xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision e2c75e76)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60 
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66 
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 	u32 intmsk;
76 
77 	/* Clear any pending OTG Interrupts */
78 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
79 
80 	/* Clear any pending interrupts */
81 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
82 
83 	/* Enable the interrupts in the GINTMSK */
84 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85 
86 	if (!hsotg->params.host_dma)
87 		intmsk |= GINTSTS_RXFLVL;
88 	if (!hsotg->params.external_id_pin_ctl)
89 		intmsk |= GINTSTS_CONIDSTSCHNG;
90 
91 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 		  GINTSTS_SESSREQINT;
93 
94 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
95 }
96 
97 /*
98  * Initializes the FSLSPClkSel field of the HCFG register depending on the
99  * PHY type
100  */
101 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
102 {
103 	u32 hcfg, val;
104 
105 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
106 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
107 	     hsotg->params.ulpi_fs_ls) ||
108 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
109 		/* Full speed PHY */
110 		val = HCFG_FSLSPCLKSEL_48_MHZ;
111 	} else {
112 		/* High speed PHY running at full speed or high speed */
113 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
114 	}
115 
116 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
117 	hcfg = dwc2_readl(hsotg->regs + HCFG);
118 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
119 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
120 	dwc2_writel(hcfg, hsotg->regs + HCFG);
121 }
122 
123 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
124 {
125 	u32 usbcfg, ggpio, i2cctl;
126 	int retval = 0;
127 
128 	/*
129 	 * core_init() is now called on every switch so only call the
130 	 * following for the first time through
131 	 */
132 	if (select_phy) {
133 		dev_dbg(hsotg->dev, "FS PHY selected\n");
134 
135 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
136 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
137 			usbcfg |= GUSBCFG_PHYSEL;
138 			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
139 
140 			/* Reset after a PHY select */
141 			retval = dwc2_core_reset_and_force_dr_mode(hsotg);
142 
143 			if (retval) {
144 				dev_err(hsotg->dev,
145 					"%s: Reset failed, aborting", __func__);
146 				return retval;
147 			}
148 		}
149 
150 		if (hsotg->params.activate_stm_fs_transceiver) {
151 			ggpio = dwc2_readl(hsotg->regs + GGPIO);
152 			if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
153 				dev_dbg(hsotg->dev, "Activating transceiver\n");
154 				/*
155 				 * STM32F4x9 uses the GGPIO register as general
156 				 * core configuration register.
157 				 */
158 				ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
159 				dwc2_writel(ggpio, hsotg->regs + GGPIO);
160 			}
161 		}
162 	}
163 
164 	/*
165 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
166 	 * do this on HNP Dev/Host mode switches (done in dev_init and
167 	 * host_init).
168 	 */
169 	if (dwc2_is_host_mode(hsotg))
170 		dwc2_init_fs_ls_pclk_sel(hsotg);
171 
172 	if (hsotg->params.i2c_enable) {
173 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
174 
175 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
176 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
177 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
178 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
179 
180 		/* Program GI2CCTL.I2CEn */
181 		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
182 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
183 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
184 		i2cctl &= ~GI2CCTL_I2CEN;
185 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
186 		i2cctl |= GI2CCTL_I2CEN;
187 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
188 	}
189 
190 	return retval;
191 }
192 
193 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
194 {
195 	u32 usbcfg, usbcfg_old;
196 	int retval = 0;
197 
198 	if (!select_phy)
199 		return 0;
200 
201 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
202 	usbcfg_old = usbcfg;
203 
204 	/*
205 	 * HS PHY parameters. These parameters are preserved during soft reset
206 	 * so only program the first time. Do a soft reset immediately after
207 	 * setting phyif.
208 	 */
209 	switch (hsotg->params.phy_type) {
210 	case DWC2_PHY_TYPE_PARAM_ULPI:
211 		/* ULPI interface */
212 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
213 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
214 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
215 		if (hsotg->params.phy_ulpi_ddr)
216 			usbcfg |= GUSBCFG_DDRSEL;
217 
218 		/* Set external VBUS indicator as needed. */
219 		if (hsotg->params.oc_disable)
220 			usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
221 				   GUSBCFG_INDICATORPASSTHROUGH);
222 		break;
223 	case DWC2_PHY_TYPE_PARAM_UTMI:
224 		/* UTMI+ interface */
225 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
226 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
227 		if (hsotg->params.phy_utmi_width == 16)
228 			usbcfg |= GUSBCFG_PHYIF16;
229 		break;
230 	default:
231 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
232 		break;
233 	}
234 
235 	if (usbcfg != usbcfg_old) {
236 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
237 
238 		/* Reset after setting the PHY parameters */
239 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
240 		if (retval) {
241 			dev_err(hsotg->dev,
242 				"%s: Reset failed, aborting", __func__);
243 			return retval;
244 		}
245 	}
246 
247 	return retval;
248 }
249 
250 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
251 {
252 	u32 usbcfg;
253 	int retval = 0;
254 
255 	if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
256 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
257 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
258 		/* If FS/LS mode with FS/LS PHY */
259 		retval = dwc2_fs_phy_init(hsotg, select_phy);
260 		if (retval)
261 			return retval;
262 	} else {
263 		/* High speed PHY */
264 		retval = dwc2_hs_phy_init(hsotg, select_phy);
265 		if (retval)
266 			return retval;
267 	}
268 
269 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
270 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
271 	    hsotg->params.ulpi_fs_ls) {
272 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
273 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
274 		usbcfg |= GUSBCFG_ULPI_FS_LS;
275 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
276 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
277 	} else {
278 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
279 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
280 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
281 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
282 	}
283 
284 	return retval;
285 }
286 
287 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
288 {
289 	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
290 
291 	switch (hsotg->hw_params.arch) {
292 	case GHWCFG2_EXT_DMA_ARCH:
293 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
294 		return -EINVAL;
295 
296 	case GHWCFG2_INT_DMA_ARCH:
297 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
298 		if (hsotg->params.ahbcfg != -1) {
299 			ahbcfg &= GAHBCFG_CTRL_MASK;
300 			ahbcfg |= hsotg->params.ahbcfg &
301 				  ~GAHBCFG_CTRL_MASK;
302 		}
303 		break;
304 
305 	case GHWCFG2_SLAVE_ONLY_ARCH:
306 	default:
307 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
308 		break;
309 	}
310 
311 	dev_dbg(hsotg->dev, "host_dma:%d dma_desc_enable:%d\n",
312 		hsotg->params.host_dma,
313 		hsotg->params.dma_desc_enable);
314 
315 	if (hsotg->params.host_dma) {
316 		if (hsotg->params.dma_desc_enable)
317 			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
318 		else
319 			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
320 	} else {
321 		dev_dbg(hsotg->dev, "Using Slave mode\n");
322 		hsotg->params.dma_desc_enable = false;
323 	}
324 
325 	if (hsotg->params.host_dma)
326 		ahbcfg |= GAHBCFG_DMA_EN;
327 
328 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
329 
330 	return 0;
331 }
332 
333 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
334 {
335 	u32 usbcfg;
336 
337 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
338 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
339 
340 	switch (hsotg->hw_params.op_mode) {
341 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
342 		if (hsotg->params.otg_cap ==
343 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
344 			usbcfg |= GUSBCFG_HNPCAP;
345 		if (hsotg->params.otg_cap !=
346 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
347 			usbcfg |= GUSBCFG_SRPCAP;
348 		break;
349 
350 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
351 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
352 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
353 		if (hsotg->params.otg_cap !=
354 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
355 			usbcfg |= GUSBCFG_SRPCAP;
356 		break;
357 
358 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
359 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
360 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
361 	default:
362 		break;
363 	}
364 
365 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
366 }
367 
368 /**
369  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
370  *
371  * @hsotg: Programming view of DWC_otg controller
372  */
373 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
374 {
375 	u32 intmsk;
376 
377 	dev_dbg(hsotg->dev, "%s()\n", __func__);
378 
379 	/* Disable all interrupts */
380 	dwc2_writel(0, hsotg->regs + GINTMSK);
381 	dwc2_writel(0, hsotg->regs + HAINTMSK);
382 
383 	/* Enable the common interrupts */
384 	dwc2_enable_common_interrupts(hsotg);
385 
386 	/* Enable host mode interrupts without disturbing common interrupts */
387 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
388 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
389 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
390 }
391 
392 /**
393  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
394  *
395  * @hsotg: Programming view of DWC_otg controller
396  */
397 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
398 {
399 	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
400 
401 	/* Disable host mode interrupts without disturbing common interrupts */
402 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
403 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
404 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
405 }
406 
407 /*
408  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
409  * For system that have a total fifo depth that is smaller than the default
410  * RX + TX fifo size.
411  *
412  * @hsotg: Programming view of DWC_otg controller
413  */
414 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
415 {
416 	struct dwc2_core_params *params = &hsotg->params;
417 	struct dwc2_hw_params *hw = &hsotg->hw_params;
418 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
419 
420 	total_fifo_size = hw->total_fifo_size;
421 	rxfsiz = params->host_rx_fifo_size;
422 	nptxfsiz = params->host_nperio_tx_fifo_size;
423 	ptxfsiz = params->host_perio_tx_fifo_size;
424 
425 	/*
426 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
427 	 * allocation with support for high bandwidth endpoints. Synopsys
428 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
429 	 * non-periodic as 512.
430 	 */
431 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
432 		/*
433 		 * For Buffer DMA mode/Scatter Gather DMA mode
434 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
435 		 * with n = number of host channel.
436 		 * 2 * ((1024/4) + 2) = 516
437 		 */
438 		rxfsiz = 516 + hw->host_channels;
439 
440 		/*
441 		 * min non-periodic tx fifo depth
442 		 * 2 * (largest non-periodic USB packet used / 4)
443 		 * 2 * (512/4) = 256
444 		 */
445 		nptxfsiz = 256;
446 
447 		/*
448 		 * min periodic tx fifo depth
449 		 * (largest packet size*MC)/4
450 		 * (1024 * 3)/4 = 768
451 		 */
452 		ptxfsiz = 768;
453 
454 		params->host_rx_fifo_size = rxfsiz;
455 		params->host_nperio_tx_fifo_size = nptxfsiz;
456 		params->host_perio_tx_fifo_size = ptxfsiz;
457 	}
458 
459 	/*
460 	 * If the summation of RX, NPTX and PTX fifo sizes is still
461 	 * bigger than the total_fifo_size, then we have a problem.
462 	 *
463 	 * We won't be able to allocate as many endpoints. Right now,
464 	 * we're just printing an error message, but ideally this FIFO
465 	 * allocation algorithm would be improved in the future.
466 	 *
467 	 * FIXME improve this FIFO allocation algorithm.
468 	 */
469 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
470 		dev_err(hsotg->dev, "invalid fifo sizes\n");
471 }
472 
473 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
474 {
475 	struct dwc2_core_params *params = &hsotg->params;
476 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
477 
478 	if (!params->enable_dynamic_fifo)
479 		return;
480 
481 	dwc2_calculate_dynamic_fifo(hsotg);
482 
483 	/* Rx FIFO */
484 	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
485 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
486 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
487 	grxfsiz |= params->host_rx_fifo_size <<
488 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
489 	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
490 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
491 		dwc2_readl(hsotg->regs + GRXFSIZ));
492 
493 	/* Non-periodic Tx FIFO */
494 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
495 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
496 	nptxfsiz = params->host_nperio_tx_fifo_size <<
497 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
498 	nptxfsiz |= params->host_rx_fifo_size <<
499 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
500 	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
501 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
502 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
503 
504 	/* Periodic Tx FIFO */
505 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
506 		dwc2_readl(hsotg->regs + HPTXFSIZ));
507 	hptxfsiz = params->host_perio_tx_fifo_size <<
508 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
509 	hptxfsiz |= (params->host_rx_fifo_size +
510 		     params->host_nperio_tx_fifo_size) <<
511 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
512 	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
513 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
514 		dwc2_readl(hsotg->regs + HPTXFSIZ));
515 
516 	if (hsotg->params.en_multiple_tx_fifo &&
517 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
518 		/*
519 		 * This feature was implemented in 2.91a version
520 		 * Global DFIFOCFG calculation for Host mode -
521 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
522 		 */
523 		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
524 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
525 		dfifocfg |= (params->host_rx_fifo_size +
526 			     params->host_nperio_tx_fifo_size +
527 			     params->host_perio_tx_fifo_size) <<
528 			    GDFIFOCFG_EPINFOBASE_SHIFT &
529 			    GDFIFOCFG_EPINFOBASE_MASK;
530 		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
531 	}
532 }
533 
534 /**
535  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
536  * the HFIR register according to PHY type and speed
537  *
538  * @hsotg: Programming view of DWC_otg controller
539  *
540  * NOTE: The caller can modify the value of the HFIR register only after the
541  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
542  * has been set
543  */
544 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
545 {
546 	u32 usbcfg;
547 	u32 hprt0;
548 	int clock = 60;	/* default value */
549 
550 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
551 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
552 
553 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
554 	    !(usbcfg & GUSBCFG_PHYIF16))
555 		clock = 60;
556 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
557 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
558 		clock = 48;
559 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
560 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
561 		clock = 30;
562 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
563 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
564 		clock = 60;
565 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
566 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
567 		clock = 48;
568 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
569 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
570 		clock = 48;
571 	if ((usbcfg & GUSBCFG_PHYSEL) &&
572 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
573 		clock = 48;
574 
575 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
576 		/* High speed case */
577 		return 125 * clock - 1;
578 
579 	/* FS/LS case */
580 	return 1000 * clock - 1;
581 }
582 
583 /**
584  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
585  * buffer
586  *
587  * @core_if: Programming view of DWC_otg controller
588  * @dest:    Destination buffer for the packet
589  * @bytes:   Number of bytes to copy to the destination
590  */
591 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
592 {
593 	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
594 	u32 *data_buf = (u32 *)dest;
595 	int word_count = (bytes + 3) / 4;
596 	int i;
597 
598 	/*
599 	 * Todo: Account for the case where dest is not dword aligned. This
600 	 * requires reading data from the FIFO into a u32 temp buffer, then
601 	 * moving it into the data buffer.
602 	 */
603 
604 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
605 
606 	for (i = 0; i < word_count; i++, data_buf++)
607 		*data_buf = dwc2_readl(fifo);
608 }
609 
610 /**
611  * dwc2_dump_channel_info() - Prints the state of a host channel
612  *
613  * @hsotg: Programming view of DWC_otg controller
614  * @chan:  Pointer to the channel to dump
615  *
616  * Must be called with interrupt disabled and spinlock held
617  *
618  * NOTE: This function will be removed once the peripheral controller code
619  * is integrated and the driver is stable
620  */
621 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
622 				   struct dwc2_host_chan *chan)
623 {
624 #ifdef VERBOSE_DEBUG
625 	int num_channels = hsotg->params.host_channels;
626 	struct dwc2_qh *qh;
627 	u32 hcchar;
628 	u32 hcsplt;
629 	u32 hctsiz;
630 	u32 hc_dma;
631 	int i;
632 
633 	if (!chan)
634 		return;
635 
636 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
637 	hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
638 	hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
639 	hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
640 
641 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
642 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
643 		hcchar, hcsplt);
644 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
645 		hctsiz, hc_dma);
646 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
647 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
648 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
649 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
650 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
651 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
652 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
653 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
654 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
655 		(unsigned long)chan->xfer_dma);
656 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
657 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
658 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
659 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
660 			    qh_list_entry)
661 		dev_dbg(hsotg->dev, "    %p\n", qh);
662 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
663 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
664 			    qh_list_entry)
665 		dev_dbg(hsotg->dev, "    %p\n", qh);
666 	dev_dbg(hsotg->dev, "  NP active sched:\n");
667 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
668 			    qh_list_entry)
669 		dev_dbg(hsotg->dev, "    %p\n", qh);
670 	dev_dbg(hsotg->dev, "  Channels:\n");
671 	for (i = 0; i < num_channels; i++) {
672 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
673 
674 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
675 	}
676 #endif /* VERBOSE_DEBUG */
677 }
678 
679 static int _dwc2_hcd_start(struct usb_hcd *hcd);
680 
681 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
682 {
683 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
684 
685 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
686 	_dwc2_hcd_start(hcd);
687 }
688 
689 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
690 {
691 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
692 
693 	hcd->self.is_b_host = 0;
694 }
695 
696 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
697 			       int *hub_addr, int *hub_port)
698 {
699 	struct urb *urb = context;
700 
701 	if (urb->dev->tt)
702 		*hub_addr = urb->dev->tt->hub->devnum;
703 	else
704 		*hub_addr = 0;
705 	*hub_port = urb->dev->ttport;
706 }
707 
708 /*
709  * =========================================================================
710  *  Low Level Host Channel Access Functions
711  * =========================================================================
712  */
713 
714 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
715 				      struct dwc2_host_chan *chan)
716 {
717 	u32 hcintmsk = HCINTMSK_CHHLTD;
718 
719 	switch (chan->ep_type) {
720 	case USB_ENDPOINT_XFER_CONTROL:
721 	case USB_ENDPOINT_XFER_BULK:
722 		dev_vdbg(hsotg->dev, "control/bulk\n");
723 		hcintmsk |= HCINTMSK_XFERCOMPL;
724 		hcintmsk |= HCINTMSK_STALL;
725 		hcintmsk |= HCINTMSK_XACTERR;
726 		hcintmsk |= HCINTMSK_DATATGLERR;
727 		if (chan->ep_is_in) {
728 			hcintmsk |= HCINTMSK_BBLERR;
729 		} else {
730 			hcintmsk |= HCINTMSK_NAK;
731 			hcintmsk |= HCINTMSK_NYET;
732 			if (chan->do_ping)
733 				hcintmsk |= HCINTMSK_ACK;
734 		}
735 
736 		if (chan->do_split) {
737 			hcintmsk |= HCINTMSK_NAK;
738 			if (chan->complete_split)
739 				hcintmsk |= HCINTMSK_NYET;
740 			else
741 				hcintmsk |= HCINTMSK_ACK;
742 		}
743 
744 		if (chan->error_state)
745 			hcintmsk |= HCINTMSK_ACK;
746 		break;
747 
748 	case USB_ENDPOINT_XFER_INT:
749 		if (dbg_perio())
750 			dev_vdbg(hsotg->dev, "intr\n");
751 		hcintmsk |= HCINTMSK_XFERCOMPL;
752 		hcintmsk |= HCINTMSK_NAK;
753 		hcintmsk |= HCINTMSK_STALL;
754 		hcintmsk |= HCINTMSK_XACTERR;
755 		hcintmsk |= HCINTMSK_DATATGLERR;
756 		hcintmsk |= HCINTMSK_FRMOVRUN;
757 
758 		if (chan->ep_is_in)
759 			hcintmsk |= HCINTMSK_BBLERR;
760 		if (chan->error_state)
761 			hcintmsk |= HCINTMSK_ACK;
762 		if (chan->do_split) {
763 			if (chan->complete_split)
764 				hcintmsk |= HCINTMSK_NYET;
765 			else
766 				hcintmsk |= HCINTMSK_ACK;
767 		}
768 		break;
769 
770 	case USB_ENDPOINT_XFER_ISOC:
771 		if (dbg_perio())
772 			dev_vdbg(hsotg->dev, "isoc\n");
773 		hcintmsk |= HCINTMSK_XFERCOMPL;
774 		hcintmsk |= HCINTMSK_FRMOVRUN;
775 		hcintmsk |= HCINTMSK_ACK;
776 
777 		if (chan->ep_is_in) {
778 			hcintmsk |= HCINTMSK_XACTERR;
779 			hcintmsk |= HCINTMSK_BBLERR;
780 		}
781 		break;
782 	default:
783 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
784 		break;
785 	}
786 
787 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
788 	if (dbg_hc(chan))
789 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
790 }
791 
792 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
793 				    struct dwc2_host_chan *chan)
794 {
795 	u32 hcintmsk = HCINTMSK_CHHLTD;
796 
797 	/*
798 	 * For Descriptor DMA mode core halts the channel on AHB error.
799 	 * Interrupt is not required.
800 	 */
801 	if (!hsotg->params.dma_desc_enable) {
802 		if (dbg_hc(chan))
803 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
804 		hcintmsk |= HCINTMSK_AHBERR;
805 	} else {
806 		if (dbg_hc(chan))
807 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
808 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
809 			hcintmsk |= HCINTMSK_XFERCOMPL;
810 	}
811 
812 	if (chan->error_state && !chan->do_split &&
813 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
814 		if (dbg_hc(chan))
815 			dev_vdbg(hsotg->dev, "setting ACK\n");
816 		hcintmsk |= HCINTMSK_ACK;
817 		if (chan->ep_is_in) {
818 			hcintmsk |= HCINTMSK_DATATGLERR;
819 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
820 				hcintmsk |= HCINTMSK_NAK;
821 		}
822 	}
823 
824 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
825 	if (dbg_hc(chan))
826 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
827 }
828 
829 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
830 				struct dwc2_host_chan *chan)
831 {
832 	u32 intmsk;
833 
834 	if (hsotg->params.host_dma) {
835 		if (dbg_hc(chan))
836 			dev_vdbg(hsotg->dev, "DMA enabled\n");
837 		dwc2_hc_enable_dma_ints(hsotg, chan);
838 	} else {
839 		if (dbg_hc(chan))
840 			dev_vdbg(hsotg->dev, "DMA disabled\n");
841 		dwc2_hc_enable_slave_ints(hsotg, chan);
842 	}
843 
844 	/* Enable the top level host channel interrupt */
845 	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
846 	intmsk |= 1 << chan->hc_num;
847 	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
848 	if (dbg_hc(chan))
849 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
850 
851 	/* Make sure host channel interrupts are enabled */
852 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
853 	intmsk |= GINTSTS_HCHINT;
854 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
855 	if (dbg_hc(chan))
856 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
857 }
858 
859 /**
860  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
861  * a specific endpoint
862  *
863  * @hsotg: Programming view of DWC_otg controller
864  * @chan:  Information needed to initialize the host channel
865  *
866  * The HCCHARn register is set up with the characteristics specified in chan.
867  * Host channel interrupts that may need to be serviced while this transfer is
868  * in progress are enabled.
869  */
870 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
871 {
872 	u8 hc_num = chan->hc_num;
873 	u32 hcintmsk;
874 	u32 hcchar;
875 	u32 hcsplt = 0;
876 
877 	if (dbg_hc(chan))
878 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
879 
880 	/* Clear old interrupt conditions for this host channel */
881 	hcintmsk = 0xffffffff;
882 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
883 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
884 
885 	/* Enable channel interrupts required for this transfer */
886 	dwc2_hc_enable_ints(hsotg, chan);
887 
888 	/*
889 	 * Program the HCCHARn register with the endpoint characteristics for
890 	 * the current transfer
891 	 */
892 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
893 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
894 	if (chan->ep_is_in)
895 		hcchar |= HCCHAR_EPDIR;
896 	if (chan->speed == USB_SPEED_LOW)
897 		hcchar |= HCCHAR_LSPDDEV;
898 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
899 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
900 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
901 	if (dbg_hc(chan)) {
902 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
903 			 hc_num, hcchar);
904 
905 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
906 			 __func__, hc_num);
907 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
908 			 chan->dev_addr);
909 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
910 			 chan->ep_num);
911 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
912 			 chan->ep_is_in);
913 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
914 			 chan->speed == USB_SPEED_LOW);
915 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
916 			 chan->ep_type);
917 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
918 			 chan->max_packet);
919 	}
920 
921 	/* Program the HCSPLT register for SPLITs */
922 	if (chan->do_split) {
923 		if (dbg_hc(chan))
924 			dev_vdbg(hsotg->dev,
925 				 "Programming HC %d with split --> %s\n",
926 				 hc_num,
927 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
928 		if (chan->complete_split)
929 			hcsplt |= HCSPLT_COMPSPLT;
930 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
931 			  HCSPLT_XACTPOS_MASK;
932 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
933 			  HCSPLT_HUBADDR_MASK;
934 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
935 			  HCSPLT_PRTADDR_MASK;
936 		if (dbg_hc(chan)) {
937 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
938 				 chan->complete_split);
939 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
940 				 chan->xact_pos);
941 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
942 				 chan->hub_addr);
943 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
944 				 chan->hub_port);
945 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
946 				 chan->ep_is_in);
947 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
948 				 chan->max_packet);
949 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
950 				 chan->xfer_len);
951 		}
952 	}
953 
954 	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
955 }
956 
957 /**
958  * dwc2_hc_halt() - Attempts to halt a host channel
959  *
960  * @hsotg:       Controller register interface
961  * @chan:        Host channel to halt
962  * @halt_status: Reason for halting the channel
963  *
964  * This function should only be called in Slave mode or to abort a transfer in
965  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
966  * controller halts the channel when the transfer is complete or a condition
967  * occurs that requires application intervention.
968  *
969  * In slave mode, checks for a free request queue entry, then sets the Channel
970  * Enable and Channel Disable bits of the Host Channel Characteristics
971  * register of the specified channel to intiate the halt. If there is no free
972  * request queue entry, sets only the Channel Disable bit of the HCCHARn
973  * register to flush requests for this channel. In the latter case, sets a
974  * flag to indicate that the host channel needs to be halted when a request
975  * queue slot is open.
976  *
977  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
978  * HCCHARn register. The controller ensures there is space in the request
979  * queue before submitting the halt request.
980  *
981  * Some time may elapse before the core flushes any posted requests for this
982  * host channel and halts. The Channel Halted interrupt handler completes the
983  * deactivation of the host channel.
984  */
985 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
986 		  enum dwc2_halt_status halt_status)
987 {
988 	u32 nptxsts, hptxsts, hcchar;
989 
990 	if (dbg_hc(chan))
991 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
992 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
993 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
994 
995 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
996 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
997 		/*
998 		 * Disable all channel interrupts except Ch Halted. The QTD
999 		 * and QH state associated with this transfer has been cleared
1000 		 * (in the case of URB_DEQUEUE), so the channel needs to be
1001 		 * shut down carefully to prevent crashes.
1002 		 */
1003 		u32 hcintmsk = HCINTMSK_CHHLTD;
1004 
1005 		dev_vdbg(hsotg->dev, "dequeue/error\n");
1006 		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1007 
1008 		/*
1009 		 * Make sure no other interrupts besides halt are currently
1010 		 * pending. Handling another interrupt could cause a crash due
1011 		 * to the QTD and QH state.
1012 		 */
1013 		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1014 
1015 		/*
1016 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1017 		 * even if the channel was already halted for some other
1018 		 * reason
1019 		 */
1020 		chan->halt_status = halt_status;
1021 
1022 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1023 		if (!(hcchar & HCCHAR_CHENA)) {
1024 			/*
1025 			 * The channel is either already halted or it hasn't
1026 			 * started yet. In DMA mode, the transfer may halt if
1027 			 * it finishes normally or a condition occurs that
1028 			 * requires driver intervention. Don't want to halt
1029 			 * the channel again. In either Slave or DMA mode,
1030 			 * it's possible that the transfer has been assigned
1031 			 * to a channel, but not started yet when an URB is
1032 			 * dequeued. Don't want to halt a channel that hasn't
1033 			 * started yet.
1034 			 */
1035 			return;
1036 		}
1037 	}
1038 	if (chan->halt_pending) {
1039 		/*
1040 		 * A halt has already been issued for this channel. This might
1041 		 * happen when a transfer is aborted by a higher level in
1042 		 * the stack.
1043 		 */
1044 		dev_vdbg(hsotg->dev,
1045 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1046 			 __func__, chan->hc_num);
1047 		return;
1048 	}
1049 
1050 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1051 
1052 	/* No need to set the bit in DDMA for disabling the channel */
1053 	/* TODO check it everywhere channel is disabled */
1054 	if (!hsotg->params.dma_desc_enable) {
1055 		if (dbg_hc(chan))
1056 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1057 		hcchar |= HCCHAR_CHENA;
1058 	} else {
1059 		if (dbg_hc(chan))
1060 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1061 	}
1062 	hcchar |= HCCHAR_CHDIS;
1063 
1064 	if (!hsotg->params.host_dma) {
1065 		if (dbg_hc(chan))
1066 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1067 		hcchar |= HCCHAR_CHENA;
1068 
1069 		/* Check for space in the request queue to issue the halt */
1070 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1071 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1072 			dev_vdbg(hsotg->dev, "control/bulk\n");
1073 			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1074 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1075 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1076 				hcchar &= ~HCCHAR_CHENA;
1077 			}
1078 		} else {
1079 			if (dbg_perio())
1080 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1081 			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1082 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1083 			    hsotg->queuing_high_bandwidth) {
1084 				if (dbg_perio())
1085 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1086 				hcchar &= ~HCCHAR_CHENA;
1087 			}
1088 		}
1089 	} else {
1090 		if (dbg_hc(chan))
1091 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1092 	}
1093 
1094 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1095 	chan->halt_status = halt_status;
1096 
1097 	if (hcchar & HCCHAR_CHENA) {
1098 		if (dbg_hc(chan))
1099 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1100 		chan->halt_pending = 1;
1101 		chan->halt_on_queue = 0;
1102 	} else {
1103 		if (dbg_hc(chan))
1104 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1105 		chan->halt_on_queue = 1;
1106 	}
1107 
1108 	if (dbg_hc(chan)) {
1109 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1110 			 chan->hc_num);
1111 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1112 			 hcchar);
1113 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1114 			 chan->halt_pending);
1115 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1116 			 chan->halt_on_queue);
1117 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1118 			 chan->halt_status);
1119 	}
1120 }
1121 
1122 /**
1123  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1124  *
1125  * @hsotg: Programming view of DWC_otg controller
1126  * @chan:  Identifies the host channel to clean up
1127  *
1128  * This function is normally called after a transfer is done and the host
1129  * channel is being released
1130  */
1131 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1132 {
1133 	u32 hcintmsk;
1134 
1135 	chan->xfer_started = 0;
1136 
1137 	list_del_init(&chan->split_order_list_entry);
1138 
1139 	/*
1140 	 * Clear channel interrupt enables and any unhandled channel interrupt
1141 	 * conditions
1142 	 */
1143 	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1144 	hcintmsk = 0xffffffff;
1145 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1146 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1147 }
1148 
1149 /**
1150  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1151  * which frame a periodic transfer should occur
1152  *
1153  * @hsotg:  Programming view of DWC_otg controller
1154  * @chan:   Identifies the host channel to set up and its properties
1155  * @hcchar: Current value of the HCCHAR register for the specified host channel
1156  *
1157  * This function has no effect on non-periodic transfers
1158  */
1159 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1160 				       struct dwc2_host_chan *chan, u32 *hcchar)
1161 {
1162 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1163 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1164 		int host_speed;
1165 		int xfer_ns;
1166 		int xfer_us;
1167 		int bytes_in_fifo;
1168 		u16 fifo_space;
1169 		u16 frame_number;
1170 		u16 wire_frame;
1171 
1172 		/*
1173 		 * Try to figure out if we're an even or odd frame. If we set
1174 		 * even and the current frame number is even the the transfer
1175 		 * will happen immediately.  Similar if both are odd. If one is
1176 		 * even and the other is odd then the transfer will happen when
1177 		 * the frame number ticks.
1178 		 *
1179 		 * There's a bit of a balancing act to get this right.
1180 		 * Sometimes we may want to send data in the current frame (AK
1181 		 * right away).  We might want to do this if the frame number
1182 		 * _just_ ticked, but we might also want to do this in order
1183 		 * to continue a split transaction that happened late in a
1184 		 * microframe (so we didn't know to queue the next transfer
1185 		 * until the frame number had ticked).  The problem is that we
1186 		 * need a lot of knowledge to know if there's actually still
1187 		 * time to send things or if it would be better to wait until
1188 		 * the next frame.
1189 		 *
1190 		 * We can look at how much time is left in the current frame
1191 		 * and make a guess about whether we'll have time to transfer.
1192 		 * We'll do that.
1193 		 */
1194 
1195 		/* Get speed host is running at */
1196 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1197 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1198 
1199 		/* See how many bytes are in the periodic FIFO right now */
1200 		fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1201 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1202 		bytes_in_fifo = sizeof(u32) *
1203 				(hsotg->params.host_perio_tx_fifo_size -
1204 				 fifo_space);
1205 
1206 		/*
1207 		 * Roughly estimate bus time for everything in the periodic
1208 		 * queue + our new transfer.  This is "rough" because we're
1209 		 * using a function that makes takes into account IN/OUT
1210 		 * and INT/ISO and we're just slamming in one value for all
1211 		 * transfers.  This should be an over-estimate and that should
1212 		 * be OK, but we can probably tighten it.
1213 		 */
1214 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1215 					    chan->xfer_len + bytes_in_fifo);
1216 		xfer_us = NS_TO_US(xfer_ns);
1217 
1218 		/* See what frame number we'll be at by the time we finish */
1219 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1220 
1221 		/* This is when we were scheduled to be on the wire */
1222 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1223 
1224 		/*
1225 		 * If we'd finish _after_ the frame we're scheduled in then
1226 		 * it's hopeless.  Just schedule right away and hope for the
1227 		 * best.  Note that it _might_ be wise to call back into the
1228 		 * scheduler to pick a better frame, but this is better than
1229 		 * nothing.
1230 		 */
1231 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1232 			dwc2_sch_vdbg(hsotg,
1233 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1234 				      chan->qh, wire_frame, frame_number,
1235 				      dwc2_frame_num_dec(frame_number,
1236 							 wire_frame));
1237 			wire_frame = frame_number;
1238 
1239 			/*
1240 			 * We picked a different frame number; communicate this
1241 			 * back to the scheduler so it doesn't try to schedule
1242 			 * another in the same frame.
1243 			 *
1244 			 * Remember that next_active_frame is 1 before the wire
1245 			 * frame.
1246 			 */
1247 			chan->qh->next_active_frame =
1248 				dwc2_frame_num_dec(frame_number, 1);
1249 		}
1250 
1251 		if (wire_frame & 1)
1252 			*hcchar |= HCCHAR_ODDFRM;
1253 		else
1254 			*hcchar &= ~HCCHAR_ODDFRM;
1255 	}
1256 }
1257 
1258 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1259 {
1260 	/* Set up the initial PID for the transfer */
1261 	if (chan->speed == USB_SPEED_HIGH) {
1262 		if (chan->ep_is_in) {
1263 			if (chan->multi_count == 1)
1264 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1265 			else if (chan->multi_count == 2)
1266 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1267 			else
1268 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1269 		} else {
1270 			if (chan->multi_count == 1)
1271 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1272 			else
1273 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1274 		}
1275 	} else {
1276 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1277 	}
1278 }
1279 
1280 /**
1281  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1282  * the Host Channel
1283  *
1284  * @hsotg: Programming view of DWC_otg controller
1285  * @chan:  Information needed to initialize the host channel
1286  *
1287  * This function should only be called in Slave mode. For a channel associated
1288  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1289  * associated with a periodic EP, the periodic Tx FIFO is written.
1290  *
1291  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1292  * the number of bytes written to the Tx FIFO.
1293  */
1294 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1295 				 struct dwc2_host_chan *chan)
1296 {
1297 	u32 i;
1298 	u32 remaining_count;
1299 	u32 byte_count;
1300 	u32 dword_count;
1301 	u32 __iomem *data_fifo;
1302 	u32 *data_buf = (u32 *)chan->xfer_buf;
1303 
1304 	if (dbg_hc(chan))
1305 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1306 
1307 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1308 
1309 	remaining_count = chan->xfer_len - chan->xfer_count;
1310 	if (remaining_count > chan->max_packet)
1311 		byte_count = chan->max_packet;
1312 	else
1313 		byte_count = remaining_count;
1314 
1315 	dword_count = (byte_count + 3) / 4;
1316 
1317 	if (((unsigned long)data_buf & 0x3) == 0) {
1318 		/* xfer_buf is DWORD aligned */
1319 		for (i = 0; i < dword_count; i++, data_buf++)
1320 			dwc2_writel(*data_buf, data_fifo);
1321 	} else {
1322 		/* xfer_buf is not DWORD aligned */
1323 		for (i = 0; i < dword_count; i++, data_buf++) {
1324 			u32 data = data_buf[0] | data_buf[1] << 8 |
1325 				   data_buf[2] << 16 | data_buf[3] << 24;
1326 			dwc2_writel(data, data_fifo);
1327 		}
1328 	}
1329 
1330 	chan->xfer_count += byte_count;
1331 	chan->xfer_buf += byte_count;
1332 }
1333 
1334 /**
1335  * dwc2_hc_do_ping() - Starts a PING transfer
1336  *
1337  * @hsotg: Programming view of DWC_otg controller
1338  * @chan:  Information needed to initialize the host channel
1339  *
1340  * This function should only be called in Slave mode. The Do Ping bit is set in
1341  * the HCTSIZ register, then the channel is enabled.
1342  */
1343 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1344 			    struct dwc2_host_chan *chan)
1345 {
1346 	u32 hcchar;
1347 	u32 hctsiz;
1348 
1349 	if (dbg_hc(chan))
1350 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1351 			 chan->hc_num);
1352 
1353 	hctsiz = TSIZ_DOPNG;
1354 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1355 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1356 
1357 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1358 	hcchar |= HCCHAR_CHENA;
1359 	hcchar &= ~HCCHAR_CHDIS;
1360 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1361 }
1362 
1363 /**
1364  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1365  * channel and starts the transfer
1366  *
1367  * @hsotg: Programming view of DWC_otg controller
1368  * @chan:  Information needed to initialize the host channel. The xfer_len value
1369  *         may be reduced to accommodate the max widths of the XferSize and
1370  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1371  *         changed to reflect the final xfer_len value.
1372  *
1373  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1374  * the caller must ensure that there is sufficient space in the request queue
1375  * and Tx Data FIFO.
1376  *
1377  * For an OUT transfer in Slave mode, it loads a data packet into the
1378  * appropriate FIFO. If necessary, additional data packets are loaded in the
1379  * Host ISR.
1380  *
1381  * For an IN transfer in Slave mode, a data packet is requested. The data
1382  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1383  * additional data packets are requested in the Host ISR.
1384  *
1385  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1386  * register along with a packet count of 1 and the channel is enabled. This
1387  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1388  * simply set to 0 since no data transfer occurs in this case.
1389  *
1390  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1391  * all the information required to perform the subsequent data transfer. In
1392  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1393  * controller performs the entire PING protocol, then starts the data
1394  * transfer.
1395  */
1396 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1397 				   struct dwc2_host_chan *chan)
1398 {
1399 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1400 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1401 	u32 hcchar;
1402 	u32 hctsiz = 0;
1403 	u16 num_packets;
1404 	u32 ec_mc;
1405 
1406 	if (dbg_hc(chan))
1407 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1408 
1409 	if (chan->do_ping) {
1410 		if (!hsotg->params.host_dma) {
1411 			if (dbg_hc(chan))
1412 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1413 			dwc2_hc_do_ping(hsotg, chan);
1414 			chan->xfer_started = 1;
1415 			return;
1416 		}
1417 
1418 		if (dbg_hc(chan))
1419 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1420 
1421 		hctsiz |= TSIZ_DOPNG;
1422 	}
1423 
1424 	if (chan->do_split) {
1425 		if (dbg_hc(chan))
1426 			dev_vdbg(hsotg->dev, "split\n");
1427 		num_packets = 1;
1428 
1429 		if (chan->complete_split && !chan->ep_is_in)
1430 			/*
1431 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1432 			 * core doesn't expect any data written to the FIFO
1433 			 */
1434 			chan->xfer_len = 0;
1435 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1436 			chan->xfer_len = chan->max_packet;
1437 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1438 			chan->xfer_len = 188;
1439 
1440 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1441 			  TSIZ_XFERSIZE_MASK;
1442 
1443 		/* For split set ec_mc for immediate retries */
1444 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1445 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1446 			ec_mc = 3;
1447 		else
1448 			ec_mc = 1;
1449 	} else {
1450 		if (dbg_hc(chan))
1451 			dev_vdbg(hsotg->dev, "no split\n");
1452 		/*
1453 		 * Ensure that the transfer length and packet count will fit
1454 		 * in the widths allocated for them in the HCTSIZn register
1455 		 */
1456 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1457 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1458 			/*
1459 			 * Make sure the transfer size is no larger than one
1460 			 * (micro)frame's worth of data. (A check was done
1461 			 * when the periodic transfer was accepted to ensure
1462 			 * that a (micro)frame's worth of data can be
1463 			 * programmed into a channel.)
1464 			 */
1465 			u32 max_periodic_len =
1466 				chan->multi_count * chan->max_packet;
1467 
1468 			if (chan->xfer_len > max_periodic_len)
1469 				chan->xfer_len = max_periodic_len;
1470 		} else if (chan->xfer_len > max_hc_xfer_size) {
1471 			/*
1472 			 * Make sure that xfer_len is a multiple of max packet
1473 			 * size
1474 			 */
1475 			chan->xfer_len =
1476 				max_hc_xfer_size - chan->max_packet + 1;
1477 		}
1478 
1479 		if (chan->xfer_len > 0) {
1480 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1481 					chan->max_packet;
1482 			if (num_packets > max_hc_pkt_count) {
1483 				num_packets = max_hc_pkt_count;
1484 				chan->xfer_len = num_packets * chan->max_packet;
1485 			}
1486 		} else {
1487 			/* Need 1 packet for transfer length of 0 */
1488 			num_packets = 1;
1489 		}
1490 
1491 		if (chan->ep_is_in)
1492 			/*
1493 			 * Always program an integral # of max packets for IN
1494 			 * transfers
1495 			 */
1496 			chan->xfer_len = num_packets * chan->max_packet;
1497 
1498 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1499 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1500 			/*
1501 			 * Make sure that the multi_count field matches the
1502 			 * actual transfer length
1503 			 */
1504 			chan->multi_count = num_packets;
1505 
1506 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1507 			dwc2_set_pid_isoc(chan);
1508 
1509 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1510 			  TSIZ_XFERSIZE_MASK;
1511 
1512 		/* The ec_mc gets the multi_count for non-split */
1513 		ec_mc = chan->multi_count;
1514 	}
1515 
1516 	chan->start_pkt_count = num_packets;
1517 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1518 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1519 		  TSIZ_SC_MC_PID_MASK;
1520 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1521 	if (dbg_hc(chan)) {
1522 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1523 			 hctsiz, chan->hc_num);
1524 
1525 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1526 			 chan->hc_num);
1527 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1528 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1529 			 TSIZ_XFERSIZE_SHIFT);
1530 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1531 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1532 			 TSIZ_PKTCNT_SHIFT);
1533 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1534 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1535 			 TSIZ_SC_MC_PID_SHIFT);
1536 	}
1537 
1538 	if (hsotg->params.host_dma) {
1539 		dwc2_writel((u32)chan->xfer_dma,
1540 			    hsotg->regs + HCDMA(chan->hc_num));
1541 		if (dbg_hc(chan))
1542 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1543 				 (unsigned long)chan->xfer_dma, chan->hc_num);
1544 	}
1545 
1546 	/* Start the split */
1547 	if (chan->do_split) {
1548 		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1549 
1550 		hcsplt |= HCSPLT_SPLTENA;
1551 		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1552 	}
1553 
1554 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1555 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1556 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1557 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1558 
1559 	if (hcchar & HCCHAR_CHDIS)
1560 		dev_warn(hsotg->dev,
1561 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1562 			 __func__, chan->hc_num, hcchar);
1563 
1564 	/* Set host channel enable after all other setup is complete */
1565 	hcchar |= HCCHAR_CHENA;
1566 	hcchar &= ~HCCHAR_CHDIS;
1567 
1568 	if (dbg_hc(chan))
1569 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1570 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1571 			 HCCHAR_MULTICNT_SHIFT);
1572 
1573 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1574 	if (dbg_hc(chan))
1575 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1576 			 chan->hc_num);
1577 
1578 	chan->xfer_started = 1;
1579 	chan->requests++;
1580 
1581 	if (!hsotg->params.host_dma &&
1582 	    !chan->ep_is_in && chan->xfer_len > 0)
1583 		/* Load OUT packet into the appropriate Tx FIFO */
1584 		dwc2_hc_write_packet(hsotg, chan);
1585 }
1586 
1587 /**
1588  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1589  * host channel and starts the transfer in Descriptor DMA mode
1590  *
1591  * @hsotg: Programming view of DWC_otg controller
1592  * @chan:  Information needed to initialize the host channel
1593  *
1594  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1595  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1596  * with micro-frame bitmap.
1597  *
1598  * Initializes HCDMA register with descriptor list address and CTD value then
1599  * starts the transfer via enabling the channel.
1600  */
1601 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1602 				 struct dwc2_host_chan *chan)
1603 {
1604 	u32 hcchar;
1605 	u32 hctsiz = 0;
1606 
1607 	if (chan->do_ping)
1608 		hctsiz |= TSIZ_DOPNG;
1609 
1610 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1611 		dwc2_set_pid_isoc(chan);
1612 
1613 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1614 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1615 		  TSIZ_SC_MC_PID_MASK;
1616 
1617 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1618 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1619 
1620 	/* Non-zero only for high-speed interrupt endpoints */
1621 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1622 
1623 	if (dbg_hc(chan)) {
1624 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1625 			 chan->hc_num);
1626 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1627 			 chan->data_pid_start);
1628 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1629 	}
1630 
1631 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1632 
1633 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1634 				   chan->desc_list_sz, DMA_TO_DEVICE);
1635 
1636 	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1637 
1638 	if (dbg_hc(chan))
1639 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1640 			 &chan->desc_list_addr, chan->hc_num);
1641 
1642 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1643 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1644 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1645 		  HCCHAR_MULTICNT_MASK;
1646 
1647 	if (hcchar & HCCHAR_CHDIS)
1648 		dev_warn(hsotg->dev,
1649 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1650 			 __func__, chan->hc_num, hcchar);
1651 
1652 	/* Set host channel enable after all other setup is complete */
1653 	hcchar |= HCCHAR_CHENA;
1654 	hcchar &= ~HCCHAR_CHDIS;
1655 
1656 	if (dbg_hc(chan))
1657 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1658 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1659 			 HCCHAR_MULTICNT_SHIFT);
1660 
1661 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1662 	if (dbg_hc(chan))
1663 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1664 			 chan->hc_num);
1665 
1666 	chan->xfer_started = 1;
1667 	chan->requests++;
1668 }
1669 
1670 /**
1671  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1672  * a previous call to dwc2_hc_start_transfer()
1673  *
1674  * @hsotg: Programming view of DWC_otg controller
1675  * @chan:  Information needed to initialize the host channel
1676  *
1677  * The caller must ensure there is sufficient space in the request queue and Tx
1678  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1679  * the controller acts autonomously to complete transfers programmed to a host
1680  * channel.
1681  *
1682  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1683  * if there is any data remaining to be queued. For an IN transfer, another
1684  * data packet is always requested. For the SETUP phase of a control transfer,
1685  * this function does nothing.
1686  *
1687  * Return: 1 if a new request is queued, 0 if no more requests are required
1688  * for this transfer
1689  */
1690 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1691 				     struct dwc2_host_chan *chan)
1692 {
1693 	if (dbg_hc(chan))
1694 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1695 			 chan->hc_num);
1696 
1697 	if (chan->do_split)
1698 		/* SPLITs always queue just once per channel */
1699 		return 0;
1700 
1701 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1702 		/* SETUPs are queued only once since they can't be NAK'd */
1703 		return 0;
1704 
1705 	if (chan->ep_is_in) {
1706 		/*
1707 		 * Always queue another request for other IN transfers. If
1708 		 * back-to-back INs are issued and NAKs are received for both,
1709 		 * the driver may still be processing the first NAK when the
1710 		 * second NAK is received. When the interrupt handler clears
1711 		 * the NAK interrupt for the first NAK, the second NAK will
1712 		 * not be seen. So we can't depend on the NAK interrupt
1713 		 * handler to requeue a NAK'd request. Instead, IN requests
1714 		 * are issued each time this function is called. When the
1715 		 * transfer completes, the extra requests for the channel will
1716 		 * be flushed.
1717 		 */
1718 		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1719 
1720 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1721 		hcchar |= HCCHAR_CHENA;
1722 		hcchar &= ~HCCHAR_CHDIS;
1723 		if (dbg_hc(chan))
1724 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1725 				 hcchar);
1726 		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1727 		chan->requests++;
1728 		return 1;
1729 	}
1730 
1731 	/* OUT transfers */
1732 
1733 	if (chan->xfer_count < chan->xfer_len) {
1734 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1735 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1736 			u32 hcchar = dwc2_readl(hsotg->regs +
1737 						HCCHAR(chan->hc_num));
1738 
1739 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1740 						   &hcchar);
1741 		}
1742 
1743 		/* Load OUT packet into the appropriate Tx FIFO */
1744 		dwc2_hc_write_packet(hsotg, chan);
1745 		chan->requests++;
1746 		return 1;
1747 	}
1748 
1749 	return 0;
1750 }
1751 
1752 /*
1753  * =========================================================================
1754  *  HCD
1755  * =========================================================================
1756  */
1757 
1758 /*
1759  * Processes all the URBs in a single list of QHs. Completes them with
1760  * -ETIMEDOUT and frees the QTD.
1761  *
1762  * Must be called with interrupt disabled and spinlock held
1763  */
1764 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1765 				      struct list_head *qh_list)
1766 {
1767 	struct dwc2_qh *qh, *qh_tmp;
1768 	struct dwc2_qtd *qtd, *qtd_tmp;
1769 
1770 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1771 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1772 					 qtd_list_entry) {
1773 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1774 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1775 		}
1776 	}
1777 }
1778 
1779 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1780 			      struct list_head *qh_list)
1781 {
1782 	struct dwc2_qtd *qtd, *qtd_tmp;
1783 	struct dwc2_qh *qh, *qh_tmp;
1784 	unsigned long flags;
1785 
1786 	if (!qh_list->next)
1787 		/* The list hasn't been initialized yet */
1788 		return;
1789 
1790 	spin_lock_irqsave(&hsotg->lock, flags);
1791 
1792 	/* Ensure there are no QTDs or URBs left */
1793 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1794 
1795 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1796 		dwc2_hcd_qh_unlink(hsotg, qh);
1797 
1798 		/* Free each QTD in the QH's QTD list */
1799 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1800 					 qtd_list_entry)
1801 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1802 
1803 		if (qh->channel && qh->channel->qh == qh)
1804 			qh->channel->qh = NULL;
1805 
1806 		spin_unlock_irqrestore(&hsotg->lock, flags);
1807 		dwc2_hcd_qh_free(hsotg, qh);
1808 		spin_lock_irqsave(&hsotg->lock, flags);
1809 	}
1810 
1811 	spin_unlock_irqrestore(&hsotg->lock, flags);
1812 }
1813 
1814 /*
1815  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1816  * and periodic schedules. The QTD associated with each URB is removed from
1817  * the schedule and freed. This function may be called when a disconnect is
1818  * detected or when the HCD is being stopped.
1819  *
1820  * Must be called with interrupt disabled and spinlock held
1821  */
1822 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1823 {
1824 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1825 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1826 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1827 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1828 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1829 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1830 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1831 }
1832 
1833 /**
1834  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1835  *
1836  * @hsotg: Pointer to struct dwc2_hsotg
1837  */
1838 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1839 {
1840 	u32 hprt0;
1841 
1842 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1843 		/*
1844 		 * Reset the port. During a HNP mode switch the reset
1845 		 * needs to occur within 1ms and have a duration of at
1846 		 * least 50ms.
1847 		 */
1848 		hprt0 = dwc2_read_hprt0(hsotg);
1849 		hprt0 |= HPRT0_RST;
1850 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
1851 	}
1852 
1853 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1854 			   msecs_to_jiffies(50));
1855 }
1856 
1857 /* Must be called with interrupt disabled and spinlock held */
1858 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1859 {
1860 	int num_channels = hsotg->params.host_channels;
1861 	struct dwc2_host_chan *channel;
1862 	u32 hcchar;
1863 	int i;
1864 
1865 	if (!hsotg->params.host_dma) {
1866 		/* Flush out any channel requests in slave mode */
1867 		for (i = 0; i < num_channels; i++) {
1868 			channel = hsotg->hc_ptr_array[i];
1869 			if (!list_empty(&channel->hc_list_entry))
1870 				continue;
1871 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1872 			if (hcchar & HCCHAR_CHENA) {
1873 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1874 				hcchar |= HCCHAR_CHDIS;
1875 				dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1876 			}
1877 		}
1878 	}
1879 
1880 	for (i = 0; i < num_channels; i++) {
1881 		channel = hsotg->hc_ptr_array[i];
1882 		if (!list_empty(&channel->hc_list_entry))
1883 			continue;
1884 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1885 		if (hcchar & HCCHAR_CHENA) {
1886 			/* Halt the channel */
1887 			hcchar |= HCCHAR_CHDIS;
1888 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1889 		}
1890 
1891 		dwc2_hc_cleanup(hsotg, channel);
1892 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1893 		/*
1894 		 * Added for Descriptor DMA to prevent channel double cleanup in
1895 		 * release_channel_ddma(), which is called from ep_disable when
1896 		 * device disconnects
1897 		 */
1898 		channel->qh = NULL;
1899 	}
1900 	/* All channels have been freed, mark them available */
1901 	if (hsotg->params.uframe_sched) {
1902 		hsotg->available_host_channels =
1903 			hsotg->params.host_channels;
1904 	} else {
1905 		hsotg->non_periodic_channels = 0;
1906 		hsotg->periodic_channels = 0;
1907 	}
1908 }
1909 
1910 /**
1911  * dwc2_hcd_connect() - Handles connect of the HCD
1912  *
1913  * @hsotg: Pointer to struct dwc2_hsotg
1914  *
1915  * Must be called with interrupt disabled and spinlock held
1916  */
1917 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1918 {
1919 	if (hsotg->lx_state != DWC2_L0)
1920 		usb_hcd_resume_root_hub(hsotg->priv);
1921 
1922 	hsotg->flags.b.port_connect_status_change = 1;
1923 	hsotg->flags.b.port_connect_status = 1;
1924 }
1925 
1926 /**
1927  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1928  *
1929  * @hsotg: Pointer to struct dwc2_hsotg
1930  * @force: If true, we won't try to reconnect even if we see device connected.
1931  *
1932  * Must be called with interrupt disabled and spinlock held
1933  */
1934 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1935 {
1936 	u32 intr;
1937 	u32 hprt0;
1938 
1939 	/* Set status flags for the hub driver */
1940 	hsotg->flags.b.port_connect_status_change = 1;
1941 	hsotg->flags.b.port_connect_status = 0;
1942 
1943 	/*
1944 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1945 	 * interrupt mask and status bits and disabling subsequent host
1946 	 * channel interrupts.
1947 	 */
1948 	intr = dwc2_readl(hsotg->regs + GINTMSK);
1949 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1950 	dwc2_writel(intr, hsotg->regs + GINTMSK);
1951 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1952 	dwc2_writel(intr, hsotg->regs + GINTSTS);
1953 
1954 	/*
1955 	 * Turn off the vbus power only if the core has transitioned to device
1956 	 * mode. If still in host mode, need to keep power on to detect a
1957 	 * reconnection.
1958 	 */
1959 	if (dwc2_is_device_mode(hsotg)) {
1960 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1961 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1962 			dwc2_writel(0, hsotg->regs + HPRT0);
1963 		}
1964 
1965 		dwc2_disable_host_interrupts(hsotg);
1966 	}
1967 
1968 	/* Respond with an error status to all URBs in the schedule */
1969 	dwc2_kill_all_urbs(hsotg);
1970 
1971 	if (dwc2_is_host_mode(hsotg))
1972 		/* Clean up any host channels that were in use */
1973 		dwc2_hcd_cleanup_channels(hsotg);
1974 
1975 	dwc2_host_disconnect(hsotg);
1976 
1977 	/*
1978 	 * Add an extra check here to see if we're actually connected but
1979 	 * we don't have a detection interrupt pending.  This can happen if:
1980 	 *   1. hardware sees connect
1981 	 *   2. hardware sees disconnect
1982 	 *   3. hardware sees connect
1983 	 *   4. dwc2_port_intr() - clears connect interrupt
1984 	 *   5. dwc2_handle_common_intr() - calls here
1985 	 *
1986 	 * Without the extra check here we will end calling disconnect
1987 	 * and won't get any future interrupts to handle the connect.
1988 	 */
1989 	if (!force) {
1990 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1991 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1992 			dwc2_hcd_connect(hsotg);
1993 	}
1994 }
1995 
1996 /**
1997  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1998  *
1999  * @hsotg: Pointer to struct dwc2_hsotg
2000  */
2001 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2002 {
2003 	if (hsotg->bus_suspended) {
2004 		hsotg->flags.b.port_suspend_change = 1;
2005 		usb_hcd_resume_root_hub(hsotg->priv);
2006 	}
2007 
2008 	if (hsotg->lx_state == DWC2_L1)
2009 		hsotg->flags.b.port_l1_change = 1;
2010 }
2011 
2012 /**
2013  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2014  *
2015  * @hsotg: Pointer to struct dwc2_hsotg
2016  *
2017  * Must be called with interrupt disabled and spinlock held
2018  */
2019 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2020 {
2021 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2022 
2023 	/*
2024 	 * The root hub should be disconnected before this function is called.
2025 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2026 	 * and the QH lists (via ..._hcd_endpoint_disable).
2027 	 */
2028 
2029 	/* Turn off all host-specific interrupts */
2030 	dwc2_disable_host_interrupts(hsotg);
2031 
2032 	/* Turn off the vbus power */
2033 	dev_dbg(hsotg->dev, "PortPower off\n");
2034 	dwc2_writel(0, hsotg->regs + HPRT0);
2035 }
2036 
2037 /* Caller must hold driver lock */
2038 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2039 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2040 				struct dwc2_qtd *qtd)
2041 {
2042 	u32 intr_mask;
2043 	int retval;
2044 	int dev_speed;
2045 
2046 	if (!hsotg->flags.b.port_connect_status) {
2047 		/* No longer connected */
2048 		dev_err(hsotg->dev, "Not connected\n");
2049 		return -ENODEV;
2050 	}
2051 
2052 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2053 
2054 	/* Some configurations cannot support LS traffic on a FS root port */
2055 	if ((dev_speed == USB_SPEED_LOW) &&
2056 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2057 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2058 		u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2059 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2060 
2061 		if (prtspd == HPRT0_SPD_FULL_SPEED)
2062 			return -ENODEV;
2063 	}
2064 
2065 	if (!qtd)
2066 		return -EINVAL;
2067 
2068 	dwc2_hcd_qtd_init(qtd, urb);
2069 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2070 	if (retval) {
2071 		dev_err(hsotg->dev,
2072 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2073 			retval);
2074 		return retval;
2075 	}
2076 
2077 	intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2078 	if (!(intr_mask & GINTSTS_SOF)) {
2079 		enum dwc2_transaction_type tr_type;
2080 
2081 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2082 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2083 			/*
2084 			 * Do not schedule SG transactions until qtd has
2085 			 * URB_GIVEBACK_ASAP set
2086 			 */
2087 			return 0;
2088 
2089 		tr_type = dwc2_hcd_select_transactions(hsotg);
2090 		if (tr_type != DWC2_TRANSACTION_NONE)
2091 			dwc2_hcd_queue_transactions(hsotg, tr_type);
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 /* Must be called with interrupt disabled and spinlock held */
2098 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2099 				struct dwc2_hcd_urb *urb)
2100 {
2101 	struct dwc2_qh *qh;
2102 	struct dwc2_qtd *urb_qtd;
2103 
2104 	urb_qtd = urb->qtd;
2105 	if (!urb_qtd) {
2106 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2107 		return -EINVAL;
2108 	}
2109 
2110 	qh = urb_qtd->qh;
2111 	if (!qh) {
2112 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2113 		return -EINVAL;
2114 	}
2115 
2116 	urb->priv = NULL;
2117 
2118 	if (urb_qtd->in_process && qh->channel) {
2119 		dwc2_dump_channel_info(hsotg, qh->channel);
2120 
2121 		/* The QTD is in process (it has been assigned to a channel) */
2122 		if (hsotg->flags.b.port_connect_status)
2123 			/*
2124 			 * If still connected (i.e. in host mode), halt the
2125 			 * channel so it can be used for other transfers. If
2126 			 * no longer connected, the host registers can't be
2127 			 * written to halt the channel since the core is in
2128 			 * device mode.
2129 			 */
2130 			dwc2_hc_halt(hsotg, qh->channel,
2131 				     DWC2_HC_XFER_URB_DEQUEUE);
2132 	}
2133 
2134 	/*
2135 	 * Free the QTD and clean up the associated QH. Leave the QH in the
2136 	 * schedule if it has any remaining QTDs.
2137 	 */
2138 	if (!hsotg->params.dma_desc_enable) {
2139 		u8 in_process = urb_qtd->in_process;
2140 
2141 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2142 		if (in_process) {
2143 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2144 			qh->channel = NULL;
2145 		} else if (list_empty(&qh->qtd_list)) {
2146 			dwc2_hcd_qh_unlink(hsotg, qh);
2147 		}
2148 	} else {
2149 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 /* Must NOT be called with interrupt disabled or spinlock held */
2156 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2157 				     struct usb_host_endpoint *ep, int retry)
2158 {
2159 	struct dwc2_qtd *qtd, *qtd_tmp;
2160 	struct dwc2_qh *qh;
2161 	unsigned long flags;
2162 	int rc;
2163 
2164 	spin_lock_irqsave(&hsotg->lock, flags);
2165 
2166 	qh = ep->hcpriv;
2167 	if (!qh) {
2168 		rc = -EINVAL;
2169 		goto err;
2170 	}
2171 
2172 	while (!list_empty(&qh->qtd_list) && retry--) {
2173 		if (retry == 0) {
2174 			dev_err(hsotg->dev,
2175 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2176 			rc = -EBUSY;
2177 			goto err;
2178 		}
2179 
2180 		spin_unlock_irqrestore(&hsotg->lock, flags);
2181 		msleep(20);
2182 		spin_lock_irqsave(&hsotg->lock, flags);
2183 		qh = ep->hcpriv;
2184 		if (!qh) {
2185 			rc = -EINVAL;
2186 			goto err;
2187 		}
2188 	}
2189 
2190 	dwc2_hcd_qh_unlink(hsotg, qh);
2191 
2192 	/* Free each QTD in the QH's QTD list */
2193 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2194 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2195 
2196 	ep->hcpriv = NULL;
2197 
2198 	if (qh->channel && qh->channel->qh == qh)
2199 		qh->channel->qh = NULL;
2200 
2201 	spin_unlock_irqrestore(&hsotg->lock, flags);
2202 
2203 	dwc2_hcd_qh_free(hsotg, qh);
2204 
2205 	return 0;
2206 
2207 err:
2208 	ep->hcpriv = NULL;
2209 	spin_unlock_irqrestore(&hsotg->lock, flags);
2210 
2211 	return rc;
2212 }
2213 
2214 /* Must be called with interrupt disabled and spinlock held */
2215 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2216 				   struct usb_host_endpoint *ep)
2217 {
2218 	struct dwc2_qh *qh = ep->hcpriv;
2219 
2220 	if (!qh)
2221 		return -EINVAL;
2222 
2223 	qh->data_toggle = DWC2_HC_PID_DATA0;
2224 
2225 	return 0;
2226 }
2227 
2228 /**
2229  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2230  * prepares the core for device mode or host mode operation
2231  *
2232  * @hsotg:         Programming view of the DWC_otg controller
2233  * @initial_setup: If true then this is the first init for this instance.
2234  */
2235 static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2236 {
2237 	u32 usbcfg, otgctl;
2238 	int retval;
2239 
2240 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2241 
2242 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2243 
2244 	/* Set ULPI External VBUS bit if needed */
2245 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2246 	if (hsotg->params.phy_ulpi_ext_vbus)
2247 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2248 
2249 	/* Set external TS Dline pulsing bit if needed */
2250 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2251 	if (hsotg->params.ts_dline)
2252 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2253 
2254 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2255 
2256 	/*
2257 	 * Reset the Controller
2258 	 *
2259 	 * We only need to reset the controller if this is a re-init.
2260 	 * For the first init we know for sure that earlier code reset us (it
2261 	 * needed to in order to properly detect various parameters).
2262 	 */
2263 	if (!initial_setup) {
2264 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
2265 		if (retval) {
2266 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2267 				__func__);
2268 			return retval;
2269 		}
2270 	}
2271 
2272 	/*
2273 	 * This needs to happen in FS mode before any other programming occurs
2274 	 */
2275 	retval = dwc2_phy_init(hsotg, initial_setup);
2276 	if (retval)
2277 		return retval;
2278 
2279 	/* Program the GAHBCFG Register */
2280 	retval = dwc2_gahbcfg_init(hsotg);
2281 	if (retval)
2282 		return retval;
2283 
2284 	/* Program the GUSBCFG register */
2285 	dwc2_gusbcfg_init(hsotg);
2286 
2287 	/* Program the GOTGCTL register */
2288 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2289 	otgctl &= ~GOTGCTL_OTGVER;
2290 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2291 
2292 	/* Clear the SRP success bit for FS-I2c */
2293 	hsotg->srp_success = 0;
2294 
2295 	/* Enable common interrupts */
2296 	dwc2_enable_common_interrupts(hsotg);
2297 
2298 	/*
2299 	 * Do device or host initialization based on mode during PCD and
2300 	 * HCD initialization
2301 	 */
2302 	if (dwc2_is_host_mode(hsotg)) {
2303 		dev_dbg(hsotg->dev, "Host Mode\n");
2304 		hsotg->op_state = OTG_STATE_A_HOST;
2305 	} else {
2306 		dev_dbg(hsotg->dev, "Device Mode\n");
2307 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2308 	}
2309 
2310 	return 0;
2311 }
2312 
2313 /**
2314  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2315  * Host mode
2316  *
2317  * @hsotg: Programming view of DWC_otg controller
2318  *
2319  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2320  * request queues. Host channels are reset to ensure that they are ready for
2321  * performing transfers.
2322  */
2323 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2324 {
2325 	u32 hcfg, hfir, otgctl;
2326 
2327 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2328 
2329 	/* Restart the Phy Clock */
2330 	dwc2_writel(0, hsotg->regs + PCGCTL);
2331 
2332 	/* Initialize Host Configuration Register */
2333 	dwc2_init_fs_ls_pclk_sel(hsotg);
2334 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2335 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2336 		hcfg = dwc2_readl(hsotg->regs + HCFG);
2337 		hcfg |= HCFG_FSLSSUPP;
2338 		dwc2_writel(hcfg, hsotg->regs + HCFG);
2339 	}
2340 
2341 	/*
2342 	 * This bit allows dynamic reloading of the HFIR register during
2343 	 * runtime. This bit needs to be programmed during initial configuration
2344 	 * and its value must not be changed during runtime.
2345 	 */
2346 	if (hsotg->params.reload_ctl) {
2347 		hfir = dwc2_readl(hsotg->regs + HFIR);
2348 		hfir |= HFIR_RLDCTRL;
2349 		dwc2_writel(hfir, hsotg->regs + HFIR);
2350 	}
2351 
2352 	if (hsotg->params.dma_desc_enable) {
2353 		u32 op_mode = hsotg->hw_params.op_mode;
2354 
2355 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2356 		    !hsotg->hw_params.dma_desc_enable ||
2357 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2358 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2359 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2360 			dev_err(hsotg->dev,
2361 				"Hardware does not support descriptor DMA mode -\n");
2362 			dev_err(hsotg->dev,
2363 				"falling back to buffer DMA mode.\n");
2364 			hsotg->params.dma_desc_enable = false;
2365 		} else {
2366 			hcfg = dwc2_readl(hsotg->regs + HCFG);
2367 			hcfg |= HCFG_DESCDMA;
2368 			dwc2_writel(hcfg, hsotg->regs + HCFG);
2369 		}
2370 	}
2371 
2372 	/* Configure data FIFO sizes */
2373 	dwc2_config_fifos(hsotg);
2374 
2375 	/* TODO - check this */
2376 	/* Clear Host Set HNP Enable in the OTG Control Register */
2377 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2378 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2379 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2380 
2381 	/* Make sure the FIFOs are flushed */
2382 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2383 	dwc2_flush_rx_fifo(hsotg);
2384 
2385 	/* Clear Host Set HNP Enable in the OTG Control Register */
2386 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2387 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2388 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2389 
2390 	if (!hsotg->params.dma_desc_enable) {
2391 		int num_channels, i;
2392 		u32 hcchar;
2393 
2394 		/* Flush out any leftover queued requests */
2395 		num_channels = hsotg->params.host_channels;
2396 		for (i = 0; i < num_channels; i++) {
2397 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2398 			hcchar &= ~HCCHAR_CHENA;
2399 			hcchar |= HCCHAR_CHDIS;
2400 			hcchar &= ~HCCHAR_EPDIR;
2401 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2402 		}
2403 
2404 		/* Halt all channels to put them into a known state */
2405 		for (i = 0; i < num_channels; i++) {
2406 			int count = 0;
2407 
2408 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2409 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2410 			hcchar &= ~HCCHAR_EPDIR;
2411 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2412 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2413 				__func__, i);
2414 			do {
2415 				hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2416 				if (++count > 1000) {
2417 					dev_err(hsotg->dev,
2418 						"Unable to clear enable on channel %d\n",
2419 						i);
2420 					break;
2421 				}
2422 				udelay(1);
2423 			} while (hcchar & HCCHAR_CHENA);
2424 		}
2425 	}
2426 
2427 	/* Turn on the vbus power */
2428 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2429 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2430 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2431 
2432 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2433 			!!(hprt0 & HPRT0_PWR));
2434 		if (!(hprt0 & HPRT0_PWR)) {
2435 			hprt0 |= HPRT0_PWR;
2436 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
2437 		}
2438 	}
2439 
2440 	dwc2_enable_host_interrupts(hsotg);
2441 }
2442 
2443 /*
2444  * Initializes dynamic portions of the DWC_otg HCD state
2445  *
2446  * Must be called with interrupt disabled and spinlock held
2447  */
2448 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2449 {
2450 	struct dwc2_host_chan *chan, *chan_tmp;
2451 	int num_channels;
2452 	int i;
2453 
2454 	hsotg->flags.d32 = 0;
2455 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2456 
2457 	if (hsotg->params.uframe_sched) {
2458 		hsotg->available_host_channels =
2459 			hsotg->params.host_channels;
2460 	} else {
2461 		hsotg->non_periodic_channels = 0;
2462 		hsotg->periodic_channels = 0;
2463 	}
2464 
2465 	/*
2466 	 * Put all channels in the free channel list and clean up channel
2467 	 * states
2468 	 */
2469 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2470 				 hc_list_entry)
2471 		list_del_init(&chan->hc_list_entry);
2472 
2473 	num_channels = hsotg->params.host_channels;
2474 	for (i = 0; i < num_channels; i++) {
2475 		chan = hsotg->hc_ptr_array[i];
2476 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2477 		dwc2_hc_cleanup(hsotg, chan);
2478 	}
2479 
2480 	/* Initialize the DWC core for host mode operation */
2481 	dwc2_core_host_init(hsotg);
2482 }
2483 
2484 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2485 			       struct dwc2_host_chan *chan,
2486 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2487 {
2488 	int hub_addr, hub_port;
2489 
2490 	chan->do_split = 1;
2491 	chan->xact_pos = qtd->isoc_split_pos;
2492 	chan->complete_split = qtd->complete_split;
2493 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2494 	chan->hub_addr = (u8)hub_addr;
2495 	chan->hub_port = (u8)hub_port;
2496 }
2497 
2498 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2499 			      struct dwc2_host_chan *chan,
2500 			      struct dwc2_qtd *qtd)
2501 {
2502 	struct dwc2_hcd_urb *urb = qtd->urb;
2503 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2504 
2505 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2506 	case USB_ENDPOINT_XFER_CONTROL:
2507 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2508 
2509 		switch (qtd->control_phase) {
2510 		case DWC2_CONTROL_SETUP:
2511 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2512 			chan->do_ping = 0;
2513 			chan->ep_is_in = 0;
2514 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2515 			if (hsotg->params.host_dma)
2516 				chan->xfer_dma = urb->setup_dma;
2517 			else
2518 				chan->xfer_buf = urb->setup_packet;
2519 			chan->xfer_len = 8;
2520 			break;
2521 
2522 		case DWC2_CONTROL_DATA:
2523 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2524 			chan->data_pid_start = qtd->data_toggle;
2525 			break;
2526 
2527 		case DWC2_CONTROL_STATUS:
2528 			/*
2529 			 * Direction is opposite of data direction or IN if no
2530 			 * data
2531 			 */
2532 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2533 			if (urb->length == 0)
2534 				chan->ep_is_in = 1;
2535 			else
2536 				chan->ep_is_in =
2537 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2538 			if (chan->ep_is_in)
2539 				chan->do_ping = 0;
2540 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2541 			chan->xfer_len = 0;
2542 			if (hsotg->params.host_dma)
2543 				chan->xfer_dma = hsotg->status_buf_dma;
2544 			else
2545 				chan->xfer_buf = hsotg->status_buf;
2546 			break;
2547 		}
2548 		break;
2549 
2550 	case USB_ENDPOINT_XFER_BULK:
2551 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2552 		break;
2553 
2554 	case USB_ENDPOINT_XFER_INT:
2555 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2556 		break;
2557 
2558 	case USB_ENDPOINT_XFER_ISOC:
2559 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2560 		if (hsotg->params.dma_desc_enable)
2561 			break;
2562 
2563 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2564 		frame_desc->status = 0;
2565 
2566 		if (hsotg->params.host_dma) {
2567 			chan->xfer_dma = urb->dma;
2568 			chan->xfer_dma += frame_desc->offset +
2569 					qtd->isoc_split_offset;
2570 		} else {
2571 			chan->xfer_buf = urb->buf;
2572 			chan->xfer_buf += frame_desc->offset +
2573 					qtd->isoc_split_offset;
2574 		}
2575 
2576 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2577 
2578 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2579 			if (chan->xfer_len <= 188)
2580 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2581 			else
2582 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2583 		}
2584 		break;
2585 	}
2586 }
2587 
2588 #define DWC2_USB_DMA_ALIGN 4
2589 
2590 struct dma_aligned_buffer {
2591 	void *kmalloc_ptr;
2592 	void *old_xfer_buffer;
2593 	u8 data[0];
2594 };
2595 
2596 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2597 {
2598 	struct dma_aligned_buffer *temp;
2599 
2600 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2601 		return;
2602 
2603 	temp = container_of(urb->transfer_buffer,
2604 			    struct dma_aligned_buffer, data);
2605 
2606 	if (usb_urb_dir_in(urb))
2607 		memcpy(temp->old_xfer_buffer, temp->data,
2608 		       urb->transfer_buffer_length);
2609 	urb->transfer_buffer = temp->old_xfer_buffer;
2610 	kfree(temp->kmalloc_ptr);
2611 
2612 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2613 }
2614 
2615 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2616 {
2617 	struct dma_aligned_buffer *temp, *kmalloc_ptr;
2618 	size_t kmalloc_size;
2619 
2620 	if (urb->num_sgs || urb->sg ||
2621 	    urb->transfer_buffer_length == 0 ||
2622 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2623 		return 0;
2624 
2625 	/* Allocate a buffer with enough padding for alignment */
2626 	kmalloc_size = urb->transfer_buffer_length +
2627 		sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2628 
2629 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2630 	if (!kmalloc_ptr)
2631 		return -ENOMEM;
2632 
2633 	/* Position our struct dma_aligned_buffer such that data is aligned */
2634 	temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2635 	temp->kmalloc_ptr = kmalloc_ptr;
2636 	temp->old_xfer_buffer = urb->transfer_buffer;
2637 	if (usb_urb_dir_out(urb))
2638 		memcpy(temp->data, urb->transfer_buffer,
2639 		       urb->transfer_buffer_length);
2640 	urb->transfer_buffer = temp->data;
2641 
2642 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2643 
2644 	return 0;
2645 }
2646 
2647 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2648 				gfp_t mem_flags)
2649 {
2650 	int ret;
2651 
2652 	/* We assume setup_dma is always aligned; warn if not */
2653 	WARN_ON_ONCE(urb->setup_dma &&
2654 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2655 
2656 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2657 	if (ret)
2658 		return ret;
2659 
2660 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2661 	if (ret)
2662 		dwc2_free_dma_aligned_buffer(urb);
2663 
2664 	return ret;
2665 }
2666 
2667 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2668 {
2669 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2670 	dwc2_free_dma_aligned_buffer(urb);
2671 }
2672 
2673 /**
2674  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2675  * channel and initializes the host channel to perform the transactions. The
2676  * host channel is removed from the free list.
2677  *
2678  * @hsotg: The HCD state structure
2679  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2680  *         to a free host channel
2681  */
2682 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2683 {
2684 	struct dwc2_host_chan *chan;
2685 	struct dwc2_hcd_urb *urb;
2686 	struct dwc2_qtd *qtd;
2687 
2688 	if (dbg_qh(qh))
2689 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2690 
2691 	if (list_empty(&qh->qtd_list)) {
2692 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2693 		return -ENOMEM;
2694 	}
2695 
2696 	if (list_empty(&hsotg->free_hc_list)) {
2697 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2698 		return -ENOMEM;
2699 	}
2700 
2701 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2702 				hc_list_entry);
2703 
2704 	/* Remove host channel from free list */
2705 	list_del_init(&chan->hc_list_entry);
2706 
2707 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2708 	urb = qtd->urb;
2709 	qh->channel = chan;
2710 	qtd->in_process = 1;
2711 
2712 	/*
2713 	 * Use usb_pipedevice to determine device address. This address is
2714 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2715 	 */
2716 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2717 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2718 	chan->speed = qh->dev_speed;
2719 	chan->max_packet = dwc2_max_packet(qh->maxp);
2720 
2721 	chan->xfer_started = 0;
2722 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2723 	chan->error_state = (qtd->error_count > 0);
2724 	chan->halt_on_queue = 0;
2725 	chan->halt_pending = 0;
2726 	chan->requests = 0;
2727 
2728 	/*
2729 	 * The following values may be modified in the transfer type section
2730 	 * below. The xfer_len value may be reduced when the transfer is
2731 	 * started to accommodate the max widths of the XferSize and PktCnt
2732 	 * fields in the HCTSIZn register.
2733 	 */
2734 
2735 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2736 	if (chan->ep_is_in)
2737 		chan->do_ping = 0;
2738 	else
2739 		chan->do_ping = qh->ping_state;
2740 
2741 	chan->data_pid_start = qh->data_toggle;
2742 	chan->multi_count = 1;
2743 
2744 	if (urb->actual_length > urb->length &&
2745 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2746 		urb->actual_length = urb->length;
2747 
2748 	if (hsotg->params.host_dma)
2749 		chan->xfer_dma = urb->dma + urb->actual_length;
2750 	else
2751 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2752 
2753 	chan->xfer_len = urb->length - urb->actual_length;
2754 	chan->xfer_count = 0;
2755 
2756 	/* Set the split attributes if required */
2757 	if (qh->do_split)
2758 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2759 	else
2760 		chan->do_split = 0;
2761 
2762 	/* Set the transfer attributes */
2763 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2764 
2765 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2766 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2767 		/*
2768 		 * This value may be modified when the transfer is started
2769 		 * to reflect the actual transfer length
2770 		 */
2771 		chan->multi_count = dwc2_hb_mult(qh->maxp);
2772 
2773 	if (hsotg->params.dma_desc_enable) {
2774 		chan->desc_list_addr = qh->desc_list_dma;
2775 		chan->desc_list_sz = qh->desc_list_sz;
2776 	}
2777 
2778 	dwc2_hc_init(hsotg, chan);
2779 	chan->qh = qh;
2780 
2781 	return 0;
2782 }
2783 
2784 /**
2785  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2786  * schedule and assigns them to available host channels. Called from the HCD
2787  * interrupt handler functions.
2788  *
2789  * @hsotg: The HCD state structure
2790  *
2791  * Return: The types of new transactions that were assigned to host channels
2792  */
2793 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2794 		struct dwc2_hsotg *hsotg)
2795 {
2796 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2797 	struct list_head *qh_ptr;
2798 	struct dwc2_qh *qh;
2799 	int num_channels;
2800 
2801 #ifdef DWC2_DEBUG_SOF
2802 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2803 #endif
2804 
2805 	/* Process entries in the periodic ready list */
2806 	qh_ptr = hsotg->periodic_sched_ready.next;
2807 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2808 		if (list_empty(&hsotg->free_hc_list))
2809 			break;
2810 		if (hsotg->params.uframe_sched) {
2811 			if (hsotg->available_host_channels <= 1)
2812 				break;
2813 			hsotg->available_host_channels--;
2814 		}
2815 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2816 		if (dwc2_assign_and_init_hc(hsotg, qh))
2817 			break;
2818 
2819 		/*
2820 		 * Move the QH from the periodic ready schedule to the
2821 		 * periodic assigned schedule
2822 		 */
2823 		qh_ptr = qh_ptr->next;
2824 		list_move_tail(&qh->qh_list_entry,
2825 			       &hsotg->periodic_sched_assigned);
2826 		ret_val = DWC2_TRANSACTION_PERIODIC;
2827 	}
2828 
2829 	/*
2830 	 * Process entries in the inactive portion of the non-periodic
2831 	 * schedule. Some free host channels may not be used if they are
2832 	 * reserved for periodic transfers.
2833 	 */
2834 	num_channels = hsotg->params.host_channels;
2835 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2836 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2837 		if (!hsotg->params.uframe_sched &&
2838 		    hsotg->non_periodic_channels >= num_channels -
2839 						hsotg->periodic_channels)
2840 			break;
2841 		if (list_empty(&hsotg->free_hc_list))
2842 			break;
2843 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2844 		if (hsotg->params.uframe_sched) {
2845 			if (hsotg->available_host_channels < 1)
2846 				break;
2847 			hsotg->available_host_channels--;
2848 		}
2849 
2850 		if (dwc2_assign_and_init_hc(hsotg, qh))
2851 			break;
2852 
2853 		/*
2854 		 * Move the QH from the non-periodic inactive schedule to the
2855 		 * non-periodic active schedule
2856 		 */
2857 		qh_ptr = qh_ptr->next;
2858 		list_move_tail(&qh->qh_list_entry,
2859 			       &hsotg->non_periodic_sched_active);
2860 
2861 		if (ret_val == DWC2_TRANSACTION_NONE)
2862 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2863 		else
2864 			ret_val = DWC2_TRANSACTION_ALL;
2865 
2866 		if (!hsotg->params.uframe_sched)
2867 			hsotg->non_periodic_channels++;
2868 	}
2869 
2870 	return ret_val;
2871 }
2872 
2873 /**
2874  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2875  * a host channel associated with either a periodic or non-periodic transfer
2876  *
2877  * @hsotg: The HCD state structure
2878  * @chan:  Host channel descriptor associated with either a periodic or
2879  *         non-periodic transfer
2880  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2881  *                     for periodic transfers or the non-periodic Tx FIFO
2882  *                     for non-periodic transfers
2883  *
2884  * Return: 1 if a request is queued and more requests may be needed to
2885  * complete the transfer, 0 if no more requests are required for this
2886  * transfer, -1 if there is insufficient space in the Tx FIFO
2887  *
2888  * This function assumes that there is space available in the appropriate
2889  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2890  * it checks whether space is available in the appropriate Tx FIFO.
2891  *
2892  * Must be called with interrupt disabled and spinlock held
2893  */
2894 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2895 				  struct dwc2_host_chan *chan,
2896 				  u16 fifo_dwords_avail)
2897 {
2898 	int retval = 0;
2899 
2900 	if (chan->do_split)
2901 		/* Put ourselves on the list to keep order straight */
2902 		list_move_tail(&chan->split_order_list_entry,
2903 			       &hsotg->split_order);
2904 
2905 	if (hsotg->params.host_dma) {
2906 		if (hsotg->params.dma_desc_enable) {
2907 			if (!chan->xfer_started ||
2908 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2909 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2910 				chan->qh->ping_state = 0;
2911 			}
2912 		} else if (!chan->xfer_started) {
2913 			dwc2_hc_start_transfer(hsotg, chan);
2914 			chan->qh->ping_state = 0;
2915 		}
2916 	} else if (chan->halt_pending) {
2917 		/* Don't queue a request if the channel has been halted */
2918 	} else if (chan->halt_on_queue) {
2919 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2920 	} else if (chan->do_ping) {
2921 		if (!chan->xfer_started)
2922 			dwc2_hc_start_transfer(hsotg, chan);
2923 	} else if (!chan->ep_is_in ||
2924 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2925 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2926 			if (!chan->xfer_started) {
2927 				dwc2_hc_start_transfer(hsotg, chan);
2928 				retval = 1;
2929 			} else {
2930 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2931 			}
2932 		} else {
2933 			retval = -1;
2934 		}
2935 	} else {
2936 		if (!chan->xfer_started) {
2937 			dwc2_hc_start_transfer(hsotg, chan);
2938 			retval = 1;
2939 		} else {
2940 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2941 		}
2942 	}
2943 
2944 	return retval;
2945 }
2946 
2947 /*
2948  * Processes periodic channels for the next frame and queues transactions for
2949  * these channels to the DWC_otg controller. After queueing transactions, the
2950  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2951  * to queue as Periodic Tx FIFO or request queue space becomes available.
2952  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2953  *
2954  * Must be called with interrupt disabled and spinlock held
2955  */
2956 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2957 {
2958 	struct list_head *qh_ptr;
2959 	struct dwc2_qh *qh;
2960 	u32 tx_status;
2961 	u32 fspcavail;
2962 	u32 gintmsk;
2963 	int status;
2964 	bool no_queue_space = false;
2965 	bool no_fifo_space = false;
2966 	u32 qspcavail;
2967 
2968 	/* If empty list then just adjust interrupt enables */
2969 	if (list_empty(&hsotg->periodic_sched_assigned))
2970 		goto exit;
2971 
2972 	if (dbg_perio())
2973 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2974 
2975 	tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2976 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2977 		    TXSTS_QSPCAVAIL_SHIFT;
2978 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2979 		    TXSTS_FSPCAVAIL_SHIFT;
2980 
2981 	if (dbg_perio()) {
2982 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2983 			 qspcavail);
2984 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2985 			 fspcavail);
2986 	}
2987 
2988 	qh_ptr = hsotg->periodic_sched_assigned.next;
2989 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2990 		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2991 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2992 			    TXSTS_QSPCAVAIL_SHIFT;
2993 		if (qspcavail == 0) {
2994 			no_queue_space = true;
2995 			break;
2996 		}
2997 
2998 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2999 		if (!qh->channel) {
3000 			qh_ptr = qh_ptr->next;
3001 			continue;
3002 		}
3003 
3004 		/* Make sure EP's TT buffer is clean before queueing qtds */
3005 		if (qh->tt_buffer_dirty) {
3006 			qh_ptr = qh_ptr->next;
3007 			continue;
3008 		}
3009 
3010 		/*
3011 		 * Set a flag if we're queuing high-bandwidth in slave mode.
3012 		 * The flag prevents any halts to get into the request queue in
3013 		 * the middle of multiple high-bandwidth packets getting queued.
3014 		 */
3015 		if (!hsotg->params.host_dma &&
3016 		    qh->channel->multi_count > 1)
3017 			hsotg->queuing_high_bandwidth = 1;
3018 
3019 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3020 			    TXSTS_FSPCAVAIL_SHIFT;
3021 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3022 		if (status < 0) {
3023 			no_fifo_space = true;
3024 			break;
3025 		}
3026 
3027 		/*
3028 		 * In Slave mode, stay on the current transfer until there is
3029 		 * nothing more to do or the high-bandwidth request count is
3030 		 * reached. In DMA mode, only need to queue one request. The
3031 		 * controller automatically handles multiple packets for
3032 		 * high-bandwidth transfers.
3033 		 */
3034 		if (hsotg->params.host_dma || status == 0 ||
3035 		    qh->channel->requests == qh->channel->multi_count) {
3036 			qh_ptr = qh_ptr->next;
3037 			/*
3038 			 * Move the QH from the periodic assigned schedule to
3039 			 * the periodic queued schedule
3040 			 */
3041 			list_move_tail(&qh->qh_list_entry,
3042 				       &hsotg->periodic_sched_queued);
3043 
3044 			/* done queuing high bandwidth */
3045 			hsotg->queuing_high_bandwidth = 0;
3046 		}
3047 	}
3048 
3049 exit:
3050 	if (no_queue_space || no_fifo_space ||
3051 	    (!hsotg->params.host_dma &&
3052 	     !list_empty(&hsotg->periodic_sched_assigned))) {
3053 		/*
3054 		 * May need to queue more transactions as the request
3055 		 * queue or Tx FIFO empties. Enable the periodic Tx
3056 		 * FIFO empty interrupt. (Always use the half-empty
3057 		 * level to ensure that new requests are loaded as
3058 		 * soon as possible.)
3059 		 */
3060 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3061 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3062 			gintmsk |= GINTSTS_PTXFEMP;
3063 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3064 		}
3065 	} else {
3066 		/*
3067 		 * Disable the Tx FIFO empty interrupt since there are
3068 		 * no more transactions that need to be queued right
3069 		 * now. This function is called from interrupt
3070 		 * handlers to queue more transactions as transfer
3071 		 * states change.
3072 		 */
3073 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3074 		if (gintmsk & GINTSTS_PTXFEMP) {
3075 			gintmsk &= ~GINTSTS_PTXFEMP;
3076 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3077 		}
3078 	}
3079 }
3080 
3081 /*
3082  * Processes active non-periodic channels and queues transactions for these
3083  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3084  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3085  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3086  * FIFO Empty interrupt is disabled.
3087  *
3088  * Must be called with interrupt disabled and spinlock held
3089  */
3090 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3091 {
3092 	struct list_head *orig_qh_ptr;
3093 	struct dwc2_qh *qh;
3094 	u32 tx_status;
3095 	u32 qspcavail;
3096 	u32 fspcavail;
3097 	u32 gintmsk;
3098 	int status;
3099 	int no_queue_space = 0;
3100 	int no_fifo_space = 0;
3101 	int more_to_do = 0;
3102 
3103 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3104 
3105 	tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3106 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3107 		    TXSTS_QSPCAVAIL_SHIFT;
3108 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3109 		    TXSTS_FSPCAVAIL_SHIFT;
3110 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3111 		 qspcavail);
3112 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3113 		 fspcavail);
3114 
3115 	/*
3116 	 * Keep track of the starting point. Skip over the start-of-list
3117 	 * entry.
3118 	 */
3119 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3120 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3121 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3122 
3123 	/*
3124 	 * Process once through the active list or until no more space is
3125 	 * available in the request queue or the Tx FIFO
3126 	 */
3127 	do {
3128 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3129 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3130 			    TXSTS_QSPCAVAIL_SHIFT;
3131 		if (!hsotg->params.host_dma && qspcavail == 0) {
3132 			no_queue_space = 1;
3133 			break;
3134 		}
3135 
3136 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3137 				qh_list_entry);
3138 		if (!qh->channel)
3139 			goto next;
3140 
3141 		/* Make sure EP's TT buffer is clean before queueing qtds */
3142 		if (qh->tt_buffer_dirty)
3143 			goto next;
3144 
3145 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3146 			    TXSTS_FSPCAVAIL_SHIFT;
3147 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3148 
3149 		if (status > 0) {
3150 			more_to_do = 1;
3151 		} else if (status < 0) {
3152 			no_fifo_space = 1;
3153 			break;
3154 		}
3155 next:
3156 		/* Advance to next QH, skipping start-of-list entry */
3157 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3158 		if (hsotg->non_periodic_qh_ptr ==
3159 				&hsotg->non_periodic_sched_active)
3160 			hsotg->non_periodic_qh_ptr =
3161 					hsotg->non_periodic_qh_ptr->next;
3162 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3163 
3164 	if (!hsotg->params.host_dma) {
3165 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3166 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3167 			    TXSTS_QSPCAVAIL_SHIFT;
3168 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3169 			    TXSTS_FSPCAVAIL_SHIFT;
3170 		dev_vdbg(hsotg->dev,
3171 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3172 			 qspcavail);
3173 		dev_vdbg(hsotg->dev,
3174 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3175 			 fspcavail);
3176 
3177 		if (more_to_do || no_queue_space || no_fifo_space) {
3178 			/*
3179 			 * May need to queue more transactions as the request
3180 			 * queue or Tx FIFO empties. Enable the non-periodic
3181 			 * Tx FIFO empty interrupt. (Always use the half-empty
3182 			 * level to ensure that new requests are loaded as
3183 			 * soon as possible.)
3184 			 */
3185 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3186 			gintmsk |= GINTSTS_NPTXFEMP;
3187 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3188 		} else {
3189 			/*
3190 			 * Disable the Tx FIFO empty interrupt since there are
3191 			 * no more transactions that need to be queued right
3192 			 * now. This function is called from interrupt
3193 			 * handlers to queue more transactions as transfer
3194 			 * states change.
3195 			 */
3196 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3197 			gintmsk &= ~GINTSTS_NPTXFEMP;
3198 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3199 		}
3200 	}
3201 }
3202 
3203 /**
3204  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3205  * and queues transactions for these channels to the DWC_otg controller. Called
3206  * from the HCD interrupt handler functions.
3207  *
3208  * @hsotg:   The HCD state structure
3209  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3210  *           or both)
3211  *
3212  * Must be called with interrupt disabled and spinlock held
3213  */
3214 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3215 				 enum dwc2_transaction_type tr_type)
3216 {
3217 #ifdef DWC2_DEBUG_SOF
3218 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3219 #endif
3220 	/* Process host channels associated with periodic transfers */
3221 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3222 	    tr_type == DWC2_TRANSACTION_ALL)
3223 		dwc2_process_periodic_channels(hsotg);
3224 
3225 	/* Process host channels associated with non-periodic transfers */
3226 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3227 	    tr_type == DWC2_TRANSACTION_ALL) {
3228 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3229 			dwc2_process_non_periodic_channels(hsotg);
3230 		} else {
3231 			/*
3232 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3233 			 * there are no non-periodic transfers to process
3234 			 */
3235 			u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3236 
3237 			gintmsk &= ~GINTSTS_NPTXFEMP;
3238 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3239 		}
3240 	}
3241 }
3242 
3243 static void dwc2_conn_id_status_change(struct work_struct *work)
3244 {
3245 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3246 						wf_otg);
3247 	u32 count = 0;
3248 	u32 gotgctl;
3249 	unsigned long flags;
3250 
3251 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3252 
3253 	gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3254 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3255 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3256 		!!(gotgctl & GOTGCTL_CONID_B));
3257 
3258 	/* B-Device connector (Device Mode) */
3259 	if (gotgctl & GOTGCTL_CONID_B) {
3260 		/* Wait for switch to device mode */
3261 		dev_dbg(hsotg->dev, "connId B\n");
3262 		if (hsotg->bus_suspended) {
3263 			dev_info(hsotg->dev,
3264 				 "Do port resume before switching to device mode\n");
3265 			dwc2_port_resume(hsotg);
3266 		}
3267 		while (!dwc2_is_device_mode(hsotg)) {
3268 			dev_info(hsotg->dev,
3269 				 "Waiting for Peripheral Mode, Mode=%s\n",
3270 				 dwc2_is_host_mode(hsotg) ? "Host" :
3271 				 "Peripheral");
3272 			msleep(20);
3273 			/*
3274 			 * Sometimes the initial GOTGCTRL read is wrong, so
3275 			 * check it again and jump to host mode if that was
3276 			 * the case.
3277 			 */
3278 			gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3279 			if (!(gotgctl & GOTGCTL_CONID_B))
3280 				goto host;
3281 			if (++count > 250)
3282 				break;
3283 		}
3284 		if (count > 250)
3285 			dev_err(hsotg->dev,
3286 				"Connection id status change timed out\n");
3287 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3288 		dwc2_core_init(hsotg, false);
3289 		dwc2_enable_global_interrupts(hsotg);
3290 		spin_lock_irqsave(&hsotg->lock, flags);
3291 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3292 		spin_unlock_irqrestore(&hsotg->lock, flags);
3293 		dwc2_hsotg_core_connect(hsotg);
3294 	} else {
3295 host:
3296 		/* A-Device connector (Host Mode) */
3297 		dev_dbg(hsotg->dev, "connId A\n");
3298 		while (!dwc2_is_host_mode(hsotg)) {
3299 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3300 				 dwc2_is_host_mode(hsotg) ?
3301 				 "Host" : "Peripheral");
3302 			msleep(20);
3303 			if (++count > 250)
3304 				break;
3305 		}
3306 		if (count > 250)
3307 			dev_err(hsotg->dev,
3308 				"Connection id status change timed out\n");
3309 
3310 		spin_lock_irqsave(&hsotg->lock, flags);
3311 		dwc2_hsotg_disconnect(hsotg);
3312 		spin_unlock_irqrestore(&hsotg->lock, flags);
3313 
3314 		hsotg->op_state = OTG_STATE_A_HOST;
3315 		/* Initialize the Core for Host mode */
3316 		dwc2_core_init(hsotg, false);
3317 		dwc2_enable_global_interrupts(hsotg);
3318 		dwc2_hcd_start(hsotg);
3319 	}
3320 }
3321 
3322 static void dwc2_wakeup_detected(struct timer_list *t)
3323 {
3324 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3325 	u32 hprt0;
3326 
3327 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3328 
3329 	/*
3330 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3331 	 * so that OPT tests pass with all PHYs.)
3332 	 */
3333 	hprt0 = dwc2_read_hprt0(hsotg);
3334 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3335 	hprt0 &= ~HPRT0_RES;
3336 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3337 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3338 		dwc2_readl(hsotg->regs + HPRT0));
3339 
3340 	dwc2_hcd_rem_wakeup(hsotg);
3341 	hsotg->bus_suspended = false;
3342 
3343 	/* Change to L0 state */
3344 	hsotg->lx_state = DWC2_L0;
3345 }
3346 
3347 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3348 {
3349 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3350 
3351 	return hcd->self.b_hnp_enable;
3352 }
3353 
3354 /* Must NOT be called with interrupt disabled or spinlock held */
3355 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3356 {
3357 	unsigned long flags;
3358 	u32 hprt0;
3359 	u32 pcgctl;
3360 	u32 gotgctl;
3361 
3362 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3363 
3364 	spin_lock_irqsave(&hsotg->lock, flags);
3365 
3366 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3367 		gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3368 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3369 		dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3370 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3371 	}
3372 
3373 	hprt0 = dwc2_read_hprt0(hsotg);
3374 	hprt0 |= HPRT0_SUSP;
3375 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3376 
3377 	hsotg->bus_suspended = true;
3378 
3379 	/*
3380 	 * If hibernation is supported, Phy clock will be suspended
3381 	 * after registers are backuped.
3382 	 */
3383 	if (!hsotg->params.hibernation) {
3384 		/* Suspend the Phy Clock */
3385 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3386 		pcgctl |= PCGCTL_STOPPCLK;
3387 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3388 		udelay(10);
3389 	}
3390 
3391 	/* For HNP the bus must be suspended for at least 200ms */
3392 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3393 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3394 		pcgctl &= ~PCGCTL_STOPPCLK;
3395 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3396 
3397 		spin_unlock_irqrestore(&hsotg->lock, flags);
3398 
3399 		msleep(200);
3400 	} else {
3401 		spin_unlock_irqrestore(&hsotg->lock, flags);
3402 	}
3403 }
3404 
3405 /* Must NOT be called with interrupt disabled or spinlock held */
3406 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3407 {
3408 	unsigned long flags;
3409 	u32 hprt0;
3410 	u32 pcgctl;
3411 
3412 	spin_lock_irqsave(&hsotg->lock, flags);
3413 
3414 	/*
3415 	 * If hibernation is supported, Phy clock is already resumed
3416 	 * after registers restore.
3417 	 */
3418 	if (!hsotg->params.hibernation) {
3419 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3420 		pcgctl &= ~PCGCTL_STOPPCLK;
3421 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3422 		spin_unlock_irqrestore(&hsotg->lock, flags);
3423 		msleep(20);
3424 		spin_lock_irqsave(&hsotg->lock, flags);
3425 	}
3426 
3427 	hprt0 = dwc2_read_hprt0(hsotg);
3428 	hprt0 |= HPRT0_RES;
3429 	hprt0 &= ~HPRT0_SUSP;
3430 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3431 	spin_unlock_irqrestore(&hsotg->lock, flags);
3432 
3433 	msleep(USB_RESUME_TIMEOUT);
3434 
3435 	spin_lock_irqsave(&hsotg->lock, flags);
3436 	hprt0 = dwc2_read_hprt0(hsotg);
3437 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3438 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3439 	hsotg->bus_suspended = false;
3440 	spin_unlock_irqrestore(&hsotg->lock, flags);
3441 }
3442 
3443 /* Handles hub class-specific requests */
3444 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3445 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3446 {
3447 	struct usb_hub_descriptor *hub_desc;
3448 	int retval = 0;
3449 	u32 hprt0;
3450 	u32 port_status;
3451 	u32 speed;
3452 	u32 pcgctl;
3453 
3454 	switch (typereq) {
3455 	case ClearHubFeature:
3456 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3457 
3458 		switch (wvalue) {
3459 		case C_HUB_LOCAL_POWER:
3460 		case C_HUB_OVER_CURRENT:
3461 			/* Nothing required here */
3462 			break;
3463 
3464 		default:
3465 			retval = -EINVAL;
3466 			dev_err(hsotg->dev,
3467 				"ClearHubFeature request %1xh unknown\n",
3468 				wvalue);
3469 		}
3470 		break;
3471 
3472 	case ClearPortFeature:
3473 		if (wvalue != USB_PORT_FEAT_L1)
3474 			if (!windex || windex > 1)
3475 				goto error;
3476 		switch (wvalue) {
3477 		case USB_PORT_FEAT_ENABLE:
3478 			dev_dbg(hsotg->dev,
3479 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3480 			hprt0 = dwc2_read_hprt0(hsotg);
3481 			hprt0 |= HPRT0_ENA;
3482 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3483 			break;
3484 
3485 		case USB_PORT_FEAT_SUSPEND:
3486 			dev_dbg(hsotg->dev,
3487 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3488 
3489 			if (hsotg->bus_suspended)
3490 				dwc2_port_resume(hsotg);
3491 			break;
3492 
3493 		case USB_PORT_FEAT_POWER:
3494 			dev_dbg(hsotg->dev,
3495 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3496 			hprt0 = dwc2_read_hprt0(hsotg);
3497 			hprt0 &= ~HPRT0_PWR;
3498 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3499 			break;
3500 
3501 		case USB_PORT_FEAT_INDICATOR:
3502 			dev_dbg(hsotg->dev,
3503 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3504 			/* Port indicator not supported */
3505 			break;
3506 
3507 		case USB_PORT_FEAT_C_CONNECTION:
3508 			/*
3509 			 * Clears driver's internal Connect Status Change flag
3510 			 */
3511 			dev_dbg(hsotg->dev,
3512 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3513 			hsotg->flags.b.port_connect_status_change = 0;
3514 			break;
3515 
3516 		case USB_PORT_FEAT_C_RESET:
3517 			/* Clears driver's internal Port Reset Change flag */
3518 			dev_dbg(hsotg->dev,
3519 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3520 			hsotg->flags.b.port_reset_change = 0;
3521 			break;
3522 
3523 		case USB_PORT_FEAT_C_ENABLE:
3524 			/*
3525 			 * Clears the driver's internal Port Enable/Disable
3526 			 * Change flag
3527 			 */
3528 			dev_dbg(hsotg->dev,
3529 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3530 			hsotg->flags.b.port_enable_change = 0;
3531 			break;
3532 
3533 		case USB_PORT_FEAT_C_SUSPEND:
3534 			/*
3535 			 * Clears the driver's internal Port Suspend Change
3536 			 * flag, which is set when resume signaling on the host
3537 			 * port is complete
3538 			 */
3539 			dev_dbg(hsotg->dev,
3540 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3541 			hsotg->flags.b.port_suspend_change = 0;
3542 			break;
3543 
3544 		case USB_PORT_FEAT_C_PORT_L1:
3545 			dev_dbg(hsotg->dev,
3546 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3547 			hsotg->flags.b.port_l1_change = 0;
3548 			break;
3549 
3550 		case USB_PORT_FEAT_C_OVER_CURRENT:
3551 			dev_dbg(hsotg->dev,
3552 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3553 			hsotg->flags.b.port_over_current_change = 0;
3554 			break;
3555 
3556 		default:
3557 			retval = -EINVAL;
3558 			dev_err(hsotg->dev,
3559 				"ClearPortFeature request %1xh unknown or unsupported\n",
3560 				wvalue);
3561 		}
3562 		break;
3563 
3564 	case GetHubDescriptor:
3565 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3566 		hub_desc = (struct usb_hub_descriptor *)buf;
3567 		hub_desc->bDescLength = 9;
3568 		hub_desc->bDescriptorType = USB_DT_HUB;
3569 		hub_desc->bNbrPorts = 1;
3570 		hub_desc->wHubCharacteristics =
3571 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3572 				    HUB_CHAR_INDV_PORT_OCPM);
3573 		hub_desc->bPwrOn2PwrGood = 1;
3574 		hub_desc->bHubContrCurrent = 0;
3575 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3576 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3577 		break;
3578 
3579 	case GetHubStatus:
3580 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3581 		memset(buf, 0, 4);
3582 		break;
3583 
3584 	case GetPortStatus:
3585 		dev_vdbg(hsotg->dev,
3586 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3587 			 hsotg->flags.d32);
3588 		if (!windex || windex > 1)
3589 			goto error;
3590 
3591 		port_status = 0;
3592 		if (hsotg->flags.b.port_connect_status_change)
3593 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3594 		if (hsotg->flags.b.port_enable_change)
3595 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3596 		if (hsotg->flags.b.port_suspend_change)
3597 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3598 		if (hsotg->flags.b.port_l1_change)
3599 			port_status |= USB_PORT_STAT_C_L1 << 16;
3600 		if (hsotg->flags.b.port_reset_change)
3601 			port_status |= USB_PORT_STAT_C_RESET << 16;
3602 		if (hsotg->flags.b.port_over_current_change) {
3603 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3604 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3605 		}
3606 
3607 		if (!hsotg->flags.b.port_connect_status) {
3608 			/*
3609 			 * The port is disconnected, which means the core is
3610 			 * either in device mode or it soon will be. Just
3611 			 * return 0's for the remainder of the port status
3612 			 * since the port register can't be read if the core
3613 			 * is in device mode.
3614 			 */
3615 			*(__le32 *)buf = cpu_to_le32(port_status);
3616 			break;
3617 		}
3618 
3619 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3620 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3621 
3622 		if (hprt0 & HPRT0_CONNSTS)
3623 			port_status |= USB_PORT_STAT_CONNECTION;
3624 		if (hprt0 & HPRT0_ENA)
3625 			port_status |= USB_PORT_STAT_ENABLE;
3626 		if (hprt0 & HPRT0_SUSP)
3627 			port_status |= USB_PORT_STAT_SUSPEND;
3628 		if (hprt0 & HPRT0_OVRCURRACT)
3629 			port_status |= USB_PORT_STAT_OVERCURRENT;
3630 		if (hprt0 & HPRT0_RST)
3631 			port_status |= USB_PORT_STAT_RESET;
3632 		if (hprt0 & HPRT0_PWR)
3633 			port_status |= USB_PORT_STAT_POWER;
3634 
3635 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3636 		if (speed == HPRT0_SPD_HIGH_SPEED)
3637 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3638 		else if (speed == HPRT0_SPD_LOW_SPEED)
3639 			port_status |= USB_PORT_STAT_LOW_SPEED;
3640 
3641 		if (hprt0 & HPRT0_TSTCTL_MASK)
3642 			port_status |= USB_PORT_STAT_TEST;
3643 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3644 
3645 		if (hsotg->params.dma_desc_fs_enable) {
3646 			/*
3647 			 * Enable descriptor DMA only if a full speed
3648 			 * device is connected.
3649 			 */
3650 			if (hsotg->new_connection &&
3651 			    ((port_status &
3652 			      (USB_PORT_STAT_CONNECTION |
3653 			       USB_PORT_STAT_HIGH_SPEED |
3654 			       USB_PORT_STAT_LOW_SPEED)) ==
3655 			       USB_PORT_STAT_CONNECTION)) {
3656 				u32 hcfg;
3657 
3658 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3659 				hsotg->params.dma_desc_enable = true;
3660 				hcfg = dwc2_readl(hsotg->regs + HCFG);
3661 				hcfg |= HCFG_DESCDMA;
3662 				dwc2_writel(hcfg, hsotg->regs + HCFG);
3663 				hsotg->new_connection = false;
3664 			}
3665 		}
3666 
3667 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3668 		*(__le32 *)buf = cpu_to_le32(port_status);
3669 		break;
3670 
3671 	case SetHubFeature:
3672 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3673 		/* No HUB features supported */
3674 		break;
3675 
3676 	case SetPortFeature:
3677 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3678 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3679 			goto error;
3680 
3681 		if (!hsotg->flags.b.port_connect_status) {
3682 			/*
3683 			 * The port is disconnected, which means the core is
3684 			 * either in device mode or it soon will be. Just
3685 			 * return without doing anything since the port
3686 			 * register can't be written if the core is in device
3687 			 * mode.
3688 			 */
3689 			break;
3690 		}
3691 
3692 		switch (wvalue) {
3693 		case USB_PORT_FEAT_SUSPEND:
3694 			dev_dbg(hsotg->dev,
3695 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3696 			if (windex != hsotg->otg_port)
3697 				goto error;
3698 			dwc2_port_suspend(hsotg, windex);
3699 			break;
3700 
3701 		case USB_PORT_FEAT_POWER:
3702 			dev_dbg(hsotg->dev,
3703 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3704 			hprt0 = dwc2_read_hprt0(hsotg);
3705 			hprt0 |= HPRT0_PWR;
3706 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3707 			break;
3708 
3709 		case USB_PORT_FEAT_RESET:
3710 			hprt0 = dwc2_read_hprt0(hsotg);
3711 			dev_dbg(hsotg->dev,
3712 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3713 			pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3714 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3715 			dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3716 			/* ??? Original driver does this */
3717 			dwc2_writel(0, hsotg->regs + PCGCTL);
3718 
3719 			hprt0 = dwc2_read_hprt0(hsotg);
3720 			/* Clear suspend bit if resetting from suspend state */
3721 			hprt0 &= ~HPRT0_SUSP;
3722 
3723 			/*
3724 			 * When B-Host the Port reset bit is set in the Start
3725 			 * HCD Callback function, so that the reset is started
3726 			 * within 1ms of the HNP success interrupt
3727 			 */
3728 			if (!dwc2_hcd_is_b_host(hsotg)) {
3729 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3730 				dev_dbg(hsotg->dev,
3731 					"In host mode, hprt0=%08x\n", hprt0);
3732 				dwc2_writel(hprt0, hsotg->regs + HPRT0);
3733 			}
3734 
3735 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3736 			msleep(50);
3737 			hprt0 &= ~HPRT0_RST;
3738 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3739 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3740 			break;
3741 
3742 		case USB_PORT_FEAT_INDICATOR:
3743 			dev_dbg(hsotg->dev,
3744 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3745 			/* Not supported */
3746 			break;
3747 
3748 		case USB_PORT_FEAT_TEST:
3749 			hprt0 = dwc2_read_hprt0(hsotg);
3750 			dev_dbg(hsotg->dev,
3751 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3752 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3753 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3754 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3755 			break;
3756 
3757 		default:
3758 			retval = -EINVAL;
3759 			dev_err(hsotg->dev,
3760 				"SetPortFeature %1xh unknown or unsupported\n",
3761 				wvalue);
3762 			break;
3763 		}
3764 		break;
3765 
3766 	default:
3767 error:
3768 		retval = -EINVAL;
3769 		dev_dbg(hsotg->dev,
3770 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3771 			typereq, windex, wvalue);
3772 		break;
3773 	}
3774 
3775 	return retval;
3776 }
3777 
3778 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3779 {
3780 	int retval;
3781 
3782 	if (port != 1)
3783 		return -EINVAL;
3784 
3785 	retval = (hsotg->flags.b.port_connect_status_change ||
3786 		  hsotg->flags.b.port_reset_change ||
3787 		  hsotg->flags.b.port_enable_change ||
3788 		  hsotg->flags.b.port_suspend_change ||
3789 		  hsotg->flags.b.port_over_current_change);
3790 
3791 	if (retval) {
3792 		dev_dbg(hsotg->dev,
3793 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3794 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3795 			hsotg->flags.b.port_connect_status_change);
3796 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3797 			hsotg->flags.b.port_reset_change);
3798 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3799 			hsotg->flags.b.port_enable_change);
3800 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3801 			hsotg->flags.b.port_suspend_change);
3802 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3803 			hsotg->flags.b.port_over_current_change);
3804 	}
3805 
3806 	return retval;
3807 }
3808 
3809 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3810 {
3811 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3812 
3813 #ifdef DWC2_DEBUG_SOF
3814 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3815 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3816 #endif
3817 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3818 }
3819 
3820 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3821 {
3822 	u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3823 	u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3824 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3825 	unsigned int us_per_frame;
3826 	unsigned int frame_number;
3827 	unsigned int remaining;
3828 	unsigned int interval;
3829 	unsigned int phy_clks;
3830 
3831 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3832 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3833 
3834 	/* Extract fields */
3835 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3836 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3837 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3838 
3839 	/*
3840 	 * Number of phy clocks since the last tick of the frame number after
3841 	 * "us" has passed.
3842 	 */
3843 	phy_clks = (interval - remaining) +
3844 		   DIV_ROUND_UP(interval * us, us_per_frame);
3845 
3846 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3847 }
3848 
3849 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3850 {
3851 	return hsotg->op_state == OTG_STATE_B_HOST;
3852 }
3853 
3854 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3855 					       int iso_desc_count,
3856 					       gfp_t mem_flags)
3857 {
3858 	struct dwc2_hcd_urb *urb;
3859 	u32 size = sizeof(*urb) + iso_desc_count *
3860 		   sizeof(struct dwc2_hcd_iso_packet_desc);
3861 
3862 	urb = kzalloc(size, mem_flags);
3863 	if (urb)
3864 		urb->packet_count = iso_desc_count;
3865 	return urb;
3866 }
3867 
3868 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3869 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3870 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3871 {
3872 	if (dbg_perio() ||
3873 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3874 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3875 		dev_vdbg(hsotg->dev,
3876 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3877 			 dev_addr, ep_num, ep_dir, ep_type, mps);
3878 	urb->pipe_info.dev_addr = dev_addr;
3879 	urb->pipe_info.ep_num = ep_num;
3880 	urb->pipe_info.pipe_type = ep_type;
3881 	urb->pipe_info.pipe_dir = ep_dir;
3882 	urb->pipe_info.mps = mps;
3883 }
3884 
3885 /*
3886  * NOTE: This function will be removed once the peripheral controller code
3887  * is integrated and the driver is stable
3888  */
3889 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3890 {
3891 #ifdef DEBUG
3892 	struct dwc2_host_chan *chan;
3893 	struct dwc2_hcd_urb *urb;
3894 	struct dwc2_qtd *qtd;
3895 	int num_channels;
3896 	u32 np_tx_status;
3897 	u32 p_tx_status;
3898 	int i;
3899 
3900 	num_channels = hsotg->params.host_channels;
3901 	dev_dbg(hsotg->dev, "\n");
3902 	dev_dbg(hsotg->dev,
3903 		"************************************************************\n");
3904 	dev_dbg(hsotg->dev, "HCD State:\n");
3905 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3906 
3907 	for (i = 0; i < num_channels; i++) {
3908 		chan = hsotg->hc_ptr_array[i];
3909 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3910 		dev_dbg(hsotg->dev,
3911 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3912 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3913 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3914 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3915 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3916 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3917 			chan->data_pid_start);
3918 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3919 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3920 			chan->xfer_started);
3921 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3922 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3923 			(unsigned long)chan->xfer_dma);
3924 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3925 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3926 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3927 			chan->halt_on_queue);
3928 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3929 			chan->halt_pending);
3930 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3931 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3932 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3933 			chan->complete_split);
3934 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3935 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3936 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3937 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3938 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3939 
3940 		if (chan->xfer_started) {
3941 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3942 
3943 			hfnum = dwc2_readl(hsotg->regs + HFNUM);
3944 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3945 			hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3946 			hcint = dwc2_readl(hsotg->regs + HCINT(i));
3947 			hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3948 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3949 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3950 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3951 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3952 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3953 		}
3954 
3955 		if (!(chan->xfer_started && chan->qh))
3956 			continue;
3957 
3958 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3959 			if (!qtd->in_process)
3960 				break;
3961 			urb = qtd->urb;
3962 			dev_dbg(hsotg->dev, "    URB Info:\n");
3963 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3964 				qtd, urb);
3965 			if (urb) {
3966 				dev_dbg(hsotg->dev,
3967 					"      Dev: %d, EP: %d %s\n",
3968 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3969 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3970 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3971 					"IN" : "OUT");
3972 				dev_dbg(hsotg->dev,
3973 					"      Max packet size: %d\n",
3974 					dwc2_hcd_get_mps(&urb->pipe_info));
3975 				dev_dbg(hsotg->dev,
3976 					"      transfer_buffer: %p\n",
3977 					urb->buf);
3978 				dev_dbg(hsotg->dev,
3979 					"      transfer_dma: %08lx\n",
3980 					(unsigned long)urb->dma);
3981 				dev_dbg(hsotg->dev,
3982 					"      transfer_buffer_length: %d\n",
3983 					urb->length);
3984 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3985 					urb->actual_length);
3986 			}
3987 		}
3988 	}
3989 
3990 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3991 		hsotg->non_periodic_channels);
3992 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3993 		hsotg->periodic_channels);
3994 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3995 	np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3996 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3997 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3998 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3999 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4000 	p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
4001 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4002 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4003 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4004 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4005 	dwc2_hcd_dump_frrem(hsotg);
4006 	dwc2_dump_global_registers(hsotg);
4007 	dwc2_dump_host_registers(hsotg);
4008 	dev_dbg(hsotg->dev,
4009 		"************************************************************\n");
4010 	dev_dbg(hsotg->dev, "\n");
4011 #endif
4012 }
4013 
4014 /*
4015  * NOTE: This function will be removed once the peripheral controller code
4016  * is integrated and the driver is stable
4017  */
4018 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
4019 {
4020 #ifdef DWC2_DUMP_FRREM
4021 	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
4022 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4023 		hsotg->frrem_samples, hsotg->frrem_accum,
4024 		hsotg->frrem_samples > 0 ?
4025 		hsotg->frrem_accum / hsotg->frrem_samples : 0);
4026 	dev_dbg(hsotg->dev, "\n");
4027 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
4028 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4029 		hsotg->hfnum_7_samples,
4030 		hsotg->hfnum_7_frrem_accum,
4031 		hsotg->hfnum_7_samples > 0 ?
4032 		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
4033 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
4034 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4035 		hsotg->hfnum_0_samples,
4036 		hsotg->hfnum_0_frrem_accum,
4037 		hsotg->hfnum_0_samples > 0 ?
4038 		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
4039 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
4040 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4041 		hsotg->hfnum_other_samples,
4042 		hsotg->hfnum_other_frrem_accum,
4043 		hsotg->hfnum_other_samples > 0 ?
4044 		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
4045 		0);
4046 	dev_dbg(hsotg->dev, "\n");
4047 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
4048 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4049 		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
4050 		hsotg->hfnum_7_samples_a > 0 ?
4051 		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
4052 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
4053 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4054 		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
4055 		hsotg->hfnum_0_samples_a > 0 ?
4056 		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
4057 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
4058 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4059 		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
4060 		hsotg->hfnum_other_samples_a > 0 ?
4061 		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
4062 		: 0);
4063 	dev_dbg(hsotg->dev, "\n");
4064 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
4065 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4066 		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
4067 		hsotg->hfnum_7_samples_b > 0 ?
4068 		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
4069 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
4070 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4071 		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
4072 		(hsotg->hfnum_0_samples_b > 0) ?
4073 		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
4074 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
4075 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4076 		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
4077 		(hsotg->hfnum_other_samples_b > 0) ?
4078 		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
4079 		: 0);
4080 #endif
4081 }
4082 
4083 struct wrapper_priv_data {
4084 	struct dwc2_hsotg *hsotg;
4085 };
4086 
4087 /* Gets the dwc2_hsotg from a usb_hcd */
4088 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4089 {
4090 	struct wrapper_priv_data *p;
4091 
4092 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4093 	return p->hsotg;
4094 }
4095 
4096 /**
4097  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4098  *
4099  * This will get the dwc2_tt structure (and ttport) associated with the given
4100  * context (which is really just a struct urb pointer).
4101  *
4102  * The first time this is called for a given TT we allocate memory for our
4103  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4104  * then the refcount for the structure will go to 0 and we'll free it.
4105  *
4106  * @hsotg:     The HCD state structure for the DWC OTG controller.
4107  * @qh:        The QH structure.
4108  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4109  * @mem_flags: Flags for allocating memory.
4110  * @ttport:    We'll return this device's port number here.  That's used to
4111  *             reference into the bitmap if we're on a multi_tt hub.
4112  *
4113  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4114  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4115  */
4116 
4117 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4118 				      gfp_t mem_flags, int *ttport)
4119 {
4120 	struct urb *urb = context;
4121 	struct dwc2_tt *dwc_tt = NULL;
4122 
4123 	if (urb->dev->tt) {
4124 		*ttport = urb->dev->ttport;
4125 
4126 		dwc_tt = urb->dev->tt->hcpriv;
4127 		if (!dwc_tt) {
4128 			size_t bitmap_size;
4129 
4130 			/*
4131 			 * For single_tt we need one schedule.  For multi_tt
4132 			 * we need one per port.
4133 			 */
4134 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4135 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4136 			if (urb->dev->tt->multi)
4137 				bitmap_size *= urb->dev->tt->hub->maxchild;
4138 
4139 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4140 					 mem_flags);
4141 			if (!dwc_tt)
4142 				return NULL;
4143 
4144 			dwc_tt->usb_tt = urb->dev->tt;
4145 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4146 		}
4147 
4148 		dwc_tt->refcount++;
4149 	}
4150 
4151 	return dwc_tt;
4152 }
4153 
4154 /**
4155  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4156  *
4157  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4158  * of the structure are done.
4159  *
4160  * It's OK to call this with NULL.
4161  *
4162  * @hsotg:     The HCD state structure for the DWC OTG controller.
4163  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4164  */
4165 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4166 {
4167 	/* Model kfree and make put of NULL a no-op */
4168 	if (!dwc_tt)
4169 		return;
4170 
4171 	WARN_ON(dwc_tt->refcount < 1);
4172 
4173 	dwc_tt->refcount--;
4174 	if (!dwc_tt->refcount) {
4175 		dwc_tt->usb_tt->hcpriv = NULL;
4176 		kfree(dwc_tt);
4177 	}
4178 }
4179 
4180 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4181 {
4182 	struct urb *urb = context;
4183 
4184 	return urb->dev->speed;
4185 }
4186 
4187 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4188 					struct urb *urb)
4189 {
4190 	struct usb_bus *bus = hcd_to_bus(hcd);
4191 
4192 	if (urb->interval)
4193 		bus->bandwidth_allocated += bw / urb->interval;
4194 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4195 		bus->bandwidth_isoc_reqs++;
4196 	else
4197 		bus->bandwidth_int_reqs++;
4198 }
4199 
4200 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4201 				    struct urb *urb)
4202 {
4203 	struct usb_bus *bus = hcd_to_bus(hcd);
4204 
4205 	if (urb->interval)
4206 		bus->bandwidth_allocated -= bw / urb->interval;
4207 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4208 		bus->bandwidth_isoc_reqs--;
4209 	else
4210 		bus->bandwidth_int_reqs--;
4211 }
4212 
4213 /*
4214  * Sets the final status of an URB and returns it to the upper layer. Any
4215  * required cleanup of the URB is performed.
4216  *
4217  * Must be called with interrupt disabled and spinlock held
4218  */
4219 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4220 			int status)
4221 {
4222 	struct urb *urb;
4223 	int i;
4224 
4225 	if (!qtd) {
4226 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4227 		return;
4228 	}
4229 
4230 	if (!qtd->urb) {
4231 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4232 		return;
4233 	}
4234 
4235 	urb = qtd->urb->priv;
4236 	if (!urb) {
4237 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4238 		return;
4239 	}
4240 
4241 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4242 
4243 	if (dbg_urb(urb))
4244 		dev_vdbg(hsotg->dev,
4245 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4246 			 __func__, urb, usb_pipedevice(urb->pipe),
4247 			 usb_pipeendpoint(urb->pipe),
4248 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4249 			 urb->actual_length);
4250 
4251 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4252 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4253 		for (i = 0; i < urb->number_of_packets; ++i) {
4254 			urb->iso_frame_desc[i].actual_length =
4255 				dwc2_hcd_urb_get_iso_desc_actual_length(
4256 						qtd->urb, i);
4257 			urb->iso_frame_desc[i].status =
4258 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4259 		}
4260 	}
4261 
4262 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4263 		for (i = 0; i < urb->number_of_packets; i++)
4264 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4265 				 i, urb->iso_frame_desc[i].status);
4266 	}
4267 
4268 	urb->status = status;
4269 	if (!status) {
4270 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4271 		    urb->actual_length < urb->transfer_buffer_length)
4272 			urb->status = -EREMOTEIO;
4273 	}
4274 
4275 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4276 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4277 		struct usb_host_endpoint *ep = urb->ep;
4278 
4279 		if (ep)
4280 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4281 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4282 					urb);
4283 	}
4284 
4285 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4286 	urb->hcpriv = NULL;
4287 	kfree(qtd->urb);
4288 	qtd->urb = NULL;
4289 
4290 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4291 }
4292 
4293 /*
4294  * Work queue function for starting the HCD when A-Cable is connected
4295  */
4296 static void dwc2_hcd_start_func(struct work_struct *work)
4297 {
4298 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4299 						start_work.work);
4300 
4301 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4302 	dwc2_host_start(hsotg);
4303 }
4304 
4305 /*
4306  * Reset work queue function
4307  */
4308 static void dwc2_hcd_reset_func(struct work_struct *work)
4309 {
4310 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4311 						reset_work.work);
4312 	unsigned long flags;
4313 	u32 hprt0;
4314 
4315 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4316 
4317 	spin_lock_irqsave(&hsotg->lock, flags);
4318 
4319 	hprt0 = dwc2_read_hprt0(hsotg);
4320 	hprt0 &= ~HPRT0_RST;
4321 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
4322 	hsotg->flags.b.port_reset_change = 1;
4323 
4324 	spin_unlock_irqrestore(&hsotg->lock, flags);
4325 }
4326 
4327 /*
4328  * =========================================================================
4329  *  Linux HC Driver Functions
4330  * =========================================================================
4331  */
4332 
4333 /*
4334  * Initializes the DWC_otg controller and its root hub and prepares it for host
4335  * mode operation. Activates the root port. Returns 0 on success and a negative
4336  * error code on failure.
4337  */
4338 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4339 {
4340 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4341 	struct usb_bus *bus = hcd_to_bus(hcd);
4342 	unsigned long flags;
4343 
4344 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4345 
4346 	spin_lock_irqsave(&hsotg->lock, flags);
4347 	hsotg->lx_state = DWC2_L0;
4348 	hcd->state = HC_STATE_RUNNING;
4349 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4350 
4351 	if (dwc2_is_device_mode(hsotg)) {
4352 		spin_unlock_irqrestore(&hsotg->lock, flags);
4353 		return 0;	/* why 0 ?? */
4354 	}
4355 
4356 	dwc2_hcd_reinit(hsotg);
4357 
4358 	/* Initialize and connect root hub if one is not already attached */
4359 	if (bus->root_hub) {
4360 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4361 		/* Inform the HUB driver to resume */
4362 		usb_hcd_resume_root_hub(hcd);
4363 	}
4364 
4365 	spin_unlock_irqrestore(&hsotg->lock, flags);
4366 	return 0;
4367 }
4368 
4369 /*
4370  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4371  * stopped.
4372  */
4373 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4374 {
4375 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4376 	unsigned long flags;
4377 
4378 	/* Turn off all host-specific interrupts */
4379 	dwc2_disable_host_interrupts(hsotg);
4380 
4381 	/* Wait for interrupt processing to finish */
4382 	synchronize_irq(hcd->irq);
4383 
4384 	spin_lock_irqsave(&hsotg->lock, flags);
4385 	/* Ensure hcd is disconnected */
4386 	dwc2_hcd_disconnect(hsotg, true);
4387 	dwc2_hcd_stop(hsotg);
4388 	hsotg->lx_state = DWC2_L3;
4389 	hcd->state = HC_STATE_HALT;
4390 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4391 	spin_unlock_irqrestore(&hsotg->lock, flags);
4392 
4393 	usleep_range(1000, 3000);
4394 }
4395 
4396 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4397 {
4398 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4399 	unsigned long flags;
4400 	int ret = 0;
4401 	u32 hprt0;
4402 
4403 	spin_lock_irqsave(&hsotg->lock, flags);
4404 
4405 	if (dwc2_is_device_mode(hsotg))
4406 		goto unlock;
4407 
4408 	if (hsotg->lx_state != DWC2_L0)
4409 		goto unlock;
4410 
4411 	if (!HCD_HW_ACCESSIBLE(hcd))
4412 		goto unlock;
4413 
4414 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4415 		goto unlock;
4416 
4417 	if (!hsotg->params.hibernation)
4418 		goto skip_power_saving;
4419 
4420 	/*
4421 	 * Drive USB suspend and disable port Power
4422 	 * if usb bus is not suspended.
4423 	 */
4424 	if (!hsotg->bus_suspended) {
4425 		hprt0 = dwc2_read_hprt0(hsotg);
4426 		hprt0 |= HPRT0_SUSP;
4427 		hprt0 &= ~HPRT0_PWR;
4428 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
4429 	}
4430 
4431 	/* Enter hibernation */
4432 	ret = dwc2_enter_hibernation(hsotg);
4433 	if (ret) {
4434 		if (ret != -ENOTSUPP)
4435 			dev_err(hsotg->dev,
4436 				"enter hibernation failed\n");
4437 		goto skip_power_saving;
4438 	}
4439 
4440 	/* Ask phy to be suspended */
4441 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4442 		spin_unlock_irqrestore(&hsotg->lock, flags);
4443 		usb_phy_set_suspend(hsotg->uphy, true);
4444 		spin_lock_irqsave(&hsotg->lock, flags);
4445 	}
4446 
4447 	/* After entering hibernation, hardware is no more accessible */
4448 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4449 
4450 skip_power_saving:
4451 	hsotg->lx_state = DWC2_L2;
4452 unlock:
4453 	spin_unlock_irqrestore(&hsotg->lock, flags);
4454 
4455 	return ret;
4456 }
4457 
4458 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4459 {
4460 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4461 	unsigned long flags;
4462 	int ret = 0;
4463 
4464 	spin_lock_irqsave(&hsotg->lock, flags);
4465 
4466 	if (dwc2_is_device_mode(hsotg))
4467 		goto unlock;
4468 
4469 	if (hsotg->lx_state != DWC2_L2)
4470 		goto unlock;
4471 
4472 	if (!hsotg->params.hibernation) {
4473 		hsotg->lx_state = DWC2_L0;
4474 		goto unlock;
4475 	}
4476 
4477 	/*
4478 	 * Set HW accessible bit before powering on the controller
4479 	 * since an interrupt may rise.
4480 	 */
4481 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4482 
4483 	/*
4484 	 * Enable power if not already done.
4485 	 * This must not be spinlocked since duration
4486 	 * of this call is unknown.
4487 	 */
4488 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4489 		spin_unlock_irqrestore(&hsotg->lock, flags);
4490 		usb_phy_set_suspend(hsotg->uphy, false);
4491 		spin_lock_irqsave(&hsotg->lock, flags);
4492 	}
4493 
4494 	/* Exit hibernation */
4495 	ret = dwc2_exit_hibernation(hsotg, true);
4496 	if (ret && (ret != -ENOTSUPP))
4497 		dev_err(hsotg->dev, "exit hibernation failed\n");
4498 
4499 	hsotg->lx_state = DWC2_L0;
4500 
4501 	spin_unlock_irqrestore(&hsotg->lock, flags);
4502 
4503 	if (hsotg->bus_suspended) {
4504 		spin_lock_irqsave(&hsotg->lock, flags);
4505 		hsotg->flags.b.port_suspend_change = 1;
4506 		spin_unlock_irqrestore(&hsotg->lock, flags);
4507 		dwc2_port_resume(hsotg);
4508 	} else {
4509 		/* Wait for controller to correctly update D+/D- level */
4510 		usleep_range(3000, 5000);
4511 
4512 		/*
4513 		 * Clear Port Enable and Port Status changes.
4514 		 * Enable Port Power.
4515 		 */
4516 		dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4517 				HPRT0_ENACHG, hsotg->regs + HPRT0);
4518 		/* Wait for controller to detect Port Connect */
4519 		usleep_range(5000, 7000);
4520 	}
4521 
4522 	return ret;
4523 unlock:
4524 	spin_unlock_irqrestore(&hsotg->lock, flags);
4525 
4526 	return ret;
4527 }
4528 
4529 /* Returns the current frame number */
4530 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4531 {
4532 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4533 
4534 	return dwc2_hcd_get_frame_number(hsotg);
4535 }
4536 
4537 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4538 			       char *fn_name)
4539 {
4540 #ifdef VERBOSE_DEBUG
4541 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4542 	char *pipetype = NULL;
4543 	char *speed = NULL;
4544 
4545 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4546 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4547 		 usb_pipedevice(urb->pipe));
4548 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4549 		 usb_pipeendpoint(urb->pipe),
4550 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4551 
4552 	switch (usb_pipetype(urb->pipe)) {
4553 	case PIPE_CONTROL:
4554 		pipetype = "CONTROL";
4555 		break;
4556 	case PIPE_BULK:
4557 		pipetype = "BULK";
4558 		break;
4559 	case PIPE_INTERRUPT:
4560 		pipetype = "INTERRUPT";
4561 		break;
4562 	case PIPE_ISOCHRONOUS:
4563 		pipetype = "ISOCHRONOUS";
4564 		break;
4565 	}
4566 
4567 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4568 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4569 		 "IN" : "OUT");
4570 
4571 	switch (urb->dev->speed) {
4572 	case USB_SPEED_HIGH:
4573 		speed = "HIGH";
4574 		break;
4575 	case USB_SPEED_FULL:
4576 		speed = "FULL";
4577 		break;
4578 	case USB_SPEED_LOW:
4579 		speed = "LOW";
4580 		break;
4581 	default:
4582 		speed = "UNKNOWN";
4583 		break;
4584 	}
4585 
4586 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4587 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4588 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4589 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4590 		 urb->transfer_buffer_length);
4591 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4592 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4593 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4594 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4595 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4596 
4597 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4598 		int i;
4599 
4600 		for (i = 0; i < urb->number_of_packets; i++) {
4601 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4602 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4603 				 urb->iso_frame_desc[i].offset,
4604 				 urb->iso_frame_desc[i].length);
4605 		}
4606 	}
4607 #endif
4608 }
4609 
4610 /*
4611  * Starts processing a USB transfer request specified by a USB Request Block
4612  * (URB). mem_flags indicates the type of memory allocation to use while
4613  * processing this URB.
4614  */
4615 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4616 				 gfp_t mem_flags)
4617 {
4618 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4619 	struct usb_host_endpoint *ep = urb->ep;
4620 	struct dwc2_hcd_urb *dwc2_urb;
4621 	int i;
4622 	int retval;
4623 	int alloc_bandwidth = 0;
4624 	u8 ep_type = 0;
4625 	u32 tflags = 0;
4626 	void *buf;
4627 	unsigned long flags;
4628 	struct dwc2_qh *qh;
4629 	bool qh_allocated = false;
4630 	struct dwc2_qtd *qtd;
4631 
4632 	if (dbg_urb(urb)) {
4633 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4634 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4635 	}
4636 
4637 	if (!ep)
4638 		return -EINVAL;
4639 
4640 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4641 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4642 		spin_lock_irqsave(&hsotg->lock, flags);
4643 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4644 			alloc_bandwidth = 1;
4645 		spin_unlock_irqrestore(&hsotg->lock, flags);
4646 	}
4647 
4648 	switch (usb_pipetype(urb->pipe)) {
4649 	case PIPE_CONTROL:
4650 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4651 		break;
4652 	case PIPE_ISOCHRONOUS:
4653 		ep_type = USB_ENDPOINT_XFER_ISOC;
4654 		break;
4655 	case PIPE_BULK:
4656 		ep_type = USB_ENDPOINT_XFER_BULK;
4657 		break;
4658 	case PIPE_INTERRUPT:
4659 		ep_type = USB_ENDPOINT_XFER_INT;
4660 		break;
4661 	}
4662 
4663 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4664 				      mem_flags);
4665 	if (!dwc2_urb)
4666 		return -ENOMEM;
4667 
4668 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4669 				  usb_pipeendpoint(urb->pipe), ep_type,
4670 				  usb_pipein(urb->pipe),
4671 				  usb_maxpacket(urb->dev, urb->pipe,
4672 						!(usb_pipein(urb->pipe))));
4673 
4674 	buf = urb->transfer_buffer;
4675 
4676 	if (hcd->self.uses_dma) {
4677 		if (!buf && (urb->transfer_dma & 3)) {
4678 			dev_err(hsotg->dev,
4679 				"%s: unaligned transfer with no transfer_buffer",
4680 				__func__);
4681 			retval = -EINVAL;
4682 			goto fail0;
4683 		}
4684 	}
4685 
4686 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4687 		tflags |= URB_GIVEBACK_ASAP;
4688 	if (urb->transfer_flags & URB_ZERO_PACKET)
4689 		tflags |= URB_SEND_ZERO_PACKET;
4690 
4691 	dwc2_urb->priv = urb;
4692 	dwc2_urb->buf = buf;
4693 	dwc2_urb->dma = urb->transfer_dma;
4694 	dwc2_urb->length = urb->transfer_buffer_length;
4695 	dwc2_urb->setup_packet = urb->setup_packet;
4696 	dwc2_urb->setup_dma = urb->setup_dma;
4697 	dwc2_urb->flags = tflags;
4698 	dwc2_urb->interval = urb->interval;
4699 	dwc2_urb->status = -EINPROGRESS;
4700 
4701 	for (i = 0; i < urb->number_of_packets; ++i)
4702 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4703 						 urb->iso_frame_desc[i].offset,
4704 						 urb->iso_frame_desc[i].length);
4705 
4706 	urb->hcpriv = dwc2_urb;
4707 	qh = (struct dwc2_qh *)ep->hcpriv;
4708 	/* Create QH for the endpoint if it doesn't exist */
4709 	if (!qh) {
4710 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4711 		if (!qh) {
4712 			retval = -ENOMEM;
4713 			goto fail0;
4714 		}
4715 		ep->hcpriv = qh;
4716 		qh_allocated = true;
4717 	}
4718 
4719 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4720 	if (!qtd) {
4721 		retval = -ENOMEM;
4722 		goto fail1;
4723 	}
4724 
4725 	spin_lock_irqsave(&hsotg->lock, flags);
4726 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4727 	if (retval)
4728 		goto fail2;
4729 
4730 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4731 	if (retval)
4732 		goto fail3;
4733 
4734 	if (alloc_bandwidth) {
4735 		dwc2_allocate_bus_bandwidth(hcd,
4736 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4737 				urb);
4738 	}
4739 
4740 	spin_unlock_irqrestore(&hsotg->lock, flags);
4741 
4742 	return 0;
4743 
4744 fail3:
4745 	dwc2_urb->priv = NULL;
4746 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4747 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4748 		qh->channel->qh = NULL;
4749 fail2:
4750 	spin_unlock_irqrestore(&hsotg->lock, flags);
4751 	urb->hcpriv = NULL;
4752 	kfree(qtd);
4753 	qtd = NULL;
4754 fail1:
4755 	if (qh_allocated) {
4756 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4757 
4758 		ep->hcpriv = NULL;
4759 		dwc2_hcd_qh_unlink(hsotg, qh);
4760 		/* Free each QTD in the QH's QTD list */
4761 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4762 					 qtd_list_entry)
4763 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4764 		dwc2_hcd_qh_free(hsotg, qh);
4765 	}
4766 fail0:
4767 	kfree(dwc2_urb);
4768 
4769 	return retval;
4770 }
4771 
4772 /*
4773  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4774  */
4775 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4776 				 int status)
4777 {
4778 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4779 	int rc;
4780 	unsigned long flags;
4781 
4782 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4783 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4784 
4785 	spin_lock_irqsave(&hsotg->lock, flags);
4786 
4787 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4788 	if (rc)
4789 		goto out;
4790 
4791 	if (!urb->hcpriv) {
4792 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4793 		goto out;
4794 	}
4795 
4796 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4797 
4798 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4799 
4800 	kfree(urb->hcpriv);
4801 	urb->hcpriv = NULL;
4802 
4803 	/* Higher layer software sets URB status */
4804 	spin_unlock(&hsotg->lock);
4805 	usb_hcd_giveback_urb(hcd, urb, status);
4806 	spin_lock(&hsotg->lock);
4807 
4808 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4809 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4810 out:
4811 	spin_unlock_irqrestore(&hsotg->lock, flags);
4812 
4813 	return rc;
4814 }
4815 
4816 /*
4817  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4818  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4819  * must already be dequeued.
4820  */
4821 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4822 				       struct usb_host_endpoint *ep)
4823 {
4824 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4825 
4826 	dev_dbg(hsotg->dev,
4827 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4828 		ep->desc.bEndpointAddress, ep->hcpriv);
4829 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4830 }
4831 
4832 /*
4833  * Resets endpoint specific parameter values, in current version used to reset
4834  * the data toggle (as a WA). This function can be called from usb_clear_halt
4835  * routine.
4836  */
4837 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4838 				     struct usb_host_endpoint *ep)
4839 {
4840 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4841 	unsigned long flags;
4842 
4843 	dev_dbg(hsotg->dev,
4844 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4845 		ep->desc.bEndpointAddress);
4846 
4847 	spin_lock_irqsave(&hsotg->lock, flags);
4848 	dwc2_hcd_endpoint_reset(hsotg, ep);
4849 	spin_unlock_irqrestore(&hsotg->lock, flags);
4850 }
4851 
4852 /*
4853  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4854  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4855  * interrupt.
4856  *
4857  * This function is called by the USB core when an interrupt occurs
4858  */
4859 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4860 {
4861 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4862 
4863 	return dwc2_handle_hcd_intr(hsotg);
4864 }
4865 
4866 /*
4867  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4868  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4869  * is the status change indicator for the single root port. Returns 1 if either
4870  * change indicator is 1, otherwise returns 0.
4871  */
4872 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4873 {
4874 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4875 
4876 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4877 	return buf[0] != 0;
4878 }
4879 
4880 /* Handles hub class-specific requests */
4881 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4882 				 u16 windex, char *buf, u16 wlength)
4883 {
4884 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4885 					  wvalue, windex, buf, wlength);
4886 	return retval;
4887 }
4888 
4889 /* Handles hub TT buffer clear completions */
4890 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4891 					       struct usb_host_endpoint *ep)
4892 {
4893 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4894 	struct dwc2_qh *qh;
4895 	unsigned long flags;
4896 
4897 	qh = ep->hcpriv;
4898 	if (!qh)
4899 		return;
4900 
4901 	spin_lock_irqsave(&hsotg->lock, flags);
4902 	qh->tt_buffer_dirty = 0;
4903 
4904 	if (hsotg->flags.b.port_connect_status)
4905 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4906 
4907 	spin_unlock_irqrestore(&hsotg->lock, flags);
4908 }
4909 
4910 /*
4911  * HPRT0_SPD_HIGH_SPEED: high speed
4912  * HPRT0_SPD_FULL_SPEED: full speed
4913  */
4914 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4915 {
4916 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4917 
4918 	if (hsotg->params.speed == speed)
4919 		return;
4920 
4921 	hsotg->params.speed = speed;
4922 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4923 }
4924 
4925 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4926 {
4927 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4928 
4929 	if (!hsotg->params.change_speed_quirk)
4930 		return;
4931 
4932 	/*
4933 	 * On removal, set speed to default high-speed.
4934 	 */
4935 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4936 	    udev->parent->speed < USB_SPEED_HIGH) {
4937 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4938 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4939 	}
4940 }
4941 
4942 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4943 {
4944 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4945 
4946 	if (!hsotg->params.change_speed_quirk)
4947 		return 0;
4948 
4949 	if (udev->speed == USB_SPEED_HIGH) {
4950 		dev_info(hsotg->dev, "Set speed to high-speed\n");
4951 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4952 	} else if ((udev->speed == USB_SPEED_FULL ||
4953 				udev->speed == USB_SPEED_LOW)) {
4954 		/*
4955 		 * Change speed setting to full-speed if there's
4956 		 * a full-speed or low-speed device plugged in.
4957 		 */
4958 		dev_info(hsotg->dev, "Set speed to full-speed\n");
4959 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4960 	}
4961 
4962 	return 0;
4963 }
4964 
4965 static struct hc_driver dwc2_hc_driver = {
4966 	.description = "dwc2_hsotg",
4967 	.product_desc = "DWC OTG Controller",
4968 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4969 
4970 	.irq = _dwc2_hcd_irq,
4971 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4972 
4973 	.start = _dwc2_hcd_start,
4974 	.stop = _dwc2_hcd_stop,
4975 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4976 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4977 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4978 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4979 	.get_frame_number = _dwc2_hcd_get_frame_number,
4980 
4981 	.hub_status_data = _dwc2_hcd_hub_status_data,
4982 	.hub_control = _dwc2_hcd_hub_control,
4983 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4984 
4985 	.bus_suspend = _dwc2_hcd_suspend,
4986 	.bus_resume = _dwc2_hcd_resume,
4987 
4988 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4989 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4990 };
4991 
4992 /*
4993  * Frees secondary storage associated with the dwc2_hsotg structure contained
4994  * in the struct usb_hcd field
4995  */
4996 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4997 {
4998 	u32 ahbcfg;
4999 	u32 dctl;
5000 	int i;
5001 
5002 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5003 
5004 	/* Free memory for QH/QTD lists */
5005 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5006 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5007 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5008 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5009 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5010 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5011 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5012 
5013 	/* Free memory for the host channels */
5014 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5015 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5016 
5017 		if (chan) {
5018 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5019 				i, chan);
5020 			hsotg->hc_ptr_array[i] = NULL;
5021 			kfree(chan);
5022 		}
5023 	}
5024 
5025 	if (hsotg->params.host_dma) {
5026 		if (hsotg->status_buf) {
5027 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5028 					  hsotg->status_buf,
5029 					  hsotg->status_buf_dma);
5030 			hsotg->status_buf = NULL;
5031 		}
5032 	} else {
5033 		kfree(hsotg->status_buf);
5034 		hsotg->status_buf = NULL;
5035 	}
5036 
5037 	ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
5038 
5039 	/* Disable all interrupts */
5040 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5041 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
5042 	dwc2_writel(0, hsotg->regs + GINTMSK);
5043 
5044 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5045 		dctl = dwc2_readl(hsotg->regs + DCTL);
5046 		dctl |= DCTL_SFTDISCON;
5047 		dwc2_writel(dctl, hsotg->regs + DCTL);
5048 	}
5049 
5050 	if (hsotg->wq_otg) {
5051 		if (!cancel_work_sync(&hsotg->wf_otg))
5052 			flush_workqueue(hsotg->wq_otg);
5053 		destroy_workqueue(hsotg->wq_otg);
5054 	}
5055 
5056 	del_timer(&hsotg->wkp_timer);
5057 }
5058 
5059 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5060 {
5061 	/* Turn off all host-specific interrupts */
5062 	dwc2_disable_host_interrupts(hsotg);
5063 
5064 	dwc2_hcd_free(hsotg);
5065 }
5066 
5067 /*
5068  * Initializes the HCD. This function allocates memory for and initializes the
5069  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5070  * USB bus with the core and calls the hc_driver->start() function. It returns
5071  * a negative error on failure.
5072  */
5073 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5074 {
5075 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5076 	struct resource *res;
5077 	struct usb_hcd *hcd;
5078 	struct dwc2_host_chan *channel;
5079 	u32 hcfg;
5080 	int i, num_channels;
5081 	int retval;
5082 
5083 	if (usb_disabled())
5084 		return -ENODEV;
5085 
5086 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5087 
5088 	retval = -ENOMEM;
5089 
5090 	hcfg = dwc2_readl(hsotg->regs + HCFG);
5091 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5092 
5093 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5094 	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
5095 					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
5096 	if (!hsotg->frame_num_array)
5097 		goto error1;
5098 	hsotg->last_frame_num_array = kzalloc(
5099 			sizeof(*hsotg->last_frame_num_array) *
5100 			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
5101 	if (!hsotg->last_frame_num_array)
5102 		goto error1;
5103 #endif
5104 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5105 
5106 	/* Check if the bus driver or platform code has setup a dma_mask */
5107 	if (hsotg->params.host_dma &&
5108 	    !hsotg->dev->dma_mask) {
5109 		dev_warn(hsotg->dev,
5110 			 "dma_mask not set, disabling DMA\n");
5111 		hsotg->params.host_dma = false;
5112 		hsotg->params.dma_desc_enable = false;
5113 	}
5114 
5115 	/* Set device flags indicating whether the HCD supports DMA */
5116 	if (hsotg->params.host_dma) {
5117 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5118 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5119 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5120 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5121 	}
5122 
5123 	if (hsotg->params.change_speed_quirk) {
5124 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5125 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5126 	}
5127 
5128 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5129 	if (!hcd)
5130 		goto error1;
5131 
5132 	if (!hsotg->params.host_dma)
5133 		hcd->self.uses_dma = 0;
5134 
5135 	hcd->has_tt = 1;
5136 
5137 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5138 	hcd->rsrc_start = res->start;
5139 	hcd->rsrc_len = resource_size(res);
5140 
5141 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5142 	hsotg->priv = hcd;
5143 
5144 	/*
5145 	 * Disable the global interrupt until all the interrupt handlers are
5146 	 * installed
5147 	 */
5148 	dwc2_disable_global_interrupts(hsotg);
5149 
5150 	/* Initialize the DWC_otg core, and select the Phy type */
5151 	retval = dwc2_core_init(hsotg, true);
5152 	if (retval)
5153 		goto error2;
5154 
5155 	/* Create new workqueue and init work */
5156 	retval = -ENOMEM;
5157 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5158 	if (!hsotg->wq_otg) {
5159 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5160 		goto error2;
5161 	}
5162 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5163 
5164 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5165 
5166 	/* Initialize the non-periodic schedule */
5167 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5168 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5169 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5170 
5171 	/* Initialize the periodic schedule */
5172 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5173 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5174 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5175 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5176 
5177 	INIT_LIST_HEAD(&hsotg->split_order);
5178 
5179 	/*
5180 	 * Create a host channel descriptor for each host channel implemented
5181 	 * in the controller. Initialize the channel descriptor array.
5182 	 */
5183 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5184 	num_channels = hsotg->params.host_channels;
5185 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5186 
5187 	for (i = 0; i < num_channels; i++) {
5188 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5189 		if (!channel)
5190 			goto error3;
5191 		channel->hc_num = i;
5192 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5193 		hsotg->hc_ptr_array[i] = channel;
5194 	}
5195 
5196 	/* Initialize hsotg start work */
5197 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5198 
5199 	/* Initialize port reset work */
5200 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5201 
5202 	/*
5203 	 * Allocate space for storing data on status transactions. Normally no
5204 	 * data is sent, but this space acts as a bit bucket. This must be
5205 	 * done after usb_add_hcd since that function allocates the DMA buffer
5206 	 * pool.
5207 	 */
5208 	if (hsotg->params.host_dma)
5209 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5210 					DWC2_HCD_STATUS_BUF_SIZE,
5211 					&hsotg->status_buf_dma, GFP_KERNEL);
5212 	else
5213 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5214 					  GFP_KERNEL);
5215 
5216 	if (!hsotg->status_buf)
5217 		goto error3;
5218 
5219 	/*
5220 	 * Create kmem caches to handle descriptor buffers in descriptor
5221 	 * DMA mode.
5222 	 * Alignment must be set to 512 bytes.
5223 	 */
5224 	if (hsotg->params.dma_desc_enable ||
5225 	    hsotg->params.dma_desc_fs_enable) {
5226 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5227 				sizeof(struct dwc2_dma_desc) *
5228 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5229 				NULL);
5230 		if (!hsotg->desc_gen_cache) {
5231 			dev_err(hsotg->dev,
5232 				"unable to create dwc2 generic desc cache\n");
5233 
5234 			/*
5235 			 * Disable descriptor dma mode since it will not be
5236 			 * usable.
5237 			 */
5238 			hsotg->params.dma_desc_enable = false;
5239 			hsotg->params.dma_desc_fs_enable = false;
5240 		}
5241 
5242 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5243 				sizeof(struct dwc2_dma_desc) *
5244 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5245 		if (!hsotg->desc_hsisoc_cache) {
5246 			dev_err(hsotg->dev,
5247 				"unable to create dwc2 hs isoc desc cache\n");
5248 
5249 			kmem_cache_destroy(hsotg->desc_gen_cache);
5250 
5251 			/*
5252 			 * Disable descriptor dma mode since it will not be
5253 			 * usable.
5254 			 */
5255 			hsotg->params.dma_desc_enable = false;
5256 			hsotg->params.dma_desc_fs_enable = false;
5257 		}
5258 	}
5259 
5260 	hsotg->otg_port = 1;
5261 	hsotg->frame_list = NULL;
5262 	hsotg->frame_list_dma = 0;
5263 	hsotg->periodic_qh_count = 0;
5264 
5265 	/* Initiate lx_state to L3 disconnected state */
5266 	hsotg->lx_state = DWC2_L3;
5267 
5268 	hcd->self.otg_port = hsotg->otg_port;
5269 
5270 	/* Don't support SG list at this point */
5271 	hcd->self.sg_tablesize = 0;
5272 
5273 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5274 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5275 
5276 	/*
5277 	 * Finish generic HCD initialization and start the HCD. This function
5278 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5279 	 * IRQ line, and calls hcd_start method.
5280 	 */
5281 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5282 	if (retval < 0)
5283 		goto error4;
5284 
5285 	device_wakeup_enable(hcd->self.controller);
5286 
5287 	dwc2_hcd_dump_state(hsotg);
5288 
5289 	dwc2_enable_global_interrupts(hsotg);
5290 
5291 	return 0;
5292 
5293 error4:
5294 	kmem_cache_destroy(hsotg->desc_gen_cache);
5295 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5296 error3:
5297 	dwc2_hcd_release(hsotg);
5298 error2:
5299 	usb_put_hcd(hcd);
5300 error1:
5301 
5302 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5303 	kfree(hsotg->last_frame_num_array);
5304 	kfree(hsotg->frame_num_array);
5305 #endif
5306 
5307 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5308 	return retval;
5309 }
5310 
5311 /*
5312  * Removes the HCD.
5313  * Frees memory and resources associated with the HCD and deregisters the bus.
5314  */
5315 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5316 {
5317 	struct usb_hcd *hcd;
5318 
5319 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5320 
5321 	hcd = dwc2_hsotg_to_hcd(hsotg);
5322 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5323 
5324 	if (!hcd) {
5325 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5326 			__func__);
5327 		return;
5328 	}
5329 
5330 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5331 		otg_set_host(hsotg->uphy->otg, NULL);
5332 
5333 	usb_remove_hcd(hcd);
5334 	hsotg->priv = NULL;
5335 
5336 	kmem_cache_destroy(hsotg->desc_gen_cache);
5337 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5338 
5339 	dwc2_hcd_release(hsotg);
5340 	usb_put_hcd(hcd);
5341 
5342 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5343 	kfree(hsotg->last_frame_num_array);
5344 	kfree(hsotg->frame_num_array);
5345 #endif
5346 }
5347 
5348 /**
5349  * dwc2_backup_host_registers() - Backup controller host registers.
5350  * When suspending usb bus, registers needs to be backuped
5351  * if controller power is disabled once suspended.
5352  *
5353  * @hsotg: Programming view of the DWC_otg controller
5354  */
5355 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5356 {
5357 	struct dwc2_hregs_backup *hr;
5358 	int i;
5359 
5360 	dev_dbg(hsotg->dev, "%s\n", __func__);
5361 
5362 	/* Backup Host regs */
5363 	hr = &hsotg->hr_backup;
5364 	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5365 	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5366 	for (i = 0; i < hsotg->params.host_channels; ++i)
5367 		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5368 
5369 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5370 	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5371 	hr->valid = true;
5372 
5373 	return 0;
5374 }
5375 
5376 /**
5377  * dwc2_restore_host_registers() - Restore controller host registers.
5378  * When resuming usb bus, device registers needs to be restored
5379  * if controller power were disabled.
5380  *
5381  * @hsotg: Programming view of the DWC_otg controller
5382  */
5383 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5384 {
5385 	struct dwc2_hregs_backup *hr;
5386 	int i;
5387 
5388 	dev_dbg(hsotg->dev, "%s\n", __func__);
5389 
5390 	/* Restore host regs */
5391 	hr = &hsotg->hr_backup;
5392 	if (!hr->valid) {
5393 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5394 			__func__);
5395 		return -EINVAL;
5396 	}
5397 	hr->valid = false;
5398 
5399 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5400 	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5401 
5402 	for (i = 0; i < hsotg->params.host_channels; ++i)
5403 		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5404 
5405 	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5406 	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5407 	hsotg->frame_number = 0;
5408 
5409 	return 0;
5410 }
5411