xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision dd3cb467)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 #include <linux/usb/of.h>
56 
57 #include "core.h"
58 #include "hcd.h"
59 
60 /*
61  * =========================================================================
62  *  Host Core Layer Functions
63  * =========================================================================
64  */
65 
66 /**
67  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
68  * used in both device and host modes
69  *
70  * @hsotg: Programming view of the DWC_otg controller
71  */
72 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
73 {
74 	u32 intmsk;
75 
76 	/* Clear any pending OTG Interrupts */
77 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
78 
79 	/* Clear any pending interrupts */
80 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
81 
82 	/* Enable the interrupts in the GINTMSK */
83 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
84 
85 	if (!hsotg->params.host_dma)
86 		intmsk |= GINTSTS_RXFLVL;
87 	if (!hsotg->params.external_id_pin_ctl)
88 		intmsk |= GINTSTS_CONIDSTSCHNG;
89 
90 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
91 		  GINTSTS_SESSREQINT;
92 
93 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
94 		intmsk |= GINTSTS_LPMTRANRCVD;
95 
96 	dwc2_writel(hsotg, intmsk, GINTMSK);
97 }
98 
99 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
100 {
101 	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
102 
103 	switch (hsotg->hw_params.arch) {
104 	case GHWCFG2_EXT_DMA_ARCH:
105 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
106 		return -EINVAL;
107 
108 	case GHWCFG2_INT_DMA_ARCH:
109 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
110 		if (hsotg->params.ahbcfg != -1) {
111 			ahbcfg &= GAHBCFG_CTRL_MASK;
112 			ahbcfg |= hsotg->params.ahbcfg &
113 				  ~GAHBCFG_CTRL_MASK;
114 		}
115 		break;
116 
117 	case GHWCFG2_SLAVE_ONLY_ARCH:
118 	default:
119 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
120 		break;
121 	}
122 
123 	if (hsotg->params.host_dma)
124 		ahbcfg |= GAHBCFG_DMA_EN;
125 	else
126 		hsotg->params.dma_desc_enable = false;
127 
128 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
129 
130 	return 0;
131 }
132 
133 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
134 {
135 	u32 usbcfg;
136 
137 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
138 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
139 
140 	switch (hsotg->hw_params.op_mode) {
141 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
142 		if (hsotg->params.otg_caps.hnp_support &&
143 		    hsotg->params.otg_caps.srp_support)
144 			usbcfg |= GUSBCFG_HNPCAP;
145 		fallthrough;
146 
147 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
148 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
149 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
150 		if (hsotg->params.otg_caps.srp_support)
151 			usbcfg |= GUSBCFG_SRPCAP;
152 		break;
153 
154 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
155 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
156 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
157 	default:
158 		break;
159 	}
160 
161 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
162 }
163 
164 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
165 {
166 	if (hsotg->vbus_supply)
167 		return regulator_enable(hsotg->vbus_supply);
168 
169 	return 0;
170 }
171 
172 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
173 {
174 	if (hsotg->vbus_supply)
175 		return regulator_disable(hsotg->vbus_supply);
176 
177 	return 0;
178 }
179 
180 /**
181  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
182  *
183  * @hsotg: Programming view of DWC_otg controller
184  */
185 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
186 {
187 	u32 intmsk;
188 
189 	dev_dbg(hsotg->dev, "%s()\n", __func__);
190 
191 	/* Disable all interrupts */
192 	dwc2_writel(hsotg, 0, GINTMSK);
193 	dwc2_writel(hsotg, 0, HAINTMSK);
194 
195 	/* Enable the common interrupts */
196 	dwc2_enable_common_interrupts(hsotg);
197 
198 	/* Enable host mode interrupts without disturbing common interrupts */
199 	intmsk = dwc2_readl(hsotg, GINTMSK);
200 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
201 	dwc2_writel(hsotg, intmsk, GINTMSK);
202 }
203 
204 /**
205  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
206  *
207  * @hsotg: Programming view of DWC_otg controller
208  */
209 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
210 {
211 	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
212 
213 	/* Disable host mode interrupts without disturbing common interrupts */
214 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
215 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
216 	dwc2_writel(hsotg, intmsk, GINTMSK);
217 }
218 
219 /*
220  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
221  * For system that have a total fifo depth that is smaller than the default
222  * RX + TX fifo size.
223  *
224  * @hsotg: Programming view of DWC_otg controller
225  */
226 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
227 {
228 	struct dwc2_core_params *params = &hsotg->params;
229 	struct dwc2_hw_params *hw = &hsotg->hw_params;
230 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
231 
232 	total_fifo_size = hw->total_fifo_size;
233 	rxfsiz = params->host_rx_fifo_size;
234 	nptxfsiz = params->host_nperio_tx_fifo_size;
235 	ptxfsiz = params->host_perio_tx_fifo_size;
236 
237 	/*
238 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
239 	 * allocation with support for high bandwidth endpoints. Synopsys
240 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
241 	 * non-periodic as 512.
242 	 */
243 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
244 		/*
245 		 * For Buffer DMA mode/Scatter Gather DMA mode
246 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
247 		 * with n = number of host channel.
248 		 * 2 * ((1024/4) + 2) = 516
249 		 */
250 		rxfsiz = 516 + hw->host_channels;
251 
252 		/*
253 		 * min non-periodic tx fifo depth
254 		 * 2 * (largest non-periodic USB packet used / 4)
255 		 * 2 * (512/4) = 256
256 		 */
257 		nptxfsiz = 256;
258 
259 		/*
260 		 * min periodic tx fifo depth
261 		 * (largest packet size*MC)/4
262 		 * (1024 * 3)/4 = 768
263 		 */
264 		ptxfsiz = 768;
265 
266 		params->host_rx_fifo_size = rxfsiz;
267 		params->host_nperio_tx_fifo_size = nptxfsiz;
268 		params->host_perio_tx_fifo_size = ptxfsiz;
269 	}
270 
271 	/*
272 	 * If the summation of RX, NPTX and PTX fifo sizes is still
273 	 * bigger than the total_fifo_size, then we have a problem.
274 	 *
275 	 * We won't be able to allocate as many endpoints. Right now,
276 	 * we're just printing an error message, but ideally this FIFO
277 	 * allocation algorithm would be improved in the future.
278 	 *
279 	 * FIXME improve this FIFO allocation algorithm.
280 	 */
281 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
282 		dev_err(hsotg->dev, "invalid fifo sizes\n");
283 }
284 
285 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
286 {
287 	struct dwc2_core_params *params = &hsotg->params;
288 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
289 
290 	if (!params->enable_dynamic_fifo)
291 		return;
292 
293 	dwc2_calculate_dynamic_fifo(hsotg);
294 
295 	/* Rx FIFO */
296 	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
297 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
298 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
299 	grxfsiz |= params->host_rx_fifo_size <<
300 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
301 	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
302 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
303 		dwc2_readl(hsotg, GRXFSIZ));
304 
305 	/* Non-periodic Tx FIFO */
306 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
307 		dwc2_readl(hsotg, GNPTXFSIZ));
308 	nptxfsiz = params->host_nperio_tx_fifo_size <<
309 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
310 	nptxfsiz |= params->host_rx_fifo_size <<
311 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
312 	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
313 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
314 		dwc2_readl(hsotg, GNPTXFSIZ));
315 
316 	/* Periodic Tx FIFO */
317 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
318 		dwc2_readl(hsotg, HPTXFSIZ));
319 	hptxfsiz = params->host_perio_tx_fifo_size <<
320 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
321 	hptxfsiz |= (params->host_rx_fifo_size +
322 		     params->host_nperio_tx_fifo_size) <<
323 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
324 	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
325 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
326 		dwc2_readl(hsotg, HPTXFSIZ));
327 
328 	if (hsotg->params.en_multiple_tx_fifo &&
329 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
330 		/*
331 		 * This feature was implemented in 2.91a version
332 		 * Global DFIFOCFG calculation for Host mode -
333 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
334 		 */
335 		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
336 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
337 		dfifocfg |= (params->host_rx_fifo_size +
338 			     params->host_nperio_tx_fifo_size +
339 			     params->host_perio_tx_fifo_size) <<
340 			    GDFIFOCFG_EPINFOBASE_SHIFT &
341 			    GDFIFOCFG_EPINFOBASE_MASK;
342 		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
343 	}
344 }
345 
346 /**
347  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
348  * the HFIR register according to PHY type and speed
349  *
350  * @hsotg: Programming view of DWC_otg controller
351  *
352  * NOTE: The caller can modify the value of the HFIR register only after the
353  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
354  * has been set
355  */
356 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
357 {
358 	u32 usbcfg;
359 	u32 hprt0;
360 	int clock = 60;	/* default value */
361 
362 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
363 	hprt0 = dwc2_readl(hsotg, HPRT0);
364 
365 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
366 	    !(usbcfg & GUSBCFG_PHYIF16))
367 		clock = 60;
368 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
369 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
370 		clock = 48;
371 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
372 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
373 		clock = 30;
374 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
375 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
376 		clock = 60;
377 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
378 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
379 		clock = 48;
380 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
381 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
382 		clock = 48;
383 	if ((usbcfg & GUSBCFG_PHYSEL) &&
384 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
385 		clock = 48;
386 
387 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
388 		/* High speed case */
389 		return 125 * clock - 1;
390 
391 	/* FS/LS case */
392 	return 1000 * clock - 1;
393 }
394 
395 /**
396  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
397  * buffer
398  *
399  * @hsotg: Programming view of DWC_otg controller
400  * @dest:    Destination buffer for the packet
401  * @bytes:   Number of bytes to copy to the destination
402  */
403 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
404 {
405 	u32 *data_buf = (u32 *)dest;
406 	int word_count = (bytes + 3) / 4;
407 	int i;
408 
409 	/*
410 	 * Todo: Account for the case where dest is not dword aligned. This
411 	 * requires reading data from the FIFO into a u32 temp buffer, then
412 	 * moving it into the data buffer.
413 	 */
414 
415 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
416 
417 	for (i = 0; i < word_count; i++, data_buf++)
418 		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
419 }
420 
421 /**
422  * dwc2_dump_channel_info() - Prints the state of a host channel
423  *
424  * @hsotg: Programming view of DWC_otg controller
425  * @chan:  Pointer to the channel to dump
426  *
427  * Must be called with interrupt disabled and spinlock held
428  *
429  * NOTE: This function will be removed once the peripheral controller code
430  * is integrated and the driver is stable
431  */
432 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
433 				   struct dwc2_host_chan *chan)
434 {
435 #ifdef VERBOSE_DEBUG
436 	int num_channels = hsotg->params.host_channels;
437 	struct dwc2_qh *qh;
438 	u32 hcchar;
439 	u32 hcsplt;
440 	u32 hctsiz;
441 	u32 hc_dma;
442 	int i;
443 
444 	if (!chan)
445 		return;
446 
447 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
448 	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
449 	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
450 	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
451 
452 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
453 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
454 		hcchar, hcsplt);
455 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
456 		hctsiz, hc_dma);
457 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
458 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
459 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
460 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
461 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
462 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
463 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
464 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
465 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
466 		(unsigned long)chan->xfer_dma);
467 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
468 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
469 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
470 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
471 			    qh_list_entry)
472 		dev_dbg(hsotg->dev, "    %p\n", qh);
473 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
474 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
475 			    qh_list_entry)
476 		dev_dbg(hsotg->dev, "    %p\n", qh);
477 	dev_dbg(hsotg->dev, "  NP active sched:\n");
478 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
479 			    qh_list_entry)
480 		dev_dbg(hsotg->dev, "    %p\n", qh);
481 	dev_dbg(hsotg->dev, "  Channels:\n");
482 	for (i = 0; i < num_channels; i++) {
483 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
484 
485 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
486 	}
487 #endif /* VERBOSE_DEBUG */
488 }
489 
490 static int _dwc2_hcd_start(struct usb_hcd *hcd);
491 
492 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
493 {
494 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
495 
496 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
497 	_dwc2_hcd_start(hcd);
498 }
499 
500 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
501 {
502 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
503 
504 	hcd->self.is_b_host = 0;
505 }
506 
507 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
508 			       int *hub_addr, int *hub_port)
509 {
510 	struct urb *urb = context;
511 
512 	if (urb->dev->tt)
513 		*hub_addr = urb->dev->tt->hub->devnum;
514 	else
515 		*hub_addr = 0;
516 	*hub_port = urb->dev->ttport;
517 }
518 
519 /*
520  * =========================================================================
521  *  Low Level Host Channel Access Functions
522  * =========================================================================
523  */
524 
525 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
526 				      struct dwc2_host_chan *chan)
527 {
528 	u32 hcintmsk = HCINTMSK_CHHLTD;
529 
530 	switch (chan->ep_type) {
531 	case USB_ENDPOINT_XFER_CONTROL:
532 	case USB_ENDPOINT_XFER_BULK:
533 		dev_vdbg(hsotg->dev, "control/bulk\n");
534 		hcintmsk |= HCINTMSK_XFERCOMPL;
535 		hcintmsk |= HCINTMSK_STALL;
536 		hcintmsk |= HCINTMSK_XACTERR;
537 		hcintmsk |= HCINTMSK_DATATGLERR;
538 		if (chan->ep_is_in) {
539 			hcintmsk |= HCINTMSK_BBLERR;
540 		} else {
541 			hcintmsk |= HCINTMSK_NAK;
542 			hcintmsk |= HCINTMSK_NYET;
543 			if (chan->do_ping)
544 				hcintmsk |= HCINTMSK_ACK;
545 		}
546 
547 		if (chan->do_split) {
548 			hcintmsk |= HCINTMSK_NAK;
549 			if (chan->complete_split)
550 				hcintmsk |= HCINTMSK_NYET;
551 			else
552 				hcintmsk |= HCINTMSK_ACK;
553 		}
554 
555 		if (chan->error_state)
556 			hcintmsk |= HCINTMSK_ACK;
557 		break;
558 
559 	case USB_ENDPOINT_XFER_INT:
560 		if (dbg_perio())
561 			dev_vdbg(hsotg->dev, "intr\n");
562 		hcintmsk |= HCINTMSK_XFERCOMPL;
563 		hcintmsk |= HCINTMSK_NAK;
564 		hcintmsk |= HCINTMSK_STALL;
565 		hcintmsk |= HCINTMSK_XACTERR;
566 		hcintmsk |= HCINTMSK_DATATGLERR;
567 		hcintmsk |= HCINTMSK_FRMOVRUN;
568 
569 		if (chan->ep_is_in)
570 			hcintmsk |= HCINTMSK_BBLERR;
571 		if (chan->error_state)
572 			hcintmsk |= HCINTMSK_ACK;
573 		if (chan->do_split) {
574 			if (chan->complete_split)
575 				hcintmsk |= HCINTMSK_NYET;
576 			else
577 				hcintmsk |= HCINTMSK_ACK;
578 		}
579 		break;
580 
581 	case USB_ENDPOINT_XFER_ISOC:
582 		if (dbg_perio())
583 			dev_vdbg(hsotg->dev, "isoc\n");
584 		hcintmsk |= HCINTMSK_XFERCOMPL;
585 		hcintmsk |= HCINTMSK_FRMOVRUN;
586 		hcintmsk |= HCINTMSK_ACK;
587 
588 		if (chan->ep_is_in) {
589 			hcintmsk |= HCINTMSK_XACTERR;
590 			hcintmsk |= HCINTMSK_BBLERR;
591 		}
592 		break;
593 	default:
594 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
595 		break;
596 	}
597 
598 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
599 	if (dbg_hc(chan))
600 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
601 }
602 
603 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
604 				    struct dwc2_host_chan *chan)
605 {
606 	u32 hcintmsk = HCINTMSK_CHHLTD;
607 
608 	/*
609 	 * For Descriptor DMA mode core halts the channel on AHB error.
610 	 * Interrupt is not required.
611 	 */
612 	if (!hsotg->params.dma_desc_enable) {
613 		if (dbg_hc(chan))
614 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
615 		hcintmsk |= HCINTMSK_AHBERR;
616 	} else {
617 		if (dbg_hc(chan))
618 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
619 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
620 			hcintmsk |= HCINTMSK_XFERCOMPL;
621 	}
622 
623 	if (chan->error_state && !chan->do_split &&
624 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
625 		if (dbg_hc(chan))
626 			dev_vdbg(hsotg->dev, "setting ACK\n");
627 		hcintmsk |= HCINTMSK_ACK;
628 		if (chan->ep_is_in) {
629 			hcintmsk |= HCINTMSK_DATATGLERR;
630 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
631 				hcintmsk |= HCINTMSK_NAK;
632 		}
633 	}
634 
635 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
636 	if (dbg_hc(chan))
637 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
638 }
639 
640 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
641 				struct dwc2_host_chan *chan)
642 {
643 	u32 intmsk;
644 
645 	if (hsotg->params.host_dma) {
646 		if (dbg_hc(chan))
647 			dev_vdbg(hsotg->dev, "DMA enabled\n");
648 		dwc2_hc_enable_dma_ints(hsotg, chan);
649 	} else {
650 		if (dbg_hc(chan))
651 			dev_vdbg(hsotg->dev, "DMA disabled\n");
652 		dwc2_hc_enable_slave_ints(hsotg, chan);
653 	}
654 
655 	/* Enable the top level host channel interrupt */
656 	intmsk = dwc2_readl(hsotg, HAINTMSK);
657 	intmsk |= 1 << chan->hc_num;
658 	dwc2_writel(hsotg, intmsk, HAINTMSK);
659 	if (dbg_hc(chan))
660 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
661 
662 	/* Make sure host channel interrupts are enabled */
663 	intmsk = dwc2_readl(hsotg, GINTMSK);
664 	intmsk |= GINTSTS_HCHINT;
665 	dwc2_writel(hsotg, intmsk, GINTMSK);
666 	if (dbg_hc(chan))
667 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
668 }
669 
670 /**
671  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
672  * a specific endpoint
673  *
674  * @hsotg: Programming view of DWC_otg controller
675  * @chan:  Information needed to initialize the host channel
676  *
677  * The HCCHARn register is set up with the characteristics specified in chan.
678  * Host channel interrupts that may need to be serviced while this transfer is
679  * in progress are enabled.
680  */
681 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
682 {
683 	u8 hc_num = chan->hc_num;
684 	u32 hcintmsk;
685 	u32 hcchar;
686 	u32 hcsplt = 0;
687 
688 	if (dbg_hc(chan))
689 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
690 
691 	/* Clear old interrupt conditions for this host channel */
692 	hcintmsk = 0xffffffff;
693 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
694 	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
695 
696 	/* Enable channel interrupts required for this transfer */
697 	dwc2_hc_enable_ints(hsotg, chan);
698 
699 	/*
700 	 * Program the HCCHARn register with the endpoint characteristics for
701 	 * the current transfer
702 	 */
703 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
704 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
705 	if (chan->ep_is_in)
706 		hcchar |= HCCHAR_EPDIR;
707 	if (chan->speed == USB_SPEED_LOW)
708 		hcchar |= HCCHAR_LSPDDEV;
709 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
710 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
711 	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
712 	if (dbg_hc(chan)) {
713 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
714 			 hc_num, hcchar);
715 
716 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
717 			 __func__, hc_num);
718 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
719 			 chan->dev_addr);
720 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
721 			 chan->ep_num);
722 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
723 			 chan->ep_is_in);
724 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
725 			 chan->speed == USB_SPEED_LOW);
726 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
727 			 chan->ep_type);
728 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
729 			 chan->max_packet);
730 	}
731 
732 	/* Program the HCSPLT register for SPLITs */
733 	if (chan->do_split) {
734 		if (dbg_hc(chan))
735 			dev_vdbg(hsotg->dev,
736 				 "Programming HC %d with split --> %s\n",
737 				 hc_num,
738 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
739 		if (chan->complete_split)
740 			hcsplt |= HCSPLT_COMPSPLT;
741 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
742 			  HCSPLT_XACTPOS_MASK;
743 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
744 			  HCSPLT_HUBADDR_MASK;
745 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
746 			  HCSPLT_PRTADDR_MASK;
747 		if (dbg_hc(chan)) {
748 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
749 				 chan->complete_split);
750 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
751 				 chan->xact_pos);
752 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
753 				 chan->hub_addr);
754 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
755 				 chan->hub_port);
756 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
757 				 chan->ep_is_in);
758 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
759 				 chan->max_packet);
760 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
761 				 chan->xfer_len);
762 		}
763 	}
764 
765 	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
766 }
767 
768 /**
769  * dwc2_hc_halt() - Attempts to halt a host channel
770  *
771  * @hsotg:       Controller register interface
772  * @chan:        Host channel to halt
773  * @halt_status: Reason for halting the channel
774  *
775  * This function should only be called in Slave mode or to abort a transfer in
776  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
777  * controller halts the channel when the transfer is complete or a condition
778  * occurs that requires application intervention.
779  *
780  * In slave mode, checks for a free request queue entry, then sets the Channel
781  * Enable and Channel Disable bits of the Host Channel Characteristics
782  * register of the specified channel to intiate the halt. If there is no free
783  * request queue entry, sets only the Channel Disable bit of the HCCHARn
784  * register to flush requests for this channel. In the latter case, sets a
785  * flag to indicate that the host channel needs to be halted when a request
786  * queue slot is open.
787  *
788  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
789  * HCCHARn register. The controller ensures there is space in the request
790  * queue before submitting the halt request.
791  *
792  * Some time may elapse before the core flushes any posted requests for this
793  * host channel and halts. The Channel Halted interrupt handler completes the
794  * deactivation of the host channel.
795  */
796 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
797 		  enum dwc2_halt_status halt_status)
798 {
799 	u32 nptxsts, hptxsts, hcchar;
800 
801 	if (dbg_hc(chan))
802 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
803 
804 	/*
805 	 * In buffer DMA or external DMA mode channel can't be halted
806 	 * for non-split periodic channels. At the end of the next
807 	 * uframe/frame (in the worst case), the core generates a channel
808 	 * halted and disables the channel automatically.
809 	 */
810 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
811 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
812 		if (!chan->do_split &&
813 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
814 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
815 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
816 				__func__);
817 			return;
818 		}
819 	}
820 
821 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
822 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
823 
824 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
825 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
826 		/*
827 		 * Disable all channel interrupts except Ch Halted. The QTD
828 		 * and QH state associated with this transfer has been cleared
829 		 * (in the case of URB_DEQUEUE), so the channel needs to be
830 		 * shut down carefully to prevent crashes.
831 		 */
832 		u32 hcintmsk = HCINTMSK_CHHLTD;
833 
834 		dev_vdbg(hsotg->dev, "dequeue/error\n");
835 		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
836 
837 		/*
838 		 * Make sure no other interrupts besides halt are currently
839 		 * pending. Handling another interrupt could cause a crash due
840 		 * to the QTD and QH state.
841 		 */
842 		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
843 
844 		/*
845 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
846 		 * even if the channel was already halted for some other
847 		 * reason
848 		 */
849 		chan->halt_status = halt_status;
850 
851 		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
852 		if (!(hcchar & HCCHAR_CHENA)) {
853 			/*
854 			 * The channel is either already halted or it hasn't
855 			 * started yet. In DMA mode, the transfer may halt if
856 			 * it finishes normally or a condition occurs that
857 			 * requires driver intervention. Don't want to halt
858 			 * the channel again. In either Slave or DMA mode,
859 			 * it's possible that the transfer has been assigned
860 			 * to a channel, but not started yet when an URB is
861 			 * dequeued. Don't want to halt a channel that hasn't
862 			 * started yet.
863 			 */
864 			return;
865 		}
866 	}
867 	if (chan->halt_pending) {
868 		/*
869 		 * A halt has already been issued for this channel. This might
870 		 * happen when a transfer is aborted by a higher level in
871 		 * the stack.
872 		 */
873 		dev_vdbg(hsotg->dev,
874 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
875 			 __func__, chan->hc_num);
876 		return;
877 	}
878 
879 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
880 
881 	/* No need to set the bit in DDMA for disabling the channel */
882 	/* TODO check it everywhere channel is disabled */
883 	if (!hsotg->params.dma_desc_enable) {
884 		if (dbg_hc(chan))
885 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
886 		hcchar |= HCCHAR_CHENA;
887 	} else {
888 		if (dbg_hc(chan))
889 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
890 	}
891 	hcchar |= HCCHAR_CHDIS;
892 
893 	if (!hsotg->params.host_dma) {
894 		if (dbg_hc(chan))
895 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
896 		hcchar |= HCCHAR_CHENA;
897 
898 		/* Check for space in the request queue to issue the halt */
899 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
900 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
901 			dev_vdbg(hsotg->dev, "control/bulk\n");
902 			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
903 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
904 				dev_vdbg(hsotg->dev, "Disabling channel\n");
905 				hcchar &= ~HCCHAR_CHENA;
906 			}
907 		} else {
908 			if (dbg_perio())
909 				dev_vdbg(hsotg->dev, "isoc/intr\n");
910 			hptxsts = dwc2_readl(hsotg, HPTXSTS);
911 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
912 			    hsotg->queuing_high_bandwidth) {
913 				if (dbg_perio())
914 					dev_vdbg(hsotg->dev, "Disabling channel\n");
915 				hcchar &= ~HCCHAR_CHENA;
916 			}
917 		}
918 	} else {
919 		if (dbg_hc(chan))
920 			dev_vdbg(hsotg->dev, "DMA enabled\n");
921 	}
922 
923 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
924 	chan->halt_status = halt_status;
925 
926 	if (hcchar & HCCHAR_CHENA) {
927 		if (dbg_hc(chan))
928 			dev_vdbg(hsotg->dev, "Channel enabled\n");
929 		chan->halt_pending = 1;
930 		chan->halt_on_queue = 0;
931 	} else {
932 		if (dbg_hc(chan))
933 			dev_vdbg(hsotg->dev, "Channel disabled\n");
934 		chan->halt_on_queue = 1;
935 	}
936 
937 	if (dbg_hc(chan)) {
938 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
939 			 chan->hc_num);
940 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
941 			 hcchar);
942 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
943 			 chan->halt_pending);
944 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
945 			 chan->halt_on_queue);
946 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
947 			 chan->halt_status);
948 	}
949 }
950 
951 /**
952  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
953  *
954  * @hsotg: Programming view of DWC_otg controller
955  * @chan:  Identifies the host channel to clean up
956  *
957  * This function is normally called after a transfer is done and the host
958  * channel is being released
959  */
960 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
961 {
962 	u32 hcintmsk;
963 
964 	chan->xfer_started = 0;
965 
966 	list_del_init(&chan->split_order_list_entry);
967 
968 	/*
969 	 * Clear channel interrupt enables and any unhandled channel interrupt
970 	 * conditions
971 	 */
972 	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
973 	hcintmsk = 0xffffffff;
974 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
975 	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
976 }
977 
978 /**
979  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
980  * which frame a periodic transfer should occur
981  *
982  * @hsotg:  Programming view of DWC_otg controller
983  * @chan:   Identifies the host channel to set up and its properties
984  * @hcchar: Current value of the HCCHAR register for the specified host channel
985  *
986  * This function has no effect on non-periodic transfers
987  */
988 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
989 				       struct dwc2_host_chan *chan, u32 *hcchar)
990 {
991 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
992 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
993 		int host_speed;
994 		int xfer_ns;
995 		int xfer_us;
996 		int bytes_in_fifo;
997 		u16 fifo_space;
998 		u16 frame_number;
999 		u16 wire_frame;
1000 
1001 		/*
1002 		 * Try to figure out if we're an even or odd frame. If we set
1003 		 * even and the current frame number is even the transfer
1004 		 * will happen immediately.  Similar if both are odd. If one is
1005 		 * even and the other is odd then the transfer will happen when
1006 		 * the frame number ticks.
1007 		 *
1008 		 * There's a bit of a balancing act to get this right.
1009 		 * Sometimes we may want to send data in the current frame (AK
1010 		 * right away).  We might want to do this if the frame number
1011 		 * _just_ ticked, but we might also want to do this in order
1012 		 * to continue a split transaction that happened late in a
1013 		 * microframe (so we didn't know to queue the next transfer
1014 		 * until the frame number had ticked).  The problem is that we
1015 		 * need a lot of knowledge to know if there's actually still
1016 		 * time to send things or if it would be better to wait until
1017 		 * the next frame.
1018 		 *
1019 		 * We can look at how much time is left in the current frame
1020 		 * and make a guess about whether we'll have time to transfer.
1021 		 * We'll do that.
1022 		 */
1023 
1024 		/* Get speed host is running at */
1025 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1026 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1027 
1028 		/* See how many bytes are in the periodic FIFO right now */
1029 		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1030 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1031 		bytes_in_fifo = sizeof(u32) *
1032 				(hsotg->params.host_perio_tx_fifo_size -
1033 				 fifo_space);
1034 
1035 		/*
1036 		 * Roughly estimate bus time for everything in the periodic
1037 		 * queue + our new transfer.  This is "rough" because we're
1038 		 * using a function that makes takes into account IN/OUT
1039 		 * and INT/ISO and we're just slamming in one value for all
1040 		 * transfers.  This should be an over-estimate and that should
1041 		 * be OK, but we can probably tighten it.
1042 		 */
1043 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1044 					    chan->xfer_len + bytes_in_fifo);
1045 		xfer_us = NS_TO_US(xfer_ns);
1046 
1047 		/* See what frame number we'll be at by the time we finish */
1048 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1049 
1050 		/* This is when we were scheduled to be on the wire */
1051 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1052 
1053 		/*
1054 		 * If we'd finish _after_ the frame we're scheduled in then
1055 		 * it's hopeless.  Just schedule right away and hope for the
1056 		 * best.  Note that it _might_ be wise to call back into the
1057 		 * scheduler to pick a better frame, but this is better than
1058 		 * nothing.
1059 		 */
1060 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1061 			dwc2_sch_vdbg(hsotg,
1062 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1063 				      chan->qh, wire_frame, frame_number,
1064 				      dwc2_frame_num_dec(frame_number,
1065 							 wire_frame));
1066 			wire_frame = frame_number;
1067 
1068 			/*
1069 			 * We picked a different frame number; communicate this
1070 			 * back to the scheduler so it doesn't try to schedule
1071 			 * another in the same frame.
1072 			 *
1073 			 * Remember that next_active_frame is 1 before the wire
1074 			 * frame.
1075 			 */
1076 			chan->qh->next_active_frame =
1077 				dwc2_frame_num_dec(frame_number, 1);
1078 		}
1079 
1080 		if (wire_frame & 1)
1081 			*hcchar |= HCCHAR_ODDFRM;
1082 		else
1083 			*hcchar &= ~HCCHAR_ODDFRM;
1084 	}
1085 }
1086 
1087 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1088 {
1089 	/* Set up the initial PID for the transfer */
1090 	if (chan->speed == USB_SPEED_HIGH) {
1091 		if (chan->ep_is_in) {
1092 			if (chan->multi_count == 1)
1093 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1094 			else if (chan->multi_count == 2)
1095 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1096 			else
1097 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1098 		} else {
1099 			if (chan->multi_count == 1)
1100 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1101 			else
1102 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1103 		}
1104 	} else {
1105 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1106 	}
1107 }
1108 
1109 /**
1110  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1111  * the Host Channel
1112  *
1113  * @hsotg: Programming view of DWC_otg controller
1114  * @chan:  Information needed to initialize the host channel
1115  *
1116  * This function should only be called in Slave mode. For a channel associated
1117  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1118  * associated with a periodic EP, the periodic Tx FIFO is written.
1119  *
1120  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1121  * the number of bytes written to the Tx FIFO.
1122  */
1123 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1124 				 struct dwc2_host_chan *chan)
1125 {
1126 	u32 i;
1127 	u32 remaining_count;
1128 	u32 byte_count;
1129 	u32 dword_count;
1130 	u32 *data_buf = (u32 *)chan->xfer_buf;
1131 
1132 	if (dbg_hc(chan))
1133 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1134 
1135 	remaining_count = chan->xfer_len - chan->xfer_count;
1136 	if (remaining_count > chan->max_packet)
1137 		byte_count = chan->max_packet;
1138 	else
1139 		byte_count = remaining_count;
1140 
1141 	dword_count = (byte_count + 3) / 4;
1142 
1143 	if (((unsigned long)data_buf & 0x3) == 0) {
1144 		/* xfer_buf is DWORD aligned */
1145 		for (i = 0; i < dword_count; i++, data_buf++)
1146 			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1147 	} else {
1148 		/* xfer_buf is not DWORD aligned */
1149 		for (i = 0; i < dword_count; i++, data_buf++) {
1150 			u32 data = data_buf[0] | data_buf[1] << 8 |
1151 				   data_buf[2] << 16 | data_buf[3] << 24;
1152 			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1153 		}
1154 	}
1155 
1156 	chan->xfer_count += byte_count;
1157 	chan->xfer_buf += byte_count;
1158 }
1159 
1160 /**
1161  * dwc2_hc_do_ping() - Starts a PING transfer
1162  *
1163  * @hsotg: Programming view of DWC_otg controller
1164  * @chan:  Information needed to initialize the host channel
1165  *
1166  * This function should only be called in Slave mode. The Do Ping bit is set in
1167  * the HCTSIZ register, then the channel is enabled.
1168  */
1169 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1170 			    struct dwc2_host_chan *chan)
1171 {
1172 	u32 hcchar;
1173 	u32 hctsiz;
1174 
1175 	if (dbg_hc(chan))
1176 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1177 			 chan->hc_num);
1178 
1179 	hctsiz = TSIZ_DOPNG;
1180 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1181 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1182 
1183 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1184 	hcchar |= HCCHAR_CHENA;
1185 	hcchar &= ~HCCHAR_CHDIS;
1186 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1187 }
1188 
1189 /**
1190  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1191  * channel and starts the transfer
1192  *
1193  * @hsotg: Programming view of DWC_otg controller
1194  * @chan:  Information needed to initialize the host channel. The xfer_len value
1195  *         may be reduced to accommodate the max widths of the XferSize and
1196  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1197  *         changed to reflect the final xfer_len value.
1198  *
1199  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1200  * the caller must ensure that there is sufficient space in the request queue
1201  * and Tx Data FIFO.
1202  *
1203  * For an OUT transfer in Slave mode, it loads a data packet into the
1204  * appropriate FIFO. If necessary, additional data packets are loaded in the
1205  * Host ISR.
1206  *
1207  * For an IN transfer in Slave mode, a data packet is requested. The data
1208  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1209  * additional data packets are requested in the Host ISR.
1210  *
1211  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1212  * register along with a packet count of 1 and the channel is enabled. This
1213  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1214  * simply set to 0 since no data transfer occurs in this case.
1215  *
1216  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1217  * all the information required to perform the subsequent data transfer. In
1218  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1219  * controller performs the entire PING protocol, then starts the data
1220  * transfer.
1221  */
1222 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1223 				   struct dwc2_host_chan *chan)
1224 {
1225 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1226 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1227 	u32 hcchar;
1228 	u32 hctsiz = 0;
1229 	u16 num_packets;
1230 	u32 ec_mc;
1231 
1232 	if (dbg_hc(chan))
1233 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1234 
1235 	if (chan->do_ping) {
1236 		if (!hsotg->params.host_dma) {
1237 			if (dbg_hc(chan))
1238 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1239 			dwc2_hc_do_ping(hsotg, chan);
1240 			chan->xfer_started = 1;
1241 			return;
1242 		}
1243 
1244 		if (dbg_hc(chan))
1245 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1246 
1247 		hctsiz |= TSIZ_DOPNG;
1248 	}
1249 
1250 	if (chan->do_split) {
1251 		if (dbg_hc(chan))
1252 			dev_vdbg(hsotg->dev, "split\n");
1253 		num_packets = 1;
1254 
1255 		if (chan->complete_split && !chan->ep_is_in)
1256 			/*
1257 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1258 			 * core doesn't expect any data written to the FIFO
1259 			 */
1260 			chan->xfer_len = 0;
1261 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1262 			chan->xfer_len = chan->max_packet;
1263 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1264 			chan->xfer_len = 188;
1265 
1266 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1267 			  TSIZ_XFERSIZE_MASK;
1268 
1269 		/* For split set ec_mc for immediate retries */
1270 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1271 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1272 			ec_mc = 3;
1273 		else
1274 			ec_mc = 1;
1275 	} else {
1276 		if (dbg_hc(chan))
1277 			dev_vdbg(hsotg->dev, "no split\n");
1278 		/*
1279 		 * Ensure that the transfer length and packet count will fit
1280 		 * in the widths allocated for them in the HCTSIZn register
1281 		 */
1282 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1283 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1284 			/*
1285 			 * Make sure the transfer size is no larger than one
1286 			 * (micro)frame's worth of data. (A check was done
1287 			 * when the periodic transfer was accepted to ensure
1288 			 * that a (micro)frame's worth of data can be
1289 			 * programmed into a channel.)
1290 			 */
1291 			u32 max_periodic_len =
1292 				chan->multi_count * chan->max_packet;
1293 
1294 			if (chan->xfer_len > max_periodic_len)
1295 				chan->xfer_len = max_periodic_len;
1296 		} else if (chan->xfer_len > max_hc_xfer_size) {
1297 			/*
1298 			 * Make sure that xfer_len is a multiple of max packet
1299 			 * size
1300 			 */
1301 			chan->xfer_len =
1302 				max_hc_xfer_size - chan->max_packet + 1;
1303 		}
1304 
1305 		if (chan->xfer_len > 0) {
1306 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1307 					chan->max_packet;
1308 			if (num_packets > max_hc_pkt_count) {
1309 				num_packets = max_hc_pkt_count;
1310 				chan->xfer_len = num_packets * chan->max_packet;
1311 			} else if (chan->ep_is_in) {
1312 				/*
1313 				 * Always program an integral # of max packets
1314 				 * for IN transfers.
1315 				 * Note: This assumes that the input buffer is
1316 				 * aligned and sized accordingly.
1317 				 */
1318 				chan->xfer_len = num_packets * chan->max_packet;
1319 			}
1320 		} else {
1321 			/* Need 1 packet for transfer length of 0 */
1322 			num_packets = 1;
1323 		}
1324 
1325 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1326 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1327 			/*
1328 			 * Make sure that the multi_count field matches the
1329 			 * actual transfer length
1330 			 */
1331 			chan->multi_count = num_packets;
1332 
1333 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1334 			dwc2_set_pid_isoc(chan);
1335 
1336 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1337 			  TSIZ_XFERSIZE_MASK;
1338 
1339 		/* The ec_mc gets the multi_count for non-split */
1340 		ec_mc = chan->multi_count;
1341 	}
1342 
1343 	chan->start_pkt_count = num_packets;
1344 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1345 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1346 		  TSIZ_SC_MC_PID_MASK;
1347 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1348 	if (dbg_hc(chan)) {
1349 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1350 			 hctsiz, chan->hc_num);
1351 
1352 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1353 			 chan->hc_num);
1354 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1355 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1356 			 TSIZ_XFERSIZE_SHIFT);
1357 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1358 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1359 			 TSIZ_PKTCNT_SHIFT);
1360 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1361 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1362 			 TSIZ_SC_MC_PID_SHIFT);
1363 	}
1364 
1365 	if (hsotg->params.host_dma) {
1366 		dma_addr_t dma_addr;
1367 
1368 		if (chan->align_buf) {
1369 			if (dbg_hc(chan))
1370 				dev_vdbg(hsotg->dev, "align_buf\n");
1371 			dma_addr = chan->align_buf;
1372 		} else {
1373 			dma_addr = chan->xfer_dma;
1374 		}
1375 		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1376 
1377 		if (dbg_hc(chan))
1378 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1379 				 (unsigned long)dma_addr, chan->hc_num);
1380 	}
1381 
1382 	/* Start the split */
1383 	if (chan->do_split) {
1384 		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1385 
1386 		hcsplt |= HCSPLT_SPLTENA;
1387 		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1388 	}
1389 
1390 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1391 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1392 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1393 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1394 
1395 	if (hcchar & HCCHAR_CHDIS)
1396 		dev_warn(hsotg->dev,
1397 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1398 			 __func__, chan->hc_num, hcchar);
1399 
1400 	/* Set host channel enable after all other setup is complete */
1401 	hcchar |= HCCHAR_CHENA;
1402 	hcchar &= ~HCCHAR_CHDIS;
1403 
1404 	if (dbg_hc(chan))
1405 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1406 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1407 			 HCCHAR_MULTICNT_SHIFT);
1408 
1409 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1410 	if (dbg_hc(chan))
1411 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1412 			 chan->hc_num);
1413 
1414 	chan->xfer_started = 1;
1415 	chan->requests++;
1416 
1417 	if (!hsotg->params.host_dma &&
1418 	    !chan->ep_is_in && chan->xfer_len > 0)
1419 		/* Load OUT packet into the appropriate Tx FIFO */
1420 		dwc2_hc_write_packet(hsotg, chan);
1421 }
1422 
1423 /**
1424  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1425  * host channel and starts the transfer in Descriptor DMA mode
1426  *
1427  * @hsotg: Programming view of DWC_otg controller
1428  * @chan:  Information needed to initialize the host channel
1429  *
1430  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1431  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1432  * with micro-frame bitmap.
1433  *
1434  * Initializes HCDMA register with descriptor list address and CTD value then
1435  * starts the transfer via enabling the channel.
1436  */
1437 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1438 				 struct dwc2_host_chan *chan)
1439 {
1440 	u32 hcchar;
1441 	u32 hctsiz = 0;
1442 
1443 	if (chan->do_ping)
1444 		hctsiz |= TSIZ_DOPNG;
1445 
1446 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1447 		dwc2_set_pid_isoc(chan);
1448 
1449 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1450 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1451 		  TSIZ_SC_MC_PID_MASK;
1452 
1453 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1454 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1455 
1456 	/* Non-zero only for high-speed interrupt endpoints */
1457 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1458 
1459 	if (dbg_hc(chan)) {
1460 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1461 			 chan->hc_num);
1462 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1463 			 chan->data_pid_start);
1464 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1465 	}
1466 
1467 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1468 
1469 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1470 				   chan->desc_list_sz, DMA_TO_DEVICE);
1471 
1472 	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1473 
1474 	if (dbg_hc(chan))
1475 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1476 			 &chan->desc_list_addr, chan->hc_num);
1477 
1478 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1479 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1480 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1481 		  HCCHAR_MULTICNT_MASK;
1482 
1483 	if (hcchar & HCCHAR_CHDIS)
1484 		dev_warn(hsotg->dev,
1485 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1486 			 __func__, chan->hc_num, hcchar);
1487 
1488 	/* Set host channel enable after all other setup is complete */
1489 	hcchar |= HCCHAR_CHENA;
1490 	hcchar &= ~HCCHAR_CHDIS;
1491 
1492 	if (dbg_hc(chan))
1493 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1494 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1495 			 HCCHAR_MULTICNT_SHIFT);
1496 
1497 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1498 	if (dbg_hc(chan))
1499 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1500 			 chan->hc_num);
1501 
1502 	chan->xfer_started = 1;
1503 	chan->requests++;
1504 }
1505 
1506 /**
1507  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1508  * a previous call to dwc2_hc_start_transfer()
1509  *
1510  * @hsotg: Programming view of DWC_otg controller
1511  * @chan:  Information needed to initialize the host channel
1512  *
1513  * The caller must ensure there is sufficient space in the request queue and Tx
1514  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1515  * the controller acts autonomously to complete transfers programmed to a host
1516  * channel.
1517  *
1518  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1519  * if there is any data remaining to be queued. For an IN transfer, another
1520  * data packet is always requested. For the SETUP phase of a control transfer,
1521  * this function does nothing.
1522  *
1523  * Return: 1 if a new request is queued, 0 if no more requests are required
1524  * for this transfer
1525  */
1526 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1527 				     struct dwc2_host_chan *chan)
1528 {
1529 	if (dbg_hc(chan))
1530 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1531 			 chan->hc_num);
1532 
1533 	if (chan->do_split)
1534 		/* SPLITs always queue just once per channel */
1535 		return 0;
1536 
1537 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1538 		/* SETUPs are queued only once since they can't be NAK'd */
1539 		return 0;
1540 
1541 	if (chan->ep_is_in) {
1542 		/*
1543 		 * Always queue another request for other IN transfers. If
1544 		 * back-to-back INs are issued and NAKs are received for both,
1545 		 * the driver may still be processing the first NAK when the
1546 		 * second NAK is received. When the interrupt handler clears
1547 		 * the NAK interrupt for the first NAK, the second NAK will
1548 		 * not be seen. So we can't depend on the NAK interrupt
1549 		 * handler to requeue a NAK'd request. Instead, IN requests
1550 		 * are issued each time this function is called. When the
1551 		 * transfer completes, the extra requests for the channel will
1552 		 * be flushed.
1553 		 */
1554 		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1555 
1556 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1557 		hcchar |= HCCHAR_CHENA;
1558 		hcchar &= ~HCCHAR_CHDIS;
1559 		if (dbg_hc(chan))
1560 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1561 				 hcchar);
1562 		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1563 		chan->requests++;
1564 		return 1;
1565 	}
1566 
1567 	/* OUT transfers */
1568 
1569 	if (chan->xfer_count < chan->xfer_len) {
1570 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1571 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1572 			u32 hcchar = dwc2_readl(hsotg,
1573 						HCCHAR(chan->hc_num));
1574 
1575 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1576 						   &hcchar);
1577 		}
1578 
1579 		/* Load OUT packet into the appropriate Tx FIFO */
1580 		dwc2_hc_write_packet(hsotg, chan);
1581 		chan->requests++;
1582 		return 1;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 /*
1589  * =========================================================================
1590  *  HCD
1591  * =========================================================================
1592  */
1593 
1594 /*
1595  * Processes all the URBs in a single list of QHs. Completes them with
1596  * -ETIMEDOUT and frees the QTD.
1597  *
1598  * Must be called with interrupt disabled and spinlock held
1599  */
1600 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1601 				      struct list_head *qh_list)
1602 {
1603 	struct dwc2_qh *qh, *qh_tmp;
1604 	struct dwc2_qtd *qtd, *qtd_tmp;
1605 
1606 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1607 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1608 					 qtd_list_entry) {
1609 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1610 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1611 		}
1612 	}
1613 }
1614 
1615 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1616 			      struct list_head *qh_list)
1617 {
1618 	struct dwc2_qtd *qtd, *qtd_tmp;
1619 	struct dwc2_qh *qh, *qh_tmp;
1620 	unsigned long flags;
1621 
1622 	if (!qh_list->next)
1623 		/* The list hasn't been initialized yet */
1624 		return;
1625 
1626 	spin_lock_irqsave(&hsotg->lock, flags);
1627 
1628 	/* Ensure there are no QTDs or URBs left */
1629 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1630 
1631 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1632 		dwc2_hcd_qh_unlink(hsotg, qh);
1633 
1634 		/* Free each QTD in the QH's QTD list */
1635 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1636 					 qtd_list_entry)
1637 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1638 
1639 		if (qh->channel && qh->channel->qh == qh)
1640 			qh->channel->qh = NULL;
1641 
1642 		spin_unlock_irqrestore(&hsotg->lock, flags);
1643 		dwc2_hcd_qh_free(hsotg, qh);
1644 		spin_lock_irqsave(&hsotg->lock, flags);
1645 	}
1646 
1647 	spin_unlock_irqrestore(&hsotg->lock, flags);
1648 }
1649 
1650 /*
1651  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1652  * and periodic schedules. The QTD associated with each URB is removed from
1653  * the schedule and freed. This function may be called when a disconnect is
1654  * detected or when the HCD is being stopped.
1655  *
1656  * Must be called with interrupt disabled and spinlock held
1657  */
1658 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1659 {
1660 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1661 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1662 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1663 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1664 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1665 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1666 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1667 }
1668 
1669 /**
1670  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1671  *
1672  * @hsotg: Pointer to struct dwc2_hsotg
1673  */
1674 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1675 {
1676 	u32 hprt0;
1677 
1678 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1679 		/*
1680 		 * Reset the port. During a HNP mode switch the reset
1681 		 * needs to occur within 1ms and have a duration of at
1682 		 * least 50ms.
1683 		 */
1684 		hprt0 = dwc2_read_hprt0(hsotg);
1685 		hprt0 |= HPRT0_RST;
1686 		dwc2_writel(hsotg, hprt0, HPRT0);
1687 	}
1688 
1689 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1690 			   msecs_to_jiffies(50));
1691 }
1692 
1693 /* Must be called with interrupt disabled and spinlock held */
1694 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1695 {
1696 	int num_channels = hsotg->params.host_channels;
1697 	struct dwc2_host_chan *channel;
1698 	u32 hcchar;
1699 	int i;
1700 
1701 	if (!hsotg->params.host_dma) {
1702 		/* Flush out any channel requests in slave mode */
1703 		for (i = 0; i < num_channels; i++) {
1704 			channel = hsotg->hc_ptr_array[i];
1705 			if (!list_empty(&channel->hc_list_entry))
1706 				continue;
1707 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1708 			if (hcchar & HCCHAR_CHENA) {
1709 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1710 				hcchar |= HCCHAR_CHDIS;
1711 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1712 			}
1713 		}
1714 	}
1715 
1716 	for (i = 0; i < num_channels; i++) {
1717 		channel = hsotg->hc_ptr_array[i];
1718 		if (!list_empty(&channel->hc_list_entry))
1719 			continue;
1720 		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1721 		if (hcchar & HCCHAR_CHENA) {
1722 			/* Halt the channel */
1723 			hcchar |= HCCHAR_CHDIS;
1724 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1725 		}
1726 
1727 		dwc2_hc_cleanup(hsotg, channel);
1728 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1729 		/*
1730 		 * Added for Descriptor DMA to prevent channel double cleanup in
1731 		 * release_channel_ddma(), which is called from ep_disable when
1732 		 * device disconnects
1733 		 */
1734 		channel->qh = NULL;
1735 	}
1736 	/* All channels have been freed, mark them available */
1737 	if (hsotg->params.uframe_sched) {
1738 		hsotg->available_host_channels =
1739 			hsotg->params.host_channels;
1740 	} else {
1741 		hsotg->non_periodic_channels = 0;
1742 		hsotg->periodic_channels = 0;
1743 	}
1744 }
1745 
1746 /**
1747  * dwc2_hcd_connect() - Handles connect of the HCD
1748  *
1749  * @hsotg: Pointer to struct dwc2_hsotg
1750  *
1751  * Must be called with interrupt disabled and spinlock held
1752  */
1753 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1754 {
1755 	if (hsotg->lx_state != DWC2_L0)
1756 		usb_hcd_resume_root_hub(hsotg->priv);
1757 
1758 	hsotg->flags.b.port_connect_status_change = 1;
1759 	hsotg->flags.b.port_connect_status = 1;
1760 }
1761 
1762 /**
1763  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1764  *
1765  * @hsotg: Pointer to struct dwc2_hsotg
1766  * @force: If true, we won't try to reconnect even if we see device connected.
1767  *
1768  * Must be called with interrupt disabled and spinlock held
1769  */
1770 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1771 {
1772 	u32 intr;
1773 	u32 hprt0;
1774 
1775 	/* Set status flags for the hub driver */
1776 	hsotg->flags.b.port_connect_status_change = 1;
1777 	hsotg->flags.b.port_connect_status = 0;
1778 
1779 	/*
1780 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1781 	 * interrupt mask and status bits and disabling subsequent host
1782 	 * channel interrupts.
1783 	 */
1784 	intr = dwc2_readl(hsotg, GINTMSK);
1785 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1786 	dwc2_writel(hsotg, intr, GINTMSK);
1787 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1788 	dwc2_writel(hsotg, intr, GINTSTS);
1789 
1790 	/*
1791 	 * Turn off the vbus power only if the core has transitioned to device
1792 	 * mode. If still in host mode, need to keep power on to detect a
1793 	 * reconnection.
1794 	 */
1795 	if (dwc2_is_device_mode(hsotg)) {
1796 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1797 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1798 			dwc2_writel(hsotg, 0, HPRT0);
1799 		}
1800 
1801 		dwc2_disable_host_interrupts(hsotg);
1802 	}
1803 
1804 	/* Respond with an error status to all URBs in the schedule */
1805 	dwc2_kill_all_urbs(hsotg);
1806 
1807 	if (dwc2_is_host_mode(hsotg))
1808 		/* Clean up any host channels that were in use */
1809 		dwc2_hcd_cleanup_channels(hsotg);
1810 
1811 	dwc2_host_disconnect(hsotg);
1812 
1813 	/*
1814 	 * Add an extra check here to see if we're actually connected but
1815 	 * we don't have a detection interrupt pending.  This can happen if:
1816 	 *   1. hardware sees connect
1817 	 *   2. hardware sees disconnect
1818 	 *   3. hardware sees connect
1819 	 *   4. dwc2_port_intr() - clears connect interrupt
1820 	 *   5. dwc2_handle_common_intr() - calls here
1821 	 *
1822 	 * Without the extra check here we will end calling disconnect
1823 	 * and won't get any future interrupts to handle the connect.
1824 	 */
1825 	if (!force) {
1826 		hprt0 = dwc2_readl(hsotg, HPRT0);
1827 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1828 			dwc2_hcd_connect(hsotg);
1829 	}
1830 }
1831 
1832 /**
1833  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1834  *
1835  * @hsotg: Pointer to struct dwc2_hsotg
1836  */
1837 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1838 {
1839 	if (hsotg->bus_suspended) {
1840 		hsotg->flags.b.port_suspend_change = 1;
1841 		usb_hcd_resume_root_hub(hsotg->priv);
1842 	}
1843 
1844 	if (hsotg->lx_state == DWC2_L1)
1845 		hsotg->flags.b.port_l1_change = 1;
1846 }
1847 
1848 /**
1849  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1850  *
1851  * @hsotg: Pointer to struct dwc2_hsotg
1852  *
1853  * Must be called with interrupt disabled and spinlock held
1854  */
1855 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1856 {
1857 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1858 
1859 	/*
1860 	 * The root hub should be disconnected before this function is called.
1861 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1862 	 * and the QH lists (via ..._hcd_endpoint_disable).
1863 	 */
1864 
1865 	/* Turn off all host-specific interrupts */
1866 	dwc2_disable_host_interrupts(hsotg);
1867 
1868 	/* Turn off the vbus power */
1869 	dev_dbg(hsotg->dev, "PortPower off\n");
1870 	dwc2_writel(hsotg, 0, HPRT0);
1871 }
1872 
1873 /* Caller must hold driver lock */
1874 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1875 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1876 				struct dwc2_qtd *qtd)
1877 {
1878 	u32 intr_mask;
1879 	int retval;
1880 	int dev_speed;
1881 
1882 	if (!hsotg->flags.b.port_connect_status) {
1883 		/* No longer connected */
1884 		dev_err(hsotg->dev, "Not connected\n");
1885 		return -ENODEV;
1886 	}
1887 
1888 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1889 
1890 	/* Some configurations cannot support LS traffic on a FS root port */
1891 	if ((dev_speed == USB_SPEED_LOW) &&
1892 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1893 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1894 		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1895 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1896 
1897 		if (prtspd == HPRT0_SPD_FULL_SPEED)
1898 			return -ENODEV;
1899 	}
1900 
1901 	if (!qtd)
1902 		return -EINVAL;
1903 
1904 	dwc2_hcd_qtd_init(qtd, urb);
1905 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1906 	if (retval) {
1907 		dev_err(hsotg->dev,
1908 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1909 			retval);
1910 		return retval;
1911 	}
1912 
1913 	intr_mask = dwc2_readl(hsotg, GINTMSK);
1914 	if (!(intr_mask & GINTSTS_SOF)) {
1915 		enum dwc2_transaction_type tr_type;
1916 
1917 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1918 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1919 			/*
1920 			 * Do not schedule SG transactions until qtd has
1921 			 * URB_GIVEBACK_ASAP set
1922 			 */
1923 			return 0;
1924 
1925 		tr_type = dwc2_hcd_select_transactions(hsotg);
1926 		if (tr_type != DWC2_TRANSACTION_NONE)
1927 			dwc2_hcd_queue_transactions(hsotg, tr_type);
1928 	}
1929 
1930 	return 0;
1931 }
1932 
1933 /* Must be called with interrupt disabled and spinlock held */
1934 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1935 				struct dwc2_hcd_urb *urb)
1936 {
1937 	struct dwc2_qh *qh;
1938 	struct dwc2_qtd *urb_qtd;
1939 
1940 	urb_qtd = urb->qtd;
1941 	if (!urb_qtd) {
1942 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1943 		return -EINVAL;
1944 	}
1945 
1946 	qh = urb_qtd->qh;
1947 	if (!qh) {
1948 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1949 		return -EINVAL;
1950 	}
1951 
1952 	urb->priv = NULL;
1953 
1954 	if (urb_qtd->in_process && qh->channel) {
1955 		dwc2_dump_channel_info(hsotg, qh->channel);
1956 
1957 		/* The QTD is in process (it has been assigned to a channel) */
1958 		if (hsotg->flags.b.port_connect_status)
1959 			/*
1960 			 * If still connected (i.e. in host mode), halt the
1961 			 * channel so it can be used for other transfers. If
1962 			 * no longer connected, the host registers can't be
1963 			 * written to halt the channel since the core is in
1964 			 * device mode.
1965 			 */
1966 			dwc2_hc_halt(hsotg, qh->channel,
1967 				     DWC2_HC_XFER_URB_DEQUEUE);
1968 	}
1969 
1970 	/*
1971 	 * Free the QTD and clean up the associated QH. Leave the QH in the
1972 	 * schedule if it has any remaining QTDs.
1973 	 */
1974 	if (!hsotg->params.dma_desc_enable) {
1975 		u8 in_process = urb_qtd->in_process;
1976 
1977 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1978 		if (in_process) {
1979 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1980 			qh->channel = NULL;
1981 		} else if (list_empty(&qh->qtd_list)) {
1982 			dwc2_hcd_qh_unlink(hsotg, qh);
1983 		}
1984 	} else {
1985 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 /* Must NOT be called with interrupt disabled or spinlock held */
1992 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1993 				     struct usb_host_endpoint *ep, int retry)
1994 {
1995 	struct dwc2_qtd *qtd, *qtd_tmp;
1996 	struct dwc2_qh *qh;
1997 	unsigned long flags;
1998 	int rc;
1999 
2000 	spin_lock_irqsave(&hsotg->lock, flags);
2001 
2002 	qh = ep->hcpriv;
2003 	if (!qh) {
2004 		rc = -EINVAL;
2005 		goto err;
2006 	}
2007 
2008 	while (!list_empty(&qh->qtd_list) && retry--) {
2009 		if (retry == 0) {
2010 			dev_err(hsotg->dev,
2011 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2012 			rc = -EBUSY;
2013 			goto err;
2014 		}
2015 
2016 		spin_unlock_irqrestore(&hsotg->lock, flags);
2017 		msleep(20);
2018 		spin_lock_irqsave(&hsotg->lock, flags);
2019 		qh = ep->hcpriv;
2020 		if (!qh) {
2021 			rc = -EINVAL;
2022 			goto err;
2023 		}
2024 	}
2025 
2026 	dwc2_hcd_qh_unlink(hsotg, qh);
2027 
2028 	/* Free each QTD in the QH's QTD list */
2029 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2030 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2031 
2032 	ep->hcpriv = NULL;
2033 
2034 	if (qh->channel && qh->channel->qh == qh)
2035 		qh->channel->qh = NULL;
2036 
2037 	spin_unlock_irqrestore(&hsotg->lock, flags);
2038 
2039 	dwc2_hcd_qh_free(hsotg, qh);
2040 
2041 	return 0;
2042 
2043 err:
2044 	ep->hcpriv = NULL;
2045 	spin_unlock_irqrestore(&hsotg->lock, flags);
2046 
2047 	return rc;
2048 }
2049 
2050 /* Must be called with interrupt disabled and spinlock held */
2051 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2052 				   struct usb_host_endpoint *ep)
2053 {
2054 	struct dwc2_qh *qh = ep->hcpriv;
2055 
2056 	if (!qh)
2057 		return -EINVAL;
2058 
2059 	qh->data_toggle = DWC2_HC_PID_DATA0;
2060 
2061 	return 0;
2062 }
2063 
2064 /**
2065  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2066  * prepares the core for device mode or host mode operation
2067  *
2068  * @hsotg:         Programming view of the DWC_otg controller
2069  * @initial_setup: If true then this is the first init for this instance.
2070  */
2071 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2072 {
2073 	u32 usbcfg, otgctl;
2074 	int retval;
2075 
2076 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2077 
2078 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2079 
2080 	/* Set ULPI External VBUS bit if needed */
2081 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2082 	if (hsotg->params.phy_ulpi_ext_vbus)
2083 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2084 
2085 	/* Set external TS Dline pulsing bit if needed */
2086 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2087 	if (hsotg->params.ts_dline)
2088 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2089 
2090 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2091 
2092 	/*
2093 	 * Reset the Controller
2094 	 *
2095 	 * We only need to reset the controller if this is a re-init.
2096 	 * For the first init we know for sure that earlier code reset us (it
2097 	 * needed to in order to properly detect various parameters).
2098 	 */
2099 	if (!initial_setup) {
2100 		retval = dwc2_core_reset(hsotg, false);
2101 		if (retval) {
2102 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2103 				__func__);
2104 			return retval;
2105 		}
2106 	}
2107 
2108 	/*
2109 	 * This needs to happen in FS mode before any other programming occurs
2110 	 */
2111 	retval = dwc2_phy_init(hsotg, initial_setup);
2112 	if (retval)
2113 		return retval;
2114 
2115 	/* Program the GAHBCFG Register */
2116 	retval = dwc2_gahbcfg_init(hsotg);
2117 	if (retval)
2118 		return retval;
2119 
2120 	/* Program the GUSBCFG register */
2121 	dwc2_gusbcfg_init(hsotg);
2122 
2123 	/* Program the GOTGCTL register */
2124 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2125 	otgctl &= ~GOTGCTL_OTGVER;
2126 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2127 
2128 	/* Clear the SRP success bit for FS-I2c */
2129 	hsotg->srp_success = 0;
2130 
2131 	/* Enable common interrupts */
2132 	dwc2_enable_common_interrupts(hsotg);
2133 
2134 	/*
2135 	 * Do device or host initialization based on mode during PCD and
2136 	 * HCD initialization
2137 	 */
2138 	if (dwc2_is_host_mode(hsotg)) {
2139 		dev_dbg(hsotg->dev, "Host Mode\n");
2140 		hsotg->op_state = OTG_STATE_A_HOST;
2141 	} else {
2142 		dev_dbg(hsotg->dev, "Device Mode\n");
2143 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 /**
2150  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2151  * Host mode
2152  *
2153  * @hsotg: Programming view of DWC_otg controller
2154  *
2155  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2156  * request queues. Host channels are reset to ensure that they are ready for
2157  * performing transfers.
2158  */
2159 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2160 {
2161 	u32 hcfg, hfir, otgctl, usbcfg;
2162 
2163 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2164 
2165 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2166 	 * The number of PHY clocks that the application programs in
2167 	 * this field is added to the high/full speed interpacket timeout
2168 	 * duration in the core to account for any additional delays
2169 	 * introduced by the PHY. This can be required, because the delay
2170 	 * introduced by the PHY in generating the linestate condition
2171 	 * can vary from one PHY to another.
2172 	 */
2173 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2174 	usbcfg |= GUSBCFG_TOUTCAL(7);
2175 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2176 
2177 	/* Restart the Phy Clock */
2178 	dwc2_writel(hsotg, 0, PCGCTL);
2179 
2180 	/* Initialize Host Configuration Register */
2181 	dwc2_init_fs_ls_pclk_sel(hsotg);
2182 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2183 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2184 		hcfg = dwc2_readl(hsotg, HCFG);
2185 		hcfg |= HCFG_FSLSSUPP;
2186 		dwc2_writel(hsotg, hcfg, HCFG);
2187 	}
2188 
2189 	/*
2190 	 * This bit allows dynamic reloading of the HFIR register during
2191 	 * runtime. This bit needs to be programmed during initial configuration
2192 	 * and its value must not be changed during runtime.
2193 	 */
2194 	if (hsotg->params.reload_ctl) {
2195 		hfir = dwc2_readl(hsotg, HFIR);
2196 		hfir |= HFIR_RLDCTRL;
2197 		dwc2_writel(hsotg, hfir, HFIR);
2198 	}
2199 
2200 	if (hsotg->params.dma_desc_enable) {
2201 		u32 op_mode = hsotg->hw_params.op_mode;
2202 
2203 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2204 		    !hsotg->hw_params.dma_desc_enable ||
2205 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2206 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2207 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2208 			dev_err(hsotg->dev,
2209 				"Hardware does not support descriptor DMA mode -\n");
2210 			dev_err(hsotg->dev,
2211 				"falling back to buffer DMA mode.\n");
2212 			hsotg->params.dma_desc_enable = false;
2213 		} else {
2214 			hcfg = dwc2_readl(hsotg, HCFG);
2215 			hcfg |= HCFG_DESCDMA;
2216 			dwc2_writel(hsotg, hcfg, HCFG);
2217 		}
2218 	}
2219 
2220 	/* Configure data FIFO sizes */
2221 	dwc2_config_fifos(hsotg);
2222 
2223 	/* TODO - check this */
2224 	/* Clear Host Set HNP Enable in the OTG Control Register */
2225 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2226 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2227 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2228 
2229 	/* Make sure the FIFOs are flushed */
2230 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2231 	dwc2_flush_rx_fifo(hsotg);
2232 
2233 	/* Clear Host Set HNP Enable in the OTG Control Register */
2234 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2235 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2236 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2237 
2238 	if (!hsotg->params.dma_desc_enable) {
2239 		int num_channels, i;
2240 		u32 hcchar;
2241 
2242 		/* Flush out any leftover queued requests */
2243 		num_channels = hsotg->params.host_channels;
2244 		for (i = 0; i < num_channels; i++) {
2245 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2246 			if (hcchar & HCCHAR_CHENA) {
2247 				hcchar &= ~HCCHAR_CHENA;
2248 				hcchar |= HCCHAR_CHDIS;
2249 				hcchar &= ~HCCHAR_EPDIR;
2250 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2251 			}
2252 		}
2253 
2254 		/* Halt all channels to put them into a known state */
2255 		for (i = 0; i < num_channels; i++) {
2256 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2257 			if (hcchar & HCCHAR_CHENA) {
2258 				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2259 				hcchar &= ~HCCHAR_EPDIR;
2260 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2261 				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2262 					__func__, i);
2263 
2264 				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2265 							      HCCHAR_CHENA,
2266 							      1000)) {
2267 					dev_warn(hsotg->dev,
2268 						 "Unable to clear enable on channel %d\n",
2269 						 i);
2270 				}
2271 			}
2272 		}
2273 	}
2274 
2275 	/* Enable ACG feature in host mode, if supported */
2276 	dwc2_enable_acg(hsotg);
2277 
2278 	/* Turn on the vbus power */
2279 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2280 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2281 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2282 
2283 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2284 			!!(hprt0 & HPRT0_PWR));
2285 		if (!(hprt0 & HPRT0_PWR)) {
2286 			hprt0 |= HPRT0_PWR;
2287 			dwc2_writel(hsotg, hprt0, HPRT0);
2288 		}
2289 	}
2290 
2291 	dwc2_enable_host_interrupts(hsotg);
2292 }
2293 
2294 /*
2295  * Initializes dynamic portions of the DWC_otg HCD state
2296  *
2297  * Must be called with interrupt disabled and spinlock held
2298  */
2299 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2300 {
2301 	struct dwc2_host_chan *chan, *chan_tmp;
2302 	int num_channels;
2303 	int i;
2304 
2305 	hsotg->flags.d32 = 0;
2306 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2307 
2308 	if (hsotg->params.uframe_sched) {
2309 		hsotg->available_host_channels =
2310 			hsotg->params.host_channels;
2311 	} else {
2312 		hsotg->non_periodic_channels = 0;
2313 		hsotg->periodic_channels = 0;
2314 	}
2315 
2316 	/*
2317 	 * Put all channels in the free channel list and clean up channel
2318 	 * states
2319 	 */
2320 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2321 				 hc_list_entry)
2322 		list_del_init(&chan->hc_list_entry);
2323 
2324 	num_channels = hsotg->params.host_channels;
2325 	for (i = 0; i < num_channels; i++) {
2326 		chan = hsotg->hc_ptr_array[i];
2327 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2328 		dwc2_hc_cleanup(hsotg, chan);
2329 	}
2330 
2331 	/* Initialize the DWC core for host mode operation */
2332 	dwc2_core_host_init(hsotg);
2333 }
2334 
2335 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2336 			       struct dwc2_host_chan *chan,
2337 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2338 {
2339 	int hub_addr, hub_port;
2340 
2341 	chan->do_split = 1;
2342 	chan->xact_pos = qtd->isoc_split_pos;
2343 	chan->complete_split = qtd->complete_split;
2344 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2345 	chan->hub_addr = (u8)hub_addr;
2346 	chan->hub_port = (u8)hub_port;
2347 }
2348 
2349 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2350 			      struct dwc2_host_chan *chan,
2351 			      struct dwc2_qtd *qtd)
2352 {
2353 	struct dwc2_hcd_urb *urb = qtd->urb;
2354 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2355 
2356 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2357 	case USB_ENDPOINT_XFER_CONTROL:
2358 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2359 
2360 		switch (qtd->control_phase) {
2361 		case DWC2_CONTROL_SETUP:
2362 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2363 			chan->do_ping = 0;
2364 			chan->ep_is_in = 0;
2365 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2366 			if (hsotg->params.host_dma)
2367 				chan->xfer_dma = urb->setup_dma;
2368 			else
2369 				chan->xfer_buf = urb->setup_packet;
2370 			chan->xfer_len = 8;
2371 			break;
2372 
2373 		case DWC2_CONTROL_DATA:
2374 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2375 			chan->data_pid_start = qtd->data_toggle;
2376 			break;
2377 
2378 		case DWC2_CONTROL_STATUS:
2379 			/*
2380 			 * Direction is opposite of data direction or IN if no
2381 			 * data
2382 			 */
2383 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2384 			if (urb->length == 0)
2385 				chan->ep_is_in = 1;
2386 			else
2387 				chan->ep_is_in =
2388 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2389 			if (chan->ep_is_in)
2390 				chan->do_ping = 0;
2391 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2392 			chan->xfer_len = 0;
2393 			if (hsotg->params.host_dma)
2394 				chan->xfer_dma = hsotg->status_buf_dma;
2395 			else
2396 				chan->xfer_buf = hsotg->status_buf;
2397 			break;
2398 		}
2399 		break;
2400 
2401 	case USB_ENDPOINT_XFER_BULK:
2402 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2403 		break;
2404 
2405 	case USB_ENDPOINT_XFER_INT:
2406 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2407 		break;
2408 
2409 	case USB_ENDPOINT_XFER_ISOC:
2410 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2411 		if (hsotg->params.dma_desc_enable)
2412 			break;
2413 
2414 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2415 		frame_desc->status = 0;
2416 
2417 		if (hsotg->params.host_dma) {
2418 			chan->xfer_dma = urb->dma;
2419 			chan->xfer_dma += frame_desc->offset +
2420 					qtd->isoc_split_offset;
2421 		} else {
2422 			chan->xfer_buf = urb->buf;
2423 			chan->xfer_buf += frame_desc->offset +
2424 					qtd->isoc_split_offset;
2425 		}
2426 
2427 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2428 
2429 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2430 			if (chan->xfer_len <= 188)
2431 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2432 			else
2433 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2434 		}
2435 		break;
2436 	}
2437 }
2438 
2439 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2440 					    struct dwc2_qh *qh,
2441 					    struct dwc2_host_chan *chan)
2442 {
2443 	if (!hsotg->unaligned_cache ||
2444 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2445 		return -ENOMEM;
2446 
2447 	if (!qh->dw_align_buf) {
2448 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2449 						    GFP_ATOMIC | GFP_DMA);
2450 		if (!qh->dw_align_buf)
2451 			return -ENOMEM;
2452 	}
2453 
2454 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2455 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2456 					      DMA_FROM_DEVICE);
2457 
2458 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2459 		dev_err(hsotg->dev, "can't map align_buf\n");
2460 		chan->align_buf = 0;
2461 		return -EINVAL;
2462 	}
2463 
2464 	chan->align_buf = qh->dw_align_buf_dma;
2465 	return 0;
2466 }
2467 
2468 #define DWC2_USB_DMA_ALIGN 4
2469 
2470 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2471 {
2472 	void *stored_xfer_buffer;
2473 	size_t length;
2474 
2475 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2476 		return;
2477 
2478 	/* Restore urb->transfer_buffer from the end of the allocated area */
2479 	memcpy(&stored_xfer_buffer,
2480 	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2481 			 dma_get_cache_alignment()),
2482 	       sizeof(urb->transfer_buffer));
2483 
2484 	if (usb_urb_dir_in(urb)) {
2485 		if (usb_pipeisoc(urb->pipe))
2486 			length = urb->transfer_buffer_length;
2487 		else
2488 			length = urb->actual_length;
2489 
2490 		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2491 	}
2492 	kfree(urb->transfer_buffer);
2493 	urb->transfer_buffer = stored_xfer_buffer;
2494 
2495 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2496 }
2497 
2498 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2499 {
2500 	void *kmalloc_ptr;
2501 	size_t kmalloc_size;
2502 
2503 	if (urb->num_sgs || urb->sg ||
2504 	    urb->transfer_buffer_length == 0 ||
2505 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2506 		return 0;
2507 
2508 	/*
2509 	 * Allocate a buffer with enough padding for original transfer_buffer
2510 	 * pointer. This allocation is guaranteed to be aligned properly for
2511 	 * DMA
2512 	 */
2513 	kmalloc_size = urb->transfer_buffer_length +
2514 		(dma_get_cache_alignment() - 1) +
2515 		sizeof(urb->transfer_buffer);
2516 
2517 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2518 	if (!kmalloc_ptr)
2519 		return -ENOMEM;
2520 
2521 	/*
2522 	 * Position value of original urb->transfer_buffer pointer to the end
2523 	 * of allocation for later referencing
2524 	 */
2525 	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2526 			 dma_get_cache_alignment()),
2527 	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2528 
2529 	if (usb_urb_dir_out(urb))
2530 		memcpy(kmalloc_ptr, urb->transfer_buffer,
2531 		       urb->transfer_buffer_length);
2532 	urb->transfer_buffer = kmalloc_ptr;
2533 
2534 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2535 
2536 	return 0;
2537 }
2538 
2539 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2540 				gfp_t mem_flags)
2541 {
2542 	int ret;
2543 
2544 	/* We assume setup_dma is always aligned; warn if not */
2545 	WARN_ON_ONCE(urb->setup_dma &&
2546 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2547 
2548 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2549 	if (ret)
2550 		return ret;
2551 
2552 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2553 	if (ret)
2554 		dwc2_free_dma_aligned_buffer(urb);
2555 
2556 	return ret;
2557 }
2558 
2559 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2560 {
2561 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2562 	dwc2_free_dma_aligned_buffer(urb);
2563 }
2564 
2565 /**
2566  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2567  * channel and initializes the host channel to perform the transactions. The
2568  * host channel is removed from the free list.
2569  *
2570  * @hsotg: The HCD state structure
2571  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2572  *         to a free host channel
2573  */
2574 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2575 {
2576 	struct dwc2_host_chan *chan;
2577 	struct dwc2_hcd_urb *urb;
2578 	struct dwc2_qtd *qtd;
2579 
2580 	if (dbg_qh(qh))
2581 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2582 
2583 	if (list_empty(&qh->qtd_list)) {
2584 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2585 		return -ENOMEM;
2586 	}
2587 
2588 	if (list_empty(&hsotg->free_hc_list)) {
2589 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2590 		return -ENOMEM;
2591 	}
2592 
2593 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2594 				hc_list_entry);
2595 
2596 	/* Remove host channel from free list */
2597 	list_del_init(&chan->hc_list_entry);
2598 
2599 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2600 	urb = qtd->urb;
2601 	qh->channel = chan;
2602 	qtd->in_process = 1;
2603 
2604 	/*
2605 	 * Use usb_pipedevice to determine device address. This address is
2606 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2607 	 */
2608 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2609 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2610 	chan->speed = qh->dev_speed;
2611 	chan->max_packet = qh->maxp;
2612 
2613 	chan->xfer_started = 0;
2614 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2615 	chan->error_state = (qtd->error_count > 0);
2616 	chan->halt_on_queue = 0;
2617 	chan->halt_pending = 0;
2618 	chan->requests = 0;
2619 
2620 	/*
2621 	 * The following values may be modified in the transfer type section
2622 	 * below. The xfer_len value may be reduced when the transfer is
2623 	 * started to accommodate the max widths of the XferSize and PktCnt
2624 	 * fields in the HCTSIZn register.
2625 	 */
2626 
2627 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2628 	if (chan->ep_is_in)
2629 		chan->do_ping = 0;
2630 	else
2631 		chan->do_ping = qh->ping_state;
2632 
2633 	chan->data_pid_start = qh->data_toggle;
2634 	chan->multi_count = 1;
2635 
2636 	if (urb->actual_length > urb->length &&
2637 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2638 		urb->actual_length = urb->length;
2639 
2640 	if (hsotg->params.host_dma)
2641 		chan->xfer_dma = urb->dma + urb->actual_length;
2642 	else
2643 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2644 
2645 	chan->xfer_len = urb->length - urb->actual_length;
2646 	chan->xfer_count = 0;
2647 
2648 	/* Set the split attributes if required */
2649 	if (qh->do_split)
2650 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2651 	else
2652 		chan->do_split = 0;
2653 
2654 	/* Set the transfer attributes */
2655 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2656 
2657 	/* For non-dword aligned buffers */
2658 	if (hsotg->params.host_dma && qh->do_split &&
2659 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2660 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2661 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2662 			dev_err(hsotg->dev,
2663 				"Failed to allocate memory to handle non-aligned buffer\n");
2664 			/* Add channel back to free list */
2665 			chan->align_buf = 0;
2666 			chan->multi_count = 0;
2667 			list_add_tail(&chan->hc_list_entry,
2668 				      &hsotg->free_hc_list);
2669 			qtd->in_process = 0;
2670 			qh->channel = NULL;
2671 			return -ENOMEM;
2672 		}
2673 	} else {
2674 		/*
2675 		 * We assume that DMA is always aligned in non-split
2676 		 * case or split out case. Warn if not.
2677 		 */
2678 		WARN_ON_ONCE(hsotg->params.host_dma &&
2679 			     (chan->xfer_dma & 0x3));
2680 		chan->align_buf = 0;
2681 	}
2682 
2683 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2684 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2685 		/*
2686 		 * This value may be modified when the transfer is started
2687 		 * to reflect the actual transfer length
2688 		 */
2689 		chan->multi_count = qh->maxp_mult;
2690 
2691 	if (hsotg->params.dma_desc_enable) {
2692 		chan->desc_list_addr = qh->desc_list_dma;
2693 		chan->desc_list_sz = qh->desc_list_sz;
2694 	}
2695 
2696 	dwc2_hc_init(hsotg, chan);
2697 	chan->qh = qh;
2698 
2699 	return 0;
2700 }
2701 
2702 /**
2703  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2704  * schedule and assigns them to available host channels. Called from the HCD
2705  * interrupt handler functions.
2706  *
2707  * @hsotg: The HCD state structure
2708  *
2709  * Return: The types of new transactions that were assigned to host channels
2710  */
2711 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2712 		struct dwc2_hsotg *hsotg)
2713 {
2714 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2715 	struct list_head *qh_ptr;
2716 	struct dwc2_qh *qh;
2717 	int num_channels;
2718 
2719 #ifdef DWC2_DEBUG_SOF
2720 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2721 #endif
2722 
2723 	/* Process entries in the periodic ready list */
2724 	qh_ptr = hsotg->periodic_sched_ready.next;
2725 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2726 		if (list_empty(&hsotg->free_hc_list))
2727 			break;
2728 		if (hsotg->params.uframe_sched) {
2729 			if (hsotg->available_host_channels <= 1)
2730 				break;
2731 			hsotg->available_host_channels--;
2732 		}
2733 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2734 		if (dwc2_assign_and_init_hc(hsotg, qh))
2735 			break;
2736 
2737 		/*
2738 		 * Move the QH from the periodic ready schedule to the
2739 		 * periodic assigned schedule
2740 		 */
2741 		qh_ptr = qh_ptr->next;
2742 		list_move_tail(&qh->qh_list_entry,
2743 			       &hsotg->periodic_sched_assigned);
2744 		ret_val = DWC2_TRANSACTION_PERIODIC;
2745 	}
2746 
2747 	/*
2748 	 * Process entries in the inactive portion of the non-periodic
2749 	 * schedule. Some free host channels may not be used if they are
2750 	 * reserved for periodic transfers.
2751 	 */
2752 	num_channels = hsotg->params.host_channels;
2753 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2754 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2755 		if (!hsotg->params.uframe_sched &&
2756 		    hsotg->non_periodic_channels >= num_channels -
2757 						hsotg->periodic_channels)
2758 			break;
2759 		if (list_empty(&hsotg->free_hc_list))
2760 			break;
2761 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2762 		if (hsotg->params.uframe_sched) {
2763 			if (hsotg->available_host_channels < 1)
2764 				break;
2765 			hsotg->available_host_channels--;
2766 		}
2767 
2768 		if (dwc2_assign_and_init_hc(hsotg, qh))
2769 			break;
2770 
2771 		/*
2772 		 * Move the QH from the non-periodic inactive schedule to the
2773 		 * non-periodic active schedule
2774 		 */
2775 		qh_ptr = qh_ptr->next;
2776 		list_move_tail(&qh->qh_list_entry,
2777 			       &hsotg->non_periodic_sched_active);
2778 
2779 		if (ret_val == DWC2_TRANSACTION_NONE)
2780 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2781 		else
2782 			ret_val = DWC2_TRANSACTION_ALL;
2783 
2784 		if (!hsotg->params.uframe_sched)
2785 			hsotg->non_periodic_channels++;
2786 	}
2787 
2788 	return ret_val;
2789 }
2790 
2791 /**
2792  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2793  * a host channel associated with either a periodic or non-periodic transfer
2794  *
2795  * @hsotg: The HCD state structure
2796  * @chan:  Host channel descriptor associated with either a periodic or
2797  *         non-periodic transfer
2798  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2799  *                     for periodic transfers or the non-periodic Tx FIFO
2800  *                     for non-periodic transfers
2801  *
2802  * Return: 1 if a request is queued and more requests may be needed to
2803  * complete the transfer, 0 if no more requests are required for this
2804  * transfer, -1 if there is insufficient space in the Tx FIFO
2805  *
2806  * This function assumes that there is space available in the appropriate
2807  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2808  * it checks whether space is available in the appropriate Tx FIFO.
2809  *
2810  * Must be called with interrupt disabled and spinlock held
2811  */
2812 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2813 				  struct dwc2_host_chan *chan,
2814 				  u16 fifo_dwords_avail)
2815 {
2816 	int retval = 0;
2817 
2818 	if (chan->do_split)
2819 		/* Put ourselves on the list to keep order straight */
2820 		list_move_tail(&chan->split_order_list_entry,
2821 			       &hsotg->split_order);
2822 
2823 	if (hsotg->params.host_dma && chan->qh) {
2824 		if (hsotg->params.dma_desc_enable) {
2825 			if (!chan->xfer_started ||
2826 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2827 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2828 				chan->qh->ping_state = 0;
2829 			}
2830 		} else if (!chan->xfer_started) {
2831 			dwc2_hc_start_transfer(hsotg, chan);
2832 			chan->qh->ping_state = 0;
2833 		}
2834 	} else if (chan->halt_pending) {
2835 		/* Don't queue a request if the channel has been halted */
2836 	} else if (chan->halt_on_queue) {
2837 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2838 	} else if (chan->do_ping) {
2839 		if (!chan->xfer_started)
2840 			dwc2_hc_start_transfer(hsotg, chan);
2841 	} else if (!chan->ep_is_in ||
2842 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2843 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2844 			if (!chan->xfer_started) {
2845 				dwc2_hc_start_transfer(hsotg, chan);
2846 				retval = 1;
2847 			} else {
2848 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2849 			}
2850 		} else {
2851 			retval = -1;
2852 		}
2853 	} else {
2854 		if (!chan->xfer_started) {
2855 			dwc2_hc_start_transfer(hsotg, chan);
2856 			retval = 1;
2857 		} else {
2858 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2859 		}
2860 	}
2861 
2862 	return retval;
2863 }
2864 
2865 /*
2866  * Processes periodic channels for the next frame and queues transactions for
2867  * these channels to the DWC_otg controller. After queueing transactions, the
2868  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2869  * to queue as Periodic Tx FIFO or request queue space becomes available.
2870  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2871  *
2872  * Must be called with interrupt disabled and spinlock held
2873  */
2874 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2875 {
2876 	struct list_head *qh_ptr;
2877 	struct dwc2_qh *qh;
2878 	u32 tx_status;
2879 	u32 fspcavail;
2880 	u32 gintmsk;
2881 	int status;
2882 	bool no_queue_space = false;
2883 	bool no_fifo_space = false;
2884 	u32 qspcavail;
2885 
2886 	/* If empty list then just adjust interrupt enables */
2887 	if (list_empty(&hsotg->periodic_sched_assigned))
2888 		goto exit;
2889 
2890 	if (dbg_perio())
2891 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2892 
2893 	tx_status = dwc2_readl(hsotg, HPTXSTS);
2894 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2895 		    TXSTS_QSPCAVAIL_SHIFT;
2896 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2897 		    TXSTS_FSPCAVAIL_SHIFT;
2898 
2899 	if (dbg_perio()) {
2900 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2901 			 qspcavail);
2902 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2903 			 fspcavail);
2904 	}
2905 
2906 	qh_ptr = hsotg->periodic_sched_assigned.next;
2907 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2908 		tx_status = dwc2_readl(hsotg, HPTXSTS);
2909 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2910 			    TXSTS_QSPCAVAIL_SHIFT;
2911 		if (qspcavail == 0) {
2912 			no_queue_space = true;
2913 			break;
2914 		}
2915 
2916 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2917 		if (!qh->channel) {
2918 			qh_ptr = qh_ptr->next;
2919 			continue;
2920 		}
2921 
2922 		/* Make sure EP's TT buffer is clean before queueing qtds */
2923 		if (qh->tt_buffer_dirty) {
2924 			qh_ptr = qh_ptr->next;
2925 			continue;
2926 		}
2927 
2928 		/*
2929 		 * Set a flag if we're queuing high-bandwidth in slave mode.
2930 		 * The flag prevents any halts to get into the request queue in
2931 		 * the middle of multiple high-bandwidth packets getting queued.
2932 		 */
2933 		if (!hsotg->params.host_dma &&
2934 		    qh->channel->multi_count > 1)
2935 			hsotg->queuing_high_bandwidth = 1;
2936 
2937 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2938 			    TXSTS_FSPCAVAIL_SHIFT;
2939 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2940 		if (status < 0) {
2941 			no_fifo_space = true;
2942 			break;
2943 		}
2944 
2945 		/*
2946 		 * In Slave mode, stay on the current transfer until there is
2947 		 * nothing more to do or the high-bandwidth request count is
2948 		 * reached. In DMA mode, only need to queue one request. The
2949 		 * controller automatically handles multiple packets for
2950 		 * high-bandwidth transfers.
2951 		 */
2952 		if (hsotg->params.host_dma || status == 0 ||
2953 		    qh->channel->requests == qh->channel->multi_count) {
2954 			qh_ptr = qh_ptr->next;
2955 			/*
2956 			 * Move the QH from the periodic assigned schedule to
2957 			 * the periodic queued schedule
2958 			 */
2959 			list_move_tail(&qh->qh_list_entry,
2960 				       &hsotg->periodic_sched_queued);
2961 
2962 			/* done queuing high bandwidth */
2963 			hsotg->queuing_high_bandwidth = 0;
2964 		}
2965 	}
2966 
2967 exit:
2968 	if (no_queue_space || no_fifo_space ||
2969 	    (!hsotg->params.host_dma &&
2970 	     !list_empty(&hsotg->periodic_sched_assigned))) {
2971 		/*
2972 		 * May need to queue more transactions as the request
2973 		 * queue or Tx FIFO empties. Enable the periodic Tx
2974 		 * FIFO empty interrupt. (Always use the half-empty
2975 		 * level to ensure that new requests are loaded as
2976 		 * soon as possible.)
2977 		 */
2978 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2979 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2980 			gintmsk |= GINTSTS_PTXFEMP;
2981 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2982 		}
2983 	} else {
2984 		/*
2985 		 * Disable the Tx FIFO empty interrupt since there are
2986 		 * no more transactions that need to be queued right
2987 		 * now. This function is called from interrupt
2988 		 * handlers to queue more transactions as transfer
2989 		 * states change.
2990 		 */
2991 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2992 		if (gintmsk & GINTSTS_PTXFEMP) {
2993 			gintmsk &= ~GINTSTS_PTXFEMP;
2994 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2995 		}
2996 	}
2997 }
2998 
2999 /*
3000  * Processes active non-periodic channels and queues transactions for these
3001  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3002  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3003  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3004  * FIFO Empty interrupt is disabled.
3005  *
3006  * Must be called with interrupt disabled and spinlock held
3007  */
3008 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3009 {
3010 	struct list_head *orig_qh_ptr;
3011 	struct dwc2_qh *qh;
3012 	u32 tx_status;
3013 	u32 qspcavail;
3014 	u32 fspcavail;
3015 	u32 gintmsk;
3016 	int status;
3017 	int no_queue_space = 0;
3018 	int no_fifo_space = 0;
3019 	int more_to_do = 0;
3020 
3021 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3022 
3023 	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3024 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3025 		    TXSTS_QSPCAVAIL_SHIFT;
3026 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3027 		    TXSTS_FSPCAVAIL_SHIFT;
3028 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3029 		 qspcavail);
3030 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3031 		 fspcavail);
3032 
3033 	/*
3034 	 * Keep track of the starting point. Skip over the start-of-list
3035 	 * entry.
3036 	 */
3037 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3038 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3039 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3040 
3041 	/*
3042 	 * Process once through the active list or until no more space is
3043 	 * available in the request queue or the Tx FIFO
3044 	 */
3045 	do {
3046 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3047 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3048 			    TXSTS_QSPCAVAIL_SHIFT;
3049 		if (!hsotg->params.host_dma && qspcavail == 0) {
3050 			no_queue_space = 1;
3051 			break;
3052 		}
3053 
3054 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3055 				qh_list_entry);
3056 		if (!qh->channel)
3057 			goto next;
3058 
3059 		/* Make sure EP's TT buffer is clean before queueing qtds */
3060 		if (qh->tt_buffer_dirty)
3061 			goto next;
3062 
3063 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3064 			    TXSTS_FSPCAVAIL_SHIFT;
3065 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3066 
3067 		if (status > 0) {
3068 			more_to_do = 1;
3069 		} else if (status < 0) {
3070 			no_fifo_space = 1;
3071 			break;
3072 		}
3073 next:
3074 		/* Advance to next QH, skipping start-of-list entry */
3075 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3076 		if (hsotg->non_periodic_qh_ptr ==
3077 				&hsotg->non_periodic_sched_active)
3078 			hsotg->non_periodic_qh_ptr =
3079 					hsotg->non_periodic_qh_ptr->next;
3080 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3081 
3082 	if (!hsotg->params.host_dma) {
3083 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3084 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3085 			    TXSTS_QSPCAVAIL_SHIFT;
3086 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3087 			    TXSTS_FSPCAVAIL_SHIFT;
3088 		dev_vdbg(hsotg->dev,
3089 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3090 			 qspcavail);
3091 		dev_vdbg(hsotg->dev,
3092 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3093 			 fspcavail);
3094 
3095 		if (more_to_do || no_queue_space || no_fifo_space) {
3096 			/*
3097 			 * May need to queue more transactions as the request
3098 			 * queue or Tx FIFO empties. Enable the non-periodic
3099 			 * Tx FIFO empty interrupt. (Always use the half-empty
3100 			 * level to ensure that new requests are loaded as
3101 			 * soon as possible.)
3102 			 */
3103 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3104 			gintmsk |= GINTSTS_NPTXFEMP;
3105 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3106 		} else {
3107 			/*
3108 			 * Disable the Tx FIFO empty interrupt since there are
3109 			 * no more transactions that need to be queued right
3110 			 * now. This function is called from interrupt
3111 			 * handlers to queue more transactions as transfer
3112 			 * states change.
3113 			 */
3114 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3115 			gintmsk &= ~GINTSTS_NPTXFEMP;
3116 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3117 		}
3118 	}
3119 }
3120 
3121 /**
3122  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3123  * and queues transactions for these channels to the DWC_otg controller. Called
3124  * from the HCD interrupt handler functions.
3125  *
3126  * @hsotg:   The HCD state structure
3127  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3128  *           or both)
3129  *
3130  * Must be called with interrupt disabled and spinlock held
3131  */
3132 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3133 				 enum dwc2_transaction_type tr_type)
3134 {
3135 #ifdef DWC2_DEBUG_SOF
3136 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3137 #endif
3138 	/* Process host channels associated with periodic transfers */
3139 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3140 	    tr_type == DWC2_TRANSACTION_ALL)
3141 		dwc2_process_periodic_channels(hsotg);
3142 
3143 	/* Process host channels associated with non-periodic transfers */
3144 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3145 	    tr_type == DWC2_TRANSACTION_ALL) {
3146 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3147 			dwc2_process_non_periodic_channels(hsotg);
3148 		} else {
3149 			/*
3150 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3151 			 * there are no non-periodic transfers to process
3152 			 */
3153 			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3154 
3155 			gintmsk &= ~GINTSTS_NPTXFEMP;
3156 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3157 		}
3158 	}
3159 }
3160 
3161 static void dwc2_conn_id_status_change(struct work_struct *work)
3162 {
3163 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3164 						wf_otg);
3165 	u32 count = 0;
3166 	u32 gotgctl;
3167 	unsigned long flags;
3168 
3169 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3170 
3171 	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3172 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3173 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3174 		!!(gotgctl & GOTGCTL_CONID_B));
3175 
3176 	/* B-Device connector (Device Mode) */
3177 	if (gotgctl & GOTGCTL_CONID_B) {
3178 		dwc2_vbus_supply_exit(hsotg);
3179 		/* Wait for switch to device mode */
3180 		dev_dbg(hsotg->dev, "connId B\n");
3181 		if (hsotg->bus_suspended) {
3182 			dev_info(hsotg->dev,
3183 				 "Do port resume before switching to device mode\n");
3184 			dwc2_port_resume(hsotg);
3185 		}
3186 		while (!dwc2_is_device_mode(hsotg)) {
3187 			dev_info(hsotg->dev,
3188 				 "Waiting for Peripheral Mode, Mode=%s\n",
3189 				 dwc2_is_host_mode(hsotg) ? "Host" :
3190 				 "Peripheral");
3191 			msleep(20);
3192 			/*
3193 			 * Sometimes the initial GOTGCTRL read is wrong, so
3194 			 * check it again and jump to host mode if that was
3195 			 * the case.
3196 			 */
3197 			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3198 			if (!(gotgctl & GOTGCTL_CONID_B))
3199 				goto host;
3200 			if (++count > 250)
3201 				break;
3202 		}
3203 		if (count > 250)
3204 			dev_err(hsotg->dev,
3205 				"Connection id status change timed out\n");
3206 
3207 		/*
3208 		 * Exit Partial Power Down without restoring registers.
3209 		 * No need to check the return value as registers
3210 		 * are not being restored.
3211 		 */
3212 		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3213 			dwc2_exit_partial_power_down(hsotg, 0, false);
3214 
3215 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3216 		dwc2_core_init(hsotg, false);
3217 		dwc2_enable_global_interrupts(hsotg);
3218 		spin_lock_irqsave(&hsotg->lock, flags);
3219 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3220 		spin_unlock_irqrestore(&hsotg->lock, flags);
3221 		/* Enable ACG feature in device mode,if supported */
3222 		dwc2_enable_acg(hsotg);
3223 		dwc2_hsotg_core_connect(hsotg);
3224 	} else {
3225 host:
3226 		/* A-Device connector (Host Mode) */
3227 		dev_dbg(hsotg->dev, "connId A\n");
3228 		while (!dwc2_is_host_mode(hsotg)) {
3229 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3230 				 dwc2_is_host_mode(hsotg) ?
3231 				 "Host" : "Peripheral");
3232 			msleep(20);
3233 			if (++count > 250)
3234 				break;
3235 		}
3236 		if (count > 250)
3237 			dev_err(hsotg->dev,
3238 				"Connection id status change timed out\n");
3239 
3240 		spin_lock_irqsave(&hsotg->lock, flags);
3241 		dwc2_hsotg_disconnect(hsotg);
3242 		spin_unlock_irqrestore(&hsotg->lock, flags);
3243 
3244 		hsotg->op_state = OTG_STATE_A_HOST;
3245 		/* Initialize the Core for Host mode */
3246 		dwc2_core_init(hsotg, false);
3247 		dwc2_enable_global_interrupts(hsotg);
3248 		dwc2_hcd_start(hsotg);
3249 	}
3250 }
3251 
3252 static void dwc2_wakeup_detected(struct timer_list *t)
3253 {
3254 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3255 	u32 hprt0;
3256 
3257 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3258 
3259 	/*
3260 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3261 	 * so that OPT tests pass with all PHYs.)
3262 	 */
3263 	hprt0 = dwc2_read_hprt0(hsotg);
3264 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3265 	hprt0 &= ~HPRT0_RES;
3266 	dwc2_writel(hsotg, hprt0, HPRT0);
3267 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3268 		dwc2_readl(hsotg, HPRT0));
3269 
3270 	dwc2_hcd_rem_wakeup(hsotg);
3271 	hsotg->bus_suspended = false;
3272 
3273 	/* Change to L0 state */
3274 	hsotg->lx_state = DWC2_L0;
3275 }
3276 
3277 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3278 {
3279 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3280 
3281 	return hcd->self.b_hnp_enable;
3282 }
3283 
3284 /**
3285  * dwc2_port_suspend() - Put controller in suspend mode for host.
3286  *
3287  * @hsotg: Programming view of the DWC_otg controller
3288  * @windex: The control request wIndex field
3289  *
3290  * Return: non-zero if failed to enter suspend mode for host.
3291  *
3292  * This function is for entering Host mode suspend.
3293  * Must NOT be called with interrupt disabled or spinlock held.
3294  */
3295 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3296 {
3297 	unsigned long flags;
3298 	u32 pcgctl;
3299 	u32 gotgctl;
3300 	int ret = 0;
3301 
3302 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3303 
3304 	spin_lock_irqsave(&hsotg->lock, flags);
3305 
3306 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3307 		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3308 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3309 		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3310 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3311 	}
3312 
3313 	switch (hsotg->params.power_down) {
3314 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3315 		ret = dwc2_enter_partial_power_down(hsotg);
3316 		if (ret)
3317 			dev_err(hsotg->dev,
3318 				"enter partial_power_down failed.\n");
3319 		break;
3320 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3321 		/*
3322 		 * Perform spin unlock and lock because in
3323 		 * "dwc2_host_enter_hibernation()" function there is a spinlock
3324 		 * logic which prevents servicing of any IRQ during entering
3325 		 * hibernation.
3326 		 */
3327 		spin_unlock_irqrestore(&hsotg->lock, flags);
3328 		ret = dwc2_enter_hibernation(hsotg, 1);
3329 		if (ret)
3330 			dev_err(hsotg->dev, "enter hibernation failed.\n");
3331 		spin_lock_irqsave(&hsotg->lock, flags);
3332 		break;
3333 	case DWC2_POWER_DOWN_PARAM_NONE:
3334 		/*
3335 		 * If not hibernation nor partial power down are supported,
3336 		 * clock gating is used to save power.
3337 		 */
3338 		if (!hsotg->params.no_clock_gating)
3339 			dwc2_host_enter_clock_gating(hsotg);
3340 		break;
3341 	}
3342 
3343 	/* For HNP the bus must be suspended for at least 200ms */
3344 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3345 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3346 		pcgctl &= ~PCGCTL_STOPPCLK;
3347 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3348 
3349 		spin_unlock_irqrestore(&hsotg->lock, flags);
3350 
3351 		msleep(200);
3352 	} else {
3353 		spin_unlock_irqrestore(&hsotg->lock, flags);
3354 	}
3355 
3356 	return ret;
3357 }
3358 
3359 /**
3360  * dwc2_port_resume() - Exit controller from suspend mode for host.
3361  *
3362  * @hsotg: Programming view of the DWC_otg controller
3363  *
3364  * Return: non-zero if failed to exit suspend mode for host.
3365  *
3366  * This function is for exiting Host mode suspend.
3367  * Must NOT be called with interrupt disabled or spinlock held.
3368  */
3369 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3370 {
3371 	unsigned long flags;
3372 	int ret = 0;
3373 
3374 	spin_lock_irqsave(&hsotg->lock, flags);
3375 
3376 	switch (hsotg->params.power_down) {
3377 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3378 		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3379 		if (ret)
3380 			dev_err(hsotg->dev,
3381 				"exit partial_power_down failed.\n");
3382 		break;
3383 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3384 		/* Exit host hibernation. */
3385 		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3386 		if (ret)
3387 			dev_err(hsotg->dev, "exit hibernation failed.\n");
3388 		break;
3389 	case DWC2_POWER_DOWN_PARAM_NONE:
3390 		/*
3391 		 * If not hibernation nor partial power down are supported,
3392 		 * port resume is done using the clock gating programming flow.
3393 		 */
3394 		spin_unlock_irqrestore(&hsotg->lock, flags);
3395 		dwc2_host_exit_clock_gating(hsotg, 0);
3396 		spin_lock_irqsave(&hsotg->lock, flags);
3397 		break;
3398 	}
3399 
3400 	spin_unlock_irqrestore(&hsotg->lock, flags);
3401 
3402 	return ret;
3403 }
3404 
3405 /* Handles hub class-specific requests */
3406 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3407 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3408 {
3409 	struct usb_hub_descriptor *hub_desc;
3410 	int retval = 0;
3411 	u32 hprt0;
3412 	u32 port_status;
3413 	u32 speed;
3414 	u32 pcgctl;
3415 	u32 pwr;
3416 
3417 	switch (typereq) {
3418 	case ClearHubFeature:
3419 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3420 
3421 		switch (wvalue) {
3422 		case C_HUB_LOCAL_POWER:
3423 		case C_HUB_OVER_CURRENT:
3424 			/* Nothing required here */
3425 			break;
3426 
3427 		default:
3428 			retval = -EINVAL;
3429 			dev_err(hsotg->dev,
3430 				"ClearHubFeature request %1xh unknown\n",
3431 				wvalue);
3432 		}
3433 		break;
3434 
3435 	case ClearPortFeature:
3436 		if (wvalue != USB_PORT_FEAT_L1)
3437 			if (!windex || windex > 1)
3438 				goto error;
3439 		switch (wvalue) {
3440 		case USB_PORT_FEAT_ENABLE:
3441 			dev_dbg(hsotg->dev,
3442 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3443 			hprt0 = dwc2_read_hprt0(hsotg);
3444 			hprt0 |= HPRT0_ENA;
3445 			dwc2_writel(hsotg, hprt0, HPRT0);
3446 			break;
3447 
3448 		case USB_PORT_FEAT_SUSPEND:
3449 			dev_dbg(hsotg->dev,
3450 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3451 
3452 			if (hsotg->bus_suspended)
3453 				retval = dwc2_port_resume(hsotg);
3454 			break;
3455 
3456 		case USB_PORT_FEAT_POWER:
3457 			dev_dbg(hsotg->dev,
3458 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3459 			hprt0 = dwc2_read_hprt0(hsotg);
3460 			pwr = hprt0 & HPRT0_PWR;
3461 			hprt0 &= ~HPRT0_PWR;
3462 			dwc2_writel(hsotg, hprt0, HPRT0);
3463 			if (pwr)
3464 				dwc2_vbus_supply_exit(hsotg);
3465 			break;
3466 
3467 		case USB_PORT_FEAT_INDICATOR:
3468 			dev_dbg(hsotg->dev,
3469 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3470 			/* Port indicator not supported */
3471 			break;
3472 
3473 		case USB_PORT_FEAT_C_CONNECTION:
3474 			/*
3475 			 * Clears driver's internal Connect Status Change flag
3476 			 */
3477 			dev_dbg(hsotg->dev,
3478 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3479 			hsotg->flags.b.port_connect_status_change = 0;
3480 			break;
3481 
3482 		case USB_PORT_FEAT_C_RESET:
3483 			/* Clears driver's internal Port Reset Change flag */
3484 			dev_dbg(hsotg->dev,
3485 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3486 			hsotg->flags.b.port_reset_change = 0;
3487 			break;
3488 
3489 		case USB_PORT_FEAT_C_ENABLE:
3490 			/*
3491 			 * Clears the driver's internal Port Enable/Disable
3492 			 * Change flag
3493 			 */
3494 			dev_dbg(hsotg->dev,
3495 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3496 			hsotg->flags.b.port_enable_change = 0;
3497 			break;
3498 
3499 		case USB_PORT_FEAT_C_SUSPEND:
3500 			/*
3501 			 * Clears the driver's internal Port Suspend Change
3502 			 * flag, which is set when resume signaling on the host
3503 			 * port is complete
3504 			 */
3505 			dev_dbg(hsotg->dev,
3506 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3507 			hsotg->flags.b.port_suspend_change = 0;
3508 			break;
3509 
3510 		case USB_PORT_FEAT_C_PORT_L1:
3511 			dev_dbg(hsotg->dev,
3512 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3513 			hsotg->flags.b.port_l1_change = 0;
3514 			break;
3515 
3516 		case USB_PORT_FEAT_C_OVER_CURRENT:
3517 			dev_dbg(hsotg->dev,
3518 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3519 			hsotg->flags.b.port_over_current_change = 0;
3520 			break;
3521 
3522 		default:
3523 			retval = -EINVAL;
3524 			dev_err(hsotg->dev,
3525 				"ClearPortFeature request %1xh unknown or unsupported\n",
3526 				wvalue);
3527 		}
3528 		break;
3529 
3530 	case GetHubDescriptor:
3531 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3532 		hub_desc = (struct usb_hub_descriptor *)buf;
3533 		hub_desc->bDescLength = 9;
3534 		hub_desc->bDescriptorType = USB_DT_HUB;
3535 		hub_desc->bNbrPorts = 1;
3536 		hub_desc->wHubCharacteristics =
3537 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3538 				    HUB_CHAR_INDV_PORT_OCPM);
3539 		hub_desc->bPwrOn2PwrGood = 1;
3540 		hub_desc->bHubContrCurrent = 0;
3541 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3542 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3543 		break;
3544 
3545 	case GetHubStatus:
3546 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3547 		memset(buf, 0, 4);
3548 		break;
3549 
3550 	case GetPortStatus:
3551 		dev_vdbg(hsotg->dev,
3552 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3553 			 hsotg->flags.d32);
3554 		if (!windex || windex > 1)
3555 			goto error;
3556 
3557 		port_status = 0;
3558 		if (hsotg->flags.b.port_connect_status_change)
3559 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3560 		if (hsotg->flags.b.port_enable_change)
3561 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3562 		if (hsotg->flags.b.port_suspend_change)
3563 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3564 		if (hsotg->flags.b.port_l1_change)
3565 			port_status |= USB_PORT_STAT_C_L1 << 16;
3566 		if (hsotg->flags.b.port_reset_change)
3567 			port_status |= USB_PORT_STAT_C_RESET << 16;
3568 		if (hsotg->flags.b.port_over_current_change) {
3569 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3570 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3571 		}
3572 
3573 		if (!hsotg->flags.b.port_connect_status) {
3574 			/*
3575 			 * The port is disconnected, which means the core is
3576 			 * either in device mode or it soon will be. Just
3577 			 * return 0's for the remainder of the port status
3578 			 * since the port register can't be read if the core
3579 			 * is in device mode.
3580 			 */
3581 			*(__le32 *)buf = cpu_to_le32(port_status);
3582 			break;
3583 		}
3584 
3585 		hprt0 = dwc2_readl(hsotg, HPRT0);
3586 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3587 
3588 		if (hprt0 & HPRT0_CONNSTS)
3589 			port_status |= USB_PORT_STAT_CONNECTION;
3590 		if (hprt0 & HPRT0_ENA)
3591 			port_status |= USB_PORT_STAT_ENABLE;
3592 		if (hprt0 & HPRT0_SUSP)
3593 			port_status |= USB_PORT_STAT_SUSPEND;
3594 		if (hprt0 & HPRT0_OVRCURRACT)
3595 			port_status |= USB_PORT_STAT_OVERCURRENT;
3596 		if (hprt0 & HPRT0_RST)
3597 			port_status |= USB_PORT_STAT_RESET;
3598 		if (hprt0 & HPRT0_PWR)
3599 			port_status |= USB_PORT_STAT_POWER;
3600 
3601 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3602 		if (speed == HPRT0_SPD_HIGH_SPEED)
3603 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3604 		else if (speed == HPRT0_SPD_LOW_SPEED)
3605 			port_status |= USB_PORT_STAT_LOW_SPEED;
3606 
3607 		if (hprt0 & HPRT0_TSTCTL_MASK)
3608 			port_status |= USB_PORT_STAT_TEST;
3609 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3610 
3611 		if (hsotg->params.dma_desc_fs_enable) {
3612 			/*
3613 			 * Enable descriptor DMA only if a full speed
3614 			 * device is connected.
3615 			 */
3616 			if (hsotg->new_connection &&
3617 			    ((port_status &
3618 			      (USB_PORT_STAT_CONNECTION |
3619 			       USB_PORT_STAT_HIGH_SPEED |
3620 			       USB_PORT_STAT_LOW_SPEED)) ==
3621 			       USB_PORT_STAT_CONNECTION)) {
3622 				u32 hcfg;
3623 
3624 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3625 				hsotg->params.dma_desc_enable = true;
3626 				hcfg = dwc2_readl(hsotg, HCFG);
3627 				hcfg |= HCFG_DESCDMA;
3628 				dwc2_writel(hsotg, hcfg, HCFG);
3629 				hsotg->new_connection = false;
3630 			}
3631 		}
3632 
3633 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3634 		*(__le32 *)buf = cpu_to_le32(port_status);
3635 		break;
3636 
3637 	case SetHubFeature:
3638 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3639 		/* No HUB features supported */
3640 		break;
3641 
3642 	case SetPortFeature:
3643 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3644 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3645 			goto error;
3646 
3647 		if (!hsotg->flags.b.port_connect_status) {
3648 			/*
3649 			 * The port is disconnected, which means the core is
3650 			 * either in device mode or it soon will be. Just
3651 			 * return without doing anything since the port
3652 			 * register can't be written if the core is in device
3653 			 * mode.
3654 			 */
3655 			break;
3656 		}
3657 
3658 		switch (wvalue) {
3659 		case USB_PORT_FEAT_SUSPEND:
3660 			dev_dbg(hsotg->dev,
3661 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3662 			if (windex != hsotg->otg_port)
3663 				goto error;
3664 			if (!hsotg->bus_suspended)
3665 				retval = dwc2_port_suspend(hsotg, windex);
3666 			break;
3667 
3668 		case USB_PORT_FEAT_POWER:
3669 			dev_dbg(hsotg->dev,
3670 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3671 			hprt0 = dwc2_read_hprt0(hsotg);
3672 			pwr = hprt0 & HPRT0_PWR;
3673 			hprt0 |= HPRT0_PWR;
3674 			dwc2_writel(hsotg, hprt0, HPRT0);
3675 			if (!pwr)
3676 				dwc2_vbus_supply_init(hsotg);
3677 			break;
3678 
3679 		case USB_PORT_FEAT_RESET:
3680 			dev_dbg(hsotg->dev,
3681 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3682 
3683 			hprt0 = dwc2_read_hprt0(hsotg);
3684 
3685 			if (hsotg->hibernated) {
3686 				retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3687 				if (retval)
3688 					dev_err(hsotg->dev,
3689 						"exit hibernation failed\n");
3690 			}
3691 
3692 			if (hsotg->in_ppd) {
3693 				retval = dwc2_exit_partial_power_down(hsotg, 1,
3694 								      true);
3695 				if (retval)
3696 					dev_err(hsotg->dev,
3697 						"exit partial_power_down failed\n");
3698 			}
3699 
3700 			if (hsotg->params.power_down ==
3701 			    DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3702 				dwc2_host_exit_clock_gating(hsotg, 0);
3703 
3704 			pcgctl = dwc2_readl(hsotg, PCGCTL);
3705 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3706 			dwc2_writel(hsotg, pcgctl, PCGCTL);
3707 			/* ??? Original driver does this */
3708 			dwc2_writel(hsotg, 0, PCGCTL);
3709 
3710 			hprt0 = dwc2_read_hprt0(hsotg);
3711 			pwr = hprt0 & HPRT0_PWR;
3712 			/* Clear suspend bit if resetting from suspend state */
3713 			hprt0 &= ~HPRT0_SUSP;
3714 
3715 			/*
3716 			 * When B-Host the Port reset bit is set in the Start
3717 			 * HCD Callback function, so that the reset is started
3718 			 * within 1ms of the HNP success interrupt
3719 			 */
3720 			if (!dwc2_hcd_is_b_host(hsotg)) {
3721 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3722 				dev_dbg(hsotg->dev,
3723 					"In host mode, hprt0=%08x\n", hprt0);
3724 				dwc2_writel(hsotg, hprt0, HPRT0);
3725 				if (!pwr)
3726 					dwc2_vbus_supply_init(hsotg);
3727 			}
3728 
3729 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3730 			msleep(50);
3731 			hprt0 &= ~HPRT0_RST;
3732 			dwc2_writel(hsotg, hprt0, HPRT0);
3733 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3734 			break;
3735 
3736 		case USB_PORT_FEAT_INDICATOR:
3737 			dev_dbg(hsotg->dev,
3738 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3739 			/* Not supported */
3740 			break;
3741 
3742 		case USB_PORT_FEAT_TEST:
3743 			hprt0 = dwc2_read_hprt0(hsotg);
3744 			dev_dbg(hsotg->dev,
3745 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3746 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3747 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3748 			dwc2_writel(hsotg, hprt0, HPRT0);
3749 			break;
3750 
3751 		default:
3752 			retval = -EINVAL;
3753 			dev_err(hsotg->dev,
3754 				"SetPortFeature %1xh unknown or unsupported\n",
3755 				wvalue);
3756 			break;
3757 		}
3758 		break;
3759 
3760 	default:
3761 error:
3762 		retval = -EINVAL;
3763 		dev_dbg(hsotg->dev,
3764 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3765 			typereq, windex, wvalue);
3766 		break;
3767 	}
3768 
3769 	return retval;
3770 }
3771 
3772 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3773 {
3774 	int retval;
3775 
3776 	if (port != 1)
3777 		return -EINVAL;
3778 
3779 	retval = (hsotg->flags.b.port_connect_status_change ||
3780 		  hsotg->flags.b.port_reset_change ||
3781 		  hsotg->flags.b.port_enable_change ||
3782 		  hsotg->flags.b.port_suspend_change ||
3783 		  hsotg->flags.b.port_over_current_change);
3784 
3785 	if (retval) {
3786 		dev_dbg(hsotg->dev,
3787 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3788 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3789 			hsotg->flags.b.port_connect_status_change);
3790 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3791 			hsotg->flags.b.port_reset_change);
3792 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3793 			hsotg->flags.b.port_enable_change);
3794 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3795 			hsotg->flags.b.port_suspend_change);
3796 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3797 			hsotg->flags.b.port_over_current_change);
3798 	}
3799 
3800 	return retval;
3801 }
3802 
3803 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3804 {
3805 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3806 
3807 #ifdef DWC2_DEBUG_SOF
3808 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3809 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3810 #endif
3811 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3812 }
3813 
3814 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3815 {
3816 	u32 hprt = dwc2_readl(hsotg, HPRT0);
3817 	u32 hfir = dwc2_readl(hsotg, HFIR);
3818 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3819 	unsigned int us_per_frame;
3820 	unsigned int frame_number;
3821 	unsigned int remaining;
3822 	unsigned int interval;
3823 	unsigned int phy_clks;
3824 
3825 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3826 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3827 
3828 	/* Extract fields */
3829 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3830 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3831 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3832 
3833 	/*
3834 	 * Number of phy clocks since the last tick of the frame number after
3835 	 * "us" has passed.
3836 	 */
3837 	phy_clks = (interval - remaining) +
3838 		   DIV_ROUND_UP(interval * us, us_per_frame);
3839 
3840 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3841 }
3842 
3843 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3844 {
3845 	return hsotg->op_state == OTG_STATE_B_HOST;
3846 }
3847 
3848 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3849 					       int iso_desc_count,
3850 					       gfp_t mem_flags)
3851 {
3852 	struct dwc2_hcd_urb *urb;
3853 
3854 	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3855 	if (urb)
3856 		urb->packet_count = iso_desc_count;
3857 	return urb;
3858 }
3859 
3860 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3861 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3862 				      u8 ep_num, u8 ep_type, u8 ep_dir,
3863 				      u16 maxp, u16 maxp_mult)
3864 {
3865 	if (dbg_perio() ||
3866 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3867 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3868 		dev_vdbg(hsotg->dev,
3869 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3870 			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3871 	urb->pipe_info.dev_addr = dev_addr;
3872 	urb->pipe_info.ep_num = ep_num;
3873 	urb->pipe_info.pipe_type = ep_type;
3874 	urb->pipe_info.pipe_dir = ep_dir;
3875 	urb->pipe_info.maxp = maxp;
3876 	urb->pipe_info.maxp_mult = maxp_mult;
3877 }
3878 
3879 /*
3880  * NOTE: This function will be removed once the peripheral controller code
3881  * is integrated and the driver is stable
3882  */
3883 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3884 {
3885 #ifdef DEBUG
3886 	struct dwc2_host_chan *chan;
3887 	struct dwc2_hcd_urb *urb;
3888 	struct dwc2_qtd *qtd;
3889 	int num_channels;
3890 	u32 np_tx_status;
3891 	u32 p_tx_status;
3892 	int i;
3893 
3894 	num_channels = hsotg->params.host_channels;
3895 	dev_dbg(hsotg->dev, "\n");
3896 	dev_dbg(hsotg->dev,
3897 		"************************************************************\n");
3898 	dev_dbg(hsotg->dev, "HCD State:\n");
3899 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3900 
3901 	for (i = 0; i < num_channels; i++) {
3902 		chan = hsotg->hc_ptr_array[i];
3903 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3904 		dev_dbg(hsotg->dev,
3905 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3906 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3907 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3908 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3909 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3910 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3911 			chan->data_pid_start);
3912 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3913 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3914 			chan->xfer_started);
3915 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3916 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3917 			(unsigned long)chan->xfer_dma);
3918 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3919 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3920 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3921 			chan->halt_on_queue);
3922 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3923 			chan->halt_pending);
3924 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3925 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3926 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3927 			chan->complete_split);
3928 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3929 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3930 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3931 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3932 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3933 
3934 		if (chan->xfer_started) {
3935 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3936 
3937 			hfnum = dwc2_readl(hsotg, HFNUM);
3938 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3939 			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3940 			hcint = dwc2_readl(hsotg, HCINT(i));
3941 			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3942 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3943 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3944 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3945 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3946 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3947 		}
3948 
3949 		if (!(chan->xfer_started && chan->qh))
3950 			continue;
3951 
3952 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3953 			if (!qtd->in_process)
3954 				break;
3955 			urb = qtd->urb;
3956 			dev_dbg(hsotg->dev, "    URB Info:\n");
3957 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3958 				qtd, urb);
3959 			if (urb) {
3960 				dev_dbg(hsotg->dev,
3961 					"      Dev: %d, EP: %d %s\n",
3962 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3963 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3964 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3965 					"IN" : "OUT");
3966 				dev_dbg(hsotg->dev,
3967 					"      Max packet size: %d (%d mult)\n",
3968 					dwc2_hcd_get_maxp(&urb->pipe_info),
3969 					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3970 				dev_dbg(hsotg->dev,
3971 					"      transfer_buffer: %p\n",
3972 					urb->buf);
3973 				dev_dbg(hsotg->dev,
3974 					"      transfer_dma: %08lx\n",
3975 					(unsigned long)urb->dma);
3976 				dev_dbg(hsotg->dev,
3977 					"      transfer_buffer_length: %d\n",
3978 					urb->length);
3979 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3980 					urb->actual_length);
3981 			}
3982 		}
3983 	}
3984 
3985 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3986 		hsotg->non_periodic_channels);
3987 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3988 		hsotg->periodic_channels);
3989 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3990 	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3991 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3992 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3993 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3994 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3995 	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3996 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3997 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3998 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3999 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4000 	dwc2_dump_global_registers(hsotg);
4001 	dwc2_dump_host_registers(hsotg);
4002 	dev_dbg(hsotg->dev,
4003 		"************************************************************\n");
4004 	dev_dbg(hsotg->dev, "\n");
4005 #endif
4006 }
4007 
4008 struct wrapper_priv_data {
4009 	struct dwc2_hsotg *hsotg;
4010 };
4011 
4012 /* Gets the dwc2_hsotg from a usb_hcd */
4013 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4014 {
4015 	struct wrapper_priv_data *p;
4016 
4017 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4018 	return p->hsotg;
4019 }
4020 
4021 /**
4022  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4023  *
4024  * This will get the dwc2_tt structure (and ttport) associated with the given
4025  * context (which is really just a struct urb pointer).
4026  *
4027  * The first time this is called for a given TT we allocate memory for our
4028  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4029  * then the refcount for the structure will go to 0 and we'll free it.
4030  *
4031  * @hsotg:     The HCD state structure for the DWC OTG controller.
4032  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4033  * @mem_flags: Flags for allocating memory.
4034  * @ttport:    We'll return this device's port number here.  That's used to
4035  *             reference into the bitmap if we're on a multi_tt hub.
4036  *
4037  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4038  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4039  */
4040 
4041 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4042 				      gfp_t mem_flags, int *ttport)
4043 {
4044 	struct urb *urb = context;
4045 	struct dwc2_tt *dwc_tt = NULL;
4046 
4047 	if (urb->dev->tt) {
4048 		*ttport = urb->dev->ttport;
4049 
4050 		dwc_tt = urb->dev->tt->hcpriv;
4051 		if (!dwc_tt) {
4052 			size_t bitmap_size;
4053 
4054 			/*
4055 			 * For single_tt we need one schedule.  For multi_tt
4056 			 * we need one per port.
4057 			 */
4058 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4059 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4060 			if (urb->dev->tt->multi)
4061 				bitmap_size *= urb->dev->tt->hub->maxchild;
4062 
4063 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4064 					 mem_flags);
4065 			if (!dwc_tt)
4066 				return NULL;
4067 
4068 			dwc_tt->usb_tt = urb->dev->tt;
4069 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4070 		}
4071 
4072 		dwc_tt->refcount++;
4073 	}
4074 
4075 	return dwc_tt;
4076 }
4077 
4078 /**
4079  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4080  *
4081  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4082  * of the structure are done.
4083  *
4084  * It's OK to call this with NULL.
4085  *
4086  * @hsotg:     The HCD state structure for the DWC OTG controller.
4087  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4088  */
4089 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4090 {
4091 	/* Model kfree and make put of NULL a no-op */
4092 	if (!dwc_tt)
4093 		return;
4094 
4095 	WARN_ON(dwc_tt->refcount < 1);
4096 
4097 	dwc_tt->refcount--;
4098 	if (!dwc_tt->refcount) {
4099 		dwc_tt->usb_tt->hcpriv = NULL;
4100 		kfree(dwc_tt);
4101 	}
4102 }
4103 
4104 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4105 {
4106 	struct urb *urb = context;
4107 
4108 	return urb->dev->speed;
4109 }
4110 
4111 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4112 					struct urb *urb)
4113 {
4114 	struct usb_bus *bus = hcd_to_bus(hcd);
4115 
4116 	if (urb->interval)
4117 		bus->bandwidth_allocated += bw / urb->interval;
4118 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4119 		bus->bandwidth_isoc_reqs++;
4120 	else
4121 		bus->bandwidth_int_reqs++;
4122 }
4123 
4124 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4125 				    struct urb *urb)
4126 {
4127 	struct usb_bus *bus = hcd_to_bus(hcd);
4128 
4129 	if (urb->interval)
4130 		bus->bandwidth_allocated -= bw / urb->interval;
4131 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4132 		bus->bandwidth_isoc_reqs--;
4133 	else
4134 		bus->bandwidth_int_reqs--;
4135 }
4136 
4137 /*
4138  * Sets the final status of an URB and returns it to the upper layer. Any
4139  * required cleanup of the URB is performed.
4140  *
4141  * Must be called with interrupt disabled and spinlock held
4142  */
4143 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4144 			int status)
4145 {
4146 	struct urb *urb;
4147 	int i;
4148 
4149 	if (!qtd) {
4150 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4151 		return;
4152 	}
4153 
4154 	if (!qtd->urb) {
4155 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4156 		return;
4157 	}
4158 
4159 	urb = qtd->urb->priv;
4160 	if (!urb) {
4161 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4162 		return;
4163 	}
4164 
4165 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4166 
4167 	if (dbg_urb(urb))
4168 		dev_vdbg(hsotg->dev,
4169 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4170 			 __func__, urb, usb_pipedevice(urb->pipe),
4171 			 usb_pipeendpoint(urb->pipe),
4172 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4173 			 urb->actual_length);
4174 
4175 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4176 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4177 		for (i = 0; i < urb->number_of_packets; ++i) {
4178 			urb->iso_frame_desc[i].actual_length =
4179 				dwc2_hcd_urb_get_iso_desc_actual_length(
4180 						qtd->urb, i);
4181 			urb->iso_frame_desc[i].status =
4182 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4183 		}
4184 	}
4185 
4186 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4187 		for (i = 0; i < urb->number_of_packets; i++)
4188 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4189 				 i, urb->iso_frame_desc[i].status);
4190 	}
4191 
4192 	urb->status = status;
4193 	if (!status) {
4194 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4195 		    urb->actual_length < urb->transfer_buffer_length)
4196 			urb->status = -EREMOTEIO;
4197 	}
4198 
4199 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4200 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4201 		struct usb_host_endpoint *ep = urb->ep;
4202 
4203 		if (ep)
4204 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4205 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4206 					urb);
4207 	}
4208 
4209 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4210 	urb->hcpriv = NULL;
4211 	kfree(qtd->urb);
4212 	qtd->urb = NULL;
4213 
4214 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4215 }
4216 
4217 /*
4218  * Work queue function for starting the HCD when A-Cable is connected
4219  */
4220 static void dwc2_hcd_start_func(struct work_struct *work)
4221 {
4222 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4223 						start_work.work);
4224 
4225 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4226 	dwc2_host_start(hsotg);
4227 }
4228 
4229 /*
4230  * Reset work queue function
4231  */
4232 static void dwc2_hcd_reset_func(struct work_struct *work)
4233 {
4234 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4235 						reset_work.work);
4236 	unsigned long flags;
4237 	u32 hprt0;
4238 
4239 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4240 
4241 	spin_lock_irqsave(&hsotg->lock, flags);
4242 
4243 	hprt0 = dwc2_read_hprt0(hsotg);
4244 	hprt0 &= ~HPRT0_RST;
4245 	dwc2_writel(hsotg, hprt0, HPRT0);
4246 	hsotg->flags.b.port_reset_change = 1;
4247 
4248 	spin_unlock_irqrestore(&hsotg->lock, flags);
4249 }
4250 
4251 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4252 {
4253 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4254 						phy_reset_work);
4255 	int ret;
4256 
4257 	ret = phy_reset(hsotg->phy);
4258 	if (ret)
4259 		dev_warn(hsotg->dev, "PHY reset failed\n");
4260 }
4261 
4262 /*
4263  * =========================================================================
4264  *  Linux HC Driver Functions
4265  * =========================================================================
4266  */
4267 
4268 /*
4269  * Initializes the DWC_otg controller and its root hub and prepares it for host
4270  * mode operation. Activates the root port. Returns 0 on success and a negative
4271  * error code on failure.
4272  */
4273 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4274 {
4275 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4276 	struct usb_bus *bus = hcd_to_bus(hcd);
4277 	unsigned long flags;
4278 	u32 hprt0;
4279 	int ret;
4280 
4281 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4282 
4283 	spin_lock_irqsave(&hsotg->lock, flags);
4284 	hsotg->lx_state = DWC2_L0;
4285 	hcd->state = HC_STATE_RUNNING;
4286 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4287 
4288 	if (dwc2_is_device_mode(hsotg)) {
4289 		spin_unlock_irqrestore(&hsotg->lock, flags);
4290 		return 0;	/* why 0 ?? */
4291 	}
4292 
4293 	dwc2_hcd_reinit(hsotg);
4294 
4295 	hprt0 = dwc2_read_hprt0(hsotg);
4296 	/* Has vbus power been turned on in dwc2_core_host_init ? */
4297 	if (hprt0 & HPRT0_PWR) {
4298 		/* Enable external vbus supply before resuming root hub */
4299 		spin_unlock_irqrestore(&hsotg->lock, flags);
4300 		ret = dwc2_vbus_supply_init(hsotg);
4301 		if (ret)
4302 			return ret;
4303 		spin_lock_irqsave(&hsotg->lock, flags);
4304 	}
4305 
4306 	/* Initialize and connect root hub if one is not already attached */
4307 	if (bus->root_hub) {
4308 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4309 		/* Inform the HUB driver to resume */
4310 		usb_hcd_resume_root_hub(hcd);
4311 	}
4312 
4313 	spin_unlock_irqrestore(&hsotg->lock, flags);
4314 
4315 	return 0;
4316 }
4317 
4318 /*
4319  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4320  * stopped.
4321  */
4322 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4323 {
4324 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4325 	unsigned long flags;
4326 	u32 hprt0;
4327 
4328 	/* Turn off all host-specific interrupts */
4329 	dwc2_disable_host_interrupts(hsotg);
4330 
4331 	/* Wait for interrupt processing to finish */
4332 	synchronize_irq(hcd->irq);
4333 
4334 	spin_lock_irqsave(&hsotg->lock, flags);
4335 	hprt0 = dwc2_read_hprt0(hsotg);
4336 	/* Ensure hcd is disconnected */
4337 	dwc2_hcd_disconnect(hsotg, true);
4338 	dwc2_hcd_stop(hsotg);
4339 	hsotg->lx_state = DWC2_L3;
4340 	hcd->state = HC_STATE_HALT;
4341 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4342 	spin_unlock_irqrestore(&hsotg->lock, flags);
4343 
4344 	/* keep balanced supply init/exit by checking HPRT0_PWR */
4345 	if (hprt0 & HPRT0_PWR)
4346 		dwc2_vbus_supply_exit(hsotg);
4347 
4348 	usleep_range(1000, 3000);
4349 }
4350 
4351 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4352 {
4353 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4354 	unsigned long flags;
4355 	int ret = 0;
4356 
4357 	spin_lock_irqsave(&hsotg->lock, flags);
4358 
4359 	if (dwc2_is_device_mode(hsotg))
4360 		goto unlock;
4361 
4362 	if (hsotg->lx_state != DWC2_L0)
4363 		goto unlock;
4364 
4365 	if (!HCD_HW_ACCESSIBLE(hcd))
4366 		goto unlock;
4367 
4368 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4369 		goto unlock;
4370 
4371 	if (hsotg->bus_suspended)
4372 		goto skip_power_saving;
4373 
4374 	if (hsotg->flags.b.port_connect_status == 0)
4375 		goto skip_power_saving;
4376 
4377 	switch (hsotg->params.power_down) {
4378 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4379 		/* Enter partial_power_down */
4380 		ret = dwc2_enter_partial_power_down(hsotg);
4381 		if (ret)
4382 			dev_err(hsotg->dev,
4383 				"enter partial_power_down failed\n");
4384 		/* After entering suspend, hardware is not accessible */
4385 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4386 		break;
4387 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4388 		/* Enter hibernation */
4389 		spin_unlock_irqrestore(&hsotg->lock, flags);
4390 		ret = dwc2_enter_hibernation(hsotg, 1);
4391 		if (ret)
4392 			dev_err(hsotg->dev, "enter hibernation failed\n");
4393 		spin_lock_irqsave(&hsotg->lock, flags);
4394 
4395 		/* After entering suspend, hardware is not accessible */
4396 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4397 		break;
4398 	case DWC2_POWER_DOWN_PARAM_NONE:
4399 		/*
4400 		 * If not hibernation nor partial power down are supported,
4401 		 * clock gating is used to save power.
4402 		 */
4403 		if (!hsotg->params.no_clock_gating) {
4404 			dwc2_host_enter_clock_gating(hsotg);
4405 
4406 			/* After entering suspend, hardware is not accessible */
4407 			clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4408 		}
4409 		break;
4410 	default:
4411 		goto skip_power_saving;
4412 	}
4413 
4414 	spin_unlock_irqrestore(&hsotg->lock, flags);
4415 	dwc2_vbus_supply_exit(hsotg);
4416 	spin_lock_irqsave(&hsotg->lock, flags);
4417 
4418 	/* Ask phy to be suspended */
4419 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4420 		spin_unlock_irqrestore(&hsotg->lock, flags);
4421 		usb_phy_set_suspend(hsotg->uphy, true);
4422 		spin_lock_irqsave(&hsotg->lock, flags);
4423 	}
4424 
4425 skip_power_saving:
4426 	hsotg->lx_state = DWC2_L2;
4427 unlock:
4428 	spin_unlock_irqrestore(&hsotg->lock, flags);
4429 
4430 	return ret;
4431 }
4432 
4433 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4434 {
4435 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4436 	unsigned long flags;
4437 	u32 hprt0;
4438 	int ret = 0;
4439 
4440 	spin_lock_irqsave(&hsotg->lock, flags);
4441 
4442 	if (dwc2_is_device_mode(hsotg))
4443 		goto unlock;
4444 
4445 	if (hsotg->lx_state != DWC2_L2)
4446 		goto unlock;
4447 
4448 	hprt0 = dwc2_read_hprt0(hsotg);
4449 
4450 	/*
4451 	 * Added port connection status checking which prevents exiting from
4452 	 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4453 	 * Power Down mode.
4454 	 */
4455 	if (hprt0 & HPRT0_CONNSTS) {
4456 		hsotg->lx_state = DWC2_L0;
4457 		goto unlock;
4458 	}
4459 
4460 	switch (hsotg->params.power_down) {
4461 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4462 		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4463 		if (ret)
4464 			dev_err(hsotg->dev,
4465 				"exit partial_power_down failed\n");
4466 		/*
4467 		 * Set HW accessible bit before powering on the controller
4468 		 * since an interrupt may rise.
4469 		 */
4470 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4471 		break;
4472 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4473 		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4474 		if (ret)
4475 			dev_err(hsotg->dev, "exit hibernation failed.\n");
4476 
4477 		/*
4478 		 * Set HW accessible bit before powering on the controller
4479 		 * since an interrupt may rise.
4480 		 */
4481 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4482 		break;
4483 	case DWC2_POWER_DOWN_PARAM_NONE:
4484 		/*
4485 		 * If not hibernation nor partial power down are supported,
4486 		 * port resume is done using the clock gating programming flow.
4487 		 */
4488 		spin_unlock_irqrestore(&hsotg->lock, flags);
4489 		dwc2_host_exit_clock_gating(hsotg, 0);
4490 
4491 		/*
4492 		 * Initialize the Core for Host mode, as after system resume
4493 		 * the global interrupts are disabled.
4494 		 */
4495 		dwc2_core_init(hsotg, false);
4496 		dwc2_enable_global_interrupts(hsotg);
4497 		dwc2_hcd_reinit(hsotg);
4498 		spin_lock_irqsave(&hsotg->lock, flags);
4499 
4500 		/*
4501 		 * Set HW accessible bit before powering on the controller
4502 		 * since an interrupt may rise.
4503 		 */
4504 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4505 		break;
4506 	default:
4507 		hsotg->lx_state = DWC2_L0;
4508 		goto unlock;
4509 	}
4510 
4511 	/* Change Root port status, as port status change occurred after resume.*/
4512 	hsotg->flags.b.port_suspend_change = 1;
4513 
4514 	/*
4515 	 * Enable power if not already done.
4516 	 * This must not be spinlocked since duration
4517 	 * of this call is unknown.
4518 	 */
4519 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4520 		spin_unlock_irqrestore(&hsotg->lock, flags);
4521 		usb_phy_set_suspend(hsotg->uphy, false);
4522 		spin_lock_irqsave(&hsotg->lock, flags);
4523 	}
4524 
4525 	/* Enable external vbus supply after resuming the port. */
4526 	spin_unlock_irqrestore(&hsotg->lock, flags);
4527 	dwc2_vbus_supply_init(hsotg);
4528 
4529 	/* Wait for controller to correctly update D+/D- level */
4530 	usleep_range(3000, 5000);
4531 	spin_lock_irqsave(&hsotg->lock, flags);
4532 
4533 	/*
4534 	 * Clear Port Enable and Port Status changes.
4535 	 * Enable Port Power.
4536 	 */
4537 	dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4538 			HPRT0_ENACHG, HPRT0);
4539 
4540 	/* Wait for controller to detect Port Connect */
4541 	spin_unlock_irqrestore(&hsotg->lock, flags);
4542 	usleep_range(5000, 7000);
4543 	spin_lock_irqsave(&hsotg->lock, flags);
4544 unlock:
4545 	spin_unlock_irqrestore(&hsotg->lock, flags);
4546 
4547 	return ret;
4548 }
4549 
4550 /* Returns the current frame number */
4551 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4552 {
4553 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4554 
4555 	return dwc2_hcd_get_frame_number(hsotg);
4556 }
4557 
4558 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4559 			       char *fn_name)
4560 {
4561 #ifdef VERBOSE_DEBUG
4562 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4563 	char *pipetype = NULL;
4564 	char *speed = NULL;
4565 
4566 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4567 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4568 		 usb_pipedevice(urb->pipe));
4569 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4570 		 usb_pipeendpoint(urb->pipe),
4571 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4572 
4573 	switch (usb_pipetype(urb->pipe)) {
4574 	case PIPE_CONTROL:
4575 		pipetype = "CONTROL";
4576 		break;
4577 	case PIPE_BULK:
4578 		pipetype = "BULK";
4579 		break;
4580 	case PIPE_INTERRUPT:
4581 		pipetype = "INTERRUPT";
4582 		break;
4583 	case PIPE_ISOCHRONOUS:
4584 		pipetype = "ISOCHRONOUS";
4585 		break;
4586 	}
4587 
4588 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4589 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4590 		 "IN" : "OUT");
4591 
4592 	switch (urb->dev->speed) {
4593 	case USB_SPEED_HIGH:
4594 		speed = "HIGH";
4595 		break;
4596 	case USB_SPEED_FULL:
4597 		speed = "FULL";
4598 		break;
4599 	case USB_SPEED_LOW:
4600 		speed = "LOW";
4601 		break;
4602 	default:
4603 		speed = "UNKNOWN";
4604 		break;
4605 	}
4606 
4607 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4608 	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4609 		 usb_endpoint_maxp(&urb->ep->desc),
4610 		 usb_endpoint_maxp_mult(&urb->ep->desc));
4611 
4612 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4613 		 urb->transfer_buffer_length);
4614 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4615 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4616 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4617 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4618 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4619 
4620 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4621 		int i;
4622 
4623 		for (i = 0; i < urb->number_of_packets; i++) {
4624 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4625 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4626 				 urb->iso_frame_desc[i].offset,
4627 				 urb->iso_frame_desc[i].length);
4628 		}
4629 	}
4630 #endif
4631 }
4632 
4633 /*
4634  * Starts processing a USB transfer request specified by a USB Request Block
4635  * (URB). mem_flags indicates the type of memory allocation to use while
4636  * processing this URB.
4637  */
4638 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4639 				 gfp_t mem_flags)
4640 {
4641 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4642 	struct usb_host_endpoint *ep = urb->ep;
4643 	struct dwc2_hcd_urb *dwc2_urb;
4644 	int i;
4645 	int retval;
4646 	int alloc_bandwidth = 0;
4647 	u8 ep_type = 0;
4648 	u32 tflags = 0;
4649 	void *buf;
4650 	unsigned long flags;
4651 	struct dwc2_qh *qh;
4652 	bool qh_allocated = false;
4653 	struct dwc2_qtd *qtd;
4654 	struct dwc2_gregs_backup *gr;
4655 
4656 	gr = &hsotg->gr_backup;
4657 
4658 	if (dbg_urb(urb)) {
4659 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4660 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4661 	}
4662 
4663 	if (hsotg->hibernated) {
4664 		if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4665 			retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4666 		else
4667 			retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4668 
4669 		if (retval)
4670 			dev_err(hsotg->dev,
4671 				"exit hibernation failed.\n");
4672 	}
4673 
4674 	if (hsotg->in_ppd) {
4675 		retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4676 		if (retval)
4677 			dev_err(hsotg->dev,
4678 				"exit partial_power_down failed\n");
4679 	}
4680 
4681 	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4682 	    hsotg->bus_suspended) {
4683 		if (dwc2_is_device_mode(hsotg))
4684 			dwc2_gadget_exit_clock_gating(hsotg, 0);
4685 		else
4686 			dwc2_host_exit_clock_gating(hsotg, 0);
4687 	}
4688 
4689 	if (!ep)
4690 		return -EINVAL;
4691 
4692 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4693 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4694 		spin_lock_irqsave(&hsotg->lock, flags);
4695 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4696 			alloc_bandwidth = 1;
4697 		spin_unlock_irqrestore(&hsotg->lock, flags);
4698 	}
4699 
4700 	switch (usb_pipetype(urb->pipe)) {
4701 	case PIPE_CONTROL:
4702 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4703 		break;
4704 	case PIPE_ISOCHRONOUS:
4705 		ep_type = USB_ENDPOINT_XFER_ISOC;
4706 		break;
4707 	case PIPE_BULK:
4708 		ep_type = USB_ENDPOINT_XFER_BULK;
4709 		break;
4710 	case PIPE_INTERRUPT:
4711 		ep_type = USB_ENDPOINT_XFER_INT;
4712 		break;
4713 	}
4714 
4715 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4716 				      mem_flags);
4717 	if (!dwc2_urb)
4718 		return -ENOMEM;
4719 
4720 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4721 				  usb_pipeendpoint(urb->pipe), ep_type,
4722 				  usb_pipein(urb->pipe),
4723 				  usb_endpoint_maxp(&ep->desc),
4724 				  usb_endpoint_maxp_mult(&ep->desc));
4725 
4726 	buf = urb->transfer_buffer;
4727 
4728 	if (hcd_uses_dma(hcd)) {
4729 		if (!buf && (urb->transfer_dma & 3)) {
4730 			dev_err(hsotg->dev,
4731 				"%s: unaligned transfer with no transfer_buffer",
4732 				__func__);
4733 			retval = -EINVAL;
4734 			goto fail0;
4735 		}
4736 	}
4737 
4738 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4739 		tflags |= URB_GIVEBACK_ASAP;
4740 	if (urb->transfer_flags & URB_ZERO_PACKET)
4741 		tflags |= URB_SEND_ZERO_PACKET;
4742 
4743 	dwc2_urb->priv = urb;
4744 	dwc2_urb->buf = buf;
4745 	dwc2_urb->dma = urb->transfer_dma;
4746 	dwc2_urb->length = urb->transfer_buffer_length;
4747 	dwc2_urb->setup_packet = urb->setup_packet;
4748 	dwc2_urb->setup_dma = urb->setup_dma;
4749 	dwc2_urb->flags = tflags;
4750 	dwc2_urb->interval = urb->interval;
4751 	dwc2_urb->status = -EINPROGRESS;
4752 
4753 	for (i = 0; i < urb->number_of_packets; ++i)
4754 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4755 						 urb->iso_frame_desc[i].offset,
4756 						 urb->iso_frame_desc[i].length);
4757 
4758 	urb->hcpriv = dwc2_urb;
4759 	qh = (struct dwc2_qh *)ep->hcpriv;
4760 	/* Create QH for the endpoint if it doesn't exist */
4761 	if (!qh) {
4762 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4763 		if (!qh) {
4764 			retval = -ENOMEM;
4765 			goto fail0;
4766 		}
4767 		ep->hcpriv = qh;
4768 		qh_allocated = true;
4769 	}
4770 
4771 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4772 	if (!qtd) {
4773 		retval = -ENOMEM;
4774 		goto fail1;
4775 	}
4776 
4777 	spin_lock_irqsave(&hsotg->lock, flags);
4778 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4779 	if (retval)
4780 		goto fail2;
4781 
4782 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4783 	if (retval)
4784 		goto fail3;
4785 
4786 	if (alloc_bandwidth) {
4787 		dwc2_allocate_bus_bandwidth(hcd,
4788 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4789 				urb);
4790 	}
4791 
4792 	spin_unlock_irqrestore(&hsotg->lock, flags);
4793 
4794 	return 0;
4795 
4796 fail3:
4797 	dwc2_urb->priv = NULL;
4798 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4799 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4800 		qh->channel->qh = NULL;
4801 fail2:
4802 	spin_unlock_irqrestore(&hsotg->lock, flags);
4803 	urb->hcpriv = NULL;
4804 	kfree(qtd);
4805 fail1:
4806 	if (qh_allocated) {
4807 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4808 
4809 		ep->hcpriv = NULL;
4810 		dwc2_hcd_qh_unlink(hsotg, qh);
4811 		/* Free each QTD in the QH's QTD list */
4812 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4813 					 qtd_list_entry)
4814 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4815 		dwc2_hcd_qh_free(hsotg, qh);
4816 	}
4817 fail0:
4818 	kfree(dwc2_urb);
4819 
4820 	return retval;
4821 }
4822 
4823 /*
4824  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4825  */
4826 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4827 				 int status)
4828 {
4829 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4830 	int rc;
4831 	unsigned long flags;
4832 
4833 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4834 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4835 
4836 	spin_lock_irqsave(&hsotg->lock, flags);
4837 
4838 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4839 	if (rc)
4840 		goto out;
4841 
4842 	if (!urb->hcpriv) {
4843 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4844 		goto out;
4845 	}
4846 
4847 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4848 
4849 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4850 
4851 	kfree(urb->hcpriv);
4852 	urb->hcpriv = NULL;
4853 
4854 	/* Higher layer software sets URB status */
4855 	spin_unlock(&hsotg->lock);
4856 	usb_hcd_giveback_urb(hcd, urb, status);
4857 	spin_lock(&hsotg->lock);
4858 
4859 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4860 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4861 out:
4862 	spin_unlock_irqrestore(&hsotg->lock, flags);
4863 
4864 	return rc;
4865 }
4866 
4867 /*
4868  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4869  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4870  * must already be dequeued.
4871  */
4872 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4873 				       struct usb_host_endpoint *ep)
4874 {
4875 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4876 
4877 	dev_dbg(hsotg->dev,
4878 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4879 		ep->desc.bEndpointAddress, ep->hcpriv);
4880 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4881 }
4882 
4883 /*
4884  * Resets endpoint specific parameter values, in current version used to reset
4885  * the data toggle (as a WA). This function can be called from usb_clear_halt
4886  * routine.
4887  */
4888 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4889 				     struct usb_host_endpoint *ep)
4890 {
4891 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4892 	unsigned long flags;
4893 
4894 	dev_dbg(hsotg->dev,
4895 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4896 		ep->desc.bEndpointAddress);
4897 
4898 	spin_lock_irqsave(&hsotg->lock, flags);
4899 	dwc2_hcd_endpoint_reset(hsotg, ep);
4900 	spin_unlock_irqrestore(&hsotg->lock, flags);
4901 }
4902 
4903 /*
4904  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4905  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4906  * interrupt.
4907  *
4908  * This function is called by the USB core when an interrupt occurs
4909  */
4910 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4911 {
4912 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4913 
4914 	return dwc2_handle_hcd_intr(hsotg);
4915 }
4916 
4917 /*
4918  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4919  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4920  * is the status change indicator for the single root port. Returns 1 if either
4921  * change indicator is 1, otherwise returns 0.
4922  */
4923 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4924 {
4925 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4926 
4927 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4928 	return buf[0] != 0;
4929 }
4930 
4931 /* Handles hub class-specific requests */
4932 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4933 				 u16 windex, char *buf, u16 wlength)
4934 {
4935 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4936 					  wvalue, windex, buf, wlength);
4937 	return retval;
4938 }
4939 
4940 /* Handles hub TT buffer clear completions */
4941 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4942 					       struct usb_host_endpoint *ep)
4943 {
4944 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4945 	struct dwc2_qh *qh;
4946 	unsigned long flags;
4947 
4948 	qh = ep->hcpriv;
4949 	if (!qh)
4950 		return;
4951 
4952 	spin_lock_irqsave(&hsotg->lock, flags);
4953 	qh->tt_buffer_dirty = 0;
4954 
4955 	if (hsotg->flags.b.port_connect_status)
4956 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4957 
4958 	spin_unlock_irqrestore(&hsotg->lock, flags);
4959 }
4960 
4961 /*
4962  * HPRT0_SPD_HIGH_SPEED: high speed
4963  * HPRT0_SPD_FULL_SPEED: full speed
4964  */
4965 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4966 {
4967 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4968 
4969 	if (hsotg->params.speed == speed)
4970 		return;
4971 
4972 	hsotg->params.speed = speed;
4973 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4974 }
4975 
4976 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4977 {
4978 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4979 
4980 	if (!hsotg->params.change_speed_quirk)
4981 		return;
4982 
4983 	/*
4984 	 * On removal, set speed to default high-speed.
4985 	 */
4986 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4987 	    udev->parent->speed < USB_SPEED_HIGH) {
4988 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4989 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4990 	}
4991 }
4992 
4993 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4994 {
4995 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4996 
4997 	if (!hsotg->params.change_speed_quirk)
4998 		return 0;
4999 
5000 	if (udev->speed == USB_SPEED_HIGH) {
5001 		dev_info(hsotg->dev, "Set speed to high-speed\n");
5002 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5003 	} else if ((udev->speed == USB_SPEED_FULL ||
5004 				udev->speed == USB_SPEED_LOW)) {
5005 		/*
5006 		 * Change speed setting to full-speed if there's
5007 		 * a full-speed or low-speed device plugged in.
5008 		 */
5009 		dev_info(hsotg->dev, "Set speed to full-speed\n");
5010 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5011 	}
5012 
5013 	return 0;
5014 }
5015 
5016 static struct hc_driver dwc2_hc_driver = {
5017 	.description = "dwc2_hsotg",
5018 	.product_desc = "DWC OTG Controller",
5019 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
5020 
5021 	.irq = _dwc2_hcd_irq,
5022 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5023 
5024 	.start = _dwc2_hcd_start,
5025 	.stop = _dwc2_hcd_stop,
5026 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
5027 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
5028 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
5029 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
5030 	.get_frame_number = _dwc2_hcd_get_frame_number,
5031 
5032 	.hub_status_data = _dwc2_hcd_hub_status_data,
5033 	.hub_control = _dwc2_hcd_hub_control,
5034 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5035 
5036 	.bus_suspend = _dwc2_hcd_suspend,
5037 	.bus_resume = _dwc2_hcd_resume,
5038 
5039 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
5040 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
5041 };
5042 
5043 /*
5044  * Frees secondary storage associated with the dwc2_hsotg structure contained
5045  * in the struct usb_hcd field
5046  */
5047 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5048 {
5049 	u32 ahbcfg;
5050 	u32 dctl;
5051 	int i;
5052 
5053 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5054 
5055 	/* Free memory for QH/QTD lists */
5056 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5057 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5058 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5059 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5060 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5061 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5062 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5063 
5064 	/* Free memory for the host channels */
5065 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5066 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5067 
5068 		if (chan) {
5069 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5070 				i, chan);
5071 			hsotg->hc_ptr_array[i] = NULL;
5072 			kfree(chan);
5073 		}
5074 	}
5075 
5076 	if (hsotg->params.host_dma) {
5077 		if (hsotg->status_buf) {
5078 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5079 					  hsotg->status_buf,
5080 					  hsotg->status_buf_dma);
5081 			hsotg->status_buf = NULL;
5082 		}
5083 	} else {
5084 		kfree(hsotg->status_buf);
5085 		hsotg->status_buf = NULL;
5086 	}
5087 
5088 	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5089 
5090 	/* Disable all interrupts */
5091 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5092 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5093 	dwc2_writel(hsotg, 0, GINTMSK);
5094 
5095 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5096 		dctl = dwc2_readl(hsotg, DCTL);
5097 		dctl |= DCTL_SFTDISCON;
5098 		dwc2_writel(hsotg, dctl, DCTL);
5099 	}
5100 
5101 	if (hsotg->wq_otg) {
5102 		if (!cancel_work_sync(&hsotg->wf_otg))
5103 			flush_workqueue(hsotg->wq_otg);
5104 		destroy_workqueue(hsotg->wq_otg);
5105 	}
5106 
5107 	cancel_work_sync(&hsotg->phy_reset_work);
5108 
5109 	del_timer(&hsotg->wkp_timer);
5110 }
5111 
5112 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5113 {
5114 	/* Turn off all host-specific interrupts */
5115 	dwc2_disable_host_interrupts(hsotg);
5116 
5117 	dwc2_hcd_free(hsotg);
5118 }
5119 
5120 /*
5121  * Initializes the HCD. This function allocates memory for and initializes the
5122  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5123  * USB bus with the core and calls the hc_driver->start() function. It returns
5124  * a negative error on failure.
5125  */
5126 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5127 {
5128 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5129 	struct resource *res;
5130 	struct usb_hcd *hcd;
5131 	struct dwc2_host_chan *channel;
5132 	u32 hcfg;
5133 	int i, num_channels;
5134 	int retval;
5135 
5136 	if (usb_disabled())
5137 		return -ENODEV;
5138 
5139 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5140 
5141 	retval = -ENOMEM;
5142 
5143 	hcfg = dwc2_readl(hsotg, HCFG);
5144 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5145 
5146 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5147 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5148 					 sizeof(*hsotg->frame_num_array),
5149 					 GFP_KERNEL);
5150 	if (!hsotg->frame_num_array)
5151 		goto error1;
5152 	hsotg->last_frame_num_array =
5153 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5154 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5155 	if (!hsotg->last_frame_num_array)
5156 		goto error1;
5157 #endif
5158 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5159 
5160 	/* Check if the bus driver or platform code has setup a dma_mask */
5161 	if (hsotg->params.host_dma &&
5162 	    !hsotg->dev->dma_mask) {
5163 		dev_warn(hsotg->dev,
5164 			 "dma_mask not set, disabling DMA\n");
5165 		hsotg->params.host_dma = false;
5166 		hsotg->params.dma_desc_enable = false;
5167 	}
5168 
5169 	/* Set device flags indicating whether the HCD supports DMA */
5170 	if (hsotg->params.host_dma) {
5171 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5172 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5173 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5174 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5175 	}
5176 
5177 	if (hsotg->params.change_speed_quirk) {
5178 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5179 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5180 	}
5181 
5182 	if (hsotg->params.host_dma)
5183 		dwc2_hc_driver.flags |= HCD_DMA;
5184 
5185 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5186 	if (!hcd)
5187 		goto error1;
5188 
5189 	hcd->has_tt = 1;
5190 
5191 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5192 	if (!res) {
5193 		retval = -EINVAL;
5194 		goto error2;
5195 	}
5196 	hcd->rsrc_start = res->start;
5197 	hcd->rsrc_len = resource_size(res);
5198 
5199 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5200 	hsotg->priv = hcd;
5201 
5202 	/*
5203 	 * Disable the global interrupt until all the interrupt handlers are
5204 	 * installed
5205 	 */
5206 	dwc2_disable_global_interrupts(hsotg);
5207 
5208 	/* Initialize the DWC_otg core, and select the Phy type */
5209 	retval = dwc2_core_init(hsotg, true);
5210 	if (retval)
5211 		goto error2;
5212 
5213 	/* Create new workqueue and init work */
5214 	retval = -ENOMEM;
5215 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5216 	if (!hsotg->wq_otg) {
5217 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5218 		goto error2;
5219 	}
5220 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5221 
5222 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5223 
5224 	/* Initialize the non-periodic schedule */
5225 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5226 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5227 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5228 
5229 	/* Initialize the periodic schedule */
5230 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5231 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5232 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5233 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5234 
5235 	INIT_LIST_HEAD(&hsotg->split_order);
5236 
5237 	/*
5238 	 * Create a host channel descriptor for each host channel implemented
5239 	 * in the controller. Initialize the channel descriptor array.
5240 	 */
5241 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5242 	num_channels = hsotg->params.host_channels;
5243 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5244 
5245 	for (i = 0; i < num_channels; i++) {
5246 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5247 		if (!channel)
5248 			goto error3;
5249 		channel->hc_num = i;
5250 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5251 		hsotg->hc_ptr_array[i] = channel;
5252 	}
5253 
5254 	/* Initialize work */
5255 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5256 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5257 	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5258 
5259 	/*
5260 	 * Allocate space for storing data on status transactions. Normally no
5261 	 * data is sent, but this space acts as a bit bucket. This must be
5262 	 * done after usb_add_hcd since that function allocates the DMA buffer
5263 	 * pool.
5264 	 */
5265 	if (hsotg->params.host_dma)
5266 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5267 					DWC2_HCD_STATUS_BUF_SIZE,
5268 					&hsotg->status_buf_dma, GFP_KERNEL);
5269 	else
5270 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5271 					  GFP_KERNEL);
5272 
5273 	if (!hsotg->status_buf)
5274 		goto error3;
5275 
5276 	/*
5277 	 * Create kmem caches to handle descriptor buffers in descriptor
5278 	 * DMA mode.
5279 	 * Alignment must be set to 512 bytes.
5280 	 */
5281 	if (hsotg->params.dma_desc_enable ||
5282 	    hsotg->params.dma_desc_fs_enable) {
5283 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5284 				sizeof(struct dwc2_dma_desc) *
5285 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5286 				NULL);
5287 		if (!hsotg->desc_gen_cache) {
5288 			dev_err(hsotg->dev,
5289 				"unable to create dwc2 generic desc cache\n");
5290 
5291 			/*
5292 			 * Disable descriptor dma mode since it will not be
5293 			 * usable.
5294 			 */
5295 			hsotg->params.dma_desc_enable = false;
5296 			hsotg->params.dma_desc_fs_enable = false;
5297 		}
5298 
5299 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5300 				sizeof(struct dwc2_dma_desc) *
5301 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5302 		if (!hsotg->desc_hsisoc_cache) {
5303 			dev_err(hsotg->dev,
5304 				"unable to create dwc2 hs isoc desc cache\n");
5305 
5306 			kmem_cache_destroy(hsotg->desc_gen_cache);
5307 
5308 			/*
5309 			 * Disable descriptor dma mode since it will not be
5310 			 * usable.
5311 			 */
5312 			hsotg->params.dma_desc_enable = false;
5313 			hsotg->params.dma_desc_fs_enable = false;
5314 		}
5315 	}
5316 
5317 	if (hsotg->params.host_dma) {
5318 		/*
5319 		 * Create kmem caches to handle non-aligned buffer
5320 		 * in Buffer DMA mode.
5321 		 */
5322 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5323 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5324 						SLAB_CACHE_DMA, NULL);
5325 		if (!hsotg->unaligned_cache)
5326 			dev_err(hsotg->dev,
5327 				"unable to create dwc2 unaligned cache\n");
5328 	}
5329 
5330 	hsotg->otg_port = 1;
5331 	hsotg->frame_list = NULL;
5332 	hsotg->frame_list_dma = 0;
5333 	hsotg->periodic_qh_count = 0;
5334 
5335 	/* Initiate lx_state to L3 disconnected state */
5336 	hsotg->lx_state = DWC2_L3;
5337 
5338 	hcd->self.otg_port = hsotg->otg_port;
5339 
5340 	/* Don't support SG list at this point */
5341 	hcd->self.sg_tablesize = 0;
5342 
5343 	hcd->tpl_support = of_usb_host_tpl_support(hsotg->dev->of_node);
5344 
5345 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5346 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5347 
5348 	/*
5349 	 * Finish generic HCD initialization and start the HCD. This function
5350 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5351 	 * IRQ line, and calls hcd_start method.
5352 	 */
5353 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5354 	if (retval < 0)
5355 		goto error4;
5356 
5357 	device_wakeup_enable(hcd->self.controller);
5358 
5359 	dwc2_hcd_dump_state(hsotg);
5360 
5361 	dwc2_enable_global_interrupts(hsotg);
5362 
5363 	return 0;
5364 
5365 error4:
5366 	kmem_cache_destroy(hsotg->unaligned_cache);
5367 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5368 	kmem_cache_destroy(hsotg->desc_gen_cache);
5369 error3:
5370 	dwc2_hcd_release(hsotg);
5371 error2:
5372 	usb_put_hcd(hcd);
5373 error1:
5374 
5375 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5376 	kfree(hsotg->last_frame_num_array);
5377 	kfree(hsotg->frame_num_array);
5378 #endif
5379 
5380 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5381 	return retval;
5382 }
5383 
5384 /*
5385  * Removes the HCD.
5386  * Frees memory and resources associated with the HCD and deregisters the bus.
5387  */
5388 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5389 {
5390 	struct usb_hcd *hcd;
5391 
5392 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5393 
5394 	hcd = dwc2_hsotg_to_hcd(hsotg);
5395 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5396 
5397 	if (!hcd) {
5398 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5399 			__func__);
5400 		return;
5401 	}
5402 
5403 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5404 		otg_set_host(hsotg->uphy->otg, NULL);
5405 
5406 	usb_remove_hcd(hcd);
5407 	hsotg->priv = NULL;
5408 
5409 	kmem_cache_destroy(hsotg->unaligned_cache);
5410 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5411 	kmem_cache_destroy(hsotg->desc_gen_cache);
5412 
5413 	dwc2_hcd_release(hsotg);
5414 	usb_put_hcd(hcd);
5415 
5416 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5417 	kfree(hsotg->last_frame_num_array);
5418 	kfree(hsotg->frame_num_array);
5419 #endif
5420 }
5421 
5422 /**
5423  * dwc2_backup_host_registers() - Backup controller host registers.
5424  * When suspending usb bus, registers needs to be backuped
5425  * if controller power is disabled once suspended.
5426  *
5427  * @hsotg: Programming view of the DWC_otg controller
5428  */
5429 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5430 {
5431 	struct dwc2_hregs_backup *hr;
5432 	int i;
5433 
5434 	dev_dbg(hsotg->dev, "%s\n", __func__);
5435 
5436 	/* Backup Host regs */
5437 	hr = &hsotg->hr_backup;
5438 	hr->hcfg = dwc2_readl(hsotg, HCFG);
5439 	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5440 	for (i = 0; i < hsotg->params.host_channels; ++i)
5441 		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5442 
5443 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5444 	hr->hfir = dwc2_readl(hsotg, HFIR);
5445 	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5446 	hr->valid = true;
5447 
5448 	return 0;
5449 }
5450 
5451 /**
5452  * dwc2_restore_host_registers() - Restore controller host registers.
5453  * When resuming usb bus, device registers needs to be restored
5454  * if controller power were disabled.
5455  *
5456  * @hsotg: Programming view of the DWC_otg controller
5457  */
5458 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5459 {
5460 	struct dwc2_hregs_backup *hr;
5461 	int i;
5462 
5463 	dev_dbg(hsotg->dev, "%s\n", __func__);
5464 
5465 	/* Restore host regs */
5466 	hr = &hsotg->hr_backup;
5467 	if (!hr->valid) {
5468 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5469 			__func__);
5470 		return -EINVAL;
5471 	}
5472 	hr->valid = false;
5473 
5474 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5475 	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5476 
5477 	for (i = 0; i < hsotg->params.host_channels; ++i)
5478 		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5479 
5480 	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5481 	dwc2_writel(hsotg, hr->hfir, HFIR);
5482 	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5483 	hsotg->frame_number = 0;
5484 
5485 	return 0;
5486 }
5487 
5488 /**
5489  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5490  *
5491  * @hsotg: Programming view of the DWC_otg controller
5492  */
5493 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5494 {
5495 	unsigned long flags;
5496 	int ret = 0;
5497 	u32 hprt0;
5498 	u32 pcgcctl;
5499 	u32 gusbcfg;
5500 	u32 gpwrdn;
5501 
5502 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5503 	ret = dwc2_backup_global_registers(hsotg);
5504 	if (ret) {
5505 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5506 			__func__);
5507 		return ret;
5508 	}
5509 	ret = dwc2_backup_host_registers(hsotg);
5510 	if (ret) {
5511 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5512 			__func__);
5513 		return ret;
5514 	}
5515 
5516 	/* Enter USB Suspend Mode */
5517 	hprt0 = dwc2_readl(hsotg, HPRT0);
5518 	hprt0 |= HPRT0_SUSP;
5519 	hprt0 &= ~HPRT0_ENA;
5520 	dwc2_writel(hsotg, hprt0, HPRT0);
5521 
5522 	/* Wait for the HPRT0.PrtSusp register field to be set */
5523 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5524 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5525 
5526 	/*
5527 	 * We need to disable interrupts to prevent servicing of any IRQ
5528 	 * during going to hibernation
5529 	 */
5530 	spin_lock_irqsave(&hsotg->lock, flags);
5531 	hsotg->lx_state = DWC2_L2;
5532 
5533 	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5534 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5535 		/* ULPI interface */
5536 		/* Suspend the Phy Clock */
5537 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5538 		pcgcctl |= PCGCTL_STOPPCLK;
5539 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5540 		udelay(10);
5541 
5542 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5543 		gpwrdn |= GPWRDN_PMUACTV;
5544 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5545 		udelay(10);
5546 	} else {
5547 		/* UTMI+ Interface */
5548 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5549 		gpwrdn |= GPWRDN_PMUACTV;
5550 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5551 		udelay(10);
5552 
5553 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5554 		pcgcctl |= PCGCTL_STOPPCLK;
5555 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5556 		udelay(10);
5557 	}
5558 
5559 	/* Enable interrupts from wake up logic */
5560 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5561 	gpwrdn |= GPWRDN_PMUINTSEL;
5562 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5563 	udelay(10);
5564 
5565 	/* Unmask host mode interrupts in GPWRDN */
5566 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5567 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5568 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5569 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5570 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5571 	udelay(10);
5572 
5573 	/* Enable Power Down Clamp */
5574 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5575 	gpwrdn |= GPWRDN_PWRDNCLMP;
5576 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5577 	udelay(10);
5578 
5579 	/* Switch off VDD */
5580 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5581 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5582 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5583 
5584 	hsotg->hibernated = 1;
5585 	hsotg->bus_suspended = 1;
5586 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5587 	spin_unlock_irqrestore(&hsotg->lock, flags);
5588 	return ret;
5589 }
5590 
5591 /*
5592  * dwc2_host_exit_hibernation()
5593  *
5594  * @hsotg: Programming view of the DWC_otg controller
5595  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5596  * @param reset: indicates whether resume is initiated by Reset.
5597  *
5598  * Return: non-zero if failed to enter to hibernation.
5599  *
5600  * This function is for exiting from Host mode hibernation by
5601  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5602  */
5603 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5604 			       int reset)
5605 {
5606 	u32 gpwrdn;
5607 	u32 hprt0;
5608 	int ret = 0;
5609 	struct dwc2_gregs_backup *gr;
5610 	struct dwc2_hregs_backup *hr;
5611 
5612 	gr = &hsotg->gr_backup;
5613 	hr = &hsotg->hr_backup;
5614 
5615 	dev_dbg(hsotg->dev,
5616 		"%s: called with rem_wakeup = %d reset = %d\n",
5617 		__func__, rem_wakeup, reset);
5618 
5619 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5620 	hsotg->hibernated = 0;
5621 
5622 	/*
5623 	 * This step is not described in functional spec but if not wait for
5624 	 * this delay, mismatch interrupts occurred because just after restore
5625 	 * core is in Device mode(gintsts.curmode == 0)
5626 	 */
5627 	mdelay(100);
5628 
5629 	/* Clear all pending interupts */
5630 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5631 
5632 	/* De-assert Restore */
5633 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5634 	gpwrdn &= ~GPWRDN_RESTORE;
5635 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5636 	udelay(10);
5637 
5638 	/* Restore GUSBCFG, HCFG */
5639 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5640 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5641 
5642 	/* De-assert Wakeup Logic */
5643 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5644 	gpwrdn &= ~GPWRDN_PMUACTV;
5645 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5646 	udelay(10);
5647 
5648 	hprt0 = hr->hprt0;
5649 	hprt0 |= HPRT0_PWR;
5650 	hprt0 &= ~HPRT0_ENA;
5651 	hprt0 &= ~HPRT0_SUSP;
5652 	dwc2_writel(hsotg, hprt0, HPRT0);
5653 
5654 	hprt0 = hr->hprt0;
5655 	hprt0 |= HPRT0_PWR;
5656 	hprt0 &= ~HPRT0_ENA;
5657 	hprt0 &= ~HPRT0_SUSP;
5658 
5659 	if (reset) {
5660 		hprt0 |= HPRT0_RST;
5661 		dwc2_writel(hsotg, hprt0, HPRT0);
5662 
5663 		/* Wait for Resume time and then program HPRT again */
5664 		mdelay(60);
5665 		hprt0 &= ~HPRT0_RST;
5666 		dwc2_writel(hsotg, hprt0, HPRT0);
5667 	} else {
5668 		hprt0 |= HPRT0_RES;
5669 		dwc2_writel(hsotg, hprt0, HPRT0);
5670 
5671 		/* Wait for Resume time and then program HPRT again */
5672 		mdelay(100);
5673 		hprt0 &= ~HPRT0_RES;
5674 		dwc2_writel(hsotg, hprt0, HPRT0);
5675 	}
5676 	/* Clear all interrupt status */
5677 	hprt0 = dwc2_readl(hsotg, HPRT0);
5678 	hprt0 |= HPRT0_CONNDET;
5679 	hprt0 |= HPRT0_ENACHG;
5680 	hprt0 &= ~HPRT0_ENA;
5681 	dwc2_writel(hsotg, hprt0, HPRT0);
5682 
5683 	hprt0 = dwc2_readl(hsotg, HPRT0);
5684 
5685 	/* Clear all pending interupts */
5686 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5687 
5688 	/* Restore global registers */
5689 	ret = dwc2_restore_global_registers(hsotg);
5690 	if (ret) {
5691 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5692 			__func__);
5693 		return ret;
5694 	}
5695 
5696 	/* Restore host registers */
5697 	ret = dwc2_restore_host_registers(hsotg);
5698 	if (ret) {
5699 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5700 			__func__);
5701 		return ret;
5702 	}
5703 
5704 	if (rem_wakeup) {
5705 		dwc2_hcd_rem_wakeup(hsotg);
5706 		/*
5707 		 * Change "port_connect_status_change" flag to re-enumerate,
5708 		 * because after exit from hibernation port connection status
5709 		 * is not detected.
5710 		 */
5711 		hsotg->flags.b.port_connect_status_change = 1;
5712 	}
5713 
5714 	hsotg->hibernated = 0;
5715 	hsotg->bus_suspended = 0;
5716 	hsotg->lx_state = DWC2_L0;
5717 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5718 	return ret;
5719 }
5720 
5721 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5722 {
5723 	struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5724 
5725 	/* If the controller isn't allowed to wakeup then we can power off. */
5726 	if (!device_may_wakeup(dwc2->dev))
5727 		return true;
5728 
5729 	/*
5730 	 * We don't want to power off the PHY if something under the
5731 	 * root hub has wakeup enabled.
5732 	 */
5733 	if (usb_wakeup_enabled_descendants(root_hub))
5734 		return false;
5735 
5736 	/* No reason to keep the PHY powered, so allow poweroff */
5737 	return true;
5738 }
5739 
5740 /**
5741  * dwc2_host_enter_partial_power_down() - Put controller in partial
5742  * power down.
5743  *
5744  * @hsotg: Programming view of the DWC_otg controller
5745  *
5746  * Return: non-zero if failed to enter host partial power down.
5747  *
5748  * This function is for entering Host mode partial power down.
5749  */
5750 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5751 {
5752 	u32 pcgcctl;
5753 	u32 hprt0;
5754 	int ret = 0;
5755 
5756 	dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5757 
5758 	/* Put this port in suspend mode. */
5759 	hprt0 = dwc2_read_hprt0(hsotg);
5760 	hprt0 |= HPRT0_SUSP;
5761 	dwc2_writel(hsotg, hprt0, HPRT0);
5762 	udelay(5);
5763 
5764 	/* Wait for the HPRT0.PrtSusp register field to be set */
5765 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5766 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5767 
5768 	/* Backup all registers */
5769 	ret = dwc2_backup_global_registers(hsotg);
5770 	if (ret) {
5771 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5772 			__func__);
5773 		return ret;
5774 	}
5775 
5776 	ret = dwc2_backup_host_registers(hsotg);
5777 	if (ret) {
5778 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5779 			__func__);
5780 		return ret;
5781 	}
5782 
5783 	/*
5784 	 * Clear any pending interrupts since dwc2 will not be able to
5785 	 * clear them after entering partial_power_down.
5786 	 */
5787 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5788 
5789 	/* Put the controller in low power state */
5790 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5791 
5792 	pcgcctl |= PCGCTL_PWRCLMP;
5793 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5794 	udelay(5);
5795 
5796 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5797 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5798 	udelay(5);
5799 
5800 	pcgcctl |= PCGCTL_STOPPCLK;
5801 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5802 
5803 	/* Set in_ppd flag to 1 as here core enters suspend. */
5804 	hsotg->in_ppd = 1;
5805 	hsotg->lx_state = DWC2_L2;
5806 	hsotg->bus_suspended = true;
5807 
5808 	dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5809 
5810 	return ret;
5811 }
5812 
5813 /*
5814  * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5815  * power down.
5816  *
5817  * @hsotg: Programming view of the DWC_otg controller
5818  * @rem_wakeup: indicates whether resume is initiated by Reset.
5819  * @restore: indicates whether need to restore the registers or not.
5820  *
5821  * Return: non-zero if failed to exit host partial power down.
5822  *
5823  * This function is for exiting from Host mode partial power down.
5824  */
5825 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5826 				      int rem_wakeup, bool restore)
5827 {
5828 	u32 pcgcctl;
5829 	int ret = 0;
5830 	u32 hprt0;
5831 
5832 	dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5833 
5834 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5835 	pcgcctl &= ~PCGCTL_STOPPCLK;
5836 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5837 	udelay(5);
5838 
5839 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5840 	pcgcctl &= ~PCGCTL_PWRCLMP;
5841 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5842 	udelay(5);
5843 
5844 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5845 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5846 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5847 
5848 	udelay(100);
5849 	if (restore) {
5850 		ret = dwc2_restore_global_registers(hsotg);
5851 		if (ret) {
5852 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5853 				__func__);
5854 			return ret;
5855 		}
5856 
5857 		ret = dwc2_restore_host_registers(hsotg);
5858 		if (ret) {
5859 			dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5860 				__func__);
5861 			return ret;
5862 		}
5863 	}
5864 
5865 	/* Drive resume signaling and exit suspend mode on the port. */
5866 	hprt0 = dwc2_read_hprt0(hsotg);
5867 	hprt0 |= HPRT0_RES;
5868 	hprt0 &= ~HPRT0_SUSP;
5869 	dwc2_writel(hsotg, hprt0, HPRT0);
5870 	udelay(5);
5871 
5872 	if (!rem_wakeup) {
5873 		/* Stop driveing resume signaling on the port. */
5874 		hprt0 = dwc2_read_hprt0(hsotg);
5875 		hprt0 &= ~HPRT0_RES;
5876 		dwc2_writel(hsotg, hprt0, HPRT0);
5877 
5878 		hsotg->bus_suspended = false;
5879 	} else {
5880 		/* Turn on the port power bit. */
5881 		hprt0 = dwc2_read_hprt0(hsotg);
5882 		hprt0 |= HPRT0_PWR;
5883 		dwc2_writel(hsotg, hprt0, HPRT0);
5884 
5885 		/* Connect hcd. */
5886 		dwc2_hcd_connect(hsotg);
5887 
5888 		mod_timer(&hsotg->wkp_timer,
5889 			  jiffies + msecs_to_jiffies(71));
5890 	}
5891 
5892 	/* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5893 	hsotg->in_ppd = 0;
5894 	hsotg->lx_state = DWC2_L0;
5895 
5896 	dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5897 	return ret;
5898 }
5899 
5900 /**
5901  * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5902  *
5903  * @hsotg: Programming view of the DWC_otg controller
5904  *
5905  * This function is for entering Host mode clock gating.
5906  */
5907 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5908 {
5909 	u32 hprt0;
5910 	u32 pcgctl;
5911 
5912 	dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5913 
5914 	/* Put this port in suspend mode. */
5915 	hprt0 = dwc2_read_hprt0(hsotg);
5916 	hprt0 |= HPRT0_SUSP;
5917 	dwc2_writel(hsotg, hprt0, HPRT0);
5918 
5919 	/* Set the Phy Clock bit as suspend is received. */
5920 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5921 	pcgctl |= PCGCTL_STOPPCLK;
5922 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5923 	udelay(5);
5924 
5925 	/* Set the Gate hclk as suspend is received. */
5926 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5927 	pcgctl |= PCGCTL_GATEHCLK;
5928 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5929 	udelay(5);
5930 
5931 	hsotg->bus_suspended = true;
5932 	hsotg->lx_state = DWC2_L2;
5933 }
5934 
5935 /**
5936  * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5937  *
5938  * @hsotg: Programming view of the DWC_otg controller
5939  * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5940  *
5941  * This function is for exiting Host mode clock gating.
5942  */
5943 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5944 {
5945 	u32 hprt0;
5946 	u32 pcgctl;
5947 
5948 	dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5949 
5950 	/* Clear the Gate hclk. */
5951 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5952 	pcgctl &= ~PCGCTL_GATEHCLK;
5953 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5954 	udelay(5);
5955 
5956 	/* Phy Clock bit. */
5957 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5958 	pcgctl &= ~PCGCTL_STOPPCLK;
5959 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5960 	udelay(5);
5961 
5962 	/* Drive resume signaling and exit suspend mode on the port. */
5963 	hprt0 = dwc2_read_hprt0(hsotg);
5964 	hprt0 |= HPRT0_RES;
5965 	hprt0 &= ~HPRT0_SUSP;
5966 	dwc2_writel(hsotg, hprt0, HPRT0);
5967 	udelay(5);
5968 
5969 	if (!rem_wakeup) {
5970 		/* In case of port resume need to wait for 40 ms */
5971 		msleep(USB_RESUME_TIMEOUT);
5972 
5973 		/* Stop driveing resume signaling on the port. */
5974 		hprt0 = dwc2_read_hprt0(hsotg);
5975 		hprt0 &= ~HPRT0_RES;
5976 		dwc2_writel(hsotg, hprt0, HPRT0);
5977 
5978 		hsotg->bus_suspended = false;
5979 		hsotg->lx_state = DWC2_L0;
5980 	} else {
5981 		mod_timer(&hsotg->wkp_timer,
5982 			  jiffies + msecs_to_jiffies(71));
5983 	}
5984 }
5985