xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision dbf563ee)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60 
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66 
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 	u32 intmsk;
76 
77 	/* Clear any pending OTG Interrupts */
78 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
79 
80 	/* Clear any pending interrupts */
81 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
82 
83 	/* Enable the interrupts in the GINTMSK */
84 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85 
86 	if (!hsotg->params.host_dma)
87 		intmsk |= GINTSTS_RXFLVL;
88 	if (!hsotg->params.external_id_pin_ctl)
89 		intmsk |= GINTSTS_CONIDSTSCHNG;
90 
91 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 		  GINTSTS_SESSREQINT;
93 
94 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 		intmsk |= GINTSTS_LPMTRANRCVD;
96 
97 	dwc2_writel(hsotg, intmsk, GINTMSK);
98 }
99 
100 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
101 {
102 	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
103 
104 	switch (hsotg->hw_params.arch) {
105 	case GHWCFG2_EXT_DMA_ARCH:
106 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
107 		return -EINVAL;
108 
109 	case GHWCFG2_INT_DMA_ARCH:
110 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
111 		if (hsotg->params.ahbcfg != -1) {
112 			ahbcfg &= GAHBCFG_CTRL_MASK;
113 			ahbcfg |= hsotg->params.ahbcfg &
114 				  ~GAHBCFG_CTRL_MASK;
115 		}
116 		break;
117 
118 	case GHWCFG2_SLAVE_ONLY_ARCH:
119 	default:
120 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
121 		break;
122 	}
123 
124 	if (hsotg->params.host_dma)
125 		ahbcfg |= GAHBCFG_DMA_EN;
126 	else
127 		hsotg->params.dma_desc_enable = false;
128 
129 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
130 
131 	return 0;
132 }
133 
134 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
135 {
136 	u32 usbcfg;
137 
138 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
139 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
140 
141 	switch (hsotg->hw_params.op_mode) {
142 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
143 		if (hsotg->params.otg_cap ==
144 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
145 			usbcfg |= GUSBCFG_HNPCAP;
146 		if (hsotg->params.otg_cap !=
147 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
148 			usbcfg |= GUSBCFG_SRPCAP;
149 		break;
150 
151 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
152 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
153 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
154 		if (hsotg->params.otg_cap !=
155 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
156 			usbcfg |= GUSBCFG_SRPCAP;
157 		break;
158 
159 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
160 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
161 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
162 	default:
163 		break;
164 	}
165 
166 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
167 }
168 
169 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
170 {
171 	if (hsotg->vbus_supply)
172 		return regulator_enable(hsotg->vbus_supply);
173 
174 	return 0;
175 }
176 
177 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
178 {
179 	if (hsotg->vbus_supply)
180 		return regulator_disable(hsotg->vbus_supply);
181 
182 	return 0;
183 }
184 
185 /**
186  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
187  *
188  * @hsotg: Programming view of DWC_otg controller
189  */
190 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
191 {
192 	u32 intmsk;
193 
194 	dev_dbg(hsotg->dev, "%s()\n", __func__);
195 
196 	/* Disable all interrupts */
197 	dwc2_writel(hsotg, 0, GINTMSK);
198 	dwc2_writel(hsotg, 0, HAINTMSK);
199 
200 	/* Enable the common interrupts */
201 	dwc2_enable_common_interrupts(hsotg);
202 
203 	/* Enable host mode interrupts without disturbing common interrupts */
204 	intmsk = dwc2_readl(hsotg, GINTMSK);
205 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
206 	dwc2_writel(hsotg, intmsk, GINTMSK);
207 }
208 
209 /**
210  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
211  *
212  * @hsotg: Programming view of DWC_otg controller
213  */
214 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
215 {
216 	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
217 
218 	/* Disable host mode interrupts without disturbing common interrupts */
219 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
220 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
221 	dwc2_writel(hsotg, intmsk, GINTMSK);
222 }
223 
224 /*
225  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
226  * For system that have a total fifo depth that is smaller than the default
227  * RX + TX fifo size.
228  *
229  * @hsotg: Programming view of DWC_otg controller
230  */
231 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
232 {
233 	struct dwc2_core_params *params = &hsotg->params;
234 	struct dwc2_hw_params *hw = &hsotg->hw_params;
235 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
236 
237 	total_fifo_size = hw->total_fifo_size;
238 	rxfsiz = params->host_rx_fifo_size;
239 	nptxfsiz = params->host_nperio_tx_fifo_size;
240 	ptxfsiz = params->host_perio_tx_fifo_size;
241 
242 	/*
243 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
244 	 * allocation with support for high bandwidth endpoints. Synopsys
245 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
246 	 * non-periodic as 512.
247 	 */
248 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
249 		/*
250 		 * For Buffer DMA mode/Scatter Gather DMA mode
251 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
252 		 * with n = number of host channel.
253 		 * 2 * ((1024/4) + 2) = 516
254 		 */
255 		rxfsiz = 516 + hw->host_channels;
256 
257 		/*
258 		 * min non-periodic tx fifo depth
259 		 * 2 * (largest non-periodic USB packet used / 4)
260 		 * 2 * (512/4) = 256
261 		 */
262 		nptxfsiz = 256;
263 
264 		/*
265 		 * min periodic tx fifo depth
266 		 * (largest packet size*MC)/4
267 		 * (1024 * 3)/4 = 768
268 		 */
269 		ptxfsiz = 768;
270 
271 		params->host_rx_fifo_size = rxfsiz;
272 		params->host_nperio_tx_fifo_size = nptxfsiz;
273 		params->host_perio_tx_fifo_size = ptxfsiz;
274 	}
275 
276 	/*
277 	 * If the summation of RX, NPTX and PTX fifo sizes is still
278 	 * bigger than the total_fifo_size, then we have a problem.
279 	 *
280 	 * We won't be able to allocate as many endpoints. Right now,
281 	 * we're just printing an error message, but ideally this FIFO
282 	 * allocation algorithm would be improved in the future.
283 	 *
284 	 * FIXME improve this FIFO allocation algorithm.
285 	 */
286 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
287 		dev_err(hsotg->dev, "invalid fifo sizes\n");
288 }
289 
290 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
291 {
292 	struct dwc2_core_params *params = &hsotg->params;
293 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
294 
295 	if (!params->enable_dynamic_fifo)
296 		return;
297 
298 	dwc2_calculate_dynamic_fifo(hsotg);
299 
300 	/* Rx FIFO */
301 	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
302 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
303 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
304 	grxfsiz |= params->host_rx_fifo_size <<
305 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
306 	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
307 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
308 		dwc2_readl(hsotg, GRXFSIZ));
309 
310 	/* Non-periodic Tx FIFO */
311 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
312 		dwc2_readl(hsotg, GNPTXFSIZ));
313 	nptxfsiz = params->host_nperio_tx_fifo_size <<
314 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
315 	nptxfsiz |= params->host_rx_fifo_size <<
316 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
317 	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
318 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
319 		dwc2_readl(hsotg, GNPTXFSIZ));
320 
321 	/* Periodic Tx FIFO */
322 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
323 		dwc2_readl(hsotg, HPTXFSIZ));
324 	hptxfsiz = params->host_perio_tx_fifo_size <<
325 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
326 	hptxfsiz |= (params->host_rx_fifo_size +
327 		     params->host_nperio_tx_fifo_size) <<
328 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
329 	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
330 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
331 		dwc2_readl(hsotg, HPTXFSIZ));
332 
333 	if (hsotg->params.en_multiple_tx_fifo &&
334 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
335 		/*
336 		 * This feature was implemented in 2.91a version
337 		 * Global DFIFOCFG calculation for Host mode -
338 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
339 		 */
340 		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
341 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
342 		dfifocfg |= (params->host_rx_fifo_size +
343 			     params->host_nperio_tx_fifo_size +
344 			     params->host_perio_tx_fifo_size) <<
345 			    GDFIFOCFG_EPINFOBASE_SHIFT &
346 			    GDFIFOCFG_EPINFOBASE_MASK;
347 		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
348 	}
349 }
350 
351 /**
352  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
353  * the HFIR register according to PHY type and speed
354  *
355  * @hsotg: Programming view of DWC_otg controller
356  *
357  * NOTE: The caller can modify the value of the HFIR register only after the
358  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
359  * has been set
360  */
361 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
362 {
363 	u32 usbcfg;
364 	u32 hprt0;
365 	int clock = 60;	/* default value */
366 
367 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
368 	hprt0 = dwc2_readl(hsotg, HPRT0);
369 
370 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
371 	    !(usbcfg & GUSBCFG_PHYIF16))
372 		clock = 60;
373 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
374 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
375 		clock = 48;
376 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
377 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
378 		clock = 30;
379 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
380 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
381 		clock = 60;
382 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
383 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
384 		clock = 48;
385 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
386 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
387 		clock = 48;
388 	if ((usbcfg & GUSBCFG_PHYSEL) &&
389 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
390 		clock = 48;
391 
392 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
393 		/* High speed case */
394 		return 125 * clock - 1;
395 
396 	/* FS/LS case */
397 	return 1000 * clock - 1;
398 }
399 
400 /**
401  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
402  * buffer
403  *
404  * @hsotg: Programming view of DWC_otg controller
405  * @dest:    Destination buffer for the packet
406  * @bytes:   Number of bytes to copy to the destination
407  */
408 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
409 {
410 	u32 *data_buf = (u32 *)dest;
411 	int word_count = (bytes + 3) / 4;
412 	int i;
413 
414 	/*
415 	 * Todo: Account for the case where dest is not dword aligned. This
416 	 * requires reading data from the FIFO into a u32 temp buffer, then
417 	 * moving it into the data buffer.
418 	 */
419 
420 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
421 
422 	for (i = 0; i < word_count; i++, data_buf++)
423 		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
424 }
425 
426 /**
427  * dwc2_dump_channel_info() - Prints the state of a host channel
428  *
429  * @hsotg: Programming view of DWC_otg controller
430  * @chan:  Pointer to the channel to dump
431  *
432  * Must be called with interrupt disabled and spinlock held
433  *
434  * NOTE: This function will be removed once the peripheral controller code
435  * is integrated and the driver is stable
436  */
437 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
438 				   struct dwc2_host_chan *chan)
439 {
440 #ifdef VERBOSE_DEBUG
441 	int num_channels = hsotg->params.host_channels;
442 	struct dwc2_qh *qh;
443 	u32 hcchar;
444 	u32 hcsplt;
445 	u32 hctsiz;
446 	u32 hc_dma;
447 	int i;
448 
449 	if (!chan)
450 		return;
451 
452 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
453 	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
454 	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
455 	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
456 
457 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
458 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
459 		hcchar, hcsplt);
460 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
461 		hctsiz, hc_dma);
462 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
463 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
464 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
465 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
466 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
467 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
468 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
469 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
470 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
471 		(unsigned long)chan->xfer_dma);
472 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
473 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
474 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
475 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
476 			    qh_list_entry)
477 		dev_dbg(hsotg->dev, "    %p\n", qh);
478 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
479 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
480 			    qh_list_entry)
481 		dev_dbg(hsotg->dev, "    %p\n", qh);
482 	dev_dbg(hsotg->dev, "  NP active sched:\n");
483 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
484 			    qh_list_entry)
485 		dev_dbg(hsotg->dev, "    %p\n", qh);
486 	dev_dbg(hsotg->dev, "  Channels:\n");
487 	for (i = 0; i < num_channels; i++) {
488 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
489 
490 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
491 	}
492 #endif /* VERBOSE_DEBUG */
493 }
494 
495 static int _dwc2_hcd_start(struct usb_hcd *hcd);
496 
497 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
498 {
499 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
500 
501 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
502 	_dwc2_hcd_start(hcd);
503 }
504 
505 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
506 {
507 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
508 
509 	hcd->self.is_b_host = 0;
510 }
511 
512 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
513 			       int *hub_addr, int *hub_port)
514 {
515 	struct urb *urb = context;
516 
517 	if (urb->dev->tt)
518 		*hub_addr = urb->dev->tt->hub->devnum;
519 	else
520 		*hub_addr = 0;
521 	*hub_port = urb->dev->ttport;
522 }
523 
524 /*
525  * =========================================================================
526  *  Low Level Host Channel Access Functions
527  * =========================================================================
528  */
529 
530 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
531 				      struct dwc2_host_chan *chan)
532 {
533 	u32 hcintmsk = HCINTMSK_CHHLTD;
534 
535 	switch (chan->ep_type) {
536 	case USB_ENDPOINT_XFER_CONTROL:
537 	case USB_ENDPOINT_XFER_BULK:
538 		dev_vdbg(hsotg->dev, "control/bulk\n");
539 		hcintmsk |= HCINTMSK_XFERCOMPL;
540 		hcintmsk |= HCINTMSK_STALL;
541 		hcintmsk |= HCINTMSK_XACTERR;
542 		hcintmsk |= HCINTMSK_DATATGLERR;
543 		if (chan->ep_is_in) {
544 			hcintmsk |= HCINTMSK_BBLERR;
545 		} else {
546 			hcintmsk |= HCINTMSK_NAK;
547 			hcintmsk |= HCINTMSK_NYET;
548 			if (chan->do_ping)
549 				hcintmsk |= HCINTMSK_ACK;
550 		}
551 
552 		if (chan->do_split) {
553 			hcintmsk |= HCINTMSK_NAK;
554 			if (chan->complete_split)
555 				hcintmsk |= HCINTMSK_NYET;
556 			else
557 				hcintmsk |= HCINTMSK_ACK;
558 		}
559 
560 		if (chan->error_state)
561 			hcintmsk |= HCINTMSK_ACK;
562 		break;
563 
564 	case USB_ENDPOINT_XFER_INT:
565 		if (dbg_perio())
566 			dev_vdbg(hsotg->dev, "intr\n");
567 		hcintmsk |= HCINTMSK_XFERCOMPL;
568 		hcintmsk |= HCINTMSK_NAK;
569 		hcintmsk |= HCINTMSK_STALL;
570 		hcintmsk |= HCINTMSK_XACTERR;
571 		hcintmsk |= HCINTMSK_DATATGLERR;
572 		hcintmsk |= HCINTMSK_FRMOVRUN;
573 
574 		if (chan->ep_is_in)
575 			hcintmsk |= HCINTMSK_BBLERR;
576 		if (chan->error_state)
577 			hcintmsk |= HCINTMSK_ACK;
578 		if (chan->do_split) {
579 			if (chan->complete_split)
580 				hcintmsk |= HCINTMSK_NYET;
581 			else
582 				hcintmsk |= HCINTMSK_ACK;
583 		}
584 		break;
585 
586 	case USB_ENDPOINT_XFER_ISOC:
587 		if (dbg_perio())
588 			dev_vdbg(hsotg->dev, "isoc\n");
589 		hcintmsk |= HCINTMSK_XFERCOMPL;
590 		hcintmsk |= HCINTMSK_FRMOVRUN;
591 		hcintmsk |= HCINTMSK_ACK;
592 
593 		if (chan->ep_is_in) {
594 			hcintmsk |= HCINTMSK_XACTERR;
595 			hcintmsk |= HCINTMSK_BBLERR;
596 		}
597 		break;
598 	default:
599 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
600 		break;
601 	}
602 
603 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
604 	if (dbg_hc(chan))
605 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
606 }
607 
608 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
609 				    struct dwc2_host_chan *chan)
610 {
611 	u32 hcintmsk = HCINTMSK_CHHLTD;
612 
613 	/*
614 	 * For Descriptor DMA mode core halts the channel on AHB error.
615 	 * Interrupt is not required.
616 	 */
617 	if (!hsotg->params.dma_desc_enable) {
618 		if (dbg_hc(chan))
619 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
620 		hcintmsk |= HCINTMSK_AHBERR;
621 	} else {
622 		if (dbg_hc(chan))
623 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
624 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
625 			hcintmsk |= HCINTMSK_XFERCOMPL;
626 	}
627 
628 	if (chan->error_state && !chan->do_split &&
629 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
630 		if (dbg_hc(chan))
631 			dev_vdbg(hsotg->dev, "setting ACK\n");
632 		hcintmsk |= HCINTMSK_ACK;
633 		if (chan->ep_is_in) {
634 			hcintmsk |= HCINTMSK_DATATGLERR;
635 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
636 				hcintmsk |= HCINTMSK_NAK;
637 		}
638 	}
639 
640 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
641 	if (dbg_hc(chan))
642 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
643 }
644 
645 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
646 				struct dwc2_host_chan *chan)
647 {
648 	u32 intmsk;
649 
650 	if (hsotg->params.host_dma) {
651 		if (dbg_hc(chan))
652 			dev_vdbg(hsotg->dev, "DMA enabled\n");
653 		dwc2_hc_enable_dma_ints(hsotg, chan);
654 	} else {
655 		if (dbg_hc(chan))
656 			dev_vdbg(hsotg->dev, "DMA disabled\n");
657 		dwc2_hc_enable_slave_ints(hsotg, chan);
658 	}
659 
660 	/* Enable the top level host channel interrupt */
661 	intmsk = dwc2_readl(hsotg, HAINTMSK);
662 	intmsk |= 1 << chan->hc_num;
663 	dwc2_writel(hsotg, intmsk, HAINTMSK);
664 	if (dbg_hc(chan))
665 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
666 
667 	/* Make sure host channel interrupts are enabled */
668 	intmsk = dwc2_readl(hsotg, GINTMSK);
669 	intmsk |= GINTSTS_HCHINT;
670 	dwc2_writel(hsotg, intmsk, GINTMSK);
671 	if (dbg_hc(chan))
672 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
673 }
674 
675 /**
676  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
677  * a specific endpoint
678  *
679  * @hsotg: Programming view of DWC_otg controller
680  * @chan:  Information needed to initialize the host channel
681  *
682  * The HCCHARn register is set up with the characteristics specified in chan.
683  * Host channel interrupts that may need to be serviced while this transfer is
684  * in progress are enabled.
685  */
686 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
687 {
688 	u8 hc_num = chan->hc_num;
689 	u32 hcintmsk;
690 	u32 hcchar;
691 	u32 hcsplt = 0;
692 
693 	if (dbg_hc(chan))
694 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
695 
696 	/* Clear old interrupt conditions for this host channel */
697 	hcintmsk = 0xffffffff;
698 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
699 	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
700 
701 	/* Enable channel interrupts required for this transfer */
702 	dwc2_hc_enable_ints(hsotg, chan);
703 
704 	/*
705 	 * Program the HCCHARn register with the endpoint characteristics for
706 	 * the current transfer
707 	 */
708 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
709 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
710 	if (chan->ep_is_in)
711 		hcchar |= HCCHAR_EPDIR;
712 	if (chan->speed == USB_SPEED_LOW)
713 		hcchar |= HCCHAR_LSPDDEV;
714 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
715 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
716 	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
717 	if (dbg_hc(chan)) {
718 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
719 			 hc_num, hcchar);
720 
721 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
722 			 __func__, hc_num);
723 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
724 			 chan->dev_addr);
725 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
726 			 chan->ep_num);
727 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
728 			 chan->ep_is_in);
729 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
730 			 chan->speed == USB_SPEED_LOW);
731 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
732 			 chan->ep_type);
733 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
734 			 chan->max_packet);
735 	}
736 
737 	/* Program the HCSPLT register for SPLITs */
738 	if (chan->do_split) {
739 		if (dbg_hc(chan))
740 			dev_vdbg(hsotg->dev,
741 				 "Programming HC %d with split --> %s\n",
742 				 hc_num,
743 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
744 		if (chan->complete_split)
745 			hcsplt |= HCSPLT_COMPSPLT;
746 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
747 			  HCSPLT_XACTPOS_MASK;
748 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
749 			  HCSPLT_HUBADDR_MASK;
750 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
751 			  HCSPLT_PRTADDR_MASK;
752 		if (dbg_hc(chan)) {
753 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
754 				 chan->complete_split);
755 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
756 				 chan->xact_pos);
757 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
758 				 chan->hub_addr);
759 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
760 				 chan->hub_port);
761 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
762 				 chan->ep_is_in);
763 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
764 				 chan->max_packet);
765 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
766 				 chan->xfer_len);
767 		}
768 	}
769 
770 	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
771 }
772 
773 /**
774  * dwc2_hc_halt() - Attempts to halt a host channel
775  *
776  * @hsotg:       Controller register interface
777  * @chan:        Host channel to halt
778  * @halt_status: Reason for halting the channel
779  *
780  * This function should only be called in Slave mode or to abort a transfer in
781  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
782  * controller halts the channel when the transfer is complete or a condition
783  * occurs that requires application intervention.
784  *
785  * In slave mode, checks for a free request queue entry, then sets the Channel
786  * Enable and Channel Disable bits of the Host Channel Characteristics
787  * register of the specified channel to intiate the halt. If there is no free
788  * request queue entry, sets only the Channel Disable bit of the HCCHARn
789  * register to flush requests for this channel. In the latter case, sets a
790  * flag to indicate that the host channel needs to be halted when a request
791  * queue slot is open.
792  *
793  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
794  * HCCHARn register. The controller ensures there is space in the request
795  * queue before submitting the halt request.
796  *
797  * Some time may elapse before the core flushes any posted requests for this
798  * host channel and halts. The Channel Halted interrupt handler completes the
799  * deactivation of the host channel.
800  */
801 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
802 		  enum dwc2_halt_status halt_status)
803 {
804 	u32 nptxsts, hptxsts, hcchar;
805 
806 	if (dbg_hc(chan))
807 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
808 
809 	/*
810 	 * In buffer DMA or external DMA mode channel can't be halted
811 	 * for non-split periodic channels. At the end of the next
812 	 * uframe/frame (in the worst case), the core generates a channel
813 	 * halted and disables the channel automatically.
814 	 */
815 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
816 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
817 		if (!chan->do_split &&
818 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
819 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
820 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
821 				__func__);
822 			return;
823 		}
824 	}
825 
826 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
827 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
828 
829 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
830 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
831 		/*
832 		 * Disable all channel interrupts except Ch Halted. The QTD
833 		 * and QH state associated with this transfer has been cleared
834 		 * (in the case of URB_DEQUEUE), so the channel needs to be
835 		 * shut down carefully to prevent crashes.
836 		 */
837 		u32 hcintmsk = HCINTMSK_CHHLTD;
838 
839 		dev_vdbg(hsotg->dev, "dequeue/error\n");
840 		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
841 
842 		/*
843 		 * Make sure no other interrupts besides halt are currently
844 		 * pending. Handling another interrupt could cause a crash due
845 		 * to the QTD and QH state.
846 		 */
847 		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
848 
849 		/*
850 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
851 		 * even if the channel was already halted for some other
852 		 * reason
853 		 */
854 		chan->halt_status = halt_status;
855 
856 		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
857 		if (!(hcchar & HCCHAR_CHENA)) {
858 			/*
859 			 * The channel is either already halted or it hasn't
860 			 * started yet. In DMA mode, the transfer may halt if
861 			 * it finishes normally or a condition occurs that
862 			 * requires driver intervention. Don't want to halt
863 			 * the channel again. In either Slave or DMA mode,
864 			 * it's possible that the transfer has been assigned
865 			 * to a channel, but not started yet when an URB is
866 			 * dequeued. Don't want to halt a channel that hasn't
867 			 * started yet.
868 			 */
869 			return;
870 		}
871 	}
872 	if (chan->halt_pending) {
873 		/*
874 		 * A halt has already been issued for this channel. This might
875 		 * happen when a transfer is aborted by a higher level in
876 		 * the stack.
877 		 */
878 		dev_vdbg(hsotg->dev,
879 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
880 			 __func__, chan->hc_num);
881 		return;
882 	}
883 
884 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
885 
886 	/* No need to set the bit in DDMA for disabling the channel */
887 	/* TODO check it everywhere channel is disabled */
888 	if (!hsotg->params.dma_desc_enable) {
889 		if (dbg_hc(chan))
890 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
891 		hcchar |= HCCHAR_CHENA;
892 	} else {
893 		if (dbg_hc(chan))
894 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
895 	}
896 	hcchar |= HCCHAR_CHDIS;
897 
898 	if (!hsotg->params.host_dma) {
899 		if (dbg_hc(chan))
900 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
901 		hcchar |= HCCHAR_CHENA;
902 
903 		/* Check for space in the request queue to issue the halt */
904 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
905 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
906 			dev_vdbg(hsotg->dev, "control/bulk\n");
907 			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
908 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
909 				dev_vdbg(hsotg->dev, "Disabling channel\n");
910 				hcchar &= ~HCCHAR_CHENA;
911 			}
912 		} else {
913 			if (dbg_perio())
914 				dev_vdbg(hsotg->dev, "isoc/intr\n");
915 			hptxsts = dwc2_readl(hsotg, HPTXSTS);
916 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
917 			    hsotg->queuing_high_bandwidth) {
918 				if (dbg_perio())
919 					dev_vdbg(hsotg->dev, "Disabling channel\n");
920 				hcchar &= ~HCCHAR_CHENA;
921 			}
922 		}
923 	} else {
924 		if (dbg_hc(chan))
925 			dev_vdbg(hsotg->dev, "DMA enabled\n");
926 	}
927 
928 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
929 	chan->halt_status = halt_status;
930 
931 	if (hcchar & HCCHAR_CHENA) {
932 		if (dbg_hc(chan))
933 			dev_vdbg(hsotg->dev, "Channel enabled\n");
934 		chan->halt_pending = 1;
935 		chan->halt_on_queue = 0;
936 	} else {
937 		if (dbg_hc(chan))
938 			dev_vdbg(hsotg->dev, "Channel disabled\n");
939 		chan->halt_on_queue = 1;
940 	}
941 
942 	if (dbg_hc(chan)) {
943 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
944 			 chan->hc_num);
945 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
946 			 hcchar);
947 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
948 			 chan->halt_pending);
949 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
950 			 chan->halt_on_queue);
951 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
952 			 chan->halt_status);
953 	}
954 }
955 
956 /**
957  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
958  *
959  * @hsotg: Programming view of DWC_otg controller
960  * @chan:  Identifies the host channel to clean up
961  *
962  * This function is normally called after a transfer is done and the host
963  * channel is being released
964  */
965 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
966 {
967 	u32 hcintmsk;
968 
969 	chan->xfer_started = 0;
970 
971 	list_del_init(&chan->split_order_list_entry);
972 
973 	/*
974 	 * Clear channel interrupt enables and any unhandled channel interrupt
975 	 * conditions
976 	 */
977 	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
978 	hcintmsk = 0xffffffff;
979 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
980 	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
981 }
982 
983 /**
984  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
985  * which frame a periodic transfer should occur
986  *
987  * @hsotg:  Programming view of DWC_otg controller
988  * @chan:   Identifies the host channel to set up and its properties
989  * @hcchar: Current value of the HCCHAR register for the specified host channel
990  *
991  * This function has no effect on non-periodic transfers
992  */
993 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
994 				       struct dwc2_host_chan *chan, u32 *hcchar)
995 {
996 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
997 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
998 		int host_speed;
999 		int xfer_ns;
1000 		int xfer_us;
1001 		int bytes_in_fifo;
1002 		u16 fifo_space;
1003 		u16 frame_number;
1004 		u16 wire_frame;
1005 
1006 		/*
1007 		 * Try to figure out if we're an even or odd frame. If we set
1008 		 * even and the current frame number is even the the transfer
1009 		 * will happen immediately.  Similar if both are odd. If one is
1010 		 * even and the other is odd then the transfer will happen when
1011 		 * the frame number ticks.
1012 		 *
1013 		 * There's a bit of a balancing act to get this right.
1014 		 * Sometimes we may want to send data in the current frame (AK
1015 		 * right away).  We might want to do this if the frame number
1016 		 * _just_ ticked, but we might also want to do this in order
1017 		 * to continue a split transaction that happened late in a
1018 		 * microframe (so we didn't know to queue the next transfer
1019 		 * until the frame number had ticked).  The problem is that we
1020 		 * need a lot of knowledge to know if there's actually still
1021 		 * time to send things or if it would be better to wait until
1022 		 * the next frame.
1023 		 *
1024 		 * We can look at how much time is left in the current frame
1025 		 * and make a guess about whether we'll have time to transfer.
1026 		 * We'll do that.
1027 		 */
1028 
1029 		/* Get speed host is running at */
1030 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1031 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1032 
1033 		/* See how many bytes are in the periodic FIFO right now */
1034 		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1035 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1036 		bytes_in_fifo = sizeof(u32) *
1037 				(hsotg->params.host_perio_tx_fifo_size -
1038 				 fifo_space);
1039 
1040 		/*
1041 		 * Roughly estimate bus time for everything in the periodic
1042 		 * queue + our new transfer.  This is "rough" because we're
1043 		 * using a function that makes takes into account IN/OUT
1044 		 * and INT/ISO and we're just slamming in one value for all
1045 		 * transfers.  This should be an over-estimate and that should
1046 		 * be OK, but we can probably tighten it.
1047 		 */
1048 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1049 					    chan->xfer_len + bytes_in_fifo);
1050 		xfer_us = NS_TO_US(xfer_ns);
1051 
1052 		/* See what frame number we'll be at by the time we finish */
1053 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1054 
1055 		/* This is when we were scheduled to be on the wire */
1056 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1057 
1058 		/*
1059 		 * If we'd finish _after_ the frame we're scheduled in then
1060 		 * it's hopeless.  Just schedule right away and hope for the
1061 		 * best.  Note that it _might_ be wise to call back into the
1062 		 * scheduler to pick a better frame, but this is better than
1063 		 * nothing.
1064 		 */
1065 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1066 			dwc2_sch_vdbg(hsotg,
1067 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1068 				      chan->qh, wire_frame, frame_number,
1069 				      dwc2_frame_num_dec(frame_number,
1070 							 wire_frame));
1071 			wire_frame = frame_number;
1072 
1073 			/*
1074 			 * We picked a different frame number; communicate this
1075 			 * back to the scheduler so it doesn't try to schedule
1076 			 * another in the same frame.
1077 			 *
1078 			 * Remember that next_active_frame is 1 before the wire
1079 			 * frame.
1080 			 */
1081 			chan->qh->next_active_frame =
1082 				dwc2_frame_num_dec(frame_number, 1);
1083 		}
1084 
1085 		if (wire_frame & 1)
1086 			*hcchar |= HCCHAR_ODDFRM;
1087 		else
1088 			*hcchar &= ~HCCHAR_ODDFRM;
1089 	}
1090 }
1091 
1092 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1093 {
1094 	/* Set up the initial PID for the transfer */
1095 	if (chan->speed == USB_SPEED_HIGH) {
1096 		if (chan->ep_is_in) {
1097 			if (chan->multi_count == 1)
1098 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1099 			else if (chan->multi_count == 2)
1100 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1101 			else
1102 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1103 		} else {
1104 			if (chan->multi_count == 1)
1105 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1106 			else
1107 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1108 		}
1109 	} else {
1110 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1111 	}
1112 }
1113 
1114 /**
1115  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1116  * the Host Channel
1117  *
1118  * @hsotg: Programming view of DWC_otg controller
1119  * @chan:  Information needed to initialize the host channel
1120  *
1121  * This function should only be called in Slave mode. For a channel associated
1122  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1123  * associated with a periodic EP, the periodic Tx FIFO is written.
1124  *
1125  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1126  * the number of bytes written to the Tx FIFO.
1127  */
1128 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1129 				 struct dwc2_host_chan *chan)
1130 {
1131 	u32 i;
1132 	u32 remaining_count;
1133 	u32 byte_count;
1134 	u32 dword_count;
1135 	u32 *data_buf = (u32 *)chan->xfer_buf;
1136 
1137 	if (dbg_hc(chan))
1138 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1139 
1140 	remaining_count = chan->xfer_len - chan->xfer_count;
1141 	if (remaining_count > chan->max_packet)
1142 		byte_count = chan->max_packet;
1143 	else
1144 		byte_count = remaining_count;
1145 
1146 	dword_count = (byte_count + 3) / 4;
1147 
1148 	if (((unsigned long)data_buf & 0x3) == 0) {
1149 		/* xfer_buf is DWORD aligned */
1150 		for (i = 0; i < dword_count; i++, data_buf++)
1151 			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1152 	} else {
1153 		/* xfer_buf is not DWORD aligned */
1154 		for (i = 0; i < dword_count; i++, data_buf++) {
1155 			u32 data = data_buf[0] | data_buf[1] << 8 |
1156 				   data_buf[2] << 16 | data_buf[3] << 24;
1157 			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1158 		}
1159 	}
1160 
1161 	chan->xfer_count += byte_count;
1162 	chan->xfer_buf += byte_count;
1163 }
1164 
1165 /**
1166  * dwc2_hc_do_ping() - Starts a PING transfer
1167  *
1168  * @hsotg: Programming view of DWC_otg controller
1169  * @chan:  Information needed to initialize the host channel
1170  *
1171  * This function should only be called in Slave mode. The Do Ping bit is set in
1172  * the HCTSIZ register, then the channel is enabled.
1173  */
1174 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1175 			    struct dwc2_host_chan *chan)
1176 {
1177 	u32 hcchar;
1178 	u32 hctsiz;
1179 
1180 	if (dbg_hc(chan))
1181 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1182 			 chan->hc_num);
1183 
1184 	hctsiz = TSIZ_DOPNG;
1185 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1186 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1187 
1188 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1189 	hcchar |= HCCHAR_CHENA;
1190 	hcchar &= ~HCCHAR_CHDIS;
1191 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1192 }
1193 
1194 /**
1195  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1196  * channel and starts the transfer
1197  *
1198  * @hsotg: Programming view of DWC_otg controller
1199  * @chan:  Information needed to initialize the host channel. The xfer_len value
1200  *         may be reduced to accommodate the max widths of the XferSize and
1201  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1202  *         changed to reflect the final xfer_len value.
1203  *
1204  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1205  * the caller must ensure that there is sufficient space in the request queue
1206  * and Tx Data FIFO.
1207  *
1208  * For an OUT transfer in Slave mode, it loads a data packet into the
1209  * appropriate FIFO. If necessary, additional data packets are loaded in the
1210  * Host ISR.
1211  *
1212  * For an IN transfer in Slave mode, a data packet is requested. The data
1213  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1214  * additional data packets are requested in the Host ISR.
1215  *
1216  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1217  * register along with a packet count of 1 and the channel is enabled. This
1218  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1219  * simply set to 0 since no data transfer occurs in this case.
1220  *
1221  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1222  * all the information required to perform the subsequent data transfer. In
1223  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1224  * controller performs the entire PING protocol, then starts the data
1225  * transfer.
1226  */
1227 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1228 				   struct dwc2_host_chan *chan)
1229 {
1230 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1231 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1232 	u32 hcchar;
1233 	u32 hctsiz = 0;
1234 	u16 num_packets;
1235 	u32 ec_mc;
1236 
1237 	if (dbg_hc(chan))
1238 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1239 
1240 	if (chan->do_ping) {
1241 		if (!hsotg->params.host_dma) {
1242 			if (dbg_hc(chan))
1243 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1244 			dwc2_hc_do_ping(hsotg, chan);
1245 			chan->xfer_started = 1;
1246 			return;
1247 		}
1248 
1249 		if (dbg_hc(chan))
1250 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1251 
1252 		hctsiz |= TSIZ_DOPNG;
1253 	}
1254 
1255 	if (chan->do_split) {
1256 		if (dbg_hc(chan))
1257 			dev_vdbg(hsotg->dev, "split\n");
1258 		num_packets = 1;
1259 
1260 		if (chan->complete_split && !chan->ep_is_in)
1261 			/*
1262 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1263 			 * core doesn't expect any data written to the FIFO
1264 			 */
1265 			chan->xfer_len = 0;
1266 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1267 			chan->xfer_len = chan->max_packet;
1268 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1269 			chan->xfer_len = 188;
1270 
1271 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1272 			  TSIZ_XFERSIZE_MASK;
1273 
1274 		/* For split set ec_mc for immediate retries */
1275 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1276 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1277 			ec_mc = 3;
1278 		else
1279 			ec_mc = 1;
1280 	} else {
1281 		if (dbg_hc(chan))
1282 			dev_vdbg(hsotg->dev, "no split\n");
1283 		/*
1284 		 * Ensure that the transfer length and packet count will fit
1285 		 * in the widths allocated for them in the HCTSIZn register
1286 		 */
1287 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1288 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1289 			/*
1290 			 * Make sure the transfer size is no larger than one
1291 			 * (micro)frame's worth of data. (A check was done
1292 			 * when the periodic transfer was accepted to ensure
1293 			 * that a (micro)frame's worth of data can be
1294 			 * programmed into a channel.)
1295 			 */
1296 			u32 max_periodic_len =
1297 				chan->multi_count * chan->max_packet;
1298 
1299 			if (chan->xfer_len > max_periodic_len)
1300 				chan->xfer_len = max_periodic_len;
1301 		} else if (chan->xfer_len > max_hc_xfer_size) {
1302 			/*
1303 			 * Make sure that xfer_len is a multiple of max packet
1304 			 * size
1305 			 */
1306 			chan->xfer_len =
1307 				max_hc_xfer_size - chan->max_packet + 1;
1308 		}
1309 
1310 		if (chan->xfer_len > 0) {
1311 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1312 					chan->max_packet;
1313 			if (num_packets > max_hc_pkt_count) {
1314 				num_packets = max_hc_pkt_count;
1315 				chan->xfer_len = num_packets * chan->max_packet;
1316 			}
1317 		} else {
1318 			/* Need 1 packet for transfer length of 0 */
1319 			num_packets = 1;
1320 		}
1321 
1322 		if (chan->ep_is_in)
1323 			/*
1324 			 * Always program an integral # of max packets for IN
1325 			 * transfers
1326 			 */
1327 			chan->xfer_len = num_packets * chan->max_packet;
1328 
1329 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1330 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1331 			/*
1332 			 * Make sure that the multi_count field matches the
1333 			 * actual transfer length
1334 			 */
1335 			chan->multi_count = num_packets;
1336 
1337 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1338 			dwc2_set_pid_isoc(chan);
1339 
1340 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1341 			  TSIZ_XFERSIZE_MASK;
1342 
1343 		/* The ec_mc gets the multi_count for non-split */
1344 		ec_mc = chan->multi_count;
1345 	}
1346 
1347 	chan->start_pkt_count = num_packets;
1348 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1349 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1350 		  TSIZ_SC_MC_PID_MASK;
1351 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1352 	if (dbg_hc(chan)) {
1353 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1354 			 hctsiz, chan->hc_num);
1355 
1356 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1357 			 chan->hc_num);
1358 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1359 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1360 			 TSIZ_XFERSIZE_SHIFT);
1361 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1362 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1363 			 TSIZ_PKTCNT_SHIFT);
1364 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1365 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1366 			 TSIZ_SC_MC_PID_SHIFT);
1367 	}
1368 
1369 	if (hsotg->params.host_dma) {
1370 		dma_addr_t dma_addr;
1371 
1372 		if (chan->align_buf) {
1373 			if (dbg_hc(chan))
1374 				dev_vdbg(hsotg->dev, "align_buf\n");
1375 			dma_addr = chan->align_buf;
1376 		} else {
1377 			dma_addr = chan->xfer_dma;
1378 		}
1379 		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1380 
1381 		if (dbg_hc(chan))
1382 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1383 				 (unsigned long)dma_addr, chan->hc_num);
1384 	}
1385 
1386 	/* Start the split */
1387 	if (chan->do_split) {
1388 		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1389 
1390 		hcsplt |= HCSPLT_SPLTENA;
1391 		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1392 	}
1393 
1394 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1395 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1396 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1397 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1398 
1399 	if (hcchar & HCCHAR_CHDIS)
1400 		dev_warn(hsotg->dev,
1401 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1402 			 __func__, chan->hc_num, hcchar);
1403 
1404 	/* Set host channel enable after all other setup is complete */
1405 	hcchar |= HCCHAR_CHENA;
1406 	hcchar &= ~HCCHAR_CHDIS;
1407 
1408 	if (dbg_hc(chan))
1409 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1410 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1411 			 HCCHAR_MULTICNT_SHIFT);
1412 
1413 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1414 	if (dbg_hc(chan))
1415 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1416 			 chan->hc_num);
1417 
1418 	chan->xfer_started = 1;
1419 	chan->requests++;
1420 
1421 	if (!hsotg->params.host_dma &&
1422 	    !chan->ep_is_in && chan->xfer_len > 0)
1423 		/* Load OUT packet into the appropriate Tx FIFO */
1424 		dwc2_hc_write_packet(hsotg, chan);
1425 }
1426 
1427 /**
1428  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1429  * host channel and starts the transfer in Descriptor DMA mode
1430  *
1431  * @hsotg: Programming view of DWC_otg controller
1432  * @chan:  Information needed to initialize the host channel
1433  *
1434  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1435  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1436  * with micro-frame bitmap.
1437  *
1438  * Initializes HCDMA register with descriptor list address and CTD value then
1439  * starts the transfer via enabling the channel.
1440  */
1441 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1442 				 struct dwc2_host_chan *chan)
1443 {
1444 	u32 hcchar;
1445 	u32 hctsiz = 0;
1446 
1447 	if (chan->do_ping)
1448 		hctsiz |= TSIZ_DOPNG;
1449 
1450 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1451 		dwc2_set_pid_isoc(chan);
1452 
1453 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1454 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1455 		  TSIZ_SC_MC_PID_MASK;
1456 
1457 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1458 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1459 
1460 	/* Non-zero only for high-speed interrupt endpoints */
1461 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1462 
1463 	if (dbg_hc(chan)) {
1464 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1465 			 chan->hc_num);
1466 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1467 			 chan->data_pid_start);
1468 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1469 	}
1470 
1471 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1472 
1473 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1474 				   chan->desc_list_sz, DMA_TO_DEVICE);
1475 
1476 	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1477 
1478 	if (dbg_hc(chan))
1479 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1480 			 &chan->desc_list_addr, chan->hc_num);
1481 
1482 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1483 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1484 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1485 		  HCCHAR_MULTICNT_MASK;
1486 
1487 	if (hcchar & HCCHAR_CHDIS)
1488 		dev_warn(hsotg->dev,
1489 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1490 			 __func__, chan->hc_num, hcchar);
1491 
1492 	/* Set host channel enable after all other setup is complete */
1493 	hcchar |= HCCHAR_CHENA;
1494 	hcchar &= ~HCCHAR_CHDIS;
1495 
1496 	if (dbg_hc(chan))
1497 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1498 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1499 			 HCCHAR_MULTICNT_SHIFT);
1500 
1501 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1502 	if (dbg_hc(chan))
1503 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1504 			 chan->hc_num);
1505 
1506 	chan->xfer_started = 1;
1507 	chan->requests++;
1508 }
1509 
1510 /**
1511  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1512  * a previous call to dwc2_hc_start_transfer()
1513  *
1514  * @hsotg: Programming view of DWC_otg controller
1515  * @chan:  Information needed to initialize the host channel
1516  *
1517  * The caller must ensure there is sufficient space in the request queue and Tx
1518  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1519  * the controller acts autonomously to complete transfers programmed to a host
1520  * channel.
1521  *
1522  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1523  * if there is any data remaining to be queued. For an IN transfer, another
1524  * data packet is always requested. For the SETUP phase of a control transfer,
1525  * this function does nothing.
1526  *
1527  * Return: 1 if a new request is queued, 0 if no more requests are required
1528  * for this transfer
1529  */
1530 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1531 				     struct dwc2_host_chan *chan)
1532 {
1533 	if (dbg_hc(chan))
1534 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1535 			 chan->hc_num);
1536 
1537 	if (chan->do_split)
1538 		/* SPLITs always queue just once per channel */
1539 		return 0;
1540 
1541 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1542 		/* SETUPs are queued only once since they can't be NAK'd */
1543 		return 0;
1544 
1545 	if (chan->ep_is_in) {
1546 		/*
1547 		 * Always queue another request for other IN transfers. If
1548 		 * back-to-back INs are issued and NAKs are received for both,
1549 		 * the driver may still be processing the first NAK when the
1550 		 * second NAK is received. When the interrupt handler clears
1551 		 * the NAK interrupt for the first NAK, the second NAK will
1552 		 * not be seen. So we can't depend on the NAK interrupt
1553 		 * handler to requeue a NAK'd request. Instead, IN requests
1554 		 * are issued each time this function is called. When the
1555 		 * transfer completes, the extra requests for the channel will
1556 		 * be flushed.
1557 		 */
1558 		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1559 
1560 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1561 		hcchar |= HCCHAR_CHENA;
1562 		hcchar &= ~HCCHAR_CHDIS;
1563 		if (dbg_hc(chan))
1564 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1565 				 hcchar);
1566 		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1567 		chan->requests++;
1568 		return 1;
1569 	}
1570 
1571 	/* OUT transfers */
1572 
1573 	if (chan->xfer_count < chan->xfer_len) {
1574 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1575 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1576 			u32 hcchar = dwc2_readl(hsotg,
1577 						HCCHAR(chan->hc_num));
1578 
1579 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1580 						   &hcchar);
1581 		}
1582 
1583 		/* Load OUT packet into the appropriate Tx FIFO */
1584 		dwc2_hc_write_packet(hsotg, chan);
1585 		chan->requests++;
1586 		return 1;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 /*
1593  * =========================================================================
1594  *  HCD
1595  * =========================================================================
1596  */
1597 
1598 /*
1599  * Processes all the URBs in a single list of QHs. Completes them with
1600  * -ETIMEDOUT and frees the QTD.
1601  *
1602  * Must be called with interrupt disabled and spinlock held
1603  */
1604 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1605 				      struct list_head *qh_list)
1606 {
1607 	struct dwc2_qh *qh, *qh_tmp;
1608 	struct dwc2_qtd *qtd, *qtd_tmp;
1609 
1610 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1611 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1612 					 qtd_list_entry) {
1613 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1614 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1615 		}
1616 	}
1617 }
1618 
1619 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1620 			      struct list_head *qh_list)
1621 {
1622 	struct dwc2_qtd *qtd, *qtd_tmp;
1623 	struct dwc2_qh *qh, *qh_tmp;
1624 	unsigned long flags;
1625 
1626 	if (!qh_list->next)
1627 		/* The list hasn't been initialized yet */
1628 		return;
1629 
1630 	spin_lock_irqsave(&hsotg->lock, flags);
1631 
1632 	/* Ensure there are no QTDs or URBs left */
1633 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1634 
1635 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1636 		dwc2_hcd_qh_unlink(hsotg, qh);
1637 
1638 		/* Free each QTD in the QH's QTD list */
1639 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1640 					 qtd_list_entry)
1641 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1642 
1643 		if (qh->channel && qh->channel->qh == qh)
1644 			qh->channel->qh = NULL;
1645 
1646 		spin_unlock_irqrestore(&hsotg->lock, flags);
1647 		dwc2_hcd_qh_free(hsotg, qh);
1648 		spin_lock_irqsave(&hsotg->lock, flags);
1649 	}
1650 
1651 	spin_unlock_irqrestore(&hsotg->lock, flags);
1652 }
1653 
1654 /*
1655  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1656  * and periodic schedules. The QTD associated with each URB is removed from
1657  * the schedule and freed. This function may be called when a disconnect is
1658  * detected or when the HCD is being stopped.
1659  *
1660  * Must be called with interrupt disabled and spinlock held
1661  */
1662 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1663 {
1664 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1665 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1666 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1667 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1668 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1669 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1670 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1671 }
1672 
1673 /**
1674  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1675  *
1676  * @hsotg: Pointer to struct dwc2_hsotg
1677  */
1678 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1679 {
1680 	u32 hprt0;
1681 
1682 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1683 		/*
1684 		 * Reset the port. During a HNP mode switch the reset
1685 		 * needs to occur within 1ms and have a duration of at
1686 		 * least 50ms.
1687 		 */
1688 		hprt0 = dwc2_read_hprt0(hsotg);
1689 		hprt0 |= HPRT0_RST;
1690 		dwc2_writel(hsotg, hprt0, HPRT0);
1691 	}
1692 
1693 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1694 			   msecs_to_jiffies(50));
1695 }
1696 
1697 /* Must be called with interrupt disabled and spinlock held */
1698 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1699 {
1700 	int num_channels = hsotg->params.host_channels;
1701 	struct dwc2_host_chan *channel;
1702 	u32 hcchar;
1703 	int i;
1704 
1705 	if (!hsotg->params.host_dma) {
1706 		/* Flush out any channel requests in slave mode */
1707 		for (i = 0; i < num_channels; i++) {
1708 			channel = hsotg->hc_ptr_array[i];
1709 			if (!list_empty(&channel->hc_list_entry))
1710 				continue;
1711 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1712 			if (hcchar & HCCHAR_CHENA) {
1713 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1714 				hcchar |= HCCHAR_CHDIS;
1715 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1716 			}
1717 		}
1718 	}
1719 
1720 	for (i = 0; i < num_channels; i++) {
1721 		channel = hsotg->hc_ptr_array[i];
1722 		if (!list_empty(&channel->hc_list_entry))
1723 			continue;
1724 		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1725 		if (hcchar & HCCHAR_CHENA) {
1726 			/* Halt the channel */
1727 			hcchar |= HCCHAR_CHDIS;
1728 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1729 		}
1730 
1731 		dwc2_hc_cleanup(hsotg, channel);
1732 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1733 		/*
1734 		 * Added for Descriptor DMA to prevent channel double cleanup in
1735 		 * release_channel_ddma(), which is called from ep_disable when
1736 		 * device disconnects
1737 		 */
1738 		channel->qh = NULL;
1739 	}
1740 	/* All channels have been freed, mark them available */
1741 	if (hsotg->params.uframe_sched) {
1742 		hsotg->available_host_channels =
1743 			hsotg->params.host_channels;
1744 	} else {
1745 		hsotg->non_periodic_channels = 0;
1746 		hsotg->periodic_channels = 0;
1747 	}
1748 }
1749 
1750 /**
1751  * dwc2_hcd_connect() - Handles connect of the HCD
1752  *
1753  * @hsotg: Pointer to struct dwc2_hsotg
1754  *
1755  * Must be called with interrupt disabled and spinlock held
1756  */
1757 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1758 {
1759 	if (hsotg->lx_state != DWC2_L0)
1760 		usb_hcd_resume_root_hub(hsotg->priv);
1761 
1762 	hsotg->flags.b.port_connect_status_change = 1;
1763 	hsotg->flags.b.port_connect_status = 1;
1764 }
1765 
1766 /**
1767  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1768  *
1769  * @hsotg: Pointer to struct dwc2_hsotg
1770  * @force: If true, we won't try to reconnect even if we see device connected.
1771  *
1772  * Must be called with interrupt disabled and spinlock held
1773  */
1774 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1775 {
1776 	u32 intr;
1777 	u32 hprt0;
1778 
1779 	/* Set status flags for the hub driver */
1780 	hsotg->flags.b.port_connect_status_change = 1;
1781 	hsotg->flags.b.port_connect_status = 0;
1782 
1783 	/*
1784 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1785 	 * interrupt mask and status bits and disabling subsequent host
1786 	 * channel interrupts.
1787 	 */
1788 	intr = dwc2_readl(hsotg, GINTMSK);
1789 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1790 	dwc2_writel(hsotg, intr, GINTMSK);
1791 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1792 	dwc2_writel(hsotg, intr, GINTSTS);
1793 
1794 	/*
1795 	 * Turn off the vbus power only if the core has transitioned to device
1796 	 * mode. If still in host mode, need to keep power on to detect a
1797 	 * reconnection.
1798 	 */
1799 	if (dwc2_is_device_mode(hsotg)) {
1800 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1801 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1802 			dwc2_writel(hsotg, 0, HPRT0);
1803 		}
1804 
1805 		dwc2_disable_host_interrupts(hsotg);
1806 	}
1807 
1808 	/* Respond with an error status to all URBs in the schedule */
1809 	dwc2_kill_all_urbs(hsotg);
1810 
1811 	if (dwc2_is_host_mode(hsotg))
1812 		/* Clean up any host channels that were in use */
1813 		dwc2_hcd_cleanup_channels(hsotg);
1814 
1815 	dwc2_host_disconnect(hsotg);
1816 
1817 	/*
1818 	 * Add an extra check here to see if we're actually connected but
1819 	 * we don't have a detection interrupt pending.  This can happen if:
1820 	 *   1. hardware sees connect
1821 	 *   2. hardware sees disconnect
1822 	 *   3. hardware sees connect
1823 	 *   4. dwc2_port_intr() - clears connect interrupt
1824 	 *   5. dwc2_handle_common_intr() - calls here
1825 	 *
1826 	 * Without the extra check here we will end calling disconnect
1827 	 * and won't get any future interrupts to handle the connect.
1828 	 */
1829 	if (!force) {
1830 		hprt0 = dwc2_readl(hsotg, HPRT0);
1831 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1832 			dwc2_hcd_connect(hsotg);
1833 	}
1834 }
1835 
1836 /**
1837  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1838  *
1839  * @hsotg: Pointer to struct dwc2_hsotg
1840  */
1841 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1842 {
1843 	if (hsotg->bus_suspended) {
1844 		hsotg->flags.b.port_suspend_change = 1;
1845 		usb_hcd_resume_root_hub(hsotg->priv);
1846 	}
1847 
1848 	if (hsotg->lx_state == DWC2_L1)
1849 		hsotg->flags.b.port_l1_change = 1;
1850 }
1851 
1852 /**
1853  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1854  *
1855  * @hsotg: Pointer to struct dwc2_hsotg
1856  *
1857  * Must be called with interrupt disabled and spinlock held
1858  */
1859 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1860 {
1861 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1862 
1863 	/*
1864 	 * The root hub should be disconnected before this function is called.
1865 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1866 	 * and the QH lists (via ..._hcd_endpoint_disable).
1867 	 */
1868 
1869 	/* Turn off all host-specific interrupts */
1870 	dwc2_disable_host_interrupts(hsotg);
1871 
1872 	/* Turn off the vbus power */
1873 	dev_dbg(hsotg->dev, "PortPower off\n");
1874 	dwc2_writel(hsotg, 0, HPRT0);
1875 }
1876 
1877 /* Caller must hold driver lock */
1878 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1879 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1880 				struct dwc2_qtd *qtd)
1881 {
1882 	u32 intr_mask;
1883 	int retval;
1884 	int dev_speed;
1885 
1886 	if (!hsotg->flags.b.port_connect_status) {
1887 		/* No longer connected */
1888 		dev_err(hsotg->dev, "Not connected\n");
1889 		return -ENODEV;
1890 	}
1891 
1892 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1893 
1894 	/* Some configurations cannot support LS traffic on a FS root port */
1895 	if ((dev_speed == USB_SPEED_LOW) &&
1896 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1897 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1898 		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1899 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1900 
1901 		if (prtspd == HPRT0_SPD_FULL_SPEED)
1902 			return -ENODEV;
1903 	}
1904 
1905 	if (!qtd)
1906 		return -EINVAL;
1907 
1908 	dwc2_hcd_qtd_init(qtd, urb);
1909 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1910 	if (retval) {
1911 		dev_err(hsotg->dev,
1912 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1913 			retval);
1914 		return retval;
1915 	}
1916 
1917 	intr_mask = dwc2_readl(hsotg, GINTMSK);
1918 	if (!(intr_mask & GINTSTS_SOF)) {
1919 		enum dwc2_transaction_type tr_type;
1920 
1921 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1922 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1923 			/*
1924 			 * Do not schedule SG transactions until qtd has
1925 			 * URB_GIVEBACK_ASAP set
1926 			 */
1927 			return 0;
1928 
1929 		tr_type = dwc2_hcd_select_transactions(hsotg);
1930 		if (tr_type != DWC2_TRANSACTION_NONE)
1931 			dwc2_hcd_queue_transactions(hsotg, tr_type);
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 /* Must be called with interrupt disabled and spinlock held */
1938 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1939 				struct dwc2_hcd_urb *urb)
1940 {
1941 	struct dwc2_qh *qh;
1942 	struct dwc2_qtd *urb_qtd;
1943 
1944 	urb_qtd = urb->qtd;
1945 	if (!urb_qtd) {
1946 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1947 		return -EINVAL;
1948 	}
1949 
1950 	qh = urb_qtd->qh;
1951 	if (!qh) {
1952 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1953 		return -EINVAL;
1954 	}
1955 
1956 	urb->priv = NULL;
1957 
1958 	if (urb_qtd->in_process && qh->channel) {
1959 		dwc2_dump_channel_info(hsotg, qh->channel);
1960 
1961 		/* The QTD is in process (it has been assigned to a channel) */
1962 		if (hsotg->flags.b.port_connect_status)
1963 			/*
1964 			 * If still connected (i.e. in host mode), halt the
1965 			 * channel so it can be used for other transfers. If
1966 			 * no longer connected, the host registers can't be
1967 			 * written to halt the channel since the core is in
1968 			 * device mode.
1969 			 */
1970 			dwc2_hc_halt(hsotg, qh->channel,
1971 				     DWC2_HC_XFER_URB_DEQUEUE);
1972 	}
1973 
1974 	/*
1975 	 * Free the QTD and clean up the associated QH. Leave the QH in the
1976 	 * schedule if it has any remaining QTDs.
1977 	 */
1978 	if (!hsotg->params.dma_desc_enable) {
1979 		u8 in_process = urb_qtd->in_process;
1980 
1981 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1982 		if (in_process) {
1983 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1984 			qh->channel = NULL;
1985 		} else if (list_empty(&qh->qtd_list)) {
1986 			dwc2_hcd_qh_unlink(hsotg, qh);
1987 		}
1988 	} else {
1989 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 /* Must NOT be called with interrupt disabled or spinlock held */
1996 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1997 				     struct usb_host_endpoint *ep, int retry)
1998 {
1999 	struct dwc2_qtd *qtd, *qtd_tmp;
2000 	struct dwc2_qh *qh;
2001 	unsigned long flags;
2002 	int rc;
2003 
2004 	spin_lock_irqsave(&hsotg->lock, flags);
2005 
2006 	qh = ep->hcpriv;
2007 	if (!qh) {
2008 		rc = -EINVAL;
2009 		goto err;
2010 	}
2011 
2012 	while (!list_empty(&qh->qtd_list) && retry--) {
2013 		if (retry == 0) {
2014 			dev_err(hsotg->dev,
2015 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2016 			rc = -EBUSY;
2017 			goto err;
2018 		}
2019 
2020 		spin_unlock_irqrestore(&hsotg->lock, flags);
2021 		msleep(20);
2022 		spin_lock_irqsave(&hsotg->lock, flags);
2023 		qh = ep->hcpriv;
2024 		if (!qh) {
2025 			rc = -EINVAL;
2026 			goto err;
2027 		}
2028 	}
2029 
2030 	dwc2_hcd_qh_unlink(hsotg, qh);
2031 
2032 	/* Free each QTD in the QH's QTD list */
2033 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2034 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2035 
2036 	ep->hcpriv = NULL;
2037 
2038 	if (qh->channel && qh->channel->qh == qh)
2039 		qh->channel->qh = NULL;
2040 
2041 	spin_unlock_irqrestore(&hsotg->lock, flags);
2042 
2043 	dwc2_hcd_qh_free(hsotg, qh);
2044 
2045 	return 0;
2046 
2047 err:
2048 	ep->hcpriv = NULL;
2049 	spin_unlock_irqrestore(&hsotg->lock, flags);
2050 
2051 	return rc;
2052 }
2053 
2054 /* Must be called with interrupt disabled and spinlock held */
2055 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2056 				   struct usb_host_endpoint *ep)
2057 {
2058 	struct dwc2_qh *qh = ep->hcpriv;
2059 
2060 	if (!qh)
2061 		return -EINVAL;
2062 
2063 	qh->data_toggle = DWC2_HC_PID_DATA0;
2064 
2065 	return 0;
2066 }
2067 
2068 /**
2069  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2070  * prepares the core for device mode or host mode operation
2071  *
2072  * @hsotg:         Programming view of the DWC_otg controller
2073  * @initial_setup: If true then this is the first init for this instance.
2074  */
2075 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2076 {
2077 	u32 usbcfg, otgctl;
2078 	int retval;
2079 
2080 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2081 
2082 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2083 
2084 	/* Set ULPI External VBUS bit if needed */
2085 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2086 	if (hsotg->params.phy_ulpi_ext_vbus)
2087 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2088 
2089 	/* Set external TS Dline pulsing bit if needed */
2090 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2091 	if (hsotg->params.ts_dline)
2092 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2093 
2094 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2095 
2096 	/*
2097 	 * Reset the Controller
2098 	 *
2099 	 * We only need to reset the controller if this is a re-init.
2100 	 * For the first init we know for sure that earlier code reset us (it
2101 	 * needed to in order to properly detect various parameters).
2102 	 */
2103 	if (!initial_setup) {
2104 		retval = dwc2_core_reset(hsotg, false);
2105 		if (retval) {
2106 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2107 				__func__);
2108 			return retval;
2109 		}
2110 	}
2111 
2112 	/*
2113 	 * This needs to happen in FS mode before any other programming occurs
2114 	 */
2115 	retval = dwc2_phy_init(hsotg, initial_setup);
2116 	if (retval)
2117 		return retval;
2118 
2119 	/* Program the GAHBCFG Register */
2120 	retval = dwc2_gahbcfg_init(hsotg);
2121 	if (retval)
2122 		return retval;
2123 
2124 	/* Program the GUSBCFG register */
2125 	dwc2_gusbcfg_init(hsotg);
2126 
2127 	/* Program the GOTGCTL register */
2128 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2129 	otgctl &= ~GOTGCTL_OTGVER;
2130 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2131 
2132 	/* Clear the SRP success bit for FS-I2c */
2133 	hsotg->srp_success = 0;
2134 
2135 	/* Enable common interrupts */
2136 	dwc2_enable_common_interrupts(hsotg);
2137 
2138 	/*
2139 	 * Do device or host initialization based on mode during PCD and
2140 	 * HCD initialization
2141 	 */
2142 	if (dwc2_is_host_mode(hsotg)) {
2143 		dev_dbg(hsotg->dev, "Host Mode\n");
2144 		hsotg->op_state = OTG_STATE_A_HOST;
2145 	} else {
2146 		dev_dbg(hsotg->dev, "Device Mode\n");
2147 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 /**
2154  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2155  * Host mode
2156  *
2157  * @hsotg: Programming view of DWC_otg controller
2158  *
2159  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2160  * request queues. Host channels are reset to ensure that they are ready for
2161  * performing transfers.
2162  */
2163 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2164 {
2165 	u32 hcfg, hfir, otgctl, usbcfg;
2166 
2167 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2168 
2169 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2170 	 * The number of PHY clocks that the application programs in
2171 	 * this field is added to the high/full speed interpacket timeout
2172 	 * duration in the core to account for any additional delays
2173 	 * introduced by the PHY. This can be required, because the delay
2174 	 * introduced by the PHY in generating the linestate condition
2175 	 * can vary from one PHY to another.
2176 	 */
2177 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2178 	usbcfg |= GUSBCFG_TOUTCAL(7);
2179 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2180 
2181 	/* Restart the Phy Clock */
2182 	dwc2_writel(hsotg, 0, PCGCTL);
2183 
2184 	/* Initialize Host Configuration Register */
2185 	dwc2_init_fs_ls_pclk_sel(hsotg);
2186 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2187 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2188 		hcfg = dwc2_readl(hsotg, HCFG);
2189 		hcfg |= HCFG_FSLSSUPP;
2190 		dwc2_writel(hsotg, hcfg, HCFG);
2191 	}
2192 
2193 	/*
2194 	 * This bit allows dynamic reloading of the HFIR register during
2195 	 * runtime. This bit needs to be programmed during initial configuration
2196 	 * and its value must not be changed during runtime.
2197 	 */
2198 	if (hsotg->params.reload_ctl) {
2199 		hfir = dwc2_readl(hsotg, HFIR);
2200 		hfir |= HFIR_RLDCTRL;
2201 		dwc2_writel(hsotg, hfir, HFIR);
2202 	}
2203 
2204 	if (hsotg->params.dma_desc_enable) {
2205 		u32 op_mode = hsotg->hw_params.op_mode;
2206 
2207 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2208 		    !hsotg->hw_params.dma_desc_enable ||
2209 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2210 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2211 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2212 			dev_err(hsotg->dev,
2213 				"Hardware does not support descriptor DMA mode -\n");
2214 			dev_err(hsotg->dev,
2215 				"falling back to buffer DMA mode.\n");
2216 			hsotg->params.dma_desc_enable = false;
2217 		} else {
2218 			hcfg = dwc2_readl(hsotg, HCFG);
2219 			hcfg |= HCFG_DESCDMA;
2220 			dwc2_writel(hsotg, hcfg, HCFG);
2221 		}
2222 	}
2223 
2224 	/* Configure data FIFO sizes */
2225 	dwc2_config_fifos(hsotg);
2226 
2227 	/* TODO - check this */
2228 	/* Clear Host Set HNP Enable in the OTG Control Register */
2229 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2230 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2231 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2232 
2233 	/* Make sure the FIFOs are flushed */
2234 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2235 	dwc2_flush_rx_fifo(hsotg);
2236 
2237 	/* Clear Host Set HNP Enable in the OTG Control Register */
2238 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2239 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2240 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2241 
2242 	if (!hsotg->params.dma_desc_enable) {
2243 		int num_channels, i;
2244 		u32 hcchar;
2245 
2246 		/* Flush out any leftover queued requests */
2247 		num_channels = hsotg->params.host_channels;
2248 		for (i = 0; i < num_channels; i++) {
2249 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2250 			if (hcchar & HCCHAR_CHENA) {
2251 				hcchar &= ~HCCHAR_CHENA;
2252 				hcchar |= HCCHAR_CHDIS;
2253 				hcchar &= ~HCCHAR_EPDIR;
2254 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2255 			}
2256 		}
2257 
2258 		/* Halt all channels to put them into a known state */
2259 		for (i = 0; i < num_channels; i++) {
2260 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2261 			if (hcchar & HCCHAR_CHENA) {
2262 				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2263 				hcchar &= ~HCCHAR_EPDIR;
2264 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2265 				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2266 					__func__, i);
2267 
2268 				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2269 							      HCCHAR_CHENA,
2270 							      1000)) {
2271 					dev_warn(hsotg->dev,
2272 						 "Unable to clear enable on channel %d\n",
2273 						 i);
2274 				}
2275 			}
2276 		}
2277 	}
2278 
2279 	/* Enable ACG feature in host mode, if supported */
2280 	dwc2_enable_acg(hsotg);
2281 
2282 	/* Turn on the vbus power */
2283 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2284 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2285 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2286 
2287 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2288 			!!(hprt0 & HPRT0_PWR));
2289 		if (!(hprt0 & HPRT0_PWR)) {
2290 			hprt0 |= HPRT0_PWR;
2291 			dwc2_writel(hsotg, hprt0, HPRT0);
2292 		}
2293 	}
2294 
2295 	dwc2_enable_host_interrupts(hsotg);
2296 }
2297 
2298 /*
2299  * Initializes dynamic portions of the DWC_otg HCD state
2300  *
2301  * Must be called with interrupt disabled and spinlock held
2302  */
2303 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2304 {
2305 	struct dwc2_host_chan *chan, *chan_tmp;
2306 	int num_channels;
2307 	int i;
2308 
2309 	hsotg->flags.d32 = 0;
2310 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2311 
2312 	if (hsotg->params.uframe_sched) {
2313 		hsotg->available_host_channels =
2314 			hsotg->params.host_channels;
2315 	} else {
2316 		hsotg->non_periodic_channels = 0;
2317 		hsotg->periodic_channels = 0;
2318 	}
2319 
2320 	/*
2321 	 * Put all channels in the free channel list and clean up channel
2322 	 * states
2323 	 */
2324 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2325 				 hc_list_entry)
2326 		list_del_init(&chan->hc_list_entry);
2327 
2328 	num_channels = hsotg->params.host_channels;
2329 	for (i = 0; i < num_channels; i++) {
2330 		chan = hsotg->hc_ptr_array[i];
2331 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2332 		dwc2_hc_cleanup(hsotg, chan);
2333 	}
2334 
2335 	/* Initialize the DWC core for host mode operation */
2336 	dwc2_core_host_init(hsotg);
2337 }
2338 
2339 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2340 			       struct dwc2_host_chan *chan,
2341 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2342 {
2343 	int hub_addr, hub_port;
2344 
2345 	chan->do_split = 1;
2346 	chan->xact_pos = qtd->isoc_split_pos;
2347 	chan->complete_split = qtd->complete_split;
2348 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2349 	chan->hub_addr = (u8)hub_addr;
2350 	chan->hub_port = (u8)hub_port;
2351 }
2352 
2353 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2354 			      struct dwc2_host_chan *chan,
2355 			      struct dwc2_qtd *qtd)
2356 {
2357 	struct dwc2_hcd_urb *urb = qtd->urb;
2358 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2359 
2360 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2361 	case USB_ENDPOINT_XFER_CONTROL:
2362 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2363 
2364 		switch (qtd->control_phase) {
2365 		case DWC2_CONTROL_SETUP:
2366 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2367 			chan->do_ping = 0;
2368 			chan->ep_is_in = 0;
2369 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2370 			if (hsotg->params.host_dma)
2371 				chan->xfer_dma = urb->setup_dma;
2372 			else
2373 				chan->xfer_buf = urb->setup_packet;
2374 			chan->xfer_len = 8;
2375 			break;
2376 
2377 		case DWC2_CONTROL_DATA:
2378 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2379 			chan->data_pid_start = qtd->data_toggle;
2380 			break;
2381 
2382 		case DWC2_CONTROL_STATUS:
2383 			/*
2384 			 * Direction is opposite of data direction or IN if no
2385 			 * data
2386 			 */
2387 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2388 			if (urb->length == 0)
2389 				chan->ep_is_in = 1;
2390 			else
2391 				chan->ep_is_in =
2392 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2393 			if (chan->ep_is_in)
2394 				chan->do_ping = 0;
2395 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2396 			chan->xfer_len = 0;
2397 			if (hsotg->params.host_dma)
2398 				chan->xfer_dma = hsotg->status_buf_dma;
2399 			else
2400 				chan->xfer_buf = hsotg->status_buf;
2401 			break;
2402 		}
2403 		break;
2404 
2405 	case USB_ENDPOINT_XFER_BULK:
2406 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2407 		break;
2408 
2409 	case USB_ENDPOINT_XFER_INT:
2410 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2411 		break;
2412 
2413 	case USB_ENDPOINT_XFER_ISOC:
2414 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2415 		if (hsotg->params.dma_desc_enable)
2416 			break;
2417 
2418 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2419 		frame_desc->status = 0;
2420 
2421 		if (hsotg->params.host_dma) {
2422 			chan->xfer_dma = urb->dma;
2423 			chan->xfer_dma += frame_desc->offset +
2424 					qtd->isoc_split_offset;
2425 		} else {
2426 			chan->xfer_buf = urb->buf;
2427 			chan->xfer_buf += frame_desc->offset +
2428 					qtd->isoc_split_offset;
2429 		}
2430 
2431 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2432 
2433 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2434 			if (chan->xfer_len <= 188)
2435 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2436 			else
2437 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2438 		}
2439 		break;
2440 	}
2441 }
2442 
2443 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2444 					    struct dwc2_qh *qh,
2445 					    struct dwc2_host_chan *chan)
2446 {
2447 	if (!hsotg->unaligned_cache ||
2448 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2449 		return -ENOMEM;
2450 
2451 	if (!qh->dw_align_buf) {
2452 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2453 						    GFP_ATOMIC | GFP_DMA);
2454 		if (!qh->dw_align_buf)
2455 			return -ENOMEM;
2456 	}
2457 
2458 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2459 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2460 					      DMA_FROM_DEVICE);
2461 
2462 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2463 		dev_err(hsotg->dev, "can't map align_buf\n");
2464 		chan->align_buf = 0;
2465 		return -EINVAL;
2466 	}
2467 
2468 	chan->align_buf = qh->dw_align_buf_dma;
2469 	return 0;
2470 }
2471 
2472 #define DWC2_USB_DMA_ALIGN 4
2473 
2474 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2475 {
2476 	void *stored_xfer_buffer;
2477 	size_t length;
2478 
2479 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2480 		return;
2481 
2482 	/* Restore urb->transfer_buffer from the end of the allocated area */
2483 	memcpy(&stored_xfer_buffer,
2484 	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2485 			 dma_get_cache_alignment()),
2486 	       sizeof(urb->transfer_buffer));
2487 
2488 	if (usb_urb_dir_in(urb)) {
2489 		if (usb_pipeisoc(urb->pipe))
2490 			length = urb->transfer_buffer_length;
2491 		else
2492 			length = urb->actual_length;
2493 
2494 		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2495 	}
2496 	kfree(urb->transfer_buffer);
2497 	urb->transfer_buffer = stored_xfer_buffer;
2498 
2499 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2500 }
2501 
2502 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2503 {
2504 	void *kmalloc_ptr;
2505 	size_t kmalloc_size;
2506 
2507 	if (urb->num_sgs || urb->sg ||
2508 	    urb->transfer_buffer_length == 0 ||
2509 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2510 		return 0;
2511 
2512 	/*
2513 	 * Allocate a buffer with enough padding for original transfer_buffer
2514 	 * pointer. This allocation is guaranteed to be aligned properly for
2515 	 * DMA
2516 	 */
2517 	kmalloc_size = urb->transfer_buffer_length +
2518 		(dma_get_cache_alignment() - 1) +
2519 		sizeof(urb->transfer_buffer);
2520 
2521 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2522 	if (!kmalloc_ptr)
2523 		return -ENOMEM;
2524 
2525 	/*
2526 	 * Position value of original urb->transfer_buffer pointer to the end
2527 	 * of allocation for later referencing
2528 	 */
2529 	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2530 			 dma_get_cache_alignment()),
2531 	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2532 
2533 	if (usb_urb_dir_out(urb))
2534 		memcpy(kmalloc_ptr, urb->transfer_buffer,
2535 		       urb->transfer_buffer_length);
2536 	urb->transfer_buffer = kmalloc_ptr;
2537 
2538 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2539 
2540 	return 0;
2541 }
2542 
2543 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2544 				gfp_t mem_flags)
2545 {
2546 	int ret;
2547 
2548 	/* We assume setup_dma is always aligned; warn if not */
2549 	WARN_ON_ONCE(urb->setup_dma &&
2550 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2551 
2552 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2553 	if (ret)
2554 		return ret;
2555 
2556 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2557 	if (ret)
2558 		dwc2_free_dma_aligned_buffer(urb);
2559 
2560 	return ret;
2561 }
2562 
2563 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2564 {
2565 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2566 	dwc2_free_dma_aligned_buffer(urb);
2567 }
2568 
2569 /**
2570  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2571  * channel and initializes the host channel to perform the transactions. The
2572  * host channel is removed from the free list.
2573  *
2574  * @hsotg: The HCD state structure
2575  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2576  *         to a free host channel
2577  */
2578 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2579 {
2580 	struct dwc2_host_chan *chan;
2581 	struct dwc2_hcd_urb *urb;
2582 	struct dwc2_qtd *qtd;
2583 
2584 	if (dbg_qh(qh))
2585 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2586 
2587 	if (list_empty(&qh->qtd_list)) {
2588 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2589 		return -ENOMEM;
2590 	}
2591 
2592 	if (list_empty(&hsotg->free_hc_list)) {
2593 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2594 		return -ENOMEM;
2595 	}
2596 
2597 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2598 				hc_list_entry);
2599 
2600 	/* Remove host channel from free list */
2601 	list_del_init(&chan->hc_list_entry);
2602 
2603 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2604 	urb = qtd->urb;
2605 	qh->channel = chan;
2606 	qtd->in_process = 1;
2607 
2608 	/*
2609 	 * Use usb_pipedevice to determine device address. This address is
2610 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2611 	 */
2612 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2613 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2614 	chan->speed = qh->dev_speed;
2615 	chan->max_packet = qh->maxp;
2616 
2617 	chan->xfer_started = 0;
2618 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2619 	chan->error_state = (qtd->error_count > 0);
2620 	chan->halt_on_queue = 0;
2621 	chan->halt_pending = 0;
2622 	chan->requests = 0;
2623 
2624 	/*
2625 	 * The following values may be modified in the transfer type section
2626 	 * below. The xfer_len value may be reduced when the transfer is
2627 	 * started to accommodate the max widths of the XferSize and PktCnt
2628 	 * fields in the HCTSIZn register.
2629 	 */
2630 
2631 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2632 	if (chan->ep_is_in)
2633 		chan->do_ping = 0;
2634 	else
2635 		chan->do_ping = qh->ping_state;
2636 
2637 	chan->data_pid_start = qh->data_toggle;
2638 	chan->multi_count = 1;
2639 
2640 	if (urb->actual_length > urb->length &&
2641 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2642 		urb->actual_length = urb->length;
2643 
2644 	if (hsotg->params.host_dma)
2645 		chan->xfer_dma = urb->dma + urb->actual_length;
2646 	else
2647 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2648 
2649 	chan->xfer_len = urb->length - urb->actual_length;
2650 	chan->xfer_count = 0;
2651 
2652 	/* Set the split attributes if required */
2653 	if (qh->do_split)
2654 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2655 	else
2656 		chan->do_split = 0;
2657 
2658 	/* Set the transfer attributes */
2659 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2660 
2661 	/* For non-dword aligned buffers */
2662 	if (hsotg->params.host_dma && qh->do_split &&
2663 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2664 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2665 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2666 			dev_err(hsotg->dev,
2667 				"Failed to allocate memory to handle non-aligned buffer\n");
2668 			/* Add channel back to free list */
2669 			chan->align_buf = 0;
2670 			chan->multi_count = 0;
2671 			list_add_tail(&chan->hc_list_entry,
2672 				      &hsotg->free_hc_list);
2673 			qtd->in_process = 0;
2674 			qh->channel = NULL;
2675 			return -ENOMEM;
2676 		}
2677 	} else {
2678 		/*
2679 		 * We assume that DMA is always aligned in non-split
2680 		 * case or split out case. Warn if not.
2681 		 */
2682 		WARN_ON_ONCE(hsotg->params.host_dma &&
2683 			     (chan->xfer_dma & 0x3));
2684 		chan->align_buf = 0;
2685 	}
2686 
2687 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2688 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2689 		/*
2690 		 * This value may be modified when the transfer is started
2691 		 * to reflect the actual transfer length
2692 		 */
2693 		chan->multi_count = qh->maxp_mult;
2694 
2695 	if (hsotg->params.dma_desc_enable) {
2696 		chan->desc_list_addr = qh->desc_list_dma;
2697 		chan->desc_list_sz = qh->desc_list_sz;
2698 	}
2699 
2700 	dwc2_hc_init(hsotg, chan);
2701 	chan->qh = qh;
2702 
2703 	return 0;
2704 }
2705 
2706 /**
2707  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2708  * schedule and assigns them to available host channels. Called from the HCD
2709  * interrupt handler functions.
2710  *
2711  * @hsotg: The HCD state structure
2712  *
2713  * Return: The types of new transactions that were assigned to host channels
2714  */
2715 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2716 		struct dwc2_hsotg *hsotg)
2717 {
2718 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2719 	struct list_head *qh_ptr;
2720 	struct dwc2_qh *qh;
2721 	int num_channels;
2722 
2723 #ifdef DWC2_DEBUG_SOF
2724 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2725 #endif
2726 
2727 	/* Process entries in the periodic ready list */
2728 	qh_ptr = hsotg->periodic_sched_ready.next;
2729 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2730 		if (list_empty(&hsotg->free_hc_list))
2731 			break;
2732 		if (hsotg->params.uframe_sched) {
2733 			if (hsotg->available_host_channels <= 1)
2734 				break;
2735 			hsotg->available_host_channels--;
2736 		}
2737 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2738 		if (dwc2_assign_and_init_hc(hsotg, qh))
2739 			break;
2740 
2741 		/*
2742 		 * Move the QH from the periodic ready schedule to the
2743 		 * periodic assigned schedule
2744 		 */
2745 		qh_ptr = qh_ptr->next;
2746 		list_move_tail(&qh->qh_list_entry,
2747 			       &hsotg->periodic_sched_assigned);
2748 		ret_val = DWC2_TRANSACTION_PERIODIC;
2749 	}
2750 
2751 	/*
2752 	 * Process entries in the inactive portion of the non-periodic
2753 	 * schedule. Some free host channels may not be used if they are
2754 	 * reserved for periodic transfers.
2755 	 */
2756 	num_channels = hsotg->params.host_channels;
2757 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2758 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2759 		if (!hsotg->params.uframe_sched &&
2760 		    hsotg->non_periodic_channels >= num_channels -
2761 						hsotg->periodic_channels)
2762 			break;
2763 		if (list_empty(&hsotg->free_hc_list))
2764 			break;
2765 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2766 		if (hsotg->params.uframe_sched) {
2767 			if (hsotg->available_host_channels < 1)
2768 				break;
2769 			hsotg->available_host_channels--;
2770 		}
2771 
2772 		if (dwc2_assign_and_init_hc(hsotg, qh))
2773 			break;
2774 
2775 		/*
2776 		 * Move the QH from the non-periodic inactive schedule to the
2777 		 * non-periodic active schedule
2778 		 */
2779 		qh_ptr = qh_ptr->next;
2780 		list_move_tail(&qh->qh_list_entry,
2781 			       &hsotg->non_periodic_sched_active);
2782 
2783 		if (ret_val == DWC2_TRANSACTION_NONE)
2784 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2785 		else
2786 			ret_val = DWC2_TRANSACTION_ALL;
2787 
2788 		if (!hsotg->params.uframe_sched)
2789 			hsotg->non_periodic_channels++;
2790 	}
2791 
2792 	return ret_val;
2793 }
2794 
2795 /**
2796  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2797  * a host channel associated with either a periodic or non-periodic transfer
2798  *
2799  * @hsotg: The HCD state structure
2800  * @chan:  Host channel descriptor associated with either a periodic or
2801  *         non-periodic transfer
2802  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2803  *                     for periodic transfers or the non-periodic Tx FIFO
2804  *                     for non-periodic transfers
2805  *
2806  * Return: 1 if a request is queued and more requests may be needed to
2807  * complete the transfer, 0 if no more requests are required for this
2808  * transfer, -1 if there is insufficient space in the Tx FIFO
2809  *
2810  * This function assumes that there is space available in the appropriate
2811  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2812  * it checks whether space is available in the appropriate Tx FIFO.
2813  *
2814  * Must be called with interrupt disabled and spinlock held
2815  */
2816 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2817 				  struct dwc2_host_chan *chan,
2818 				  u16 fifo_dwords_avail)
2819 {
2820 	int retval = 0;
2821 
2822 	if (chan->do_split)
2823 		/* Put ourselves on the list to keep order straight */
2824 		list_move_tail(&chan->split_order_list_entry,
2825 			       &hsotg->split_order);
2826 
2827 	if (hsotg->params.host_dma && chan->qh) {
2828 		if (hsotg->params.dma_desc_enable) {
2829 			if (!chan->xfer_started ||
2830 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2831 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2832 				chan->qh->ping_state = 0;
2833 			}
2834 		} else if (!chan->xfer_started) {
2835 			dwc2_hc_start_transfer(hsotg, chan);
2836 			chan->qh->ping_state = 0;
2837 		}
2838 	} else if (chan->halt_pending) {
2839 		/* Don't queue a request if the channel has been halted */
2840 	} else if (chan->halt_on_queue) {
2841 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2842 	} else if (chan->do_ping) {
2843 		if (!chan->xfer_started)
2844 			dwc2_hc_start_transfer(hsotg, chan);
2845 	} else if (!chan->ep_is_in ||
2846 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2847 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2848 			if (!chan->xfer_started) {
2849 				dwc2_hc_start_transfer(hsotg, chan);
2850 				retval = 1;
2851 			} else {
2852 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2853 			}
2854 		} else {
2855 			retval = -1;
2856 		}
2857 	} else {
2858 		if (!chan->xfer_started) {
2859 			dwc2_hc_start_transfer(hsotg, chan);
2860 			retval = 1;
2861 		} else {
2862 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2863 		}
2864 	}
2865 
2866 	return retval;
2867 }
2868 
2869 /*
2870  * Processes periodic channels for the next frame and queues transactions for
2871  * these channels to the DWC_otg controller. After queueing transactions, the
2872  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2873  * to queue as Periodic Tx FIFO or request queue space becomes available.
2874  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2875  *
2876  * Must be called with interrupt disabled and spinlock held
2877  */
2878 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2879 {
2880 	struct list_head *qh_ptr;
2881 	struct dwc2_qh *qh;
2882 	u32 tx_status;
2883 	u32 fspcavail;
2884 	u32 gintmsk;
2885 	int status;
2886 	bool no_queue_space = false;
2887 	bool no_fifo_space = false;
2888 	u32 qspcavail;
2889 
2890 	/* If empty list then just adjust interrupt enables */
2891 	if (list_empty(&hsotg->periodic_sched_assigned))
2892 		goto exit;
2893 
2894 	if (dbg_perio())
2895 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2896 
2897 	tx_status = dwc2_readl(hsotg, HPTXSTS);
2898 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2899 		    TXSTS_QSPCAVAIL_SHIFT;
2900 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2901 		    TXSTS_FSPCAVAIL_SHIFT;
2902 
2903 	if (dbg_perio()) {
2904 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2905 			 qspcavail);
2906 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2907 			 fspcavail);
2908 	}
2909 
2910 	qh_ptr = hsotg->periodic_sched_assigned.next;
2911 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2912 		tx_status = dwc2_readl(hsotg, HPTXSTS);
2913 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2914 			    TXSTS_QSPCAVAIL_SHIFT;
2915 		if (qspcavail == 0) {
2916 			no_queue_space = true;
2917 			break;
2918 		}
2919 
2920 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2921 		if (!qh->channel) {
2922 			qh_ptr = qh_ptr->next;
2923 			continue;
2924 		}
2925 
2926 		/* Make sure EP's TT buffer is clean before queueing qtds */
2927 		if (qh->tt_buffer_dirty) {
2928 			qh_ptr = qh_ptr->next;
2929 			continue;
2930 		}
2931 
2932 		/*
2933 		 * Set a flag if we're queuing high-bandwidth in slave mode.
2934 		 * The flag prevents any halts to get into the request queue in
2935 		 * the middle of multiple high-bandwidth packets getting queued.
2936 		 */
2937 		if (!hsotg->params.host_dma &&
2938 		    qh->channel->multi_count > 1)
2939 			hsotg->queuing_high_bandwidth = 1;
2940 
2941 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2942 			    TXSTS_FSPCAVAIL_SHIFT;
2943 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2944 		if (status < 0) {
2945 			no_fifo_space = true;
2946 			break;
2947 		}
2948 
2949 		/*
2950 		 * In Slave mode, stay on the current transfer until there is
2951 		 * nothing more to do or the high-bandwidth request count is
2952 		 * reached. In DMA mode, only need to queue one request. The
2953 		 * controller automatically handles multiple packets for
2954 		 * high-bandwidth transfers.
2955 		 */
2956 		if (hsotg->params.host_dma || status == 0 ||
2957 		    qh->channel->requests == qh->channel->multi_count) {
2958 			qh_ptr = qh_ptr->next;
2959 			/*
2960 			 * Move the QH from the periodic assigned schedule to
2961 			 * the periodic queued schedule
2962 			 */
2963 			list_move_tail(&qh->qh_list_entry,
2964 				       &hsotg->periodic_sched_queued);
2965 
2966 			/* done queuing high bandwidth */
2967 			hsotg->queuing_high_bandwidth = 0;
2968 		}
2969 	}
2970 
2971 exit:
2972 	if (no_queue_space || no_fifo_space ||
2973 	    (!hsotg->params.host_dma &&
2974 	     !list_empty(&hsotg->periodic_sched_assigned))) {
2975 		/*
2976 		 * May need to queue more transactions as the request
2977 		 * queue or Tx FIFO empties. Enable the periodic Tx
2978 		 * FIFO empty interrupt. (Always use the half-empty
2979 		 * level to ensure that new requests are loaded as
2980 		 * soon as possible.)
2981 		 */
2982 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2983 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2984 			gintmsk |= GINTSTS_PTXFEMP;
2985 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2986 		}
2987 	} else {
2988 		/*
2989 		 * Disable the Tx FIFO empty interrupt since there are
2990 		 * no more transactions that need to be queued right
2991 		 * now. This function is called from interrupt
2992 		 * handlers to queue more transactions as transfer
2993 		 * states change.
2994 		 */
2995 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2996 		if (gintmsk & GINTSTS_PTXFEMP) {
2997 			gintmsk &= ~GINTSTS_PTXFEMP;
2998 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2999 		}
3000 	}
3001 }
3002 
3003 /*
3004  * Processes active non-periodic channels and queues transactions for these
3005  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3006  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3007  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3008  * FIFO Empty interrupt is disabled.
3009  *
3010  * Must be called with interrupt disabled and spinlock held
3011  */
3012 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3013 {
3014 	struct list_head *orig_qh_ptr;
3015 	struct dwc2_qh *qh;
3016 	u32 tx_status;
3017 	u32 qspcavail;
3018 	u32 fspcavail;
3019 	u32 gintmsk;
3020 	int status;
3021 	int no_queue_space = 0;
3022 	int no_fifo_space = 0;
3023 	int more_to_do = 0;
3024 
3025 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3026 
3027 	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3028 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3029 		    TXSTS_QSPCAVAIL_SHIFT;
3030 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3031 		    TXSTS_FSPCAVAIL_SHIFT;
3032 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3033 		 qspcavail);
3034 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3035 		 fspcavail);
3036 
3037 	/*
3038 	 * Keep track of the starting point. Skip over the start-of-list
3039 	 * entry.
3040 	 */
3041 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3042 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3043 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3044 
3045 	/*
3046 	 * Process once through the active list or until no more space is
3047 	 * available in the request queue or the Tx FIFO
3048 	 */
3049 	do {
3050 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3051 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3052 			    TXSTS_QSPCAVAIL_SHIFT;
3053 		if (!hsotg->params.host_dma && qspcavail == 0) {
3054 			no_queue_space = 1;
3055 			break;
3056 		}
3057 
3058 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3059 				qh_list_entry);
3060 		if (!qh->channel)
3061 			goto next;
3062 
3063 		/* Make sure EP's TT buffer is clean before queueing qtds */
3064 		if (qh->tt_buffer_dirty)
3065 			goto next;
3066 
3067 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3068 			    TXSTS_FSPCAVAIL_SHIFT;
3069 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3070 
3071 		if (status > 0) {
3072 			more_to_do = 1;
3073 		} else if (status < 0) {
3074 			no_fifo_space = 1;
3075 			break;
3076 		}
3077 next:
3078 		/* Advance to next QH, skipping start-of-list entry */
3079 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3080 		if (hsotg->non_periodic_qh_ptr ==
3081 				&hsotg->non_periodic_sched_active)
3082 			hsotg->non_periodic_qh_ptr =
3083 					hsotg->non_periodic_qh_ptr->next;
3084 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3085 
3086 	if (!hsotg->params.host_dma) {
3087 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3088 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3089 			    TXSTS_QSPCAVAIL_SHIFT;
3090 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3091 			    TXSTS_FSPCAVAIL_SHIFT;
3092 		dev_vdbg(hsotg->dev,
3093 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3094 			 qspcavail);
3095 		dev_vdbg(hsotg->dev,
3096 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3097 			 fspcavail);
3098 
3099 		if (more_to_do || no_queue_space || no_fifo_space) {
3100 			/*
3101 			 * May need to queue more transactions as the request
3102 			 * queue or Tx FIFO empties. Enable the non-periodic
3103 			 * Tx FIFO empty interrupt. (Always use the half-empty
3104 			 * level to ensure that new requests are loaded as
3105 			 * soon as possible.)
3106 			 */
3107 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3108 			gintmsk |= GINTSTS_NPTXFEMP;
3109 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3110 		} else {
3111 			/*
3112 			 * Disable the Tx FIFO empty interrupt since there are
3113 			 * no more transactions that need to be queued right
3114 			 * now. This function is called from interrupt
3115 			 * handlers to queue more transactions as transfer
3116 			 * states change.
3117 			 */
3118 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3119 			gintmsk &= ~GINTSTS_NPTXFEMP;
3120 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3121 		}
3122 	}
3123 }
3124 
3125 /**
3126  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3127  * and queues transactions for these channels to the DWC_otg controller. Called
3128  * from the HCD interrupt handler functions.
3129  *
3130  * @hsotg:   The HCD state structure
3131  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3132  *           or both)
3133  *
3134  * Must be called with interrupt disabled and spinlock held
3135  */
3136 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3137 				 enum dwc2_transaction_type tr_type)
3138 {
3139 #ifdef DWC2_DEBUG_SOF
3140 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3141 #endif
3142 	/* Process host channels associated with periodic transfers */
3143 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3144 	    tr_type == DWC2_TRANSACTION_ALL)
3145 		dwc2_process_periodic_channels(hsotg);
3146 
3147 	/* Process host channels associated with non-periodic transfers */
3148 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3149 	    tr_type == DWC2_TRANSACTION_ALL) {
3150 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3151 			dwc2_process_non_periodic_channels(hsotg);
3152 		} else {
3153 			/*
3154 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3155 			 * there are no non-periodic transfers to process
3156 			 */
3157 			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3158 
3159 			gintmsk &= ~GINTSTS_NPTXFEMP;
3160 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3161 		}
3162 	}
3163 }
3164 
3165 static void dwc2_conn_id_status_change(struct work_struct *work)
3166 {
3167 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3168 						wf_otg);
3169 	u32 count = 0;
3170 	u32 gotgctl;
3171 	unsigned long flags;
3172 
3173 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3174 
3175 	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3176 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3177 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3178 		!!(gotgctl & GOTGCTL_CONID_B));
3179 
3180 	/* B-Device connector (Device Mode) */
3181 	if (gotgctl & GOTGCTL_CONID_B) {
3182 		dwc2_vbus_supply_exit(hsotg);
3183 		/* Wait for switch to device mode */
3184 		dev_dbg(hsotg->dev, "connId B\n");
3185 		if (hsotg->bus_suspended) {
3186 			dev_info(hsotg->dev,
3187 				 "Do port resume before switching to device mode\n");
3188 			dwc2_port_resume(hsotg);
3189 		}
3190 		while (!dwc2_is_device_mode(hsotg)) {
3191 			dev_info(hsotg->dev,
3192 				 "Waiting for Peripheral Mode, Mode=%s\n",
3193 				 dwc2_is_host_mode(hsotg) ? "Host" :
3194 				 "Peripheral");
3195 			msleep(20);
3196 			/*
3197 			 * Sometimes the initial GOTGCTRL read is wrong, so
3198 			 * check it again and jump to host mode if that was
3199 			 * the case.
3200 			 */
3201 			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3202 			if (!(gotgctl & GOTGCTL_CONID_B))
3203 				goto host;
3204 			if (++count > 250)
3205 				break;
3206 		}
3207 		if (count > 250)
3208 			dev_err(hsotg->dev,
3209 				"Connection id status change timed out\n");
3210 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3211 		dwc2_core_init(hsotg, false);
3212 		dwc2_enable_global_interrupts(hsotg);
3213 		spin_lock_irqsave(&hsotg->lock, flags);
3214 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3215 		spin_unlock_irqrestore(&hsotg->lock, flags);
3216 		/* Enable ACG feature in device mode,if supported */
3217 		dwc2_enable_acg(hsotg);
3218 		dwc2_hsotg_core_connect(hsotg);
3219 	} else {
3220 host:
3221 		/* A-Device connector (Host Mode) */
3222 		dev_dbg(hsotg->dev, "connId A\n");
3223 		while (!dwc2_is_host_mode(hsotg)) {
3224 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3225 				 dwc2_is_host_mode(hsotg) ?
3226 				 "Host" : "Peripheral");
3227 			msleep(20);
3228 			if (++count > 250)
3229 				break;
3230 		}
3231 		if (count > 250)
3232 			dev_err(hsotg->dev,
3233 				"Connection id status change timed out\n");
3234 
3235 		spin_lock_irqsave(&hsotg->lock, flags);
3236 		dwc2_hsotg_disconnect(hsotg);
3237 		spin_unlock_irqrestore(&hsotg->lock, flags);
3238 
3239 		hsotg->op_state = OTG_STATE_A_HOST;
3240 		/* Initialize the Core for Host mode */
3241 		dwc2_core_init(hsotg, false);
3242 		dwc2_enable_global_interrupts(hsotg);
3243 		dwc2_hcd_start(hsotg);
3244 	}
3245 }
3246 
3247 static void dwc2_wakeup_detected(struct timer_list *t)
3248 {
3249 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3250 	u32 hprt0;
3251 
3252 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3253 
3254 	/*
3255 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3256 	 * so that OPT tests pass with all PHYs.)
3257 	 */
3258 	hprt0 = dwc2_read_hprt0(hsotg);
3259 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3260 	hprt0 &= ~HPRT0_RES;
3261 	dwc2_writel(hsotg, hprt0, HPRT0);
3262 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3263 		dwc2_readl(hsotg, HPRT0));
3264 
3265 	dwc2_hcd_rem_wakeup(hsotg);
3266 	hsotg->bus_suspended = false;
3267 
3268 	/* Change to L0 state */
3269 	hsotg->lx_state = DWC2_L0;
3270 }
3271 
3272 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3273 {
3274 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3275 
3276 	return hcd->self.b_hnp_enable;
3277 }
3278 
3279 /* Must NOT be called with interrupt disabled or spinlock held */
3280 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3281 {
3282 	unsigned long flags;
3283 	u32 hprt0;
3284 	u32 pcgctl;
3285 	u32 gotgctl;
3286 
3287 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3288 
3289 	spin_lock_irqsave(&hsotg->lock, flags);
3290 
3291 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3292 		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3293 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3294 		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3295 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3296 	}
3297 
3298 	hprt0 = dwc2_read_hprt0(hsotg);
3299 	hprt0 |= HPRT0_SUSP;
3300 	dwc2_writel(hsotg, hprt0, HPRT0);
3301 
3302 	hsotg->bus_suspended = true;
3303 
3304 	/*
3305 	 * If power_down is supported, Phy clock will be suspended
3306 	 * after registers are backuped.
3307 	 */
3308 	if (!hsotg->params.power_down) {
3309 		/* Suspend the Phy Clock */
3310 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3311 		pcgctl |= PCGCTL_STOPPCLK;
3312 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3313 		udelay(10);
3314 	}
3315 
3316 	/* For HNP the bus must be suspended for at least 200ms */
3317 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3318 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3319 		pcgctl &= ~PCGCTL_STOPPCLK;
3320 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3321 
3322 		spin_unlock_irqrestore(&hsotg->lock, flags);
3323 
3324 		msleep(200);
3325 	} else {
3326 		spin_unlock_irqrestore(&hsotg->lock, flags);
3327 	}
3328 }
3329 
3330 /* Must NOT be called with interrupt disabled or spinlock held */
3331 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3332 {
3333 	unsigned long flags;
3334 	u32 hprt0;
3335 	u32 pcgctl;
3336 
3337 	spin_lock_irqsave(&hsotg->lock, flags);
3338 
3339 	/*
3340 	 * If power_down is supported, Phy clock is already resumed
3341 	 * after registers restore.
3342 	 */
3343 	if (!hsotg->params.power_down) {
3344 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3345 		pcgctl &= ~PCGCTL_STOPPCLK;
3346 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3347 		spin_unlock_irqrestore(&hsotg->lock, flags);
3348 		msleep(20);
3349 		spin_lock_irqsave(&hsotg->lock, flags);
3350 	}
3351 
3352 	hprt0 = dwc2_read_hprt0(hsotg);
3353 	hprt0 |= HPRT0_RES;
3354 	hprt0 &= ~HPRT0_SUSP;
3355 	dwc2_writel(hsotg, hprt0, HPRT0);
3356 	spin_unlock_irqrestore(&hsotg->lock, flags);
3357 
3358 	msleep(USB_RESUME_TIMEOUT);
3359 
3360 	spin_lock_irqsave(&hsotg->lock, flags);
3361 	hprt0 = dwc2_read_hprt0(hsotg);
3362 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3363 	dwc2_writel(hsotg, hprt0, HPRT0);
3364 	hsotg->bus_suspended = false;
3365 	spin_unlock_irqrestore(&hsotg->lock, flags);
3366 }
3367 
3368 /* Handles hub class-specific requests */
3369 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3370 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3371 {
3372 	struct usb_hub_descriptor *hub_desc;
3373 	int retval = 0;
3374 	u32 hprt0;
3375 	u32 port_status;
3376 	u32 speed;
3377 	u32 pcgctl;
3378 	u32 pwr;
3379 
3380 	switch (typereq) {
3381 	case ClearHubFeature:
3382 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3383 
3384 		switch (wvalue) {
3385 		case C_HUB_LOCAL_POWER:
3386 		case C_HUB_OVER_CURRENT:
3387 			/* Nothing required here */
3388 			break;
3389 
3390 		default:
3391 			retval = -EINVAL;
3392 			dev_err(hsotg->dev,
3393 				"ClearHubFeature request %1xh unknown\n",
3394 				wvalue);
3395 		}
3396 		break;
3397 
3398 	case ClearPortFeature:
3399 		if (wvalue != USB_PORT_FEAT_L1)
3400 			if (!windex || windex > 1)
3401 				goto error;
3402 		switch (wvalue) {
3403 		case USB_PORT_FEAT_ENABLE:
3404 			dev_dbg(hsotg->dev,
3405 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3406 			hprt0 = dwc2_read_hprt0(hsotg);
3407 			hprt0 |= HPRT0_ENA;
3408 			dwc2_writel(hsotg, hprt0, HPRT0);
3409 			break;
3410 
3411 		case USB_PORT_FEAT_SUSPEND:
3412 			dev_dbg(hsotg->dev,
3413 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3414 
3415 			if (hsotg->bus_suspended) {
3416 				if (hsotg->hibernated)
3417 					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3418 				else
3419 					dwc2_port_resume(hsotg);
3420 			}
3421 			break;
3422 
3423 		case USB_PORT_FEAT_POWER:
3424 			dev_dbg(hsotg->dev,
3425 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3426 			hprt0 = dwc2_read_hprt0(hsotg);
3427 			pwr = hprt0 & HPRT0_PWR;
3428 			hprt0 &= ~HPRT0_PWR;
3429 			dwc2_writel(hsotg, hprt0, HPRT0);
3430 			if (pwr)
3431 				dwc2_vbus_supply_exit(hsotg);
3432 			break;
3433 
3434 		case USB_PORT_FEAT_INDICATOR:
3435 			dev_dbg(hsotg->dev,
3436 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3437 			/* Port indicator not supported */
3438 			break;
3439 
3440 		case USB_PORT_FEAT_C_CONNECTION:
3441 			/*
3442 			 * Clears driver's internal Connect Status Change flag
3443 			 */
3444 			dev_dbg(hsotg->dev,
3445 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3446 			hsotg->flags.b.port_connect_status_change = 0;
3447 			break;
3448 
3449 		case USB_PORT_FEAT_C_RESET:
3450 			/* Clears driver's internal Port Reset Change flag */
3451 			dev_dbg(hsotg->dev,
3452 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3453 			hsotg->flags.b.port_reset_change = 0;
3454 			break;
3455 
3456 		case USB_PORT_FEAT_C_ENABLE:
3457 			/*
3458 			 * Clears the driver's internal Port Enable/Disable
3459 			 * Change flag
3460 			 */
3461 			dev_dbg(hsotg->dev,
3462 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3463 			hsotg->flags.b.port_enable_change = 0;
3464 			break;
3465 
3466 		case USB_PORT_FEAT_C_SUSPEND:
3467 			/*
3468 			 * Clears the driver's internal Port Suspend Change
3469 			 * flag, which is set when resume signaling on the host
3470 			 * port is complete
3471 			 */
3472 			dev_dbg(hsotg->dev,
3473 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3474 			hsotg->flags.b.port_suspend_change = 0;
3475 			break;
3476 
3477 		case USB_PORT_FEAT_C_PORT_L1:
3478 			dev_dbg(hsotg->dev,
3479 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3480 			hsotg->flags.b.port_l1_change = 0;
3481 			break;
3482 
3483 		case USB_PORT_FEAT_C_OVER_CURRENT:
3484 			dev_dbg(hsotg->dev,
3485 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3486 			hsotg->flags.b.port_over_current_change = 0;
3487 			break;
3488 
3489 		default:
3490 			retval = -EINVAL;
3491 			dev_err(hsotg->dev,
3492 				"ClearPortFeature request %1xh unknown or unsupported\n",
3493 				wvalue);
3494 		}
3495 		break;
3496 
3497 	case GetHubDescriptor:
3498 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3499 		hub_desc = (struct usb_hub_descriptor *)buf;
3500 		hub_desc->bDescLength = 9;
3501 		hub_desc->bDescriptorType = USB_DT_HUB;
3502 		hub_desc->bNbrPorts = 1;
3503 		hub_desc->wHubCharacteristics =
3504 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3505 				    HUB_CHAR_INDV_PORT_OCPM);
3506 		hub_desc->bPwrOn2PwrGood = 1;
3507 		hub_desc->bHubContrCurrent = 0;
3508 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3509 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3510 		break;
3511 
3512 	case GetHubStatus:
3513 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3514 		memset(buf, 0, 4);
3515 		break;
3516 
3517 	case GetPortStatus:
3518 		dev_vdbg(hsotg->dev,
3519 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3520 			 hsotg->flags.d32);
3521 		if (!windex || windex > 1)
3522 			goto error;
3523 
3524 		port_status = 0;
3525 		if (hsotg->flags.b.port_connect_status_change)
3526 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3527 		if (hsotg->flags.b.port_enable_change)
3528 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3529 		if (hsotg->flags.b.port_suspend_change)
3530 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3531 		if (hsotg->flags.b.port_l1_change)
3532 			port_status |= USB_PORT_STAT_C_L1 << 16;
3533 		if (hsotg->flags.b.port_reset_change)
3534 			port_status |= USB_PORT_STAT_C_RESET << 16;
3535 		if (hsotg->flags.b.port_over_current_change) {
3536 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3537 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3538 		}
3539 
3540 		if (!hsotg->flags.b.port_connect_status) {
3541 			/*
3542 			 * The port is disconnected, which means the core is
3543 			 * either in device mode or it soon will be. Just
3544 			 * return 0's for the remainder of the port status
3545 			 * since the port register can't be read if the core
3546 			 * is in device mode.
3547 			 */
3548 			*(__le32 *)buf = cpu_to_le32(port_status);
3549 			break;
3550 		}
3551 
3552 		hprt0 = dwc2_readl(hsotg, HPRT0);
3553 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3554 
3555 		if (hprt0 & HPRT0_CONNSTS)
3556 			port_status |= USB_PORT_STAT_CONNECTION;
3557 		if (hprt0 & HPRT0_ENA)
3558 			port_status |= USB_PORT_STAT_ENABLE;
3559 		if (hprt0 & HPRT0_SUSP)
3560 			port_status |= USB_PORT_STAT_SUSPEND;
3561 		if (hprt0 & HPRT0_OVRCURRACT)
3562 			port_status |= USB_PORT_STAT_OVERCURRENT;
3563 		if (hprt0 & HPRT0_RST)
3564 			port_status |= USB_PORT_STAT_RESET;
3565 		if (hprt0 & HPRT0_PWR)
3566 			port_status |= USB_PORT_STAT_POWER;
3567 
3568 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3569 		if (speed == HPRT0_SPD_HIGH_SPEED)
3570 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3571 		else if (speed == HPRT0_SPD_LOW_SPEED)
3572 			port_status |= USB_PORT_STAT_LOW_SPEED;
3573 
3574 		if (hprt0 & HPRT0_TSTCTL_MASK)
3575 			port_status |= USB_PORT_STAT_TEST;
3576 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3577 
3578 		if (hsotg->params.dma_desc_fs_enable) {
3579 			/*
3580 			 * Enable descriptor DMA only if a full speed
3581 			 * device is connected.
3582 			 */
3583 			if (hsotg->new_connection &&
3584 			    ((port_status &
3585 			      (USB_PORT_STAT_CONNECTION |
3586 			       USB_PORT_STAT_HIGH_SPEED |
3587 			       USB_PORT_STAT_LOW_SPEED)) ==
3588 			       USB_PORT_STAT_CONNECTION)) {
3589 				u32 hcfg;
3590 
3591 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3592 				hsotg->params.dma_desc_enable = true;
3593 				hcfg = dwc2_readl(hsotg, HCFG);
3594 				hcfg |= HCFG_DESCDMA;
3595 				dwc2_writel(hsotg, hcfg, HCFG);
3596 				hsotg->new_connection = false;
3597 			}
3598 		}
3599 
3600 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3601 		*(__le32 *)buf = cpu_to_le32(port_status);
3602 		break;
3603 
3604 	case SetHubFeature:
3605 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3606 		/* No HUB features supported */
3607 		break;
3608 
3609 	case SetPortFeature:
3610 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3611 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3612 			goto error;
3613 
3614 		if (!hsotg->flags.b.port_connect_status) {
3615 			/*
3616 			 * The port is disconnected, which means the core is
3617 			 * either in device mode or it soon will be. Just
3618 			 * return without doing anything since the port
3619 			 * register can't be written if the core is in device
3620 			 * mode.
3621 			 */
3622 			break;
3623 		}
3624 
3625 		switch (wvalue) {
3626 		case USB_PORT_FEAT_SUSPEND:
3627 			dev_dbg(hsotg->dev,
3628 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3629 			if (windex != hsotg->otg_port)
3630 				goto error;
3631 			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION)
3632 				dwc2_enter_hibernation(hsotg, 1);
3633 			else
3634 				dwc2_port_suspend(hsotg, windex);
3635 			break;
3636 
3637 		case USB_PORT_FEAT_POWER:
3638 			dev_dbg(hsotg->dev,
3639 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3640 			hprt0 = dwc2_read_hprt0(hsotg);
3641 			pwr = hprt0 & HPRT0_PWR;
3642 			hprt0 |= HPRT0_PWR;
3643 			dwc2_writel(hsotg, hprt0, HPRT0);
3644 			if (!pwr)
3645 				dwc2_vbus_supply_init(hsotg);
3646 			break;
3647 
3648 		case USB_PORT_FEAT_RESET:
3649 			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION &&
3650 			    hsotg->hibernated)
3651 				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3652 			hprt0 = dwc2_read_hprt0(hsotg);
3653 			dev_dbg(hsotg->dev,
3654 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3655 			pcgctl = dwc2_readl(hsotg, PCGCTL);
3656 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3657 			dwc2_writel(hsotg, pcgctl, PCGCTL);
3658 			/* ??? Original driver does this */
3659 			dwc2_writel(hsotg, 0, PCGCTL);
3660 
3661 			hprt0 = dwc2_read_hprt0(hsotg);
3662 			pwr = hprt0 & HPRT0_PWR;
3663 			/* Clear suspend bit if resetting from suspend state */
3664 			hprt0 &= ~HPRT0_SUSP;
3665 
3666 			/*
3667 			 * When B-Host the Port reset bit is set in the Start
3668 			 * HCD Callback function, so that the reset is started
3669 			 * within 1ms of the HNP success interrupt
3670 			 */
3671 			if (!dwc2_hcd_is_b_host(hsotg)) {
3672 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3673 				dev_dbg(hsotg->dev,
3674 					"In host mode, hprt0=%08x\n", hprt0);
3675 				dwc2_writel(hsotg, hprt0, HPRT0);
3676 				if (!pwr)
3677 					dwc2_vbus_supply_init(hsotg);
3678 			}
3679 
3680 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3681 			msleep(50);
3682 			hprt0 &= ~HPRT0_RST;
3683 			dwc2_writel(hsotg, hprt0, HPRT0);
3684 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3685 			break;
3686 
3687 		case USB_PORT_FEAT_INDICATOR:
3688 			dev_dbg(hsotg->dev,
3689 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3690 			/* Not supported */
3691 			break;
3692 
3693 		case USB_PORT_FEAT_TEST:
3694 			hprt0 = dwc2_read_hprt0(hsotg);
3695 			dev_dbg(hsotg->dev,
3696 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3697 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3698 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3699 			dwc2_writel(hsotg, hprt0, HPRT0);
3700 			break;
3701 
3702 		default:
3703 			retval = -EINVAL;
3704 			dev_err(hsotg->dev,
3705 				"SetPortFeature %1xh unknown or unsupported\n",
3706 				wvalue);
3707 			break;
3708 		}
3709 		break;
3710 
3711 	default:
3712 error:
3713 		retval = -EINVAL;
3714 		dev_dbg(hsotg->dev,
3715 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3716 			typereq, windex, wvalue);
3717 		break;
3718 	}
3719 
3720 	return retval;
3721 }
3722 
3723 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3724 {
3725 	int retval;
3726 
3727 	if (port != 1)
3728 		return -EINVAL;
3729 
3730 	retval = (hsotg->flags.b.port_connect_status_change ||
3731 		  hsotg->flags.b.port_reset_change ||
3732 		  hsotg->flags.b.port_enable_change ||
3733 		  hsotg->flags.b.port_suspend_change ||
3734 		  hsotg->flags.b.port_over_current_change);
3735 
3736 	if (retval) {
3737 		dev_dbg(hsotg->dev,
3738 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3739 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3740 			hsotg->flags.b.port_connect_status_change);
3741 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3742 			hsotg->flags.b.port_reset_change);
3743 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3744 			hsotg->flags.b.port_enable_change);
3745 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3746 			hsotg->flags.b.port_suspend_change);
3747 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3748 			hsotg->flags.b.port_over_current_change);
3749 	}
3750 
3751 	return retval;
3752 }
3753 
3754 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3755 {
3756 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3757 
3758 #ifdef DWC2_DEBUG_SOF
3759 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3760 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3761 #endif
3762 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3763 }
3764 
3765 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3766 {
3767 	u32 hprt = dwc2_readl(hsotg, HPRT0);
3768 	u32 hfir = dwc2_readl(hsotg, HFIR);
3769 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3770 	unsigned int us_per_frame;
3771 	unsigned int frame_number;
3772 	unsigned int remaining;
3773 	unsigned int interval;
3774 	unsigned int phy_clks;
3775 
3776 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3777 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3778 
3779 	/* Extract fields */
3780 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3781 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3782 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3783 
3784 	/*
3785 	 * Number of phy clocks since the last tick of the frame number after
3786 	 * "us" has passed.
3787 	 */
3788 	phy_clks = (interval - remaining) +
3789 		   DIV_ROUND_UP(interval * us, us_per_frame);
3790 
3791 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3792 }
3793 
3794 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3795 {
3796 	return hsotg->op_state == OTG_STATE_B_HOST;
3797 }
3798 
3799 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3800 					       int iso_desc_count,
3801 					       gfp_t mem_flags)
3802 {
3803 	struct dwc2_hcd_urb *urb;
3804 
3805 	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3806 	if (urb)
3807 		urb->packet_count = iso_desc_count;
3808 	return urb;
3809 }
3810 
3811 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3812 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3813 				      u8 ep_num, u8 ep_type, u8 ep_dir,
3814 				      u16 maxp, u16 maxp_mult)
3815 {
3816 	if (dbg_perio() ||
3817 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3818 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3819 		dev_vdbg(hsotg->dev,
3820 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3821 			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3822 	urb->pipe_info.dev_addr = dev_addr;
3823 	urb->pipe_info.ep_num = ep_num;
3824 	urb->pipe_info.pipe_type = ep_type;
3825 	urb->pipe_info.pipe_dir = ep_dir;
3826 	urb->pipe_info.maxp = maxp;
3827 	urb->pipe_info.maxp_mult = maxp_mult;
3828 }
3829 
3830 /*
3831  * NOTE: This function will be removed once the peripheral controller code
3832  * is integrated and the driver is stable
3833  */
3834 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3835 {
3836 #ifdef DEBUG
3837 	struct dwc2_host_chan *chan;
3838 	struct dwc2_hcd_urb *urb;
3839 	struct dwc2_qtd *qtd;
3840 	int num_channels;
3841 	u32 np_tx_status;
3842 	u32 p_tx_status;
3843 	int i;
3844 
3845 	num_channels = hsotg->params.host_channels;
3846 	dev_dbg(hsotg->dev, "\n");
3847 	dev_dbg(hsotg->dev,
3848 		"************************************************************\n");
3849 	dev_dbg(hsotg->dev, "HCD State:\n");
3850 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3851 
3852 	for (i = 0; i < num_channels; i++) {
3853 		chan = hsotg->hc_ptr_array[i];
3854 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3855 		dev_dbg(hsotg->dev,
3856 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3857 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3858 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3859 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3860 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3861 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3862 			chan->data_pid_start);
3863 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3864 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3865 			chan->xfer_started);
3866 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3867 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3868 			(unsigned long)chan->xfer_dma);
3869 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3870 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3871 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3872 			chan->halt_on_queue);
3873 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3874 			chan->halt_pending);
3875 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3876 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3877 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3878 			chan->complete_split);
3879 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3880 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3881 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3882 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3883 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3884 
3885 		if (chan->xfer_started) {
3886 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3887 
3888 			hfnum = dwc2_readl(hsotg, HFNUM);
3889 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3890 			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3891 			hcint = dwc2_readl(hsotg, HCINT(i));
3892 			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3893 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3894 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3895 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3896 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3897 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3898 		}
3899 
3900 		if (!(chan->xfer_started && chan->qh))
3901 			continue;
3902 
3903 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3904 			if (!qtd->in_process)
3905 				break;
3906 			urb = qtd->urb;
3907 			dev_dbg(hsotg->dev, "    URB Info:\n");
3908 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3909 				qtd, urb);
3910 			if (urb) {
3911 				dev_dbg(hsotg->dev,
3912 					"      Dev: %d, EP: %d %s\n",
3913 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3914 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3915 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3916 					"IN" : "OUT");
3917 				dev_dbg(hsotg->dev,
3918 					"      Max packet size: %d (%d mult)\n",
3919 					dwc2_hcd_get_maxp(&urb->pipe_info),
3920 					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3921 				dev_dbg(hsotg->dev,
3922 					"      transfer_buffer: %p\n",
3923 					urb->buf);
3924 				dev_dbg(hsotg->dev,
3925 					"      transfer_dma: %08lx\n",
3926 					(unsigned long)urb->dma);
3927 				dev_dbg(hsotg->dev,
3928 					"      transfer_buffer_length: %d\n",
3929 					urb->length);
3930 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3931 					urb->actual_length);
3932 			}
3933 		}
3934 	}
3935 
3936 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3937 		hsotg->non_periodic_channels);
3938 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3939 		hsotg->periodic_channels);
3940 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3941 	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3942 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3943 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3944 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3945 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3946 	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3947 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3948 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3949 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3950 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3951 	dwc2_dump_global_registers(hsotg);
3952 	dwc2_dump_host_registers(hsotg);
3953 	dev_dbg(hsotg->dev,
3954 		"************************************************************\n");
3955 	dev_dbg(hsotg->dev, "\n");
3956 #endif
3957 }
3958 
3959 struct wrapper_priv_data {
3960 	struct dwc2_hsotg *hsotg;
3961 };
3962 
3963 /* Gets the dwc2_hsotg from a usb_hcd */
3964 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3965 {
3966 	struct wrapper_priv_data *p;
3967 
3968 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3969 	return p->hsotg;
3970 }
3971 
3972 /**
3973  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3974  *
3975  * This will get the dwc2_tt structure (and ttport) associated with the given
3976  * context (which is really just a struct urb pointer).
3977  *
3978  * The first time this is called for a given TT we allocate memory for our
3979  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
3980  * then the refcount for the structure will go to 0 and we'll free it.
3981  *
3982  * @hsotg:     The HCD state structure for the DWC OTG controller.
3983  * @context:   The priv pointer from a struct dwc2_hcd_urb.
3984  * @mem_flags: Flags for allocating memory.
3985  * @ttport:    We'll return this device's port number here.  That's used to
3986  *             reference into the bitmap if we're on a multi_tt hub.
3987  *
3988  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
3989  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
3990  */
3991 
3992 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
3993 				      gfp_t mem_flags, int *ttport)
3994 {
3995 	struct urb *urb = context;
3996 	struct dwc2_tt *dwc_tt = NULL;
3997 
3998 	if (urb->dev->tt) {
3999 		*ttport = urb->dev->ttport;
4000 
4001 		dwc_tt = urb->dev->tt->hcpriv;
4002 		if (!dwc_tt) {
4003 			size_t bitmap_size;
4004 
4005 			/*
4006 			 * For single_tt we need one schedule.  For multi_tt
4007 			 * we need one per port.
4008 			 */
4009 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4010 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4011 			if (urb->dev->tt->multi)
4012 				bitmap_size *= urb->dev->tt->hub->maxchild;
4013 
4014 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4015 					 mem_flags);
4016 			if (!dwc_tt)
4017 				return NULL;
4018 
4019 			dwc_tt->usb_tt = urb->dev->tt;
4020 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4021 		}
4022 
4023 		dwc_tt->refcount++;
4024 	}
4025 
4026 	return dwc_tt;
4027 }
4028 
4029 /**
4030  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4031  *
4032  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4033  * of the structure are done.
4034  *
4035  * It's OK to call this with NULL.
4036  *
4037  * @hsotg:     The HCD state structure for the DWC OTG controller.
4038  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4039  */
4040 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4041 {
4042 	/* Model kfree and make put of NULL a no-op */
4043 	if (!dwc_tt)
4044 		return;
4045 
4046 	WARN_ON(dwc_tt->refcount < 1);
4047 
4048 	dwc_tt->refcount--;
4049 	if (!dwc_tt->refcount) {
4050 		dwc_tt->usb_tt->hcpriv = NULL;
4051 		kfree(dwc_tt);
4052 	}
4053 }
4054 
4055 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4056 {
4057 	struct urb *urb = context;
4058 
4059 	return urb->dev->speed;
4060 }
4061 
4062 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4063 					struct urb *urb)
4064 {
4065 	struct usb_bus *bus = hcd_to_bus(hcd);
4066 
4067 	if (urb->interval)
4068 		bus->bandwidth_allocated += bw / urb->interval;
4069 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4070 		bus->bandwidth_isoc_reqs++;
4071 	else
4072 		bus->bandwidth_int_reqs++;
4073 }
4074 
4075 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4076 				    struct urb *urb)
4077 {
4078 	struct usb_bus *bus = hcd_to_bus(hcd);
4079 
4080 	if (urb->interval)
4081 		bus->bandwidth_allocated -= bw / urb->interval;
4082 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4083 		bus->bandwidth_isoc_reqs--;
4084 	else
4085 		bus->bandwidth_int_reqs--;
4086 }
4087 
4088 /*
4089  * Sets the final status of an URB and returns it to the upper layer. Any
4090  * required cleanup of the URB is performed.
4091  *
4092  * Must be called with interrupt disabled and spinlock held
4093  */
4094 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4095 			int status)
4096 {
4097 	struct urb *urb;
4098 	int i;
4099 
4100 	if (!qtd) {
4101 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4102 		return;
4103 	}
4104 
4105 	if (!qtd->urb) {
4106 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4107 		return;
4108 	}
4109 
4110 	urb = qtd->urb->priv;
4111 	if (!urb) {
4112 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4113 		return;
4114 	}
4115 
4116 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4117 
4118 	if (dbg_urb(urb))
4119 		dev_vdbg(hsotg->dev,
4120 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4121 			 __func__, urb, usb_pipedevice(urb->pipe),
4122 			 usb_pipeendpoint(urb->pipe),
4123 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4124 			 urb->actual_length);
4125 
4126 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4127 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4128 		for (i = 0; i < urb->number_of_packets; ++i) {
4129 			urb->iso_frame_desc[i].actual_length =
4130 				dwc2_hcd_urb_get_iso_desc_actual_length(
4131 						qtd->urb, i);
4132 			urb->iso_frame_desc[i].status =
4133 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4134 		}
4135 	}
4136 
4137 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4138 		for (i = 0; i < urb->number_of_packets; i++)
4139 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4140 				 i, urb->iso_frame_desc[i].status);
4141 	}
4142 
4143 	urb->status = status;
4144 	if (!status) {
4145 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4146 		    urb->actual_length < urb->transfer_buffer_length)
4147 			urb->status = -EREMOTEIO;
4148 	}
4149 
4150 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4151 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4152 		struct usb_host_endpoint *ep = urb->ep;
4153 
4154 		if (ep)
4155 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4156 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4157 					urb);
4158 	}
4159 
4160 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4161 	urb->hcpriv = NULL;
4162 	kfree(qtd->urb);
4163 	qtd->urb = NULL;
4164 
4165 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4166 }
4167 
4168 /*
4169  * Work queue function for starting the HCD when A-Cable is connected
4170  */
4171 static void dwc2_hcd_start_func(struct work_struct *work)
4172 {
4173 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4174 						start_work.work);
4175 
4176 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4177 	dwc2_host_start(hsotg);
4178 }
4179 
4180 /*
4181  * Reset work queue function
4182  */
4183 static void dwc2_hcd_reset_func(struct work_struct *work)
4184 {
4185 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4186 						reset_work.work);
4187 	unsigned long flags;
4188 	u32 hprt0;
4189 
4190 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4191 
4192 	spin_lock_irqsave(&hsotg->lock, flags);
4193 
4194 	hprt0 = dwc2_read_hprt0(hsotg);
4195 	hprt0 &= ~HPRT0_RST;
4196 	dwc2_writel(hsotg, hprt0, HPRT0);
4197 	hsotg->flags.b.port_reset_change = 1;
4198 
4199 	spin_unlock_irqrestore(&hsotg->lock, flags);
4200 }
4201 
4202 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4203 {
4204 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4205 						phy_reset_work);
4206 	int ret;
4207 
4208 	ret = phy_reset(hsotg->phy);
4209 	if (ret)
4210 		dev_warn(hsotg->dev, "PHY reset failed\n");
4211 }
4212 
4213 /*
4214  * =========================================================================
4215  *  Linux HC Driver Functions
4216  * =========================================================================
4217  */
4218 
4219 /*
4220  * Initializes the DWC_otg controller and its root hub and prepares it for host
4221  * mode operation. Activates the root port. Returns 0 on success and a negative
4222  * error code on failure.
4223  */
4224 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4225 {
4226 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4227 	struct usb_bus *bus = hcd_to_bus(hcd);
4228 	unsigned long flags;
4229 	u32 hprt0;
4230 	int ret;
4231 
4232 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4233 
4234 	spin_lock_irqsave(&hsotg->lock, flags);
4235 	hsotg->lx_state = DWC2_L0;
4236 	hcd->state = HC_STATE_RUNNING;
4237 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4238 
4239 	if (dwc2_is_device_mode(hsotg)) {
4240 		spin_unlock_irqrestore(&hsotg->lock, flags);
4241 		return 0;	/* why 0 ?? */
4242 	}
4243 
4244 	dwc2_hcd_reinit(hsotg);
4245 
4246 	hprt0 = dwc2_read_hprt0(hsotg);
4247 	/* Has vbus power been turned on in dwc2_core_host_init ? */
4248 	if (hprt0 & HPRT0_PWR) {
4249 		/* Enable external vbus supply before resuming root hub */
4250 		spin_unlock_irqrestore(&hsotg->lock, flags);
4251 		ret = dwc2_vbus_supply_init(hsotg);
4252 		if (ret)
4253 			return ret;
4254 		spin_lock_irqsave(&hsotg->lock, flags);
4255 	}
4256 
4257 	/* Initialize and connect root hub if one is not already attached */
4258 	if (bus->root_hub) {
4259 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4260 		/* Inform the HUB driver to resume */
4261 		usb_hcd_resume_root_hub(hcd);
4262 	}
4263 
4264 	spin_unlock_irqrestore(&hsotg->lock, flags);
4265 
4266 	return 0;
4267 }
4268 
4269 /*
4270  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4271  * stopped.
4272  */
4273 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4274 {
4275 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4276 	unsigned long flags;
4277 	u32 hprt0;
4278 
4279 	/* Turn off all host-specific interrupts */
4280 	dwc2_disable_host_interrupts(hsotg);
4281 
4282 	/* Wait for interrupt processing to finish */
4283 	synchronize_irq(hcd->irq);
4284 
4285 	spin_lock_irqsave(&hsotg->lock, flags);
4286 	hprt0 = dwc2_read_hprt0(hsotg);
4287 	/* Ensure hcd is disconnected */
4288 	dwc2_hcd_disconnect(hsotg, true);
4289 	dwc2_hcd_stop(hsotg);
4290 	hsotg->lx_state = DWC2_L3;
4291 	hcd->state = HC_STATE_HALT;
4292 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4293 	spin_unlock_irqrestore(&hsotg->lock, flags);
4294 
4295 	/* keep balanced supply init/exit by checking HPRT0_PWR */
4296 	if (hprt0 & HPRT0_PWR)
4297 		dwc2_vbus_supply_exit(hsotg);
4298 
4299 	usleep_range(1000, 3000);
4300 }
4301 
4302 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4303 {
4304 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4305 	unsigned long flags;
4306 	int ret = 0;
4307 	u32 hprt0;
4308 	u32 pcgctl;
4309 
4310 	spin_lock_irqsave(&hsotg->lock, flags);
4311 
4312 	if (dwc2_is_device_mode(hsotg))
4313 		goto unlock;
4314 
4315 	if (hsotg->lx_state != DWC2_L0)
4316 		goto unlock;
4317 
4318 	if (!HCD_HW_ACCESSIBLE(hcd))
4319 		goto unlock;
4320 
4321 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4322 		goto unlock;
4323 
4324 	if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL)
4325 		goto skip_power_saving;
4326 
4327 	/*
4328 	 * Drive USB suspend and disable port Power
4329 	 * if usb bus is not suspended.
4330 	 */
4331 	if (!hsotg->bus_suspended) {
4332 		hprt0 = dwc2_read_hprt0(hsotg);
4333 		if (hprt0 & HPRT0_CONNSTS) {
4334 			hprt0 |= HPRT0_SUSP;
4335 			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL)
4336 				hprt0 &= ~HPRT0_PWR;
4337 			dwc2_writel(hsotg, hprt0, HPRT0);
4338 		}
4339 		if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4340 			spin_unlock_irqrestore(&hsotg->lock, flags);
4341 			dwc2_vbus_supply_exit(hsotg);
4342 			spin_lock_irqsave(&hsotg->lock, flags);
4343 		} else {
4344 			pcgctl = readl(hsotg->regs + PCGCTL);
4345 			pcgctl |= PCGCTL_STOPPCLK;
4346 			writel(pcgctl, hsotg->regs + PCGCTL);
4347 		}
4348 	}
4349 
4350 	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4351 		/* Enter partial_power_down */
4352 		ret = dwc2_enter_partial_power_down(hsotg);
4353 		if (ret) {
4354 			if (ret != -ENOTSUPP)
4355 				dev_err(hsotg->dev,
4356 					"enter partial_power_down failed\n");
4357 			goto skip_power_saving;
4358 		}
4359 
4360 		/* After entering partial_power_down, hardware is no more accessible */
4361 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4362 	}
4363 
4364 	/* Ask phy to be suspended */
4365 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4366 		spin_unlock_irqrestore(&hsotg->lock, flags);
4367 		usb_phy_set_suspend(hsotg->uphy, true);
4368 		spin_lock_irqsave(&hsotg->lock, flags);
4369 	}
4370 
4371 skip_power_saving:
4372 	hsotg->lx_state = DWC2_L2;
4373 unlock:
4374 	spin_unlock_irqrestore(&hsotg->lock, flags);
4375 
4376 	return ret;
4377 }
4378 
4379 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4380 {
4381 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4382 	unsigned long flags;
4383 	u32 pcgctl;
4384 	int ret = 0;
4385 
4386 	spin_lock_irqsave(&hsotg->lock, flags);
4387 
4388 	if (dwc2_is_device_mode(hsotg))
4389 		goto unlock;
4390 
4391 	if (hsotg->lx_state != DWC2_L2)
4392 		goto unlock;
4393 
4394 	if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) {
4395 		hsotg->lx_state = DWC2_L0;
4396 		goto unlock;
4397 	}
4398 
4399 	/*
4400 	 * Enable power if not already done.
4401 	 * This must not be spinlocked since duration
4402 	 * of this call is unknown.
4403 	 */
4404 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4405 		spin_unlock_irqrestore(&hsotg->lock, flags);
4406 		usb_phy_set_suspend(hsotg->uphy, false);
4407 		spin_lock_irqsave(&hsotg->lock, flags);
4408 	}
4409 
4410 	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4411 		/*
4412 		 * Set HW accessible bit before powering on the controller
4413 		 * since an interrupt may rise.
4414 		 */
4415 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4416 
4417 
4418 		/* Exit partial_power_down */
4419 		ret = dwc2_exit_partial_power_down(hsotg, true);
4420 		if (ret && (ret != -ENOTSUPP))
4421 			dev_err(hsotg->dev, "exit partial_power_down failed\n");
4422 	} else {
4423 		pcgctl = readl(hsotg->regs + PCGCTL);
4424 		pcgctl &= ~PCGCTL_STOPPCLK;
4425 		writel(pcgctl, hsotg->regs + PCGCTL);
4426 	}
4427 
4428 	hsotg->lx_state = DWC2_L0;
4429 
4430 	spin_unlock_irqrestore(&hsotg->lock, flags);
4431 
4432 	if (hsotg->bus_suspended) {
4433 		spin_lock_irqsave(&hsotg->lock, flags);
4434 		hsotg->flags.b.port_suspend_change = 1;
4435 		spin_unlock_irqrestore(&hsotg->lock, flags);
4436 		dwc2_port_resume(hsotg);
4437 	} else {
4438 		if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4439 			dwc2_vbus_supply_init(hsotg);
4440 
4441 			/* Wait for controller to correctly update D+/D- level */
4442 			usleep_range(3000, 5000);
4443 		}
4444 
4445 		/*
4446 		 * Clear Port Enable and Port Status changes.
4447 		 * Enable Port Power.
4448 		 */
4449 		dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4450 				HPRT0_ENACHG, HPRT0);
4451 		/* Wait for controller to detect Port Connect */
4452 		usleep_range(5000, 7000);
4453 	}
4454 
4455 	return ret;
4456 unlock:
4457 	spin_unlock_irqrestore(&hsotg->lock, flags);
4458 
4459 	return ret;
4460 }
4461 
4462 /* Returns the current frame number */
4463 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4464 {
4465 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4466 
4467 	return dwc2_hcd_get_frame_number(hsotg);
4468 }
4469 
4470 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4471 			       char *fn_name)
4472 {
4473 #ifdef VERBOSE_DEBUG
4474 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4475 	char *pipetype = NULL;
4476 	char *speed = NULL;
4477 
4478 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4479 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4480 		 usb_pipedevice(urb->pipe));
4481 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4482 		 usb_pipeendpoint(urb->pipe),
4483 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4484 
4485 	switch (usb_pipetype(urb->pipe)) {
4486 	case PIPE_CONTROL:
4487 		pipetype = "CONTROL";
4488 		break;
4489 	case PIPE_BULK:
4490 		pipetype = "BULK";
4491 		break;
4492 	case PIPE_INTERRUPT:
4493 		pipetype = "INTERRUPT";
4494 		break;
4495 	case PIPE_ISOCHRONOUS:
4496 		pipetype = "ISOCHRONOUS";
4497 		break;
4498 	}
4499 
4500 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4501 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4502 		 "IN" : "OUT");
4503 
4504 	switch (urb->dev->speed) {
4505 	case USB_SPEED_HIGH:
4506 		speed = "HIGH";
4507 		break;
4508 	case USB_SPEED_FULL:
4509 		speed = "FULL";
4510 		break;
4511 	case USB_SPEED_LOW:
4512 		speed = "LOW";
4513 		break;
4514 	default:
4515 		speed = "UNKNOWN";
4516 		break;
4517 	}
4518 
4519 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4520 	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4521 		 usb_endpoint_maxp(&urb->ep->desc),
4522 		 usb_endpoint_maxp_mult(&urb->ep->desc));
4523 
4524 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4525 		 urb->transfer_buffer_length);
4526 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4527 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4528 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4529 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4530 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4531 
4532 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4533 		int i;
4534 
4535 		for (i = 0; i < urb->number_of_packets; i++) {
4536 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4537 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4538 				 urb->iso_frame_desc[i].offset,
4539 				 urb->iso_frame_desc[i].length);
4540 		}
4541 	}
4542 #endif
4543 }
4544 
4545 /*
4546  * Starts processing a USB transfer request specified by a USB Request Block
4547  * (URB). mem_flags indicates the type of memory allocation to use while
4548  * processing this URB.
4549  */
4550 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4551 				 gfp_t mem_flags)
4552 {
4553 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4554 	struct usb_host_endpoint *ep = urb->ep;
4555 	struct dwc2_hcd_urb *dwc2_urb;
4556 	int i;
4557 	int retval;
4558 	int alloc_bandwidth = 0;
4559 	u8 ep_type = 0;
4560 	u32 tflags = 0;
4561 	void *buf;
4562 	unsigned long flags;
4563 	struct dwc2_qh *qh;
4564 	bool qh_allocated = false;
4565 	struct dwc2_qtd *qtd;
4566 
4567 	if (dbg_urb(urb)) {
4568 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4569 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4570 	}
4571 
4572 	if (!ep)
4573 		return -EINVAL;
4574 
4575 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4576 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4577 		spin_lock_irqsave(&hsotg->lock, flags);
4578 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4579 			alloc_bandwidth = 1;
4580 		spin_unlock_irqrestore(&hsotg->lock, flags);
4581 	}
4582 
4583 	switch (usb_pipetype(urb->pipe)) {
4584 	case PIPE_CONTROL:
4585 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4586 		break;
4587 	case PIPE_ISOCHRONOUS:
4588 		ep_type = USB_ENDPOINT_XFER_ISOC;
4589 		break;
4590 	case PIPE_BULK:
4591 		ep_type = USB_ENDPOINT_XFER_BULK;
4592 		break;
4593 	case PIPE_INTERRUPT:
4594 		ep_type = USB_ENDPOINT_XFER_INT;
4595 		break;
4596 	}
4597 
4598 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4599 				      mem_flags);
4600 	if (!dwc2_urb)
4601 		return -ENOMEM;
4602 
4603 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4604 				  usb_pipeendpoint(urb->pipe), ep_type,
4605 				  usb_pipein(urb->pipe),
4606 				  usb_endpoint_maxp(&ep->desc),
4607 				  usb_endpoint_maxp_mult(&ep->desc));
4608 
4609 	buf = urb->transfer_buffer;
4610 
4611 	if (hcd_uses_dma(hcd)) {
4612 		if (!buf && (urb->transfer_dma & 3)) {
4613 			dev_err(hsotg->dev,
4614 				"%s: unaligned transfer with no transfer_buffer",
4615 				__func__);
4616 			retval = -EINVAL;
4617 			goto fail0;
4618 		}
4619 	}
4620 
4621 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4622 		tflags |= URB_GIVEBACK_ASAP;
4623 	if (urb->transfer_flags & URB_ZERO_PACKET)
4624 		tflags |= URB_SEND_ZERO_PACKET;
4625 
4626 	dwc2_urb->priv = urb;
4627 	dwc2_urb->buf = buf;
4628 	dwc2_urb->dma = urb->transfer_dma;
4629 	dwc2_urb->length = urb->transfer_buffer_length;
4630 	dwc2_urb->setup_packet = urb->setup_packet;
4631 	dwc2_urb->setup_dma = urb->setup_dma;
4632 	dwc2_urb->flags = tflags;
4633 	dwc2_urb->interval = urb->interval;
4634 	dwc2_urb->status = -EINPROGRESS;
4635 
4636 	for (i = 0; i < urb->number_of_packets; ++i)
4637 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4638 						 urb->iso_frame_desc[i].offset,
4639 						 urb->iso_frame_desc[i].length);
4640 
4641 	urb->hcpriv = dwc2_urb;
4642 	qh = (struct dwc2_qh *)ep->hcpriv;
4643 	/* Create QH for the endpoint if it doesn't exist */
4644 	if (!qh) {
4645 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4646 		if (!qh) {
4647 			retval = -ENOMEM;
4648 			goto fail0;
4649 		}
4650 		ep->hcpriv = qh;
4651 		qh_allocated = true;
4652 	}
4653 
4654 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4655 	if (!qtd) {
4656 		retval = -ENOMEM;
4657 		goto fail1;
4658 	}
4659 
4660 	spin_lock_irqsave(&hsotg->lock, flags);
4661 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4662 	if (retval)
4663 		goto fail2;
4664 
4665 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4666 	if (retval)
4667 		goto fail3;
4668 
4669 	if (alloc_bandwidth) {
4670 		dwc2_allocate_bus_bandwidth(hcd,
4671 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4672 				urb);
4673 	}
4674 
4675 	spin_unlock_irqrestore(&hsotg->lock, flags);
4676 
4677 	return 0;
4678 
4679 fail3:
4680 	dwc2_urb->priv = NULL;
4681 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4682 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4683 		qh->channel->qh = NULL;
4684 fail2:
4685 	spin_unlock_irqrestore(&hsotg->lock, flags);
4686 	urb->hcpriv = NULL;
4687 	kfree(qtd);
4688 fail1:
4689 	if (qh_allocated) {
4690 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4691 
4692 		ep->hcpriv = NULL;
4693 		dwc2_hcd_qh_unlink(hsotg, qh);
4694 		/* Free each QTD in the QH's QTD list */
4695 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4696 					 qtd_list_entry)
4697 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4698 		dwc2_hcd_qh_free(hsotg, qh);
4699 	}
4700 fail0:
4701 	kfree(dwc2_urb);
4702 
4703 	return retval;
4704 }
4705 
4706 /*
4707  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4708  */
4709 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4710 				 int status)
4711 {
4712 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4713 	int rc;
4714 	unsigned long flags;
4715 
4716 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4717 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4718 
4719 	spin_lock_irqsave(&hsotg->lock, flags);
4720 
4721 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4722 	if (rc)
4723 		goto out;
4724 
4725 	if (!urb->hcpriv) {
4726 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4727 		goto out;
4728 	}
4729 
4730 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4731 
4732 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4733 
4734 	kfree(urb->hcpriv);
4735 	urb->hcpriv = NULL;
4736 
4737 	/* Higher layer software sets URB status */
4738 	spin_unlock(&hsotg->lock);
4739 	usb_hcd_giveback_urb(hcd, urb, status);
4740 	spin_lock(&hsotg->lock);
4741 
4742 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4743 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4744 out:
4745 	spin_unlock_irqrestore(&hsotg->lock, flags);
4746 
4747 	return rc;
4748 }
4749 
4750 /*
4751  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4752  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4753  * must already be dequeued.
4754  */
4755 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4756 				       struct usb_host_endpoint *ep)
4757 {
4758 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4759 
4760 	dev_dbg(hsotg->dev,
4761 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4762 		ep->desc.bEndpointAddress, ep->hcpriv);
4763 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4764 }
4765 
4766 /*
4767  * Resets endpoint specific parameter values, in current version used to reset
4768  * the data toggle (as a WA). This function can be called from usb_clear_halt
4769  * routine.
4770  */
4771 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4772 				     struct usb_host_endpoint *ep)
4773 {
4774 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4775 	unsigned long flags;
4776 
4777 	dev_dbg(hsotg->dev,
4778 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4779 		ep->desc.bEndpointAddress);
4780 
4781 	spin_lock_irqsave(&hsotg->lock, flags);
4782 	dwc2_hcd_endpoint_reset(hsotg, ep);
4783 	spin_unlock_irqrestore(&hsotg->lock, flags);
4784 }
4785 
4786 /*
4787  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4788  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4789  * interrupt.
4790  *
4791  * This function is called by the USB core when an interrupt occurs
4792  */
4793 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4794 {
4795 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4796 
4797 	return dwc2_handle_hcd_intr(hsotg);
4798 }
4799 
4800 /*
4801  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4802  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4803  * is the status change indicator for the single root port. Returns 1 if either
4804  * change indicator is 1, otherwise returns 0.
4805  */
4806 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4807 {
4808 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4809 
4810 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4811 	return buf[0] != 0;
4812 }
4813 
4814 /* Handles hub class-specific requests */
4815 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4816 				 u16 windex, char *buf, u16 wlength)
4817 {
4818 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4819 					  wvalue, windex, buf, wlength);
4820 	return retval;
4821 }
4822 
4823 /* Handles hub TT buffer clear completions */
4824 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4825 					       struct usb_host_endpoint *ep)
4826 {
4827 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4828 	struct dwc2_qh *qh;
4829 	unsigned long flags;
4830 
4831 	qh = ep->hcpriv;
4832 	if (!qh)
4833 		return;
4834 
4835 	spin_lock_irqsave(&hsotg->lock, flags);
4836 	qh->tt_buffer_dirty = 0;
4837 
4838 	if (hsotg->flags.b.port_connect_status)
4839 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4840 
4841 	spin_unlock_irqrestore(&hsotg->lock, flags);
4842 }
4843 
4844 /*
4845  * HPRT0_SPD_HIGH_SPEED: high speed
4846  * HPRT0_SPD_FULL_SPEED: full speed
4847  */
4848 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4849 {
4850 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4851 
4852 	if (hsotg->params.speed == speed)
4853 		return;
4854 
4855 	hsotg->params.speed = speed;
4856 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4857 }
4858 
4859 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4860 {
4861 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4862 
4863 	if (!hsotg->params.change_speed_quirk)
4864 		return;
4865 
4866 	/*
4867 	 * On removal, set speed to default high-speed.
4868 	 */
4869 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4870 	    udev->parent->speed < USB_SPEED_HIGH) {
4871 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4872 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4873 	}
4874 }
4875 
4876 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4877 {
4878 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4879 
4880 	if (!hsotg->params.change_speed_quirk)
4881 		return 0;
4882 
4883 	if (udev->speed == USB_SPEED_HIGH) {
4884 		dev_info(hsotg->dev, "Set speed to high-speed\n");
4885 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4886 	} else if ((udev->speed == USB_SPEED_FULL ||
4887 				udev->speed == USB_SPEED_LOW)) {
4888 		/*
4889 		 * Change speed setting to full-speed if there's
4890 		 * a full-speed or low-speed device plugged in.
4891 		 */
4892 		dev_info(hsotg->dev, "Set speed to full-speed\n");
4893 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4894 	}
4895 
4896 	return 0;
4897 }
4898 
4899 static struct hc_driver dwc2_hc_driver = {
4900 	.description = "dwc2_hsotg",
4901 	.product_desc = "DWC OTG Controller",
4902 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4903 
4904 	.irq = _dwc2_hcd_irq,
4905 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4906 
4907 	.start = _dwc2_hcd_start,
4908 	.stop = _dwc2_hcd_stop,
4909 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4910 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4911 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4912 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4913 	.get_frame_number = _dwc2_hcd_get_frame_number,
4914 
4915 	.hub_status_data = _dwc2_hcd_hub_status_data,
4916 	.hub_control = _dwc2_hcd_hub_control,
4917 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4918 
4919 	.bus_suspend = _dwc2_hcd_suspend,
4920 	.bus_resume = _dwc2_hcd_resume,
4921 
4922 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4923 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4924 };
4925 
4926 /*
4927  * Frees secondary storage associated with the dwc2_hsotg structure contained
4928  * in the struct usb_hcd field
4929  */
4930 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4931 {
4932 	u32 ahbcfg;
4933 	u32 dctl;
4934 	int i;
4935 
4936 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4937 
4938 	/* Free memory for QH/QTD lists */
4939 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4940 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4941 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4942 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4943 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4944 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4945 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4946 
4947 	/* Free memory for the host channels */
4948 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4949 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4950 
4951 		if (chan) {
4952 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4953 				i, chan);
4954 			hsotg->hc_ptr_array[i] = NULL;
4955 			kfree(chan);
4956 		}
4957 	}
4958 
4959 	if (hsotg->params.host_dma) {
4960 		if (hsotg->status_buf) {
4961 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4962 					  hsotg->status_buf,
4963 					  hsotg->status_buf_dma);
4964 			hsotg->status_buf = NULL;
4965 		}
4966 	} else {
4967 		kfree(hsotg->status_buf);
4968 		hsotg->status_buf = NULL;
4969 	}
4970 
4971 	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
4972 
4973 	/* Disable all interrupts */
4974 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4975 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
4976 	dwc2_writel(hsotg, 0, GINTMSK);
4977 
4978 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4979 		dctl = dwc2_readl(hsotg, DCTL);
4980 		dctl |= DCTL_SFTDISCON;
4981 		dwc2_writel(hsotg, dctl, DCTL);
4982 	}
4983 
4984 	if (hsotg->wq_otg) {
4985 		if (!cancel_work_sync(&hsotg->wf_otg))
4986 			flush_workqueue(hsotg->wq_otg);
4987 		destroy_workqueue(hsotg->wq_otg);
4988 	}
4989 
4990 	cancel_work_sync(&hsotg->phy_reset_work);
4991 
4992 	del_timer(&hsotg->wkp_timer);
4993 }
4994 
4995 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4996 {
4997 	/* Turn off all host-specific interrupts */
4998 	dwc2_disable_host_interrupts(hsotg);
4999 
5000 	dwc2_hcd_free(hsotg);
5001 }
5002 
5003 /*
5004  * Initializes the HCD. This function allocates memory for and initializes the
5005  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5006  * USB bus with the core and calls the hc_driver->start() function. It returns
5007  * a negative error on failure.
5008  */
5009 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5010 {
5011 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5012 	struct resource *res;
5013 	struct usb_hcd *hcd;
5014 	struct dwc2_host_chan *channel;
5015 	u32 hcfg;
5016 	int i, num_channels;
5017 	int retval;
5018 
5019 	if (usb_disabled())
5020 		return -ENODEV;
5021 
5022 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5023 
5024 	retval = -ENOMEM;
5025 
5026 	hcfg = dwc2_readl(hsotg, HCFG);
5027 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5028 
5029 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5030 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5031 					 sizeof(*hsotg->frame_num_array),
5032 					 GFP_KERNEL);
5033 	if (!hsotg->frame_num_array)
5034 		goto error1;
5035 	hsotg->last_frame_num_array =
5036 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5037 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5038 	if (!hsotg->last_frame_num_array)
5039 		goto error1;
5040 #endif
5041 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5042 
5043 	/* Check if the bus driver or platform code has setup a dma_mask */
5044 	if (hsotg->params.host_dma &&
5045 	    !hsotg->dev->dma_mask) {
5046 		dev_warn(hsotg->dev,
5047 			 "dma_mask not set, disabling DMA\n");
5048 		hsotg->params.host_dma = false;
5049 		hsotg->params.dma_desc_enable = false;
5050 	}
5051 
5052 	/* Set device flags indicating whether the HCD supports DMA */
5053 	if (hsotg->params.host_dma) {
5054 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5055 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5056 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5057 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5058 	}
5059 
5060 	if (hsotg->params.change_speed_quirk) {
5061 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5062 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5063 	}
5064 
5065 	if (hsotg->params.host_dma)
5066 		dwc2_hc_driver.flags |= HCD_DMA;
5067 
5068 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5069 	if (!hcd)
5070 		goto error1;
5071 
5072 	hcd->has_tt = 1;
5073 
5074 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5075 	hcd->rsrc_start = res->start;
5076 	hcd->rsrc_len = resource_size(res);
5077 
5078 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5079 	hsotg->priv = hcd;
5080 
5081 	/*
5082 	 * Disable the global interrupt until all the interrupt handlers are
5083 	 * installed
5084 	 */
5085 	dwc2_disable_global_interrupts(hsotg);
5086 
5087 	/* Initialize the DWC_otg core, and select the Phy type */
5088 	retval = dwc2_core_init(hsotg, true);
5089 	if (retval)
5090 		goto error2;
5091 
5092 	/* Create new workqueue and init work */
5093 	retval = -ENOMEM;
5094 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5095 	if (!hsotg->wq_otg) {
5096 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5097 		goto error2;
5098 	}
5099 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5100 
5101 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5102 
5103 	/* Initialize the non-periodic schedule */
5104 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5105 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5106 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5107 
5108 	/* Initialize the periodic schedule */
5109 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5110 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5111 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5112 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5113 
5114 	INIT_LIST_HEAD(&hsotg->split_order);
5115 
5116 	/*
5117 	 * Create a host channel descriptor for each host channel implemented
5118 	 * in the controller. Initialize the channel descriptor array.
5119 	 */
5120 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5121 	num_channels = hsotg->params.host_channels;
5122 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5123 
5124 	for (i = 0; i < num_channels; i++) {
5125 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5126 		if (!channel)
5127 			goto error3;
5128 		channel->hc_num = i;
5129 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5130 		hsotg->hc_ptr_array[i] = channel;
5131 	}
5132 
5133 	/* Initialize work */
5134 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5135 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5136 	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5137 
5138 	/*
5139 	 * Allocate space for storing data on status transactions. Normally no
5140 	 * data is sent, but this space acts as a bit bucket. This must be
5141 	 * done after usb_add_hcd since that function allocates the DMA buffer
5142 	 * pool.
5143 	 */
5144 	if (hsotg->params.host_dma)
5145 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5146 					DWC2_HCD_STATUS_BUF_SIZE,
5147 					&hsotg->status_buf_dma, GFP_KERNEL);
5148 	else
5149 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5150 					  GFP_KERNEL);
5151 
5152 	if (!hsotg->status_buf)
5153 		goto error3;
5154 
5155 	/*
5156 	 * Create kmem caches to handle descriptor buffers in descriptor
5157 	 * DMA mode.
5158 	 * Alignment must be set to 512 bytes.
5159 	 */
5160 	if (hsotg->params.dma_desc_enable ||
5161 	    hsotg->params.dma_desc_fs_enable) {
5162 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5163 				sizeof(struct dwc2_dma_desc) *
5164 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5165 				NULL);
5166 		if (!hsotg->desc_gen_cache) {
5167 			dev_err(hsotg->dev,
5168 				"unable to create dwc2 generic desc cache\n");
5169 
5170 			/*
5171 			 * Disable descriptor dma mode since it will not be
5172 			 * usable.
5173 			 */
5174 			hsotg->params.dma_desc_enable = false;
5175 			hsotg->params.dma_desc_fs_enable = false;
5176 		}
5177 
5178 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5179 				sizeof(struct dwc2_dma_desc) *
5180 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5181 		if (!hsotg->desc_hsisoc_cache) {
5182 			dev_err(hsotg->dev,
5183 				"unable to create dwc2 hs isoc desc cache\n");
5184 
5185 			kmem_cache_destroy(hsotg->desc_gen_cache);
5186 
5187 			/*
5188 			 * Disable descriptor dma mode since it will not be
5189 			 * usable.
5190 			 */
5191 			hsotg->params.dma_desc_enable = false;
5192 			hsotg->params.dma_desc_fs_enable = false;
5193 		}
5194 	}
5195 
5196 	if (hsotg->params.host_dma) {
5197 		/*
5198 		 * Create kmem caches to handle non-aligned buffer
5199 		 * in Buffer DMA mode.
5200 		 */
5201 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5202 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5203 						SLAB_CACHE_DMA, NULL);
5204 		if (!hsotg->unaligned_cache)
5205 			dev_err(hsotg->dev,
5206 				"unable to create dwc2 unaligned cache\n");
5207 	}
5208 
5209 	hsotg->otg_port = 1;
5210 	hsotg->frame_list = NULL;
5211 	hsotg->frame_list_dma = 0;
5212 	hsotg->periodic_qh_count = 0;
5213 
5214 	/* Initiate lx_state to L3 disconnected state */
5215 	hsotg->lx_state = DWC2_L3;
5216 
5217 	hcd->self.otg_port = hsotg->otg_port;
5218 
5219 	/* Don't support SG list at this point */
5220 	hcd->self.sg_tablesize = 0;
5221 
5222 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5223 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5224 
5225 	/*
5226 	 * Finish generic HCD initialization and start the HCD. This function
5227 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5228 	 * IRQ line, and calls hcd_start method.
5229 	 */
5230 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5231 	if (retval < 0)
5232 		goto error4;
5233 
5234 	device_wakeup_enable(hcd->self.controller);
5235 
5236 	dwc2_hcd_dump_state(hsotg);
5237 
5238 	dwc2_enable_global_interrupts(hsotg);
5239 
5240 	return 0;
5241 
5242 error4:
5243 	kmem_cache_destroy(hsotg->unaligned_cache);
5244 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5245 	kmem_cache_destroy(hsotg->desc_gen_cache);
5246 error3:
5247 	dwc2_hcd_release(hsotg);
5248 error2:
5249 	usb_put_hcd(hcd);
5250 error1:
5251 
5252 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5253 	kfree(hsotg->last_frame_num_array);
5254 	kfree(hsotg->frame_num_array);
5255 #endif
5256 
5257 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5258 	return retval;
5259 }
5260 
5261 /*
5262  * Removes the HCD.
5263  * Frees memory and resources associated with the HCD and deregisters the bus.
5264  */
5265 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5266 {
5267 	struct usb_hcd *hcd;
5268 
5269 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5270 
5271 	hcd = dwc2_hsotg_to_hcd(hsotg);
5272 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5273 
5274 	if (!hcd) {
5275 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5276 			__func__);
5277 		return;
5278 	}
5279 
5280 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5281 		otg_set_host(hsotg->uphy->otg, NULL);
5282 
5283 	usb_remove_hcd(hcd);
5284 	hsotg->priv = NULL;
5285 
5286 	kmem_cache_destroy(hsotg->unaligned_cache);
5287 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5288 	kmem_cache_destroy(hsotg->desc_gen_cache);
5289 
5290 	dwc2_hcd_release(hsotg);
5291 	usb_put_hcd(hcd);
5292 
5293 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5294 	kfree(hsotg->last_frame_num_array);
5295 	kfree(hsotg->frame_num_array);
5296 #endif
5297 }
5298 
5299 /**
5300  * dwc2_backup_host_registers() - Backup controller host registers.
5301  * When suspending usb bus, registers needs to be backuped
5302  * if controller power is disabled once suspended.
5303  *
5304  * @hsotg: Programming view of the DWC_otg controller
5305  */
5306 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5307 {
5308 	struct dwc2_hregs_backup *hr;
5309 	int i;
5310 
5311 	dev_dbg(hsotg->dev, "%s\n", __func__);
5312 
5313 	/* Backup Host regs */
5314 	hr = &hsotg->hr_backup;
5315 	hr->hcfg = dwc2_readl(hsotg, HCFG);
5316 	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5317 	for (i = 0; i < hsotg->params.host_channels; ++i)
5318 		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5319 
5320 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5321 	hr->hfir = dwc2_readl(hsotg, HFIR);
5322 	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5323 	hr->valid = true;
5324 
5325 	return 0;
5326 }
5327 
5328 /**
5329  * dwc2_restore_host_registers() - Restore controller host registers.
5330  * When resuming usb bus, device registers needs to be restored
5331  * if controller power were disabled.
5332  *
5333  * @hsotg: Programming view of the DWC_otg controller
5334  */
5335 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5336 {
5337 	struct dwc2_hregs_backup *hr;
5338 	int i;
5339 
5340 	dev_dbg(hsotg->dev, "%s\n", __func__);
5341 
5342 	/* Restore host regs */
5343 	hr = &hsotg->hr_backup;
5344 	if (!hr->valid) {
5345 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5346 			__func__);
5347 		return -EINVAL;
5348 	}
5349 	hr->valid = false;
5350 
5351 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5352 	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5353 
5354 	for (i = 0; i < hsotg->params.host_channels; ++i)
5355 		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5356 
5357 	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5358 	dwc2_writel(hsotg, hr->hfir, HFIR);
5359 	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5360 	hsotg->frame_number = 0;
5361 
5362 	return 0;
5363 }
5364 
5365 /**
5366  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5367  *
5368  * @hsotg: Programming view of the DWC_otg controller
5369  */
5370 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5371 {
5372 	unsigned long flags;
5373 	int ret = 0;
5374 	u32 hprt0;
5375 	u32 pcgcctl;
5376 	u32 gusbcfg;
5377 	u32 gpwrdn;
5378 
5379 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5380 	ret = dwc2_backup_global_registers(hsotg);
5381 	if (ret) {
5382 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5383 			__func__);
5384 		return ret;
5385 	}
5386 	ret = dwc2_backup_host_registers(hsotg);
5387 	if (ret) {
5388 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5389 			__func__);
5390 		return ret;
5391 	}
5392 
5393 	/* Enter USB Suspend Mode */
5394 	hprt0 = dwc2_readl(hsotg, HPRT0);
5395 	hprt0 |= HPRT0_SUSP;
5396 	hprt0 &= ~HPRT0_ENA;
5397 	dwc2_writel(hsotg, hprt0, HPRT0);
5398 
5399 	/* Wait for the HPRT0.PrtSusp register field to be set */
5400 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5401 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5402 
5403 	/*
5404 	 * We need to disable interrupts to prevent servicing of any IRQ
5405 	 * during going to hibernation
5406 	 */
5407 	spin_lock_irqsave(&hsotg->lock, flags);
5408 	hsotg->lx_state = DWC2_L2;
5409 
5410 	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5411 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5412 		/* ULPI interface */
5413 		/* Suspend the Phy Clock */
5414 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5415 		pcgcctl |= PCGCTL_STOPPCLK;
5416 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5417 		udelay(10);
5418 
5419 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5420 		gpwrdn |= GPWRDN_PMUACTV;
5421 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5422 		udelay(10);
5423 	} else {
5424 		/* UTMI+ Interface */
5425 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5426 		gpwrdn |= GPWRDN_PMUACTV;
5427 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5428 		udelay(10);
5429 
5430 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5431 		pcgcctl |= PCGCTL_STOPPCLK;
5432 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5433 		udelay(10);
5434 	}
5435 
5436 	/* Enable interrupts from wake up logic */
5437 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5438 	gpwrdn |= GPWRDN_PMUINTSEL;
5439 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5440 	udelay(10);
5441 
5442 	/* Unmask host mode interrupts in GPWRDN */
5443 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5444 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5445 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5446 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5447 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5448 	udelay(10);
5449 
5450 	/* Enable Power Down Clamp */
5451 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5452 	gpwrdn |= GPWRDN_PWRDNCLMP;
5453 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5454 	udelay(10);
5455 
5456 	/* Switch off VDD */
5457 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5458 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5459 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5460 
5461 	hsotg->hibernated = 1;
5462 	hsotg->bus_suspended = 1;
5463 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5464 	spin_unlock_irqrestore(&hsotg->lock, flags);
5465 	return ret;
5466 }
5467 
5468 /*
5469  * dwc2_host_exit_hibernation()
5470  *
5471  * @hsotg: Programming view of the DWC_otg controller
5472  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5473  * @param reset: indicates whether resume is initiated by Reset.
5474  *
5475  * Return: non-zero if failed to enter to hibernation.
5476  *
5477  * This function is for exiting from Host mode hibernation by
5478  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5479  */
5480 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5481 			       int reset)
5482 {
5483 	u32 gpwrdn;
5484 	u32 hprt0;
5485 	int ret = 0;
5486 	struct dwc2_gregs_backup *gr;
5487 	struct dwc2_hregs_backup *hr;
5488 
5489 	gr = &hsotg->gr_backup;
5490 	hr = &hsotg->hr_backup;
5491 
5492 	dev_dbg(hsotg->dev,
5493 		"%s: called with rem_wakeup = %d reset = %d\n",
5494 		__func__, rem_wakeup, reset);
5495 
5496 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5497 	hsotg->hibernated = 0;
5498 
5499 	/*
5500 	 * This step is not described in functional spec but if not wait for
5501 	 * this delay, mismatch interrupts occurred because just after restore
5502 	 * core is in Device mode(gintsts.curmode == 0)
5503 	 */
5504 	mdelay(100);
5505 
5506 	/* Clear all pending interupts */
5507 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5508 
5509 	/* De-assert Restore */
5510 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5511 	gpwrdn &= ~GPWRDN_RESTORE;
5512 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5513 	udelay(10);
5514 
5515 	/* Restore GUSBCFG, HCFG */
5516 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5517 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5518 
5519 	/* De-assert Wakeup Logic */
5520 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5521 	gpwrdn &= ~GPWRDN_PMUACTV;
5522 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5523 	udelay(10);
5524 
5525 	hprt0 = hr->hprt0;
5526 	hprt0 |= HPRT0_PWR;
5527 	hprt0 &= ~HPRT0_ENA;
5528 	hprt0 &= ~HPRT0_SUSP;
5529 	dwc2_writel(hsotg, hprt0, HPRT0);
5530 
5531 	hprt0 = hr->hprt0;
5532 	hprt0 |= HPRT0_PWR;
5533 	hprt0 &= ~HPRT0_ENA;
5534 	hprt0 &= ~HPRT0_SUSP;
5535 
5536 	if (reset) {
5537 		hprt0 |= HPRT0_RST;
5538 		dwc2_writel(hsotg, hprt0, HPRT0);
5539 
5540 		/* Wait for Resume time and then program HPRT again */
5541 		mdelay(60);
5542 		hprt0 &= ~HPRT0_RST;
5543 		dwc2_writel(hsotg, hprt0, HPRT0);
5544 	} else {
5545 		hprt0 |= HPRT0_RES;
5546 		dwc2_writel(hsotg, hprt0, HPRT0);
5547 
5548 		/* Wait for Resume time and then program HPRT again */
5549 		mdelay(100);
5550 		hprt0 &= ~HPRT0_RES;
5551 		dwc2_writel(hsotg, hprt0, HPRT0);
5552 	}
5553 	/* Clear all interrupt status */
5554 	hprt0 = dwc2_readl(hsotg, HPRT0);
5555 	hprt0 |= HPRT0_CONNDET;
5556 	hprt0 |= HPRT0_ENACHG;
5557 	hprt0 &= ~HPRT0_ENA;
5558 	dwc2_writel(hsotg, hprt0, HPRT0);
5559 
5560 	hprt0 = dwc2_readl(hsotg, HPRT0);
5561 
5562 	/* Clear all pending interupts */
5563 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5564 
5565 	/* Restore global registers */
5566 	ret = dwc2_restore_global_registers(hsotg);
5567 	if (ret) {
5568 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5569 			__func__);
5570 		return ret;
5571 	}
5572 
5573 	/* Restore host registers */
5574 	ret = dwc2_restore_host_registers(hsotg);
5575 	if (ret) {
5576 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5577 			__func__);
5578 		return ret;
5579 	}
5580 
5581 	dwc2_hcd_rem_wakeup(hsotg);
5582 
5583 	hsotg->hibernated = 0;
5584 	hsotg->bus_suspended = 0;
5585 	hsotg->lx_state = DWC2_L0;
5586 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5587 	return ret;
5588 }
5589 
5590 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5591 {
5592 	struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5593 
5594 	/* If the controller isn't allowed to wakeup then we can power off. */
5595 	if (!device_may_wakeup(dwc2->dev))
5596 		return true;
5597 
5598 	/*
5599 	 * We don't want to power off the PHY if something under the
5600 	 * root hub has wakeup enabled.
5601 	 */
5602 	if (usb_wakeup_enabled_descendants(root_hub))
5603 		return false;
5604 
5605 	/* No reason to keep the PHY powered, so allow poweroff */
5606 	return true;
5607 }
5608