xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision ec703251)
1 /*
2  * hcd.c - DesignWare HS OTG Controller host-mode routines
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * This file contains the core HCD code, and implements the Linux hc_driver
39  * API
40  */
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/delay.h>
47 #include <linux/io.h>
48 #include <linux/slab.h>
49 #include <linux/usb.h>
50 
51 #include <linux/usb/hcd.h>
52 #include <linux/usb/ch11.h>
53 
54 #include "core.h"
55 #include "hcd.h"
56 
57 /*
58  * =========================================================================
59  *  Host Core Layer Functions
60  * =========================================================================
61  */
62 
63 /**
64  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
65  * used in both device and host modes
66  *
67  * @hsotg: Programming view of the DWC_otg controller
68  */
69 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
70 {
71 	u32 intmsk;
72 
73 	/* Clear any pending OTG Interrupts */
74 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
75 
76 	/* Clear any pending interrupts */
77 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
78 
79 	/* Enable the interrupts in the GINTMSK */
80 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
81 
82 	if (hsotg->params.host_dma <= 0)
83 		intmsk |= GINTSTS_RXFLVL;
84 	if (hsotg->params.external_id_pin_ctl <= 0)
85 		intmsk |= GINTSTS_CONIDSTSCHNG;
86 
87 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
88 		  GINTSTS_SESSREQINT;
89 
90 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
91 }
92 
93 /*
94  * Initializes the FSLSPClkSel field of the HCFG register depending on the
95  * PHY type
96  */
97 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
98 {
99 	u32 hcfg, val;
100 
101 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
102 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
103 	     hsotg->params.ulpi_fs_ls > 0) ||
104 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
105 		/* Full speed PHY */
106 		val = HCFG_FSLSPCLKSEL_48_MHZ;
107 	} else {
108 		/* High speed PHY running at full speed or high speed */
109 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
110 	}
111 
112 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
113 	hcfg = dwc2_readl(hsotg->regs + HCFG);
114 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
115 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
116 	dwc2_writel(hcfg, hsotg->regs + HCFG);
117 }
118 
119 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
120 {
121 	u32 usbcfg, i2cctl;
122 	int retval = 0;
123 
124 	/*
125 	 * core_init() is now called on every switch so only call the
126 	 * following for the first time through
127 	 */
128 	if (select_phy) {
129 		dev_dbg(hsotg->dev, "FS PHY selected\n");
130 
131 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
132 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
133 			usbcfg |= GUSBCFG_PHYSEL;
134 			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
135 
136 			/* Reset after a PHY select */
137 			retval = dwc2_core_reset_and_force_dr_mode(hsotg);
138 
139 			if (retval) {
140 				dev_err(hsotg->dev,
141 					"%s: Reset failed, aborting", __func__);
142 				return retval;
143 			}
144 		}
145 	}
146 
147 	/*
148 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
149 	 * do this on HNP Dev/Host mode switches (done in dev_init and
150 	 * host_init).
151 	 */
152 	if (dwc2_is_host_mode(hsotg))
153 		dwc2_init_fs_ls_pclk_sel(hsotg);
154 
155 	if (hsotg->params.i2c_enable > 0) {
156 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
157 
158 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
159 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
160 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
161 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
162 
163 		/* Program GI2CCTL.I2CEn */
164 		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
165 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
166 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
167 		i2cctl &= ~GI2CCTL_I2CEN;
168 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
169 		i2cctl |= GI2CCTL_I2CEN;
170 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
171 	}
172 
173 	return retval;
174 }
175 
176 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
177 {
178 	u32 usbcfg, usbcfg_old;
179 	int retval = 0;
180 
181 	if (!select_phy)
182 		return 0;
183 
184 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
185 	usbcfg_old = usbcfg;
186 
187 	/*
188 	 * HS PHY parameters. These parameters are preserved during soft reset
189 	 * so only program the first time. Do a soft reset immediately after
190 	 * setting phyif.
191 	 */
192 	switch (hsotg->params.phy_type) {
193 	case DWC2_PHY_TYPE_PARAM_ULPI:
194 		/* ULPI interface */
195 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
196 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
197 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
198 		if (hsotg->params.phy_ulpi_ddr > 0)
199 			usbcfg |= GUSBCFG_DDRSEL;
200 		break;
201 	case DWC2_PHY_TYPE_PARAM_UTMI:
202 		/* UTMI+ interface */
203 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
204 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
205 		if (hsotg->params.phy_utmi_width == 16)
206 			usbcfg |= GUSBCFG_PHYIF16;
207 		break;
208 	default:
209 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
210 		break;
211 	}
212 
213 	if (usbcfg != usbcfg_old) {
214 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
215 
216 		/* Reset after setting the PHY parameters */
217 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
218 		if (retval) {
219 			dev_err(hsotg->dev,
220 				"%s: Reset failed, aborting", __func__);
221 			return retval;
222 		}
223 	}
224 
225 	return retval;
226 }
227 
228 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
229 {
230 	u32 usbcfg;
231 	int retval = 0;
232 
233 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL &&
234 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
235 		/* If FS mode with FS PHY */
236 		retval = dwc2_fs_phy_init(hsotg, select_phy);
237 		if (retval)
238 			return retval;
239 	} else {
240 		/* High speed PHY */
241 		retval = dwc2_hs_phy_init(hsotg, select_phy);
242 		if (retval)
243 			return retval;
244 	}
245 
246 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
247 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
248 	    hsotg->params.ulpi_fs_ls > 0) {
249 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
250 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
251 		usbcfg |= GUSBCFG_ULPI_FS_LS;
252 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
253 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
254 	} else {
255 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
256 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
257 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
258 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
259 	}
260 
261 	return retval;
262 }
263 
264 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
265 {
266 	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
267 
268 	switch (hsotg->hw_params.arch) {
269 	case GHWCFG2_EXT_DMA_ARCH:
270 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
271 		return -EINVAL;
272 
273 	case GHWCFG2_INT_DMA_ARCH:
274 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
275 		if (hsotg->params.ahbcfg != -1) {
276 			ahbcfg &= GAHBCFG_CTRL_MASK;
277 			ahbcfg |= hsotg->params.ahbcfg &
278 				  ~GAHBCFG_CTRL_MASK;
279 		}
280 		break;
281 
282 	case GHWCFG2_SLAVE_ONLY_ARCH:
283 	default:
284 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
285 		break;
286 	}
287 
288 	dev_dbg(hsotg->dev, "host_dma:%d dma_desc_enable:%d\n",
289 		hsotg->params.host_dma,
290 		hsotg->params.dma_desc_enable);
291 
292 	if (hsotg->params.host_dma > 0) {
293 		if (hsotg->params.dma_desc_enable > 0)
294 			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
295 		else
296 			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
297 	} else {
298 		dev_dbg(hsotg->dev, "Using Slave mode\n");
299 		hsotg->params.dma_desc_enable = 0;
300 	}
301 
302 	if (hsotg->params.host_dma > 0)
303 		ahbcfg |= GAHBCFG_DMA_EN;
304 
305 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
306 
307 	return 0;
308 }
309 
310 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
311 {
312 	u32 usbcfg;
313 
314 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
315 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
316 
317 	switch (hsotg->hw_params.op_mode) {
318 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
319 		if (hsotg->params.otg_cap ==
320 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
321 			usbcfg |= GUSBCFG_HNPCAP;
322 		if (hsotg->params.otg_cap !=
323 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
324 			usbcfg |= GUSBCFG_SRPCAP;
325 		break;
326 
327 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
328 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
329 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
330 		if (hsotg->params.otg_cap !=
331 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
332 			usbcfg |= GUSBCFG_SRPCAP;
333 		break;
334 
335 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
336 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
337 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
338 	default:
339 		break;
340 	}
341 
342 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
343 }
344 
345 /**
346  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
347  *
348  * @hsotg: Programming view of DWC_otg controller
349  */
350 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
351 {
352 	u32 intmsk;
353 
354 	dev_dbg(hsotg->dev, "%s()\n", __func__);
355 
356 	/* Disable all interrupts */
357 	dwc2_writel(0, hsotg->regs + GINTMSK);
358 	dwc2_writel(0, hsotg->regs + HAINTMSK);
359 
360 	/* Enable the common interrupts */
361 	dwc2_enable_common_interrupts(hsotg);
362 
363 	/* Enable host mode interrupts without disturbing common interrupts */
364 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
365 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
366 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
367 }
368 
369 /**
370  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
371  *
372  * @hsotg: Programming view of DWC_otg controller
373  */
374 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
375 {
376 	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
377 
378 	/* Disable host mode interrupts without disturbing common interrupts */
379 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
380 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
381 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
382 }
383 
384 /*
385  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
386  * For system that have a total fifo depth that is smaller than the default
387  * RX + TX fifo size.
388  *
389  * @hsotg: Programming view of DWC_otg controller
390  */
391 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
392 {
393 	struct dwc2_core_params *params = &hsotg->params;
394 	struct dwc2_hw_params *hw = &hsotg->hw_params;
395 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
396 
397 	total_fifo_size = hw->total_fifo_size;
398 	rxfsiz = params->host_rx_fifo_size;
399 	nptxfsiz = params->host_nperio_tx_fifo_size;
400 	ptxfsiz = params->host_perio_tx_fifo_size;
401 
402 	/*
403 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
404 	 * allocation with support for high bandwidth endpoints. Synopsys
405 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
406 	 * non-periodic as 512.
407 	 */
408 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
409 		/*
410 		 * For Buffer DMA mode/Scatter Gather DMA mode
411 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
412 		 * with n = number of host channel.
413 		 * 2 * ((1024/4) + 2) = 516
414 		 */
415 		rxfsiz = 516 + hw->host_channels;
416 
417 		/*
418 		 * min non-periodic tx fifo depth
419 		 * 2 * (largest non-periodic USB packet used / 4)
420 		 * 2 * (512/4) = 256
421 		 */
422 		nptxfsiz = 256;
423 
424 		/*
425 		 * min periodic tx fifo depth
426 		 * (largest packet size*MC)/4
427 		 * (1024 * 3)/4 = 768
428 		 */
429 		ptxfsiz = 768;
430 
431 		params->host_rx_fifo_size = rxfsiz;
432 		params->host_nperio_tx_fifo_size = nptxfsiz;
433 		params->host_perio_tx_fifo_size = ptxfsiz;
434 	}
435 
436 	/*
437 	 * If the summation of RX, NPTX and PTX fifo sizes is still
438 	 * bigger than the total_fifo_size, then we have a problem.
439 	 *
440 	 * We won't be able to allocate as many endpoints. Right now,
441 	 * we're just printing an error message, but ideally this FIFO
442 	 * allocation algorithm would be improved in the future.
443 	 *
444 	 * FIXME improve this FIFO allocation algorithm.
445 	 */
446 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
447 		dev_err(hsotg->dev, "invalid fifo sizes\n");
448 }
449 
450 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
451 {
452 	struct dwc2_core_params *params = &hsotg->params;
453 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
454 
455 	if (!params->enable_dynamic_fifo)
456 		return;
457 
458 	dwc2_calculate_dynamic_fifo(hsotg);
459 
460 	/* Rx FIFO */
461 	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
462 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
463 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
464 	grxfsiz |= params->host_rx_fifo_size <<
465 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
466 	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
467 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
468 		dwc2_readl(hsotg->regs + GRXFSIZ));
469 
470 	/* Non-periodic Tx FIFO */
471 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
472 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
473 	nptxfsiz = params->host_nperio_tx_fifo_size <<
474 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
475 	nptxfsiz |= params->host_rx_fifo_size <<
476 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
477 	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
478 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
479 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
480 
481 	/* Periodic Tx FIFO */
482 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
483 		dwc2_readl(hsotg->regs + HPTXFSIZ));
484 	hptxfsiz = params->host_perio_tx_fifo_size <<
485 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
486 	hptxfsiz |= (params->host_rx_fifo_size +
487 		     params->host_nperio_tx_fifo_size) <<
488 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
489 	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
490 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
491 		dwc2_readl(hsotg->regs + HPTXFSIZ));
492 
493 	if (hsotg->params.en_multiple_tx_fifo > 0 &&
494 	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
495 		/*
496 		 * Global DFIFOCFG calculation for Host mode -
497 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
498 		 */
499 		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
500 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
501 		dfifocfg |= (params->host_rx_fifo_size +
502 			     params->host_nperio_tx_fifo_size +
503 			     params->host_perio_tx_fifo_size) <<
504 			    GDFIFOCFG_EPINFOBASE_SHIFT &
505 			    GDFIFOCFG_EPINFOBASE_MASK;
506 		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
507 	}
508 }
509 
510 /**
511  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
512  * the HFIR register according to PHY type and speed
513  *
514  * @hsotg: Programming view of DWC_otg controller
515  *
516  * NOTE: The caller can modify the value of the HFIR register only after the
517  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
518  * has been set
519  */
520 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
521 {
522 	u32 usbcfg;
523 	u32 hprt0;
524 	int clock = 60;	/* default value */
525 
526 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
527 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
528 
529 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
530 	    !(usbcfg & GUSBCFG_PHYIF16))
531 		clock = 60;
532 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
533 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
534 		clock = 48;
535 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
536 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
537 		clock = 30;
538 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
539 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
540 		clock = 60;
541 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
542 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
543 		clock = 48;
544 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
545 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
546 		clock = 48;
547 	if ((usbcfg & GUSBCFG_PHYSEL) &&
548 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
549 		clock = 48;
550 
551 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
552 		/* High speed case */
553 		return 125 * clock - 1;
554 
555 	/* FS/LS case */
556 	return 1000 * clock - 1;
557 }
558 
559 /**
560  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
561  * buffer
562  *
563  * @core_if: Programming view of DWC_otg controller
564  * @dest:    Destination buffer for the packet
565  * @bytes:   Number of bytes to copy to the destination
566  */
567 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
568 {
569 	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
570 	u32 *data_buf = (u32 *)dest;
571 	int word_count = (bytes + 3) / 4;
572 	int i;
573 
574 	/*
575 	 * Todo: Account for the case where dest is not dword aligned. This
576 	 * requires reading data from the FIFO into a u32 temp buffer, then
577 	 * moving it into the data buffer.
578 	 */
579 
580 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
581 
582 	for (i = 0; i < word_count; i++, data_buf++)
583 		*data_buf = dwc2_readl(fifo);
584 }
585 
586 /**
587  * dwc2_dump_channel_info() - Prints the state of a host channel
588  *
589  * @hsotg: Programming view of DWC_otg controller
590  * @chan:  Pointer to the channel to dump
591  *
592  * Must be called with interrupt disabled and spinlock held
593  *
594  * NOTE: This function will be removed once the peripheral controller code
595  * is integrated and the driver is stable
596  */
597 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
598 				   struct dwc2_host_chan *chan)
599 {
600 #ifdef VERBOSE_DEBUG
601 	int num_channels = hsotg->params.host_channels;
602 	struct dwc2_qh *qh;
603 	u32 hcchar;
604 	u32 hcsplt;
605 	u32 hctsiz;
606 	u32 hc_dma;
607 	int i;
608 
609 	if (!chan)
610 		return;
611 
612 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
613 	hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
614 	hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
615 	hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
616 
617 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
618 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
619 		hcchar, hcsplt);
620 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
621 		hctsiz, hc_dma);
622 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
623 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
624 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
625 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
626 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
627 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
628 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
629 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
630 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
631 		(unsigned long)chan->xfer_dma);
632 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
633 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
634 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
635 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
636 			    qh_list_entry)
637 		dev_dbg(hsotg->dev, "    %p\n", qh);
638 	dev_dbg(hsotg->dev, "  NP active sched:\n");
639 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
640 			    qh_list_entry)
641 		dev_dbg(hsotg->dev, "    %p\n", qh);
642 	dev_dbg(hsotg->dev, "  Channels:\n");
643 	for (i = 0; i < num_channels; i++) {
644 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
645 
646 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
647 	}
648 #endif /* VERBOSE_DEBUG */
649 }
650 
651 /*
652  * =========================================================================
653  *  Low Level Host Channel Access Functions
654  * =========================================================================
655  */
656 
657 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
658 				      struct dwc2_host_chan *chan)
659 {
660 	u32 hcintmsk = HCINTMSK_CHHLTD;
661 
662 	switch (chan->ep_type) {
663 	case USB_ENDPOINT_XFER_CONTROL:
664 	case USB_ENDPOINT_XFER_BULK:
665 		dev_vdbg(hsotg->dev, "control/bulk\n");
666 		hcintmsk |= HCINTMSK_XFERCOMPL;
667 		hcintmsk |= HCINTMSK_STALL;
668 		hcintmsk |= HCINTMSK_XACTERR;
669 		hcintmsk |= HCINTMSK_DATATGLERR;
670 		if (chan->ep_is_in) {
671 			hcintmsk |= HCINTMSK_BBLERR;
672 		} else {
673 			hcintmsk |= HCINTMSK_NAK;
674 			hcintmsk |= HCINTMSK_NYET;
675 			if (chan->do_ping)
676 				hcintmsk |= HCINTMSK_ACK;
677 		}
678 
679 		if (chan->do_split) {
680 			hcintmsk |= HCINTMSK_NAK;
681 			if (chan->complete_split)
682 				hcintmsk |= HCINTMSK_NYET;
683 			else
684 				hcintmsk |= HCINTMSK_ACK;
685 		}
686 
687 		if (chan->error_state)
688 			hcintmsk |= HCINTMSK_ACK;
689 		break;
690 
691 	case USB_ENDPOINT_XFER_INT:
692 		if (dbg_perio())
693 			dev_vdbg(hsotg->dev, "intr\n");
694 		hcintmsk |= HCINTMSK_XFERCOMPL;
695 		hcintmsk |= HCINTMSK_NAK;
696 		hcintmsk |= HCINTMSK_STALL;
697 		hcintmsk |= HCINTMSK_XACTERR;
698 		hcintmsk |= HCINTMSK_DATATGLERR;
699 		hcintmsk |= HCINTMSK_FRMOVRUN;
700 
701 		if (chan->ep_is_in)
702 			hcintmsk |= HCINTMSK_BBLERR;
703 		if (chan->error_state)
704 			hcintmsk |= HCINTMSK_ACK;
705 		if (chan->do_split) {
706 			if (chan->complete_split)
707 				hcintmsk |= HCINTMSK_NYET;
708 			else
709 				hcintmsk |= HCINTMSK_ACK;
710 		}
711 		break;
712 
713 	case USB_ENDPOINT_XFER_ISOC:
714 		if (dbg_perio())
715 			dev_vdbg(hsotg->dev, "isoc\n");
716 		hcintmsk |= HCINTMSK_XFERCOMPL;
717 		hcintmsk |= HCINTMSK_FRMOVRUN;
718 		hcintmsk |= HCINTMSK_ACK;
719 
720 		if (chan->ep_is_in) {
721 			hcintmsk |= HCINTMSK_XACTERR;
722 			hcintmsk |= HCINTMSK_BBLERR;
723 		}
724 		break;
725 	default:
726 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
727 		break;
728 	}
729 
730 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
731 	if (dbg_hc(chan))
732 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
733 }
734 
735 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
736 				    struct dwc2_host_chan *chan)
737 {
738 	u32 hcintmsk = HCINTMSK_CHHLTD;
739 
740 	/*
741 	 * For Descriptor DMA mode core halts the channel on AHB error.
742 	 * Interrupt is not required.
743 	 */
744 	if (hsotg->params.dma_desc_enable <= 0) {
745 		if (dbg_hc(chan))
746 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
747 		hcintmsk |= HCINTMSK_AHBERR;
748 	} else {
749 		if (dbg_hc(chan))
750 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
751 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
752 			hcintmsk |= HCINTMSK_XFERCOMPL;
753 	}
754 
755 	if (chan->error_state && !chan->do_split &&
756 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
757 		if (dbg_hc(chan))
758 			dev_vdbg(hsotg->dev, "setting ACK\n");
759 		hcintmsk |= HCINTMSK_ACK;
760 		if (chan->ep_is_in) {
761 			hcintmsk |= HCINTMSK_DATATGLERR;
762 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
763 				hcintmsk |= HCINTMSK_NAK;
764 		}
765 	}
766 
767 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
768 	if (dbg_hc(chan))
769 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
770 }
771 
772 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
773 				struct dwc2_host_chan *chan)
774 {
775 	u32 intmsk;
776 
777 	if (hsotg->params.host_dma > 0) {
778 		if (dbg_hc(chan))
779 			dev_vdbg(hsotg->dev, "DMA enabled\n");
780 		dwc2_hc_enable_dma_ints(hsotg, chan);
781 	} else {
782 		if (dbg_hc(chan))
783 			dev_vdbg(hsotg->dev, "DMA disabled\n");
784 		dwc2_hc_enable_slave_ints(hsotg, chan);
785 	}
786 
787 	/* Enable the top level host channel interrupt */
788 	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
789 	intmsk |= 1 << chan->hc_num;
790 	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
791 	if (dbg_hc(chan))
792 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
793 
794 	/* Make sure host channel interrupts are enabled */
795 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
796 	intmsk |= GINTSTS_HCHINT;
797 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
798 	if (dbg_hc(chan))
799 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
800 }
801 
802 /**
803  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
804  * a specific endpoint
805  *
806  * @hsotg: Programming view of DWC_otg controller
807  * @chan:  Information needed to initialize the host channel
808  *
809  * The HCCHARn register is set up with the characteristics specified in chan.
810  * Host channel interrupts that may need to be serviced while this transfer is
811  * in progress are enabled.
812  */
813 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
814 {
815 	u8 hc_num = chan->hc_num;
816 	u32 hcintmsk;
817 	u32 hcchar;
818 	u32 hcsplt = 0;
819 
820 	if (dbg_hc(chan))
821 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
822 
823 	/* Clear old interrupt conditions for this host channel */
824 	hcintmsk = 0xffffffff;
825 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
826 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
827 
828 	/* Enable channel interrupts required for this transfer */
829 	dwc2_hc_enable_ints(hsotg, chan);
830 
831 	/*
832 	 * Program the HCCHARn register with the endpoint characteristics for
833 	 * the current transfer
834 	 */
835 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
836 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
837 	if (chan->ep_is_in)
838 		hcchar |= HCCHAR_EPDIR;
839 	if (chan->speed == USB_SPEED_LOW)
840 		hcchar |= HCCHAR_LSPDDEV;
841 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
842 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
843 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
844 	if (dbg_hc(chan)) {
845 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
846 			 hc_num, hcchar);
847 
848 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
849 			 __func__, hc_num);
850 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
851 			 chan->dev_addr);
852 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
853 			 chan->ep_num);
854 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
855 			 chan->ep_is_in);
856 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
857 			 chan->speed == USB_SPEED_LOW);
858 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
859 			 chan->ep_type);
860 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
861 			 chan->max_packet);
862 	}
863 
864 	/* Program the HCSPLT register for SPLITs */
865 	if (chan->do_split) {
866 		if (dbg_hc(chan))
867 			dev_vdbg(hsotg->dev,
868 				 "Programming HC %d with split --> %s\n",
869 				 hc_num,
870 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
871 		if (chan->complete_split)
872 			hcsplt |= HCSPLT_COMPSPLT;
873 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
874 			  HCSPLT_XACTPOS_MASK;
875 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
876 			  HCSPLT_HUBADDR_MASK;
877 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
878 			  HCSPLT_PRTADDR_MASK;
879 		if (dbg_hc(chan)) {
880 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
881 				 chan->complete_split);
882 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
883 				 chan->xact_pos);
884 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
885 				 chan->hub_addr);
886 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
887 				 chan->hub_port);
888 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
889 				 chan->ep_is_in);
890 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
891 				 chan->max_packet);
892 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
893 				 chan->xfer_len);
894 		}
895 	}
896 
897 	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
898 }
899 
900 /**
901  * dwc2_hc_halt() - Attempts to halt a host channel
902  *
903  * @hsotg:       Controller register interface
904  * @chan:        Host channel to halt
905  * @halt_status: Reason for halting the channel
906  *
907  * This function should only be called in Slave mode or to abort a transfer in
908  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
909  * controller halts the channel when the transfer is complete or a condition
910  * occurs that requires application intervention.
911  *
912  * In slave mode, checks for a free request queue entry, then sets the Channel
913  * Enable and Channel Disable bits of the Host Channel Characteristics
914  * register of the specified channel to intiate the halt. If there is no free
915  * request queue entry, sets only the Channel Disable bit of the HCCHARn
916  * register to flush requests for this channel. In the latter case, sets a
917  * flag to indicate that the host channel needs to be halted when a request
918  * queue slot is open.
919  *
920  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
921  * HCCHARn register. The controller ensures there is space in the request
922  * queue before submitting the halt request.
923  *
924  * Some time may elapse before the core flushes any posted requests for this
925  * host channel and halts. The Channel Halted interrupt handler completes the
926  * deactivation of the host channel.
927  */
928 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
929 		  enum dwc2_halt_status halt_status)
930 {
931 	u32 nptxsts, hptxsts, hcchar;
932 
933 	if (dbg_hc(chan))
934 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
935 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
936 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
937 
938 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
939 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
940 		/*
941 		 * Disable all channel interrupts except Ch Halted. The QTD
942 		 * and QH state associated with this transfer has been cleared
943 		 * (in the case of URB_DEQUEUE), so the channel needs to be
944 		 * shut down carefully to prevent crashes.
945 		 */
946 		u32 hcintmsk = HCINTMSK_CHHLTD;
947 
948 		dev_vdbg(hsotg->dev, "dequeue/error\n");
949 		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
950 
951 		/*
952 		 * Make sure no other interrupts besides halt are currently
953 		 * pending. Handling another interrupt could cause a crash due
954 		 * to the QTD and QH state.
955 		 */
956 		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
957 
958 		/*
959 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
960 		 * even if the channel was already halted for some other
961 		 * reason
962 		 */
963 		chan->halt_status = halt_status;
964 
965 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
966 		if (!(hcchar & HCCHAR_CHENA)) {
967 			/*
968 			 * The channel is either already halted or it hasn't
969 			 * started yet. In DMA mode, the transfer may halt if
970 			 * it finishes normally or a condition occurs that
971 			 * requires driver intervention. Don't want to halt
972 			 * the channel again. In either Slave or DMA mode,
973 			 * it's possible that the transfer has been assigned
974 			 * to a channel, but not started yet when an URB is
975 			 * dequeued. Don't want to halt a channel that hasn't
976 			 * started yet.
977 			 */
978 			return;
979 		}
980 	}
981 	if (chan->halt_pending) {
982 		/*
983 		 * A halt has already been issued for this channel. This might
984 		 * happen when a transfer is aborted by a higher level in
985 		 * the stack.
986 		 */
987 		dev_vdbg(hsotg->dev,
988 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
989 			 __func__, chan->hc_num);
990 		return;
991 	}
992 
993 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
994 
995 	/* No need to set the bit in DDMA for disabling the channel */
996 	/* TODO check it everywhere channel is disabled */
997 	if (hsotg->params.dma_desc_enable <= 0) {
998 		if (dbg_hc(chan))
999 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1000 		hcchar |= HCCHAR_CHENA;
1001 	} else {
1002 		if (dbg_hc(chan))
1003 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1004 	}
1005 	hcchar |= HCCHAR_CHDIS;
1006 
1007 	if (hsotg->params.host_dma <= 0) {
1008 		if (dbg_hc(chan))
1009 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1010 		hcchar |= HCCHAR_CHENA;
1011 
1012 		/* Check for space in the request queue to issue the halt */
1013 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1014 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1015 			dev_vdbg(hsotg->dev, "control/bulk\n");
1016 			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1017 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1018 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1019 				hcchar &= ~HCCHAR_CHENA;
1020 			}
1021 		} else {
1022 			if (dbg_perio())
1023 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1024 			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1025 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1026 			    hsotg->queuing_high_bandwidth) {
1027 				if (dbg_perio())
1028 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1029 				hcchar &= ~HCCHAR_CHENA;
1030 			}
1031 		}
1032 	} else {
1033 		if (dbg_hc(chan))
1034 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1035 	}
1036 
1037 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1038 	chan->halt_status = halt_status;
1039 
1040 	if (hcchar & HCCHAR_CHENA) {
1041 		if (dbg_hc(chan))
1042 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1043 		chan->halt_pending = 1;
1044 		chan->halt_on_queue = 0;
1045 	} else {
1046 		if (dbg_hc(chan))
1047 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1048 		chan->halt_on_queue = 1;
1049 	}
1050 
1051 	if (dbg_hc(chan)) {
1052 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1053 			 chan->hc_num);
1054 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1055 			 hcchar);
1056 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1057 			 chan->halt_pending);
1058 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1059 			 chan->halt_on_queue);
1060 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1061 			 chan->halt_status);
1062 	}
1063 }
1064 
1065 /**
1066  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1067  *
1068  * @hsotg: Programming view of DWC_otg controller
1069  * @chan:  Identifies the host channel to clean up
1070  *
1071  * This function is normally called after a transfer is done and the host
1072  * channel is being released
1073  */
1074 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1075 {
1076 	u32 hcintmsk;
1077 
1078 	chan->xfer_started = 0;
1079 
1080 	list_del_init(&chan->split_order_list_entry);
1081 
1082 	/*
1083 	 * Clear channel interrupt enables and any unhandled channel interrupt
1084 	 * conditions
1085 	 */
1086 	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1087 	hcintmsk = 0xffffffff;
1088 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1089 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1090 }
1091 
1092 /**
1093  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1094  * which frame a periodic transfer should occur
1095  *
1096  * @hsotg:  Programming view of DWC_otg controller
1097  * @chan:   Identifies the host channel to set up and its properties
1098  * @hcchar: Current value of the HCCHAR register for the specified host channel
1099  *
1100  * This function has no effect on non-periodic transfers
1101  */
1102 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1103 				       struct dwc2_host_chan *chan, u32 *hcchar)
1104 {
1105 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1106 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1107 		int host_speed;
1108 		int xfer_ns;
1109 		int xfer_us;
1110 		int bytes_in_fifo;
1111 		u16 fifo_space;
1112 		u16 frame_number;
1113 		u16 wire_frame;
1114 
1115 		/*
1116 		 * Try to figure out if we're an even or odd frame. If we set
1117 		 * even and the current frame number is even the the transfer
1118 		 * will happen immediately.  Similar if both are odd. If one is
1119 		 * even and the other is odd then the transfer will happen when
1120 		 * the frame number ticks.
1121 		 *
1122 		 * There's a bit of a balancing act to get this right.
1123 		 * Sometimes we may want to send data in the current frame (AK
1124 		 * right away).  We might want to do this if the frame number
1125 		 * _just_ ticked, but we might also want to do this in order
1126 		 * to continue a split transaction that happened late in a
1127 		 * microframe (so we didn't know to queue the next transfer
1128 		 * until the frame number had ticked).  The problem is that we
1129 		 * need a lot of knowledge to know if there's actually still
1130 		 * time to send things or if it would be better to wait until
1131 		 * the next frame.
1132 		 *
1133 		 * We can look at how much time is left in the current frame
1134 		 * and make a guess about whether we'll have time to transfer.
1135 		 * We'll do that.
1136 		 */
1137 
1138 		/* Get speed host is running at */
1139 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1140 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1141 
1142 		/* See how many bytes are in the periodic FIFO right now */
1143 		fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1144 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1145 		bytes_in_fifo = sizeof(u32) *
1146 				(hsotg->params.host_perio_tx_fifo_size -
1147 				 fifo_space);
1148 
1149 		/*
1150 		 * Roughly estimate bus time for everything in the periodic
1151 		 * queue + our new transfer.  This is "rough" because we're
1152 		 * using a function that makes takes into account IN/OUT
1153 		 * and INT/ISO and we're just slamming in one value for all
1154 		 * transfers.  This should be an over-estimate and that should
1155 		 * be OK, but we can probably tighten it.
1156 		 */
1157 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1158 					    chan->xfer_len + bytes_in_fifo);
1159 		xfer_us = NS_TO_US(xfer_ns);
1160 
1161 		/* See what frame number we'll be at by the time we finish */
1162 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1163 
1164 		/* This is when we were scheduled to be on the wire */
1165 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1166 
1167 		/*
1168 		 * If we'd finish _after_ the frame we're scheduled in then
1169 		 * it's hopeless.  Just schedule right away and hope for the
1170 		 * best.  Note that it _might_ be wise to call back into the
1171 		 * scheduler to pick a better frame, but this is better than
1172 		 * nothing.
1173 		 */
1174 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1175 			dwc2_sch_vdbg(hsotg,
1176 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1177 				      chan->qh, wire_frame, frame_number,
1178 				      dwc2_frame_num_dec(frame_number,
1179 							 wire_frame));
1180 			wire_frame = frame_number;
1181 
1182 			/*
1183 			 * We picked a different frame number; communicate this
1184 			 * back to the scheduler so it doesn't try to schedule
1185 			 * another in the same frame.
1186 			 *
1187 			 * Remember that next_active_frame is 1 before the wire
1188 			 * frame.
1189 			 */
1190 			chan->qh->next_active_frame =
1191 				dwc2_frame_num_dec(frame_number, 1);
1192 		}
1193 
1194 		if (wire_frame & 1)
1195 			*hcchar |= HCCHAR_ODDFRM;
1196 		else
1197 			*hcchar &= ~HCCHAR_ODDFRM;
1198 	}
1199 }
1200 
1201 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1202 {
1203 	/* Set up the initial PID for the transfer */
1204 	if (chan->speed == USB_SPEED_HIGH) {
1205 		if (chan->ep_is_in) {
1206 			if (chan->multi_count == 1)
1207 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1208 			else if (chan->multi_count == 2)
1209 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1210 			else
1211 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1212 		} else {
1213 			if (chan->multi_count == 1)
1214 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1215 			else
1216 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1217 		}
1218 	} else {
1219 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1220 	}
1221 }
1222 
1223 /**
1224  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1225  * the Host Channel
1226  *
1227  * @hsotg: Programming view of DWC_otg controller
1228  * @chan:  Information needed to initialize the host channel
1229  *
1230  * This function should only be called in Slave mode. For a channel associated
1231  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1232  * associated with a periodic EP, the periodic Tx FIFO is written.
1233  *
1234  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1235  * the number of bytes written to the Tx FIFO.
1236  */
1237 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1238 				 struct dwc2_host_chan *chan)
1239 {
1240 	u32 i;
1241 	u32 remaining_count;
1242 	u32 byte_count;
1243 	u32 dword_count;
1244 	u32 __iomem *data_fifo;
1245 	u32 *data_buf = (u32 *)chan->xfer_buf;
1246 
1247 	if (dbg_hc(chan))
1248 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1249 
1250 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1251 
1252 	remaining_count = chan->xfer_len - chan->xfer_count;
1253 	if (remaining_count > chan->max_packet)
1254 		byte_count = chan->max_packet;
1255 	else
1256 		byte_count = remaining_count;
1257 
1258 	dword_count = (byte_count + 3) / 4;
1259 
1260 	if (((unsigned long)data_buf & 0x3) == 0) {
1261 		/* xfer_buf is DWORD aligned */
1262 		for (i = 0; i < dword_count; i++, data_buf++)
1263 			dwc2_writel(*data_buf, data_fifo);
1264 	} else {
1265 		/* xfer_buf is not DWORD aligned */
1266 		for (i = 0; i < dword_count; i++, data_buf++) {
1267 			u32 data = data_buf[0] | data_buf[1] << 8 |
1268 				   data_buf[2] << 16 | data_buf[3] << 24;
1269 			dwc2_writel(data, data_fifo);
1270 		}
1271 	}
1272 
1273 	chan->xfer_count += byte_count;
1274 	chan->xfer_buf += byte_count;
1275 }
1276 
1277 /**
1278  * dwc2_hc_do_ping() - Starts a PING transfer
1279  *
1280  * @hsotg: Programming view of DWC_otg controller
1281  * @chan:  Information needed to initialize the host channel
1282  *
1283  * This function should only be called in Slave mode. The Do Ping bit is set in
1284  * the HCTSIZ register, then the channel is enabled.
1285  */
1286 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1287 			    struct dwc2_host_chan *chan)
1288 {
1289 	u32 hcchar;
1290 	u32 hctsiz;
1291 
1292 	if (dbg_hc(chan))
1293 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1294 			 chan->hc_num);
1295 
1296 	hctsiz = TSIZ_DOPNG;
1297 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1298 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1299 
1300 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1301 	hcchar |= HCCHAR_CHENA;
1302 	hcchar &= ~HCCHAR_CHDIS;
1303 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1304 }
1305 
1306 /**
1307  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1308  * channel and starts the transfer
1309  *
1310  * @hsotg: Programming view of DWC_otg controller
1311  * @chan:  Information needed to initialize the host channel. The xfer_len value
1312  *         may be reduced to accommodate the max widths of the XferSize and
1313  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1314  *         changed to reflect the final xfer_len value.
1315  *
1316  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1317  * the caller must ensure that there is sufficient space in the request queue
1318  * and Tx Data FIFO.
1319  *
1320  * For an OUT transfer in Slave mode, it loads a data packet into the
1321  * appropriate FIFO. If necessary, additional data packets are loaded in the
1322  * Host ISR.
1323  *
1324  * For an IN transfer in Slave mode, a data packet is requested. The data
1325  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1326  * additional data packets are requested in the Host ISR.
1327  *
1328  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1329  * register along with a packet count of 1 and the channel is enabled. This
1330  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1331  * simply set to 0 since no data transfer occurs in this case.
1332  *
1333  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1334  * all the information required to perform the subsequent data transfer. In
1335  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1336  * controller performs the entire PING protocol, then starts the data
1337  * transfer.
1338  */
1339 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1340 				   struct dwc2_host_chan *chan)
1341 {
1342 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1343 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1344 	u32 hcchar;
1345 	u32 hctsiz = 0;
1346 	u16 num_packets;
1347 	u32 ec_mc;
1348 
1349 	if (dbg_hc(chan))
1350 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1351 
1352 	if (chan->do_ping) {
1353 		if (hsotg->params.host_dma <= 0) {
1354 			if (dbg_hc(chan))
1355 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1356 			dwc2_hc_do_ping(hsotg, chan);
1357 			chan->xfer_started = 1;
1358 			return;
1359 		}
1360 
1361 		if (dbg_hc(chan))
1362 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1363 
1364 		hctsiz |= TSIZ_DOPNG;
1365 	}
1366 
1367 	if (chan->do_split) {
1368 		if (dbg_hc(chan))
1369 			dev_vdbg(hsotg->dev, "split\n");
1370 		num_packets = 1;
1371 
1372 		if (chan->complete_split && !chan->ep_is_in)
1373 			/*
1374 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1375 			 * core doesn't expect any data written to the FIFO
1376 			 */
1377 			chan->xfer_len = 0;
1378 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1379 			chan->xfer_len = chan->max_packet;
1380 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1381 			chan->xfer_len = 188;
1382 
1383 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1384 			  TSIZ_XFERSIZE_MASK;
1385 
1386 		/* For split set ec_mc for immediate retries */
1387 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1388 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1389 			ec_mc = 3;
1390 		else
1391 			ec_mc = 1;
1392 	} else {
1393 		if (dbg_hc(chan))
1394 			dev_vdbg(hsotg->dev, "no split\n");
1395 		/*
1396 		 * Ensure that the transfer length and packet count will fit
1397 		 * in the widths allocated for them in the HCTSIZn register
1398 		 */
1399 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1400 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1401 			/*
1402 			 * Make sure the transfer size is no larger than one
1403 			 * (micro)frame's worth of data. (A check was done
1404 			 * when the periodic transfer was accepted to ensure
1405 			 * that a (micro)frame's worth of data can be
1406 			 * programmed into a channel.)
1407 			 */
1408 			u32 max_periodic_len =
1409 				chan->multi_count * chan->max_packet;
1410 
1411 			if (chan->xfer_len > max_periodic_len)
1412 				chan->xfer_len = max_periodic_len;
1413 		} else if (chan->xfer_len > max_hc_xfer_size) {
1414 			/*
1415 			 * Make sure that xfer_len is a multiple of max packet
1416 			 * size
1417 			 */
1418 			chan->xfer_len =
1419 				max_hc_xfer_size - chan->max_packet + 1;
1420 		}
1421 
1422 		if (chan->xfer_len > 0) {
1423 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1424 					chan->max_packet;
1425 			if (num_packets > max_hc_pkt_count) {
1426 				num_packets = max_hc_pkt_count;
1427 				chan->xfer_len = num_packets * chan->max_packet;
1428 			}
1429 		} else {
1430 			/* Need 1 packet for transfer length of 0 */
1431 			num_packets = 1;
1432 		}
1433 
1434 		if (chan->ep_is_in)
1435 			/*
1436 			 * Always program an integral # of max packets for IN
1437 			 * transfers
1438 			 */
1439 			chan->xfer_len = num_packets * chan->max_packet;
1440 
1441 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1442 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1443 			/*
1444 			 * Make sure that the multi_count field matches the
1445 			 * actual transfer length
1446 			 */
1447 			chan->multi_count = num_packets;
1448 
1449 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1450 			dwc2_set_pid_isoc(chan);
1451 
1452 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1453 			  TSIZ_XFERSIZE_MASK;
1454 
1455 		/* The ec_mc gets the multi_count for non-split */
1456 		ec_mc = chan->multi_count;
1457 	}
1458 
1459 	chan->start_pkt_count = num_packets;
1460 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1461 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1462 		  TSIZ_SC_MC_PID_MASK;
1463 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1464 	if (dbg_hc(chan)) {
1465 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1466 			 hctsiz, chan->hc_num);
1467 
1468 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1469 			 chan->hc_num);
1470 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1471 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1472 			 TSIZ_XFERSIZE_SHIFT);
1473 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1474 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1475 			 TSIZ_PKTCNT_SHIFT);
1476 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1477 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1478 			 TSIZ_SC_MC_PID_SHIFT);
1479 	}
1480 
1481 	if (hsotg->params.host_dma > 0) {
1482 		dwc2_writel((u32)chan->xfer_dma,
1483 			    hsotg->regs + HCDMA(chan->hc_num));
1484 		if (dbg_hc(chan))
1485 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1486 				 (unsigned long)chan->xfer_dma, chan->hc_num);
1487 	}
1488 
1489 	/* Start the split */
1490 	if (chan->do_split) {
1491 		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1492 
1493 		hcsplt |= HCSPLT_SPLTENA;
1494 		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1495 	}
1496 
1497 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1498 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1499 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1500 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1501 
1502 	if (hcchar & HCCHAR_CHDIS)
1503 		dev_warn(hsotg->dev,
1504 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1505 			 __func__, chan->hc_num, hcchar);
1506 
1507 	/* Set host channel enable after all other setup is complete */
1508 	hcchar |= HCCHAR_CHENA;
1509 	hcchar &= ~HCCHAR_CHDIS;
1510 
1511 	if (dbg_hc(chan))
1512 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1513 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1514 			 HCCHAR_MULTICNT_SHIFT);
1515 
1516 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1517 	if (dbg_hc(chan))
1518 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1519 			 chan->hc_num);
1520 
1521 	chan->xfer_started = 1;
1522 	chan->requests++;
1523 
1524 	if (hsotg->params.host_dma <= 0 &&
1525 	    !chan->ep_is_in && chan->xfer_len > 0)
1526 		/* Load OUT packet into the appropriate Tx FIFO */
1527 		dwc2_hc_write_packet(hsotg, chan);
1528 }
1529 
1530 /**
1531  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1532  * host channel and starts the transfer in Descriptor DMA mode
1533  *
1534  * @hsotg: Programming view of DWC_otg controller
1535  * @chan:  Information needed to initialize the host channel
1536  *
1537  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1538  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1539  * with micro-frame bitmap.
1540  *
1541  * Initializes HCDMA register with descriptor list address and CTD value then
1542  * starts the transfer via enabling the channel.
1543  */
1544 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1545 				 struct dwc2_host_chan *chan)
1546 {
1547 	u32 hcchar;
1548 	u32 hctsiz = 0;
1549 
1550 	if (chan->do_ping)
1551 		hctsiz |= TSIZ_DOPNG;
1552 
1553 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1554 		dwc2_set_pid_isoc(chan);
1555 
1556 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1557 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1558 		  TSIZ_SC_MC_PID_MASK;
1559 
1560 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1561 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1562 
1563 	/* Non-zero only for high-speed interrupt endpoints */
1564 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1565 
1566 	if (dbg_hc(chan)) {
1567 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1568 			 chan->hc_num);
1569 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1570 			 chan->data_pid_start);
1571 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1572 	}
1573 
1574 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1575 
1576 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1577 				   chan->desc_list_sz, DMA_TO_DEVICE);
1578 
1579 	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1580 
1581 	if (dbg_hc(chan))
1582 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1583 			 &chan->desc_list_addr, chan->hc_num);
1584 
1585 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1586 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1587 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1588 		  HCCHAR_MULTICNT_MASK;
1589 
1590 	if (hcchar & HCCHAR_CHDIS)
1591 		dev_warn(hsotg->dev,
1592 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1593 			 __func__, chan->hc_num, hcchar);
1594 
1595 	/* Set host channel enable after all other setup is complete */
1596 	hcchar |= HCCHAR_CHENA;
1597 	hcchar &= ~HCCHAR_CHDIS;
1598 
1599 	if (dbg_hc(chan))
1600 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1601 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1602 			 HCCHAR_MULTICNT_SHIFT);
1603 
1604 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1605 	if (dbg_hc(chan))
1606 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1607 			 chan->hc_num);
1608 
1609 	chan->xfer_started = 1;
1610 	chan->requests++;
1611 }
1612 
1613 /**
1614  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1615  * a previous call to dwc2_hc_start_transfer()
1616  *
1617  * @hsotg: Programming view of DWC_otg controller
1618  * @chan:  Information needed to initialize the host channel
1619  *
1620  * The caller must ensure there is sufficient space in the request queue and Tx
1621  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1622  * the controller acts autonomously to complete transfers programmed to a host
1623  * channel.
1624  *
1625  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1626  * if there is any data remaining to be queued. For an IN transfer, another
1627  * data packet is always requested. For the SETUP phase of a control transfer,
1628  * this function does nothing.
1629  *
1630  * Return: 1 if a new request is queued, 0 if no more requests are required
1631  * for this transfer
1632  */
1633 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1634 				     struct dwc2_host_chan *chan)
1635 {
1636 	if (dbg_hc(chan))
1637 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1638 			 chan->hc_num);
1639 
1640 	if (chan->do_split)
1641 		/* SPLITs always queue just once per channel */
1642 		return 0;
1643 
1644 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1645 		/* SETUPs are queued only once since they can't be NAK'd */
1646 		return 0;
1647 
1648 	if (chan->ep_is_in) {
1649 		/*
1650 		 * Always queue another request for other IN transfers. If
1651 		 * back-to-back INs are issued and NAKs are received for both,
1652 		 * the driver may still be processing the first NAK when the
1653 		 * second NAK is received. When the interrupt handler clears
1654 		 * the NAK interrupt for the first NAK, the second NAK will
1655 		 * not be seen. So we can't depend on the NAK interrupt
1656 		 * handler to requeue a NAK'd request. Instead, IN requests
1657 		 * are issued each time this function is called. When the
1658 		 * transfer completes, the extra requests for the channel will
1659 		 * be flushed.
1660 		 */
1661 		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1662 
1663 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1664 		hcchar |= HCCHAR_CHENA;
1665 		hcchar &= ~HCCHAR_CHDIS;
1666 		if (dbg_hc(chan))
1667 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1668 				 hcchar);
1669 		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1670 		chan->requests++;
1671 		return 1;
1672 	}
1673 
1674 	/* OUT transfers */
1675 
1676 	if (chan->xfer_count < chan->xfer_len) {
1677 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1678 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1679 			u32 hcchar = dwc2_readl(hsotg->regs +
1680 						HCCHAR(chan->hc_num));
1681 
1682 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1683 						   &hcchar);
1684 		}
1685 
1686 		/* Load OUT packet into the appropriate Tx FIFO */
1687 		dwc2_hc_write_packet(hsotg, chan);
1688 		chan->requests++;
1689 		return 1;
1690 	}
1691 
1692 	return 0;
1693 }
1694 
1695 /*
1696  * =========================================================================
1697  *  HCD
1698  * =========================================================================
1699  */
1700 
1701 /*
1702  * Processes all the URBs in a single list of QHs. Completes them with
1703  * -ETIMEDOUT and frees the QTD.
1704  *
1705  * Must be called with interrupt disabled and spinlock held
1706  */
1707 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1708 				      struct list_head *qh_list)
1709 {
1710 	struct dwc2_qh *qh, *qh_tmp;
1711 	struct dwc2_qtd *qtd, *qtd_tmp;
1712 
1713 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1714 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1715 					 qtd_list_entry) {
1716 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1717 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1718 		}
1719 	}
1720 }
1721 
1722 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1723 			      struct list_head *qh_list)
1724 {
1725 	struct dwc2_qtd *qtd, *qtd_tmp;
1726 	struct dwc2_qh *qh, *qh_tmp;
1727 	unsigned long flags;
1728 
1729 	if (!qh_list->next)
1730 		/* The list hasn't been initialized yet */
1731 		return;
1732 
1733 	spin_lock_irqsave(&hsotg->lock, flags);
1734 
1735 	/* Ensure there are no QTDs or URBs left */
1736 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1737 
1738 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1739 		dwc2_hcd_qh_unlink(hsotg, qh);
1740 
1741 		/* Free each QTD in the QH's QTD list */
1742 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1743 					 qtd_list_entry)
1744 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1745 
1746 		if (qh->channel && qh->channel->qh == qh)
1747 			qh->channel->qh = NULL;
1748 
1749 		spin_unlock_irqrestore(&hsotg->lock, flags);
1750 		dwc2_hcd_qh_free(hsotg, qh);
1751 		spin_lock_irqsave(&hsotg->lock, flags);
1752 	}
1753 
1754 	spin_unlock_irqrestore(&hsotg->lock, flags);
1755 }
1756 
1757 /*
1758  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1759  * and periodic schedules. The QTD associated with each URB is removed from
1760  * the schedule and freed. This function may be called when a disconnect is
1761  * detected or when the HCD is being stopped.
1762  *
1763  * Must be called with interrupt disabled and spinlock held
1764  */
1765 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1766 {
1767 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1768 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1769 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1770 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1771 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1772 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1773 }
1774 
1775 /**
1776  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1777  *
1778  * @hsotg: Pointer to struct dwc2_hsotg
1779  */
1780 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1781 {
1782 	u32 hprt0;
1783 
1784 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1785 		/*
1786 		 * Reset the port. During a HNP mode switch the reset
1787 		 * needs to occur within 1ms and have a duration of at
1788 		 * least 50ms.
1789 		 */
1790 		hprt0 = dwc2_read_hprt0(hsotg);
1791 		hprt0 |= HPRT0_RST;
1792 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
1793 	}
1794 
1795 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1796 			   msecs_to_jiffies(50));
1797 }
1798 
1799 /* Must be called with interrupt disabled and spinlock held */
1800 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1801 {
1802 	int num_channels = hsotg->params.host_channels;
1803 	struct dwc2_host_chan *channel;
1804 	u32 hcchar;
1805 	int i;
1806 
1807 	if (hsotg->params.host_dma <= 0) {
1808 		/* Flush out any channel requests in slave mode */
1809 		for (i = 0; i < num_channels; i++) {
1810 			channel = hsotg->hc_ptr_array[i];
1811 			if (!list_empty(&channel->hc_list_entry))
1812 				continue;
1813 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1814 			if (hcchar & HCCHAR_CHENA) {
1815 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1816 				hcchar |= HCCHAR_CHDIS;
1817 				dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1818 			}
1819 		}
1820 	}
1821 
1822 	for (i = 0; i < num_channels; i++) {
1823 		channel = hsotg->hc_ptr_array[i];
1824 		if (!list_empty(&channel->hc_list_entry))
1825 			continue;
1826 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1827 		if (hcchar & HCCHAR_CHENA) {
1828 			/* Halt the channel */
1829 			hcchar |= HCCHAR_CHDIS;
1830 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1831 		}
1832 
1833 		dwc2_hc_cleanup(hsotg, channel);
1834 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1835 		/*
1836 		 * Added for Descriptor DMA to prevent channel double cleanup in
1837 		 * release_channel_ddma(), which is called from ep_disable when
1838 		 * device disconnects
1839 		 */
1840 		channel->qh = NULL;
1841 	}
1842 	/* All channels have been freed, mark them available */
1843 	if (hsotg->params.uframe_sched > 0) {
1844 		hsotg->available_host_channels =
1845 			hsotg->params.host_channels;
1846 	} else {
1847 		hsotg->non_periodic_channels = 0;
1848 		hsotg->periodic_channels = 0;
1849 	}
1850 }
1851 
1852 /**
1853  * dwc2_hcd_connect() - Handles connect of the HCD
1854  *
1855  * @hsotg: Pointer to struct dwc2_hsotg
1856  *
1857  * Must be called with interrupt disabled and spinlock held
1858  */
1859 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1860 {
1861 	if (hsotg->lx_state != DWC2_L0)
1862 		usb_hcd_resume_root_hub(hsotg->priv);
1863 
1864 	hsotg->flags.b.port_connect_status_change = 1;
1865 	hsotg->flags.b.port_connect_status = 1;
1866 }
1867 
1868 /**
1869  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1870  *
1871  * @hsotg: Pointer to struct dwc2_hsotg
1872  * @force: If true, we won't try to reconnect even if we see device connected.
1873  *
1874  * Must be called with interrupt disabled and spinlock held
1875  */
1876 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1877 {
1878 	u32 intr;
1879 	u32 hprt0;
1880 
1881 	/* Set status flags for the hub driver */
1882 	hsotg->flags.b.port_connect_status_change = 1;
1883 	hsotg->flags.b.port_connect_status = 0;
1884 
1885 	/*
1886 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1887 	 * interrupt mask and status bits and disabling subsequent host
1888 	 * channel interrupts.
1889 	 */
1890 	intr = dwc2_readl(hsotg->regs + GINTMSK);
1891 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1892 	dwc2_writel(intr, hsotg->regs + GINTMSK);
1893 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1894 	dwc2_writel(intr, hsotg->regs + GINTSTS);
1895 
1896 	/*
1897 	 * Turn off the vbus power only if the core has transitioned to device
1898 	 * mode. If still in host mode, need to keep power on to detect a
1899 	 * reconnection.
1900 	 */
1901 	if (dwc2_is_device_mode(hsotg)) {
1902 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1903 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1904 			dwc2_writel(0, hsotg->regs + HPRT0);
1905 		}
1906 
1907 		dwc2_disable_host_interrupts(hsotg);
1908 	}
1909 
1910 	/* Respond with an error status to all URBs in the schedule */
1911 	dwc2_kill_all_urbs(hsotg);
1912 
1913 	if (dwc2_is_host_mode(hsotg))
1914 		/* Clean up any host channels that were in use */
1915 		dwc2_hcd_cleanup_channels(hsotg);
1916 
1917 	dwc2_host_disconnect(hsotg);
1918 
1919 	/*
1920 	 * Add an extra check here to see if we're actually connected but
1921 	 * we don't have a detection interrupt pending.  This can happen if:
1922 	 *   1. hardware sees connect
1923 	 *   2. hardware sees disconnect
1924 	 *   3. hardware sees connect
1925 	 *   4. dwc2_port_intr() - clears connect interrupt
1926 	 *   5. dwc2_handle_common_intr() - calls here
1927 	 *
1928 	 * Without the extra check here we will end calling disconnect
1929 	 * and won't get any future interrupts to handle the connect.
1930 	 */
1931 	if (!force) {
1932 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1933 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1934 			dwc2_hcd_connect(hsotg);
1935 	}
1936 }
1937 
1938 /**
1939  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1940  *
1941  * @hsotg: Pointer to struct dwc2_hsotg
1942  */
1943 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1944 {
1945 	if (hsotg->bus_suspended) {
1946 		hsotg->flags.b.port_suspend_change = 1;
1947 		usb_hcd_resume_root_hub(hsotg->priv);
1948 	}
1949 
1950 	if (hsotg->lx_state == DWC2_L1)
1951 		hsotg->flags.b.port_l1_change = 1;
1952 }
1953 
1954 /**
1955  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1956  *
1957  * @hsotg: Pointer to struct dwc2_hsotg
1958  *
1959  * Must be called with interrupt disabled and spinlock held
1960  */
1961 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1962 {
1963 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1964 
1965 	/*
1966 	 * The root hub should be disconnected before this function is called.
1967 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1968 	 * and the QH lists (via ..._hcd_endpoint_disable).
1969 	 */
1970 
1971 	/* Turn off all host-specific interrupts */
1972 	dwc2_disable_host_interrupts(hsotg);
1973 
1974 	/* Turn off the vbus power */
1975 	dev_dbg(hsotg->dev, "PortPower off\n");
1976 	dwc2_writel(0, hsotg->regs + HPRT0);
1977 }
1978 
1979 /* Caller must hold driver lock */
1980 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1981 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1982 				struct dwc2_qtd *qtd)
1983 {
1984 	u32 intr_mask;
1985 	int retval;
1986 	int dev_speed;
1987 
1988 	if (!hsotg->flags.b.port_connect_status) {
1989 		/* No longer connected */
1990 		dev_err(hsotg->dev, "Not connected\n");
1991 		return -ENODEV;
1992 	}
1993 
1994 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1995 
1996 	/* Some configurations cannot support LS traffic on a FS root port */
1997 	if ((dev_speed == USB_SPEED_LOW) &&
1998 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1999 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2000 		u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2001 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2002 
2003 		if (prtspd == HPRT0_SPD_FULL_SPEED)
2004 			return -ENODEV;
2005 	}
2006 
2007 	if (!qtd)
2008 		return -EINVAL;
2009 
2010 	dwc2_hcd_qtd_init(qtd, urb);
2011 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2012 	if (retval) {
2013 		dev_err(hsotg->dev,
2014 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2015 			retval);
2016 		return retval;
2017 	}
2018 
2019 	intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2020 	if (!(intr_mask & GINTSTS_SOF)) {
2021 		enum dwc2_transaction_type tr_type;
2022 
2023 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2024 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2025 			/*
2026 			 * Do not schedule SG transactions until qtd has
2027 			 * URB_GIVEBACK_ASAP set
2028 			 */
2029 			return 0;
2030 
2031 		tr_type = dwc2_hcd_select_transactions(hsotg);
2032 		if (tr_type != DWC2_TRANSACTION_NONE)
2033 			dwc2_hcd_queue_transactions(hsotg, tr_type);
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 /* Must be called with interrupt disabled and spinlock held */
2040 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2041 				struct dwc2_hcd_urb *urb)
2042 {
2043 	struct dwc2_qh *qh;
2044 	struct dwc2_qtd *urb_qtd;
2045 
2046 	urb_qtd = urb->qtd;
2047 	if (!urb_qtd) {
2048 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2049 		return -EINVAL;
2050 	}
2051 
2052 	qh = urb_qtd->qh;
2053 	if (!qh) {
2054 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2055 		return -EINVAL;
2056 	}
2057 
2058 	urb->priv = NULL;
2059 
2060 	if (urb_qtd->in_process && qh->channel) {
2061 		dwc2_dump_channel_info(hsotg, qh->channel);
2062 
2063 		/* The QTD is in process (it has been assigned to a channel) */
2064 		if (hsotg->flags.b.port_connect_status)
2065 			/*
2066 			 * If still connected (i.e. in host mode), halt the
2067 			 * channel so it can be used for other transfers. If
2068 			 * no longer connected, the host registers can't be
2069 			 * written to halt the channel since the core is in
2070 			 * device mode.
2071 			 */
2072 			dwc2_hc_halt(hsotg, qh->channel,
2073 				     DWC2_HC_XFER_URB_DEQUEUE);
2074 	}
2075 
2076 	/*
2077 	 * Free the QTD and clean up the associated QH. Leave the QH in the
2078 	 * schedule if it has any remaining QTDs.
2079 	 */
2080 	if (hsotg->params.dma_desc_enable <= 0) {
2081 		u8 in_process = urb_qtd->in_process;
2082 
2083 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2084 		if (in_process) {
2085 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2086 			qh->channel = NULL;
2087 		} else if (list_empty(&qh->qtd_list)) {
2088 			dwc2_hcd_qh_unlink(hsotg, qh);
2089 		}
2090 	} else {
2091 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 /* Must NOT be called with interrupt disabled or spinlock held */
2098 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2099 				     struct usb_host_endpoint *ep, int retry)
2100 {
2101 	struct dwc2_qtd *qtd, *qtd_tmp;
2102 	struct dwc2_qh *qh;
2103 	unsigned long flags;
2104 	int rc;
2105 
2106 	spin_lock_irqsave(&hsotg->lock, flags);
2107 
2108 	qh = ep->hcpriv;
2109 	if (!qh) {
2110 		rc = -EINVAL;
2111 		goto err;
2112 	}
2113 
2114 	while (!list_empty(&qh->qtd_list) && retry--) {
2115 		if (retry == 0) {
2116 			dev_err(hsotg->dev,
2117 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2118 			rc = -EBUSY;
2119 			goto err;
2120 		}
2121 
2122 		spin_unlock_irqrestore(&hsotg->lock, flags);
2123 		usleep_range(20000, 40000);
2124 		spin_lock_irqsave(&hsotg->lock, flags);
2125 		qh = ep->hcpriv;
2126 		if (!qh) {
2127 			rc = -EINVAL;
2128 			goto err;
2129 		}
2130 	}
2131 
2132 	dwc2_hcd_qh_unlink(hsotg, qh);
2133 
2134 	/* Free each QTD in the QH's QTD list */
2135 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2136 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2137 
2138 	ep->hcpriv = NULL;
2139 
2140 	if (qh->channel && qh->channel->qh == qh)
2141 		qh->channel->qh = NULL;
2142 
2143 	spin_unlock_irqrestore(&hsotg->lock, flags);
2144 
2145 	dwc2_hcd_qh_free(hsotg, qh);
2146 
2147 	return 0;
2148 
2149 err:
2150 	ep->hcpriv = NULL;
2151 	spin_unlock_irqrestore(&hsotg->lock, flags);
2152 
2153 	return rc;
2154 }
2155 
2156 /* Must be called with interrupt disabled and spinlock held */
2157 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2158 				   struct usb_host_endpoint *ep)
2159 {
2160 	struct dwc2_qh *qh = ep->hcpriv;
2161 
2162 	if (!qh)
2163 		return -EINVAL;
2164 
2165 	qh->data_toggle = DWC2_HC_PID_DATA0;
2166 
2167 	return 0;
2168 }
2169 
2170 /**
2171  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2172  * prepares the core for device mode or host mode operation
2173  *
2174  * @hsotg:         Programming view of the DWC_otg controller
2175  * @initial_setup: If true then this is the first init for this instance.
2176  */
2177 static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2178 {
2179 	u32 usbcfg, otgctl;
2180 	int retval;
2181 
2182 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2183 
2184 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2185 
2186 	/* Set ULPI External VBUS bit if needed */
2187 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2188 	if (hsotg->params.phy_ulpi_ext_vbus ==
2189 				DWC2_PHY_ULPI_EXTERNAL_VBUS)
2190 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2191 
2192 	/* Set external TS Dline pulsing bit if needed */
2193 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2194 	if (hsotg->params.ts_dline > 0)
2195 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2196 
2197 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2198 
2199 	/*
2200 	 * Reset the Controller
2201 	 *
2202 	 * We only need to reset the controller if this is a re-init.
2203 	 * For the first init we know for sure that earlier code reset us (it
2204 	 * needed to in order to properly detect various parameters).
2205 	 */
2206 	if (!initial_setup) {
2207 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
2208 		if (retval) {
2209 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2210 				__func__);
2211 			return retval;
2212 		}
2213 	}
2214 
2215 	/*
2216 	 * This needs to happen in FS mode before any other programming occurs
2217 	 */
2218 	retval = dwc2_phy_init(hsotg, initial_setup);
2219 	if (retval)
2220 		return retval;
2221 
2222 	/* Program the GAHBCFG Register */
2223 	retval = dwc2_gahbcfg_init(hsotg);
2224 	if (retval)
2225 		return retval;
2226 
2227 	/* Program the GUSBCFG register */
2228 	dwc2_gusbcfg_init(hsotg);
2229 
2230 	/* Program the GOTGCTL register */
2231 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2232 	otgctl &= ~GOTGCTL_OTGVER;
2233 	if (hsotg->params.otg_ver > 0)
2234 		otgctl |= GOTGCTL_OTGVER;
2235 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2236 	dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->params.otg_ver);
2237 
2238 	/* Clear the SRP success bit for FS-I2c */
2239 	hsotg->srp_success = 0;
2240 
2241 	/* Enable common interrupts */
2242 	dwc2_enable_common_interrupts(hsotg);
2243 
2244 	/*
2245 	 * Do device or host initialization based on mode during PCD and
2246 	 * HCD initialization
2247 	 */
2248 	if (dwc2_is_host_mode(hsotg)) {
2249 		dev_dbg(hsotg->dev, "Host Mode\n");
2250 		hsotg->op_state = OTG_STATE_A_HOST;
2251 	} else {
2252 		dev_dbg(hsotg->dev, "Device Mode\n");
2253 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2254 	}
2255 
2256 	return 0;
2257 }
2258 
2259 /**
2260  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2261  * Host mode
2262  *
2263  * @hsotg: Programming view of DWC_otg controller
2264  *
2265  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2266  * request queues. Host channels are reset to ensure that they are ready for
2267  * performing transfers.
2268  */
2269 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2270 {
2271 	u32 hcfg, hfir, otgctl;
2272 
2273 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2274 
2275 	/* Restart the Phy Clock */
2276 	dwc2_writel(0, hsotg->regs + PCGCTL);
2277 
2278 	/* Initialize Host Configuration Register */
2279 	dwc2_init_fs_ls_pclk_sel(hsotg);
2280 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL) {
2281 		hcfg = dwc2_readl(hsotg->regs + HCFG);
2282 		hcfg |= HCFG_FSLSSUPP;
2283 		dwc2_writel(hcfg, hsotg->regs + HCFG);
2284 	}
2285 
2286 	/*
2287 	 * This bit allows dynamic reloading of the HFIR register during
2288 	 * runtime. This bit needs to be programmed during initial configuration
2289 	 * and its value must not be changed during runtime.
2290 	 */
2291 	if (hsotg->params.reload_ctl > 0) {
2292 		hfir = dwc2_readl(hsotg->regs + HFIR);
2293 		hfir |= HFIR_RLDCTRL;
2294 		dwc2_writel(hfir, hsotg->regs + HFIR);
2295 	}
2296 
2297 	if (hsotg->params.dma_desc_enable > 0) {
2298 		u32 op_mode = hsotg->hw_params.op_mode;
2299 
2300 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2301 		    !hsotg->hw_params.dma_desc_enable ||
2302 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2303 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2304 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2305 			dev_err(hsotg->dev,
2306 				"Hardware does not support descriptor DMA mode -\n");
2307 			dev_err(hsotg->dev,
2308 				"falling back to buffer DMA mode.\n");
2309 			hsotg->params.dma_desc_enable = 0;
2310 		} else {
2311 			hcfg = dwc2_readl(hsotg->regs + HCFG);
2312 			hcfg |= HCFG_DESCDMA;
2313 			dwc2_writel(hcfg, hsotg->regs + HCFG);
2314 		}
2315 	}
2316 
2317 	/* Configure data FIFO sizes */
2318 	dwc2_config_fifos(hsotg);
2319 
2320 	/* TODO - check this */
2321 	/* Clear Host Set HNP Enable in the OTG Control Register */
2322 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2323 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2324 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2325 
2326 	/* Make sure the FIFOs are flushed */
2327 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2328 	dwc2_flush_rx_fifo(hsotg);
2329 
2330 	/* Clear Host Set HNP Enable in the OTG Control Register */
2331 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2332 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2333 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2334 
2335 	if (hsotg->params.dma_desc_enable <= 0) {
2336 		int num_channels, i;
2337 		u32 hcchar;
2338 
2339 		/* Flush out any leftover queued requests */
2340 		num_channels = hsotg->params.host_channels;
2341 		for (i = 0; i < num_channels; i++) {
2342 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2343 			hcchar &= ~HCCHAR_CHENA;
2344 			hcchar |= HCCHAR_CHDIS;
2345 			hcchar &= ~HCCHAR_EPDIR;
2346 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2347 		}
2348 
2349 		/* Halt all channels to put them into a known state */
2350 		for (i = 0; i < num_channels; i++) {
2351 			int count = 0;
2352 
2353 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2354 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2355 			hcchar &= ~HCCHAR_EPDIR;
2356 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2357 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2358 				__func__, i);
2359 			do {
2360 				hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2361 				if (++count > 1000) {
2362 					dev_err(hsotg->dev,
2363 						"Unable to clear enable on channel %d\n",
2364 						i);
2365 					break;
2366 				}
2367 				udelay(1);
2368 			} while (hcchar & HCCHAR_CHENA);
2369 		}
2370 	}
2371 
2372 	/* Turn on the vbus power */
2373 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2374 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2375 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2376 
2377 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2378 			!!(hprt0 & HPRT0_PWR));
2379 		if (!(hprt0 & HPRT0_PWR)) {
2380 			hprt0 |= HPRT0_PWR;
2381 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
2382 		}
2383 	}
2384 
2385 	dwc2_enable_host_interrupts(hsotg);
2386 }
2387 
2388 /*
2389  * Initializes dynamic portions of the DWC_otg HCD state
2390  *
2391  * Must be called with interrupt disabled and spinlock held
2392  */
2393 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2394 {
2395 	struct dwc2_host_chan *chan, *chan_tmp;
2396 	int num_channels;
2397 	int i;
2398 
2399 	hsotg->flags.d32 = 0;
2400 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2401 
2402 	if (hsotg->params.uframe_sched > 0) {
2403 		hsotg->available_host_channels =
2404 			hsotg->params.host_channels;
2405 	} else {
2406 		hsotg->non_periodic_channels = 0;
2407 		hsotg->periodic_channels = 0;
2408 	}
2409 
2410 	/*
2411 	 * Put all channels in the free channel list and clean up channel
2412 	 * states
2413 	 */
2414 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2415 				 hc_list_entry)
2416 		list_del_init(&chan->hc_list_entry);
2417 
2418 	num_channels = hsotg->params.host_channels;
2419 	for (i = 0; i < num_channels; i++) {
2420 		chan = hsotg->hc_ptr_array[i];
2421 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2422 		dwc2_hc_cleanup(hsotg, chan);
2423 	}
2424 
2425 	/* Initialize the DWC core for host mode operation */
2426 	dwc2_core_host_init(hsotg);
2427 }
2428 
2429 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2430 			       struct dwc2_host_chan *chan,
2431 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2432 {
2433 	int hub_addr, hub_port;
2434 
2435 	chan->do_split = 1;
2436 	chan->xact_pos = qtd->isoc_split_pos;
2437 	chan->complete_split = qtd->complete_split;
2438 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2439 	chan->hub_addr = (u8)hub_addr;
2440 	chan->hub_port = (u8)hub_port;
2441 }
2442 
2443 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2444 			      struct dwc2_host_chan *chan,
2445 			      struct dwc2_qtd *qtd)
2446 {
2447 	struct dwc2_hcd_urb *urb = qtd->urb;
2448 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2449 
2450 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2451 	case USB_ENDPOINT_XFER_CONTROL:
2452 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2453 
2454 		switch (qtd->control_phase) {
2455 		case DWC2_CONTROL_SETUP:
2456 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2457 			chan->do_ping = 0;
2458 			chan->ep_is_in = 0;
2459 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2460 			if (hsotg->params.host_dma > 0)
2461 				chan->xfer_dma = urb->setup_dma;
2462 			else
2463 				chan->xfer_buf = urb->setup_packet;
2464 			chan->xfer_len = 8;
2465 			break;
2466 
2467 		case DWC2_CONTROL_DATA:
2468 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2469 			chan->data_pid_start = qtd->data_toggle;
2470 			break;
2471 
2472 		case DWC2_CONTROL_STATUS:
2473 			/*
2474 			 * Direction is opposite of data direction or IN if no
2475 			 * data
2476 			 */
2477 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2478 			if (urb->length == 0)
2479 				chan->ep_is_in = 1;
2480 			else
2481 				chan->ep_is_in =
2482 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2483 			if (chan->ep_is_in)
2484 				chan->do_ping = 0;
2485 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2486 			chan->xfer_len = 0;
2487 			if (hsotg->params.host_dma > 0)
2488 				chan->xfer_dma = hsotg->status_buf_dma;
2489 			else
2490 				chan->xfer_buf = hsotg->status_buf;
2491 			break;
2492 		}
2493 		break;
2494 
2495 	case USB_ENDPOINT_XFER_BULK:
2496 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2497 		break;
2498 
2499 	case USB_ENDPOINT_XFER_INT:
2500 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2501 		break;
2502 
2503 	case USB_ENDPOINT_XFER_ISOC:
2504 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2505 		if (hsotg->params.dma_desc_enable > 0)
2506 			break;
2507 
2508 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2509 		frame_desc->status = 0;
2510 
2511 		if (hsotg->params.host_dma > 0) {
2512 			chan->xfer_dma = urb->dma;
2513 			chan->xfer_dma += frame_desc->offset +
2514 					qtd->isoc_split_offset;
2515 		} else {
2516 			chan->xfer_buf = urb->buf;
2517 			chan->xfer_buf += frame_desc->offset +
2518 					qtd->isoc_split_offset;
2519 		}
2520 
2521 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2522 
2523 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2524 			if (chan->xfer_len <= 188)
2525 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2526 			else
2527 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2528 		}
2529 		break;
2530 	}
2531 }
2532 
2533 #define DWC2_USB_DMA_ALIGN 4
2534 
2535 struct dma_aligned_buffer {
2536 	void *kmalloc_ptr;
2537 	void *old_xfer_buffer;
2538 	u8 data[0];
2539 };
2540 
2541 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2542 {
2543 	struct dma_aligned_buffer *temp;
2544 
2545 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2546 		return;
2547 
2548 	temp = container_of(urb->transfer_buffer,
2549 		struct dma_aligned_buffer, data);
2550 
2551 	if (usb_urb_dir_in(urb))
2552 		memcpy(temp->old_xfer_buffer, temp->data,
2553 		       urb->transfer_buffer_length);
2554 	urb->transfer_buffer = temp->old_xfer_buffer;
2555 	kfree(temp->kmalloc_ptr);
2556 
2557 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2558 }
2559 
2560 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2561 {
2562 	struct dma_aligned_buffer *temp, *kmalloc_ptr;
2563 	size_t kmalloc_size;
2564 
2565 	if (urb->num_sgs || urb->sg ||
2566 	    urb->transfer_buffer_length == 0 ||
2567 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2568 		return 0;
2569 
2570 	/* Allocate a buffer with enough padding for alignment */
2571 	kmalloc_size = urb->transfer_buffer_length +
2572 		sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2573 
2574 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2575 	if (!kmalloc_ptr)
2576 		return -ENOMEM;
2577 
2578 	/* Position our struct dma_aligned_buffer such that data is aligned */
2579 	temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2580 	temp->kmalloc_ptr = kmalloc_ptr;
2581 	temp->old_xfer_buffer = urb->transfer_buffer;
2582 	if (usb_urb_dir_out(urb))
2583 		memcpy(temp->data, urb->transfer_buffer,
2584 		       urb->transfer_buffer_length);
2585 	urb->transfer_buffer = temp->data;
2586 
2587 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2588 
2589 	return 0;
2590 }
2591 
2592 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2593 				      gfp_t mem_flags)
2594 {
2595 	int ret;
2596 
2597 	/* We assume setup_dma is always aligned; warn if not */
2598 	WARN_ON_ONCE(urb->setup_dma &&
2599 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2600 
2601 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2602 	if (ret)
2603 		return ret;
2604 
2605 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2606 	if (ret)
2607 		dwc2_free_dma_aligned_buffer(urb);
2608 
2609 	return ret;
2610 }
2611 
2612 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2613 {
2614 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2615 	dwc2_free_dma_aligned_buffer(urb);
2616 }
2617 
2618 /**
2619  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2620  * channel and initializes the host channel to perform the transactions. The
2621  * host channel is removed from the free list.
2622  *
2623  * @hsotg: The HCD state structure
2624  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2625  *         to a free host channel
2626  */
2627 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2628 {
2629 	struct dwc2_host_chan *chan;
2630 	struct dwc2_hcd_urb *urb;
2631 	struct dwc2_qtd *qtd;
2632 
2633 	if (dbg_qh(qh))
2634 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2635 
2636 	if (list_empty(&qh->qtd_list)) {
2637 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2638 		return -ENOMEM;
2639 	}
2640 
2641 	if (list_empty(&hsotg->free_hc_list)) {
2642 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2643 		return -ENOMEM;
2644 	}
2645 
2646 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2647 				hc_list_entry);
2648 
2649 	/* Remove host channel from free list */
2650 	list_del_init(&chan->hc_list_entry);
2651 
2652 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2653 	urb = qtd->urb;
2654 	qh->channel = chan;
2655 	qtd->in_process = 1;
2656 
2657 	/*
2658 	 * Use usb_pipedevice to determine device address. This address is
2659 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2660 	 */
2661 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2662 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2663 	chan->speed = qh->dev_speed;
2664 	chan->max_packet = dwc2_max_packet(qh->maxp);
2665 
2666 	chan->xfer_started = 0;
2667 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2668 	chan->error_state = (qtd->error_count > 0);
2669 	chan->halt_on_queue = 0;
2670 	chan->halt_pending = 0;
2671 	chan->requests = 0;
2672 
2673 	/*
2674 	 * The following values may be modified in the transfer type section
2675 	 * below. The xfer_len value may be reduced when the transfer is
2676 	 * started to accommodate the max widths of the XferSize and PktCnt
2677 	 * fields in the HCTSIZn register.
2678 	 */
2679 
2680 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2681 	if (chan->ep_is_in)
2682 		chan->do_ping = 0;
2683 	else
2684 		chan->do_ping = qh->ping_state;
2685 
2686 	chan->data_pid_start = qh->data_toggle;
2687 	chan->multi_count = 1;
2688 
2689 	if (urb->actual_length > urb->length &&
2690 		!dwc2_hcd_is_pipe_in(&urb->pipe_info))
2691 		urb->actual_length = urb->length;
2692 
2693 	if (hsotg->params.host_dma > 0)
2694 		chan->xfer_dma = urb->dma + urb->actual_length;
2695 	else
2696 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2697 
2698 	chan->xfer_len = urb->length - urb->actual_length;
2699 	chan->xfer_count = 0;
2700 
2701 	/* Set the split attributes if required */
2702 	if (qh->do_split)
2703 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2704 	else
2705 		chan->do_split = 0;
2706 
2707 	/* Set the transfer attributes */
2708 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2709 
2710 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2711 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2712 		/*
2713 		 * This value may be modified when the transfer is started
2714 		 * to reflect the actual transfer length
2715 		 */
2716 		chan->multi_count = dwc2_hb_mult(qh->maxp);
2717 
2718 	if (hsotg->params.dma_desc_enable > 0) {
2719 		chan->desc_list_addr = qh->desc_list_dma;
2720 		chan->desc_list_sz = qh->desc_list_sz;
2721 	}
2722 
2723 	dwc2_hc_init(hsotg, chan);
2724 	chan->qh = qh;
2725 
2726 	return 0;
2727 }
2728 
2729 /**
2730  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2731  * schedule and assigns them to available host channels. Called from the HCD
2732  * interrupt handler functions.
2733  *
2734  * @hsotg: The HCD state structure
2735  *
2736  * Return: The types of new transactions that were assigned to host channels
2737  */
2738 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2739 		struct dwc2_hsotg *hsotg)
2740 {
2741 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2742 	struct list_head *qh_ptr;
2743 	struct dwc2_qh *qh;
2744 	int num_channels;
2745 
2746 #ifdef DWC2_DEBUG_SOF
2747 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2748 #endif
2749 
2750 	/* Process entries in the periodic ready list */
2751 	qh_ptr = hsotg->periodic_sched_ready.next;
2752 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2753 		if (list_empty(&hsotg->free_hc_list))
2754 			break;
2755 		if (hsotg->params.uframe_sched > 0) {
2756 			if (hsotg->available_host_channels <= 1)
2757 				break;
2758 			hsotg->available_host_channels--;
2759 		}
2760 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2761 		if (dwc2_assign_and_init_hc(hsotg, qh))
2762 			break;
2763 
2764 		/*
2765 		 * Move the QH from the periodic ready schedule to the
2766 		 * periodic assigned schedule
2767 		 */
2768 		qh_ptr = qh_ptr->next;
2769 		list_move_tail(&qh->qh_list_entry,
2770 			       &hsotg->periodic_sched_assigned);
2771 		ret_val = DWC2_TRANSACTION_PERIODIC;
2772 	}
2773 
2774 	/*
2775 	 * Process entries in the inactive portion of the non-periodic
2776 	 * schedule. Some free host channels may not be used if they are
2777 	 * reserved for periodic transfers.
2778 	 */
2779 	num_channels = hsotg->params.host_channels;
2780 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2781 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2782 		if (hsotg->params.uframe_sched <= 0 &&
2783 		    hsotg->non_periodic_channels >= num_channels -
2784 						hsotg->periodic_channels)
2785 			break;
2786 		if (list_empty(&hsotg->free_hc_list))
2787 			break;
2788 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2789 		if (hsotg->params.uframe_sched > 0) {
2790 			if (hsotg->available_host_channels < 1)
2791 				break;
2792 			hsotg->available_host_channels--;
2793 		}
2794 
2795 		if (dwc2_assign_and_init_hc(hsotg, qh))
2796 			break;
2797 
2798 		/*
2799 		 * Move the QH from the non-periodic inactive schedule to the
2800 		 * non-periodic active schedule
2801 		 */
2802 		qh_ptr = qh_ptr->next;
2803 		list_move_tail(&qh->qh_list_entry,
2804 			       &hsotg->non_periodic_sched_active);
2805 
2806 		if (ret_val == DWC2_TRANSACTION_NONE)
2807 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2808 		else
2809 			ret_val = DWC2_TRANSACTION_ALL;
2810 
2811 		if (hsotg->params.uframe_sched <= 0)
2812 			hsotg->non_periodic_channels++;
2813 	}
2814 
2815 	return ret_val;
2816 }
2817 
2818 /**
2819  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2820  * a host channel associated with either a periodic or non-periodic transfer
2821  *
2822  * @hsotg: The HCD state structure
2823  * @chan:  Host channel descriptor associated with either a periodic or
2824  *         non-periodic transfer
2825  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2826  *                     for periodic transfers or the non-periodic Tx FIFO
2827  *                     for non-periodic transfers
2828  *
2829  * Return: 1 if a request is queued and more requests may be needed to
2830  * complete the transfer, 0 if no more requests are required for this
2831  * transfer, -1 if there is insufficient space in the Tx FIFO
2832  *
2833  * This function assumes that there is space available in the appropriate
2834  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2835  * it checks whether space is available in the appropriate Tx FIFO.
2836  *
2837  * Must be called with interrupt disabled and spinlock held
2838  */
2839 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2840 				  struct dwc2_host_chan *chan,
2841 				  u16 fifo_dwords_avail)
2842 {
2843 	int retval = 0;
2844 
2845 	if (chan->do_split)
2846 		/* Put ourselves on the list to keep order straight */
2847 		list_move_tail(&chan->split_order_list_entry,
2848 			       &hsotg->split_order);
2849 
2850 	if (hsotg->params.host_dma > 0) {
2851 		if (hsotg->params.dma_desc_enable > 0) {
2852 			if (!chan->xfer_started ||
2853 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2854 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2855 				chan->qh->ping_state = 0;
2856 			}
2857 		} else if (!chan->xfer_started) {
2858 			dwc2_hc_start_transfer(hsotg, chan);
2859 			chan->qh->ping_state = 0;
2860 		}
2861 	} else if (chan->halt_pending) {
2862 		/* Don't queue a request if the channel has been halted */
2863 	} else if (chan->halt_on_queue) {
2864 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2865 	} else if (chan->do_ping) {
2866 		if (!chan->xfer_started)
2867 			dwc2_hc_start_transfer(hsotg, chan);
2868 	} else if (!chan->ep_is_in ||
2869 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2870 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2871 			if (!chan->xfer_started) {
2872 				dwc2_hc_start_transfer(hsotg, chan);
2873 				retval = 1;
2874 			} else {
2875 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2876 			}
2877 		} else {
2878 			retval = -1;
2879 		}
2880 	} else {
2881 		if (!chan->xfer_started) {
2882 			dwc2_hc_start_transfer(hsotg, chan);
2883 			retval = 1;
2884 		} else {
2885 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2886 		}
2887 	}
2888 
2889 	return retval;
2890 }
2891 
2892 /*
2893  * Processes periodic channels for the next frame and queues transactions for
2894  * these channels to the DWC_otg controller. After queueing transactions, the
2895  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2896  * to queue as Periodic Tx FIFO or request queue space becomes available.
2897  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2898  *
2899  * Must be called with interrupt disabled and spinlock held
2900  */
2901 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2902 {
2903 	struct list_head *qh_ptr;
2904 	struct dwc2_qh *qh;
2905 	u32 tx_status;
2906 	u32 fspcavail;
2907 	u32 gintmsk;
2908 	int status;
2909 	bool no_queue_space = false;
2910 	bool no_fifo_space = false;
2911 	u32 qspcavail;
2912 
2913 	/* If empty list then just adjust interrupt enables */
2914 	if (list_empty(&hsotg->periodic_sched_assigned))
2915 		goto exit;
2916 
2917 	if (dbg_perio())
2918 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2919 
2920 	tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2921 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2922 		    TXSTS_QSPCAVAIL_SHIFT;
2923 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2924 		    TXSTS_FSPCAVAIL_SHIFT;
2925 
2926 	if (dbg_perio()) {
2927 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2928 			 qspcavail);
2929 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2930 			 fspcavail);
2931 	}
2932 
2933 	qh_ptr = hsotg->periodic_sched_assigned.next;
2934 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2935 		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2936 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2937 			    TXSTS_QSPCAVAIL_SHIFT;
2938 		if (qspcavail == 0) {
2939 			no_queue_space = 1;
2940 			break;
2941 		}
2942 
2943 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2944 		if (!qh->channel) {
2945 			qh_ptr = qh_ptr->next;
2946 			continue;
2947 		}
2948 
2949 		/* Make sure EP's TT buffer is clean before queueing qtds */
2950 		if (qh->tt_buffer_dirty) {
2951 			qh_ptr = qh_ptr->next;
2952 			continue;
2953 		}
2954 
2955 		/*
2956 		 * Set a flag if we're queuing high-bandwidth in slave mode.
2957 		 * The flag prevents any halts to get into the request queue in
2958 		 * the middle of multiple high-bandwidth packets getting queued.
2959 		 */
2960 		if (hsotg->params.host_dma <= 0 &&
2961 				qh->channel->multi_count > 1)
2962 			hsotg->queuing_high_bandwidth = 1;
2963 
2964 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2965 			    TXSTS_FSPCAVAIL_SHIFT;
2966 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2967 		if (status < 0) {
2968 			no_fifo_space = 1;
2969 			break;
2970 		}
2971 
2972 		/*
2973 		 * In Slave mode, stay on the current transfer until there is
2974 		 * nothing more to do or the high-bandwidth request count is
2975 		 * reached. In DMA mode, only need to queue one request. The
2976 		 * controller automatically handles multiple packets for
2977 		 * high-bandwidth transfers.
2978 		 */
2979 		if (hsotg->params.host_dma > 0 || status == 0 ||
2980 		    qh->channel->requests == qh->channel->multi_count) {
2981 			qh_ptr = qh_ptr->next;
2982 			/*
2983 			 * Move the QH from the periodic assigned schedule to
2984 			 * the periodic queued schedule
2985 			 */
2986 			list_move_tail(&qh->qh_list_entry,
2987 				       &hsotg->periodic_sched_queued);
2988 
2989 			/* done queuing high bandwidth */
2990 			hsotg->queuing_high_bandwidth = 0;
2991 		}
2992 	}
2993 
2994 exit:
2995 	if (no_queue_space || no_fifo_space ||
2996 	    (hsotg->params.host_dma <= 0 &&
2997 	     !list_empty(&hsotg->periodic_sched_assigned))) {
2998 		/*
2999 		 * May need to queue more transactions as the request
3000 		 * queue or Tx FIFO empties. Enable the periodic Tx
3001 		 * FIFO empty interrupt. (Always use the half-empty
3002 		 * level to ensure that new requests are loaded as
3003 		 * soon as possible.)
3004 		 */
3005 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3006 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3007 			gintmsk |= GINTSTS_PTXFEMP;
3008 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3009 		}
3010 	} else {
3011 		/*
3012 		 * Disable the Tx FIFO empty interrupt since there are
3013 		 * no more transactions that need to be queued right
3014 		 * now. This function is called from interrupt
3015 		 * handlers to queue more transactions as transfer
3016 		 * states change.
3017 		*/
3018 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3019 		if (gintmsk & GINTSTS_PTXFEMP) {
3020 			gintmsk &= ~GINTSTS_PTXFEMP;
3021 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3022 		}
3023 	}
3024 }
3025 
3026 /*
3027  * Processes active non-periodic channels and queues transactions for these
3028  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3029  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3030  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3031  * FIFO Empty interrupt is disabled.
3032  *
3033  * Must be called with interrupt disabled and spinlock held
3034  */
3035 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3036 {
3037 	struct list_head *orig_qh_ptr;
3038 	struct dwc2_qh *qh;
3039 	u32 tx_status;
3040 	u32 qspcavail;
3041 	u32 fspcavail;
3042 	u32 gintmsk;
3043 	int status;
3044 	int no_queue_space = 0;
3045 	int no_fifo_space = 0;
3046 	int more_to_do = 0;
3047 
3048 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3049 
3050 	tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3051 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3052 		    TXSTS_QSPCAVAIL_SHIFT;
3053 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3054 		    TXSTS_FSPCAVAIL_SHIFT;
3055 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3056 		 qspcavail);
3057 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3058 		 fspcavail);
3059 
3060 	/*
3061 	 * Keep track of the starting point. Skip over the start-of-list
3062 	 * entry.
3063 	 */
3064 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3065 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3066 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3067 
3068 	/*
3069 	 * Process once through the active list or until no more space is
3070 	 * available in the request queue or the Tx FIFO
3071 	 */
3072 	do {
3073 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3074 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3075 			    TXSTS_QSPCAVAIL_SHIFT;
3076 		if (hsotg->params.host_dma <= 0 && qspcavail == 0) {
3077 			no_queue_space = 1;
3078 			break;
3079 		}
3080 
3081 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3082 				qh_list_entry);
3083 		if (!qh->channel)
3084 			goto next;
3085 
3086 		/* Make sure EP's TT buffer is clean before queueing qtds */
3087 		if (qh->tt_buffer_dirty)
3088 			goto next;
3089 
3090 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3091 			    TXSTS_FSPCAVAIL_SHIFT;
3092 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3093 
3094 		if (status > 0) {
3095 			more_to_do = 1;
3096 		} else if (status < 0) {
3097 			no_fifo_space = 1;
3098 			break;
3099 		}
3100 next:
3101 		/* Advance to next QH, skipping start-of-list entry */
3102 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3103 		if (hsotg->non_periodic_qh_ptr ==
3104 				&hsotg->non_periodic_sched_active)
3105 			hsotg->non_periodic_qh_ptr =
3106 					hsotg->non_periodic_qh_ptr->next;
3107 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3108 
3109 	if (hsotg->params.host_dma <= 0) {
3110 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3111 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3112 			    TXSTS_QSPCAVAIL_SHIFT;
3113 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3114 			    TXSTS_FSPCAVAIL_SHIFT;
3115 		dev_vdbg(hsotg->dev,
3116 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3117 			 qspcavail);
3118 		dev_vdbg(hsotg->dev,
3119 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3120 			 fspcavail);
3121 
3122 		if (more_to_do || no_queue_space || no_fifo_space) {
3123 			/*
3124 			 * May need to queue more transactions as the request
3125 			 * queue or Tx FIFO empties. Enable the non-periodic
3126 			 * Tx FIFO empty interrupt. (Always use the half-empty
3127 			 * level to ensure that new requests are loaded as
3128 			 * soon as possible.)
3129 			 */
3130 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3131 			gintmsk |= GINTSTS_NPTXFEMP;
3132 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3133 		} else {
3134 			/*
3135 			 * Disable the Tx FIFO empty interrupt since there are
3136 			 * no more transactions that need to be queued right
3137 			 * now. This function is called from interrupt
3138 			 * handlers to queue more transactions as transfer
3139 			 * states change.
3140 			 */
3141 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3142 			gintmsk &= ~GINTSTS_NPTXFEMP;
3143 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3144 		}
3145 	}
3146 }
3147 
3148 /**
3149  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3150  * and queues transactions for these channels to the DWC_otg controller. Called
3151  * from the HCD interrupt handler functions.
3152  *
3153  * @hsotg:   The HCD state structure
3154  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3155  *           or both)
3156  *
3157  * Must be called with interrupt disabled and spinlock held
3158  */
3159 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3160 				 enum dwc2_transaction_type tr_type)
3161 {
3162 #ifdef DWC2_DEBUG_SOF
3163 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3164 #endif
3165 	/* Process host channels associated with periodic transfers */
3166 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3167 	    tr_type == DWC2_TRANSACTION_ALL)
3168 		dwc2_process_periodic_channels(hsotg);
3169 
3170 	/* Process host channels associated with non-periodic transfers */
3171 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3172 	    tr_type == DWC2_TRANSACTION_ALL) {
3173 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3174 			dwc2_process_non_periodic_channels(hsotg);
3175 		} else {
3176 			/*
3177 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3178 			 * there are no non-periodic transfers to process
3179 			 */
3180 			u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3181 
3182 			gintmsk &= ~GINTSTS_NPTXFEMP;
3183 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3184 		}
3185 	}
3186 }
3187 
3188 static void dwc2_conn_id_status_change(struct work_struct *work)
3189 {
3190 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3191 						wf_otg);
3192 	u32 count = 0;
3193 	u32 gotgctl;
3194 	unsigned long flags;
3195 
3196 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3197 
3198 	gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3199 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3200 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3201 		!!(gotgctl & GOTGCTL_CONID_B));
3202 
3203 	/* B-Device connector (Device Mode) */
3204 	if (gotgctl & GOTGCTL_CONID_B) {
3205 		/* Wait for switch to device mode */
3206 		dev_dbg(hsotg->dev, "connId B\n");
3207 		while (!dwc2_is_device_mode(hsotg)) {
3208 			dev_info(hsotg->dev,
3209 				 "Waiting for Peripheral Mode, Mode=%s\n",
3210 				 dwc2_is_host_mode(hsotg) ? "Host" :
3211 				 "Peripheral");
3212 			usleep_range(20000, 40000);
3213 			if (++count > 250)
3214 				break;
3215 		}
3216 		if (count > 250)
3217 			dev_err(hsotg->dev,
3218 				"Connection id status change timed out\n");
3219 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3220 		dwc2_core_init(hsotg, false);
3221 		dwc2_enable_global_interrupts(hsotg);
3222 		spin_lock_irqsave(&hsotg->lock, flags);
3223 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3224 		spin_unlock_irqrestore(&hsotg->lock, flags);
3225 		dwc2_hsotg_core_connect(hsotg);
3226 	} else {
3227 		/* A-Device connector (Host Mode) */
3228 		dev_dbg(hsotg->dev, "connId A\n");
3229 		while (!dwc2_is_host_mode(hsotg)) {
3230 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3231 				 dwc2_is_host_mode(hsotg) ?
3232 				 "Host" : "Peripheral");
3233 			usleep_range(20000, 40000);
3234 			if (++count > 250)
3235 				break;
3236 		}
3237 		if (count > 250)
3238 			dev_err(hsotg->dev,
3239 				"Connection id status change timed out\n");
3240 		hsotg->op_state = OTG_STATE_A_HOST;
3241 
3242 		/* Initialize the Core for Host mode */
3243 		dwc2_core_init(hsotg, false);
3244 		dwc2_enable_global_interrupts(hsotg);
3245 		dwc2_hcd_start(hsotg);
3246 	}
3247 }
3248 
3249 static void dwc2_wakeup_detected(unsigned long data)
3250 {
3251 	struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
3252 	u32 hprt0;
3253 
3254 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3255 
3256 	/*
3257 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3258 	 * so that OPT tests pass with all PHYs.)
3259 	 */
3260 	hprt0 = dwc2_read_hprt0(hsotg);
3261 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3262 	hprt0 &= ~HPRT0_RES;
3263 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3264 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3265 		dwc2_readl(hsotg->regs + HPRT0));
3266 
3267 	dwc2_hcd_rem_wakeup(hsotg);
3268 	hsotg->bus_suspended = 0;
3269 
3270 	/* Change to L0 state */
3271 	hsotg->lx_state = DWC2_L0;
3272 }
3273 
3274 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3275 {
3276 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3277 
3278 	return hcd->self.b_hnp_enable;
3279 }
3280 
3281 /* Must NOT be called with interrupt disabled or spinlock held */
3282 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3283 {
3284 	unsigned long flags;
3285 	u32 hprt0;
3286 	u32 pcgctl;
3287 	u32 gotgctl;
3288 
3289 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3290 
3291 	spin_lock_irqsave(&hsotg->lock, flags);
3292 
3293 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3294 		gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3295 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3296 		dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3297 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3298 	}
3299 
3300 	hprt0 = dwc2_read_hprt0(hsotg);
3301 	hprt0 |= HPRT0_SUSP;
3302 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3303 
3304 	hsotg->bus_suspended = 1;
3305 
3306 	/*
3307 	 * If hibernation is supported, Phy clock will be suspended
3308 	 * after registers are backuped.
3309 	 */
3310 	if (!hsotg->params.hibernation) {
3311 		/* Suspend the Phy Clock */
3312 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3313 		pcgctl |= PCGCTL_STOPPCLK;
3314 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3315 		udelay(10);
3316 	}
3317 
3318 	/* For HNP the bus must be suspended for at least 200ms */
3319 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3320 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3321 		pcgctl &= ~PCGCTL_STOPPCLK;
3322 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3323 
3324 		spin_unlock_irqrestore(&hsotg->lock, flags);
3325 
3326 		usleep_range(200000, 250000);
3327 	} else {
3328 		spin_unlock_irqrestore(&hsotg->lock, flags);
3329 	}
3330 }
3331 
3332 /* Must NOT be called with interrupt disabled or spinlock held */
3333 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3334 {
3335 	unsigned long flags;
3336 	u32 hprt0;
3337 	u32 pcgctl;
3338 
3339 	spin_lock_irqsave(&hsotg->lock, flags);
3340 
3341 	/*
3342 	 * If hibernation is supported, Phy clock is already resumed
3343 	 * after registers restore.
3344 	 */
3345 	if (!hsotg->params.hibernation) {
3346 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3347 		pcgctl &= ~PCGCTL_STOPPCLK;
3348 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3349 		spin_unlock_irqrestore(&hsotg->lock, flags);
3350 		usleep_range(20000, 40000);
3351 		spin_lock_irqsave(&hsotg->lock, flags);
3352 	}
3353 
3354 	hprt0 = dwc2_read_hprt0(hsotg);
3355 	hprt0 |= HPRT0_RES;
3356 	hprt0 &= ~HPRT0_SUSP;
3357 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3358 	spin_unlock_irqrestore(&hsotg->lock, flags);
3359 
3360 	msleep(USB_RESUME_TIMEOUT);
3361 
3362 	spin_lock_irqsave(&hsotg->lock, flags);
3363 	hprt0 = dwc2_read_hprt0(hsotg);
3364 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3365 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3366 	hsotg->bus_suspended = 0;
3367 	spin_unlock_irqrestore(&hsotg->lock, flags);
3368 }
3369 
3370 /* Handles hub class-specific requests */
3371 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3372 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3373 {
3374 	struct usb_hub_descriptor *hub_desc;
3375 	int retval = 0;
3376 	u32 hprt0;
3377 	u32 port_status;
3378 	u32 speed;
3379 	u32 pcgctl;
3380 
3381 	switch (typereq) {
3382 	case ClearHubFeature:
3383 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3384 
3385 		switch (wvalue) {
3386 		case C_HUB_LOCAL_POWER:
3387 		case C_HUB_OVER_CURRENT:
3388 			/* Nothing required here */
3389 			break;
3390 
3391 		default:
3392 			retval = -EINVAL;
3393 			dev_err(hsotg->dev,
3394 				"ClearHubFeature request %1xh unknown\n",
3395 				wvalue);
3396 		}
3397 		break;
3398 
3399 	case ClearPortFeature:
3400 		if (wvalue != USB_PORT_FEAT_L1)
3401 			if (!windex || windex > 1)
3402 				goto error;
3403 		switch (wvalue) {
3404 		case USB_PORT_FEAT_ENABLE:
3405 			dev_dbg(hsotg->dev,
3406 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3407 			hprt0 = dwc2_read_hprt0(hsotg);
3408 			hprt0 |= HPRT0_ENA;
3409 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3410 			break;
3411 
3412 		case USB_PORT_FEAT_SUSPEND:
3413 			dev_dbg(hsotg->dev,
3414 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3415 
3416 			if (hsotg->bus_suspended)
3417 				dwc2_port_resume(hsotg);
3418 			break;
3419 
3420 		case USB_PORT_FEAT_POWER:
3421 			dev_dbg(hsotg->dev,
3422 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3423 			hprt0 = dwc2_read_hprt0(hsotg);
3424 			hprt0 &= ~HPRT0_PWR;
3425 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3426 			break;
3427 
3428 		case USB_PORT_FEAT_INDICATOR:
3429 			dev_dbg(hsotg->dev,
3430 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3431 			/* Port indicator not supported */
3432 			break;
3433 
3434 		case USB_PORT_FEAT_C_CONNECTION:
3435 			/*
3436 			 * Clears driver's internal Connect Status Change flag
3437 			 */
3438 			dev_dbg(hsotg->dev,
3439 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3440 			hsotg->flags.b.port_connect_status_change = 0;
3441 			break;
3442 
3443 		case USB_PORT_FEAT_C_RESET:
3444 			/* Clears driver's internal Port Reset Change flag */
3445 			dev_dbg(hsotg->dev,
3446 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3447 			hsotg->flags.b.port_reset_change = 0;
3448 			break;
3449 
3450 		case USB_PORT_FEAT_C_ENABLE:
3451 			/*
3452 			 * Clears the driver's internal Port Enable/Disable
3453 			 * Change flag
3454 			 */
3455 			dev_dbg(hsotg->dev,
3456 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3457 			hsotg->flags.b.port_enable_change = 0;
3458 			break;
3459 
3460 		case USB_PORT_FEAT_C_SUSPEND:
3461 			/*
3462 			 * Clears the driver's internal Port Suspend Change
3463 			 * flag, which is set when resume signaling on the host
3464 			 * port is complete
3465 			 */
3466 			dev_dbg(hsotg->dev,
3467 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3468 			hsotg->flags.b.port_suspend_change = 0;
3469 			break;
3470 
3471 		case USB_PORT_FEAT_C_PORT_L1:
3472 			dev_dbg(hsotg->dev,
3473 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3474 			hsotg->flags.b.port_l1_change = 0;
3475 			break;
3476 
3477 		case USB_PORT_FEAT_C_OVER_CURRENT:
3478 			dev_dbg(hsotg->dev,
3479 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3480 			hsotg->flags.b.port_over_current_change = 0;
3481 			break;
3482 
3483 		default:
3484 			retval = -EINVAL;
3485 			dev_err(hsotg->dev,
3486 				"ClearPortFeature request %1xh unknown or unsupported\n",
3487 				wvalue);
3488 		}
3489 		break;
3490 
3491 	case GetHubDescriptor:
3492 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3493 		hub_desc = (struct usb_hub_descriptor *)buf;
3494 		hub_desc->bDescLength = 9;
3495 		hub_desc->bDescriptorType = USB_DT_HUB;
3496 		hub_desc->bNbrPorts = 1;
3497 		hub_desc->wHubCharacteristics =
3498 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3499 				    HUB_CHAR_INDV_PORT_OCPM);
3500 		hub_desc->bPwrOn2PwrGood = 1;
3501 		hub_desc->bHubContrCurrent = 0;
3502 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3503 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3504 		break;
3505 
3506 	case GetHubStatus:
3507 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3508 		memset(buf, 0, 4);
3509 		break;
3510 
3511 	case GetPortStatus:
3512 		dev_vdbg(hsotg->dev,
3513 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3514 			 hsotg->flags.d32);
3515 		if (!windex || windex > 1)
3516 			goto error;
3517 
3518 		port_status = 0;
3519 		if (hsotg->flags.b.port_connect_status_change)
3520 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3521 		if (hsotg->flags.b.port_enable_change)
3522 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3523 		if (hsotg->flags.b.port_suspend_change)
3524 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3525 		if (hsotg->flags.b.port_l1_change)
3526 			port_status |= USB_PORT_STAT_C_L1 << 16;
3527 		if (hsotg->flags.b.port_reset_change)
3528 			port_status |= USB_PORT_STAT_C_RESET << 16;
3529 		if (hsotg->flags.b.port_over_current_change) {
3530 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3531 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3532 		}
3533 
3534 		if (!hsotg->flags.b.port_connect_status) {
3535 			/*
3536 			 * The port is disconnected, which means the core is
3537 			 * either in device mode or it soon will be. Just
3538 			 * return 0's for the remainder of the port status
3539 			 * since the port register can't be read if the core
3540 			 * is in device mode.
3541 			 */
3542 			*(__le32 *)buf = cpu_to_le32(port_status);
3543 			break;
3544 		}
3545 
3546 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3547 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3548 
3549 		if (hprt0 & HPRT0_CONNSTS)
3550 			port_status |= USB_PORT_STAT_CONNECTION;
3551 		if (hprt0 & HPRT0_ENA)
3552 			port_status |= USB_PORT_STAT_ENABLE;
3553 		if (hprt0 & HPRT0_SUSP)
3554 			port_status |= USB_PORT_STAT_SUSPEND;
3555 		if (hprt0 & HPRT0_OVRCURRACT)
3556 			port_status |= USB_PORT_STAT_OVERCURRENT;
3557 		if (hprt0 & HPRT0_RST)
3558 			port_status |= USB_PORT_STAT_RESET;
3559 		if (hprt0 & HPRT0_PWR)
3560 			port_status |= USB_PORT_STAT_POWER;
3561 
3562 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3563 		if (speed == HPRT0_SPD_HIGH_SPEED)
3564 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3565 		else if (speed == HPRT0_SPD_LOW_SPEED)
3566 			port_status |= USB_PORT_STAT_LOW_SPEED;
3567 
3568 		if (hprt0 & HPRT0_TSTCTL_MASK)
3569 			port_status |= USB_PORT_STAT_TEST;
3570 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3571 
3572 		if (hsotg->params.dma_desc_fs_enable) {
3573 			/*
3574 			 * Enable descriptor DMA only if a full speed
3575 			 * device is connected.
3576 			 */
3577 			if (hsotg->new_connection &&
3578 			    ((port_status &
3579 			      (USB_PORT_STAT_CONNECTION |
3580 			       USB_PORT_STAT_HIGH_SPEED |
3581 			       USB_PORT_STAT_LOW_SPEED)) ==
3582 			       USB_PORT_STAT_CONNECTION)) {
3583 				u32 hcfg;
3584 
3585 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3586 				hsotg->params.dma_desc_enable = 1;
3587 				hcfg = dwc2_readl(hsotg->regs + HCFG);
3588 				hcfg |= HCFG_DESCDMA;
3589 				dwc2_writel(hcfg, hsotg->regs + HCFG);
3590 				hsotg->new_connection = false;
3591 			}
3592 		}
3593 
3594 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3595 		*(__le32 *)buf = cpu_to_le32(port_status);
3596 		break;
3597 
3598 	case SetHubFeature:
3599 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3600 		/* No HUB features supported */
3601 		break;
3602 
3603 	case SetPortFeature:
3604 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3605 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3606 			goto error;
3607 
3608 		if (!hsotg->flags.b.port_connect_status) {
3609 			/*
3610 			 * The port is disconnected, which means the core is
3611 			 * either in device mode or it soon will be. Just
3612 			 * return without doing anything since the port
3613 			 * register can't be written if the core is in device
3614 			 * mode.
3615 			 */
3616 			break;
3617 		}
3618 
3619 		switch (wvalue) {
3620 		case USB_PORT_FEAT_SUSPEND:
3621 			dev_dbg(hsotg->dev,
3622 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3623 			if (windex != hsotg->otg_port)
3624 				goto error;
3625 			dwc2_port_suspend(hsotg, windex);
3626 			break;
3627 
3628 		case USB_PORT_FEAT_POWER:
3629 			dev_dbg(hsotg->dev,
3630 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3631 			hprt0 = dwc2_read_hprt0(hsotg);
3632 			hprt0 |= HPRT0_PWR;
3633 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3634 			break;
3635 
3636 		case USB_PORT_FEAT_RESET:
3637 			hprt0 = dwc2_read_hprt0(hsotg);
3638 			dev_dbg(hsotg->dev,
3639 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3640 			pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3641 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3642 			dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3643 			/* ??? Original driver does this */
3644 			dwc2_writel(0, hsotg->regs + PCGCTL);
3645 
3646 			hprt0 = dwc2_read_hprt0(hsotg);
3647 			/* Clear suspend bit if resetting from suspend state */
3648 			hprt0 &= ~HPRT0_SUSP;
3649 
3650 			/*
3651 			 * When B-Host the Port reset bit is set in the Start
3652 			 * HCD Callback function, so that the reset is started
3653 			 * within 1ms of the HNP success interrupt
3654 			 */
3655 			if (!dwc2_hcd_is_b_host(hsotg)) {
3656 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3657 				dev_dbg(hsotg->dev,
3658 					"In host mode, hprt0=%08x\n", hprt0);
3659 				dwc2_writel(hprt0, hsotg->regs + HPRT0);
3660 			}
3661 
3662 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3663 			usleep_range(50000, 70000);
3664 			hprt0 &= ~HPRT0_RST;
3665 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3666 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3667 			break;
3668 
3669 		case USB_PORT_FEAT_INDICATOR:
3670 			dev_dbg(hsotg->dev,
3671 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3672 			/* Not supported */
3673 			break;
3674 
3675 		case USB_PORT_FEAT_TEST:
3676 			hprt0 = dwc2_read_hprt0(hsotg);
3677 			dev_dbg(hsotg->dev,
3678 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3679 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3680 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3681 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3682 			break;
3683 
3684 		default:
3685 			retval = -EINVAL;
3686 			dev_err(hsotg->dev,
3687 				"SetPortFeature %1xh unknown or unsupported\n",
3688 				wvalue);
3689 			break;
3690 		}
3691 		break;
3692 
3693 	default:
3694 error:
3695 		retval = -EINVAL;
3696 		dev_dbg(hsotg->dev,
3697 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3698 			typereq, windex, wvalue);
3699 		break;
3700 	}
3701 
3702 	return retval;
3703 }
3704 
3705 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3706 {
3707 	int retval;
3708 
3709 	if (port != 1)
3710 		return -EINVAL;
3711 
3712 	retval = (hsotg->flags.b.port_connect_status_change ||
3713 		  hsotg->flags.b.port_reset_change ||
3714 		  hsotg->flags.b.port_enable_change ||
3715 		  hsotg->flags.b.port_suspend_change ||
3716 		  hsotg->flags.b.port_over_current_change);
3717 
3718 	if (retval) {
3719 		dev_dbg(hsotg->dev,
3720 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3721 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3722 			hsotg->flags.b.port_connect_status_change);
3723 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3724 			hsotg->flags.b.port_reset_change);
3725 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3726 			hsotg->flags.b.port_enable_change);
3727 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3728 			hsotg->flags.b.port_suspend_change);
3729 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3730 			hsotg->flags.b.port_over_current_change);
3731 	}
3732 
3733 	return retval;
3734 }
3735 
3736 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3737 {
3738 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3739 
3740 #ifdef DWC2_DEBUG_SOF
3741 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3742 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3743 #endif
3744 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3745 }
3746 
3747 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3748 {
3749 	u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3750 	u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3751 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3752 	unsigned int us_per_frame;
3753 	unsigned int frame_number;
3754 	unsigned int remaining;
3755 	unsigned int interval;
3756 	unsigned int phy_clks;
3757 
3758 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3759 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3760 
3761 	/* Extract fields */
3762 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3763 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3764 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3765 
3766 	/*
3767 	 * Number of phy clocks since the last tick of the frame number after
3768 	 * "us" has passed.
3769 	 */
3770 	phy_clks = (interval - remaining) +
3771 		   DIV_ROUND_UP(interval * us, us_per_frame);
3772 
3773 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3774 }
3775 
3776 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3777 {
3778 	return hsotg->op_state == OTG_STATE_B_HOST;
3779 }
3780 
3781 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3782 					       int iso_desc_count,
3783 					       gfp_t mem_flags)
3784 {
3785 	struct dwc2_hcd_urb *urb;
3786 	u32 size = sizeof(*urb) + iso_desc_count *
3787 		   sizeof(struct dwc2_hcd_iso_packet_desc);
3788 
3789 	urb = kzalloc(size, mem_flags);
3790 	if (urb)
3791 		urb->packet_count = iso_desc_count;
3792 	return urb;
3793 }
3794 
3795 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3796 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3797 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3798 {
3799 	if (dbg_perio() ||
3800 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3801 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3802 		dev_vdbg(hsotg->dev,
3803 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3804 			 dev_addr, ep_num, ep_dir, ep_type, mps);
3805 	urb->pipe_info.dev_addr = dev_addr;
3806 	urb->pipe_info.ep_num = ep_num;
3807 	urb->pipe_info.pipe_type = ep_type;
3808 	urb->pipe_info.pipe_dir = ep_dir;
3809 	urb->pipe_info.mps = mps;
3810 }
3811 
3812 /*
3813  * NOTE: This function will be removed once the peripheral controller code
3814  * is integrated and the driver is stable
3815  */
3816 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3817 {
3818 #ifdef DEBUG
3819 	struct dwc2_host_chan *chan;
3820 	struct dwc2_hcd_urb *urb;
3821 	struct dwc2_qtd *qtd;
3822 	int num_channels;
3823 	u32 np_tx_status;
3824 	u32 p_tx_status;
3825 	int i;
3826 
3827 	num_channels = hsotg->params.host_channels;
3828 	dev_dbg(hsotg->dev, "\n");
3829 	dev_dbg(hsotg->dev,
3830 		"************************************************************\n");
3831 	dev_dbg(hsotg->dev, "HCD State:\n");
3832 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3833 
3834 	for (i = 0; i < num_channels; i++) {
3835 		chan = hsotg->hc_ptr_array[i];
3836 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3837 		dev_dbg(hsotg->dev,
3838 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3839 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3840 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3841 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3842 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3843 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3844 			chan->data_pid_start);
3845 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3846 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3847 			chan->xfer_started);
3848 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3849 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3850 			(unsigned long)chan->xfer_dma);
3851 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3852 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3853 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3854 			chan->halt_on_queue);
3855 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3856 			chan->halt_pending);
3857 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3858 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3859 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3860 			chan->complete_split);
3861 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3862 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3863 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3864 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3865 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3866 
3867 		if (chan->xfer_started) {
3868 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3869 
3870 			hfnum = dwc2_readl(hsotg->regs + HFNUM);
3871 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3872 			hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3873 			hcint = dwc2_readl(hsotg->regs + HCINT(i));
3874 			hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3875 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3876 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3877 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3878 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3879 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3880 		}
3881 
3882 		if (!(chan->xfer_started && chan->qh))
3883 			continue;
3884 
3885 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3886 			if (!qtd->in_process)
3887 				break;
3888 			urb = qtd->urb;
3889 			dev_dbg(hsotg->dev, "    URB Info:\n");
3890 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3891 				qtd, urb);
3892 			if (urb) {
3893 				dev_dbg(hsotg->dev,
3894 					"      Dev: %d, EP: %d %s\n",
3895 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3896 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3897 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3898 					"IN" : "OUT");
3899 				dev_dbg(hsotg->dev,
3900 					"      Max packet size: %d\n",
3901 					dwc2_hcd_get_mps(&urb->pipe_info));
3902 				dev_dbg(hsotg->dev,
3903 					"      transfer_buffer: %p\n",
3904 					urb->buf);
3905 				dev_dbg(hsotg->dev,
3906 					"      transfer_dma: %08lx\n",
3907 					(unsigned long)urb->dma);
3908 				dev_dbg(hsotg->dev,
3909 					"      transfer_buffer_length: %d\n",
3910 					urb->length);
3911 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3912 					urb->actual_length);
3913 			}
3914 		}
3915 	}
3916 
3917 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3918 		hsotg->non_periodic_channels);
3919 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3920 		hsotg->periodic_channels);
3921 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3922 	np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3923 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3924 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3925 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3926 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3927 	p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3928 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3929 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3930 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3931 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3932 	dwc2_hcd_dump_frrem(hsotg);
3933 	dwc2_dump_global_registers(hsotg);
3934 	dwc2_dump_host_registers(hsotg);
3935 	dev_dbg(hsotg->dev,
3936 		"************************************************************\n");
3937 	dev_dbg(hsotg->dev, "\n");
3938 #endif
3939 }
3940 
3941 /*
3942  * NOTE: This function will be removed once the peripheral controller code
3943  * is integrated and the driver is stable
3944  */
3945 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
3946 {
3947 #ifdef DWC2_DUMP_FRREM
3948 	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
3949 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3950 		hsotg->frrem_samples, hsotg->frrem_accum,
3951 		hsotg->frrem_samples > 0 ?
3952 		hsotg->frrem_accum / hsotg->frrem_samples : 0);
3953 	dev_dbg(hsotg->dev, "\n");
3954 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
3955 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3956 		hsotg->hfnum_7_samples,
3957 		hsotg->hfnum_7_frrem_accum,
3958 		hsotg->hfnum_7_samples > 0 ?
3959 		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
3960 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
3961 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3962 		hsotg->hfnum_0_samples,
3963 		hsotg->hfnum_0_frrem_accum,
3964 		hsotg->hfnum_0_samples > 0 ?
3965 		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
3966 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
3967 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3968 		hsotg->hfnum_other_samples,
3969 		hsotg->hfnum_other_frrem_accum,
3970 		hsotg->hfnum_other_samples > 0 ?
3971 		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
3972 		0);
3973 	dev_dbg(hsotg->dev, "\n");
3974 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
3975 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3976 		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
3977 		hsotg->hfnum_7_samples_a > 0 ?
3978 		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
3979 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
3980 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3981 		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
3982 		hsotg->hfnum_0_samples_a > 0 ?
3983 		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
3984 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
3985 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3986 		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
3987 		hsotg->hfnum_other_samples_a > 0 ?
3988 		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
3989 		: 0);
3990 	dev_dbg(hsotg->dev, "\n");
3991 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
3992 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3993 		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
3994 		hsotg->hfnum_7_samples_b > 0 ?
3995 		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
3996 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
3997 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3998 		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
3999 		(hsotg->hfnum_0_samples_b > 0) ?
4000 		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
4001 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
4002 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4003 		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
4004 		(hsotg->hfnum_other_samples_b > 0) ?
4005 		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
4006 		: 0);
4007 #endif
4008 }
4009 
4010 struct wrapper_priv_data {
4011 	struct dwc2_hsotg *hsotg;
4012 };
4013 
4014 /* Gets the dwc2_hsotg from a usb_hcd */
4015 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4016 {
4017 	struct wrapper_priv_data *p;
4018 
4019 	p = (struct wrapper_priv_data *) &hcd->hcd_priv;
4020 	return p->hsotg;
4021 }
4022 
4023 static int _dwc2_hcd_start(struct usb_hcd *hcd);
4024 
4025 void dwc2_host_start(struct dwc2_hsotg *hsotg)
4026 {
4027 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
4028 
4029 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
4030 	_dwc2_hcd_start(hcd);
4031 }
4032 
4033 void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
4034 {
4035 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
4036 
4037 	hcd->self.is_b_host = 0;
4038 }
4039 
4040 void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
4041 			int *hub_port)
4042 {
4043 	struct urb *urb = context;
4044 
4045 	if (urb->dev->tt)
4046 		*hub_addr = urb->dev->tt->hub->devnum;
4047 	else
4048 		*hub_addr = 0;
4049 	*hub_port = urb->dev->ttport;
4050 }
4051 
4052 /**
4053  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4054  *
4055  * This will get the dwc2_tt structure (and ttport) associated with the given
4056  * context (which is really just a struct urb pointer).
4057  *
4058  * The first time this is called for a given TT we allocate memory for our
4059  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4060  * then the refcount for the structure will go to 0 and we'll free it.
4061  *
4062  * @hsotg:     The HCD state structure for the DWC OTG controller.
4063  * @qh:        The QH structure.
4064  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4065  * @mem_flags: Flags for allocating memory.
4066  * @ttport:    We'll return this device's port number here.  That's used to
4067  *             reference into the bitmap if we're on a multi_tt hub.
4068  *
4069  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4070  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4071  */
4072 
4073 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4074 				      gfp_t mem_flags, int *ttport)
4075 {
4076 	struct urb *urb = context;
4077 	struct dwc2_tt *dwc_tt = NULL;
4078 
4079 	if (urb->dev->tt) {
4080 		*ttport = urb->dev->ttport;
4081 
4082 		dwc_tt = urb->dev->tt->hcpriv;
4083 		if (dwc_tt == NULL) {
4084 			size_t bitmap_size;
4085 
4086 			/*
4087 			 * For single_tt we need one schedule.  For multi_tt
4088 			 * we need one per port.
4089 			 */
4090 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4091 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4092 			if (urb->dev->tt->multi)
4093 				bitmap_size *= urb->dev->tt->hub->maxchild;
4094 
4095 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4096 					 mem_flags);
4097 			if (dwc_tt == NULL)
4098 				return NULL;
4099 
4100 			dwc_tt->usb_tt = urb->dev->tt;
4101 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4102 		}
4103 
4104 		dwc_tt->refcount++;
4105 	}
4106 
4107 	return dwc_tt;
4108 }
4109 
4110 /**
4111  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4112  *
4113  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4114  * of the structure are done.
4115  *
4116  * It's OK to call this with NULL.
4117  *
4118  * @hsotg:     The HCD state structure for the DWC OTG controller.
4119  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4120  */
4121 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4122 {
4123 	/* Model kfree and make put of NULL a no-op */
4124 	if (dwc_tt == NULL)
4125 		return;
4126 
4127 	WARN_ON(dwc_tt->refcount < 1);
4128 
4129 	dwc_tt->refcount--;
4130 	if (!dwc_tt->refcount) {
4131 		dwc_tt->usb_tt->hcpriv = NULL;
4132 		kfree(dwc_tt);
4133 	}
4134 }
4135 
4136 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4137 {
4138 	struct urb *urb = context;
4139 
4140 	return urb->dev->speed;
4141 }
4142 
4143 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4144 					struct urb *urb)
4145 {
4146 	struct usb_bus *bus = hcd_to_bus(hcd);
4147 
4148 	if (urb->interval)
4149 		bus->bandwidth_allocated += bw / urb->interval;
4150 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4151 		bus->bandwidth_isoc_reqs++;
4152 	else
4153 		bus->bandwidth_int_reqs++;
4154 }
4155 
4156 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4157 				    struct urb *urb)
4158 {
4159 	struct usb_bus *bus = hcd_to_bus(hcd);
4160 
4161 	if (urb->interval)
4162 		bus->bandwidth_allocated -= bw / urb->interval;
4163 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4164 		bus->bandwidth_isoc_reqs--;
4165 	else
4166 		bus->bandwidth_int_reqs--;
4167 }
4168 
4169 /*
4170  * Sets the final status of an URB and returns it to the upper layer. Any
4171  * required cleanup of the URB is performed.
4172  *
4173  * Must be called with interrupt disabled and spinlock held
4174  */
4175 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4176 			int status)
4177 {
4178 	struct urb *urb;
4179 	int i;
4180 
4181 	if (!qtd) {
4182 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4183 		return;
4184 	}
4185 
4186 	if (!qtd->urb) {
4187 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4188 		return;
4189 	}
4190 
4191 	urb = qtd->urb->priv;
4192 	if (!urb) {
4193 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4194 		return;
4195 	}
4196 
4197 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4198 
4199 	if (dbg_urb(urb))
4200 		dev_vdbg(hsotg->dev,
4201 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4202 			 __func__, urb, usb_pipedevice(urb->pipe),
4203 			 usb_pipeendpoint(urb->pipe),
4204 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4205 			 urb->actual_length);
4206 
4207 
4208 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4209 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4210 		for (i = 0; i < urb->number_of_packets; ++i) {
4211 			urb->iso_frame_desc[i].actual_length =
4212 				dwc2_hcd_urb_get_iso_desc_actual_length(
4213 						qtd->urb, i);
4214 			urb->iso_frame_desc[i].status =
4215 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4216 		}
4217 	}
4218 
4219 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4220 		for (i = 0; i < urb->number_of_packets; i++)
4221 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4222 				 i, urb->iso_frame_desc[i].status);
4223 	}
4224 
4225 	urb->status = status;
4226 	if (!status) {
4227 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4228 		    urb->actual_length < urb->transfer_buffer_length)
4229 			urb->status = -EREMOTEIO;
4230 	}
4231 
4232 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4233 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4234 		struct usb_host_endpoint *ep = urb->ep;
4235 
4236 		if (ep)
4237 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4238 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4239 					urb);
4240 	}
4241 
4242 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4243 	urb->hcpriv = NULL;
4244 	kfree(qtd->urb);
4245 	qtd->urb = NULL;
4246 
4247 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4248 }
4249 
4250 /*
4251  * Work queue function for starting the HCD when A-Cable is connected
4252  */
4253 static void dwc2_hcd_start_func(struct work_struct *work)
4254 {
4255 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4256 						start_work.work);
4257 
4258 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4259 	dwc2_host_start(hsotg);
4260 }
4261 
4262 /*
4263  * Reset work queue function
4264  */
4265 static void dwc2_hcd_reset_func(struct work_struct *work)
4266 {
4267 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4268 						reset_work.work);
4269 	unsigned long flags;
4270 	u32 hprt0;
4271 
4272 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4273 
4274 	spin_lock_irqsave(&hsotg->lock, flags);
4275 
4276 	hprt0 = dwc2_read_hprt0(hsotg);
4277 	hprt0 &= ~HPRT0_RST;
4278 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
4279 	hsotg->flags.b.port_reset_change = 1;
4280 
4281 	spin_unlock_irqrestore(&hsotg->lock, flags);
4282 }
4283 
4284 /*
4285  * =========================================================================
4286  *  Linux HC Driver Functions
4287  * =========================================================================
4288  */
4289 
4290 /*
4291  * Initializes the DWC_otg controller and its root hub and prepares it for host
4292  * mode operation. Activates the root port. Returns 0 on success and a negative
4293  * error code on failure.
4294  */
4295 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4296 {
4297 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4298 	struct usb_bus *bus = hcd_to_bus(hcd);
4299 	unsigned long flags;
4300 
4301 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4302 
4303 	spin_lock_irqsave(&hsotg->lock, flags);
4304 	hsotg->lx_state = DWC2_L0;
4305 	hcd->state = HC_STATE_RUNNING;
4306 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4307 
4308 	if (dwc2_is_device_mode(hsotg)) {
4309 		spin_unlock_irqrestore(&hsotg->lock, flags);
4310 		return 0;	/* why 0 ?? */
4311 	}
4312 
4313 	dwc2_hcd_reinit(hsotg);
4314 
4315 	/* Initialize and connect root hub if one is not already attached */
4316 	if (bus->root_hub) {
4317 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4318 		/* Inform the HUB driver to resume */
4319 		usb_hcd_resume_root_hub(hcd);
4320 	}
4321 
4322 	spin_unlock_irqrestore(&hsotg->lock, flags);
4323 	return 0;
4324 }
4325 
4326 /*
4327  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4328  * stopped.
4329  */
4330 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4331 {
4332 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4333 	unsigned long flags;
4334 
4335 	/* Turn off all host-specific interrupts */
4336 	dwc2_disable_host_interrupts(hsotg);
4337 
4338 	/* Wait for interrupt processing to finish */
4339 	synchronize_irq(hcd->irq);
4340 
4341 	spin_lock_irqsave(&hsotg->lock, flags);
4342 	/* Ensure hcd is disconnected */
4343 	dwc2_hcd_disconnect(hsotg, true);
4344 	dwc2_hcd_stop(hsotg);
4345 	hsotg->lx_state = DWC2_L3;
4346 	hcd->state = HC_STATE_HALT;
4347 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4348 	spin_unlock_irqrestore(&hsotg->lock, flags);
4349 
4350 	usleep_range(1000, 3000);
4351 }
4352 
4353 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4354 {
4355 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4356 	unsigned long flags;
4357 	int ret = 0;
4358 	u32 hprt0;
4359 
4360 	spin_lock_irqsave(&hsotg->lock, flags);
4361 
4362 	if (hsotg->lx_state != DWC2_L0)
4363 		goto unlock;
4364 
4365 	if (!HCD_HW_ACCESSIBLE(hcd))
4366 		goto unlock;
4367 
4368 	if (!hsotg->params.hibernation)
4369 		goto skip_power_saving;
4370 
4371 	/*
4372 	 * Drive USB suspend and disable port Power
4373 	 * if usb bus is not suspended.
4374 	 */
4375 	if (!hsotg->bus_suspended) {
4376 		hprt0 = dwc2_read_hprt0(hsotg);
4377 		hprt0 |= HPRT0_SUSP;
4378 		hprt0 &= ~HPRT0_PWR;
4379 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
4380 	}
4381 
4382 	/* Enter hibernation */
4383 	ret = dwc2_enter_hibernation(hsotg);
4384 	if (ret) {
4385 		if (ret != -ENOTSUPP)
4386 			dev_err(hsotg->dev,
4387 				"enter hibernation failed\n");
4388 		goto skip_power_saving;
4389 	}
4390 
4391 	/* Ask phy to be suspended */
4392 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4393 		spin_unlock_irqrestore(&hsotg->lock, flags);
4394 		usb_phy_set_suspend(hsotg->uphy, true);
4395 		spin_lock_irqsave(&hsotg->lock, flags);
4396 	}
4397 
4398 	/* After entering hibernation, hardware is no more accessible */
4399 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4400 
4401 skip_power_saving:
4402 	hsotg->lx_state = DWC2_L2;
4403 unlock:
4404 	spin_unlock_irqrestore(&hsotg->lock, flags);
4405 
4406 	return ret;
4407 }
4408 
4409 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4410 {
4411 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4412 	unsigned long flags;
4413 	int ret = 0;
4414 
4415 	spin_lock_irqsave(&hsotg->lock, flags);
4416 
4417 	if (hsotg->lx_state != DWC2_L2)
4418 		goto unlock;
4419 
4420 	if (!hsotg->params.hibernation) {
4421 		hsotg->lx_state = DWC2_L0;
4422 		goto unlock;
4423 	}
4424 
4425 	/*
4426 	 * Set HW accessible bit before powering on the controller
4427 	 * since an interrupt may rise.
4428 	 */
4429 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4430 
4431 	/*
4432 	 * Enable power if not already done.
4433 	 * This must not be spinlocked since duration
4434 	 * of this call is unknown.
4435 	 */
4436 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4437 		spin_unlock_irqrestore(&hsotg->lock, flags);
4438 		usb_phy_set_suspend(hsotg->uphy, false);
4439 		spin_lock_irqsave(&hsotg->lock, flags);
4440 	}
4441 
4442 	/* Exit hibernation */
4443 	ret = dwc2_exit_hibernation(hsotg, true);
4444 	if (ret && (ret != -ENOTSUPP))
4445 		dev_err(hsotg->dev, "exit hibernation failed\n");
4446 
4447 	hsotg->lx_state = DWC2_L0;
4448 
4449 	spin_unlock_irqrestore(&hsotg->lock, flags);
4450 
4451 	if (hsotg->bus_suspended) {
4452 		spin_lock_irqsave(&hsotg->lock, flags);
4453 		hsotg->flags.b.port_suspend_change = 1;
4454 		spin_unlock_irqrestore(&hsotg->lock, flags);
4455 		dwc2_port_resume(hsotg);
4456 	} else {
4457 		/* Wait for controller to correctly update D+/D- level */
4458 		usleep_range(3000, 5000);
4459 
4460 		/*
4461 		 * Clear Port Enable and Port Status changes.
4462 		 * Enable Port Power.
4463 		 */
4464 		dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4465 				HPRT0_ENACHG, hsotg->regs + HPRT0);
4466 		/* Wait for controller to detect Port Connect */
4467 		usleep_range(5000, 7000);
4468 	}
4469 
4470 	return ret;
4471 unlock:
4472 	spin_unlock_irqrestore(&hsotg->lock, flags);
4473 
4474 	return ret;
4475 }
4476 
4477 /* Returns the current frame number */
4478 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4479 {
4480 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4481 
4482 	return dwc2_hcd_get_frame_number(hsotg);
4483 }
4484 
4485 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4486 			       char *fn_name)
4487 {
4488 #ifdef VERBOSE_DEBUG
4489 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4490 	char *pipetype;
4491 	char *speed;
4492 
4493 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4494 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4495 		 usb_pipedevice(urb->pipe));
4496 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4497 		 usb_pipeendpoint(urb->pipe),
4498 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4499 
4500 	switch (usb_pipetype(urb->pipe)) {
4501 	case PIPE_CONTROL:
4502 		pipetype = "CONTROL";
4503 		break;
4504 	case PIPE_BULK:
4505 		pipetype = "BULK";
4506 		break;
4507 	case PIPE_INTERRUPT:
4508 		pipetype = "INTERRUPT";
4509 		break;
4510 	case PIPE_ISOCHRONOUS:
4511 		pipetype = "ISOCHRONOUS";
4512 		break;
4513 	}
4514 
4515 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4516 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4517 		 "IN" : "OUT");
4518 
4519 	switch (urb->dev->speed) {
4520 	case USB_SPEED_HIGH:
4521 		speed = "HIGH";
4522 		break;
4523 	case USB_SPEED_FULL:
4524 		speed = "FULL";
4525 		break;
4526 	case USB_SPEED_LOW:
4527 		speed = "LOW";
4528 		break;
4529 	default:
4530 		speed = "UNKNOWN";
4531 		break;
4532 	}
4533 
4534 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4535 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4536 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4537 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4538 		 urb->transfer_buffer_length);
4539 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4540 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4541 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4542 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4543 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4544 
4545 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4546 		int i;
4547 
4548 		for (i = 0; i < urb->number_of_packets; i++) {
4549 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4550 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4551 				 urb->iso_frame_desc[i].offset,
4552 				 urb->iso_frame_desc[i].length);
4553 		}
4554 	}
4555 #endif
4556 }
4557 
4558 /*
4559  * Starts processing a USB transfer request specified by a USB Request Block
4560  * (URB). mem_flags indicates the type of memory allocation to use while
4561  * processing this URB.
4562  */
4563 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4564 				 gfp_t mem_flags)
4565 {
4566 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4567 	struct usb_host_endpoint *ep = urb->ep;
4568 	struct dwc2_hcd_urb *dwc2_urb;
4569 	int i;
4570 	int retval;
4571 	int alloc_bandwidth = 0;
4572 	u8 ep_type = 0;
4573 	u32 tflags = 0;
4574 	void *buf;
4575 	unsigned long flags;
4576 	struct dwc2_qh *qh;
4577 	bool qh_allocated = false;
4578 	struct dwc2_qtd *qtd;
4579 
4580 	if (dbg_urb(urb)) {
4581 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4582 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4583 	}
4584 
4585 	if (ep == NULL)
4586 		return -EINVAL;
4587 
4588 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4589 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4590 		spin_lock_irqsave(&hsotg->lock, flags);
4591 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4592 			alloc_bandwidth = 1;
4593 		spin_unlock_irqrestore(&hsotg->lock, flags);
4594 	}
4595 
4596 	switch (usb_pipetype(urb->pipe)) {
4597 	case PIPE_CONTROL:
4598 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4599 		break;
4600 	case PIPE_ISOCHRONOUS:
4601 		ep_type = USB_ENDPOINT_XFER_ISOC;
4602 		break;
4603 	case PIPE_BULK:
4604 		ep_type = USB_ENDPOINT_XFER_BULK;
4605 		break;
4606 	case PIPE_INTERRUPT:
4607 		ep_type = USB_ENDPOINT_XFER_INT;
4608 		break;
4609 	}
4610 
4611 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4612 				      mem_flags);
4613 	if (!dwc2_urb)
4614 		return -ENOMEM;
4615 
4616 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4617 				  usb_pipeendpoint(urb->pipe), ep_type,
4618 				  usb_pipein(urb->pipe),
4619 				  usb_maxpacket(urb->dev, urb->pipe,
4620 						!(usb_pipein(urb->pipe))));
4621 
4622 	buf = urb->transfer_buffer;
4623 
4624 	if (hcd->self.uses_dma) {
4625 		if (!buf && (urb->transfer_dma & 3)) {
4626 			dev_err(hsotg->dev,
4627 				"%s: unaligned transfer with no transfer_buffer",
4628 				__func__);
4629 			retval = -EINVAL;
4630 			goto fail0;
4631 		}
4632 	}
4633 
4634 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4635 		tflags |= URB_GIVEBACK_ASAP;
4636 	if (urb->transfer_flags & URB_ZERO_PACKET)
4637 		tflags |= URB_SEND_ZERO_PACKET;
4638 
4639 	dwc2_urb->priv = urb;
4640 	dwc2_urb->buf = buf;
4641 	dwc2_urb->dma = urb->transfer_dma;
4642 	dwc2_urb->length = urb->transfer_buffer_length;
4643 	dwc2_urb->setup_packet = urb->setup_packet;
4644 	dwc2_urb->setup_dma = urb->setup_dma;
4645 	dwc2_urb->flags = tflags;
4646 	dwc2_urb->interval = urb->interval;
4647 	dwc2_urb->status = -EINPROGRESS;
4648 
4649 	for (i = 0; i < urb->number_of_packets; ++i)
4650 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4651 						 urb->iso_frame_desc[i].offset,
4652 						 urb->iso_frame_desc[i].length);
4653 
4654 	urb->hcpriv = dwc2_urb;
4655 	qh = (struct dwc2_qh *) ep->hcpriv;
4656 	/* Create QH for the endpoint if it doesn't exist */
4657 	if (!qh) {
4658 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4659 		if (!qh) {
4660 			retval = -ENOMEM;
4661 			goto fail0;
4662 		}
4663 		ep->hcpriv = qh;
4664 		qh_allocated = true;
4665 	}
4666 
4667 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4668 	if (!qtd) {
4669 		retval = -ENOMEM;
4670 		goto fail1;
4671 	}
4672 
4673 	spin_lock_irqsave(&hsotg->lock, flags);
4674 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4675 	if (retval)
4676 		goto fail2;
4677 
4678 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4679 	if (retval)
4680 		goto fail3;
4681 
4682 	if (alloc_bandwidth) {
4683 		dwc2_allocate_bus_bandwidth(hcd,
4684 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4685 				urb);
4686 	}
4687 
4688 	spin_unlock_irqrestore(&hsotg->lock, flags);
4689 
4690 	return 0;
4691 
4692 fail3:
4693 	dwc2_urb->priv = NULL;
4694 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4695 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4696 		qh->channel->qh = NULL;
4697 fail2:
4698 	spin_unlock_irqrestore(&hsotg->lock, flags);
4699 	urb->hcpriv = NULL;
4700 	kfree(qtd);
4701 	qtd = NULL;
4702 fail1:
4703 	if (qh_allocated) {
4704 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4705 
4706 		ep->hcpriv = NULL;
4707 		dwc2_hcd_qh_unlink(hsotg, qh);
4708 		/* Free each QTD in the QH's QTD list */
4709 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4710 							 qtd_list_entry)
4711 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4712 		dwc2_hcd_qh_free(hsotg, qh);
4713 	}
4714 fail0:
4715 	kfree(dwc2_urb);
4716 
4717 	return retval;
4718 }
4719 
4720 /*
4721  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4722  */
4723 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4724 				 int status)
4725 {
4726 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4727 	int rc;
4728 	unsigned long flags;
4729 
4730 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4731 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4732 
4733 	spin_lock_irqsave(&hsotg->lock, flags);
4734 
4735 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4736 	if (rc)
4737 		goto out;
4738 
4739 	if (!urb->hcpriv) {
4740 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4741 		goto out;
4742 	}
4743 
4744 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4745 
4746 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4747 
4748 	kfree(urb->hcpriv);
4749 	urb->hcpriv = NULL;
4750 
4751 	/* Higher layer software sets URB status */
4752 	spin_unlock(&hsotg->lock);
4753 	usb_hcd_giveback_urb(hcd, urb, status);
4754 	spin_lock(&hsotg->lock);
4755 
4756 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4757 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4758 out:
4759 	spin_unlock_irqrestore(&hsotg->lock, flags);
4760 
4761 	return rc;
4762 }
4763 
4764 /*
4765  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4766  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4767  * must already be dequeued.
4768  */
4769 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4770 				       struct usb_host_endpoint *ep)
4771 {
4772 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4773 
4774 	dev_dbg(hsotg->dev,
4775 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4776 		ep->desc.bEndpointAddress, ep->hcpriv);
4777 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4778 }
4779 
4780 /*
4781  * Resets endpoint specific parameter values, in current version used to reset
4782  * the data toggle (as a WA). This function can be called from usb_clear_halt
4783  * routine.
4784  */
4785 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4786 				     struct usb_host_endpoint *ep)
4787 {
4788 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4789 	unsigned long flags;
4790 
4791 	dev_dbg(hsotg->dev,
4792 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4793 		ep->desc.bEndpointAddress);
4794 
4795 	spin_lock_irqsave(&hsotg->lock, flags);
4796 	dwc2_hcd_endpoint_reset(hsotg, ep);
4797 	spin_unlock_irqrestore(&hsotg->lock, flags);
4798 }
4799 
4800 /*
4801  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4802  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4803  * interrupt.
4804  *
4805  * This function is called by the USB core when an interrupt occurs
4806  */
4807 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4808 {
4809 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4810 
4811 	return dwc2_handle_hcd_intr(hsotg);
4812 }
4813 
4814 /*
4815  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4816  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4817  * is the status change indicator for the single root port. Returns 1 if either
4818  * change indicator is 1, otherwise returns 0.
4819  */
4820 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4821 {
4822 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4823 
4824 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4825 	return buf[0] != 0;
4826 }
4827 
4828 /* Handles hub class-specific requests */
4829 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4830 				 u16 windex, char *buf, u16 wlength)
4831 {
4832 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4833 					  wvalue, windex, buf, wlength);
4834 	return retval;
4835 }
4836 
4837 /* Handles hub TT buffer clear completions */
4838 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4839 					       struct usb_host_endpoint *ep)
4840 {
4841 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4842 	struct dwc2_qh *qh;
4843 	unsigned long flags;
4844 
4845 	qh = ep->hcpriv;
4846 	if (!qh)
4847 		return;
4848 
4849 	spin_lock_irqsave(&hsotg->lock, flags);
4850 	qh->tt_buffer_dirty = 0;
4851 
4852 	if (hsotg->flags.b.port_connect_status)
4853 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4854 
4855 	spin_unlock_irqrestore(&hsotg->lock, flags);
4856 }
4857 
4858 static struct hc_driver dwc2_hc_driver = {
4859 	.description = "dwc2_hsotg",
4860 	.product_desc = "DWC OTG Controller",
4861 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4862 
4863 	.irq = _dwc2_hcd_irq,
4864 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4865 
4866 	.start = _dwc2_hcd_start,
4867 	.stop = _dwc2_hcd_stop,
4868 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4869 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4870 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4871 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4872 	.get_frame_number = _dwc2_hcd_get_frame_number,
4873 
4874 	.hub_status_data = _dwc2_hcd_hub_status_data,
4875 	.hub_control = _dwc2_hcd_hub_control,
4876 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4877 
4878 	.bus_suspend = _dwc2_hcd_suspend,
4879 	.bus_resume = _dwc2_hcd_resume,
4880 
4881 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4882 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4883 };
4884 
4885 /*
4886  * Frees secondary storage associated with the dwc2_hsotg structure contained
4887  * in the struct usb_hcd field
4888  */
4889 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4890 {
4891 	u32 ahbcfg;
4892 	u32 dctl;
4893 	int i;
4894 
4895 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4896 
4897 	/* Free memory for QH/QTD lists */
4898 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4899 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4900 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4901 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4902 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4903 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4904 
4905 	/* Free memory for the host channels */
4906 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4907 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4908 
4909 		if (chan != NULL) {
4910 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4911 				i, chan);
4912 			hsotg->hc_ptr_array[i] = NULL;
4913 			kfree(chan);
4914 		}
4915 	}
4916 
4917 	if (hsotg->params.host_dma > 0) {
4918 		if (hsotg->status_buf) {
4919 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4920 					  hsotg->status_buf,
4921 					  hsotg->status_buf_dma);
4922 			hsotg->status_buf = NULL;
4923 		}
4924 	} else {
4925 		kfree(hsotg->status_buf);
4926 		hsotg->status_buf = NULL;
4927 	}
4928 
4929 	ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
4930 
4931 	/* Disable all interrupts */
4932 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4933 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
4934 	dwc2_writel(0, hsotg->regs + GINTMSK);
4935 
4936 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4937 		dctl = dwc2_readl(hsotg->regs + DCTL);
4938 		dctl |= DCTL_SFTDISCON;
4939 		dwc2_writel(dctl, hsotg->regs + DCTL);
4940 	}
4941 
4942 	if (hsotg->wq_otg) {
4943 		if (!cancel_work_sync(&hsotg->wf_otg))
4944 			flush_workqueue(hsotg->wq_otg);
4945 		destroy_workqueue(hsotg->wq_otg);
4946 	}
4947 
4948 	del_timer(&hsotg->wkp_timer);
4949 }
4950 
4951 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4952 {
4953 	/* Turn off all host-specific interrupts */
4954 	dwc2_disable_host_interrupts(hsotg);
4955 
4956 	dwc2_hcd_free(hsotg);
4957 }
4958 
4959 /*
4960  * Initializes the HCD. This function allocates memory for and initializes the
4961  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
4962  * USB bus with the core and calls the hc_driver->start() function. It returns
4963  * a negative error on failure.
4964  */
4965 int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
4966 {
4967 	struct usb_hcd *hcd;
4968 	struct dwc2_host_chan *channel;
4969 	u32 hcfg;
4970 	int i, num_channels;
4971 	int retval;
4972 
4973 	if (usb_disabled())
4974 		return -ENODEV;
4975 
4976 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
4977 
4978 	retval = -ENOMEM;
4979 
4980 	hcfg = dwc2_readl(hsotg->regs + HCFG);
4981 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
4982 
4983 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
4984 	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
4985 					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4986 	if (!hsotg->frame_num_array)
4987 		goto error1;
4988 	hsotg->last_frame_num_array = kzalloc(
4989 			sizeof(*hsotg->last_frame_num_array) *
4990 			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4991 	if (!hsotg->last_frame_num_array)
4992 		goto error1;
4993 #endif
4994 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
4995 
4996 	/* Check if the bus driver or platform code has setup a dma_mask */
4997 	if (hsotg->params.host_dma > 0 &&
4998 	    hsotg->dev->dma_mask == NULL) {
4999 		dev_warn(hsotg->dev,
5000 			 "dma_mask not set, disabling DMA\n");
5001 		hsotg->params.host_dma = 0;
5002 		hsotg->params.dma_desc_enable = 0;
5003 	}
5004 
5005 	/* Set device flags indicating whether the HCD supports DMA */
5006 	if (hsotg->params.host_dma > 0) {
5007 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5008 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5009 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5010 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5011 	}
5012 
5013 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5014 	if (!hcd)
5015 		goto error1;
5016 
5017 	if (hsotg->params.host_dma <= 0)
5018 		hcd->self.uses_dma = 0;
5019 
5020 	hcd->has_tt = 1;
5021 
5022 	((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
5023 	hsotg->priv = hcd;
5024 
5025 	/*
5026 	 * Disable the global interrupt until all the interrupt handlers are
5027 	 * installed
5028 	 */
5029 	dwc2_disable_global_interrupts(hsotg);
5030 
5031 	/* Initialize the DWC_otg core, and select the Phy type */
5032 	retval = dwc2_core_init(hsotg, true);
5033 	if (retval)
5034 		goto error2;
5035 
5036 	/* Create new workqueue and init work */
5037 	retval = -ENOMEM;
5038 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5039 	if (!hsotg->wq_otg) {
5040 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5041 		goto error2;
5042 	}
5043 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5044 
5045 	setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
5046 		    (unsigned long)hsotg);
5047 
5048 	/* Initialize the non-periodic schedule */
5049 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5050 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5051 
5052 	/* Initialize the periodic schedule */
5053 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5054 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5055 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5056 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5057 
5058 	INIT_LIST_HEAD(&hsotg->split_order);
5059 
5060 	/*
5061 	 * Create a host channel descriptor for each host channel implemented
5062 	 * in the controller. Initialize the channel descriptor array.
5063 	 */
5064 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5065 	num_channels = hsotg->params.host_channels;
5066 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5067 
5068 	for (i = 0; i < num_channels; i++) {
5069 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5070 		if (channel == NULL)
5071 			goto error3;
5072 		channel->hc_num = i;
5073 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5074 		hsotg->hc_ptr_array[i] = channel;
5075 	}
5076 
5077 	/* Initialize hsotg start work */
5078 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5079 
5080 	/* Initialize port reset work */
5081 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5082 
5083 	/*
5084 	 * Allocate space for storing data on status transactions. Normally no
5085 	 * data is sent, but this space acts as a bit bucket. This must be
5086 	 * done after usb_add_hcd since that function allocates the DMA buffer
5087 	 * pool.
5088 	 */
5089 	if (hsotg->params.host_dma > 0)
5090 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5091 					DWC2_HCD_STATUS_BUF_SIZE,
5092 					&hsotg->status_buf_dma, GFP_KERNEL);
5093 	else
5094 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5095 					  GFP_KERNEL);
5096 
5097 	if (!hsotg->status_buf)
5098 		goto error3;
5099 
5100 	/*
5101 	 * Create kmem caches to handle descriptor buffers in descriptor
5102 	 * DMA mode.
5103 	 * Alignment must be set to 512 bytes.
5104 	 */
5105 	if (hsotg->params.dma_desc_enable ||
5106 	    hsotg->params.dma_desc_fs_enable) {
5107 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5108 				sizeof(struct dwc2_dma_desc) *
5109 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5110 				NULL);
5111 		if (!hsotg->desc_gen_cache) {
5112 			dev_err(hsotg->dev,
5113 				"unable to create dwc2 generic desc cache\n");
5114 
5115 			/*
5116 			 * Disable descriptor dma mode since it will not be
5117 			 * usable.
5118 			 */
5119 			hsotg->params.dma_desc_enable = 0;
5120 			hsotg->params.dma_desc_fs_enable = 0;
5121 		}
5122 
5123 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5124 				sizeof(struct dwc2_dma_desc) *
5125 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5126 		if (!hsotg->desc_hsisoc_cache) {
5127 			dev_err(hsotg->dev,
5128 				"unable to create dwc2 hs isoc desc cache\n");
5129 
5130 			kmem_cache_destroy(hsotg->desc_gen_cache);
5131 
5132 			/*
5133 			 * Disable descriptor dma mode since it will not be
5134 			 * usable.
5135 			 */
5136 			hsotg->params.dma_desc_enable = 0;
5137 			hsotg->params.dma_desc_fs_enable = 0;
5138 		}
5139 	}
5140 
5141 	hsotg->otg_port = 1;
5142 	hsotg->frame_list = NULL;
5143 	hsotg->frame_list_dma = 0;
5144 	hsotg->periodic_qh_count = 0;
5145 
5146 	/* Initiate lx_state to L3 disconnected state */
5147 	hsotg->lx_state = DWC2_L3;
5148 
5149 	hcd->self.otg_port = hsotg->otg_port;
5150 
5151 	/* Don't support SG list at this point */
5152 	hcd->self.sg_tablesize = 0;
5153 
5154 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5155 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5156 
5157 	/*
5158 	 * Finish generic HCD initialization and start the HCD. This function
5159 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5160 	 * IRQ line, and calls hcd_start method.
5161 	 */
5162 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5163 	if (retval < 0)
5164 		goto error4;
5165 
5166 	device_wakeup_enable(hcd->self.controller);
5167 
5168 	dwc2_hcd_dump_state(hsotg);
5169 
5170 	dwc2_enable_global_interrupts(hsotg);
5171 
5172 	return 0;
5173 
5174 error4:
5175 	kmem_cache_destroy(hsotg->desc_gen_cache);
5176 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5177 error3:
5178 	dwc2_hcd_release(hsotg);
5179 error2:
5180 	usb_put_hcd(hcd);
5181 error1:
5182 
5183 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5184 	kfree(hsotg->last_frame_num_array);
5185 	kfree(hsotg->frame_num_array);
5186 #endif
5187 
5188 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5189 	return retval;
5190 }
5191 
5192 /*
5193  * Removes the HCD.
5194  * Frees memory and resources associated with the HCD and deregisters the bus.
5195  */
5196 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5197 {
5198 	struct usb_hcd *hcd;
5199 
5200 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5201 
5202 	hcd = dwc2_hsotg_to_hcd(hsotg);
5203 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5204 
5205 	if (!hcd) {
5206 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5207 			__func__);
5208 		return;
5209 	}
5210 
5211 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5212 		otg_set_host(hsotg->uphy->otg, NULL);
5213 
5214 	usb_remove_hcd(hcd);
5215 	hsotg->priv = NULL;
5216 
5217 	kmem_cache_destroy(hsotg->desc_gen_cache);
5218 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5219 
5220 	dwc2_hcd_release(hsotg);
5221 	usb_put_hcd(hcd);
5222 
5223 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5224 	kfree(hsotg->last_frame_num_array);
5225 	kfree(hsotg->frame_num_array);
5226 #endif
5227 }
5228 
5229 /**
5230  * dwc2_backup_host_registers() - Backup controller host registers.
5231  * When suspending usb bus, registers needs to be backuped
5232  * if controller power is disabled once suspended.
5233  *
5234  * @hsotg: Programming view of the DWC_otg controller
5235  */
5236 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5237 {
5238 	struct dwc2_hregs_backup *hr;
5239 	int i;
5240 
5241 	dev_dbg(hsotg->dev, "%s\n", __func__);
5242 
5243 	/* Backup Host regs */
5244 	hr = &hsotg->hr_backup;
5245 	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5246 	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5247 	for (i = 0; i < hsotg->params.host_channels; ++i)
5248 		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5249 
5250 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5251 	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5252 	hr->valid = true;
5253 
5254 	return 0;
5255 }
5256 
5257 /**
5258  * dwc2_restore_host_registers() - Restore controller host registers.
5259  * When resuming usb bus, device registers needs to be restored
5260  * if controller power were disabled.
5261  *
5262  * @hsotg: Programming view of the DWC_otg controller
5263  */
5264 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5265 {
5266 	struct dwc2_hregs_backup *hr;
5267 	int i;
5268 
5269 	dev_dbg(hsotg->dev, "%s\n", __func__);
5270 
5271 	/* Restore host regs */
5272 	hr = &hsotg->hr_backup;
5273 	if (!hr->valid) {
5274 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5275 			__func__);
5276 		return -EINVAL;
5277 	}
5278 	hr->valid = false;
5279 
5280 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5281 	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5282 
5283 	for (i = 0; i < hsotg->params.host_channels; ++i)
5284 		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5285 
5286 	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5287 	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5288 	hsotg->frame_number = 0;
5289 
5290 	return 0;
5291 }
5292