xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60 
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66 
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 	u32 intmsk;
76 
77 	/* Clear any pending OTG Interrupts */
78 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
79 
80 	/* Clear any pending interrupts */
81 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
82 
83 	/* Enable the interrupts in the GINTMSK */
84 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85 
86 	if (!hsotg->params.host_dma)
87 		intmsk |= GINTSTS_RXFLVL;
88 	if (!hsotg->params.external_id_pin_ctl)
89 		intmsk |= GINTSTS_CONIDSTSCHNG;
90 
91 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 		  GINTSTS_SESSREQINT;
93 
94 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 		intmsk |= GINTSTS_LPMTRANRCVD;
96 
97 	dwc2_writel(hsotg, intmsk, GINTMSK);
98 }
99 
100 /*
101  * Initializes the FSLSPClkSel field of the HCFG register depending on the
102  * PHY type
103  */
104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
105 {
106 	u32 hcfg, val;
107 
108 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
109 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
110 	     hsotg->params.ulpi_fs_ls) ||
111 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
112 		/* Full speed PHY */
113 		val = HCFG_FSLSPCLKSEL_48_MHZ;
114 	} else {
115 		/* High speed PHY running at full speed or high speed */
116 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
117 	}
118 
119 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
120 	hcfg = dwc2_readl(hsotg, HCFG);
121 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
122 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
123 	dwc2_writel(hsotg, hcfg, HCFG);
124 }
125 
126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
127 {
128 	u32 usbcfg, ggpio, i2cctl;
129 	int retval = 0;
130 
131 	/*
132 	 * core_init() is now called on every switch so only call the
133 	 * following for the first time through
134 	 */
135 	if (select_phy) {
136 		dev_dbg(hsotg->dev, "FS PHY selected\n");
137 
138 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
139 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
140 			usbcfg |= GUSBCFG_PHYSEL;
141 			dwc2_writel(hsotg, usbcfg, GUSBCFG);
142 
143 			/* Reset after a PHY select */
144 			retval = dwc2_core_reset(hsotg, false);
145 
146 			if (retval) {
147 				dev_err(hsotg->dev,
148 					"%s: Reset failed, aborting", __func__);
149 				return retval;
150 			}
151 		}
152 
153 		if (hsotg->params.activate_stm_fs_transceiver) {
154 			ggpio = dwc2_readl(hsotg, GGPIO);
155 			if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
156 				dev_dbg(hsotg->dev, "Activating transceiver\n");
157 				/*
158 				 * STM32F4x9 uses the GGPIO register as general
159 				 * core configuration register.
160 				 */
161 				ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
162 				dwc2_writel(hsotg, ggpio, GGPIO);
163 			}
164 		}
165 	}
166 
167 	/*
168 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
169 	 * do this on HNP Dev/Host mode switches (done in dev_init and
170 	 * host_init).
171 	 */
172 	if (dwc2_is_host_mode(hsotg))
173 		dwc2_init_fs_ls_pclk_sel(hsotg);
174 
175 	if (hsotg->params.i2c_enable) {
176 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
177 
178 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
179 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
180 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
181 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
182 
183 		/* Program GI2CCTL.I2CEn */
184 		i2cctl = dwc2_readl(hsotg, GI2CCTL);
185 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
186 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
187 		i2cctl &= ~GI2CCTL_I2CEN;
188 		dwc2_writel(hsotg, i2cctl, GI2CCTL);
189 		i2cctl |= GI2CCTL_I2CEN;
190 		dwc2_writel(hsotg, i2cctl, GI2CCTL);
191 	}
192 
193 	return retval;
194 }
195 
196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
197 {
198 	u32 usbcfg, usbcfg_old;
199 	int retval = 0;
200 
201 	if (!select_phy)
202 		return 0;
203 
204 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
205 	usbcfg_old = usbcfg;
206 
207 	/*
208 	 * HS PHY parameters. These parameters are preserved during soft reset
209 	 * so only program the first time. Do a soft reset immediately after
210 	 * setting phyif.
211 	 */
212 	switch (hsotg->params.phy_type) {
213 	case DWC2_PHY_TYPE_PARAM_ULPI:
214 		/* ULPI interface */
215 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
216 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
217 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
218 		if (hsotg->params.phy_ulpi_ddr)
219 			usbcfg |= GUSBCFG_DDRSEL;
220 
221 		/* Set external VBUS indicator as needed. */
222 		if (hsotg->params.oc_disable)
223 			usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
224 				   GUSBCFG_INDICATORPASSTHROUGH);
225 		break;
226 	case DWC2_PHY_TYPE_PARAM_UTMI:
227 		/* UTMI+ interface */
228 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
229 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
230 		if (hsotg->params.phy_utmi_width == 16)
231 			usbcfg |= GUSBCFG_PHYIF16;
232 		break;
233 	default:
234 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
235 		break;
236 	}
237 
238 	if (usbcfg != usbcfg_old) {
239 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
240 
241 		/* Reset after setting the PHY parameters */
242 		retval = dwc2_core_reset(hsotg, false);
243 		if (retval) {
244 			dev_err(hsotg->dev,
245 				"%s: Reset failed, aborting", __func__);
246 			return retval;
247 		}
248 	}
249 
250 	return retval;
251 }
252 
253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
254 {
255 	u32 usbcfg;
256 	int retval = 0;
257 
258 	if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
259 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
260 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
261 		/* If FS/LS mode with FS/LS PHY */
262 		retval = dwc2_fs_phy_init(hsotg, select_phy);
263 		if (retval)
264 			return retval;
265 	} else {
266 		/* High speed PHY */
267 		retval = dwc2_hs_phy_init(hsotg, select_phy);
268 		if (retval)
269 			return retval;
270 	}
271 
272 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
273 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
274 	    hsotg->params.ulpi_fs_ls) {
275 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
276 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
277 		usbcfg |= GUSBCFG_ULPI_FS_LS;
278 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
279 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
280 	} else {
281 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
282 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
283 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
284 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
285 	}
286 
287 	return retval;
288 }
289 
290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
291 {
292 	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
293 
294 	switch (hsotg->hw_params.arch) {
295 	case GHWCFG2_EXT_DMA_ARCH:
296 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
297 		return -EINVAL;
298 
299 	case GHWCFG2_INT_DMA_ARCH:
300 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
301 		if (hsotg->params.ahbcfg != -1) {
302 			ahbcfg &= GAHBCFG_CTRL_MASK;
303 			ahbcfg |= hsotg->params.ahbcfg &
304 				  ~GAHBCFG_CTRL_MASK;
305 		}
306 		break;
307 
308 	case GHWCFG2_SLAVE_ONLY_ARCH:
309 	default:
310 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
311 		break;
312 	}
313 
314 	if (hsotg->params.host_dma)
315 		ahbcfg |= GAHBCFG_DMA_EN;
316 	else
317 		hsotg->params.dma_desc_enable = false;
318 
319 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
320 
321 	return 0;
322 }
323 
324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
325 {
326 	u32 usbcfg;
327 
328 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
329 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
330 
331 	switch (hsotg->hw_params.op_mode) {
332 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
333 		if (hsotg->params.otg_cap ==
334 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
335 			usbcfg |= GUSBCFG_HNPCAP;
336 		if (hsotg->params.otg_cap !=
337 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
338 			usbcfg |= GUSBCFG_SRPCAP;
339 		break;
340 
341 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
342 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
343 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
344 		if (hsotg->params.otg_cap !=
345 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
346 			usbcfg |= GUSBCFG_SRPCAP;
347 		break;
348 
349 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
350 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
351 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
352 	default:
353 		break;
354 	}
355 
356 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
357 }
358 
359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
360 {
361 	int ret;
362 
363 	hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus");
364 	if (IS_ERR(hsotg->vbus_supply)) {
365 		ret = PTR_ERR(hsotg->vbus_supply);
366 		hsotg->vbus_supply = NULL;
367 		return ret == -ENODEV ? 0 : ret;
368 	}
369 
370 	return regulator_enable(hsotg->vbus_supply);
371 }
372 
373 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
374 {
375 	if (hsotg->vbus_supply)
376 		return regulator_disable(hsotg->vbus_supply);
377 
378 	return 0;
379 }
380 
381 /**
382  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
383  *
384  * @hsotg: Programming view of DWC_otg controller
385  */
386 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
387 {
388 	u32 intmsk;
389 
390 	dev_dbg(hsotg->dev, "%s()\n", __func__);
391 
392 	/* Disable all interrupts */
393 	dwc2_writel(hsotg, 0, GINTMSK);
394 	dwc2_writel(hsotg, 0, HAINTMSK);
395 
396 	/* Enable the common interrupts */
397 	dwc2_enable_common_interrupts(hsotg);
398 
399 	/* Enable host mode interrupts without disturbing common interrupts */
400 	intmsk = dwc2_readl(hsotg, GINTMSK);
401 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
402 	dwc2_writel(hsotg, intmsk, GINTMSK);
403 }
404 
405 /**
406  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
407  *
408  * @hsotg: Programming view of DWC_otg controller
409  */
410 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
411 {
412 	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
413 
414 	/* Disable host mode interrupts without disturbing common interrupts */
415 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
416 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
417 	dwc2_writel(hsotg, intmsk, GINTMSK);
418 }
419 
420 /*
421  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
422  * For system that have a total fifo depth that is smaller than the default
423  * RX + TX fifo size.
424  *
425  * @hsotg: Programming view of DWC_otg controller
426  */
427 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
428 {
429 	struct dwc2_core_params *params = &hsotg->params;
430 	struct dwc2_hw_params *hw = &hsotg->hw_params;
431 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
432 
433 	total_fifo_size = hw->total_fifo_size;
434 	rxfsiz = params->host_rx_fifo_size;
435 	nptxfsiz = params->host_nperio_tx_fifo_size;
436 	ptxfsiz = params->host_perio_tx_fifo_size;
437 
438 	/*
439 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
440 	 * allocation with support for high bandwidth endpoints. Synopsys
441 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
442 	 * non-periodic as 512.
443 	 */
444 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
445 		/*
446 		 * For Buffer DMA mode/Scatter Gather DMA mode
447 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
448 		 * with n = number of host channel.
449 		 * 2 * ((1024/4) + 2) = 516
450 		 */
451 		rxfsiz = 516 + hw->host_channels;
452 
453 		/*
454 		 * min non-periodic tx fifo depth
455 		 * 2 * (largest non-periodic USB packet used / 4)
456 		 * 2 * (512/4) = 256
457 		 */
458 		nptxfsiz = 256;
459 
460 		/*
461 		 * min periodic tx fifo depth
462 		 * (largest packet size*MC)/4
463 		 * (1024 * 3)/4 = 768
464 		 */
465 		ptxfsiz = 768;
466 
467 		params->host_rx_fifo_size = rxfsiz;
468 		params->host_nperio_tx_fifo_size = nptxfsiz;
469 		params->host_perio_tx_fifo_size = ptxfsiz;
470 	}
471 
472 	/*
473 	 * If the summation of RX, NPTX and PTX fifo sizes is still
474 	 * bigger than the total_fifo_size, then we have a problem.
475 	 *
476 	 * We won't be able to allocate as many endpoints. Right now,
477 	 * we're just printing an error message, but ideally this FIFO
478 	 * allocation algorithm would be improved in the future.
479 	 *
480 	 * FIXME improve this FIFO allocation algorithm.
481 	 */
482 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
483 		dev_err(hsotg->dev, "invalid fifo sizes\n");
484 }
485 
486 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
487 {
488 	struct dwc2_core_params *params = &hsotg->params;
489 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
490 
491 	if (!params->enable_dynamic_fifo)
492 		return;
493 
494 	dwc2_calculate_dynamic_fifo(hsotg);
495 
496 	/* Rx FIFO */
497 	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
498 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
499 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
500 	grxfsiz |= params->host_rx_fifo_size <<
501 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
502 	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
503 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
504 		dwc2_readl(hsotg, GRXFSIZ));
505 
506 	/* Non-periodic Tx FIFO */
507 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
508 		dwc2_readl(hsotg, GNPTXFSIZ));
509 	nptxfsiz = params->host_nperio_tx_fifo_size <<
510 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
511 	nptxfsiz |= params->host_rx_fifo_size <<
512 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
513 	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
514 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
515 		dwc2_readl(hsotg, GNPTXFSIZ));
516 
517 	/* Periodic Tx FIFO */
518 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
519 		dwc2_readl(hsotg, HPTXFSIZ));
520 	hptxfsiz = params->host_perio_tx_fifo_size <<
521 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
522 	hptxfsiz |= (params->host_rx_fifo_size +
523 		     params->host_nperio_tx_fifo_size) <<
524 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
525 	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
526 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
527 		dwc2_readl(hsotg, HPTXFSIZ));
528 
529 	if (hsotg->params.en_multiple_tx_fifo &&
530 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
531 		/*
532 		 * This feature was implemented in 2.91a version
533 		 * Global DFIFOCFG calculation for Host mode -
534 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
535 		 */
536 		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
537 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
538 		dfifocfg |= (params->host_rx_fifo_size +
539 			     params->host_nperio_tx_fifo_size +
540 			     params->host_perio_tx_fifo_size) <<
541 			    GDFIFOCFG_EPINFOBASE_SHIFT &
542 			    GDFIFOCFG_EPINFOBASE_MASK;
543 		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
544 	}
545 }
546 
547 /**
548  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
549  * the HFIR register according to PHY type and speed
550  *
551  * @hsotg: Programming view of DWC_otg controller
552  *
553  * NOTE: The caller can modify the value of the HFIR register only after the
554  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
555  * has been set
556  */
557 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
558 {
559 	u32 usbcfg;
560 	u32 hprt0;
561 	int clock = 60;	/* default value */
562 
563 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
564 	hprt0 = dwc2_readl(hsotg, HPRT0);
565 
566 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
567 	    !(usbcfg & GUSBCFG_PHYIF16))
568 		clock = 60;
569 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
570 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
571 		clock = 48;
572 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
573 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
574 		clock = 30;
575 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
576 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
577 		clock = 60;
578 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
579 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
580 		clock = 48;
581 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
582 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
583 		clock = 48;
584 	if ((usbcfg & GUSBCFG_PHYSEL) &&
585 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
586 		clock = 48;
587 
588 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
589 		/* High speed case */
590 		return 125 * clock - 1;
591 
592 	/* FS/LS case */
593 	return 1000 * clock - 1;
594 }
595 
596 /**
597  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
598  * buffer
599  *
600  * @hsotg: Programming view of DWC_otg controller
601  * @dest:    Destination buffer for the packet
602  * @bytes:   Number of bytes to copy to the destination
603  */
604 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
605 {
606 	u32 *data_buf = (u32 *)dest;
607 	int word_count = (bytes + 3) / 4;
608 	int i;
609 
610 	/*
611 	 * Todo: Account for the case where dest is not dword aligned. This
612 	 * requires reading data from the FIFO into a u32 temp buffer, then
613 	 * moving it into the data buffer.
614 	 */
615 
616 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
617 
618 	for (i = 0; i < word_count; i++, data_buf++)
619 		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
620 }
621 
622 /**
623  * dwc2_dump_channel_info() - Prints the state of a host channel
624  *
625  * @hsotg: Programming view of DWC_otg controller
626  * @chan:  Pointer to the channel to dump
627  *
628  * Must be called with interrupt disabled and spinlock held
629  *
630  * NOTE: This function will be removed once the peripheral controller code
631  * is integrated and the driver is stable
632  */
633 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
634 				   struct dwc2_host_chan *chan)
635 {
636 #ifdef VERBOSE_DEBUG
637 	int num_channels = hsotg->params.host_channels;
638 	struct dwc2_qh *qh;
639 	u32 hcchar;
640 	u32 hcsplt;
641 	u32 hctsiz;
642 	u32 hc_dma;
643 	int i;
644 
645 	if (!chan)
646 		return;
647 
648 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
649 	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
650 	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
651 	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
652 
653 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
654 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
655 		hcchar, hcsplt);
656 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
657 		hctsiz, hc_dma);
658 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
659 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
660 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
661 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
662 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
663 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
664 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
665 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
666 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
667 		(unsigned long)chan->xfer_dma);
668 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
669 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
670 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
671 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
672 			    qh_list_entry)
673 		dev_dbg(hsotg->dev, "    %p\n", qh);
674 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
675 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
676 			    qh_list_entry)
677 		dev_dbg(hsotg->dev, "    %p\n", qh);
678 	dev_dbg(hsotg->dev, "  NP active sched:\n");
679 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
680 			    qh_list_entry)
681 		dev_dbg(hsotg->dev, "    %p\n", qh);
682 	dev_dbg(hsotg->dev, "  Channels:\n");
683 	for (i = 0; i < num_channels; i++) {
684 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
685 
686 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
687 	}
688 #endif /* VERBOSE_DEBUG */
689 }
690 
691 static int _dwc2_hcd_start(struct usb_hcd *hcd);
692 
693 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
694 {
695 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
696 
697 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
698 	_dwc2_hcd_start(hcd);
699 }
700 
701 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
702 {
703 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
704 
705 	hcd->self.is_b_host = 0;
706 }
707 
708 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
709 			       int *hub_addr, int *hub_port)
710 {
711 	struct urb *urb = context;
712 
713 	if (urb->dev->tt)
714 		*hub_addr = urb->dev->tt->hub->devnum;
715 	else
716 		*hub_addr = 0;
717 	*hub_port = urb->dev->ttport;
718 }
719 
720 /*
721  * =========================================================================
722  *  Low Level Host Channel Access Functions
723  * =========================================================================
724  */
725 
726 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
727 				      struct dwc2_host_chan *chan)
728 {
729 	u32 hcintmsk = HCINTMSK_CHHLTD;
730 
731 	switch (chan->ep_type) {
732 	case USB_ENDPOINT_XFER_CONTROL:
733 	case USB_ENDPOINT_XFER_BULK:
734 		dev_vdbg(hsotg->dev, "control/bulk\n");
735 		hcintmsk |= HCINTMSK_XFERCOMPL;
736 		hcintmsk |= HCINTMSK_STALL;
737 		hcintmsk |= HCINTMSK_XACTERR;
738 		hcintmsk |= HCINTMSK_DATATGLERR;
739 		if (chan->ep_is_in) {
740 			hcintmsk |= HCINTMSK_BBLERR;
741 		} else {
742 			hcintmsk |= HCINTMSK_NAK;
743 			hcintmsk |= HCINTMSK_NYET;
744 			if (chan->do_ping)
745 				hcintmsk |= HCINTMSK_ACK;
746 		}
747 
748 		if (chan->do_split) {
749 			hcintmsk |= HCINTMSK_NAK;
750 			if (chan->complete_split)
751 				hcintmsk |= HCINTMSK_NYET;
752 			else
753 				hcintmsk |= HCINTMSK_ACK;
754 		}
755 
756 		if (chan->error_state)
757 			hcintmsk |= HCINTMSK_ACK;
758 		break;
759 
760 	case USB_ENDPOINT_XFER_INT:
761 		if (dbg_perio())
762 			dev_vdbg(hsotg->dev, "intr\n");
763 		hcintmsk |= HCINTMSK_XFERCOMPL;
764 		hcintmsk |= HCINTMSK_NAK;
765 		hcintmsk |= HCINTMSK_STALL;
766 		hcintmsk |= HCINTMSK_XACTERR;
767 		hcintmsk |= HCINTMSK_DATATGLERR;
768 		hcintmsk |= HCINTMSK_FRMOVRUN;
769 
770 		if (chan->ep_is_in)
771 			hcintmsk |= HCINTMSK_BBLERR;
772 		if (chan->error_state)
773 			hcintmsk |= HCINTMSK_ACK;
774 		if (chan->do_split) {
775 			if (chan->complete_split)
776 				hcintmsk |= HCINTMSK_NYET;
777 			else
778 				hcintmsk |= HCINTMSK_ACK;
779 		}
780 		break;
781 
782 	case USB_ENDPOINT_XFER_ISOC:
783 		if (dbg_perio())
784 			dev_vdbg(hsotg->dev, "isoc\n");
785 		hcintmsk |= HCINTMSK_XFERCOMPL;
786 		hcintmsk |= HCINTMSK_FRMOVRUN;
787 		hcintmsk |= HCINTMSK_ACK;
788 
789 		if (chan->ep_is_in) {
790 			hcintmsk |= HCINTMSK_XACTERR;
791 			hcintmsk |= HCINTMSK_BBLERR;
792 		}
793 		break;
794 	default:
795 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
796 		break;
797 	}
798 
799 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
800 	if (dbg_hc(chan))
801 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
802 }
803 
804 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
805 				    struct dwc2_host_chan *chan)
806 {
807 	u32 hcintmsk = HCINTMSK_CHHLTD;
808 
809 	/*
810 	 * For Descriptor DMA mode core halts the channel on AHB error.
811 	 * Interrupt is not required.
812 	 */
813 	if (!hsotg->params.dma_desc_enable) {
814 		if (dbg_hc(chan))
815 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
816 		hcintmsk |= HCINTMSK_AHBERR;
817 	} else {
818 		if (dbg_hc(chan))
819 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
820 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
821 			hcintmsk |= HCINTMSK_XFERCOMPL;
822 	}
823 
824 	if (chan->error_state && !chan->do_split &&
825 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
826 		if (dbg_hc(chan))
827 			dev_vdbg(hsotg->dev, "setting ACK\n");
828 		hcintmsk |= HCINTMSK_ACK;
829 		if (chan->ep_is_in) {
830 			hcintmsk |= HCINTMSK_DATATGLERR;
831 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
832 				hcintmsk |= HCINTMSK_NAK;
833 		}
834 	}
835 
836 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
837 	if (dbg_hc(chan))
838 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
839 }
840 
841 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
842 				struct dwc2_host_chan *chan)
843 {
844 	u32 intmsk;
845 
846 	if (hsotg->params.host_dma) {
847 		if (dbg_hc(chan))
848 			dev_vdbg(hsotg->dev, "DMA enabled\n");
849 		dwc2_hc_enable_dma_ints(hsotg, chan);
850 	} else {
851 		if (dbg_hc(chan))
852 			dev_vdbg(hsotg->dev, "DMA disabled\n");
853 		dwc2_hc_enable_slave_ints(hsotg, chan);
854 	}
855 
856 	/* Enable the top level host channel interrupt */
857 	intmsk = dwc2_readl(hsotg, HAINTMSK);
858 	intmsk |= 1 << chan->hc_num;
859 	dwc2_writel(hsotg, intmsk, HAINTMSK);
860 	if (dbg_hc(chan))
861 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
862 
863 	/* Make sure host channel interrupts are enabled */
864 	intmsk = dwc2_readl(hsotg, GINTMSK);
865 	intmsk |= GINTSTS_HCHINT;
866 	dwc2_writel(hsotg, intmsk, GINTMSK);
867 	if (dbg_hc(chan))
868 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
869 }
870 
871 /**
872  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
873  * a specific endpoint
874  *
875  * @hsotg: Programming view of DWC_otg controller
876  * @chan:  Information needed to initialize the host channel
877  *
878  * The HCCHARn register is set up with the characteristics specified in chan.
879  * Host channel interrupts that may need to be serviced while this transfer is
880  * in progress are enabled.
881  */
882 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
883 {
884 	u8 hc_num = chan->hc_num;
885 	u32 hcintmsk;
886 	u32 hcchar;
887 	u32 hcsplt = 0;
888 
889 	if (dbg_hc(chan))
890 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
891 
892 	/* Clear old interrupt conditions for this host channel */
893 	hcintmsk = 0xffffffff;
894 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
895 	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
896 
897 	/* Enable channel interrupts required for this transfer */
898 	dwc2_hc_enable_ints(hsotg, chan);
899 
900 	/*
901 	 * Program the HCCHARn register with the endpoint characteristics for
902 	 * the current transfer
903 	 */
904 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
905 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
906 	if (chan->ep_is_in)
907 		hcchar |= HCCHAR_EPDIR;
908 	if (chan->speed == USB_SPEED_LOW)
909 		hcchar |= HCCHAR_LSPDDEV;
910 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
911 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
912 	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
913 	if (dbg_hc(chan)) {
914 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
915 			 hc_num, hcchar);
916 
917 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
918 			 __func__, hc_num);
919 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
920 			 chan->dev_addr);
921 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
922 			 chan->ep_num);
923 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
924 			 chan->ep_is_in);
925 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
926 			 chan->speed == USB_SPEED_LOW);
927 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
928 			 chan->ep_type);
929 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
930 			 chan->max_packet);
931 	}
932 
933 	/* Program the HCSPLT register for SPLITs */
934 	if (chan->do_split) {
935 		if (dbg_hc(chan))
936 			dev_vdbg(hsotg->dev,
937 				 "Programming HC %d with split --> %s\n",
938 				 hc_num,
939 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
940 		if (chan->complete_split)
941 			hcsplt |= HCSPLT_COMPSPLT;
942 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
943 			  HCSPLT_XACTPOS_MASK;
944 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
945 			  HCSPLT_HUBADDR_MASK;
946 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
947 			  HCSPLT_PRTADDR_MASK;
948 		if (dbg_hc(chan)) {
949 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
950 				 chan->complete_split);
951 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
952 				 chan->xact_pos);
953 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
954 				 chan->hub_addr);
955 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
956 				 chan->hub_port);
957 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
958 				 chan->ep_is_in);
959 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
960 				 chan->max_packet);
961 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
962 				 chan->xfer_len);
963 		}
964 	}
965 
966 	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
967 }
968 
969 /**
970  * dwc2_hc_halt() - Attempts to halt a host channel
971  *
972  * @hsotg:       Controller register interface
973  * @chan:        Host channel to halt
974  * @halt_status: Reason for halting the channel
975  *
976  * This function should only be called in Slave mode or to abort a transfer in
977  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
978  * controller halts the channel when the transfer is complete or a condition
979  * occurs that requires application intervention.
980  *
981  * In slave mode, checks for a free request queue entry, then sets the Channel
982  * Enable and Channel Disable bits of the Host Channel Characteristics
983  * register of the specified channel to intiate the halt. If there is no free
984  * request queue entry, sets only the Channel Disable bit of the HCCHARn
985  * register to flush requests for this channel. In the latter case, sets a
986  * flag to indicate that the host channel needs to be halted when a request
987  * queue slot is open.
988  *
989  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
990  * HCCHARn register. The controller ensures there is space in the request
991  * queue before submitting the halt request.
992  *
993  * Some time may elapse before the core flushes any posted requests for this
994  * host channel and halts. The Channel Halted interrupt handler completes the
995  * deactivation of the host channel.
996  */
997 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
998 		  enum dwc2_halt_status halt_status)
999 {
1000 	u32 nptxsts, hptxsts, hcchar;
1001 
1002 	if (dbg_hc(chan))
1003 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1004 
1005 	/*
1006 	 * In buffer DMA or external DMA mode channel can't be halted
1007 	 * for non-split periodic channels. At the end of the next
1008 	 * uframe/frame (in the worst case), the core generates a channel
1009 	 * halted and disables the channel automatically.
1010 	 */
1011 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
1012 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
1013 		if (!chan->do_split &&
1014 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
1015 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
1016 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
1017 				__func__);
1018 			return;
1019 		}
1020 	}
1021 
1022 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1023 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1024 
1025 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1026 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
1027 		/*
1028 		 * Disable all channel interrupts except Ch Halted. The QTD
1029 		 * and QH state associated with this transfer has been cleared
1030 		 * (in the case of URB_DEQUEUE), so the channel needs to be
1031 		 * shut down carefully to prevent crashes.
1032 		 */
1033 		u32 hcintmsk = HCINTMSK_CHHLTD;
1034 
1035 		dev_vdbg(hsotg->dev, "dequeue/error\n");
1036 		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
1037 
1038 		/*
1039 		 * Make sure no other interrupts besides halt are currently
1040 		 * pending. Handling another interrupt could cause a crash due
1041 		 * to the QTD and QH state.
1042 		 */
1043 		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
1044 
1045 		/*
1046 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1047 		 * even if the channel was already halted for some other
1048 		 * reason
1049 		 */
1050 		chan->halt_status = halt_status;
1051 
1052 		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1053 		if (!(hcchar & HCCHAR_CHENA)) {
1054 			/*
1055 			 * The channel is either already halted or it hasn't
1056 			 * started yet. In DMA mode, the transfer may halt if
1057 			 * it finishes normally or a condition occurs that
1058 			 * requires driver intervention. Don't want to halt
1059 			 * the channel again. In either Slave or DMA mode,
1060 			 * it's possible that the transfer has been assigned
1061 			 * to a channel, but not started yet when an URB is
1062 			 * dequeued. Don't want to halt a channel that hasn't
1063 			 * started yet.
1064 			 */
1065 			return;
1066 		}
1067 	}
1068 	if (chan->halt_pending) {
1069 		/*
1070 		 * A halt has already been issued for this channel. This might
1071 		 * happen when a transfer is aborted by a higher level in
1072 		 * the stack.
1073 		 */
1074 		dev_vdbg(hsotg->dev,
1075 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1076 			 __func__, chan->hc_num);
1077 		return;
1078 	}
1079 
1080 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1081 
1082 	/* No need to set the bit in DDMA for disabling the channel */
1083 	/* TODO check it everywhere channel is disabled */
1084 	if (!hsotg->params.dma_desc_enable) {
1085 		if (dbg_hc(chan))
1086 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1087 		hcchar |= HCCHAR_CHENA;
1088 	} else {
1089 		if (dbg_hc(chan))
1090 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1091 	}
1092 	hcchar |= HCCHAR_CHDIS;
1093 
1094 	if (!hsotg->params.host_dma) {
1095 		if (dbg_hc(chan))
1096 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1097 		hcchar |= HCCHAR_CHENA;
1098 
1099 		/* Check for space in the request queue to issue the halt */
1100 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1101 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1102 			dev_vdbg(hsotg->dev, "control/bulk\n");
1103 			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
1104 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1105 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1106 				hcchar &= ~HCCHAR_CHENA;
1107 			}
1108 		} else {
1109 			if (dbg_perio())
1110 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1111 			hptxsts = dwc2_readl(hsotg, HPTXSTS);
1112 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1113 			    hsotg->queuing_high_bandwidth) {
1114 				if (dbg_perio())
1115 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1116 				hcchar &= ~HCCHAR_CHENA;
1117 			}
1118 		}
1119 	} else {
1120 		if (dbg_hc(chan))
1121 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1122 	}
1123 
1124 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1125 	chan->halt_status = halt_status;
1126 
1127 	if (hcchar & HCCHAR_CHENA) {
1128 		if (dbg_hc(chan))
1129 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1130 		chan->halt_pending = 1;
1131 		chan->halt_on_queue = 0;
1132 	} else {
1133 		if (dbg_hc(chan))
1134 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1135 		chan->halt_on_queue = 1;
1136 	}
1137 
1138 	if (dbg_hc(chan)) {
1139 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1140 			 chan->hc_num);
1141 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1142 			 hcchar);
1143 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1144 			 chan->halt_pending);
1145 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1146 			 chan->halt_on_queue);
1147 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1148 			 chan->halt_status);
1149 	}
1150 }
1151 
1152 /**
1153  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1154  *
1155  * @hsotg: Programming view of DWC_otg controller
1156  * @chan:  Identifies the host channel to clean up
1157  *
1158  * This function is normally called after a transfer is done and the host
1159  * channel is being released
1160  */
1161 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1162 {
1163 	u32 hcintmsk;
1164 
1165 	chan->xfer_started = 0;
1166 
1167 	list_del_init(&chan->split_order_list_entry);
1168 
1169 	/*
1170 	 * Clear channel interrupt enables and any unhandled channel interrupt
1171 	 * conditions
1172 	 */
1173 	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
1174 	hcintmsk = 0xffffffff;
1175 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1176 	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
1177 }
1178 
1179 /**
1180  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1181  * which frame a periodic transfer should occur
1182  *
1183  * @hsotg:  Programming view of DWC_otg controller
1184  * @chan:   Identifies the host channel to set up and its properties
1185  * @hcchar: Current value of the HCCHAR register for the specified host channel
1186  *
1187  * This function has no effect on non-periodic transfers
1188  */
1189 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1190 				       struct dwc2_host_chan *chan, u32 *hcchar)
1191 {
1192 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1193 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1194 		int host_speed;
1195 		int xfer_ns;
1196 		int xfer_us;
1197 		int bytes_in_fifo;
1198 		u16 fifo_space;
1199 		u16 frame_number;
1200 		u16 wire_frame;
1201 
1202 		/*
1203 		 * Try to figure out if we're an even or odd frame. If we set
1204 		 * even and the current frame number is even the the transfer
1205 		 * will happen immediately.  Similar if both are odd. If one is
1206 		 * even and the other is odd then the transfer will happen when
1207 		 * the frame number ticks.
1208 		 *
1209 		 * There's a bit of a balancing act to get this right.
1210 		 * Sometimes we may want to send data in the current frame (AK
1211 		 * right away).  We might want to do this if the frame number
1212 		 * _just_ ticked, but we might also want to do this in order
1213 		 * to continue a split transaction that happened late in a
1214 		 * microframe (so we didn't know to queue the next transfer
1215 		 * until the frame number had ticked).  The problem is that we
1216 		 * need a lot of knowledge to know if there's actually still
1217 		 * time to send things or if it would be better to wait until
1218 		 * the next frame.
1219 		 *
1220 		 * We can look at how much time is left in the current frame
1221 		 * and make a guess about whether we'll have time to transfer.
1222 		 * We'll do that.
1223 		 */
1224 
1225 		/* Get speed host is running at */
1226 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1227 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1228 
1229 		/* See how many bytes are in the periodic FIFO right now */
1230 		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1231 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1232 		bytes_in_fifo = sizeof(u32) *
1233 				(hsotg->params.host_perio_tx_fifo_size -
1234 				 fifo_space);
1235 
1236 		/*
1237 		 * Roughly estimate bus time for everything in the periodic
1238 		 * queue + our new transfer.  This is "rough" because we're
1239 		 * using a function that makes takes into account IN/OUT
1240 		 * and INT/ISO and we're just slamming in one value for all
1241 		 * transfers.  This should be an over-estimate and that should
1242 		 * be OK, but we can probably tighten it.
1243 		 */
1244 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1245 					    chan->xfer_len + bytes_in_fifo);
1246 		xfer_us = NS_TO_US(xfer_ns);
1247 
1248 		/* See what frame number we'll be at by the time we finish */
1249 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1250 
1251 		/* This is when we were scheduled to be on the wire */
1252 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1253 
1254 		/*
1255 		 * If we'd finish _after_ the frame we're scheduled in then
1256 		 * it's hopeless.  Just schedule right away and hope for the
1257 		 * best.  Note that it _might_ be wise to call back into the
1258 		 * scheduler to pick a better frame, but this is better than
1259 		 * nothing.
1260 		 */
1261 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1262 			dwc2_sch_vdbg(hsotg,
1263 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1264 				      chan->qh, wire_frame, frame_number,
1265 				      dwc2_frame_num_dec(frame_number,
1266 							 wire_frame));
1267 			wire_frame = frame_number;
1268 
1269 			/*
1270 			 * We picked a different frame number; communicate this
1271 			 * back to the scheduler so it doesn't try to schedule
1272 			 * another in the same frame.
1273 			 *
1274 			 * Remember that next_active_frame is 1 before the wire
1275 			 * frame.
1276 			 */
1277 			chan->qh->next_active_frame =
1278 				dwc2_frame_num_dec(frame_number, 1);
1279 		}
1280 
1281 		if (wire_frame & 1)
1282 			*hcchar |= HCCHAR_ODDFRM;
1283 		else
1284 			*hcchar &= ~HCCHAR_ODDFRM;
1285 	}
1286 }
1287 
1288 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1289 {
1290 	/* Set up the initial PID for the transfer */
1291 	if (chan->speed == USB_SPEED_HIGH) {
1292 		if (chan->ep_is_in) {
1293 			if (chan->multi_count == 1)
1294 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1295 			else if (chan->multi_count == 2)
1296 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1297 			else
1298 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1299 		} else {
1300 			if (chan->multi_count == 1)
1301 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1302 			else
1303 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1304 		}
1305 	} else {
1306 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1307 	}
1308 }
1309 
1310 /**
1311  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1312  * the Host Channel
1313  *
1314  * @hsotg: Programming view of DWC_otg controller
1315  * @chan:  Information needed to initialize the host channel
1316  *
1317  * This function should only be called in Slave mode. For a channel associated
1318  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1319  * associated with a periodic EP, the periodic Tx FIFO is written.
1320  *
1321  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1322  * the number of bytes written to the Tx FIFO.
1323  */
1324 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1325 				 struct dwc2_host_chan *chan)
1326 {
1327 	u32 i;
1328 	u32 remaining_count;
1329 	u32 byte_count;
1330 	u32 dword_count;
1331 	u32 __iomem *data_fifo;
1332 	u32 *data_buf = (u32 *)chan->xfer_buf;
1333 
1334 	if (dbg_hc(chan))
1335 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1336 
1337 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1338 
1339 	remaining_count = chan->xfer_len - chan->xfer_count;
1340 	if (remaining_count > chan->max_packet)
1341 		byte_count = chan->max_packet;
1342 	else
1343 		byte_count = remaining_count;
1344 
1345 	dword_count = (byte_count + 3) / 4;
1346 
1347 	if (((unsigned long)data_buf & 0x3) == 0) {
1348 		/* xfer_buf is DWORD aligned */
1349 		for (i = 0; i < dword_count; i++, data_buf++)
1350 			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1351 	} else {
1352 		/* xfer_buf is not DWORD aligned */
1353 		for (i = 0; i < dword_count; i++, data_buf++) {
1354 			u32 data = data_buf[0] | data_buf[1] << 8 |
1355 				   data_buf[2] << 16 | data_buf[3] << 24;
1356 			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1357 		}
1358 	}
1359 
1360 	chan->xfer_count += byte_count;
1361 	chan->xfer_buf += byte_count;
1362 }
1363 
1364 /**
1365  * dwc2_hc_do_ping() - Starts a PING transfer
1366  *
1367  * @hsotg: Programming view of DWC_otg controller
1368  * @chan:  Information needed to initialize the host channel
1369  *
1370  * This function should only be called in Slave mode. The Do Ping bit is set in
1371  * the HCTSIZ register, then the channel is enabled.
1372  */
1373 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1374 			    struct dwc2_host_chan *chan)
1375 {
1376 	u32 hcchar;
1377 	u32 hctsiz;
1378 
1379 	if (dbg_hc(chan))
1380 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1381 			 chan->hc_num);
1382 
1383 	hctsiz = TSIZ_DOPNG;
1384 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1385 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1386 
1387 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1388 	hcchar |= HCCHAR_CHENA;
1389 	hcchar &= ~HCCHAR_CHDIS;
1390 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1391 }
1392 
1393 /**
1394  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1395  * channel and starts the transfer
1396  *
1397  * @hsotg: Programming view of DWC_otg controller
1398  * @chan:  Information needed to initialize the host channel. The xfer_len value
1399  *         may be reduced to accommodate the max widths of the XferSize and
1400  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1401  *         changed to reflect the final xfer_len value.
1402  *
1403  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1404  * the caller must ensure that there is sufficient space in the request queue
1405  * and Tx Data FIFO.
1406  *
1407  * For an OUT transfer in Slave mode, it loads a data packet into the
1408  * appropriate FIFO. If necessary, additional data packets are loaded in the
1409  * Host ISR.
1410  *
1411  * For an IN transfer in Slave mode, a data packet is requested. The data
1412  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1413  * additional data packets are requested in the Host ISR.
1414  *
1415  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1416  * register along with a packet count of 1 and the channel is enabled. This
1417  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1418  * simply set to 0 since no data transfer occurs in this case.
1419  *
1420  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1421  * all the information required to perform the subsequent data transfer. In
1422  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1423  * controller performs the entire PING protocol, then starts the data
1424  * transfer.
1425  */
1426 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1427 				   struct dwc2_host_chan *chan)
1428 {
1429 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1430 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1431 	u32 hcchar;
1432 	u32 hctsiz = 0;
1433 	u16 num_packets;
1434 	u32 ec_mc;
1435 
1436 	if (dbg_hc(chan))
1437 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1438 
1439 	if (chan->do_ping) {
1440 		if (!hsotg->params.host_dma) {
1441 			if (dbg_hc(chan))
1442 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1443 			dwc2_hc_do_ping(hsotg, chan);
1444 			chan->xfer_started = 1;
1445 			return;
1446 		}
1447 
1448 		if (dbg_hc(chan))
1449 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1450 
1451 		hctsiz |= TSIZ_DOPNG;
1452 	}
1453 
1454 	if (chan->do_split) {
1455 		if (dbg_hc(chan))
1456 			dev_vdbg(hsotg->dev, "split\n");
1457 		num_packets = 1;
1458 
1459 		if (chan->complete_split && !chan->ep_is_in)
1460 			/*
1461 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1462 			 * core doesn't expect any data written to the FIFO
1463 			 */
1464 			chan->xfer_len = 0;
1465 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1466 			chan->xfer_len = chan->max_packet;
1467 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1468 			chan->xfer_len = 188;
1469 
1470 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1471 			  TSIZ_XFERSIZE_MASK;
1472 
1473 		/* For split set ec_mc for immediate retries */
1474 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1475 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1476 			ec_mc = 3;
1477 		else
1478 			ec_mc = 1;
1479 	} else {
1480 		if (dbg_hc(chan))
1481 			dev_vdbg(hsotg->dev, "no split\n");
1482 		/*
1483 		 * Ensure that the transfer length and packet count will fit
1484 		 * in the widths allocated for them in the HCTSIZn register
1485 		 */
1486 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1487 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1488 			/*
1489 			 * Make sure the transfer size is no larger than one
1490 			 * (micro)frame's worth of data. (A check was done
1491 			 * when the periodic transfer was accepted to ensure
1492 			 * that a (micro)frame's worth of data can be
1493 			 * programmed into a channel.)
1494 			 */
1495 			u32 max_periodic_len =
1496 				chan->multi_count * chan->max_packet;
1497 
1498 			if (chan->xfer_len > max_periodic_len)
1499 				chan->xfer_len = max_periodic_len;
1500 		} else if (chan->xfer_len > max_hc_xfer_size) {
1501 			/*
1502 			 * Make sure that xfer_len is a multiple of max packet
1503 			 * size
1504 			 */
1505 			chan->xfer_len =
1506 				max_hc_xfer_size - chan->max_packet + 1;
1507 		}
1508 
1509 		if (chan->xfer_len > 0) {
1510 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1511 					chan->max_packet;
1512 			if (num_packets > max_hc_pkt_count) {
1513 				num_packets = max_hc_pkt_count;
1514 				chan->xfer_len = num_packets * chan->max_packet;
1515 			}
1516 		} else {
1517 			/* Need 1 packet for transfer length of 0 */
1518 			num_packets = 1;
1519 		}
1520 
1521 		if (chan->ep_is_in)
1522 			/*
1523 			 * Always program an integral # of max packets for IN
1524 			 * transfers
1525 			 */
1526 			chan->xfer_len = num_packets * chan->max_packet;
1527 
1528 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1529 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1530 			/*
1531 			 * Make sure that the multi_count field matches the
1532 			 * actual transfer length
1533 			 */
1534 			chan->multi_count = num_packets;
1535 
1536 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1537 			dwc2_set_pid_isoc(chan);
1538 
1539 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1540 			  TSIZ_XFERSIZE_MASK;
1541 
1542 		/* The ec_mc gets the multi_count for non-split */
1543 		ec_mc = chan->multi_count;
1544 	}
1545 
1546 	chan->start_pkt_count = num_packets;
1547 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1548 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1549 		  TSIZ_SC_MC_PID_MASK;
1550 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1551 	if (dbg_hc(chan)) {
1552 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1553 			 hctsiz, chan->hc_num);
1554 
1555 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1556 			 chan->hc_num);
1557 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1558 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1559 			 TSIZ_XFERSIZE_SHIFT);
1560 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1561 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1562 			 TSIZ_PKTCNT_SHIFT);
1563 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1564 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1565 			 TSIZ_SC_MC_PID_SHIFT);
1566 	}
1567 
1568 	if (hsotg->params.host_dma) {
1569 		dma_addr_t dma_addr;
1570 
1571 		if (chan->align_buf) {
1572 			if (dbg_hc(chan))
1573 				dev_vdbg(hsotg->dev, "align_buf\n");
1574 			dma_addr = chan->align_buf;
1575 		} else {
1576 			dma_addr = chan->xfer_dma;
1577 		}
1578 		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1579 
1580 		if (dbg_hc(chan))
1581 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1582 				 (unsigned long)dma_addr, chan->hc_num);
1583 	}
1584 
1585 	/* Start the split */
1586 	if (chan->do_split) {
1587 		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1588 
1589 		hcsplt |= HCSPLT_SPLTENA;
1590 		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1591 	}
1592 
1593 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1594 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1595 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1596 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1597 
1598 	if (hcchar & HCCHAR_CHDIS)
1599 		dev_warn(hsotg->dev,
1600 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1601 			 __func__, chan->hc_num, hcchar);
1602 
1603 	/* Set host channel enable after all other setup is complete */
1604 	hcchar |= HCCHAR_CHENA;
1605 	hcchar &= ~HCCHAR_CHDIS;
1606 
1607 	if (dbg_hc(chan))
1608 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1609 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1610 			 HCCHAR_MULTICNT_SHIFT);
1611 
1612 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1613 	if (dbg_hc(chan))
1614 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1615 			 chan->hc_num);
1616 
1617 	chan->xfer_started = 1;
1618 	chan->requests++;
1619 
1620 	if (!hsotg->params.host_dma &&
1621 	    !chan->ep_is_in && chan->xfer_len > 0)
1622 		/* Load OUT packet into the appropriate Tx FIFO */
1623 		dwc2_hc_write_packet(hsotg, chan);
1624 }
1625 
1626 /**
1627  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1628  * host channel and starts the transfer in Descriptor DMA mode
1629  *
1630  * @hsotg: Programming view of DWC_otg controller
1631  * @chan:  Information needed to initialize the host channel
1632  *
1633  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1634  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1635  * with micro-frame bitmap.
1636  *
1637  * Initializes HCDMA register with descriptor list address and CTD value then
1638  * starts the transfer via enabling the channel.
1639  */
1640 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1641 				 struct dwc2_host_chan *chan)
1642 {
1643 	u32 hcchar;
1644 	u32 hctsiz = 0;
1645 
1646 	if (chan->do_ping)
1647 		hctsiz |= TSIZ_DOPNG;
1648 
1649 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1650 		dwc2_set_pid_isoc(chan);
1651 
1652 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1653 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1654 		  TSIZ_SC_MC_PID_MASK;
1655 
1656 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1657 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1658 
1659 	/* Non-zero only for high-speed interrupt endpoints */
1660 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1661 
1662 	if (dbg_hc(chan)) {
1663 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1664 			 chan->hc_num);
1665 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1666 			 chan->data_pid_start);
1667 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1668 	}
1669 
1670 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1671 
1672 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1673 				   chan->desc_list_sz, DMA_TO_DEVICE);
1674 
1675 	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1676 
1677 	if (dbg_hc(chan))
1678 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1679 			 &chan->desc_list_addr, chan->hc_num);
1680 
1681 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1682 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1683 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1684 		  HCCHAR_MULTICNT_MASK;
1685 
1686 	if (hcchar & HCCHAR_CHDIS)
1687 		dev_warn(hsotg->dev,
1688 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1689 			 __func__, chan->hc_num, hcchar);
1690 
1691 	/* Set host channel enable after all other setup is complete */
1692 	hcchar |= HCCHAR_CHENA;
1693 	hcchar &= ~HCCHAR_CHDIS;
1694 
1695 	if (dbg_hc(chan))
1696 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1697 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1698 			 HCCHAR_MULTICNT_SHIFT);
1699 
1700 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1701 	if (dbg_hc(chan))
1702 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1703 			 chan->hc_num);
1704 
1705 	chan->xfer_started = 1;
1706 	chan->requests++;
1707 }
1708 
1709 /**
1710  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1711  * a previous call to dwc2_hc_start_transfer()
1712  *
1713  * @hsotg: Programming view of DWC_otg controller
1714  * @chan:  Information needed to initialize the host channel
1715  *
1716  * The caller must ensure there is sufficient space in the request queue and Tx
1717  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1718  * the controller acts autonomously to complete transfers programmed to a host
1719  * channel.
1720  *
1721  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1722  * if there is any data remaining to be queued. For an IN transfer, another
1723  * data packet is always requested. For the SETUP phase of a control transfer,
1724  * this function does nothing.
1725  *
1726  * Return: 1 if a new request is queued, 0 if no more requests are required
1727  * for this transfer
1728  */
1729 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1730 				     struct dwc2_host_chan *chan)
1731 {
1732 	if (dbg_hc(chan))
1733 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1734 			 chan->hc_num);
1735 
1736 	if (chan->do_split)
1737 		/* SPLITs always queue just once per channel */
1738 		return 0;
1739 
1740 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1741 		/* SETUPs are queued only once since they can't be NAK'd */
1742 		return 0;
1743 
1744 	if (chan->ep_is_in) {
1745 		/*
1746 		 * Always queue another request for other IN transfers. If
1747 		 * back-to-back INs are issued and NAKs are received for both,
1748 		 * the driver may still be processing the first NAK when the
1749 		 * second NAK is received. When the interrupt handler clears
1750 		 * the NAK interrupt for the first NAK, the second NAK will
1751 		 * not be seen. So we can't depend on the NAK interrupt
1752 		 * handler to requeue a NAK'd request. Instead, IN requests
1753 		 * are issued each time this function is called. When the
1754 		 * transfer completes, the extra requests for the channel will
1755 		 * be flushed.
1756 		 */
1757 		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1758 
1759 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1760 		hcchar |= HCCHAR_CHENA;
1761 		hcchar &= ~HCCHAR_CHDIS;
1762 		if (dbg_hc(chan))
1763 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1764 				 hcchar);
1765 		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1766 		chan->requests++;
1767 		return 1;
1768 	}
1769 
1770 	/* OUT transfers */
1771 
1772 	if (chan->xfer_count < chan->xfer_len) {
1773 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1774 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1775 			u32 hcchar = dwc2_readl(hsotg,
1776 						HCCHAR(chan->hc_num));
1777 
1778 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1779 						   &hcchar);
1780 		}
1781 
1782 		/* Load OUT packet into the appropriate Tx FIFO */
1783 		dwc2_hc_write_packet(hsotg, chan);
1784 		chan->requests++;
1785 		return 1;
1786 	}
1787 
1788 	return 0;
1789 }
1790 
1791 /*
1792  * =========================================================================
1793  *  HCD
1794  * =========================================================================
1795  */
1796 
1797 /*
1798  * Processes all the URBs in a single list of QHs. Completes them with
1799  * -ETIMEDOUT and frees the QTD.
1800  *
1801  * Must be called with interrupt disabled and spinlock held
1802  */
1803 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1804 				      struct list_head *qh_list)
1805 {
1806 	struct dwc2_qh *qh, *qh_tmp;
1807 	struct dwc2_qtd *qtd, *qtd_tmp;
1808 
1809 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1810 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1811 					 qtd_list_entry) {
1812 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1813 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1814 		}
1815 	}
1816 }
1817 
1818 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1819 			      struct list_head *qh_list)
1820 {
1821 	struct dwc2_qtd *qtd, *qtd_tmp;
1822 	struct dwc2_qh *qh, *qh_tmp;
1823 	unsigned long flags;
1824 
1825 	if (!qh_list->next)
1826 		/* The list hasn't been initialized yet */
1827 		return;
1828 
1829 	spin_lock_irqsave(&hsotg->lock, flags);
1830 
1831 	/* Ensure there are no QTDs or URBs left */
1832 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1833 
1834 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1835 		dwc2_hcd_qh_unlink(hsotg, qh);
1836 
1837 		/* Free each QTD in the QH's QTD list */
1838 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1839 					 qtd_list_entry)
1840 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1841 
1842 		if (qh->channel && qh->channel->qh == qh)
1843 			qh->channel->qh = NULL;
1844 
1845 		spin_unlock_irqrestore(&hsotg->lock, flags);
1846 		dwc2_hcd_qh_free(hsotg, qh);
1847 		spin_lock_irqsave(&hsotg->lock, flags);
1848 	}
1849 
1850 	spin_unlock_irqrestore(&hsotg->lock, flags);
1851 }
1852 
1853 /*
1854  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1855  * and periodic schedules. The QTD associated with each URB is removed from
1856  * the schedule and freed. This function may be called when a disconnect is
1857  * detected or when the HCD is being stopped.
1858  *
1859  * Must be called with interrupt disabled and spinlock held
1860  */
1861 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1862 {
1863 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1864 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1865 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1866 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1867 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1868 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1869 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1870 }
1871 
1872 /**
1873  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1874  *
1875  * @hsotg: Pointer to struct dwc2_hsotg
1876  */
1877 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1878 {
1879 	u32 hprt0;
1880 
1881 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1882 		/*
1883 		 * Reset the port. During a HNP mode switch the reset
1884 		 * needs to occur within 1ms and have a duration of at
1885 		 * least 50ms.
1886 		 */
1887 		hprt0 = dwc2_read_hprt0(hsotg);
1888 		hprt0 |= HPRT0_RST;
1889 		dwc2_writel(hsotg, hprt0, HPRT0);
1890 	}
1891 
1892 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1893 			   msecs_to_jiffies(50));
1894 }
1895 
1896 /* Must be called with interrupt disabled and spinlock held */
1897 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1898 {
1899 	int num_channels = hsotg->params.host_channels;
1900 	struct dwc2_host_chan *channel;
1901 	u32 hcchar;
1902 	int i;
1903 
1904 	if (!hsotg->params.host_dma) {
1905 		/* Flush out any channel requests in slave mode */
1906 		for (i = 0; i < num_channels; i++) {
1907 			channel = hsotg->hc_ptr_array[i];
1908 			if (!list_empty(&channel->hc_list_entry))
1909 				continue;
1910 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1911 			if (hcchar & HCCHAR_CHENA) {
1912 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1913 				hcchar |= HCCHAR_CHDIS;
1914 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1915 			}
1916 		}
1917 	}
1918 
1919 	for (i = 0; i < num_channels; i++) {
1920 		channel = hsotg->hc_ptr_array[i];
1921 		if (!list_empty(&channel->hc_list_entry))
1922 			continue;
1923 		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1924 		if (hcchar & HCCHAR_CHENA) {
1925 			/* Halt the channel */
1926 			hcchar |= HCCHAR_CHDIS;
1927 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1928 		}
1929 
1930 		dwc2_hc_cleanup(hsotg, channel);
1931 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1932 		/*
1933 		 * Added for Descriptor DMA to prevent channel double cleanup in
1934 		 * release_channel_ddma(), which is called from ep_disable when
1935 		 * device disconnects
1936 		 */
1937 		channel->qh = NULL;
1938 	}
1939 	/* All channels have been freed, mark them available */
1940 	if (hsotg->params.uframe_sched) {
1941 		hsotg->available_host_channels =
1942 			hsotg->params.host_channels;
1943 	} else {
1944 		hsotg->non_periodic_channels = 0;
1945 		hsotg->periodic_channels = 0;
1946 	}
1947 }
1948 
1949 /**
1950  * dwc2_hcd_connect() - Handles connect of the HCD
1951  *
1952  * @hsotg: Pointer to struct dwc2_hsotg
1953  *
1954  * Must be called with interrupt disabled and spinlock held
1955  */
1956 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1957 {
1958 	if (hsotg->lx_state != DWC2_L0)
1959 		usb_hcd_resume_root_hub(hsotg->priv);
1960 
1961 	hsotg->flags.b.port_connect_status_change = 1;
1962 	hsotg->flags.b.port_connect_status = 1;
1963 }
1964 
1965 /**
1966  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1967  *
1968  * @hsotg: Pointer to struct dwc2_hsotg
1969  * @force: If true, we won't try to reconnect even if we see device connected.
1970  *
1971  * Must be called with interrupt disabled and spinlock held
1972  */
1973 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1974 {
1975 	u32 intr;
1976 	u32 hprt0;
1977 
1978 	/* Set status flags for the hub driver */
1979 	hsotg->flags.b.port_connect_status_change = 1;
1980 	hsotg->flags.b.port_connect_status = 0;
1981 
1982 	/*
1983 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1984 	 * interrupt mask and status bits and disabling subsequent host
1985 	 * channel interrupts.
1986 	 */
1987 	intr = dwc2_readl(hsotg, GINTMSK);
1988 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1989 	dwc2_writel(hsotg, intr, GINTMSK);
1990 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1991 	dwc2_writel(hsotg, intr, GINTSTS);
1992 
1993 	/*
1994 	 * Turn off the vbus power only if the core has transitioned to device
1995 	 * mode. If still in host mode, need to keep power on to detect a
1996 	 * reconnection.
1997 	 */
1998 	if (dwc2_is_device_mode(hsotg)) {
1999 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
2000 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
2001 			dwc2_writel(hsotg, 0, HPRT0);
2002 		}
2003 
2004 		dwc2_disable_host_interrupts(hsotg);
2005 	}
2006 
2007 	/* Respond with an error status to all URBs in the schedule */
2008 	dwc2_kill_all_urbs(hsotg);
2009 
2010 	if (dwc2_is_host_mode(hsotg))
2011 		/* Clean up any host channels that were in use */
2012 		dwc2_hcd_cleanup_channels(hsotg);
2013 
2014 	dwc2_host_disconnect(hsotg);
2015 
2016 	/*
2017 	 * Add an extra check here to see if we're actually connected but
2018 	 * we don't have a detection interrupt pending.  This can happen if:
2019 	 *   1. hardware sees connect
2020 	 *   2. hardware sees disconnect
2021 	 *   3. hardware sees connect
2022 	 *   4. dwc2_port_intr() - clears connect interrupt
2023 	 *   5. dwc2_handle_common_intr() - calls here
2024 	 *
2025 	 * Without the extra check here we will end calling disconnect
2026 	 * and won't get any future interrupts to handle the connect.
2027 	 */
2028 	if (!force) {
2029 		hprt0 = dwc2_readl(hsotg, HPRT0);
2030 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
2031 			dwc2_hcd_connect(hsotg);
2032 	}
2033 }
2034 
2035 /**
2036  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2037  *
2038  * @hsotg: Pointer to struct dwc2_hsotg
2039  */
2040 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2041 {
2042 	if (hsotg->bus_suspended) {
2043 		hsotg->flags.b.port_suspend_change = 1;
2044 		usb_hcd_resume_root_hub(hsotg->priv);
2045 	}
2046 
2047 	if (hsotg->lx_state == DWC2_L1)
2048 		hsotg->flags.b.port_l1_change = 1;
2049 }
2050 
2051 /**
2052  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2053  *
2054  * @hsotg: Pointer to struct dwc2_hsotg
2055  *
2056  * Must be called with interrupt disabled and spinlock held
2057  */
2058 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2059 {
2060 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2061 
2062 	/*
2063 	 * The root hub should be disconnected before this function is called.
2064 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2065 	 * and the QH lists (via ..._hcd_endpoint_disable).
2066 	 */
2067 
2068 	/* Turn off all host-specific interrupts */
2069 	dwc2_disable_host_interrupts(hsotg);
2070 
2071 	/* Turn off the vbus power */
2072 	dev_dbg(hsotg->dev, "PortPower off\n");
2073 	dwc2_writel(hsotg, 0, HPRT0);
2074 }
2075 
2076 /* Caller must hold driver lock */
2077 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2078 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2079 				struct dwc2_qtd *qtd)
2080 {
2081 	u32 intr_mask;
2082 	int retval;
2083 	int dev_speed;
2084 
2085 	if (!hsotg->flags.b.port_connect_status) {
2086 		/* No longer connected */
2087 		dev_err(hsotg->dev, "Not connected\n");
2088 		return -ENODEV;
2089 	}
2090 
2091 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2092 
2093 	/* Some configurations cannot support LS traffic on a FS root port */
2094 	if ((dev_speed == USB_SPEED_LOW) &&
2095 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2096 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2097 		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
2098 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2099 
2100 		if (prtspd == HPRT0_SPD_FULL_SPEED)
2101 			return -ENODEV;
2102 	}
2103 
2104 	if (!qtd)
2105 		return -EINVAL;
2106 
2107 	dwc2_hcd_qtd_init(qtd, urb);
2108 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2109 	if (retval) {
2110 		dev_err(hsotg->dev,
2111 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2112 			retval);
2113 		return retval;
2114 	}
2115 
2116 	intr_mask = dwc2_readl(hsotg, GINTMSK);
2117 	if (!(intr_mask & GINTSTS_SOF)) {
2118 		enum dwc2_transaction_type tr_type;
2119 
2120 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2121 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2122 			/*
2123 			 * Do not schedule SG transactions until qtd has
2124 			 * URB_GIVEBACK_ASAP set
2125 			 */
2126 			return 0;
2127 
2128 		tr_type = dwc2_hcd_select_transactions(hsotg);
2129 		if (tr_type != DWC2_TRANSACTION_NONE)
2130 			dwc2_hcd_queue_transactions(hsotg, tr_type);
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 /* Must be called with interrupt disabled and spinlock held */
2137 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2138 				struct dwc2_hcd_urb *urb)
2139 {
2140 	struct dwc2_qh *qh;
2141 	struct dwc2_qtd *urb_qtd;
2142 
2143 	urb_qtd = urb->qtd;
2144 	if (!urb_qtd) {
2145 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2146 		return -EINVAL;
2147 	}
2148 
2149 	qh = urb_qtd->qh;
2150 	if (!qh) {
2151 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2152 		return -EINVAL;
2153 	}
2154 
2155 	urb->priv = NULL;
2156 
2157 	if (urb_qtd->in_process && qh->channel) {
2158 		dwc2_dump_channel_info(hsotg, qh->channel);
2159 
2160 		/* The QTD is in process (it has been assigned to a channel) */
2161 		if (hsotg->flags.b.port_connect_status)
2162 			/*
2163 			 * If still connected (i.e. in host mode), halt the
2164 			 * channel so it can be used for other transfers. If
2165 			 * no longer connected, the host registers can't be
2166 			 * written to halt the channel since the core is in
2167 			 * device mode.
2168 			 */
2169 			dwc2_hc_halt(hsotg, qh->channel,
2170 				     DWC2_HC_XFER_URB_DEQUEUE);
2171 	}
2172 
2173 	/*
2174 	 * Free the QTD and clean up the associated QH. Leave the QH in the
2175 	 * schedule if it has any remaining QTDs.
2176 	 */
2177 	if (!hsotg->params.dma_desc_enable) {
2178 		u8 in_process = urb_qtd->in_process;
2179 
2180 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2181 		if (in_process) {
2182 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2183 			qh->channel = NULL;
2184 		} else if (list_empty(&qh->qtd_list)) {
2185 			dwc2_hcd_qh_unlink(hsotg, qh);
2186 		}
2187 	} else {
2188 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 /* Must NOT be called with interrupt disabled or spinlock held */
2195 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2196 				     struct usb_host_endpoint *ep, int retry)
2197 {
2198 	struct dwc2_qtd *qtd, *qtd_tmp;
2199 	struct dwc2_qh *qh;
2200 	unsigned long flags;
2201 	int rc;
2202 
2203 	spin_lock_irqsave(&hsotg->lock, flags);
2204 
2205 	qh = ep->hcpriv;
2206 	if (!qh) {
2207 		rc = -EINVAL;
2208 		goto err;
2209 	}
2210 
2211 	while (!list_empty(&qh->qtd_list) && retry--) {
2212 		if (retry == 0) {
2213 			dev_err(hsotg->dev,
2214 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2215 			rc = -EBUSY;
2216 			goto err;
2217 		}
2218 
2219 		spin_unlock_irqrestore(&hsotg->lock, flags);
2220 		msleep(20);
2221 		spin_lock_irqsave(&hsotg->lock, flags);
2222 		qh = ep->hcpriv;
2223 		if (!qh) {
2224 			rc = -EINVAL;
2225 			goto err;
2226 		}
2227 	}
2228 
2229 	dwc2_hcd_qh_unlink(hsotg, qh);
2230 
2231 	/* Free each QTD in the QH's QTD list */
2232 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2233 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2234 
2235 	ep->hcpriv = NULL;
2236 
2237 	if (qh->channel && qh->channel->qh == qh)
2238 		qh->channel->qh = NULL;
2239 
2240 	spin_unlock_irqrestore(&hsotg->lock, flags);
2241 
2242 	dwc2_hcd_qh_free(hsotg, qh);
2243 
2244 	return 0;
2245 
2246 err:
2247 	ep->hcpriv = NULL;
2248 	spin_unlock_irqrestore(&hsotg->lock, flags);
2249 
2250 	return rc;
2251 }
2252 
2253 /* Must be called with interrupt disabled and spinlock held */
2254 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2255 				   struct usb_host_endpoint *ep)
2256 {
2257 	struct dwc2_qh *qh = ep->hcpriv;
2258 
2259 	if (!qh)
2260 		return -EINVAL;
2261 
2262 	qh->data_toggle = DWC2_HC_PID_DATA0;
2263 
2264 	return 0;
2265 }
2266 
2267 /**
2268  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2269  * prepares the core for device mode or host mode operation
2270  *
2271  * @hsotg:         Programming view of the DWC_otg controller
2272  * @initial_setup: If true then this is the first init for this instance.
2273  */
2274 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2275 {
2276 	u32 usbcfg, otgctl;
2277 	int retval;
2278 
2279 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2280 
2281 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2282 
2283 	/* Set ULPI External VBUS bit if needed */
2284 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2285 	if (hsotg->params.phy_ulpi_ext_vbus)
2286 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2287 
2288 	/* Set external TS Dline pulsing bit if needed */
2289 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2290 	if (hsotg->params.ts_dline)
2291 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2292 
2293 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2294 
2295 	/*
2296 	 * Reset the Controller
2297 	 *
2298 	 * We only need to reset the controller if this is a re-init.
2299 	 * For the first init we know for sure that earlier code reset us (it
2300 	 * needed to in order to properly detect various parameters).
2301 	 */
2302 	if (!initial_setup) {
2303 		retval = dwc2_core_reset(hsotg, false);
2304 		if (retval) {
2305 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2306 				__func__);
2307 			return retval;
2308 		}
2309 	}
2310 
2311 	/*
2312 	 * This needs to happen in FS mode before any other programming occurs
2313 	 */
2314 	retval = dwc2_phy_init(hsotg, initial_setup);
2315 	if (retval)
2316 		return retval;
2317 
2318 	/* Program the GAHBCFG Register */
2319 	retval = dwc2_gahbcfg_init(hsotg);
2320 	if (retval)
2321 		return retval;
2322 
2323 	/* Program the GUSBCFG register */
2324 	dwc2_gusbcfg_init(hsotg);
2325 
2326 	/* Program the GOTGCTL register */
2327 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2328 	otgctl &= ~GOTGCTL_OTGVER;
2329 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2330 
2331 	/* Clear the SRP success bit for FS-I2c */
2332 	hsotg->srp_success = 0;
2333 
2334 	/* Enable common interrupts */
2335 	dwc2_enable_common_interrupts(hsotg);
2336 
2337 	/*
2338 	 * Do device or host initialization based on mode during PCD and
2339 	 * HCD initialization
2340 	 */
2341 	if (dwc2_is_host_mode(hsotg)) {
2342 		dev_dbg(hsotg->dev, "Host Mode\n");
2343 		hsotg->op_state = OTG_STATE_A_HOST;
2344 	} else {
2345 		dev_dbg(hsotg->dev, "Device Mode\n");
2346 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 /**
2353  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2354  * Host mode
2355  *
2356  * @hsotg: Programming view of DWC_otg controller
2357  *
2358  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2359  * request queues. Host channels are reset to ensure that they are ready for
2360  * performing transfers.
2361  */
2362 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2363 {
2364 	u32 hcfg, hfir, otgctl, usbcfg;
2365 
2366 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2367 
2368 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2369 	 * The number of PHY clocks that the application programs in
2370 	 * this field is added to the high/full speed interpacket timeout
2371 	 * duration in the core to account for any additional delays
2372 	 * introduced by the PHY. This can be required, because the delay
2373 	 * introduced by the PHY in generating the linestate condition
2374 	 * can vary from one PHY to another.
2375 	 */
2376 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2377 	usbcfg |= GUSBCFG_TOUTCAL(7);
2378 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2379 
2380 	/* Restart the Phy Clock */
2381 	dwc2_writel(hsotg, 0, PCGCTL);
2382 
2383 	/* Initialize Host Configuration Register */
2384 	dwc2_init_fs_ls_pclk_sel(hsotg);
2385 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2386 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2387 		hcfg = dwc2_readl(hsotg, HCFG);
2388 		hcfg |= HCFG_FSLSSUPP;
2389 		dwc2_writel(hsotg, hcfg, HCFG);
2390 	}
2391 
2392 	/*
2393 	 * This bit allows dynamic reloading of the HFIR register during
2394 	 * runtime. This bit needs to be programmed during initial configuration
2395 	 * and its value must not be changed during runtime.
2396 	 */
2397 	if (hsotg->params.reload_ctl) {
2398 		hfir = dwc2_readl(hsotg, HFIR);
2399 		hfir |= HFIR_RLDCTRL;
2400 		dwc2_writel(hsotg, hfir, HFIR);
2401 	}
2402 
2403 	if (hsotg->params.dma_desc_enable) {
2404 		u32 op_mode = hsotg->hw_params.op_mode;
2405 
2406 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2407 		    !hsotg->hw_params.dma_desc_enable ||
2408 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2409 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2410 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2411 			dev_err(hsotg->dev,
2412 				"Hardware does not support descriptor DMA mode -\n");
2413 			dev_err(hsotg->dev,
2414 				"falling back to buffer DMA mode.\n");
2415 			hsotg->params.dma_desc_enable = false;
2416 		} else {
2417 			hcfg = dwc2_readl(hsotg, HCFG);
2418 			hcfg |= HCFG_DESCDMA;
2419 			dwc2_writel(hsotg, hcfg, HCFG);
2420 		}
2421 	}
2422 
2423 	/* Configure data FIFO sizes */
2424 	dwc2_config_fifos(hsotg);
2425 
2426 	/* TODO - check this */
2427 	/* Clear Host Set HNP Enable in the OTG Control Register */
2428 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2429 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2430 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2431 
2432 	/* Make sure the FIFOs are flushed */
2433 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2434 	dwc2_flush_rx_fifo(hsotg);
2435 
2436 	/* Clear Host Set HNP Enable in the OTG Control Register */
2437 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2438 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2439 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2440 
2441 	if (!hsotg->params.dma_desc_enable) {
2442 		int num_channels, i;
2443 		u32 hcchar;
2444 
2445 		/* Flush out any leftover queued requests */
2446 		num_channels = hsotg->params.host_channels;
2447 		for (i = 0; i < num_channels; i++) {
2448 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2449 			hcchar &= ~HCCHAR_CHENA;
2450 			hcchar |= HCCHAR_CHDIS;
2451 			hcchar &= ~HCCHAR_EPDIR;
2452 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
2453 		}
2454 
2455 		/* Halt all channels to put them into a known state */
2456 		for (i = 0; i < num_channels; i++) {
2457 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2458 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2459 			hcchar &= ~HCCHAR_EPDIR;
2460 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
2461 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2462 				__func__, i);
2463 
2464 			if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2465 						      HCCHAR_CHENA, 1000)) {
2466 				dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n",
2467 					 i);
2468 			}
2469 		}
2470 	}
2471 
2472 	/* Enable ACG feature in host mode, if supported */
2473 	dwc2_enable_acg(hsotg);
2474 
2475 	/* Turn on the vbus power */
2476 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2477 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2478 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2479 
2480 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2481 			!!(hprt0 & HPRT0_PWR));
2482 		if (!(hprt0 & HPRT0_PWR)) {
2483 			hprt0 |= HPRT0_PWR;
2484 			dwc2_writel(hsotg, hprt0, HPRT0);
2485 		}
2486 	}
2487 
2488 	dwc2_enable_host_interrupts(hsotg);
2489 }
2490 
2491 /*
2492  * Initializes dynamic portions of the DWC_otg HCD state
2493  *
2494  * Must be called with interrupt disabled and spinlock held
2495  */
2496 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2497 {
2498 	struct dwc2_host_chan *chan, *chan_tmp;
2499 	int num_channels;
2500 	int i;
2501 
2502 	hsotg->flags.d32 = 0;
2503 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2504 
2505 	if (hsotg->params.uframe_sched) {
2506 		hsotg->available_host_channels =
2507 			hsotg->params.host_channels;
2508 	} else {
2509 		hsotg->non_periodic_channels = 0;
2510 		hsotg->periodic_channels = 0;
2511 	}
2512 
2513 	/*
2514 	 * Put all channels in the free channel list and clean up channel
2515 	 * states
2516 	 */
2517 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2518 				 hc_list_entry)
2519 		list_del_init(&chan->hc_list_entry);
2520 
2521 	num_channels = hsotg->params.host_channels;
2522 	for (i = 0; i < num_channels; i++) {
2523 		chan = hsotg->hc_ptr_array[i];
2524 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2525 		dwc2_hc_cleanup(hsotg, chan);
2526 	}
2527 
2528 	/* Initialize the DWC core for host mode operation */
2529 	dwc2_core_host_init(hsotg);
2530 }
2531 
2532 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2533 			       struct dwc2_host_chan *chan,
2534 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2535 {
2536 	int hub_addr, hub_port;
2537 
2538 	chan->do_split = 1;
2539 	chan->xact_pos = qtd->isoc_split_pos;
2540 	chan->complete_split = qtd->complete_split;
2541 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2542 	chan->hub_addr = (u8)hub_addr;
2543 	chan->hub_port = (u8)hub_port;
2544 }
2545 
2546 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2547 			      struct dwc2_host_chan *chan,
2548 			      struct dwc2_qtd *qtd)
2549 {
2550 	struct dwc2_hcd_urb *urb = qtd->urb;
2551 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2552 
2553 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2554 	case USB_ENDPOINT_XFER_CONTROL:
2555 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2556 
2557 		switch (qtd->control_phase) {
2558 		case DWC2_CONTROL_SETUP:
2559 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2560 			chan->do_ping = 0;
2561 			chan->ep_is_in = 0;
2562 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2563 			if (hsotg->params.host_dma)
2564 				chan->xfer_dma = urb->setup_dma;
2565 			else
2566 				chan->xfer_buf = urb->setup_packet;
2567 			chan->xfer_len = 8;
2568 			break;
2569 
2570 		case DWC2_CONTROL_DATA:
2571 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2572 			chan->data_pid_start = qtd->data_toggle;
2573 			break;
2574 
2575 		case DWC2_CONTROL_STATUS:
2576 			/*
2577 			 * Direction is opposite of data direction or IN if no
2578 			 * data
2579 			 */
2580 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2581 			if (urb->length == 0)
2582 				chan->ep_is_in = 1;
2583 			else
2584 				chan->ep_is_in =
2585 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2586 			if (chan->ep_is_in)
2587 				chan->do_ping = 0;
2588 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2589 			chan->xfer_len = 0;
2590 			if (hsotg->params.host_dma)
2591 				chan->xfer_dma = hsotg->status_buf_dma;
2592 			else
2593 				chan->xfer_buf = hsotg->status_buf;
2594 			break;
2595 		}
2596 		break;
2597 
2598 	case USB_ENDPOINT_XFER_BULK:
2599 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2600 		break;
2601 
2602 	case USB_ENDPOINT_XFER_INT:
2603 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2604 		break;
2605 
2606 	case USB_ENDPOINT_XFER_ISOC:
2607 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2608 		if (hsotg->params.dma_desc_enable)
2609 			break;
2610 
2611 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2612 		frame_desc->status = 0;
2613 
2614 		if (hsotg->params.host_dma) {
2615 			chan->xfer_dma = urb->dma;
2616 			chan->xfer_dma += frame_desc->offset +
2617 					qtd->isoc_split_offset;
2618 		} else {
2619 			chan->xfer_buf = urb->buf;
2620 			chan->xfer_buf += frame_desc->offset +
2621 					qtd->isoc_split_offset;
2622 		}
2623 
2624 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2625 
2626 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2627 			if (chan->xfer_len <= 188)
2628 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2629 			else
2630 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2631 		}
2632 		break;
2633 	}
2634 }
2635 
2636 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2637 					    struct dwc2_qh *qh,
2638 					    struct dwc2_host_chan *chan)
2639 {
2640 	if (!hsotg->unaligned_cache ||
2641 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2642 		return -ENOMEM;
2643 
2644 	if (!qh->dw_align_buf) {
2645 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2646 						    GFP_ATOMIC | GFP_DMA);
2647 		if (!qh->dw_align_buf)
2648 			return -ENOMEM;
2649 	}
2650 
2651 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2652 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2653 					      DMA_FROM_DEVICE);
2654 
2655 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2656 		dev_err(hsotg->dev, "can't map align_buf\n");
2657 		chan->align_buf = 0;
2658 		return -EINVAL;
2659 	}
2660 
2661 	chan->align_buf = qh->dw_align_buf_dma;
2662 	return 0;
2663 }
2664 
2665 #define DWC2_USB_DMA_ALIGN 4
2666 
2667 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2668 {
2669 	void *stored_xfer_buffer;
2670 	size_t length;
2671 
2672 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2673 		return;
2674 
2675 	/* Restore urb->transfer_buffer from the end of the allocated area */
2676 	memcpy(&stored_xfer_buffer, urb->transfer_buffer +
2677 	       urb->transfer_buffer_length, sizeof(urb->transfer_buffer));
2678 
2679 	if (usb_urb_dir_in(urb)) {
2680 		if (usb_pipeisoc(urb->pipe))
2681 			length = urb->transfer_buffer_length;
2682 		else
2683 			length = urb->actual_length;
2684 
2685 		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2686 	}
2687 	kfree(urb->transfer_buffer);
2688 	urb->transfer_buffer = stored_xfer_buffer;
2689 
2690 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2691 }
2692 
2693 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2694 {
2695 	void *kmalloc_ptr;
2696 	size_t kmalloc_size;
2697 
2698 	if (urb->num_sgs || urb->sg ||
2699 	    urb->transfer_buffer_length == 0 ||
2700 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2701 		return 0;
2702 
2703 	/*
2704 	 * Allocate a buffer with enough padding for original transfer_buffer
2705 	 * pointer. This allocation is guaranteed to be aligned properly for
2706 	 * DMA
2707 	 */
2708 	kmalloc_size = urb->transfer_buffer_length +
2709 		sizeof(urb->transfer_buffer);
2710 
2711 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2712 	if (!kmalloc_ptr)
2713 		return -ENOMEM;
2714 
2715 	/*
2716 	 * Position value of original urb->transfer_buffer pointer to the end
2717 	 * of allocation for later referencing
2718 	 */
2719 	memcpy(kmalloc_ptr + urb->transfer_buffer_length,
2720 	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2721 
2722 	if (usb_urb_dir_out(urb))
2723 		memcpy(kmalloc_ptr, urb->transfer_buffer,
2724 		       urb->transfer_buffer_length);
2725 	urb->transfer_buffer = kmalloc_ptr;
2726 
2727 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2728 
2729 	return 0;
2730 }
2731 
2732 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2733 				gfp_t mem_flags)
2734 {
2735 	int ret;
2736 
2737 	/* We assume setup_dma is always aligned; warn if not */
2738 	WARN_ON_ONCE(urb->setup_dma &&
2739 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2740 
2741 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2742 	if (ret)
2743 		return ret;
2744 
2745 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2746 	if (ret)
2747 		dwc2_free_dma_aligned_buffer(urb);
2748 
2749 	return ret;
2750 }
2751 
2752 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2753 {
2754 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2755 	dwc2_free_dma_aligned_buffer(urb);
2756 }
2757 
2758 /**
2759  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2760  * channel and initializes the host channel to perform the transactions. The
2761  * host channel is removed from the free list.
2762  *
2763  * @hsotg: The HCD state structure
2764  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2765  *         to a free host channel
2766  */
2767 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2768 {
2769 	struct dwc2_host_chan *chan;
2770 	struct dwc2_hcd_urb *urb;
2771 	struct dwc2_qtd *qtd;
2772 
2773 	if (dbg_qh(qh))
2774 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2775 
2776 	if (list_empty(&qh->qtd_list)) {
2777 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2778 		return -ENOMEM;
2779 	}
2780 
2781 	if (list_empty(&hsotg->free_hc_list)) {
2782 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2783 		return -ENOMEM;
2784 	}
2785 
2786 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2787 				hc_list_entry);
2788 
2789 	/* Remove host channel from free list */
2790 	list_del_init(&chan->hc_list_entry);
2791 
2792 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2793 	urb = qtd->urb;
2794 	qh->channel = chan;
2795 	qtd->in_process = 1;
2796 
2797 	/*
2798 	 * Use usb_pipedevice to determine device address. This address is
2799 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2800 	 */
2801 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2802 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2803 	chan->speed = qh->dev_speed;
2804 	chan->max_packet = dwc2_max_packet(qh->maxp);
2805 
2806 	chan->xfer_started = 0;
2807 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2808 	chan->error_state = (qtd->error_count > 0);
2809 	chan->halt_on_queue = 0;
2810 	chan->halt_pending = 0;
2811 	chan->requests = 0;
2812 
2813 	/*
2814 	 * The following values may be modified in the transfer type section
2815 	 * below. The xfer_len value may be reduced when the transfer is
2816 	 * started to accommodate the max widths of the XferSize and PktCnt
2817 	 * fields in the HCTSIZn register.
2818 	 */
2819 
2820 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2821 	if (chan->ep_is_in)
2822 		chan->do_ping = 0;
2823 	else
2824 		chan->do_ping = qh->ping_state;
2825 
2826 	chan->data_pid_start = qh->data_toggle;
2827 	chan->multi_count = 1;
2828 
2829 	if (urb->actual_length > urb->length &&
2830 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2831 		urb->actual_length = urb->length;
2832 
2833 	if (hsotg->params.host_dma)
2834 		chan->xfer_dma = urb->dma + urb->actual_length;
2835 	else
2836 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2837 
2838 	chan->xfer_len = urb->length - urb->actual_length;
2839 	chan->xfer_count = 0;
2840 
2841 	/* Set the split attributes if required */
2842 	if (qh->do_split)
2843 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2844 	else
2845 		chan->do_split = 0;
2846 
2847 	/* Set the transfer attributes */
2848 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2849 
2850 	/* For non-dword aligned buffers */
2851 	if (hsotg->params.host_dma && qh->do_split &&
2852 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2853 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2854 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2855 			dev_err(hsotg->dev,
2856 				"Failed to allocate memory to handle non-aligned buffer\n");
2857 			/* Add channel back to free list */
2858 			chan->align_buf = 0;
2859 			chan->multi_count = 0;
2860 			list_add_tail(&chan->hc_list_entry,
2861 				      &hsotg->free_hc_list);
2862 			qtd->in_process = 0;
2863 			qh->channel = NULL;
2864 			return -ENOMEM;
2865 		}
2866 	} else {
2867 		/*
2868 		 * We assume that DMA is always aligned in non-split
2869 		 * case or split out case. Warn if not.
2870 		 */
2871 		WARN_ON_ONCE(hsotg->params.host_dma &&
2872 			     (chan->xfer_dma & 0x3));
2873 		chan->align_buf = 0;
2874 	}
2875 
2876 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2877 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2878 		/*
2879 		 * This value may be modified when the transfer is started
2880 		 * to reflect the actual transfer length
2881 		 */
2882 		chan->multi_count = dwc2_hb_mult(qh->maxp);
2883 
2884 	if (hsotg->params.dma_desc_enable) {
2885 		chan->desc_list_addr = qh->desc_list_dma;
2886 		chan->desc_list_sz = qh->desc_list_sz;
2887 	}
2888 
2889 	dwc2_hc_init(hsotg, chan);
2890 	chan->qh = qh;
2891 
2892 	return 0;
2893 }
2894 
2895 /**
2896  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2897  * schedule and assigns them to available host channels. Called from the HCD
2898  * interrupt handler functions.
2899  *
2900  * @hsotg: The HCD state structure
2901  *
2902  * Return: The types of new transactions that were assigned to host channels
2903  */
2904 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2905 		struct dwc2_hsotg *hsotg)
2906 {
2907 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2908 	struct list_head *qh_ptr;
2909 	struct dwc2_qh *qh;
2910 	int num_channels;
2911 
2912 #ifdef DWC2_DEBUG_SOF
2913 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2914 #endif
2915 
2916 	/* Process entries in the periodic ready list */
2917 	qh_ptr = hsotg->periodic_sched_ready.next;
2918 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2919 		if (list_empty(&hsotg->free_hc_list))
2920 			break;
2921 		if (hsotg->params.uframe_sched) {
2922 			if (hsotg->available_host_channels <= 1)
2923 				break;
2924 			hsotg->available_host_channels--;
2925 		}
2926 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2927 		if (dwc2_assign_and_init_hc(hsotg, qh))
2928 			break;
2929 
2930 		/*
2931 		 * Move the QH from the periodic ready schedule to the
2932 		 * periodic assigned schedule
2933 		 */
2934 		qh_ptr = qh_ptr->next;
2935 		list_move_tail(&qh->qh_list_entry,
2936 			       &hsotg->periodic_sched_assigned);
2937 		ret_val = DWC2_TRANSACTION_PERIODIC;
2938 	}
2939 
2940 	/*
2941 	 * Process entries in the inactive portion of the non-periodic
2942 	 * schedule. Some free host channels may not be used if they are
2943 	 * reserved for periodic transfers.
2944 	 */
2945 	num_channels = hsotg->params.host_channels;
2946 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2947 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2948 		if (!hsotg->params.uframe_sched &&
2949 		    hsotg->non_periodic_channels >= num_channels -
2950 						hsotg->periodic_channels)
2951 			break;
2952 		if (list_empty(&hsotg->free_hc_list))
2953 			break;
2954 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2955 		if (hsotg->params.uframe_sched) {
2956 			if (hsotg->available_host_channels < 1)
2957 				break;
2958 			hsotg->available_host_channels--;
2959 		}
2960 
2961 		if (dwc2_assign_and_init_hc(hsotg, qh))
2962 			break;
2963 
2964 		/*
2965 		 * Move the QH from the non-periodic inactive schedule to the
2966 		 * non-periodic active schedule
2967 		 */
2968 		qh_ptr = qh_ptr->next;
2969 		list_move_tail(&qh->qh_list_entry,
2970 			       &hsotg->non_periodic_sched_active);
2971 
2972 		if (ret_val == DWC2_TRANSACTION_NONE)
2973 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2974 		else
2975 			ret_val = DWC2_TRANSACTION_ALL;
2976 
2977 		if (!hsotg->params.uframe_sched)
2978 			hsotg->non_periodic_channels++;
2979 	}
2980 
2981 	return ret_val;
2982 }
2983 
2984 /**
2985  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2986  * a host channel associated with either a periodic or non-periodic transfer
2987  *
2988  * @hsotg: The HCD state structure
2989  * @chan:  Host channel descriptor associated with either a periodic or
2990  *         non-periodic transfer
2991  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2992  *                     for periodic transfers or the non-periodic Tx FIFO
2993  *                     for non-periodic transfers
2994  *
2995  * Return: 1 if a request is queued and more requests may be needed to
2996  * complete the transfer, 0 if no more requests are required for this
2997  * transfer, -1 if there is insufficient space in the Tx FIFO
2998  *
2999  * This function assumes that there is space available in the appropriate
3000  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
3001  * it checks whether space is available in the appropriate Tx FIFO.
3002  *
3003  * Must be called with interrupt disabled and spinlock held
3004  */
3005 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
3006 				  struct dwc2_host_chan *chan,
3007 				  u16 fifo_dwords_avail)
3008 {
3009 	int retval = 0;
3010 
3011 	if (chan->do_split)
3012 		/* Put ourselves on the list to keep order straight */
3013 		list_move_tail(&chan->split_order_list_entry,
3014 			       &hsotg->split_order);
3015 
3016 	if (hsotg->params.host_dma) {
3017 		if (hsotg->params.dma_desc_enable) {
3018 			if (!chan->xfer_started ||
3019 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
3020 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
3021 				chan->qh->ping_state = 0;
3022 			}
3023 		} else if (!chan->xfer_started) {
3024 			dwc2_hc_start_transfer(hsotg, chan);
3025 			chan->qh->ping_state = 0;
3026 		}
3027 	} else if (chan->halt_pending) {
3028 		/* Don't queue a request if the channel has been halted */
3029 	} else if (chan->halt_on_queue) {
3030 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
3031 	} else if (chan->do_ping) {
3032 		if (!chan->xfer_started)
3033 			dwc2_hc_start_transfer(hsotg, chan);
3034 	} else if (!chan->ep_is_in ||
3035 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
3036 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
3037 			if (!chan->xfer_started) {
3038 				dwc2_hc_start_transfer(hsotg, chan);
3039 				retval = 1;
3040 			} else {
3041 				retval = dwc2_hc_continue_transfer(hsotg, chan);
3042 			}
3043 		} else {
3044 			retval = -1;
3045 		}
3046 	} else {
3047 		if (!chan->xfer_started) {
3048 			dwc2_hc_start_transfer(hsotg, chan);
3049 			retval = 1;
3050 		} else {
3051 			retval = dwc2_hc_continue_transfer(hsotg, chan);
3052 		}
3053 	}
3054 
3055 	return retval;
3056 }
3057 
3058 /*
3059  * Processes periodic channels for the next frame and queues transactions for
3060  * these channels to the DWC_otg controller. After queueing transactions, the
3061  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
3062  * to queue as Periodic Tx FIFO or request queue space becomes available.
3063  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
3064  *
3065  * Must be called with interrupt disabled and spinlock held
3066  */
3067 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
3068 {
3069 	struct list_head *qh_ptr;
3070 	struct dwc2_qh *qh;
3071 	u32 tx_status;
3072 	u32 fspcavail;
3073 	u32 gintmsk;
3074 	int status;
3075 	bool no_queue_space = false;
3076 	bool no_fifo_space = false;
3077 	u32 qspcavail;
3078 
3079 	/* If empty list then just adjust interrupt enables */
3080 	if (list_empty(&hsotg->periodic_sched_assigned))
3081 		goto exit;
3082 
3083 	if (dbg_perio())
3084 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
3085 
3086 	tx_status = dwc2_readl(hsotg, HPTXSTS);
3087 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3088 		    TXSTS_QSPCAVAIL_SHIFT;
3089 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3090 		    TXSTS_FSPCAVAIL_SHIFT;
3091 
3092 	if (dbg_perio()) {
3093 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
3094 			 qspcavail);
3095 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
3096 			 fspcavail);
3097 	}
3098 
3099 	qh_ptr = hsotg->periodic_sched_assigned.next;
3100 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
3101 		tx_status = dwc2_readl(hsotg, HPTXSTS);
3102 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3103 			    TXSTS_QSPCAVAIL_SHIFT;
3104 		if (qspcavail == 0) {
3105 			no_queue_space = true;
3106 			break;
3107 		}
3108 
3109 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
3110 		if (!qh->channel) {
3111 			qh_ptr = qh_ptr->next;
3112 			continue;
3113 		}
3114 
3115 		/* Make sure EP's TT buffer is clean before queueing qtds */
3116 		if (qh->tt_buffer_dirty) {
3117 			qh_ptr = qh_ptr->next;
3118 			continue;
3119 		}
3120 
3121 		/*
3122 		 * Set a flag if we're queuing high-bandwidth in slave mode.
3123 		 * The flag prevents any halts to get into the request queue in
3124 		 * the middle of multiple high-bandwidth packets getting queued.
3125 		 */
3126 		if (!hsotg->params.host_dma &&
3127 		    qh->channel->multi_count > 1)
3128 			hsotg->queuing_high_bandwidth = 1;
3129 
3130 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3131 			    TXSTS_FSPCAVAIL_SHIFT;
3132 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3133 		if (status < 0) {
3134 			no_fifo_space = true;
3135 			break;
3136 		}
3137 
3138 		/*
3139 		 * In Slave mode, stay on the current transfer until there is
3140 		 * nothing more to do or the high-bandwidth request count is
3141 		 * reached. In DMA mode, only need to queue one request. The
3142 		 * controller automatically handles multiple packets for
3143 		 * high-bandwidth transfers.
3144 		 */
3145 		if (hsotg->params.host_dma || status == 0 ||
3146 		    qh->channel->requests == qh->channel->multi_count) {
3147 			qh_ptr = qh_ptr->next;
3148 			/*
3149 			 * Move the QH from the periodic assigned schedule to
3150 			 * the periodic queued schedule
3151 			 */
3152 			list_move_tail(&qh->qh_list_entry,
3153 				       &hsotg->periodic_sched_queued);
3154 
3155 			/* done queuing high bandwidth */
3156 			hsotg->queuing_high_bandwidth = 0;
3157 		}
3158 	}
3159 
3160 exit:
3161 	if (no_queue_space || no_fifo_space ||
3162 	    (!hsotg->params.host_dma &&
3163 	     !list_empty(&hsotg->periodic_sched_assigned))) {
3164 		/*
3165 		 * May need to queue more transactions as the request
3166 		 * queue or Tx FIFO empties. Enable the periodic Tx
3167 		 * FIFO empty interrupt. (Always use the half-empty
3168 		 * level to ensure that new requests are loaded as
3169 		 * soon as possible.)
3170 		 */
3171 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3172 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3173 			gintmsk |= GINTSTS_PTXFEMP;
3174 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3175 		}
3176 	} else {
3177 		/*
3178 		 * Disable the Tx FIFO empty interrupt since there are
3179 		 * no more transactions that need to be queued right
3180 		 * now. This function is called from interrupt
3181 		 * handlers to queue more transactions as transfer
3182 		 * states change.
3183 		 */
3184 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3185 		if (gintmsk & GINTSTS_PTXFEMP) {
3186 			gintmsk &= ~GINTSTS_PTXFEMP;
3187 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3188 		}
3189 	}
3190 }
3191 
3192 /*
3193  * Processes active non-periodic channels and queues transactions for these
3194  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3195  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3196  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3197  * FIFO Empty interrupt is disabled.
3198  *
3199  * Must be called with interrupt disabled and spinlock held
3200  */
3201 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3202 {
3203 	struct list_head *orig_qh_ptr;
3204 	struct dwc2_qh *qh;
3205 	u32 tx_status;
3206 	u32 qspcavail;
3207 	u32 fspcavail;
3208 	u32 gintmsk;
3209 	int status;
3210 	int no_queue_space = 0;
3211 	int no_fifo_space = 0;
3212 	int more_to_do = 0;
3213 
3214 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3215 
3216 	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3217 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3218 		    TXSTS_QSPCAVAIL_SHIFT;
3219 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3220 		    TXSTS_FSPCAVAIL_SHIFT;
3221 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3222 		 qspcavail);
3223 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3224 		 fspcavail);
3225 
3226 	/*
3227 	 * Keep track of the starting point. Skip over the start-of-list
3228 	 * entry.
3229 	 */
3230 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3231 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3232 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3233 
3234 	/*
3235 	 * Process once through the active list or until no more space is
3236 	 * available in the request queue or the Tx FIFO
3237 	 */
3238 	do {
3239 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3240 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3241 			    TXSTS_QSPCAVAIL_SHIFT;
3242 		if (!hsotg->params.host_dma && qspcavail == 0) {
3243 			no_queue_space = 1;
3244 			break;
3245 		}
3246 
3247 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3248 				qh_list_entry);
3249 		if (!qh->channel)
3250 			goto next;
3251 
3252 		/* Make sure EP's TT buffer is clean before queueing qtds */
3253 		if (qh->tt_buffer_dirty)
3254 			goto next;
3255 
3256 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3257 			    TXSTS_FSPCAVAIL_SHIFT;
3258 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3259 
3260 		if (status > 0) {
3261 			more_to_do = 1;
3262 		} else if (status < 0) {
3263 			no_fifo_space = 1;
3264 			break;
3265 		}
3266 next:
3267 		/* Advance to next QH, skipping start-of-list entry */
3268 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3269 		if (hsotg->non_periodic_qh_ptr ==
3270 				&hsotg->non_periodic_sched_active)
3271 			hsotg->non_periodic_qh_ptr =
3272 					hsotg->non_periodic_qh_ptr->next;
3273 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3274 
3275 	if (!hsotg->params.host_dma) {
3276 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3277 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3278 			    TXSTS_QSPCAVAIL_SHIFT;
3279 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3280 			    TXSTS_FSPCAVAIL_SHIFT;
3281 		dev_vdbg(hsotg->dev,
3282 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3283 			 qspcavail);
3284 		dev_vdbg(hsotg->dev,
3285 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3286 			 fspcavail);
3287 
3288 		if (more_to_do || no_queue_space || no_fifo_space) {
3289 			/*
3290 			 * May need to queue more transactions as the request
3291 			 * queue or Tx FIFO empties. Enable the non-periodic
3292 			 * Tx FIFO empty interrupt. (Always use the half-empty
3293 			 * level to ensure that new requests are loaded as
3294 			 * soon as possible.)
3295 			 */
3296 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3297 			gintmsk |= GINTSTS_NPTXFEMP;
3298 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3299 		} else {
3300 			/*
3301 			 * Disable the Tx FIFO empty interrupt since there are
3302 			 * no more transactions that need to be queued right
3303 			 * now. This function is called from interrupt
3304 			 * handlers to queue more transactions as transfer
3305 			 * states change.
3306 			 */
3307 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3308 			gintmsk &= ~GINTSTS_NPTXFEMP;
3309 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3310 		}
3311 	}
3312 }
3313 
3314 /**
3315  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3316  * and queues transactions for these channels to the DWC_otg controller. Called
3317  * from the HCD interrupt handler functions.
3318  *
3319  * @hsotg:   The HCD state structure
3320  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3321  *           or both)
3322  *
3323  * Must be called with interrupt disabled and spinlock held
3324  */
3325 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3326 				 enum dwc2_transaction_type tr_type)
3327 {
3328 #ifdef DWC2_DEBUG_SOF
3329 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3330 #endif
3331 	/* Process host channels associated with periodic transfers */
3332 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3333 	    tr_type == DWC2_TRANSACTION_ALL)
3334 		dwc2_process_periodic_channels(hsotg);
3335 
3336 	/* Process host channels associated with non-periodic transfers */
3337 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3338 	    tr_type == DWC2_TRANSACTION_ALL) {
3339 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3340 			dwc2_process_non_periodic_channels(hsotg);
3341 		} else {
3342 			/*
3343 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3344 			 * there are no non-periodic transfers to process
3345 			 */
3346 			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3347 
3348 			gintmsk &= ~GINTSTS_NPTXFEMP;
3349 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3350 		}
3351 	}
3352 }
3353 
3354 static void dwc2_conn_id_status_change(struct work_struct *work)
3355 {
3356 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3357 						wf_otg);
3358 	u32 count = 0;
3359 	u32 gotgctl;
3360 	unsigned long flags;
3361 
3362 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3363 
3364 	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3365 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3366 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3367 		!!(gotgctl & GOTGCTL_CONID_B));
3368 
3369 	/* B-Device connector (Device Mode) */
3370 	if (gotgctl & GOTGCTL_CONID_B) {
3371 		dwc2_vbus_supply_exit(hsotg);
3372 		/* Wait for switch to device mode */
3373 		dev_dbg(hsotg->dev, "connId B\n");
3374 		if (hsotg->bus_suspended) {
3375 			dev_info(hsotg->dev,
3376 				 "Do port resume before switching to device mode\n");
3377 			dwc2_port_resume(hsotg);
3378 		}
3379 		while (!dwc2_is_device_mode(hsotg)) {
3380 			dev_info(hsotg->dev,
3381 				 "Waiting for Peripheral Mode, Mode=%s\n",
3382 				 dwc2_is_host_mode(hsotg) ? "Host" :
3383 				 "Peripheral");
3384 			msleep(20);
3385 			/*
3386 			 * Sometimes the initial GOTGCTRL read is wrong, so
3387 			 * check it again and jump to host mode if that was
3388 			 * the case.
3389 			 */
3390 			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3391 			if (!(gotgctl & GOTGCTL_CONID_B))
3392 				goto host;
3393 			if (++count > 250)
3394 				break;
3395 		}
3396 		if (count > 250)
3397 			dev_err(hsotg->dev,
3398 				"Connection id status change timed out\n");
3399 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3400 		dwc2_core_init(hsotg, false);
3401 		dwc2_enable_global_interrupts(hsotg);
3402 		spin_lock_irqsave(&hsotg->lock, flags);
3403 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3404 		spin_unlock_irqrestore(&hsotg->lock, flags);
3405 		/* Enable ACG feature in device mode,if supported */
3406 		dwc2_enable_acg(hsotg);
3407 		dwc2_hsotg_core_connect(hsotg);
3408 	} else {
3409 host:
3410 		/* A-Device connector (Host Mode) */
3411 		dev_dbg(hsotg->dev, "connId A\n");
3412 		while (!dwc2_is_host_mode(hsotg)) {
3413 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3414 				 dwc2_is_host_mode(hsotg) ?
3415 				 "Host" : "Peripheral");
3416 			msleep(20);
3417 			if (++count > 250)
3418 				break;
3419 		}
3420 		if (count > 250)
3421 			dev_err(hsotg->dev,
3422 				"Connection id status change timed out\n");
3423 
3424 		spin_lock_irqsave(&hsotg->lock, flags);
3425 		dwc2_hsotg_disconnect(hsotg);
3426 		spin_unlock_irqrestore(&hsotg->lock, flags);
3427 
3428 		hsotg->op_state = OTG_STATE_A_HOST;
3429 		/* Initialize the Core for Host mode */
3430 		dwc2_core_init(hsotg, false);
3431 		dwc2_enable_global_interrupts(hsotg);
3432 		dwc2_hcd_start(hsotg);
3433 	}
3434 }
3435 
3436 static void dwc2_wakeup_detected(struct timer_list *t)
3437 {
3438 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3439 	u32 hprt0;
3440 
3441 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3442 
3443 	/*
3444 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3445 	 * so that OPT tests pass with all PHYs.)
3446 	 */
3447 	hprt0 = dwc2_read_hprt0(hsotg);
3448 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3449 	hprt0 &= ~HPRT0_RES;
3450 	dwc2_writel(hsotg, hprt0, HPRT0);
3451 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3452 		dwc2_readl(hsotg, HPRT0));
3453 
3454 	dwc2_hcd_rem_wakeup(hsotg);
3455 	hsotg->bus_suspended = false;
3456 
3457 	/* Change to L0 state */
3458 	hsotg->lx_state = DWC2_L0;
3459 }
3460 
3461 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3462 {
3463 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3464 
3465 	return hcd->self.b_hnp_enable;
3466 }
3467 
3468 /* Must NOT be called with interrupt disabled or spinlock held */
3469 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3470 {
3471 	unsigned long flags;
3472 	u32 hprt0;
3473 	u32 pcgctl;
3474 	u32 gotgctl;
3475 
3476 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3477 
3478 	spin_lock_irqsave(&hsotg->lock, flags);
3479 
3480 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3481 		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3482 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3483 		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3484 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3485 	}
3486 
3487 	hprt0 = dwc2_read_hprt0(hsotg);
3488 	hprt0 |= HPRT0_SUSP;
3489 	dwc2_writel(hsotg, hprt0, HPRT0);
3490 
3491 	hsotg->bus_suspended = true;
3492 
3493 	/*
3494 	 * If power_down is supported, Phy clock will be suspended
3495 	 * after registers are backuped.
3496 	 */
3497 	if (!hsotg->params.power_down) {
3498 		/* Suspend the Phy Clock */
3499 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3500 		pcgctl |= PCGCTL_STOPPCLK;
3501 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3502 		udelay(10);
3503 	}
3504 
3505 	/* For HNP the bus must be suspended for at least 200ms */
3506 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3507 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3508 		pcgctl &= ~PCGCTL_STOPPCLK;
3509 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3510 
3511 		spin_unlock_irqrestore(&hsotg->lock, flags);
3512 
3513 		msleep(200);
3514 	} else {
3515 		spin_unlock_irqrestore(&hsotg->lock, flags);
3516 	}
3517 }
3518 
3519 /* Must NOT be called with interrupt disabled or spinlock held */
3520 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3521 {
3522 	unsigned long flags;
3523 	u32 hprt0;
3524 	u32 pcgctl;
3525 
3526 	spin_lock_irqsave(&hsotg->lock, flags);
3527 
3528 	/*
3529 	 * If power_down is supported, Phy clock is already resumed
3530 	 * after registers restore.
3531 	 */
3532 	if (!hsotg->params.power_down) {
3533 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3534 		pcgctl &= ~PCGCTL_STOPPCLK;
3535 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3536 		spin_unlock_irqrestore(&hsotg->lock, flags);
3537 		msleep(20);
3538 		spin_lock_irqsave(&hsotg->lock, flags);
3539 	}
3540 
3541 	hprt0 = dwc2_read_hprt0(hsotg);
3542 	hprt0 |= HPRT0_RES;
3543 	hprt0 &= ~HPRT0_SUSP;
3544 	dwc2_writel(hsotg, hprt0, HPRT0);
3545 	spin_unlock_irqrestore(&hsotg->lock, flags);
3546 
3547 	msleep(USB_RESUME_TIMEOUT);
3548 
3549 	spin_lock_irqsave(&hsotg->lock, flags);
3550 	hprt0 = dwc2_read_hprt0(hsotg);
3551 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3552 	dwc2_writel(hsotg, hprt0, HPRT0);
3553 	hsotg->bus_suspended = false;
3554 	spin_unlock_irqrestore(&hsotg->lock, flags);
3555 }
3556 
3557 /* Handles hub class-specific requests */
3558 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3559 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3560 {
3561 	struct usb_hub_descriptor *hub_desc;
3562 	int retval = 0;
3563 	u32 hprt0;
3564 	u32 port_status;
3565 	u32 speed;
3566 	u32 pcgctl;
3567 
3568 	switch (typereq) {
3569 	case ClearHubFeature:
3570 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3571 
3572 		switch (wvalue) {
3573 		case C_HUB_LOCAL_POWER:
3574 		case C_HUB_OVER_CURRENT:
3575 			/* Nothing required here */
3576 			break;
3577 
3578 		default:
3579 			retval = -EINVAL;
3580 			dev_err(hsotg->dev,
3581 				"ClearHubFeature request %1xh unknown\n",
3582 				wvalue);
3583 		}
3584 		break;
3585 
3586 	case ClearPortFeature:
3587 		if (wvalue != USB_PORT_FEAT_L1)
3588 			if (!windex || windex > 1)
3589 				goto error;
3590 		switch (wvalue) {
3591 		case USB_PORT_FEAT_ENABLE:
3592 			dev_dbg(hsotg->dev,
3593 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3594 			hprt0 = dwc2_read_hprt0(hsotg);
3595 			hprt0 |= HPRT0_ENA;
3596 			dwc2_writel(hsotg, hprt0, HPRT0);
3597 			break;
3598 
3599 		case USB_PORT_FEAT_SUSPEND:
3600 			dev_dbg(hsotg->dev,
3601 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3602 
3603 			if (hsotg->bus_suspended) {
3604 				if (hsotg->hibernated)
3605 					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3606 				else
3607 					dwc2_port_resume(hsotg);
3608 			}
3609 			break;
3610 
3611 		case USB_PORT_FEAT_POWER:
3612 			dev_dbg(hsotg->dev,
3613 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3614 			hprt0 = dwc2_read_hprt0(hsotg);
3615 			hprt0 &= ~HPRT0_PWR;
3616 			dwc2_writel(hsotg, hprt0, HPRT0);
3617 			break;
3618 
3619 		case USB_PORT_FEAT_INDICATOR:
3620 			dev_dbg(hsotg->dev,
3621 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3622 			/* Port indicator not supported */
3623 			break;
3624 
3625 		case USB_PORT_FEAT_C_CONNECTION:
3626 			/*
3627 			 * Clears driver's internal Connect Status Change flag
3628 			 */
3629 			dev_dbg(hsotg->dev,
3630 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3631 			hsotg->flags.b.port_connect_status_change = 0;
3632 			break;
3633 
3634 		case USB_PORT_FEAT_C_RESET:
3635 			/* Clears driver's internal Port Reset Change flag */
3636 			dev_dbg(hsotg->dev,
3637 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3638 			hsotg->flags.b.port_reset_change = 0;
3639 			break;
3640 
3641 		case USB_PORT_FEAT_C_ENABLE:
3642 			/*
3643 			 * Clears the driver's internal Port Enable/Disable
3644 			 * Change flag
3645 			 */
3646 			dev_dbg(hsotg->dev,
3647 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3648 			hsotg->flags.b.port_enable_change = 0;
3649 			break;
3650 
3651 		case USB_PORT_FEAT_C_SUSPEND:
3652 			/*
3653 			 * Clears the driver's internal Port Suspend Change
3654 			 * flag, which is set when resume signaling on the host
3655 			 * port is complete
3656 			 */
3657 			dev_dbg(hsotg->dev,
3658 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3659 			hsotg->flags.b.port_suspend_change = 0;
3660 			break;
3661 
3662 		case USB_PORT_FEAT_C_PORT_L1:
3663 			dev_dbg(hsotg->dev,
3664 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3665 			hsotg->flags.b.port_l1_change = 0;
3666 			break;
3667 
3668 		case USB_PORT_FEAT_C_OVER_CURRENT:
3669 			dev_dbg(hsotg->dev,
3670 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3671 			hsotg->flags.b.port_over_current_change = 0;
3672 			break;
3673 
3674 		default:
3675 			retval = -EINVAL;
3676 			dev_err(hsotg->dev,
3677 				"ClearPortFeature request %1xh unknown or unsupported\n",
3678 				wvalue);
3679 		}
3680 		break;
3681 
3682 	case GetHubDescriptor:
3683 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3684 		hub_desc = (struct usb_hub_descriptor *)buf;
3685 		hub_desc->bDescLength = 9;
3686 		hub_desc->bDescriptorType = USB_DT_HUB;
3687 		hub_desc->bNbrPorts = 1;
3688 		hub_desc->wHubCharacteristics =
3689 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3690 				    HUB_CHAR_INDV_PORT_OCPM);
3691 		hub_desc->bPwrOn2PwrGood = 1;
3692 		hub_desc->bHubContrCurrent = 0;
3693 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3694 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3695 		break;
3696 
3697 	case GetHubStatus:
3698 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3699 		memset(buf, 0, 4);
3700 		break;
3701 
3702 	case GetPortStatus:
3703 		dev_vdbg(hsotg->dev,
3704 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3705 			 hsotg->flags.d32);
3706 		if (!windex || windex > 1)
3707 			goto error;
3708 
3709 		port_status = 0;
3710 		if (hsotg->flags.b.port_connect_status_change)
3711 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3712 		if (hsotg->flags.b.port_enable_change)
3713 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3714 		if (hsotg->flags.b.port_suspend_change)
3715 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3716 		if (hsotg->flags.b.port_l1_change)
3717 			port_status |= USB_PORT_STAT_C_L1 << 16;
3718 		if (hsotg->flags.b.port_reset_change)
3719 			port_status |= USB_PORT_STAT_C_RESET << 16;
3720 		if (hsotg->flags.b.port_over_current_change) {
3721 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3722 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3723 		}
3724 
3725 		if (!hsotg->flags.b.port_connect_status) {
3726 			/*
3727 			 * The port is disconnected, which means the core is
3728 			 * either in device mode or it soon will be. Just
3729 			 * return 0's for the remainder of the port status
3730 			 * since the port register can't be read if the core
3731 			 * is in device mode.
3732 			 */
3733 			*(__le32 *)buf = cpu_to_le32(port_status);
3734 			break;
3735 		}
3736 
3737 		hprt0 = dwc2_readl(hsotg, HPRT0);
3738 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3739 
3740 		if (hprt0 & HPRT0_CONNSTS)
3741 			port_status |= USB_PORT_STAT_CONNECTION;
3742 		if (hprt0 & HPRT0_ENA)
3743 			port_status |= USB_PORT_STAT_ENABLE;
3744 		if (hprt0 & HPRT0_SUSP)
3745 			port_status |= USB_PORT_STAT_SUSPEND;
3746 		if (hprt0 & HPRT0_OVRCURRACT)
3747 			port_status |= USB_PORT_STAT_OVERCURRENT;
3748 		if (hprt0 & HPRT0_RST)
3749 			port_status |= USB_PORT_STAT_RESET;
3750 		if (hprt0 & HPRT0_PWR)
3751 			port_status |= USB_PORT_STAT_POWER;
3752 
3753 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3754 		if (speed == HPRT0_SPD_HIGH_SPEED)
3755 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3756 		else if (speed == HPRT0_SPD_LOW_SPEED)
3757 			port_status |= USB_PORT_STAT_LOW_SPEED;
3758 
3759 		if (hprt0 & HPRT0_TSTCTL_MASK)
3760 			port_status |= USB_PORT_STAT_TEST;
3761 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3762 
3763 		if (hsotg->params.dma_desc_fs_enable) {
3764 			/*
3765 			 * Enable descriptor DMA only if a full speed
3766 			 * device is connected.
3767 			 */
3768 			if (hsotg->new_connection &&
3769 			    ((port_status &
3770 			      (USB_PORT_STAT_CONNECTION |
3771 			       USB_PORT_STAT_HIGH_SPEED |
3772 			       USB_PORT_STAT_LOW_SPEED)) ==
3773 			       USB_PORT_STAT_CONNECTION)) {
3774 				u32 hcfg;
3775 
3776 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3777 				hsotg->params.dma_desc_enable = true;
3778 				hcfg = dwc2_readl(hsotg, HCFG);
3779 				hcfg |= HCFG_DESCDMA;
3780 				dwc2_writel(hsotg, hcfg, HCFG);
3781 				hsotg->new_connection = false;
3782 			}
3783 		}
3784 
3785 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3786 		*(__le32 *)buf = cpu_to_le32(port_status);
3787 		break;
3788 
3789 	case SetHubFeature:
3790 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3791 		/* No HUB features supported */
3792 		break;
3793 
3794 	case SetPortFeature:
3795 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3796 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3797 			goto error;
3798 
3799 		if (!hsotg->flags.b.port_connect_status) {
3800 			/*
3801 			 * The port is disconnected, which means the core is
3802 			 * either in device mode or it soon will be. Just
3803 			 * return without doing anything since the port
3804 			 * register can't be written if the core is in device
3805 			 * mode.
3806 			 */
3807 			break;
3808 		}
3809 
3810 		switch (wvalue) {
3811 		case USB_PORT_FEAT_SUSPEND:
3812 			dev_dbg(hsotg->dev,
3813 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3814 			if (windex != hsotg->otg_port)
3815 				goto error;
3816 			if (hsotg->params.power_down == 2)
3817 				dwc2_enter_hibernation(hsotg, 1);
3818 			else
3819 				dwc2_port_suspend(hsotg, windex);
3820 			break;
3821 
3822 		case USB_PORT_FEAT_POWER:
3823 			dev_dbg(hsotg->dev,
3824 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3825 			hprt0 = dwc2_read_hprt0(hsotg);
3826 			hprt0 |= HPRT0_PWR;
3827 			dwc2_writel(hsotg, hprt0, HPRT0);
3828 			break;
3829 
3830 		case USB_PORT_FEAT_RESET:
3831 			if (hsotg->params.power_down == 2 &&
3832 			    hsotg->hibernated)
3833 				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3834 			hprt0 = dwc2_read_hprt0(hsotg);
3835 			dev_dbg(hsotg->dev,
3836 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3837 			pcgctl = dwc2_readl(hsotg, PCGCTL);
3838 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3839 			dwc2_writel(hsotg, pcgctl, PCGCTL);
3840 			/* ??? Original driver does this */
3841 			dwc2_writel(hsotg, 0, PCGCTL);
3842 
3843 			hprt0 = dwc2_read_hprt0(hsotg);
3844 			/* Clear suspend bit if resetting from suspend state */
3845 			hprt0 &= ~HPRT0_SUSP;
3846 
3847 			/*
3848 			 * When B-Host the Port reset bit is set in the Start
3849 			 * HCD Callback function, so that the reset is started
3850 			 * within 1ms of the HNP success interrupt
3851 			 */
3852 			if (!dwc2_hcd_is_b_host(hsotg)) {
3853 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3854 				dev_dbg(hsotg->dev,
3855 					"In host mode, hprt0=%08x\n", hprt0);
3856 				dwc2_writel(hsotg, hprt0, HPRT0);
3857 			}
3858 
3859 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3860 			msleep(50);
3861 			hprt0 &= ~HPRT0_RST;
3862 			dwc2_writel(hsotg, hprt0, HPRT0);
3863 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3864 			break;
3865 
3866 		case USB_PORT_FEAT_INDICATOR:
3867 			dev_dbg(hsotg->dev,
3868 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3869 			/* Not supported */
3870 			break;
3871 
3872 		case USB_PORT_FEAT_TEST:
3873 			hprt0 = dwc2_read_hprt0(hsotg);
3874 			dev_dbg(hsotg->dev,
3875 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3876 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3877 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3878 			dwc2_writel(hsotg, hprt0, HPRT0);
3879 			break;
3880 
3881 		default:
3882 			retval = -EINVAL;
3883 			dev_err(hsotg->dev,
3884 				"SetPortFeature %1xh unknown or unsupported\n",
3885 				wvalue);
3886 			break;
3887 		}
3888 		break;
3889 
3890 	default:
3891 error:
3892 		retval = -EINVAL;
3893 		dev_dbg(hsotg->dev,
3894 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3895 			typereq, windex, wvalue);
3896 		break;
3897 	}
3898 
3899 	return retval;
3900 }
3901 
3902 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3903 {
3904 	int retval;
3905 
3906 	if (port != 1)
3907 		return -EINVAL;
3908 
3909 	retval = (hsotg->flags.b.port_connect_status_change ||
3910 		  hsotg->flags.b.port_reset_change ||
3911 		  hsotg->flags.b.port_enable_change ||
3912 		  hsotg->flags.b.port_suspend_change ||
3913 		  hsotg->flags.b.port_over_current_change);
3914 
3915 	if (retval) {
3916 		dev_dbg(hsotg->dev,
3917 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3918 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3919 			hsotg->flags.b.port_connect_status_change);
3920 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3921 			hsotg->flags.b.port_reset_change);
3922 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3923 			hsotg->flags.b.port_enable_change);
3924 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3925 			hsotg->flags.b.port_suspend_change);
3926 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3927 			hsotg->flags.b.port_over_current_change);
3928 	}
3929 
3930 	return retval;
3931 }
3932 
3933 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3934 {
3935 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3936 
3937 #ifdef DWC2_DEBUG_SOF
3938 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3939 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3940 #endif
3941 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3942 }
3943 
3944 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3945 {
3946 	u32 hprt = dwc2_readl(hsotg, HPRT0);
3947 	u32 hfir = dwc2_readl(hsotg, HFIR);
3948 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3949 	unsigned int us_per_frame;
3950 	unsigned int frame_number;
3951 	unsigned int remaining;
3952 	unsigned int interval;
3953 	unsigned int phy_clks;
3954 
3955 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3956 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3957 
3958 	/* Extract fields */
3959 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3960 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3961 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3962 
3963 	/*
3964 	 * Number of phy clocks since the last tick of the frame number after
3965 	 * "us" has passed.
3966 	 */
3967 	phy_clks = (interval - remaining) +
3968 		   DIV_ROUND_UP(interval * us, us_per_frame);
3969 
3970 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3971 }
3972 
3973 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3974 {
3975 	return hsotg->op_state == OTG_STATE_B_HOST;
3976 }
3977 
3978 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3979 					       int iso_desc_count,
3980 					       gfp_t mem_flags)
3981 {
3982 	struct dwc2_hcd_urb *urb;
3983 	u32 size = sizeof(*urb) + iso_desc_count *
3984 		   sizeof(struct dwc2_hcd_iso_packet_desc);
3985 
3986 	urb = kzalloc(size, mem_flags);
3987 	if (urb)
3988 		urb->packet_count = iso_desc_count;
3989 	return urb;
3990 }
3991 
3992 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3993 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3994 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3995 {
3996 	if (dbg_perio() ||
3997 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3998 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3999 		dev_vdbg(hsotg->dev,
4000 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
4001 			 dev_addr, ep_num, ep_dir, ep_type, mps);
4002 	urb->pipe_info.dev_addr = dev_addr;
4003 	urb->pipe_info.ep_num = ep_num;
4004 	urb->pipe_info.pipe_type = ep_type;
4005 	urb->pipe_info.pipe_dir = ep_dir;
4006 	urb->pipe_info.mps = mps;
4007 }
4008 
4009 /*
4010  * NOTE: This function will be removed once the peripheral controller code
4011  * is integrated and the driver is stable
4012  */
4013 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
4014 {
4015 #ifdef DEBUG
4016 	struct dwc2_host_chan *chan;
4017 	struct dwc2_hcd_urb *urb;
4018 	struct dwc2_qtd *qtd;
4019 	int num_channels;
4020 	u32 np_tx_status;
4021 	u32 p_tx_status;
4022 	int i;
4023 
4024 	num_channels = hsotg->params.host_channels;
4025 	dev_dbg(hsotg->dev, "\n");
4026 	dev_dbg(hsotg->dev,
4027 		"************************************************************\n");
4028 	dev_dbg(hsotg->dev, "HCD State:\n");
4029 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
4030 
4031 	for (i = 0; i < num_channels; i++) {
4032 		chan = hsotg->hc_ptr_array[i];
4033 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
4034 		dev_dbg(hsotg->dev,
4035 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
4036 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
4037 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
4038 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
4039 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
4040 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
4041 			chan->data_pid_start);
4042 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
4043 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
4044 			chan->xfer_started);
4045 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
4046 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
4047 			(unsigned long)chan->xfer_dma);
4048 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
4049 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
4050 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
4051 			chan->halt_on_queue);
4052 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
4053 			chan->halt_pending);
4054 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
4055 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
4056 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
4057 			chan->complete_split);
4058 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
4059 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
4060 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
4061 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
4062 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
4063 
4064 		if (chan->xfer_started) {
4065 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
4066 
4067 			hfnum = dwc2_readl(hsotg, HFNUM);
4068 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
4069 			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
4070 			hcint = dwc2_readl(hsotg, HCINT(i));
4071 			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
4072 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
4073 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
4074 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
4075 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
4076 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
4077 		}
4078 
4079 		if (!(chan->xfer_started && chan->qh))
4080 			continue;
4081 
4082 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
4083 			if (!qtd->in_process)
4084 				break;
4085 			urb = qtd->urb;
4086 			dev_dbg(hsotg->dev, "    URB Info:\n");
4087 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
4088 				qtd, urb);
4089 			if (urb) {
4090 				dev_dbg(hsotg->dev,
4091 					"      Dev: %d, EP: %d %s\n",
4092 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
4093 					dwc2_hcd_get_ep_num(&urb->pipe_info),
4094 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
4095 					"IN" : "OUT");
4096 				dev_dbg(hsotg->dev,
4097 					"      Max packet size: %d\n",
4098 					dwc2_hcd_get_mps(&urb->pipe_info));
4099 				dev_dbg(hsotg->dev,
4100 					"      transfer_buffer: %p\n",
4101 					urb->buf);
4102 				dev_dbg(hsotg->dev,
4103 					"      transfer_dma: %08lx\n",
4104 					(unsigned long)urb->dma);
4105 				dev_dbg(hsotg->dev,
4106 					"      transfer_buffer_length: %d\n",
4107 					urb->length);
4108 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
4109 					urb->actual_length);
4110 			}
4111 		}
4112 	}
4113 
4114 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
4115 		hsotg->non_periodic_channels);
4116 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
4117 		hsotg->periodic_channels);
4118 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
4119 	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
4120 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
4121 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4122 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
4123 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4124 	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
4125 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4126 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4127 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4128 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4129 	dwc2_dump_global_registers(hsotg);
4130 	dwc2_dump_host_registers(hsotg);
4131 	dev_dbg(hsotg->dev,
4132 		"************************************************************\n");
4133 	dev_dbg(hsotg->dev, "\n");
4134 #endif
4135 }
4136 
4137 struct wrapper_priv_data {
4138 	struct dwc2_hsotg *hsotg;
4139 };
4140 
4141 /* Gets the dwc2_hsotg from a usb_hcd */
4142 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4143 {
4144 	struct wrapper_priv_data *p;
4145 
4146 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4147 	return p->hsotg;
4148 }
4149 
4150 /**
4151  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4152  *
4153  * This will get the dwc2_tt structure (and ttport) associated with the given
4154  * context (which is really just a struct urb pointer).
4155  *
4156  * The first time this is called for a given TT we allocate memory for our
4157  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4158  * then the refcount for the structure will go to 0 and we'll free it.
4159  *
4160  * @hsotg:     The HCD state structure for the DWC OTG controller.
4161  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4162  * @mem_flags: Flags for allocating memory.
4163  * @ttport:    We'll return this device's port number here.  That's used to
4164  *             reference into the bitmap if we're on a multi_tt hub.
4165  *
4166  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4167  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4168  */
4169 
4170 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4171 				      gfp_t mem_flags, int *ttport)
4172 {
4173 	struct urb *urb = context;
4174 	struct dwc2_tt *dwc_tt = NULL;
4175 
4176 	if (urb->dev->tt) {
4177 		*ttport = urb->dev->ttport;
4178 
4179 		dwc_tt = urb->dev->tt->hcpriv;
4180 		if (!dwc_tt) {
4181 			size_t bitmap_size;
4182 
4183 			/*
4184 			 * For single_tt we need one schedule.  For multi_tt
4185 			 * we need one per port.
4186 			 */
4187 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4188 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4189 			if (urb->dev->tt->multi)
4190 				bitmap_size *= urb->dev->tt->hub->maxchild;
4191 
4192 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4193 					 mem_flags);
4194 			if (!dwc_tt)
4195 				return NULL;
4196 
4197 			dwc_tt->usb_tt = urb->dev->tt;
4198 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4199 		}
4200 
4201 		dwc_tt->refcount++;
4202 	}
4203 
4204 	return dwc_tt;
4205 }
4206 
4207 /**
4208  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4209  *
4210  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4211  * of the structure are done.
4212  *
4213  * It's OK to call this with NULL.
4214  *
4215  * @hsotg:     The HCD state structure for the DWC OTG controller.
4216  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4217  */
4218 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4219 {
4220 	/* Model kfree and make put of NULL a no-op */
4221 	if (!dwc_tt)
4222 		return;
4223 
4224 	WARN_ON(dwc_tt->refcount < 1);
4225 
4226 	dwc_tt->refcount--;
4227 	if (!dwc_tt->refcount) {
4228 		dwc_tt->usb_tt->hcpriv = NULL;
4229 		kfree(dwc_tt);
4230 	}
4231 }
4232 
4233 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4234 {
4235 	struct urb *urb = context;
4236 
4237 	return urb->dev->speed;
4238 }
4239 
4240 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4241 					struct urb *urb)
4242 {
4243 	struct usb_bus *bus = hcd_to_bus(hcd);
4244 
4245 	if (urb->interval)
4246 		bus->bandwidth_allocated += bw / urb->interval;
4247 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4248 		bus->bandwidth_isoc_reqs++;
4249 	else
4250 		bus->bandwidth_int_reqs++;
4251 }
4252 
4253 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4254 				    struct urb *urb)
4255 {
4256 	struct usb_bus *bus = hcd_to_bus(hcd);
4257 
4258 	if (urb->interval)
4259 		bus->bandwidth_allocated -= bw / urb->interval;
4260 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4261 		bus->bandwidth_isoc_reqs--;
4262 	else
4263 		bus->bandwidth_int_reqs--;
4264 }
4265 
4266 /*
4267  * Sets the final status of an URB and returns it to the upper layer. Any
4268  * required cleanup of the URB is performed.
4269  *
4270  * Must be called with interrupt disabled and spinlock held
4271  */
4272 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4273 			int status)
4274 {
4275 	struct urb *urb;
4276 	int i;
4277 
4278 	if (!qtd) {
4279 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4280 		return;
4281 	}
4282 
4283 	if (!qtd->urb) {
4284 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4285 		return;
4286 	}
4287 
4288 	urb = qtd->urb->priv;
4289 	if (!urb) {
4290 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4291 		return;
4292 	}
4293 
4294 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4295 
4296 	if (dbg_urb(urb))
4297 		dev_vdbg(hsotg->dev,
4298 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4299 			 __func__, urb, usb_pipedevice(urb->pipe),
4300 			 usb_pipeendpoint(urb->pipe),
4301 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4302 			 urb->actual_length);
4303 
4304 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4305 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4306 		for (i = 0; i < urb->number_of_packets; ++i) {
4307 			urb->iso_frame_desc[i].actual_length =
4308 				dwc2_hcd_urb_get_iso_desc_actual_length(
4309 						qtd->urb, i);
4310 			urb->iso_frame_desc[i].status =
4311 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4312 		}
4313 	}
4314 
4315 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4316 		for (i = 0; i < urb->number_of_packets; i++)
4317 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4318 				 i, urb->iso_frame_desc[i].status);
4319 	}
4320 
4321 	urb->status = status;
4322 	if (!status) {
4323 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4324 		    urb->actual_length < urb->transfer_buffer_length)
4325 			urb->status = -EREMOTEIO;
4326 	}
4327 
4328 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4329 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4330 		struct usb_host_endpoint *ep = urb->ep;
4331 
4332 		if (ep)
4333 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4334 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4335 					urb);
4336 	}
4337 
4338 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4339 	urb->hcpriv = NULL;
4340 	kfree(qtd->urb);
4341 	qtd->urb = NULL;
4342 
4343 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4344 }
4345 
4346 /*
4347  * Work queue function for starting the HCD when A-Cable is connected
4348  */
4349 static void dwc2_hcd_start_func(struct work_struct *work)
4350 {
4351 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4352 						start_work.work);
4353 
4354 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4355 	dwc2_host_start(hsotg);
4356 }
4357 
4358 /*
4359  * Reset work queue function
4360  */
4361 static void dwc2_hcd_reset_func(struct work_struct *work)
4362 {
4363 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4364 						reset_work.work);
4365 	unsigned long flags;
4366 	u32 hprt0;
4367 
4368 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4369 
4370 	spin_lock_irqsave(&hsotg->lock, flags);
4371 
4372 	hprt0 = dwc2_read_hprt0(hsotg);
4373 	hprt0 &= ~HPRT0_RST;
4374 	dwc2_writel(hsotg, hprt0, HPRT0);
4375 	hsotg->flags.b.port_reset_change = 1;
4376 
4377 	spin_unlock_irqrestore(&hsotg->lock, flags);
4378 }
4379 
4380 /*
4381  * =========================================================================
4382  *  Linux HC Driver Functions
4383  * =========================================================================
4384  */
4385 
4386 /*
4387  * Initializes the DWC_otg controller and its root hub and prepares it for host
4388  * mode operation. Activates the root port. Returns 0 on success and a negative
4389  * error code on failure.
4390  */
4391 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4392 {
4393 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4394 	struct usb_bus *bus = hcd_to_bus(hcd);
4395 	unsigned long flags;
4396 
4397 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4398 
4399 	spin_lock_irqsave(&hsotg->lock, flags);
4400 	hsotg->lx_state = DWC2_L0;
4401 	hcd->state = HC_STATE_RUNNING;
4402 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4403 
4404 	if (dwc2_is_device_mode(hsotg)) {
4405 		spin_unlock_irqrestore(&hsotg->lock, flags);
4406 		return 0;	/* why 0 ?? */
4407 	}
4408 
4409 	dwc2_hcd_reinit(hsotg);
4410 
4411 	/* Initialize and connect root hub if one is not already attached */
4412 	if (bus->root_hub) {
4413 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4414 		/* Inform the HUB driver to resume */
4415 		usb_hcd_resume_root_hub(hcd);
4416 	}
4417 
4418 	spin_unlock_irqrestore(&hsotg->lock, flags);
4419 
4420 	return dwc2_vbus_supply_init(hsotg);
4421 }
4422 
4423 /*
4424  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4425  * stopped.
4426  */
4427 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4428 {
4429 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4430 	unsigned long flags;
4431 
4432 	/* Turn off all host-specific interrupts */
4433 	dwc2_disable_host_interrupts(hsotg);
4434 
4435 	/* Wait for interrupt processing to finish */
4436 	synchronize_irq(hcd->irq);
4437 
4438 	spin_lock_irqsave(&hsotg->lock, flags);
4439 	/* Ensure hcd is disconnected */
4440 	dwc2_hcd_disconnect(hsotg, true);
4441 	dwc2_hcd_stop(hsotg);
4442 	hsotg->lx_state = DWC2_L3;
4443 	hcd->state = HC_STATE_HALT;
4444 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4445 	spin_unlock_irqrestore(&hsotg->lock, flags);
4446 
4447 	dwc2_vbus_supply_exit(hsotg);
4448 
4449 	usleep_range(1000, 3000);
4450 }
4451 
4452 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4453 {
4454 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4455 	unsigned long flags;
4456 	int ret = 0;
4457 	u32 hprt0;
4458 
4459 	spin_lock_irqsave(&hsotg->lock, flags);
4460 
4461 	if (dwc2_is_device_mode(hsotg))
4462 		goto unlock;
4463 
4464 	if (hsotg->lx_state != DWC2_L0)
4465 		goto unlock;
4466 
4467 	if (!HCD_HW_ACCESSIBLE(hcd))
4468 		goto unlock;
4469 
4470 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4471 		goto unlock;
4472 
4473 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL)
4474 		goto skip_power_saving;
4475 
4476 	/*
4477 	 * Drive USB suspend and disable port Power
4478 	 * if usb bus is not suspended.
4479 	 */
4480 	if (!hsotg->bus_suspended) {
4481 		hprt0 = dwc2_read_hprt0(hsotg);
4482 		hprt0 |= HPRT0_SUSP;
4483 		hprt0 &= ~HPRT0_PWR;
4484 		dwc2_writel(hsotg, hprt0, HPRT0);
4485 		dwc2_vbus_supply_exit(hsotg);
4486 	}
4487 
4488 	/* Enter partial_power_down */
4489 	ret = dwc2_enter_partial_power_down(hsotg);
4490 	if (ret) {
4491 		if (ret != -ENOTSUPP)
4492 			dev_err(hsotg->dev,
4493 				"enter partial_power_down failed\n");
4494 		goto skip_power_saving;
4495 	}
4496 
4497 	/* Ask phy to be suspended */
4498 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4499 		spin_unlock_irqrestore(&hsotg->lock, flags);
4500 		usb_phy_set_suspend(hsotg->uphy, true);
4501 		spin_lock_irqsave(&hsotg->lock, flags);
4502 	}
4503 
4504 	/* After entering partial_power_down, hardware is no more accessible */
4505 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4506 
4507 skip_power_saving:
4508 	hsotg->lx_state = DWC2_L2;
4509 unlock:
4510 	spin_unlock_irqrestore(&hsotg->lock, flags);
4511 
4512 	return ret;
4513 }
4514 
4515 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4516 {
4517 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4518 	unsigned long flags;
4519 	int ret = 0;
4520 
4521 	spin_lock_irqsave(&hsotg->lock, flags);
4522 
4523 	if (dwc2_is_device_mode(hsotg))
4524 		goto unlock;
4525 
4526 	if (hsotg->lx_state != DWC2_L2)
4527 		goto unlock;
4528 
4529 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) {
4530 		hsotg->lx_state = DWC2_L0;
4531 		goto unlock;
4532 	}
4533 
4534 	/*
4535 	 * Set HW accessible bit before powering on the controller
4536 	 * since an interrupt may rise.
4537 	 */
4538 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4539 
4540 	/*
4541 	 * Enable power if not already done.
4542 	 * This must not be spinlocked since duration
4543 	 * of this call is unknown.
4544 	 */
4545 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4546 		spin_unlock_irqrestore(&hsotg->lock, flags);
4547 		usb_phy_set_suspend(hsotg->uphy, false);
4548 		spin_lock_irqsave(&hsotg->lock, flags);
4549 	}
4550 
4551 	/* Exit partial_power_down */
4552 	ret = dwc2_exit_partial_power_down(hsotg, true);
4553 	if (ret && (ret != -ENOTSUPP))
4554 		dev_err(hsotg->dev, "exit partial_power_down failed\n");
4555 
4556 	hsotg->lx_state = DWC2_L0;
4557 
4558 	spin_unlock_irqrestore(&hsotg->lock, flags);
4559 
4560 	if (hsotg->bus_suspended) {
4561 		spin_lock_irqsave(&hsotg->lock, flags);
4562 		hsotg->flags.b.port_suspend_change = 1;
4563 		spin_unlock_irqrestore(&hsotg->lock, flags);
4564 		dwc2_port_resume(hsotg);
4565 	} else {
4566 		dwc2_vbus_supply_init(hsotg);
4567 
4568 		/* Wait for controller to correctly update D+/D- level */
4569 		usleep_range(3000, 5000);
4570 
4571 		/*
4572 		 * Clear Port Enable and Port Status changes.
4573 		 * Enable Port Power.
4574 		 */
4575 		dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4576 				HPRT0_ENACHG, HPRT0);
4577 		/* Wait for controller to detect Port Connect */
4578 		usleep_range(5000, 7000);
4579 	}
4580 
4581 	return ret;
4582 unlock:
4583 	spin_unlock_irqrestore(&hsotg->lock, flags);
4584 
4585 	return ret;
4586 }
4587 
4588 /* Returns the current frame number */
4589 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4590 {
4591 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4592 
4593 	return dwc2_hcd_get_frame_number(hsotg);
4594 }
4595 
4596 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4597 			       char *fn_name)
4598 {
4599 #ifdef VERBOSE_DEBUG
4600 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4601 	char *pipetype = NULL;
4602 	char *speed = NULL;
4603 
4604 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4605 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4606 		 usb_pipedevice(urb->pipe));
4607 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4608 		 usb_pipeendpoint(urb->pipe),
4609 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4610 
4611 	switch (usb_pipetype(urb->pipe)) {
4612 	case PIPE_CONTROL:
4613 		pipetype = "CONTROL";
4614 		break;
4615 	case PIPE_BULK:
4616 		pipetype = "BULK";
4617 		break;
4618 	case PIPE_INTERRUPT:
4619 		pipetype = "INTERRUPT";
4620 		break;
4621 	case PIPE_ISOCHRONOUS:
4622 		pipetype = "ISOCHRONOUS";
4623 		break;
4624 	}
4625 
4626 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4627 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4628 		 "IN" : "OUT");
4629 
4630 	switch (urb->dev->speed) {
4631 	case USB_SPEED_HIGH:
4632 		speed = "HIGH";
4633 		break;
4634 	case USB_SPEED_FULL:
4635 		speed = "FULL";
4636 		break;
4637 	case USB_SPEED_LOW:
4638 		speed = "LOW";
4639 		break;
4640 	default:
4641 		speed = "UNKNOWN";
4642 		break;
4643 	}
4644 
4645 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4646 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4647 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4648 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4649 		 urb->transfer_buffer_length);
4650 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4651 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4652 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4653 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4654 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4655 
4656 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4657 		int i;
4658 
4659 		for (i = 0; i < urb->number_of_packets; i++) {
4660 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4661 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4662 				 urb->iso_frame_desc[i].offset,
4663 				 urb->iso_frame_desc[i].length);
4664 		}
4665 	}
4666 #endif
4667 }
4668 
4669 /*
4670  * Starts processing a USB transfer request specified by a USB Request Block
4671  * (URB). mem_flags indicates the type of memory allocation to use while
4672  * processing this URB.
4673  */
4674 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4675 				 gfp_t mem_flags)
4676 {
4677 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4678 	struct usb_host_endpoint *ep = urb->ep;
4679 	struct dwc2_hcd_urb *dwc2_urb;
4680 	int i;
4681 	int retval;
4682 	int alloc_bandwidth = 0;
4683 	u8 ep_type = 0;
4684 	u32 tflags = 0;
4685 	void *buf;
4686 	unsigned long flags;
4687 	struct dwc2_qh *qh;
4688 	bool qh_allocated = false;
4689 	struct dwc2_qtd *qtd;
4690 
4691 	if (dbg_urb(urb)) {
4692 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4693 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4694 	}
4695 
4696 	if (!ep)
4697 		return -EINVAL;
4698 
4699 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4700 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4701 		spin_lock_irqsave(&hsotg->lock, flags);
4702 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4703 			alloc_bandwidth = 1;
4704 		spin_unlock_irqrestore(&hsotg->lock, flags);
4705 	}
4706 
4707 	switch (usb_pipetype(urb->pipe)) {
4708 	case PIPE_CONTROL:
4709 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4710 		break;
4711 	case PIPE_ISOCHRONOUS:
4712 		ep_type = USB_ENDPOINT_XFER_ISOC;
4713 		break;
4714 	case PIPE_BULK:
4715 		ep_type = USB_ENDPOINT_XFER_BULK;
4716 		break;
4717 	case PIPE_INTERRUPT:
4718 		ep_type = USB_ENDPOINT_XFER_INT;
4719 		break;
4720 	}
4721 
4722 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4723 				      mem_flags);
4724 	if (!dwc2_urb)
4725 		return -ENOMEM;
4726 
4727 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4728 				  usb_pipeendpoint(urb->pipe), ep_type,
4729 				  usb_pipein(urb->pipe),
4730 				  usb_maxpacket(urb->dev, urb->pipe,
4731 						!(usb_pipein(urb->pipe))));
4732 
4733 	buf = urb->transfer_buffer;
4734 
4735 	if (hcd->self.uses_dma) {
4736 		if (!buf && (urb->transfer_dma & 3)) {
4737 			dev_err(hsotg->dev,
4738 				"%s: unaligned transfer with no transfer_buffer",
4739 				__func__);
4740 			retval = -EINVAL;
4741 			goto fail0;
4742 		}
4743 	}
4744 
4745 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4746 		tflags |= URB_GIVEBACK_ASAP;
4747 	if (urb->transfer_flags & URB_ZERO_PACKET)
4748 		tflags |= URB_SEND_ZERO_PACKET;
4749 
4750 	dwc2_urb->priv = urb;
4751 	dwc2_urb->buf = buf;
4752 	dwc2_urb->dma = urb->transfer_dma;
4753 	dwc2_urb->length = urb->transfer_buffer_length;
4754 	dwc2_urb->setup_packet = urb->setup_packet;
4755 	dwc2_urb->setup_dma = urb->setup_dma;
4756 	dwc2_urb->flags = tflags;
4757 	dwc2_urb->interval = urb->interval;
4758 	dwc2_urb->status = -EINPROGRESS;
4759 
4760 	for (i = 0; i < urb->number_of_packets; ++i)
4761 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4762 						 urb->iso_frame_desc[i].offset,
4763 						 urb->iso_frame_desc[i].length);
4764 
4765 	urb->hcpriv = dwc2_urb;
4766 	qh = (struct dwc2_qh *)ep->hcpriv;
4767 	/* Create QH for the endpoint if it doesn't exist */
4768 	if (!qh) {
4769 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4770 		if (!qh) {
4771 			retval = -ENOMEM;
4772 			goto fail0;
4773 		}
4774 		ep->hcpriv = qh;
4775 		qh_allocated = true;
4776 	}
4777 
4778 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4779 	if (!qtd) {
4780 		retval = -ENOMEM;
4781 		goto fail1;
4782 	}
4783 
4784 	spin_lock_irqsave(&hsotg->lock, flags);
4785 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4786 	if (retval)
4787 		goto fail2;
4788 
4789 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4790 	if (retval)
4791 		goto fail3;
4792 
4793 	if (alloc_bandwidth) {
4794 		dwc2_allocate_bus_bandwidth(hcd,
4795 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4796 				urb);
4797 	}
4798 
4799 	spin_unlock_irqrestore(&hsotg->lock, flags);
4800 
4801 	return 0;
4802 
4803 fail3:
4804 	dwc2_urb->priv = NULL;
4805 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4806 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4807 		qh->channel->qh = NULL;
4808 fail2:
4809 	spin_unlock_irqrestore(&hsotg->lock, flags);
4810 	urb->hcpriv = NULL;
4811 	kfree(qtd);
4812 	qtd = NULL;
4813 fail1:
4814 	if (qh_allocated) {
4815 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4816 
4817 		ep->hcpriv = NULL;
4818 		dwc2_hcd_qh_unlink(hsotg, qh);
4819 		/* Free each QTD in the QH's QTD list */
4820 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4821 					 qtd_list_entry)
4822 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4823 		dwc2_hcd_qh_free(hsotg, qh);
4824 	}
4825 fail0:
4826 	kfree(dwc2_urb);
4827 
4828 	return retval;
4829 }
4830 
4831 /*
4832  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4833  */
4834 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4835 				 int status)
4836 {
4837 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4838 	int rc;
4839 	unsigned long flags;
4840 
4841 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4842 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4843 
4844 	spin_lock_irqsave(&hsotg->lock, flags);
4845 
4846 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4847 	if (rc)
4848 		goto out;
4849 
4850 	if (!urb->hcpriv) {
4851 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4852 		goto out;
4853 	}
4854 
4855 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4856 
4857 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4858 
4859 	kfree(urb->hcpriv);
4860 	urb->hcpriv = NULL;
4861 
4862 	/* Higher layer software sets URB status */
4863 	spin_unlock(&hsotg->lock);
4864 	usb_hcd_giveback_urb(hcd, urb, status);
4865 	spin_lock(&hsotg->lock);
4866 
4867 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4868 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4869 out:
4870 	spin_unlock_irqrestore(&hsotg->lock, flags);
4871 
4872 	return rc;
4873 }
4874 
4875 /*
4876  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4877  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4878  * must already be dequeued.
4879  */
4880 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4881 				       struct usb_host_endpoint *ep)
4882 {
4883 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4884 
4885 	dev_dbg(hsotg->dev,
4886 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4887 		ep->desc.bEndpointAddress, ep->hcpriv);
4888 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4889 }
4890 
4891 /*
4892  * Resets endpoint specific parameter values, in current version used to reset
4893  * the data toggle (as a WA). This function can be called from usb_clear_halt
4894  * routine.
4895  */
4896 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4897 				     struct usb_host_endpoint *ep)
4898 {
4899 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4900 	unsigned long flags;
4901 
4902 	dev_dbg(hsotg->dev,
4903 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4904 		ep->desc.bEndpointAddress);
4905 
4906 	spin_lock_irqsave(&hsotg->lock, flags);
4907 	dwc2_hcd_endpoint_reset(hsotg, ep);
4908 	spin_unlock_irqrestore(&hsotg->lock, flags);
4909 }
4910 
4911 /*
4912  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4913  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4914  * interrupt.
4915  *
4916  * This function is called by the USB core when an interrupt occurs
4917  */
4918 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4919 {
4920 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4921 
4922 	return dwc2_handle_hcd_intr(hsotg);
4923 }
4924 
4925 /*
4926  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4927  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4928  * is the status change indicator for the single root port. Returns 1 if either
4929  * change indicator is 1, otherwise returns 0.
4930  */
4931 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4932 {
4933 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4934 
4935 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4936 	return buf[0] != 0;
4937 }
4938 
4939 /* Handles hub class-specific requests */
4940 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4941 				 u16 windex, char *buf, u16 wlength)
4942 {
4943 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4944 					  wvalue, windex, buf, wlength);
4945 	return retval;
4946 }
4947 
4948 /* Handles hub TT buffer clear completions */
4949 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4950 					       struct usb_host_endpoint *ep)
4951 {
4952 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4953 	struct dwc2_qh *qh;
4954 	unsigned long flags;
4955 
4956 	qh = ep->hcpriv;
4957 	if (!qh)
4958 		return;
4959 
4960 	spin_lock_irqsave(&hsotg->lock, flags);
4961 	qh->tt_buffer_dirty = 0;
4962 
4963 	if (hsotg->flags.b.port_connect_status)
4964 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4965 
4966 	spin_unlock_irqrestore(&hsotg->lock, flags);
4967 }
4968 
4969 /*
4970  * HPRT0_SPD_HIGH_SPEED: high speed
4971  * HPRT0_SPD_FULL_SPEED: full speed
4972  */
4973 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4974 {
4975 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4976 
4977 	if (hsotg->params.speed == speed)
4978 		return;
4979 
4980 	hsotg->params.speed = speed;
4981 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4982 }
4983 
4984 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4985 {
4986 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4987 
4988 	if (!hsotg->params.change_speed_quirk)
4989 		return;
4990 
4991 	/*
4992 	 * On removal, set speed to default high-speed.
4993 	 */
4994 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4995 	    udev->parent->speed < USB_SPEED_HIGH) {
4996 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4997 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4998 	}
4999 }
5000 
5001 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
5002 {
5003 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
5004 
5005 	if (!hsotg->params.change_speed_quirk)
5006 		return 0;
5007 
5008 	if (udev->speed == USB_SPEED_HIGH) {
5009 		dev_info(hsotg->dev, "Set speed to high-speed\n");
5010 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5011 	} else if ((udev->speed == USB_SPEED_FULL ||
5012 				udev->speed == USB_SPEED_LOW)) {
5013 		/*
5014 		 * Change speed setting to full-speed if there's
5015 		 * a full-speed or low-speed device plugged in.
5016 		 */
5017 		dev_info(hsotg->dev, "Set speed to full-speed\n");
5018 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5019 	}
5020 
5021 	return 0;
5022 }
5023 
5024 static struct hc_driver dwc2_hc_driver = {
5025 	.description = "dwc2_hsotg",
5026 	.product_desc = "DWC OTG Controller",
5027 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
5028 
5029 	.irq = _dwc2_hcd_irq,
5030 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5031 
5032 	.start = _dwc2_hcd_start,
5033 	.stop = _dwc2_hcd_stop,
5034 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
5035 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
5036 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
5037 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
5038 	.get_frame_number = _dwc2_hcd_get_frame_number,
5039 
5040 	.hub_status_data = _dwc2_hcd_hub_status_data,
5041 	.hub_control = _dwc2_hcd_hub_control,
5042 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5043 
5044 	.bus_suspend = _dwc2_hcd_suspend,
5045 	.bus_resume = _dwc2_hcd_resume,
5046 
5047 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
5048 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
5049 };
5050 
5051 /*
5052  * Frees secondary storage associated with the dwc2_hsotg structure contained
5053  * in the struct usb_hcd field
5054  */
5055 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5056 {
5057 	u32 ahbcfg;
5058 	u32 dctl;
5059 	int i;
5060 
5061 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5062 
5063 	/* Free memory for QH/QTD lists */
5064 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5065 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5066 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5067 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5068 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5069 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5070 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5071 
5072 	/* Free memory for the host channels */
5073 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5074 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5075 
5076 		if (chan) {
5077 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5078 				i, chan);
5079 			hsotg->hc_ptr_array[i] = NULL;
5080 			kfree(chan);
5081 		}
5082 	}
5083 
5084 	if (hsotg->params.host_dma) {
5085 		if (hsotg->status_buf) {
5086 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5087 					  hsotg->status_buf,
5088 					  hsotg->status_buf_dma);
5089 			hsotg->status_buf = NULL;
5090 		}
5091 	} else {
5092 		kfree(hsotg->status_buf);
5093 		hsotg->status_buf = NULL;
5094 	}
5095 
5096 	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5097 
5098 	/* Disable all interrupts */
5099 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5100 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5101 	dwc2_writel(hsotg, 0, GINTMSK);
5102 
5103 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5104 		dctl = dwc2_readl(hsotg, DCTL);
5105 		dctl |= DCTL_SFTDISCON;
5106 		dwc2_writel(hsotg, dctl, DCTL);
5107 	}
5108 
5109 	if (hsotg->wq_otg) {
5110 		if (!cancel_work_sync(&hsotg->wf_otg))
5111 			flush_workqueue(hsotg->wq_otg);
5112 		destroy_workqueue(hsotg->wq_otg);
5113 	}
5114 
5115 	del_timer(&hsotg->wkp_timer);
5116 }
5117 
5118 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5119 {
5120 	/* Turn off all host-specific interrupts */
5121 	dwc2_disable_host_interrupts(hsotg);
5122 
5123 	dwc2_hcd_free(hsotg);
5124 }
5125 
5126 /*
5127  * Initializes the HCD. This function allocates memory for and initializes the
5128  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5129  * USB bus with the core and calls the hc_driver->start() function. It returns
5130  * a negative error on failure.
5131  */
5132 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5133 {
5134 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5135 	struct resource *res;
5136 	struct usb_hcd *hcd;
5137 	struct dwc2_host_chan *channel;
5138 	u32 hcfg;
5139 	int i, num_channels;
5140 	int retval;
5141 
5142 	if (usb_disabled())
5143 		return -ENODEV;
5144 
5145 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5146 
5147 	retval = -ENOMEM;
5148 
5149 	hcfg = dwc2_readl(hsotg, HCFG);
5150 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5151 
5152 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5153 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5154 					 sizeof(*hsotg->frame_num_array),
5155 					 GFP_KERNEL);
5156 	if (!hsotg->frame_num_array)
5157 		goto error1;
5158 	hsotg->last_frame_num_array =
5159 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5160 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5161 	if (!hsotg->last_frame_num_array)
5162 		goto error1;
5163 #endif
5164 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5165 
5166 	/* Check if the bus driver or platform code has setup a dma_mask */
5167 	if (hsotg->params.host_dma &&
5168 	    !hsotg->dev->dma_mask) {
5169 		dev_warn(hsotg->dev,
5170 			 "dma_mask not set, disabling DMA\n");
5171 		hsotg->params.host_dma = false;
5172 		hsotg->params.dma_desc_enable = false;
5173 	}
5174 
5175 	/* Set device flags indicating whether the HCD supports DMA */
5176 	if (hsotg->params.host_dma) {
5177 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5178 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5179 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5180 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5181 	}
5182 
5183 	if (hsotg->params.change_speed_quirk) {
5184 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5185 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5186 	}
5187 
5188 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5189 	if (!hcd)
5190 		goto error1;
5191 
5192 	if (!hsotg->params.host_dma)
5193 		hcd->self.uses_dma = 0;
5194 
5195 	hcd->has_tt = 1;
5196 
5197 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5198 	hcd->rsrc_start = res->start;
5199 	hcd->rsrc_len = resource_size(res);
5200 
5201 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5202 	hsotg->priv = hcd;
5203 
5204 	/*
5205 	 * Disable the global interrupt until all the interrupt handlers are
5206 	 * installed
5207 	 */
5208 	dwc2_disable_global_interrupts(hsotg);
5209 
5210 	/* Initialize the DWC_otg core, and select the Phy type */
5211 	retval = dwc2_core_init(hsotg, true);
5212 	if (retval)
5213 		goto error2;
5214 
5215 	/* Create new workqueue and init work */
5216 	retval = -ENOMEM;
5217 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5218 	if (!hsotg->wq_otg) {
5219 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5220 		goto error2;
5221 	}
5222 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5223 
5224 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5225 
5226 	/* Initialize the non-periodic schedule */
5227 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5228 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5229 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5230 
5231 	/* Initialize the periodic schedule */
5232 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5233 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5234 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5235 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5236 
5237 	INIT_LIST_HEAD(&hsotg->split_order);
5238 
5239 	/*
5240 	 * Create a host channel descriptor for each host channel implemented
5241 	 * in the controller. Initialize the channel descriptor array.
5242 	 */
5243 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5244 	num_channels = hsotg->params.host_channels;
5245 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5246 
5247 	for (i = 0; i < num_channels; i++) {
5248 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5249 		if (!channel)
5250 			goto error3;
5251 		channel->hc_num = i;
5252 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5253 		hsotg->hc_ptr_array[i] = channel;
5254 	}
5255 
5256 	/* Initialize hsotg start work */
5257 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5258 
5259 	/* Initialize port reset work */
5260 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5261 
5262 	/*
5263 	 * Allocate space for storing data on status transactions. Normally no
5264 	 * data is sent, but this space acts as a bit bucket. This must be
5265 	 * done after usb_add_hcd since that function allocates the DMA buffer
5266 	 * pool.
5267 	 */
5268 	if (hsotg->params.host_dma)
5269 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5270 					DWC2_HCD_STATUS_BUF_SIZE,
5271 					&hsotg->status_buf_dma, GFP_KERNEL);
5272 	else
5273 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5274 					  GFP_KERNEL);
5275 
5276 	if (!hsotg->status_buf)
5277 		goto error3;
5278 
5279 	/*
5280 	 * Create kmem caches to handle descriptor buffers in descriptor
5281 	 * DMA mode.
5282 	 * Alignment must be set to 512 bytes.
5283 	 */
5284 	if (hsotg->params.dma_desc_enable ||
5285 	    hsotg->params.dma_desc_fs_enable) {
5286 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5287 				sizeof(struct dwc2_dma_desc) *
5288 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5289 				NULL);
5290 		if (!hsotg->desc_gen_cache) {
5291 			dev_err(hsotg->dev,
5292 				"unable to create dwc2 generic desc cache\n");
5293 
5294 			/*
5295 			 * Disable descriptor dma mode since it will not be
5296 			 * usable.
5297 			 */
5298 			hsotg->params.dma_desc_enable = false;
5299 			hsotg->params.dma_desc_fs_enable = false;
5300 		}
5301 
5302 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5303 				sizeof(struct dwc2_dma_desc) *
5304 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5305 		if (!hsotg->desc_hsisoc_cache) {
5306 			dev_err(hsotg->dev,
5307 				"unable to create dwc2 hs isoc desc cache\n");
5308 
5309 			kmem_cache_destroy(hsotg->desc_gen_cache);
5310 
5311 			/*
5312 			 * Disable descriptor dma mode since it will not be
5313 			 * usable.
5314 			 */
5315 			hsotg->params.dma_desc_enable = false;
5316 			hsotg->params.dma_desc_fs_enable = false;
5317 		}
5318 	}
5319 
5320 	if (hsotg->params.host_dma) {
5321 		/*
5322 		 * Create kmem caches to handle non-aligned buffer
5323 		 * in Buffer DMA mode.
5324 		 */
5325 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5326 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5327 						SLAB_CACHE_DMA, NULL);
5328 		if (!hsotg->unaligned_cache)
5329 			dev_err(hsotg->dev,
5330 				"unable to create dwc2 unaligned cache\n");
5331 	}
5332 
5333 	hsotg->otg_port = 1;
5334 	hsotg->frame_list = NULL;
5335 	hsotg->frame_list_dma = 0;
5336 	hsotg->periodic_qh_count = 0;
5337 
5338 	/* Initiate lx_state to L3 disconnected state */
5339 	hsotg->lx_state = DWC2_L3;
5340 
5341 	hcd->self.otg_port = hsotg->otg_port;
5342 
5343 	/* Don't support SG list at this point */
5344 	hcd->self.sg_tablesize = 0;
5345 
5346 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5347 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5348 
5349 	/*
5350 	 * Finish generic HCD initialization and start the HCD. This function
5351 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5352 	 * IRQ line, and calls hcd_start method.
5353 	 */
5354 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5355 	if (retval < 0)
5356 		goto error4;
5357 
5358 	device_wakeup_enable(hcd->self.controller);
5359 
5360 	dwc2_hcd_dump_state(hsotg);
5361 
5362 	dwc2_enable_global_interrupts(hsotg);
5363 
5364 	return 0;
5365 
5366 error4:
5367 	kmem_cache_destroy(hsotg->unaligned_cache);
5368 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5369 	kmem_cache_destroy(hsotg->desc_gen_cache);
5370 error3:
5371 	dwc2_hcd_release(hsotg);
5372 error2:
5373 	usb_put_hcd(hcd);
5374 error1:
5375 
5376 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5377 	kfree(hsotg->last_frame_num_array);
5378 	kfree(hsotg->frame_num_array);
5379 #endif
5380 
5381 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5382 	return retval;
5383 }
5384 
5385 /*
5386  * Removes the HCD.
5387  * Frees memory and resources associated with the HCD and deregisters the bus.
5388  */
5389 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5390 {
5391 	struct usb_hcd *hcd;
5392 
5393 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5394 
5395 	hcd = dwc2_hsotg_to_hcd(hsotg);
5396 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5397 
5398 	if (!hcd) {
5399 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5400 			__func__);
5401 		return;
5402 	}
5403 
5404 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5405 		otg_set_host(hsotg->uphy->otg, NULL);
5406 
5407 	usb_remove_hcd(hcd);
5408 	hsotg->priv = NULL;
5409 
5410 	kmem_cache_destroy(hsotg->unaligned_cache);
5411 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5412 	kmem_cache_destroy(hsotg->desc_gen_cache);
5413 
5414 	dwc2_hcd_release(hsotg);
5415 	usb_put_hcd(hcd);
5416 
5417 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5418 	kfree(hsotg->last_frame_num_array);
5419 	kfree(hsotg->frame_num_array);
5420 #endif
5421 }
5422 
5423 /**
5424  * dwc2_backup_host_registers() - Backup controller host registers.
5425  * When suspending usb bus, registers needs to be backuped
5426  * if controller power is disabled once suspended.
5427  *
5428  * @hsotg: Programming view of the DWC_otg controller
5429  */
5430 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5431 {
5432 	struct dwc2_hregs_backup *hr;
5433 	int i;
5434 
5435 	dev_dbg(hsotg->dev, "%s\n", __func__);
5436 
5437 	/* Backup Host regs */
5438 	hr = &hsotg->hr_backup;
5439 	hr->hcfg = dwc2_readl(hsotg, HCFG);
5440 	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5441 	for (i = 0; i < hsotg->params.host_channels; ++i)
5442 		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5443 
5444 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5445 	hr->hfir = dwc2_readl(hsotg, HFIR);
5446 	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5447 	hr->valid = true;
5448 
5449 	return 0;
5450 }
5451 
5452 /**
5453  * dwc2_restore_host_registers() - Restore controller host registers.
5454  * When resuming usb bus, device registers needs to be restored
5455  * if controller power were disabled.
5456  *
5457  * @hsotg: Programming view of the DWC_otg controller
5458  */
5459 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5460 {
5461 	struct dwc2_hregs_backup *hr;
5462 	int i;
5463 
5464 	dev_dbg(hsotg->dev, "%s\n", __func__);
5465 
5466 	/* Restore host regs */
5467 	hr = &hsotg->hr_backup;
5468 	if (!hr->valid) {
5469 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5470 			__func__);
5471 		return -EINVAL;
5472 	}
5473 	hr->valid = false;
5474 
5475 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5476 	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5477 
5478 	for (i = 0; i < hsotg->params.host_channels; ++i)
5479 		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5480 
5481 	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5482 	dwc2_writel(hsotg, hr->hfir, HFIR);
5483 	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5484 	hsotg->frame_number = 0;
5485 
5486 	return 0;
5487 }
5488 
5489 /**
5490  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5491  *
5492  * @hsotg: Programming view of the DWC_otg controller
5493  */
5494 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5495 {
5496 	unsigned long flags;
5497 	int ret = 0;
5498 	u32 hprt0;
5499 	u32 pcgcctl;
5500 	u32 gusbcfg;
5501 	u32 gpwrdn;
5502 
5503 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5504 	ret = dwc2_backup_global_registers(hsotg);
5505 	if (ret) {
5506 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5507 			__func__);
5508 		return ret;
5509 	}
5510 	ret = dwc2_backup_host_registers(hsotg);
5511 	if (ret) {
5512 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5513 			__func__);
5514 		return ret;
5515 	}
5516 
5517 	/* Enter USB Suspend Mode */
5518 	hprt0 = dwc2_readl(hsotg, HPRT0);
5519 	hprt0 |= HPRT0_SUSP;
5520 	hprt0 &= ~HPRT0_ENA;
5521 	dwc2_writel(hsotg, hprt0, HPRT0);
5522 
5523 	/* Wait for the HPRT0.PrtSusp register field to be set */
5524 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5525 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5526 
5527 	/*
5528 	 * We need to disable interrupts to prevent servicing of any IRQ
5529 	 * during going to hibernation
5530 	 */
5531 	spin_lock_irqsave(&hsotg->lock, flags);
5532 	hsotg->lx_state = DWC2_L2;
5533 
5534 	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5535 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5536 		/* ULPI interface */
5537 		/* Suspend the Phy Clock */
5538 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5539 		pcgcctl |= PCGCTL_STOPPCLK;
5540 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5541 		udelay(10);
5542 
5543 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5544 		gpwrdn |= GPWRDN_PMUACTV;
5545 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5546 		udelay(10);
5547 	} else {
5548 		/* UTMI+ Interface */
5549 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5550 		gpwrdn |= GPWRDN_PMUACTV;
5551 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5552 		udelay(10);
5553 
5554 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5555 		pcgcctl |= PCGCTL_STOPPCLK;
5556 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5557 		udelay(10);
5558 	}
5559 
5560 	/* Enable interrupts from wake up logic */
5561 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5562 	gpwrdn |= GPWRDN_PMUINTSEL;
5563 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5564 	udelay(10);
5565 
5566 	/* Unmask host mode interrupts in GPWRDN */
5567 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5568 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5569 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5570 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5571 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5572 	udelay(10);
5573 
5574 	/* Enable Power Down Clamp */
5575 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5576 	gpwrdn |= GPWRDN_PWRDNCLMP;
5577 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5578 	udelay(10);
5579 
5580 	/* Switch off VDD */
5581 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5582 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5583 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5584 
5585 	hsotg->hibernated = 1;
5586 	hsotg->bus_suspended = 1;
5587 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5588 	spin_unlock_irqrestore(&hsotg->lock, flags);
5589 	return ret;
5590 }
5591 
5592 /*
5593  * dwc2_host_exit_hibernation()
5594  *
5595  * @hsotg: Programming view of the DWC_otg controller
5596  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5597  * @param reset: indicates whether resume is initiated by Reset.
5598  *
5599  * Return: non-zero if failed to enter to hibernation.
5600  *
5601  * This function is for exiting from Host mode hibernation by
5602  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5603  */
5604 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5605 			       int reset)
5606 {
5607 	u32 gpwrdn;
5608 	u32 hprt0;
5609 	int ret = 0;
5610 	struct dwc2_gregs_backup *gr;
5611 	struct dwc2_hregs_backup *hr;
5612 
5613 	gr = &hsotg->gr_backup;
5614 	hr = &hsotg->hr_backup;
5615 
5616 	dev_dbg(hsotg->dev,
5617 		"%s: called with rem_wakeup = %d reset = %d\n",
5618 		__func__, rem_wakeup, reset);
5619 
5620 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5621 	hsotg->hibernated = 0;
5622 
5623 	/*
5624 	 * This step is not described in functional spec but if not wait for
5625 	 * this delay, mismatch interrupts occurred because just after restore
5626 	 * core is in Device mode(gintsts.curmode == 0)
5627 	 */
5628 	mdelay(100);
5629 
5630 	/* Clear all pending interupts */
5631 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5632 
5633 	/* De-assert Restore */
5634 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5635 	gpwrdn &= ~GPWRDN_RESTORE;
5636 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5637 	udelay(10);
5638 
5639 	/* Restore GUSBCFG, HCFG */
5640 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5641 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5642 
5643 	/* De-assert Wakeup Logic */
5644 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5645 	gpwrdn &= ~GPWRDN_PMUACTV;
5646 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5647 	udelay(10);
5648 
5649 	hprt0 = hr->hprt0;
5650 	hprt0 |= HPRT0_PWR;
5651 	hprt0 &= ~HPRT0_ENA;
5652 	hprt0 &= ~HPRT0_SUSP;
5653 	dwc2_writel(hsotg, hprt0, HPRT0);
5654 
5655 	hprt0 = hr->hprt0;
5656 	hprt0 |= HPRT0_PWR;
5657 	hprt0 &= ~HPRT0_ENA;
5658 	hprt0 &= ~HPRT0_SUSP;
5659 
5660 	if (reset) {
5661 		hprt0 |= HPRT0_RST;
5662 		dwc2_writel(hsotg, hprt0, HPRT0);
5663 
5664 		/* Wait for Resume time and then program HPRT again */
5665 		mdelay(60);
5666 		hprt0 &= ~HPRT0_RST;
5667 		dwc2_writel(hsotg, hprt0, HPRT0);
5668 	} else {
5669 		hprt0 |= HPRT0_RES;
5670 		dwc2_writel(hsotg, hprt0, HPRT0);
5671 
5672 		/* Wait for Resume time and then program HPRT again */
5673 		mdelay(100);
5674 		hprt0 &= ~HPRT0_RES;
5675 		dwc2_writel(hsotg, hprt0, HPRT0);
5676 	}
5677 	/* Clear all interrupt status */
5678 	hprt0 = dwc2_readl(hsotg, HPRT0);
5679 	hprt0 |= HPRT0_CONNDET;
5680 	hprt0 |= HPRT0_ENACHG;
5681 	hprt0 &= ~HPRT0_ENA;
5682 	dwc2_writel(hsotg, hprt0, HPRT0);
5683 
5684 	hprt0 = dwc2_readl(hsotg, HPRT0);
5685 
5686 	/* Clear all pending interupts */
5687 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5688 
5689 	/* Restore global registers */
5690 	ret = dwc2_restore_global_registers(hsotg);
5691 	if (ret) {
5692 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5693 			__func__);
5694 		return ret;
5695 	}
5696 
5697 	/* Restore host registers */
5698 	ret = dwc2_restore_host_registers(hsotg);
5699 	if (ret) {
5700 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5701 			__func__);
5702 		return ret;
5703 	}
5704 
5705 	dwc2_hcd_rem_wakeup(hsotg);
5706 
5707 	hsotg->hibernated = 0;
5708 	hsotg->bus_suspended = 0;
5709 	hsotg->lx_state = DWC2_L0;
5710 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5711 	return ret;
5712 }
5713