);
522 }
523 
524 int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
525 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
526 
527 /* Transaction Execution Functions */
528 enum dwc2_transaction_type dwc2_hcd_select_transactions(
529 						struct dwc2_hsotg *hsotg);
530 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
531 				 enum dwc2_transaction_type tr_type);
532 
533 /* Schedule Queue Functions */
534 /* Implemented in hcd_queue.c */
535 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
536 				   struct dwc2_hcd_urb *urb,
537 					  gfp_t mem_flags);
538 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
539 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
540 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
541 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
542 			    int sched_csplit);
543 
544 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
545 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
546 		     struct dwc2_qh *qh);
547 
548 /* Unlinks and frees a QTD */
549 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
550 						struct dwc2_qtd *qtd,
551 						struct dwc2_qh *qh)
552 {
553 	list_del(&qtd->qtd_list_entry);
554 	kfree(qtd);
555 	qtd = NULL;
556 }
557 
558 /* Descriptor DMA support functions */
559 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
560 			      struct dwc2_qh *qh);
561 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
562 				 struct dwc2_host_chan *chan, int chnum,
563 					enum dwc2_halt_status halt_status);
564 
565 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
566 			  gfp_t mem_flags);
567 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
568 
569 /* Check if QH is non-periodic */
570 #define dwc2_qh_is_non_per(_qh_ptr_) \
571 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
572 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
573 
574 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
575 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
576 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
577 static inline bool dbg_urb(struct urb *urb) { return true; }
578 static inline bool dbg_perio(void) { return true; }
579 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
580 static inline bool dbg_hc(struct dwc2_host_chan *hc)
581 {
582 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
583 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
584 }
585 
586 static inline bool dbg_qh(struct dwc2_qh *qh)
587 {
588 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
589 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
590 }
591 
592 static inline bool dbg_urb(struct urb *urb)
593 {
594 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
595 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
596 }
597 
598 static inline bool dbg_perio(void) { return false; }
599 #endif
600 
601 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
602 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
603 
604 /* Packet size for any kind of endpoint descriptor */
605 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
606 
607 /*
608  * Returns true if frame1 index is greater than frame2 index. The comparison
609  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
610  * frame number when the max index frame number is reached.
611  */
612 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
613 {
614 	u16 diff = fr_idx1 - fr_idx2;
615 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
616 
617 	return diff && !sign;
618 }
619 
620 /*
621  * Returns true if frame1 is less than or equal to frame2. The comparison is
622  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
623  * frame number when the max frame number is reached.
624  */
625 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
626 {
627 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
628 }
629 
630 /*
631  * Returns true if frame1 is greater than frame2. The comparison is done
632  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
633  * number when the max frame number is reached.
634  */
635 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
636 {
637 	return (frame1 != frame2) &&
638 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
639 }
640 
641 /*
642  * Increments frame by the amount specified by inc. The addition is done
643  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
644  */
645 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
646 {
647 	return (frame + inc) & HFNUM_MAX_FRNUM;
648 }
649 
650 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
651 {
652 	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
653 }
654 
655 static inline u16 dwc2_full_frame_num(u16 frame)
656 {
657 	return (frame & HFNUM_MAX_FRNUM) >> 3;
658 }
659 
660 static inline u16 dwc2_micro_frame_num(u16 frame)
661 {
662 	return frame & 0x7;
663 }
664 
665 /*
666  * Returns the Core Interrupt Status register contents, ANDed with the Core
667  * Interrupt Mask register contents
668  */
669 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
670 {
671 	return dwc2_readl(hsotg->regs + GINTSTS) &
672 	       dwc2_readl(hsotg->regs + GINTMSK);
673 }
674 
675 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
676 {
677 	return dwc2_urb->status;
678 }
679 
680 static inline u32 dwc2_hcd_urb_get_actual_length(
681 		struct dwc2_hcd_urb *dwc2_urb)
682 {
683 	return dwc2_urb->actual_length;
684 }
685 
686 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
687 {
688 	return dwc2_urb->error_count;
689 }
690 
691 static inline void dwc2_hcd_urb_set_iso_desc_params(
692 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
693 		u32 length)
694 {
695 	dwc2_urb->iso_descs[desc_num].offset = offset;
696 	dwc2_urb->iso_descs[desc_num].length = length;
697 }
698 
699 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
700 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
701 {
702 	return dwc2_urb->iso_descs[desc_num].status;
703 }
704 
705 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
706 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
707 {
708 	return dwc2_urb->iso_descs[desc_num].actual_length;
709 }
710 
711 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
712 						  struct usb_host_endpoint *ep)
713 {
714 	struct dwc2_qh *qh = ep->hcpriv;
715 
716 	if (qh && !list_empty(&qh->qh_list_entry))
717 		return 1;
718 
719 	return 0;
720 }
721 
722 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
723 					    struct usb_host_endpoint *ep)
724 {
725 	struct dwc2_qh *qh = ep->hcpriv;
726 
727 	if (!qh) {
728 		WARN_ON(1);
729 		return 0;
730 	}
731 
732 	return qh->host_us;
733 }
734 
735 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
736 			       struct dwc2_host_chan *chan, int chnum,
737 				      struct dwc2_qtd *qtd);
738 
739 /* HCD Core API */
740 
741 /**
742  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
743  *
744  * @hsotg: The DWC2 HCD
745  *
746  * Returns IRQ_HANDLED if interrupt is handled
747  * Return IRQ_NONE if interrupt is not handled
748  */
749 irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
750 
751 /**
752  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
753  *
754  * @hsotg: The DWC2 HCD
755  */
756 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
757 
758 /**
759  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
760  * and 0 otherwise
761  *
762  * @hsotg: The DWC2 HCD
763  */
764 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
765 
766 /**
767  * dwc2_hcd_dump_state() - Dumps hsotg state
768  *
769  * @hsotg: The DWC2 HCD
770  *
771  * NOTE: This function will be removed once the peripheral controller code
772  * is integrated and the driver is stable
773  */
774 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
775 
776 /**
777  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
778  *
779  * @hsotg: The DWC2 HCD
780  *
781  * This can be used to determine average interrupt latency. Frame remaining is
782  * also shown for start transfer and two additional sample points.
783  *
784  * NOTE: This function will be removed once the peripheral controller code
785  * is integrated and the driver is stable
786  */
787 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
788 
789 /* URB interface */
790 
791 /* Transfer flags */
792 #define URB_GIVEBACK_ASAP	0x1
793 #define URB_SEND_ZERO_PACKET	0x2
794 
795 /* Host driver callbacks */
796 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
797 				      void *context, gfp_t mem_flags,
798 				      int *ttport);
799 
800 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
801 			   struct dwc2_tt *dwc_tt);
802 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
803 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
804 			int status);
805 
806 #ifdef DEBUG
807 /*
808  * Macro to sample the remaining PHY clocks left in the current frame. This
809  * may be used during debugging to determine the average time it takes to
810  * execute sections of code. There are two possible sample points, "a" and
811  * "b", so the _letter_ argument must be one of these values.
812  *
813  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
814  * example, "cat /sys/devices/lm0/hcd_frrem".
815  */
816 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
817 do {									\
818 	struct hfnum_data _hfnum_;					\
819 	struct dwc2_qtd *_qtd_;						\
820 									\
821 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
822 			   qtd_list_entry);				\
823 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
824 	    (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
825 		_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);	\
826 		switch (_hfnum_.b.frnum & 0x7) {			\
827 		case 7:							\
828 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
829 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
830 				_hfnum_.b.frrem;			\
831 			break;						\
832 		case 0:							\
833 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
834 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
835 				_hfnum_.b.frrem;			\
836 			break;						\
837 		default:						\
838 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
839 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
840 				_hfnum_.b.frrem;			\
841 			break;						\
842 		}							\
843 	}								\
844 } while (0)
845 #else
846 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
847 #endif
848 
849 #endif /* __DWC2_HCD_H__ */
850