xref: /openbmc/linux/drivers/usb/dwc2/hcd.h (revision 17dd5b64)
1 /*
2  * hcd.h - DesignWare HS OTG Controller host-mode declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
38 
39 /*
40  * This file contains the structures, constants, and interfaces for the
41  * Host Contoller Driver (HCD)
42  *
43  * The Host Controller Driver (HCD) is responsible for translating requests
44  * from the USB Driver into the appropriate actions on the DWC_otg controller.
45  * It isolates the USBD from the specifics of the controller by providing an
46  * API to the USBD.
47  */
48 
49 struct dwc2_qh;
50 
51 /**
52  * struct dwc2_host_chan - Software host channel descriptor
53  *
54  * @hc_num:             Host channel number, used for register address lookup
55  * @dev_addr:           Address of the device
56  * @ep_num:             Endpoint of the device
57  * @ep_is_in:           Endpoint direction
58  * @speed:              Device speed. One of the following values:
59  *                       - USB_SPEED_LOW
60  *                       - USB_SPEED_FULL
61  *                       - USB_SPEED_HIGH
62  * @ep_type:            Endpoint type. One of the following values:
63  *                       - USB_ENDPOINT_XFER_CONTROL: 0
64  *                       - USB_ENDPOINT_XFER_ISOC:    1
65  *                       - USB_ENDPOINT_XFER_BULK:    2
66  *                       - USB_ENDPOINT_XFER_INTR:    3
67  * @max_packet:         Max packet size in bytes
68  * @data_pid_start:     PID for initial transaction.
69  *                       0: DATA0
70  *                       1: DATA2
71  *                       2: DATA1
72  *                       3: MDATA (non-Control EP),
73  *                          SETUP (Control EP)
74  * @multi_count:        Number of additional periodic transactions per
75  *                      (micro)frame
76  * @xfer_buf:           Pointer to current transfer buffer position
77  * @xfer_dma:           DMA address of xfer_buf
78  * @xfer_len:           Total number of bytes to transfer
79  * @xfer_count:         Number of bytes transferred so far
80  * @start_pkt_count:    Packet count at start of transfer
81  * @xfer_started:       True if the transfer has been started
82  * @ping:               True if a PING request should be issued on this channel
83  * @error_state:        True if the error count for this transaction is non-zero
84  * @halt_on_queue:      True if this channel should be halted the next time a
85  *                      request is queued for the channel. This is necessary in
86  *                      slave mode if no request queue space is available when
87  *                      an attempt is made to halt the channel.
88  * @halt_pending:       True if the host channel has been halted, but the core
89  *                      is not finished flushing queued requests
90  * @do_split:           Enable split for the channel
91  * @complete_split:     Enable complete split
92  * @hub_addr:           Address of high speed hub for the split
93  * @hub_port:           Port of the low/full speed device for the split
94  * @xact_pos:           Split transaction position. One of the following values:
95  *                       - DWC2_HCSPLT_XACTPOS_MID
96  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
97  *                       - DWC2_HCSPLT_XACTPOS_END
98  *                       - DWC2_HCSPLT_XACTPOS_ALL
99  * @requests:           Number of requests issued for this channel since it was
100  *                      assigned to the current transfer (not counting PINGs)
101  * @schinfo:            Scheduling micro-frame bitmap
102  * @ntd:                Number of transfer descriptors for the transfer
103  * @halt_status:        Reason for halting the host channel
104  * @hcint               Contents of the HCINT register when the interrupt came
105  * @qh:                 QH for the transfer being processed by this channel
106  * @hc_list_entry:      For linking to list of host channels
107  * @desc_list_addr:     Current QH's descriptor list DMA address
108  * @desc_list_sz:       Current QH's descriptor list size
109  * @split_order_list_entry: List entry for keeping track of the order of splits
110  *
111  * This structure represents the state of a single host channel when acting in
112  * host mode. It contains the data items needed to transfer packets to an
113  * endpoint via a host channel.
114  */
115 struct dwc2_host_chan {
116 	u8 hc_num;
117 
118 	unsigned dev_addr:7;
119 	unsigned ep_num:4;
120 	unsigned ep_is_in:1;
121 	unsigned speed:4;
122 	unsigned ep_type:2;
123 	unsigned max_packet:11;
124 	unsigned data_pid_start:2;
125 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
126 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
127 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
128 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
129 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
130 
131 	unsigned multi_count:2;
132 
133 	u8 *xfer_buf;
134 	dma_addr_t xfer_dma;
135 	u32 xfer_len;
136 	u32 xfer_count;
137 	u16 start_pkt_count;
138 	u8 xfer_started;
139 	u8 do_ping;
140 	u8 error_state;
141 	u8 halt_on_queue;
142 	u8 halt_pending;
143 	u8 do_split;
144 	u8 complete_split;
145 	u8 hub_addr;
146 	u8 hub_port;
147 	u8 xact_pos;
148 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
149 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
150 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
151 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
152 
153 	u8 requests;
154 	u8 schinfo;
155 	u16 ntd;
156 	enum dwc2_halt_status halt_status;
157 	u32 hcint;
158 	struct dwc2_qh *qh;
159 	struct list_head hc_list_entry;
160 	dma_addr_t desc_list_addr;
161 	u32 desc_list_sz;
162 	struct list_head split_order_list_entry;
163 };
164 
165 struct dwc2_hcd_pipe_info {
166 	u8 dev_addr;
167 	u8 ep_num;
168 	u8 pipe_type;
169 	u8 pipe_dir;
170 	u16 mps;
171 };
172 
173 struct dwc2_hcd_iso_packet_desc {
174 	u32 offset;
175 	u32 length;
176 	u32 actual_length;
177 	u32 status;
178 };
179 
180 struct dwc2_qtd;
181 
182 struct dwc2_hcd_urb {
183 	void *priv;
184 	struct dwc2_qtd *qtd;
185 	void *buf;
186 	dma_addr_t dma;
187 	void *setup_packet;
188 	dma_addr_t setup_dma;
189 	u32 length;
190 	u32 actual_length;
191 	u32 status;
192 	u32 error_count;
193 	u32 packet_count;
194 	u32 flags;
195 	u16 interval;
196 	struct dwc2_hcd_pipe_info pipe_info;
197 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
198 };
199 
200 /* Phases for control transfers */
201 enum dwc2_control_phase {
202 	DWC2_CONTROL_SETUP,
203 	DWC2_CONTROL_DATA,
204 	DWC2_CONTROL_STATUS,
205 };
206 
207 /* Transaction types */
208 enum dwc2_transaction_type {
209 	DWC2_TRANSACTION_NONE,
210 	DWC2_TRANSACTION_PERIODIC,
211 	DWC2_TRANSACTION_NON_PERIODIC,
212 	DWC2_TRANSACTION_ALL,
213 };
214 
215 /**
216  * struct dwc2_qh - Software queue head structure
217  *
218  * @hsotg:              The HCD state structure for the DWC OTG controller
219  * @ep_type:            Endpoint type. One of the following values:
220  *                       - USB_ENDPOINT_XFER_CONTROL
221  *                       - USB_ENDPOINT_XFER_BULK
222  *                       - USB_ENDPOINT_XFER_INT
223  *                       - USB_ENDPOINT_XFER_ISOC
224  * @ep_is_in:           Endpoint direction
225  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
226  * @dev_speed:          Device speed. One of the following values:
227  *                       - USB_SPEED_LOW
228  *                       - USB_SPEED_FULL
229  *                       - USB_SPEED_HIGH
230  * @data_toggle:        Determines the PID of the next data packet for
231  *                      non-controltransfers. Ignored for control transfers.
232  *                      One of the following values:
233  *                       - DWC2_HC_PID_DATA0
234  *                       - DWC2_HC_PID_DATA1
235  * @ping_state:         Ping state
236  * @do_split:           Full/low speed endpoint on high-speed hub requires split
237  * @td_first:           Index of first activated isochronous transfer descriptor
238  * @td_last:            Index of last activated isochronous transfer descriptor
239  * @usecs:              Bandwidth in microseconds per (micro)frame
240  * @interval:           Interval between transfers in (micro)frames
241  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
242  *                      The transfer executes in the following (micro)frame.
243  * @frame_usecs:        Internal variable used by the microframe scheduler
244  * @start_split_frame:  (Micro)frame at which last start split was initialized
245  * @ntd:                Actual number of transfer descriptors in a list
246  * @qtd_list:           List of QTDs for this QH
247  * @channel:            Host channel currently processing transfers for this QH
248  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
249  *                      schedule
250  * @desc_list:          List of transfer descriptors
251  * @desc_list_dma:      Physical address of desc_list
252  * @desc_list_sz:       Size of descriptors list
253  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
254  *                      descriptor and indicates original XferSize value for the
255  *                      descriptor
256  * @unreserve_timer:    Timer for releasing periodic reservation.
257  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
258  * @unreserve_pending:  True if we planned to unreserve but haven't yet.
259  *
260  * A Queue Head (QH) holds the static characteristics of an endpoint and
261  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
262  * be entered in either the non-periodic or periodic schedule.
263  */
264 struct dwc2_qh {
265 	struct dwc2_hsotg *hsotg;
266 	u8 ep_type;
267 	u8 ep_is_in;
268 	u16 maxp;
269 	u8 dev_speed;
270 	u8 data_toggle;
271 	u8 ping_state;
272 	u8 do_split;
273 	u8 td_first;
274 	u8 td_last;
275 	u16 usecs;
276 	u16 interval;
277 	u16 sched_frame;
278 	u16 frame_usecs[8];
279 	u16 start_split_frame;
280 	u16 ntd;
281 	struct list_head qtd_list;
282 	struct dwc2_host_chan *channel;
283 	struct list_head qh_list_entry;
284 	struct dwc2_hcd_dma_desc *desc_list;
285 	dma_addr_t desc_list_dma;
286 	u32 desc_list_sz;
287 	u32 *n_bytes;
288 	struct timer_list unreserve_timer;
289 	unsigned tt_buffer_dirty:1;
290 	unsigned unreserve_pending:1;
291 };
292 
293 /**
294  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
295  *
296  * @control_phase:      Current phase for control transfers (Setup, Data, or
297  *                      Status)
298  * @in_process:         Indicates if this QTD is currently processed by HW
299  * @data_toggle:        Determines the PID of the next data packet for the
300  *                      data phase of control transfers. Ignored for other
301  *                      transfer types. One of the following values:
302  *                       - DWC2_HC_PID_DATA0
303  *                       - DWC2_HC_PID_DATA1
304  * @complete_split:     Keeps track of the current split type for FS/LS
305  *                      endpoints on a HS Hub
306  * @isoc_split_pos:     Position of the ISOC split in full/low speed
307  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
308  *                      transfer. A frame descriptor describes the buffer
309  *                      position and length of the data to be transferred in the
310  *                      next scheduled (micro)frame of an isochronous transfer.
311  *                      It also holds status for that transaction. The frame
312  *                      index starts at 0.
313  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
314  *                      current frame
315  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
316  * @error_count:        Holds the number of bus errors that have occurred for
317  *                      a transaction within this transfer
318  * @n_desc:             Number of DMA descriptors for this QTD
319  * @isoc_frame_index_last: Last activated frame (packet) index, used in
320  *                      descriptor DMA mode only
321  * @urb:                URB for this transfer
322  * @qh:                 Queue head for this QTD
323  * @qtd_list_entry:     For linking to the QH's list of QTDs
324  *
325  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
326  * interrupt, or isochronous transfer. A single QTD is created for each URB
327  * (of one of these types) submitted to the HCD. The transfer associated with
328  * a QTD may require one or multiple transactions.
329  *
330  * A QTD is linked to a Queue Head, which is entered in either the
331  * non-periodic or periodic schedule for execution. When a QTD is chosen for
332  * execution, some or all of its transactions may be executed. After
333  * execution, the state of the QTD is updated. The QTD may be retired if all
334  * its transactions are complete or if an error occurred. Otherwise, it
335  * remains in the schedule so more transactions can be executed later.
336  */
337 struct dwc2_qtd {
338 	enum dwc2_control_phase control_phase;
339 	u8 in_process;
340 	u8 data_toggle;
341 	u8 complete_split;
342 	u8 isoc_split_pos;
343 	u16 isoc_frame_index;
344 	u16 isoc_split_offset;
345 	u16 isoc_td_last;
346 	u16 isoc_td_first;
347 	u32 ssplit_out_xfer_count;
348 	u8 error_count;
349 	u8 n_desc;
350 	u16 isoc_frame_index_last;
351 	struct dwc2_hcd_urb *urb;
352 	struct dwc2_qh *qh;
353 	struct list_head qtd_list_entry;
354 };
355 
356 #ifdef DEBUG
357 struct hc_xfer_info {
358 	struct dwc2_hsotg *hsotg;
359 	struct dwc2_host_chan *chan;
360 };
361 #endif
362 
363 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
364 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
365 {
366 	return (struct usb_hcd *)hsotg->priv;
367 }
368 
369 /*
370  * Inline used to disable one channel interrupt. Channel interrupts are
371  * disabled when the channel is halted or released by the interrupt handler.
372  * There is no need to handle further interrupts of that type until the
373  * channel is re-assigned. In fact, subsequent handling may cause crashes
374  * because the channel structures are cleaned up when the channel is released.
375  */
376 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
377 {
378 	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
379 
380 	mask &= ~intr;
381 	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
382 }
383 
384 /*
385  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
386  * are read as 1, they won't clear when written back.
387  */
388 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
389 {
390 	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
391 
392 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
393 	return hprt0;
394 }
395 
396 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
397 {
398 	return pipe->ep_num;
399 }
400 
401 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
402 {
403 	return pipe->pipe_type;
404 }
405 
406 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
407 {
408 	return pipe->mps;
409 }
410 
411 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
412 {
413 	return pipe->dev_addr;
414 }
415 
416 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
417 {
418 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
419 }
420 
421 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
422 {
423 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
424 }
425 
426 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
427 {
428 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
429 }
430 
431 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
432 {
433 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
434 }
435 
436 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
437 {
438 	return pipe->pipe_dir == USB_DIR_IN;
439 }
440 
441 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
442 {
443 	return !dwc2_hcd_is_pipe_in(pipe);
444 }
445 
446 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
447 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
448 
449 /* Transaction Execution Functions */
450 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
451 						struct dwc2_hsotg *hsotg);
452 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
453 					enum dwc2_transaction_type tr_type);
454 
455 /* Schedule Queue Functions */
456 /* Implemented in hcd_queue.c */
457 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
458 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
459 					  struct dwc2_hcd_urb *urb,
460 					  gfp_t mem_flags);
461 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
462 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
463 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
464 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
465 				   int sched_csplit);
466 
467 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
468 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
469 			    struct dwc2_qh *qh);
470 
471 /* Unlinks and frees a QTD */
472 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
473 						struct dwc2_qtd *qtd,
474 						struct dwc2_qh *qh)
475 {
476 	list_del(&qtd->qtd_list_entry);
477 	kfree(qtd);
478 }
479 
480 /* Descriptor DMA support functions */
481 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
482 				     struct dwc2_qh *qh);
483 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
484 					struct dwc2_host_chan *chan, int chnum,
485 					enum dwc2_halt_status halt_status);
486 
487 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
488 				 gfp_t mem_flags);
489 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
490 
491 /* Check if QH is non-periodic */
492 #define dwc2_qh_is_non_per(_qh_ptr_) \
493 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
494 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
495 
496 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
497 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
498 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
499 static inline bool dbg_urb(struct urb *urb) { return true; }
500 static inline bool dbg_perio(void) { return true; }
501 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
502 static inline bool dbg_hc(struct dwc2_host_chan *hc)
503 {
504 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
505 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
506 }
507 
508 static inline bool dbg_qh(struct dwc2_qh *qh)
509 {
510 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
511 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
512 }
513 
514 static inline bool dbg_urb(struct urb *urb)
515 {
516 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
517 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
518 }
519 
520 static inline bool dbg_perio(void) { return false; }
521 #endif
522 
523 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
524 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
525 
526 /* Packet size for any kind of endpoint descriptor */
527 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
528 
529 /*
530  * Returns true if frame1 index is greater than frame2 index. The comparison
531  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
532  * frame number when the max index frame number is reached.
533  */
534 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
535 {
536 	u16 diff = fr_idx1 - fr_idx2;
537 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
538 
539 	return diff && !sign;
540 }
541 
542 /*
543  * Returns true if frame1 is less than or equal to frame2. The comparison is
544  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
545  * frame number when the max frame number is reached.
546  */
547 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
548 {
549 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
550 }
551 
552 /*
553  * Returns true if frame1 is greater than frame2. The comparison is done
554  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
555  * number when the max frame number is reached.
556  */
557 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
558 {
559 	return (frame1 != frame2) &&
560 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
561 }
562 
563 /*
564  * Increments frame by the amount specified by inc. The addition is done
565  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
566  */
567 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
568 {
569 	return (frame + inc) & HFNUM_MAX_FRNUM;
570 }
571 
572 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
573 {
574 	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
575 }
576 
577 static inline u16 dwc2_full_frame_num(u16 frame)
578 {
579 	return (frame & HFNUM_MAX_FRNUM) >> 3;
580 }
581 
582 static inline u16 dwc2_micro_frame_num(u16 frame)
583 {
584 	return frame & 0x7;
585 }
586 
587 /*
588  * Returns the Core Interrupt Status register contents, ANDed with the Core
589  * Interrupt Mask register contents
590  */
591 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
592 {
593 	return dwc2_readl(hsotg->regs + GINTSTS) &
594 	       dwc2_readl(hsotg->regs + GINTMSK);
595 }
596 
597 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
598 {
599 	return dwc2_urb->status;
600 }
601 
602 static inline u32 dwc2_hcd_urb_get_actual_length(
603 		struct dwc2_hcd_urb *dwc2_urb)
604 {
605 	return dwc2_urb->actual_length;
606 }
607 
608 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
609 {
610 	return dwc2_urb->error_count;
611 }
612 
613 static inline void dwc2_hcd_urb_set_iso_desc_params(
614 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
615 		u32 length)
616 {
617 	dwc2_urb->iso_descs[desc_num].offset = offset;
618 	dwc2_urb->iso_descs[desc_num].length = length;
619 }
620 
621 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
622 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
623 {
624 	return dwc2_urb->iso_descs[desc_num].status;
625 }
626 
627 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
628 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
629 {
630 	return dwc2_urb->iso_descs[desc_num].actual_length;
631 }
632 
633 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
634 						  struct usb_host_endpoint *ep)
635 {
636 	struct dwc2_qh *qh = ep->hcpriv;
637 
638 	if (qh && !list_empty(&qh->qh_list_entry))
639 		return 1;
640 
641 	return 0;
642 }
643 
644 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
645 					    struct usb_host_endpoint *ep)
646 {
647 	struct dwc2_qh *qh = ep->hcpriv;
648 
649 	if (!qh) {
650 		WARN_ON(1);
651 		return 0;
652 	}
653 
654 	return qh->usecs;
655 }
656 
657 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
658 				      struct dwc2_host_chan *chan, int chnum,
659 				      struct dwc2_qtd *qtd);
660 
661 /* HCD Core API */
662 
663 /**
664  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
665  *
666  * @hsotg: The DWC2 HCD
667  *
668  * Returns IRQ_HANDLED if interrupt is handled
669  * Return IRQ_NONE if interrupt is not handled
670  */
671 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
672 
673 /**
674  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
675  *
676  * @hsotg: The DWC2 HCD
677  */
678 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
679 
680 /**
681  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
682  * and 0 otherwise
683  *
684  * @hsotg: The DWC2 HCD
685  */
686 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
687 
688 /**
689  * dwc2_hcd_dump_state() - Dumps hsotg state
690  *
691  * @hsotg: The DWC2 HCD
692  *
693  * NOTE: This function will be removed once the peripheral controller code
694  * is integrated and the driver is stable
695  */
696 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
697 
698 /**
699  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
700  *
701  * @hsotg: The DWC2 HCD
702  *
703  * This can be used to determine average interrupt latency. Frame remaining is
704  * also shown for start transfer and two additional sample points.
705  *
706  * NOTE: This function will be removed once the peripheral controller code
707  * is integrated and the driver is stable
708  */
709 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
710 
711 /* URB interface */
712 
713 /* Transfer flags */
714 #define URB_GIVEBACK_ASAP	0x1
715 #define URB_SEND_ZERO_PACKET	0x2
716 
717 /* Host driver callbacks */
718 
719 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
720 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
721 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
722 			       int *hub_addr, int *hub_port);
723 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
724 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
725 			       int status);
726 
727 #ifdef DEBUG
728 /*
729  * Macro to sample the remaining PHY clocks left in the current frame. This
730  * may be used during debugging to determine the average time it takes to
731  * execute sections of code. There are two possible sample points, "a" and
732  * "b", so the _letter_ argument must be one of these values.
733  *
734  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
735  * example, "cat /sys/devices/lm0/hcd_frrem".
736  */
737 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
738 do {									\
739 	struct hfnum_data _hfnum_;					\
740 	struct dwc2_qtd *_qtd_;						\
741 									\
742 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
743 			   qtd_list_entry);				\
744 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
745 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
746 		_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);	\
747 		switch (_hfnum_.b.frnum & 0x7) {			\
748 		case 7:							\
749 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
750 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
751 				_hfnum_.b.frrem;			\
752 			break;						\
753 		case 0:							\
754 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
755 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
756 				_hfnum_.b.frrem;			\
757 			break;						\
758 		default:						\
759 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
760 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
761 				_hfnum_.b.frrem;			\
762 			break;						\
763 		}							\
764 	}								\
765 } while (0)
766 #else
767 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
768 #endif
769 
770 #endif /* __DWC2_HCD_H__ */
771