xref: /openbmc/linux/drivers/usb/dwc2/hcd.h (revision 4a3fad70)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.h - DesignWare HS OTG Controller host-mode declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 #ifndef __DWC2_HCD_H__
38 #define __DWC2_HCD_H__
39 
40 /*
41  * This file contains the structures, constants, and interfaces for the
42  * Host Contoller Driver (HCD)
43  *
44  * The Host Controller Driver (HCD) is responsible for translating requests
45  * from the USB Driver into the appropriate actions on the DWC_otg controller.
46  * It isolates the USBD from the specifics of the controller by providing an
47  * API to the USBD.
48  */
49 
50 struct dwc2_qh;
51 
52 /**
53  * struct dwc2_host_chan - Software host channel descriptor
54  *
55  * @hc_num:             Host channel number, used for register address lookup
56  * @dev_addr:           Address of the device
57  * @ep_num:             Endpoint of the device
58  * @ep_is_in:           Endpoint direction
59  * @speed:              Device speed. One of the following values:
60  *                       - USB_SPEED_LOW
61  *                       - USB_SPEED_FULL
62  *                       - USB_SPEED_HIGH
63  * @ep_type:            Endpoint type. One of the following values:
64  *                       - USB_ENDPOINT_XFER_CONTROL: 0
65  *                       - USB_ENDPOINT_XFER_ISOC:    1
66  *                       - USB_ENDPOINT_XFER_BULK:    2
67  *                       - USB_ENDPOINT_XFER_INTR:    3
68  * @max_packet:         Max packet size in bytes
69  * @data_pid_start:     PID for initial transaction.
70  *                       0: DATA0
71  *                       1: DATA2
72  *                       2: DATA1
73  *                       3: MDATA (non-Control EP),
74  *                          SETUP (Control EP)
75  * @multi_count:        Number of additional periodic transactions per
76  *                      (micro)frame
77  * @xfer_buf:           Pointer to current transfer buffer position
78  * @xfer_dma:           DMA address of xfer_buf
79  * @xfer_len:           Total number of bytes to transfer
80  * @xfer_count:         Number of bytes transferred so far
81  * @start_pkt_count:    Packet count at start of transfer
82  * @xfer_started:       True if the transfer has been started
83  * @ping:               True if a PING request should be issued on this channel
84  * @error_state:        True if the error count for this transaction is non-zero
85  * @halt_on_queue:      True if this channel should be halted the next time a
86  *                      request is queued for the channel. This is necessary in
87  *                      slave mode if no request queue space is available when
88  *                      an attempt is made to halt the channel.
89  * @halt_pending:       True if the host channel has been halted, but the core
90  *                      is not finished flushing queued requests
91  * @do_split:           Enable split for the channel
92  * @complete_split:     Enable complete split
93  * @hub_addr:           Address of high speed hub for the split
94  * @hub_port:           Port of the low/full speed device for the split
95  * @xact_pos:           Split transaction position. One of the following values:
96  *                       - DWC2_HCSPLT_XACTPOS_MID
97  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
98  *                       - DWC2_HCSPLT_XACTPOS_END
99  *                       - DWC2_HCSPLT_XACTPOS_ALL
100  * @requests:           Number of requests issued for this channel since it was
101  *                      assigned to the current transfer (not counting PINGs)
102  * @schinfo:            Scheduling micro-frame bitmap
103  * @ntd:                Number of transfer descriptors for the transfer
104  * @halt_status:        Reason for halting the host channel
105  * @hcint               Contents of the HCINT register when the interrupt came
106  * @qh:                 QH for the transfer being processed by this channel
107  * @hc_list_entry:      For linking to list of host channels
108  * @desc_list_addr:     Current QH's descriptor list DMA address
109  * @desc_list_sz:       Current QH's descriptor list size
110  * @split_order_list_entry: List entry for keeping track of the order of splits
111  *
112  * This structure represents the state of a single host channel when acting in
113  * host mode. It contains the data items needed to transfer packets to an
114  * endpoint via a host channel.
115  */
116 struct dwc2_host_chan {
117 	u8 hc_num;
118 
119 	unsigned dev_addr:7;
120 	unsigned ep_num:4;
121 	unsigned ep_is_in:1;
122 	unsigned speed:4;
123 	unsigned ep_type:2;
124 	unsigned max_packet:11;
125 	unsigned data_pid_start:2;
126 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
127 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
128 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
129 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
130 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
131 
132 	unsigned multi_count:2;
133 
134 	u8 *xfer_buf;
135 	dma_addr_t xfer_dma;
136 	u32 xfer_len;
137 	u32 xfer_count;
138 	u16 start_pkt_count;
139 	u8 xfer_started;
140 	u8 do_ping;
141 	u8 error_state;
142 	u8 halt_on_queue;
143 	u8 halt_pending;
144 	u8 do_split;
145 	u8 complete_split;
146 	u8 hub_addr;
147 	u8 hub_port;
148 	u8 xact_pos;
149 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
150 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
151 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
153 
154 	u8 requests;
155 	u8 schinfo;
156 	u16 ntd;
157 	enum dwc2_halt_status halt_status;
158 	u32 hcint;
159 	struct dwc2_qh *qh;
160 	struct list_head hc_list_entry;
161 	dma_addr_t desc_list_addr;
162 	u32 desc_list_sz;
163 	struct list_head split_order_list_entry;
164 };
165 
166 struct dwc2_hcd_pipe_info {
167 	u8 dev_addr;
168 	u8 ep_num;
169 	u8 pipe_type;
170 	u8 pipe_dir;
171 	u16 mps;
172 };
173 
174 struct dwc2_hcd_iso_packet_desc {
175 	u32 offset;
176 	u32 length;
177 	u32 actual_length;
178 	u32 status;
179 };
180 
181 struct dwc2_qtd;
182 
183 struct dwc2_hcd_urb {
184 	void *priv;
185 	struct dwc2_qtd *qtd;
186 	void *buf;
187 	dma_addr_t dma;
188 	void *setup_packet;
189 	dma_addr_t setup_dma;
190 	u32 length;
191 	u32 actual_length;
192 	u32 status;
193 	u32 error_count;
194 	u32 packet_count;
195 	u32 flags;
196 	u16 interval;
197 	struct dwc2_hcd_pipe_info pipe_info;
198 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
199 };
200 
201 /* Phases for control transfers */
202 enum dwc2_control_phase {
203 	DWC2_CONTROL_SETUP,
204 	DWC2_CONTROL_DATA,
205 	DWC2_CONTROL_STATUS,
206 };
207 
208 /* Transaction types */
209 enum dwc2_transaction_type {
210 	DWC2_TRANSACTION_NONE,
211 	DWC2_TRANSACTION_PERIODIC,
212 	DWC2_TRANSACTION_NON_PERIODIC,
213 	DWC2_TRANSACTION_ALL,
214 };
215 
216 /* The number of elements per LS bitmap (per port on multi_tt) */
217 #define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
218 						     BITS_PER_LONG)
219 
220 /**
221  * struct dwc2_tt - dwc2 data associated with a usb_tt
222  *
223  * @refcount:           Number of Queue Heads (QHs) holding a reference.
224  * @usb_tt:             Pointer back to the official usb_tt.
225  * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
226  *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
227  *			elements (so sizeof(long) times that in bytes).
228  *
229  * This structure is stored in the hcpriv of the official usb_tt.
230  */
231 struct dwc2_tt {
232 	int refcount;
233 	struct usb_tt *usb_tt;
234 	unsigned long periodic_bitmaps[];
235 };
236 
237 /**
238  * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
239  *
240  * @start_schedule_usecs:  The start time on the main bus schedule.  Note that
241  *                         the main bus schedule is tightly packed and this
242  *			   time should be interpreted as tightly packed (so
243  *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
244  *			   instead of 125 us).
245  * @duration_us:           How long this transfer goes.
246  */
247 
248 struct dwc2_hs_transfer_time {
249 	u32 start_schedule_us;
250 	u16 duration_us;
251 };
252 
253 /**
254  * struct dwc2_qh - Software queue head structure
255  *
256  * @hsotg:              The HCD state structure for the DWC OTG controller
257  * @ep_type:            Endpoint type. One of the following values:
258  *                       - USB_ENDPOINT_XFER_CONTROL
259  *                       - USB_ENDPOINT_XFER_BULK
260  *                       - USB_ENDPOINT_XFER_INT
261  *                       - USB_ENDPOINT_XFER_ISOC
262  * @ep_is_in:           Endpoint direction
263  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
264  * @dev_speed:          Device speed. One of the following values:
265  *                       - USB_SPEED_LOW
266  *                       - USB_SPEED_FULL
267  *                       - USB_SPEED_HIGH
268  * @data_toggle:        Determines the PID of the next data packet for
269  *                      non-controltransfers. Ignored for control transfers.
270  *                      One of the following values:
271  *                       - DWC2_HC_PID_DATA0
272  *                       - DWC2_HC_PID_DATA1
273  * @ping_state:         Ping state
274  * @do_split:           Full/low speed endpoint on high-speed hub requires split
275  * @td_first:           Index of first activated isochronous transfer descriptor
276  * @td_last:            Index of last activated isochronous transfer descriptor
277  * @host_us:            Bandwidth in microseconds per transfer as seen by host
278  * @device_us:          Bandwidth in microseconds per transfer as seen by device
279  * @host_interval:      Interval between transfers as seen by the host.  If
280  *                      the host is high speed and the device is low speed this
281  *                      will be 8 times device interval.
282  * @device_interval:    Interval between transfers as seen by the device.
283  *                      interval.
284  * @next_active_frame:  (Micro)frame _before_ we next need to put something on
285  *                      the bus.  We'll move the qh to active here.  If the
286  *                      host is in high speed mode this will be a uframe.  If
287  *                      the host is in low speed mode this will be a full frame.
288  * @start_active_frame: If we are partway through a split transfer, this will be
289  *			what next_active_frame was when we started.  Otherwise
290  *			it should always be the same as next_active_frame.
291  * @num_hs_transfers:   Number of transfers in hs_transfers.
292  *                      Normally this is 1 but can be more than one for splits.
293  *                      Always >= 1 unless the host is in low/full speed mode.
294  * @hs_transfers:       Transfers that are scheduled as seen by the high speed
295  *                      bus.  Not used if host is in low or full speed mode (but
296  *                      note that it IS USED if the device is low or full speed
297  *                      as long as the HOST is in high speed mode).
298  * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
299  *                           schedule that's being used by this device.  This
300  *			     will be on the periodic_bitmap in a
301  *                           "struct dwc2_tt".  Not used if this device is high
302  *                           speed.  Note that this is in "schedule slice" which
303  *                           is tightly packed.
304  * @ls_duration_us:     Duration on the low speed bus schedule.
305  * @ntd:                Actual number of transfer descriptors in a list
306  * @qtd_list:           List of QTDs for this QH
307  * @channel:            Host channel currently processing transfers for this QH
308  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
309  *                      schedule
310  * @desc_list:          List of transfer descriptors
311  * @desc_list_dma:      Physical address of desc_list
312  * @desc_list_sz:       Size of descriptors list
313  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
314  *                      descriptor and indicates original XferSize value for the
315  *                      descriptor
316  * @unreserve_timer:    Timer for releasing periodic reservation.
317  * @dwc2_tt:            Pointer to our tt info (or NULL if no tt).
318  * @ttport:             Port number within our tt.
319  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
320  * @unreserve_pending:  True if we planned to unreserve but haven't yet.
321  * @schedule_low_speed: True if we have a low/full speed component (either the
322  *			host is in low/full speed mode or do_split).
323  *
324  * A Queue Head (QH) holds the static characteristics of an endpoint and
325  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
326  * be entered in either the non-periodic or periodic schedule.
327  */
328 struct dwc2_qh {
329 	struct dwc2_hsotg *hsotg;
330 	u8 ep_type;
331 	u8 ep_is_in;
332 	u16 maxp;
333 	u8 dev_speed;
334 	u8 data_toggle;
335 	u8 ping_state;
336 	u8 do_split;
337 	u8 td_first;
338 	u8 td_last;
339 	u16 host_us;
340 	u16 device_us;
341 	u16 host_interval;
342 	u16 device_interval;
343 	u16 next_active_frame;
344 	u16 start_active_frame;
345 	s16 num_hs_transfers;
346 	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
347 	u32 ls_start_schedule_slice;
348 	u16 ntd;
349 	struct list_head qtd_list;
350 	struct dwc2_host_chan *channel;
351 	struct list_head qh_list_entry;
352 	struct dwc2_dma_desc *desc_list;
353 	dma_addr_t desc_list_dma;
354 	u32 desc_list_sz;
355 	u32 *n_bytes;
356 	struct timer_list unreserve_timer;
357 	struct dwc2_tt *dwc_tt;
358 	int ttport;
359 	unsigned tt_buffer_dirty:1;
360 	unsigned unreserve_pending:1;
361 	unsigned schedule_low_speed:1;
362 };
363 
364 /**
365  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
366  *
367  * @control_phase:      Current phase for control transfers (Setup, Data, or
368  *                      Status)
369  * @in_process:         Indicates if this QTD is currently processed by HW
370  * @data_toggle:        Determines the PID of the next data packet for the
371  *                      data phase of control transfers. Ignored for other
372  *                      transfer types. One of the following values:
373  *                       - DWC2_HC_PID_DATA0
374  *                       - DWC2_HC_PID_DATA1
375  * @complete_split:     Keeps track of the current split type for FS/LS
376  *                      endpoints on a HS Hub
377  * @isoc_split_pos:     Position of the ISOC split in full/low speed
378  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
379  *                      transfer. A frame descriptor describes the buffer
380  *                      position and length of the data to be transferred in the
381  *                      next scheduled (micro)frame of an isochronous transfer.
382  *                      It also holds status for that transaction. The frame
383  *                      index starts at 0.
384  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
385  *                      current frame
386  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
387  * @error_count:        Holds the number of bus errors that have occurred for
388  *                      a transaction within this transfer
389  * @n_desc:             Number of DMA descriptors for this QTD
390  * @isoc_frame_index_last: Last activated frame (packet) index, used in
391  *                      descriptor DMA mode only
392  * @urb:                URB for this transfer
393  * @qh:                 Queue head for this QTD
394  * @qtd_list_entry:     For linking to the QH's list of QTDs
395  *
396  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
397  * interrupt, or isochronous transfer. A single QTD is created for each URB
398  * (of one of these types) submitted to the HCD. The transfer associated with
399  * a QTD may require one or multiple transactions.
400  *
401  * A QTD is linked to a Queue Head, which is entered in either the
402  * non-periodic or periodic schedule for execution. When a QTD is chosen for
403  * execution, some or all of its transactions may be executed. After
404  * execution, the state of the QTD is updated. The QTD may be retired if all
405  * its transactions are complete or if an error occurred. Otherwise, it
406  * remains in the schedule so more transactions can be executed later.
407  */
408 struct dwc2_qtd {
409 	enum dwc2_control_phase control_phase;
410 	u8 in_process;
411 	u8 data_toggle;
412 	u8 complete_split;
413 	u8 isoc_split_pos;
414 	u16 isoc_frame_index;
415 	u16 isoc_split_offset;
416 	u16 isoc_td_last;
417 	u16 isoc_td_first;
418 	u32 ssplit_out_xfer_count;
419 	u8 error_count;
420 	u8 n_desc;
421 	u16 isoc_frame_index_last;
422 	struct dwc2_hcd_urb *urb;
423 	struct dwc2_qh *qh;
424 	struct list_head qtd_list_entry;
425 };
426 
427 #ifdef DEBUG
428 struct hc_xfer_info {
429 	struct dwc2_hsotg *hsotg;
430 	struct dwc2_host_chan *chan;
431 };
432 #endif
433 
434 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
435 
436 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
437 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
438 {
439 	return (struct usb_hcd *)hsotg->priv;
440 }
441 
442 /*
443  * Inline used to disable one channel interrupt. Channel interrupts are
444  * disabled when the channel is halted or released by the interrupt handler.
445  * There is no need to handle further interrupts of that type until the
446  * channel is re-assigned. In fact, subsequent handling may cause crashes
447  * because the channel structures are cleaned up when the channel is released.
448  */
449 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
450 {
451 	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
452 
453 	mask &= ~intr;
454 	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
455 }
456 
457 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
458 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
459 		  enum dwc2_halt_status halt_status);
460 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
461 				 struct dwc2_host_chan *chan);
462 
463 /*
464  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
465  * are read as 1, they won't clear when written back.
466  */
467 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
468 {
469 	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
470 
471 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
472 	return hprt0;
473 }
474 
475 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
476 {
477 	return pipe->ep_num;
478 }
479 
480 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
481 {
482 	return pipe->pipe_type;
483 }
484 
485 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
486 {
487 	return pipe->mps;
488 }
489 
490 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
491 {
492 	return pipe->dev_addr;
493 }
494 
495 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
496 {
497 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
498 }
499 
500 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
501 {
502 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
503 }
504 
505 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
506 {
507 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
508 }
509 
510 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
511 {
512 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
513 }
514 
515 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
516 {
517 	return pipe->pipe_dir == USB_DIR_IN;
518 }
519 
520 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
521 {
522 	return !dwc2_hcd_is_pipe_in(pipe);
523 }
524 
525 int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
526 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
527 
528 /* Transaction Execution Functions */
529 enum dwc2_transaction_type dwc2_hcd_select_transactions(
530 						struct dwc2_hsotg *hsotg);
531 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
532 				 enum dwc2_transaction_type tr_type);
533 
534 /* Schedule Queue Functions */
535 /* Implemented in hcd_queue.c */
536 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
537 				   struct dwc2_hcd_urb *urb,
538 					  gfp_t mem_flags);
539 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
540 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
541 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
542 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
543 			    int sched_csplit);
544 
545 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
546 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
547 		     struct dwc2_qh *qh);
548 
549 /* Unlinks and frees a QTD */
550 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
551 						struct dwc2_qtd *qtd,
552 						struct dwc2_qh *qh)
553 {
554 	list_del(&qtd->qtd_list_entry);
555 	kfree(qtd);
556 	qtd = NULL;
557 }
558 
559 /* Descriptor DMA support functions */
560 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
561 			      struct dwc2_qh *qh);
562 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
563 				 struct dwc2_host_chan *chan, int chnum,
564 					enum dwc2_halt_status halt_status);
565 
566 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
567 			  gfp_t mem_flags);
568 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
569 
570 /* Check if QH is non-periodic */
571 #define dwc2_qh_is_non_per(_qh_ptr_) \
572 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
573 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
574 
575 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
576 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
577 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
578 static inline bool dbg_urb(struct urb *urb) { return true; }
579 static inline bool dbg_perio(void) { return true; }
580 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
581 static inline bool dbg_hc(struct dwc2_host_chan *hc)
582 {
583 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
584 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
585 }
586 
587 static inline bool dbg_qh(struct dwc2_qh *qh)
588 {
589 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
590 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
591 }
592 
593 static inline bool dbg_urb(struct urb *urb)
594 {
595 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
596 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
597 }
598 
599 static inline bool dbg_perio(void) { return false; }
600 #endif
601 
602 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
603 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
604 
605 /* Packet size for any kind of endpoint descriptor */
606 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
607 
608 /*
609  * Returns true if frame1 index is greater than frame2 index. The comparison
610  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
611  * frame number when the max index frame number is reached.
612  */
613 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
614 {
615 	u16 diff = fr_idx1 - fr_idx2;
616 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
617 
618 	return diff && !sign;
619 }
620 
621 /*
622  * Returns true if frame1 is less than or equal to frame2. The comparison is
623  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
624  * frame number when the max frame number is reached.
625  */
626 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
627 {
628 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
629 }
630 
631 /*
632  * Returns true if frame1 is greater than frame2. The comparison is done
633  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
634  * number when the max frame number is reached.
635  */
636 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
637 {
638 	return (frame1 != frame2) &&
639 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
640 }
641 
642 /*
643  * Increments frame by the amount specified by inc. The addition is done
644  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
645  */
646 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
647 {
648 	return (frame + inc) & HFNUM_MAX_FRNUM;
649 }
650 
651 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
652 {
653 	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
654 }
655 
656 static inline u16 dwc2_full_frame_num(u16 frame)
657 {
658 	return (frame & HFNUM_MAX_FRNUM) >> 3;
659 }
660 
661 static inline u16 dwc2_micro_frame_num(u16 frame)
662 {
663 	return frame & 0x7;
664 }
665 
666 /*
667  * Returns the Core Interrupt Status register contents, ANDed with the Core
668  * Interrupt Mask register contents
669  */
670 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
671 {
672 	return dwc2_readl(hsotg->regs + GINTSTS) &
673 	       dwc2_readl(hsotg->regs + GINTMSK);
674 }
675 
676 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
677 {
678 	return dwc2_urb->status;
679 }
680 
681 static inline u32 dwc2_hcd_urb_get_actual_length(
682 		struct dwc2_hcd_urb *dwc2_urb)
683 {
684 	return dwc2_urb->actual_length;
685 }
686 
687 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
688 {
689 	return dwc2_urb->error_count;
690 }
691 
692 static inline void dwc2_hcd_urb_set_iso_desc_params(
693 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
694 		u32 length)
695 {
696 	dwc2_urb->iso_descs[desc_num].offset = offset;
697 	dwc2_urb->iso_descs[desc_num].length = length;
698 }
699 
700 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
701 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
702 {
703 	return dwc2_urb->iso_descs[desc_num].status;
704 }
705 
706 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
707 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
708 {
709 	return dwc2_urb->iso_descs[desc_num].actual_length;
710 }
711 
712 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
713 						  struct usb_host_endpoint *ep)
714 {
715 	struct dwc2_qh *qh = ep->hcpriv;
716 
717 	if (qh && !list_empty(&qh->qh_list_entry))
718 		return 1;
719 
720 	return 0;
721 }
722 
723 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
724 					    struct usb_host_endpoint *ep)
725 {
726 	struct dwc2_qh *qh = ep->hcpriv;
727 
728 	if (!qh) {
729 		WARN_ON(1);
730 		return 0;
731 	}
732 
733 	return qh->host_us;
734 }
735 
736 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
737 			       struct dwc2_host_chan *chan, int chnum,
738 				      struct dwc2_qtd *qtd);
739 
740 /* HCD Core API */
741 
742 /**
743  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
744  *
745  * @hsotg: The DWC2 HCD
746  *
747  * Returns IRQ_HANDLED if interrupt is handled
748  * Return IRQ_NONE if interrupt is not handled
749  */
750 irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
751 
752 /**
753  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
754  *
755  * @hsotg: The DWC2 HCD
756  */
757 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
758 
759 /**
760  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
761  * and 0 otherwise
762  *
763  * @hsotg: The DWC2 HCD
764  */
765 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
766 
767 /**
768  * dwc2_hcd_dump_state() - Dumps hsotg state
769  *
770  * @hsotg: The DWC2 HCD
771  *
772  * NOTE: This function will be removed once the peripheral controller code
773  * is integrated and the driver is stable
774  */
775 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
776 
777 /**
778  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
779  *
780  * @hsotg: The DWC2 HCD
781  *
782  * This can be used to determine average interrupt latency. Frame remaining is
783  * also shown for start transfer and two additional sample points.
784  *
785  * NOTE: This function will be removed once the peripheral controller code
786  * is integrated and the driver is stable
787  */
788 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
789 
790 /* URB interface */
791 
792 /* Transfer flags */
793 #define URB_GIVEBACK_ASAP	0x1
794 #define URB_SEND_ZERO_PACKET	0x2
795 
796 /* Host driver callbacks */
797 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
798 				      void *context, gfp_t mem_flags,
799 				      int *ttport);
800 
801 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
802 			   struct dwc2_tt *dwc_tt);
803 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
804 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
805 			int status);
806 
807 #ifdef DEBUG
808 /*
809  * Macro to sample the remaining PHY clocks left in the current frame. This
810  * may be used during debugging to determine the average time it takes to
811  * execute sections of code. There are two possible sample points, "a" and
812  * "b", so the _letter_ argument must be one of these values.
813  *
814  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
815  * example, "cat /sys/devices/lm0/hcd_frrem".
816  */
817 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
818 do {									\
819 	struct hfnum_data _hfnum_;					\
820 	struct dwc2_qtd *_qtd_;						\
821 									\
822 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
823 			   qtd_list_entry);				\
824 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
825 	    (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
826 		_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);	\
827 		switch (_hfnum_.b.frnum & 0x7) {			\
828 		case 7:							\
829 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
830 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
831 				_hfnum_.b.frrem;			\
832 			break;						\
833 		case 0:							\
834 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
835 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
836 				_hfnum_.b.frrem;			\
837 			break;						\
838 		default:						\
839 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
840 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
841 				_hfnum_.b.frrem;			\
842 			break;						\
843 		}							\
844 	}								\
845 } while (0)
846 #else
847 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
848 #endif
849 
850 #endif /* __DWC2_HCD_H__ */
851