xref: /openbmc/linux/drivers/usb/dwc2/hcd.h (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.h - DesignWare HS OTG Controller host-mode declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 #ifndef __DWC2_HCD_H__
38 #define __DWC2_HCD_H__
39 
40 /*
41  * This file contains the structures, constants, and interfaces for the
42  * Host Contoller Driver (HCD)
43  *
44  * The Host Controller Driver (HCD) is responsible for translating requests
45  * from the USB Driver into the appropriate actions on the DWC_otg controller.
46  * It isolates the USBD from the specifics of the controller by providing an
47  * API to the USBD.
48  */
49 
50 struct dwc2_qh;
51 
52 /**
53  * struct dwc2_host_chan - Software host channel descriptor
54  *
55  * @hc_num:             Host channel number, used for register address lookup
56  * @dev_addr:           Address of the device
57  * @ep_num:             Endpoint of the device
58  * @ep_is_in:           Endpoint direction
59  * @speed:              Device speed. One of the following values:
60  *                       - USB_SPEED_LOW
61  *                       - USB_SPEED_FULL
62  *                       - USB_SPEED_HIGH
63  * @ep_type:            Endpoint type. One of the following values:
64  *                       - USB_ENDPOINT_XFER_CONTROL: 0
65  *                       - USB_ENDPOINT_XFER_ISOC:    1
66  *                       - USB_ENDPOINT_XFER_BULK:    2
67  *                       - USB_ENDPOINT_XFER_INTR:    3
68  * @max_packet:         Max packet size in bytes
69  * @data_pid_start:     PID for initial transaction.
70  *                       0: DATA0
71  *                       1: DATA2
72  *                       2: DATA1
73  *                       3: MDATA (non-Control EP),
74  *                          SETUP (Control EP)
75  * @multi_count:        Number of additional periodic transactions per
76  *                      (micro)frame
77  * @xfer_buf:           Pointer to current transfer buffer position
78  * @xfer_dma:           DMA address of xfer_buf
79  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
80  *                      DWORD aligned
81  * @xfer_len:           Total number of bytes to transfer
82  * @xfer_count:         Number of bytes transferred so far
83  * @start_pkt_count:    Packet count at start of transfer
84  * @xfer_started:       True if the transfer has been started
85  * @do_ping:            True if a PING request should be issued on this channel
86  * @error_state:        True if the error count for this transaction is non-zero
87  * @halt_on_queue:      True if this channel should be halted the next time a
88  *                      request is queued for the channel. This is necessary in
89  *                      slave mode if no request queue space is available when
90  *                      an attempt is made to halt the channel.
91  * @halt_pending:       True if the host channel has been halted, but the core
92  *                      is not finished flushing queued requests
93  * @do_split:           Enable split for the channel
94  * @complete_split:     Enable complete split
95  * @hub_addr:           Address of high speed hub for the split
96  * @hub_port:           Port of the low/full speed device for the split
97  * @xact_pos:           Split transaction position. One of the following values:
98  *                       - DWC2_HCSPLT_XACTPOS_MID
99  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
100  *                       - DWC2_HCSPLT_XACTPOS_END
101  *                       - DWC2_HCSPLT_XACTPOS_ALL
102  * @requests:           Number of requests issued for this channel since it was
103  *                      assigned to the current transfer (not counting PINGs)
104  * @schinfo:            Scheduling micro-frame bitmap
105  * @ntd:                Number of transfer descriptors for the transfer
106  * @halt_status:        Reason for halting the host channel
107  * @hcint:               Contents of the HCINT register when the interrupt came
108  * @qh:                 QH for the transfer being processed by this channel
109  * @hc_list_entry:      For linking to list of host channels
110  * @desc_list_addr:     Current QH's descriptor list DMA address
111  * @desc_list_sz:       Current QH's descriptor list size
112  * @split_order_list_entry: List entry for keeping track of the order of splits
113  *
114  * This structure represents the state of a single host channel when acting in
115  * host mode. It contains the data items needed to transfer packets to an
116  * endpoint via a host channel.
117  */
118 struct dwc2_host_chan {
119 	u8 hc_num;
120 
121 	unsigned dev_addr:7;
122 	unsigned ep_num:4;
123 	unsigned ep_is_in:1;
124 	unsigned speed:4;
125 	unsigned ep_type:2;
126 	unsigned max_packet:11;
127 	unsigned data_pid_start:2;
128 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
129 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
130 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
131 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
132 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
133 
134 	unsigned multi_count:2;
135 
136 	u8 *xfer_buf;
137 	dma_addr_t xfer_dma;
138 	dma_addr_t align_buf;
139 	u32 xfer_len;
140 	u32 xfer_count;
141 	u16 start_pkt_count;
142 	u8 xfer_started;
143 	u8 do_ping;
144 	u8 error_state;
145 	u8 halt_on_queue;
146 	u8 halt_pending;
147 	u8 do_split;
148 	u8 complete_split;
149 	u8 hub_addr;
150 	u8 hub_port;
151 	u8 xact_pos;
152 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
153 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
156 
157 	u8 requests;
158 	u8 schinfo;
159 	u16 ntd;
160 	enum dwc2_halt_status halt_status;
161 	u32 hcint;
162 	struct dwc2_qh *qh;
163 	struct list_head hc_list_entry;
164 	dma_addr_t desc_list_addr;
165 	u32 desc_list_sz;
166 	struct list_head split_order_list_entry;
167 };
168 
169 struct dwc2_hcd_pipe_info {
170 	u8 dev_addr;
171 	u8 ep_num;
172 	u8 pipe_type;
173 	u8 pipe_dir;
174 	u16 mps;
175 };
176 
177 struct dwc2_hcd_iso_packet_desc {
178 	u32 offset;
179 	u32 length;
180 	u32 actual_length;
181 	u32 status;
182 };
183 
184 struct dwc2_qtd;
185 
186 struct dwc2_hcd_urb {
187 	void *priv;
188 	struct dwc2_qtd *qtd;
189 	void *buf;
190 	dma_addr_t dma;
191 	void *setup_packet;
192 	dma_addr_t setup_dma;
193 	u32 length;
194 	u32 actual_length;
195 	u32 status;
196 	u32 error_count;
197 	u32 packet_count;
198 	u32 flags;
199 	u16 interval;
200 	struct dwc2_hcd_pipe_info pipe_info;
201 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
202 };
203 
204 /* Phases for control transfers */
205 enum dwc2_control_phase {
206 	DWC2_CONTROL_SETUP,
207 	DWC2_CONTROL_DATA,
208 	DWC2_CONTROL_STATUS,
209 };
210 
211 /* Transaction types */
212 enum dwc2_transaction_type {
213 	DWC2_TRANSACTION_NONE,
214 	DWC2_TRANSACTION_PERIODIC,
215 	DWC2_TRANSACTION_NON_PERIODIC,
216 	DWC2_TRANSACTION_ALL,
217 };
218 
219 /* The number of elements per LS bitmap (per port on multi_tt) */
220 #define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
221 						     BITS_PER_LONG)
222 
223 /**
224  * struct dwc2_tt - dwc2 data associated with a usb_tt
225  *
226  * @refcount:           Number of Queue Heads (QHs) holding a reference.
227  * @usb_tt:             Pointer back to the official usb_tt.
228  * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
229  *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
230  *			elements (so sizeof(long) times that in bytes).
231  *
232  * This structure is stored in the hcpriv of the official usb_tt.
233  */
234 struct dwc2_tt {
235 	int refcount;
236 	struct usb_tt *usb_tt;
237 	unsigned long periodic_bitmaps[];
238 };
239 
240 /**
241  * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
242  *
243  * @start_schedule_us:  The start time on the main bus schedule.  Note that
244  *                         the main bus schedule is tightly packed and this
245  *			   time should be interpreted as tightly packed (so
246  *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
247  *			   instead of 125 us).
248  * @duration_us:           How long this transfer goes.
249  */
250 
251 struct dwc2_hs_transfer_time {
252 	u32 start_schedule_us;
253 	u16 duration_us;
254 };
255 
256 /**
257  * struct dwc2_qh - Software queue head structure
258  *
259  * @hsotg:              The HCD state structure for the DWC OTG controller
260  * @ep_type:            Endpoint type. One of the following values:
261  *                       - USB_ENDPOINT_XFER_CONTROL
262  *                       - USB_ENDPOINT_XFER_BULK
263  *                       - USB_ENDPOINT_XFER_INT
264  *                       - USB_ENDPOINT_XFER_ISOC
265  * @ep_is_in:           Endpoint direction
266  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
267  * @dev_speed:          Device speed. One of the following values:
268  *                       - USB_SPEED_LOW
269  *                       - USB_SPEED_FULL
270  *                       - USB_SPEED_HIGH
271  * @data_toggle:        Determines the PID of the next data packet for
272  *                      non-controltransfers. Ignored for control transfers.
273  *                      One of the following values:
274  *                       - DWC2_HC_PID_DATA0
275  *                       - DWC2_HC_PID_DATA1
276  * @ping_state:         Ping state
277  * @do_split:           Full/low speed endpoint on high-speed hub requires split
278  * @td_first:           Index of first activated isochronous transfer descriptor
279  * @td_last:            Index of last activated isochronous transfer descriptor
280  * @host_us:            Bandwidth in microseconds per transfer as seen by host
281  * @device_us:          Bandwidth in microseconds per transfer as seen by device
282  * @host_interval:      Interval between transfers as seen by the host.  If
283  *                      the host is high speed and the device is low speed this
284  *                      will be 8 times device interval.
285  * @device_interval:    Interval between transfers as seen by the device.
286  *                      interval.
287  * @next_active_frame:  (Micro)frame _before_ we next need to put something on
288  *                      the bus.  We'll move the qh to active here.  If the
289  *                      host is in high speed mode this will be a uframe.  If
290  *                      the host is in low speed mode this will be a full frame.
291  * @start_active_frame: If we are partway through a split transfer, this will be
292  *			what next_active_frame was when we started.  Otherwise
293  *			it should always be the same as next_active_frame.
294  * @num_hs_transfers:   Number of transfers in hs_transfers.
295  *                      Normally this is 1 but can be more than one for splits.
296  *                      Always >= 1 unless the host is in low/full speed mode.
297  * @hs_transfers:       Transfers that are scheduled as seen by the high speed
298  *                      bus.  Not used if host is in low or full speed mode (but
299  *                      note that it IS USED if the device is low or full speed
300  *                      as long as the HOST is in high speed mode).
301  * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
302  *                           schedule that's being used by this device.  This
303  *			     will be on the periodic_bitmap in a
304  *                           "struct dwc2_tt".  Not used if this device is high
305  *                           speed.  Note that this is in "schedule slice" which
306  *                           is tightly packed.
307  * @ntd:                Actual number of transfer descriptors in a list
308  * @dw_align_buf:       Used instead of original buffer if its physical address
309  *                      is not dword-aligned
310  * @dw_align_buf_dma:   DMA address for dw_align_buf
311  * @qtd_list:           List of QTDs for this QH
312  * @channel:            Host channel currently processing transfers for this QH
313  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
314  *                      schedule
315  * @desc_list:          List of transfer descriptors
316  * @desc_list_dma:      Physical address of desc_list
317  * @desc_list_sz:       Size of descriptors list
318  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
319  *                      descriptor and indicates original XferSize value for the
320  *                      descriptor
321  * @unreserve_timer:    Timer for releasing periodic reservation.
322  * @wait_timer:         Timer used to wait before re-queuing.
323  * @dwc_tt:            Pointer to our tt info (or NULL if no tt).
324  * @ttport:             Port number within our tt.
325  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
326  * @unreserve_pending:  True if we planned to unreserve but haven't yet.
327  * @schedule_low_speed: True if we have a low/full speed component (either the
328  *			host is in low/full speed mode or do_split).
329  * @want_wait:          We should wait before re-queuing; only matters for non-
330  *                      periodic transfers and is ignored for periodic ones.
331  * @wait_timer_cancel:  Set to true to cancel the wait_timer.
332  *
333  * @tt_buffer_dirty:	True if EP's TT buffer is not clean.
334  * A Queue Head (QH) holds the static characteristics of an endpoint and
335  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
336  * be entered in either the non-periodic or periodic schedule.
337  */
338 struct dwc2_qh {
339 	struct dwc2_hsotg *hsotg;
340 	u8 ep_type;
341 	u8 ep_is_in;
342 	u16 maxp;
343 	u8 dev_speed;
344 	u8 data_toggle;
345 	u8 ping_state;
346 	u8 do_split;
347 	u8 td_first;
348 	u8 td_last;
349 	u16 host_us;
350 	u16 device_us;
351 	u16 host_interval;
352 	u16 device_interval;
353 	u16 next_active_frame;
354 	u16 start_active_frame;
355 	s16 num_hs_transfers;
356 	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
357 	u32 ls_start_schedule_slice;
358 	u16 ntd;
359 	u8 *dw_align_buf;
360 	dma_addr_t dw_align_buf_dma;
361 	struct list_head qtd_list;
362 	struct dwc2_host_chan *channel;
363 	struct list_head qh_list_entry;
364 	struct dwc2_dma_desc *desc_list;
365 	dma_addr_t desc_list_dma;
366 	u32 desc_list_sz;
367 	u32 *n_bytes;
368 	struct timer_list unreserve_timer;
369 	struct timer_list wait_timer;
370 	struct dwc2_tt *dwc_tt;
371 	int ttport;
372 	unsigned tt_buffer_dirty:1;
373 	unsigned unreserve_pending:1;
374 	unsigned schedule_low_speed:1;
375 	unsigned want_wait:1;
376 	unsigned wait_timer_cancel:1;
377 };
378 
379 /**
380  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
381  *
382  * @control_phase:      Current phase for control transfers (Setup, Data, or
383  *                      Status)
384  * @in_process:         Indicates if this QTD is currently processed by HW
385  * @data_toggle:        Determines the PID of the next data packet for the
386  *                      data phase of control transfers. Ignored for other
387  *                      transfer types. One of the following values:
388  *                       - DWC2_HC_PID_DATA0
389  *                       - DWC2_HC_PID_DATA1
390  * @complete_split:     Keeps track of the current split type for FS/LS
391  *                      endpoints on a HS Hub
392  * @isoc_split_pos:     Position of the ISOC split in full/low speed
393  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
394  *                      transfer. A frame descriptor describes the buffer
395  *                      position and length of the data to be transferred in the
396  *                      next scheduled (micro)frame of an isochronous transfer.
397  *                      It also holds status for that transaction. The frame
398  *                      index starts at 0.
399  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
400  *                      current frame
401  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
402  * @error_count:        Holds the number of bus errors that have occurred for
403  *                      a transaction within this transfer
404  * @n_desc:             Number of DMA descriptors for this QTD
405  * @isoc_frame_index_last: Last activated frame (packet) index, used in
406  *                      descriptor DMA mode only
407  * @num_naks:           Number of NAKs received on this QTD.
408  * @urb:                URB for this transfer
409  * @qh:                 Queue head for this QTD
410  * @qtd_list_entry:     For linking to the QH's list of QTDs
411  * @isoc_td_first:	Index of first activated isochronous transfer
412  *			descriptor in Descriptor DMA mode
413  * @isoc_td_last:	Index of last activated isochronous transfer
414  *			descriptor in Descriptor DMA mode
415  *
416  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
417  * interrupt, or isochronous transfer. A single QTD is created for each URB
418  * (of one of these types) submitted to the HCD. The transfer associated with
419  * a QTD may require one or multiple transactions.
420  *
421  * A QTD is linked to a Queue Head, which is entered in either the
422  * non-periodic or periodic schedule for execution. When a QTD is chosen for
423  * execution, some or all of its transactions may be executed. After
424  * execution, the state of the QTD is updated. The QTD may be retired if all
425  * its transactions are complete or if an error occurred. Otherwise, it
426  * remains in the schedule so more transactions can be executed later.
427  */
428 struct dwc2_qtd {
429 	enum dwc2_control_phase control_phase;
430 	u8 in_process;
431 	u8 data_toggle;
432 	u8 complete_split;
433 	u8 isoc_split_pos;
434 	u16 isoc_frame_index;
435 	u16 isoc_split_offset;
436 	u16 isoc_td_last;
437 	u16 isoc_td_first;
438 	u32 ssplit_out_xfer_count;
439 	u8 error_count;
440 	u8 n_desc;
441 	u16 isoc_frame_index_last;
442 	u16 num_naks;
443 	struct dwc2_hcd_urb *urb;
444 	struct dwc2_qh *qh;
445 	struct list_head qtd_list_entry;
446 };
447 
448 #ifdef DEBUG
449 struct hc_xfer_info {
450 	struct dwc2_hsotg *hsotg;
451 	struct dwc2_host_chan *chan;
452 };
453 #endif
454 
455 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
456 
457 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
458 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
459 {
460 	return (struct usb_hcd *)hsotg->priv;
461 }
462 
463 /*
464  * Inline used to disable one channel interrupt. Channel interrupts are
465  * disabled when the channel is halted or released by the interrupt handler.
466  * There is no need to handle further interrupts of that type until the
467  * channel is re-assigned. In fact, subsequent handling may cause crashes
468  * because the channel structures are cleaned up when the channel is released.
469  */
470 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
471 {
472 	u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
473 
474 	mask &= ~intr;
475 	dwc2_writel(hsotg, mask, HCINTMSK(chnum));
476 }
477 
478 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
479 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
480 		  enum dwc2_halt_status halt_status);
481 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
482 				 struct dwc2_host_chan *chan);
483 
484 /*
485  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
486  * are read as 1, they won't clear when written back.
487  */
488 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
489 {
490 	u32 hprt0 = dwc2_readl(hsotg, HPRT0);
491 
492 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
493 	return hprt0;
494 }
495 
496 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
497 {
498 	return pipe->ep_num;
499 }
500 
501 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
502 {
503 	return pipe->pipe_type;
504 }
505 
506 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
507 {
508 	return pipe->mps;
509 }
510 
511 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
512 {
513 	return pipe->dev_addr;
514 }
515 
516 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
517 {
518 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
519 }
520 
521 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
522 {
523 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
524 }
525 
526 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
527 {
528 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
529 }
530 
531 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
532 {
533 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
534 }
535 
536 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
537 {
538 	return pipe->pipe_dir == USB_DIR_IN;
539 }
540 
541 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
542 {
543 	return !dwc2_hcd_is_pipe_in(pipe);
544 }
545 
546 int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
547 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
548 
549 /* Transaction Execution Functions */
550 enum dwc2_transaction_type dwc2_hcd_select_transactions(
551 						struct dwc2_hsotg *hsotg);
552 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
553 				 enum dwc2_transaction_type tr_type);
554 
555 /* Schedule Queue Functions */
556 /* Implemented in hcd_queue.c */
557 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
558 				   struct dwc2_hcd_urb *urb,
559 					  gfp_t mem_flags);
560 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
561 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
562 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
563 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
564 			    int sched_csplit);
565 
566 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
567 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
568 		     struct dwc2_qh *qh);
569 
570 /* Unlinks and frees a QTD */
571 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
572 						struct dwc2_qtd *qtd,
573 						struct dwc2_qh *qh)
574 {
575 	list_del(&qtd->qtd_list_entry);
576 	kfree(qtd);
577 	qtd = NULL;
578 }
579 
580 /* Descriptor DMA support functions */
581 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
582 			      struct dwc2_qh *qh);
583 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
584 				 struct dwc2_host_chan *chan, int chnum,
585 					enum dwc2_halt_status halt_status);
586 
587 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
588 			  gfp_t mem_flags);
589 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
590 
591 /* Check if QH is non-periodic */
592 #define dwc2_qh_is_non_per(_qh_ptr_) \
593 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
594 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
595 
596 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
597 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
598 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
599 static inline bool dbg_urb(struct urb *urb) { return true; }
600 static inline bool dbg_perio(void) { return true; }
601 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
602 static inline bool dbg_hc(struct dwc2_host_chan *hc)
603 {
604 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
605 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
606 }
607 
608 static inline bool dbg_qh(struct dwc2_qh *qh)
609 {
610 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
611 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
612 }
613 
614 static inline bool dbg_urb(struct urb *urb)
615 {
616 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
617 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
618 }
619 
620 static inline bool dbg_perio(void) { return false; }
621 #endif
622 
623 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
624 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
625 
626 /* Packet size for any kind of endpoint descriptor */
627 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
628 
629 /*
630  * Returns true if frame1 index is greater than frame2 index. The comparison
631  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
632  * frame number when the max index frame number is reached.
633  */
634 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
635 {
636 	u16 diff = fr_idx1 - fr_idx2;
637 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
638 
639 	return diff && !sign;
640 }
641 
642 /*
643  * Returns true if frame1 is less than or equal to frame2. The comparison is
644  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
645  * frame number when the max frame number is reached.
646  */
647 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
648 {
649 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
650 }
651 
652 /*
653  * Returns true if frame1 is greater than frame2. The comparison is done
654  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
655  * number when the max frame number is reached.
656  */
657 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
658 {
659 	return (frame1 != frame2) &&
660 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
661 }
662 
663 /*
664  * Increments frame by the amount specified by inc. The addition is done
665  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
666  */
667 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
668 {
669 	return (frame + inc) & HFNUM_MAX_FRNUM;
670 }
671 
672 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
673 {
674 	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
675 }
676 
677 static inline u16 dwc2_full_frame_num(u16 frame)
678 {
679 	return (frame & HFNUM_MAX_FRNUM) >> 3;
680 }
681 
682 static inline u16 dwc2_micro_frame_num(u16 frame)
683 {
684 	return frame & 0x7;
685 }
686 
687 /*
688  * Returns the Core Interrupt Status register contents, ANDed with the Core
689  * Interrupt Mask register contents
690  */
691 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
692 {
693 	return dwc2_readl(hsotg, GINTSTS) &
694 	       dwc2_readl(hsotg, GINTMSK);
695 }
696 
697 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
698 {
699 	return dwc2_urb->status;
700 }
701 
702 static inline u32 dwc2_hcd_urb_get_actual_length(
703 		struct dwc2_hcd_urb *dwc2_urb)
704 {
705 	return dwc2_urb->actual_length;
706 }
707 
708 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
709 {
710 	return dwc2_urb->error_count;
711 }
712 
713 static inline void dwc2_hcd_urb_set_iso_desc_params(
714 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
715 		u32 length)
716 {
717 	dwc2_urb->iso_descs[desc_num].offset = offset;
718 	dwc2_urb->iso_descs[desc_num].length = length;
719 }
720 
721 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
722 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
723 {
724 	return dwc2_urb->iso_descs[desc_num].status;
725 }
726 
727 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
728 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
729 {
730 	return dwc2_urb->iso_descs[desc_num].actual_length;
731 }
732 
733 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
734 						  struct usb_host_endpoint *ep)
735 {
736 	struct dwc2_qh *qh = ep->hcpriv;
737 
738 	if (qh && !list_empty(&qh->qh_list_entry))
739 		return 1;
740 
741 	return 0;
742 }
743 
744 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
745 					    struct usb_host_endpoint *ep)
746 {
747 	struct dwc2_qh *qh = ep->hcpriv;
748 
749 	if (!qh) {
750 		WARN_ON(1);
751 		return 0;
752 	}
753 
754 	return qh->host_us;
755 }
756 
757 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
758 			       struct dwc2_host_chan *chan, int chnum,
759 				      struct dwc2_qtd *qtd);
760 
761 /* HCD Core API */
762 
763 /**
764  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
765  *
766  * @hsotg: The DWC2 HCD
767  *
768  * Returns IRQ_HANDLED if interrupt is handled
769  * Return IRQ_NONE if interrupt is not handled
770  */
771 irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
772 
773 /**
774  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
775  *
776  * @hsotg: The DWC2 HCD
777  */
778 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
779 
780 /**
781  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
782  * and 0 otherwise
783  *
784  * @hsotg: The DWC2 HCD
785  */
786 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
787 
788 /**
789  * dwc2_hcd_dump_state() - Dumps hsotg state
790  *
791  * @hsotg: The DWC2 HCD
792  *
793  * NOTE: This function will be removed once the peripheral controller code
794  * is integrated and the driver is stable
795  */
796 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
797 
798 /* URB interface */
799 
800 /* Transfer flags */
801 #define URB_GIVEBACK_ASAP	0x1
802 #define URB_SEND_ZERO_PACKET	0x2
803 
804 /* Host driver callbacks */
805 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
806 				      void *context, gfp_t mem_flags,
807 				      int *ttport);
808 
809 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
810 			   struct dwc2_tt *dwc_tt);
811 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
812 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
813 			int status);
814 
815 #endif /* __DWC2_HCD_H__ */
816