xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision c9c8ac01)
1 /*
2  * hcd.c - DesignWare HS OTG Controller host-mode routines
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * This file contains the core HCD code, and implements the Linux hc_driver
39  * API
40  */
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/delay.h>
47 #include <linux/io.h>
48 #include <linux/slab.h>
49 #include <linux/usb.h>
50 
51 #include <linux/usb/hcd.h>
52 #include <linux/usb/ch11.h>
53 
54 #include "core.h"
55 #include "hcd.h"
56 
57 /**
58  * dwc2_dump_channel_info() - Prints the state of a host channel
59  *
60  * @hsotg: Programming view of DWC_otg controller
61  * @chan:  Pointer to the channel to dump
62  *
63  * Must be called with interrupt disabled and spinlock held
64  *
65  * NOTE: This function will be removed once the peripheral controller code
66  * is integrated and the driver is stable
67  */
68 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
69 				   struct dwc2_host_chan *chan)
70 {
71 #ifdef VERBOSE_DEBUG
72 	int num_channels = hsotg->core_params->host_channels;
73 	struct dwc2_qh *qh;
74 	u32 hcchar;
75 	u32 hcsplt;
76 	u32 hctsiz;
77 	u32 hc_dma;
78 	int i;
79 
80 	if (chan == NULL)
81 		return;
82 
83 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
84 	hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
85 	hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
86 	hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
87 
88 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
89 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
90 		hcchar, hcsplt);
91 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
92 		hctsiz, hc_dma);
93 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
94 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
95 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
96 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
97 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
98 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
99 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
100 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
101 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
102 		(unsigned long)chan->xfer_dma);
103 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
104 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
105 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
106 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
107 			    qh_list_entry)
108 		dev_dbg(hsotg->dev, "    %p\n", qh);
109 	dev_dbg(hsotg->dev, "  NP active sched:\n");
110 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
111 			    qh_list_entry)
112 		dev_dbg(hsotg->dev, "    %p\n", qh);
113 	dev_dbg(hsotg->dev, "  Channels:\n");
114 	for (i = 0; i < num_channels; i++) {
115 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
116 
117 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
118 	}
119 #endif /* VERBOSE_DEBUG */
120 }
121 
122 /*
123  * Processes all the URBs in a single list of QHs. Completes them with
124  * -ETIMEDOUT and frees the QTD.
125  *
126  * Must be called with interrupt disabled and spinlock held
127  */
128 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
129 				      struct list_head *qh_list)
130 {
131 	struct dwc2_qh *qh, *qh_tmp;
132 	struct dwc2_qtd *qtd, *qtd_tmp;
133 
134 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
135 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
136 					 qtd_list_entry) {
137 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
138 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
139 		}
140 	}
141 }
142 
143 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
144 			      struct list_head *qh_list)
145 {
146 	struct dwc2_qtd *qtd, *qtd_tmp;
147 	struct dwc2_qh *qh, *qh_tmp;
148 	unsigned long flags;
149 
150 	if (!qh_list->next)
151 		/* The list hasn't been initialized yet */
152 		return;
153 
154 	spin_lock_irqsave(&hsotg->lock, flags);
155 
156 	/* Ensure there are no QTDs or URBs left */
157 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
158 
159 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
160 		dwc2_hcd_qh_unlink(hsotg, qh);
161 
162 		/* Free each QTD in the QH's QTD list */
163 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
164 					 qtd_list_entry)
165 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
166 
167 		if (qh->channel && qh->channel->qh == qh)
168 			qh->channel->qh = NULL;
169 
170 		spin_unlock_irqrestore(&hsotg->lock, flags);
171 		dwc2_hcd_qh_free(hsotg, qh);
172 		spin_lock_irqsave(&hsotg->lock, flags);
173 	}
174 
175 	spin_unlock_irqrestore(&hsotg->lock, flags);
176 }
177 
178 /*
179  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
180  * and periodic schedules. The QTD associated with each URB is removed from
181  * the schedule and freed. This function may be called when a disconnect is
182  * detected or when the HCD is being stopped.
183  *
184  * Must be called with interrupt disabled and spinlock held
185  */
186 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
187 {
188 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
189 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
190 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
191 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
192 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
193 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
194 }
195 
196 /**
197  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
198  *
199  * @hsotg: Pointer to struct dwc2_hsotg
200  */
201 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
202 {
203 	u32 hprt0;
204 
205 	if (hsotg->op_state == OTG_STATE_B_HOST) {
206 		/*
207 		 * Reset the port. During a HNP mode switch the reset
208 		 * needs to occur within 1ms and have a duration of at
209 		 * least 50ms.
210 		 */
211 		hprt0 = dwc2_read_hprt0(hsotg);
212 		hprt0 |= HPRT0_RST;
213 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
214 	}
215 
216 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
217 			   msecs_to_jiffies(50));
218 }
219 
220 /* Must be called with interrupt disabled and spinlock held */
221 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
222 {
223 	int num_channels = hsotg->core_params->host_channels;
224 	struct dwc2_host_chan *channel;
225 	u32 hcchar;
226 	int i;
227 
228 	if (hsotg->core_params->dma_enable <= 0) {
229 		/* Flush out any channel requests in slave mode */
230 		for (i = 0; i < num_channels; i++) {
231 			channel = hsotg->hc_ptr_array[i];
232 			if (!list_empty(&channel->hc_list_entry))
233 				continue;
234 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
235 			if (hcchar & HCCHAR_CHENA) {
236 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
237 				hcchar |= HCCHAR_CHDIS;
238 				dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
239 			}
240 		}
241 	}
242 
243 	for (i = 0; i < num_channels; i++) {
244 		channel = hsotg->hc_ptr_array[i];
245 		if (!list_empty(&channel->hc_list_entry))
246 			continue;
247 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
248 		if (hcchar & HCCHAR_CHENA) {
249 			/* Halt the channel */
250 			hcchar |= HCCHAR_CHDIS;
251 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
252 		}
253 
254 		dwc2_hc_cleanup(hsotg, channel);
255 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
256 		/*
257 		 * Added for Descriptor DMA to prevent channel double cleanup in
258 		 * release_channel_ddma(), which is called from ep_disable when
259 		 * device disconnects
260 		 */
261 		channel->qh = NULL;
262 	}
263 	/* All channels have been freed, mark them available */
264 	if (hsotg->core_params->uframe_sched > 0) {
265 		hsotg->available_host_channels =
266 			hsotg->core_params->host_channels;
267 	} else {
268 		hsotg->non_periodic_channels = 0;
269 		hsotg->periodic_channels = 0;
270 	}
271 }
272 
273 /**
274  * dwc2_hcd_connect() - Handles connect of the HCD
275  *
276  * @hsotg: Pointer to struct dwc2_hsotg
277  *
278  * Must be called with interrupt disabled and spinlock held
279  */
280 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
281 {
282 	if (hsotg->lx_state != DWC2_L0)
283 		usb_hcd_resume_root_hub(hsotg->priv);
284 
285 	hsotg->flags.b.port_connect_status_change = 1;
286 	hsotg->flags.b.port_connect_status = 1;
287 }
288 
289 /**
290  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
291  *
292  * @hsotg: Pointer to struct dwc2_hsotg
293  * @force: If true, we won't try to reconnect even if we see device connected.
294  *
295  * Must be called with interrupt disabled and spinlock held
296  */
297 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
298 {
299 	u32 intr;
300 	u32 hprt0;
301 
302 	/* Set status flags for the hub driver */
303 	hsotg->flags.b.port_connect_status_change = 1;
304 	hsotg->flags.b.port_connect_status = 0;
305 
306 	/*
307 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
308 	 * interrupt mask and status bits and disabling subsequent host
309 	 * channel interrupts.
310 	 */
311 	intr = dwc2_readl(hsotg->regs + GINTMSK);
312 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
313 	dwc2_writel(intr, hsotg->regs + GINTMSK);
314 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
315 	dwc2_writel(intr, hsotg->regs + GINTSTS);
316 
317 	/*
318 	 * Turn off the vbus power only if the core has transitioned to device
319 	 * mode. If still in host mode, need to keep power on to detect a
320 	 * reconnection.
321 	 */
322 	if (dwc2_is_device_mode(hsotg)) {
323 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
324 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
325 			dwc2_writel(0, hsotg->regs + HPRT0);
326 		}
327 
328 		dwc2_disable_host_interrupts(hsotg);
329 	}
330 
331 	/* Respond with an error status to all URBs in the schedule */
332 	dwc2_kill_all_urbs(hsotg);
333 
334 	if (dwc2_is_host_mode(hsotg))
335 		/* Clean up any host channels that were in use */
336 		dwc2_hcd_cleanup_channels(hsotg);
337 
338 	dwc2_host_disconnect(hsotg);
339 
340 	/*
341 	 * Add an extra check here to see if we're actually connected but
342 	 * we don't have a detection interrupt pending.  This can happen if:
343 	 *   1. hardware sees connect
344 	 *   2. hardware sees disconnect
345 	 *   3. hardware sees connect
346 	 *   4. dwc2_port_intr() - clears connect interrupt
347 	 *   5. dwc2_handle_common_intr() - calls here
348 	 *
349 	 * Without the extra check here we will end calling disconnect
350 	 * and won't get any future interrupts to handle the connect.
351 	 */
352 	if (!force) {
353 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
354 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
355 			dwc2_hcd_connect(hsotg);
356 	}
357 }
358 
359 /**
360  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
361  *
362  * @hsotg: Pointer to struct dwc2_hsotg
363  */
364 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
365 {
366 	if (hsotg->bus_suspended) {
367 		hsotg->flags.b.port_suspend_change = 1;
368 		usb_hcd_resume_root_hub(hsotg->priv);
369 	}
370 
371 	if (hsotg->lx_state == DWC2_L1)
372 		hsotg->flags.b.port_l1_change = 1;
373 }
374 
375 /**
376  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
377  *
378  * @hsotg: Pointer to struct dwc2_hsotg
379  *
380  * Must be called with interrupt disabled and spinlock held
381  */
382 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
383 {
384 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
385 
386 	/*
387 	 * The root hub should be disconnected before this function is called.
388 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
389 	 * and the QH lists (via ..._hcd_endpoint_disable).
390 	 */
391 
392 	/* Turn off all host-specific interrupts */
393 	dwc2_disable_host_interrupts(hsotg);
394 
395 	/* Turn off the vbus power */
396 	dev_dbg(hsotg->dev, "PortPower off\n");
397 	dwc2_writel(0, hsotg->regs + HPRT0);
398 }
399 
400 /* Caller must hold driver lock */
401 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
402 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
403 				struct dwc2_qtd *qtd)
404 {
405 	u32 intr_mask;
406 	int retval;
407 	int dev_speed;
408 
409 	if (!hsotg->flags.b.port_connect_status) {
410 		/* No longer connected */
411 		dev_err(hsotg->dev, "Not connected\n");
412 		return -ENODEV;
413 	}
414 
415 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
416 
417 	/* Some configurations cannot support LS traffic on a FS root port */
418 	if ((dev_speed == USB_SPEED_LOW) &&
419 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
420 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
421 		u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
422 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
423 
424 		if (prtspd == HPRT0_SPD_FULL_SPEED)
425 			return -ENODEV;
426 	}
427 
428 	if (!qtd)
429 		return -EINVAL;
430 
431 	dwc2_hcd_qtd_init(qtd, urb);
432 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
433 	if (retval) {
434 		dev_err(hsotg->dev,
435 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
436 			retval);
437 		return retval;
438 	}
439 
440 	intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
441 	if (!(intr_mask & GINTSTS_SOF)) {
442 		enum dwc2_transaction_type tr_type;
443 
444 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
445 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
446 			/*
447 			 * Do not schedule SG transactions until qtd has
448 			 * URB_GIVEBACK_ASAP set
449 			 */
450 			return 0;
451 
452 		tr_type = dwc2_hcd_select_transactions(hsotg);
453 		if (tr_type != DWC2_TRANSACTION_NONE)
454 			dwc2_hcd_queue_transactions(hsotg, tr_type);
455 	}
456 
457 	return 0;
458 }
459 
460 /* Must be called with interrupt disabled and spinlock held */
461 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
462 				struct dwc2_hcd_urb *urb)
463 {
464 	struct dwc2_qh *qh;
465 	struct dwc2_qtd *urb_qtd;
466 
467 	urb_qtd = urb->qtd;
468 	if (!urb_qtd) {
469 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
470 		return -EINVAL;
471 	}
472 
473 	qh = urb_qtd->qh;
474 	if (!qh) {
475 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
476 		return -EINVAL;
477 	}
478 
479 	urb->priv = NULL;
480 
481 	if (urb_qtd->in_process && qh->channel) {
482 		dwc2_dump_channel_info(hsotg, qh->channel);
483 
484 		/* The QTD is in process (it has been assigned to a channel) */
485 		if (hsotg->flags.b.port_connect_status)
486 			/*
487 			 * If still connected (i.e. in host mode), halt the
488 			 * channel so it can be used for other transfers. If
489 			 * no longer connected, the host registers can't be
490 			 * written to halt the channel since the core is in
491 			 * device mode.
492 			 */
493 			dwc2_hc_halt(hsotg, qh->channel,
494 				     DWC2_HC_XFER_URB_DEQUEUE);
495 	}
496 
497 	/*
498 	 * Free the QTD and clean up the associated QH. Leave the QH in the
499 	 * schedule if it has any remaining QTDs.
500 	 */
501 	if (hsotg->core_params->dma_desc_enable <= 0) {
502 		u8 in_process = urb_qtd->in_process;
503 
504 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
505 		if (in_process) {
506 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
507 			qh->channel = NULL;
508 		} else if (list_empty(&qh->qtd_list)) {
509 			dwc2_hcd_qh_unlink(hsotg, qh);
510 		}
511 	} else {
512 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
513 	}
514 
515 	return 0;
516 }
517 
518 /* Must NOT be called with interrupt disabled or spinlock held */
519 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
520 				     struct usb_host_endpoint *ep, int retry)
521 {
522 	struct dwc2_qtd *qtd, *qtd_tmp;
523 	struct dwc2_qh *qh;
524 	unsigned long flags;
525 	int rc;
526 
527 	spin_lock_irqsave(&hsotg->lock, flags);
528 
529 	qh = ep->hcpriv;
530 	if (!qh) {
531 		rc = -EINVAL;
532 		goto err;
533 	}
534 
535 	while (!list_empty(&qh->qtd_list) && retry--) {
536 		if (retry == 0) {
537 			dev_err(hsotg->dev,
538 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
539 			rc = -EBUSY;
540 			goto err;
541 		}
542 
543 		spin_unlock_irqrestore(&hsotg->lock, flags);
544 		usleep_range(20000, 40000);
545 		spin_lock_irqsave(&hsotg->lock, flags);
546 		qh = ep->hcpriv;
547 		if (!qh) {
548 			rc = -EINVAL;
549 			goto err;
550 		}
551 	}
552 
553 	dwc2_hcd_qh_unlink(hsotg, qh);
554 
555 	/* Free each QTD in the QH's QTD list */
556 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
557 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
558 
559 	ep->hcpriv = NULL;
560 
561 	if (qh->channel && qh->channel->qh == qh)
562 		qh->channel->qh = NULL;
563 
564 	spin_unlock_irqrestore(&hsotg->lock, flags);
565 
566 	dwc2_hcd_qh_free(hsotg, qh);
567 
568 	return 0;
569 
570 err:
571 	ep->hcpriv = NULL;
572 	spin_unlock_irqrestore(&hsotg->lock, flags);
573 
574 	return rc;
575 }
576 
577 /* Must be called with interrupt disabled and spinlock held */
578 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
579 				   struct usb_host_endpoint *ep)
580 {
581 	struct dwc2_qh *qh = ep->hcpriv;
582 
583 	if (!qh)
584 		return -EINVAL;
585 
586 	qh->data_toggle = DWC2_HC_PID_DATA0;
587 
588 	return 0;
589 }
590 
591 /*
592  * Initializes dynamic portions of the DWC_otg HCD state
593  *
594  * Must be called with interrupt disabled and spinlock held
595  */
596 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
597 {
598 	struct dwc2_host_chan *chan, *chan_tmp;
599 	int num_channels;
600 	int i;
601 
602 	hsotg->flags.d32 = 0;
603 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
604 
605 	if (hsotg->core_params->uframe_sched > 0) {
606 		hsotg->available_host_channels =
607 			hsotg->core_params->host_channels;
608 	} else {
609 		hsotg->non_periodic_channels = 0;
610 		hsotg->periodic_channels = 0;
611 	}
612 
613 	/*
614 	 * Put all channels in the free channel list and clean up channel
615 	 * states
616 	 */
617 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
618 				 hc_list_entry)
619 		list_del_init(&chan->hc_list_entry);
620 
621 	num_channels = hsotg->core_params->host_channels;
622 	for (i = 0; i < num_channels; i++) {
623 		chan = hsotg->hc_ptr_array[i];
624 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
625 		dwc2_hc_cleanup(hsotg, chan);
626 	}
627 
628 	/* Initialize the DWC core for host mode operation */
629 	dwc2_core_host_init(hsotg);
630 }
631 
632 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
633 			       struct dwc2_host_chan *chan,
634 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
635 {
636 	int hub_addr, hub_port;
637 
638 	chan->do_split = 1;
639 	chan->xact_pos = qtd->isoc_split_pos;
640 	chan->complete_split = qtd->complete_split;
641 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
642 	chan->hub_addr = (u8)hub_addr;
643 	chan->hub_port = (u8)hub_port;
644 }
645 
646 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
647 			      struct dwc2_host_chan *chan,
648 			      struct dwc2_qtd *qtd)
649 {
650 	struct dwc2_hcd_urb *urb = qtd->urb;
651 	struct dwc2_hcd_iso_packet_desc *frame_desc;
652 
653 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
654 	case USB_ENDPOINT_XFER_CONTROL:
655 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
656 
657 		switch (qtd->control_phase) {
658 		case DWC2_CONTROL_SETUP:
659 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
660 			chan->do_ping = 0;
661 			chan->ep_is_in = 0;
662 			chan->data_pid_start = DWC2_HC_PID_SETUP;
663 			if (hsotg->core_params->dma_enable > 0)
664 				chan->xfer_dma = urb->setup_dma;
665 			else
666 				chan->xfer_buf = urb->setup_packet;
667 			chan->xfer_len = 8;
668 			break;
669 
670 		case DWC2_CONTROL_DATA:
671 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
672 			chan->data_pid_start = qtd->data_toggle;
673 			break;
674 
675 		case DWC2_CONTROL_STATUS:
676 			/*
677 			 * Direction is opposite of data direction or IN if no
678 			 * data
679 			 */
680 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
681 			if (urb->length == 0)
682 				chan->ep_is_in = 1;
683 			else
684 				chan->ep_is_in =
685 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
686 			if (chan->ep_is_in)
687 				chan->do_ping = 0;
688 			chan->data_pid_start = DWC2_HC_PID_DATA1;
689 			chan->xfer_len = 0;
690 			if (hsotg->core_params->dma_enable > 0)
691 				chan->xfer_dma = hsotg->status_buf_dma;
692 			else
693 				chan->xfer_buf = hsotg->status_buf;
694 			break;
695 		}
696 		break;
697 
698 	case USB_ENDPOINT_XFER_BULK:
699 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
700 		break;
701 
702 	case USB_ENDPOINT_XFER_INT:
703 		chan->ep_type = USB_ENDPOINT_XFER_INT;
704 		break;
705 
706 	case USB_ENDPOINT_XFER_ISOC:
707 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
708 		if (hsotg->core_params->dma_desc_enable > 0)
709 			break;
710 
711 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
712 		frame_desc->status = 0;
713 
714 		if (hsotg->core_params->dma_enable > 0) {
715 			chan->xfer_dma = urb->dma;
716 			chan->xfer_dma += frame_desc->offset +
717 					qtd->isoc_split_offset;
718 		} else {
719 			chan->xfer_buf = urb->buf;
720 			chan->xfer_buf += frame_desc->offset +
721 					qtd->isoc_split_offset;
722 		}
723 
724 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
725 
726 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
727 			if (chan->xfer_len <= 188)
728 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
729 			else
730 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
731 		}
732 		break;
733 	}
734 }
735 
736 #define DWC2_USB_DMA_ALIGN 4
737 
738 struct dma_aligned_buffer {
739 	void *kmalloc_ptr;
740 	void *old_xfer_buffer;
741 	u8 data[0];
742 };
743 
744 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
745 {
746 	struct dma_aligned_buffer *temp;
747 
748 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
749 		return;
750 
751 	temp = container_of(urb->transfer_buffer,
752 		struct dma_aligned_buffer, data);
753 
754 	if (usb_urb_dir_in(urb))
755 		memcpy(temp->old_xfer_buffer, temp->data,
756 		       urb->transfer_buffer_length);
757 	urb->transfer_buffer = temp->old_xfer_buffer;
758 	kfree(temp->kmalloc_ptr);
759 
760 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
761 }
762 
763 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
764 {
765 	struct dma_aligned_buffer *temp, *kmalloc_ptr;
766 	size_t kmalloc_size;
767 
768 	if (urb->num_sgs || urb->sg ||
769 	    urb->transfer_buffer_length == 0 ||
770 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
771 		return 0;
772 
773 	/* Allocate a buffer with enough padding for alignment */
774 	kmalloc_size = urb->transfer_buffer_length +
775 		sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
776 
777 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
778 	if (!kmalloc_ptr)
779 		return -ENOMEM;
780 
781 	/* Position our struct dma_aligned_buffer such that data is aligned */
782 	temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
783 	temp->kmalloc_ptr = kmalloc_ptr;
784 	temp->old_xfer_buffer = urb->transfer_buffer;
785 	if (usb_urb_dir_out(urb))
786 		memcpy(temp->data, urb->transfer_buffer,
787 		       urb->transfer_buffer_length);
788 	urb->transfer_buffer = temp->data;
789 
790 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
791 
792 	return 0;
793 }
794 
795 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
796 				      gfp_t mem_flags)
797 {
798 	int ret;
799 
800 	/* We assume setup_dma is always aligned; warn if not */
801 	WARN_ON_ONCE(urb->setup_dma &&
802 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
803 
804 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
805 	if (ret)
806 		return ret;
807 
808 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
809 	if (ret)
810 		dwc2_free_dma_aligned_buffer(urb);
811 
812 	return ret;
813 }
814 
815 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
816 {
817 	usb_hcd_unmap_urb_for_dma(hcd, urb);
818 	dwc2_free_dma_aligned_buffer(urb);
819 }
820 
821 /**
822  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
823  * channel and initializes the host channel to perform the transactions. The
824  * host channel is removed from the free list.
825  *
826  * @hsotg: The HCD state structure
827  * @qh:    Transactions from the first QTD for this QH are selected and assigned
828  *         to a free host channel
829  */
830 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
831 {
832 	struct dwc2_host_chan *chan;
833 	struct dwc2_hcd_urb *urb;
834 	struct dwc2_qtd *qtd;
835 
836 	if (dbg_qh(qh))
837 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
838 
839 	if (list_empty(&qh->qtd_list)) {
840 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
841 		return -ENOMEM;
842 	}
843 
844 	if (list_empty(&hsotg->free_hc_list)) {
845 		dev_dbg(hsotg->dev, "No free channel to assign\n");
846 		return -ENOMEM;
847 	}
848 
849 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
850 				hc_list_entry);
851 
852 	/* Remove host channel from free list */
853 	list_del_init(&chan->hc_list_entry);
854 
855 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
856 	urb = qtd->urb;
857 	qh->channel = chan;
858 	qtd->in_process = 1;
859 
860 	/*
861 	 * Use usb_pipedevice to determine device address. This address is
862 	 * 0 before the SET_ADDRESS command and the correct address afterward.
863 	 */
864 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
865 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
866 	chan->speed = qh->dev_speed;
867 	chan->max_packet = dwc2_max_packet(qh->maxp);
868 
869 	chan->xfer_started = 0;
870 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
871 	chan->error_state = (qtd->error_count > 0);
872 	chan->halt_on_queue = 0;
873 	chan->halt_pending = 0;
874 	chan->requests = 0;
875 
876 	/*
877 	 * The following values may be modified in the transfer type section
878 	 * below. The xfer_len value may be reduced when the transfer is
879 	 * started to accommodate the max widths of the XferSize and PktCnt
880 	 * fields in the HCTSIZn register.
881 	 */
882 
883 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
884 	if (chan->ep_is_in)
885 		chan->do_ping = 0;
886 	else
887 		chan->do_ping = qh->ping_state;
888 
889 	chan->data_pid_start = qh->data_toggle;
890 	chan->multi_count = 1;
891 
892 	if (urb->actual_length > urb->length &&
893 		!dwc2_hcd_is_pipe_in(&urb->pipe_info))
894 		urb->actual_length = urb->length;
895 
896 	if (hsotg->core_params->dma_enable > 0)
897 		chan->xfer_dma = urb->dma + urb->actual_length;
898 	else
899 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
900 
901 	chan->xfer_len = urb->length - urb->actual_length;
902 	chan->xfer_count = 0;
903 
904 	/* Set the split attributes if required */
905 	if (qh->do_split)
906 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
907 	else
908 		chan->do_split = 0;
909 
910 	/* Set the transfer attributes */
911 	dwc2_hc_init_xfer(hsotg, chan, qtd);
912 
913 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
914 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
915 		/*
916 		 * This value may be modified when the transfer is started
917 		 * to reflect the actual transfer length
918 		 */
919 		chan->multi_count = dwc2_hb_mult(qh->maxp);
920 
921 	if (hsotg->core_params->dma_desc_enable > 0) {
922 		chan->desc_list_addr = qh->desc_list_dma;
923 		chan->desc_list_sz = qh->desc_list_sz;
924 	}
925 
926 	dwc2_hc_init(hsotg, chan);
927 	chan->qh = qh;
928 
929 	return 0;
930 }
931 
932 /**
933  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
934  * schedule and assigns them to available host channels. Called from the HCD
935  * interrupt handler functions.
936  *
937  * @hsotg: The HCD state structure
938  *
939  * Return: The types of new transactions that were assigned to host channels
940  */
941 enum dwc2_transaction_type dwc2_hcd_select_transactions(
942 		struct dwc2_hsotg *hsotg)
943 {
944 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
945 	struct list_head *qh_ptr;
946 	struct dwc2_qh *qh;
947 	int num_channels;
948 
949 #ifdef DWC2_DEBUG_SOF
950 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
951 #endif
952 
953 	/* Process entries in the periodic ready list */
954 	qh_ptr = hsotg->periodic_sched_ready.next;
955 	while (qh_ptr != &hsotg->periodic_sched_ready) {
956 		if (list_empty(&hsotg->free_hc_list))
957 			break;
958 		if (hsotg->core_params->uframe_sched > 0) {
959 			if (hsotg->available_host_channels <= 1)
960 				break;
961 			hsotg->available_host_channels--;
962 		}
963 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
964 		if (dwc2_assign_and_init_hc(hsotg, qh))
965 			break;
966 
967 		/*
968 		 * Move the QH from the periodic ready schedule to the
969 		 * periodic assigned schedule
970 		 */
971 		qh_ptr = qh_ptr->next;
972 		list_move_tail(&qh->qh_list_entry,
973 			       &hsotg->periodic_sched_assigned);
974 		ret_val = DWC2_TRANSACTION_PERIODIC;
975 	}
976 
977 	/*
978 	 * Process entries in the inactive portion of the non-periodic
979 	 * schedule. Some free host channels may not be used if they are
980 	 * reserved for periodic transfers.
981 	 */
982 	num_channels = hsotg->core_params->host_channels;
983 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
984 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
985 		if (hsotg->core_params->uframe_sched <= 0 &&
986 		    hsotg->non_periodic_channels >= num_channels -
987 						hsotg->periodic_channels)
988 			break;
989 		if (list_empty(&hsotg->free_hc_list))
990 			break;
991 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
992 		if (hsotg->core_params->uframe_sched > 0) {
993 			if (hsotg->available_host_channels < 1)
994 				break;
995 			hsotg->available_host_channels--;
996 		}
997 
998 		if (dwc2_assign_and_init_hc(hsotg, qh))
999 			break;
1000 
1001 		/*
1002 		 * Move the QH from the non-periodic inactive schedule to the
1003 		 * non-periodic active schedule
1004 		 */
1005 		qh_ptr = qh_ptr->next;
1006 		list_move_tail(&qh->qh_list_entry,
1007 			       &hsotg->non_periodic_sched_active);
1008 
1009 		if (ret_val == DWC2_TRANSACTION_NONE)
1010 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
1011 		else
1012 			ret_val = DWC2_TRANSACTION_ALL;
1013 
1014 		if (hsotg->core_params->uframe_sched <= 0)
1015 			hsotg->non_periodic_channels++;
1016 	}
1017 
1018 	return ret_val;
1019 }
1020 
1021 /**
1022  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
1023  * a host channel associated with either a periodic or non-periodic transfer
1024  *
1025  * @hsotg: The HCD state structure
1026  * @chan:  Host channel descriptor associated with either a periodic or
1027  *         non-periodic transfer
1028  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
1029  *                     for periodic transfers or the non-periodic Tx FIFO
1030  *                     for non-periodic transfers
1031  *
1032  * Return: 1 if a request is queued and more requests may be needed to
1033  * complete the transfer, 0 if no more requests are required for this
1034  * transfer, -1 if there is insufficient space in the Tx FIFO
1035  *
1036  * This function assumes that there is space available in the appropriate
1037  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
1038  * it checks whether space is available in the appropriate Tx FIFO.
1039  *
1040  * Must be called with interrupt disabled and spinlock held
1041  */
1042 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
1043 				  struct dwc2_host_chan *chan,
1044 				  u16 fifo_dwords_avail)
1045 {
1046 	int retval = 0;
1047 
1048 	if (chan->do_split)
1049 		/* Put ourselves on the list to keep order straight */
1050 		list_move_tail(&chan->split_order_list_entry,
1051 			       &hsotg->split_order);
1052 
1053 	if (hsotg->core_params->dma_enable > 0) {
1054 		if (hsotg->core_params->dma_desc_enable > 0) {
1055 			if (!chan->xfer_started ||
1056 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1057 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
1058 				chan->qh->ping_state = 0;
1059 			}
1060 		} else if (!chan->xfer_started) {
1061 			dwc2_hc_start_transfer(hsotg, chan);
1062 			chan->qh->ping_state = 0;
1063 		}
1064 	} else if (chan->halt_pending) {
1065 		/* Don't queue a request if the channel has been halted */
1066 	} else if (chan->halt_on_queue) {
1067 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
1068 	} else if (chan->do_ping) {
1069 		if (!chan->xfer_started)
1070 			dwc2_hc_start_transfer(hsotg, chan);
1071 	} else if (!chan->ep_is_in ||
1072 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
1073 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
1074 			if (!chan->xfer_started) {
1075 				dwc2_hc_start_transfer(hsotg, chan);
1076 				retval = 1;
1077 			} else {
1078 				retval = dwc2_hc_continue_transfer(hsotg, chan);
1079 			}
1080 		} else {
1081 			retval = -1;
1082 		}
1083 	} else {
1084 		if (!chan->xfer_started) {
1085 			dwc2_hc_start_transfer(hsotg, chan);
1086 			retval = 1;
1087 		} else {
1088 			retval = dwc2_hc_continue_transfer(hsotg, chan);
1089 		}
1090 	}
1091 
1092 	return retval;
1093 }
1094 
1095 /*
1096  * Processes periodic channels for the next frame and queues transactions for
1097  * these channels to the DWC_otg controller. After queueing transactions, the
1098  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
1099  * to queue as Periodic Tx FIFO or request queue space becomes available.
1100  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
1101  *
1102  * Must be called with interrupt disabled and spinlock held
1103  */
1104 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
1105 {
1106 	struct list_head *qh_ptr;
1107 	struct dwc2_qh *qh;
1108 	u32 tx_status;
1109 	u32 fspcavail;
1110 	u32 gintmsk;
1111 	int status;
1112 	int no_queue_space = 0;
1113 	int no_fifo_space = 0;
1114 	u32 qspcavail;
1115 
1116 	if (dbg_perio())
1117 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
1118 
1119 	tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
1120 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1121 		    TXSTS_QSPCAVAIL_SHIFT;
1122 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1123 		    TXSTS_FSPCAVAIL_SHIFT;
1124 
1125 	if (dbg_perio()) {
1126 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
1127 			 qspcavail);
1128 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
1129 			 fspcavail);
1130 	}
1131 
1132 	qh_ptr = hsotg->periodic_sched_assigned.next;
1133 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
1134 		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
1135 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1136 			    TXSTS_QSPCAVAIL_SHIFT;
1137 		if (qspcavail == 0) {
1138 			no_queue_space = 1;
1139 			break;
1140 		}
1141 
1142 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
1143 		if (!qh->channel) {
1144 			qh_ptr = qh_ptr->next;
1145 			continue;
1146 		}
1147 
1148 		/* Make sure EP's TT buffer is clean before queueing qtds */
1149 		if (qh->tt_buffer_dirty) {
1150 			qh_ptr = qh_ptr->next;
1151 			continue;
1152 		}
1153 
1154 		/*
1155 		 * Set a flag if we're queuing high-bandwidth in slave mode.
1156 		 * The flag prevents any halts to get into the request queue in
1157 		 * the middle of multiple high-bandwidth packets getting queued.
1158 		 */
1159 		if (hsotg->core_params->dma_enable <= 0 &&
1160 				qh->channel->multi_count > 1)
1161 			hsotg->queuing_high_bandwidth = 1;
1162 
1163 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1164 			    TXSTS_FSPCAVAIL_SHIFT;
1165 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
1166 		if (status < 0) {
1167 			no_fifo_space = 1;
1168 			break;
1169 		}
1170 
1171 		/*
1172 		 * In Slave mode, stay on the current transfer until there is
1173 		 * nothing more to do or the high-bandwidth request count is
1174 		 * reached. In DMA mode, only need to queue one request. The
1175 		 * controller automatically handles multiple packets for
1176 		 * high-bandwidth transfers.
1177 		 */
1178 		if (hsotg->core_params->dma_enable > 0 || status == 0 ||
1179 		    qh->channel->requests == qh->channel->multi_count) {
1180 			qh_ptr = qh_ptr->next;
1181 			/*
1182 			 * Move the QH from the periodic assigned schedule to
1183 			 * the periodic queued schedule
1184 			 */
1185 			list_move_tail(&qh->qh_list_entry,
1186 				       &hsotg->periodic_sched_queued);
1187 
1188 			/* done queuing high bandwidth */
1189 			hsotg->queuing_high_bandwidth = 0;
1190 		}
1191 	}
1192 
1193 	if (hsotg->core_params->dma_enable <= 0) {
1194 		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
1195 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1196 			    TXSTS_QSPCAVAIL_SHIFT;
1197 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1198 			    TXSTS_FSPCAVAIL_SHIFT;
1199 		if (dbg_perio()) {
1200 			dev_vdbg(hsotg->dev,
1201 				 "  P Tx Req Queue Space Avail (after queue): %d\n",
1202 				 qspcavail);
1203 			dev_vdbg(hsotg->dev,
1204 				 "  P Tx FIFO Space Avail (after queue): %d\n",
1205 				 fspcavail);
1206 		}
1207 
1208 		if (!list_empty(&hsotg->periodic_sched_assigned) ||
1209 		    no_queue_space || no_fifo_space) {
1210 			/*
1211 			 * May need to queue more transactions as the request
1212 			 * queue or Tx FIFO empties. Enable the periodic Tx
1213 			 * FIFO empty interrupt. (Always use the half-empty
1214 			 * level to ensure that new requests are loaded as
1215 			 * soon as possible.)
1216 			 */
1217 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
1218 			gintmsk |= GINTSTS_PTXFEMP;
1219 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
1220 		} else {
1221 			/*
1222 			 * Disable the Tx FIFO empty interrupt since there are
1223 			 * no more transactions that need to be queued right
1224 			 * now. This function is called from interrupt
1225 			 * handlers to queue more transactions as transfer
1226 			 * states change.
1227 			 */
1228 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
1229 			gintmsk &= ~GINTSTS_PTXFEMP;
1230 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
1231 		}
1232 	}
1233 }
1234 
1235 /*
1236  * Processes active non-periodic channels and queues transactions for these
1237  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
1238  * FIFO Empty interrupt is enabled if there are more transactions to queue as
1239  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
1240  * FIFO Empty interrupt is disabled.
1241  *
1242  * Must be called with interrupt disabled and spinlock held
1243  */
1244 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
1245 {
1246 	struct list_head *orig_qh_ptr;
1247 	struct dwc2_qh *qh;
1248 	u32 tx_status;
1249 	u32 qspcavail;
1250 	u32 fspcavail;
1251 	u32 gintmsk;
1252 	int status;
1253 	int no_queue_space = 0;
1254 	int no_fifo_space = 0;
1255 	int more_to_do = 0;
1256 
1257 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
1258 
1259 	tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
1260 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1261 		    TXSTS_QSPCAVAIL_SHIFT;
1262 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1263 		    TXSTS_FSPCAVAIL_SHIFT;
1264 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
1265 		 qspcavail);
1266 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
1267 		 fspcavail);
1268 
1269 	/*
1270 	 * Keep track of the starting point. Skip over the start-of-list
1271 	 * entry.
1272 	 */
1273 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
1274 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
1275 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
1276 
1277 	/*
1278 	 * Process once through the active list or until no more space is
1279 	 * available in the request queue or the Tx FIFO
1280 	 */
1281 	do {
1282 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
1283 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1284 			    TXSTS_QSPCAVAIL_SHIFT;
1285 		if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) {
1286 			no_queue_space = 1;
1287 			break;
1288 		}
1289 
1290 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
1291 				qh_list_entry);
1292 		if (!qh->channel)
1293 			goto next;
1294 
1295 		/* Make sure EP's TT buffer is clean before queueing qtds */
1296 		if (qh->tt_buffer_dirty)
1297 			goto next;
1298 
1299 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1300 			    TXSTS_FSPCAVAIL_SHIFT;
1301 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
1302 
1303 		if (status > 0) {
1304 			more_to_do = 1;
1305 		} else if (status < 0) {
1306 			no_fifo_space = 1;
1307 			break;
1308 		}
1309 next:
1310 		/* Advance to next QH, skipping start-of-list entry */
1311 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
1312 		if (hsotg->non_periodic_qh_ptr ==
1313 				&hsotg->non_periodic_sched_active)
1314 			hsotg->non_periodic_qh_ptr =
1315 					hsotg->non_periodic_qh_ptr->next;
1316 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
1317 
1318 	if (hsotg->core_params->dma_enable <= 0) {
1319 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
1320 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1321 			    TXSTS_QSPCAVAIL_SHIFT;
1322 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1323 			    TXSTS_FSPCAVAIL_SHIFT;
1324 		dev_vdbg(hsotg->dev,
1325 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
1326 			 qspcavail);
1327 		dev_vdbg(hsotg->dev,
1328 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
1329 			 fspcavail);
1330 
1331 		if (more_to_do || no_queue_space || no_fifo_space) {
1332 			/*
1333 			 * May need to queue more transactions as the request
1334 			 * queue or Tx FIFO empties. Enable the non-periodic
1335 			 * Tx FIFO empty interrupt. (Always use the half-empty
1336 			 * level to ensure that new requests are loaded as
1337 			 * soon as possible.)
1338 			 */
1339 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
1340 			gintmsk |= GINTSTS_NPTXFEMP;
1341 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
1342 		} else {
1343 			/*
1344 			 * Disable the Tx FIFO empty interrupt since there are
1345 			 * no more transactions that need to be queued right
1346 			 * now. This function is called from interrupt
1347 			 * handlers to queue more transactions as transfer
1348 			 * states change.
1349 			 */
1350 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
1351 			gintmsk &= ~GINTSTS_NPTXFEMP;
1352 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
1353 		}
1354 	}
1355 }
1356 
1357 /**
1358  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
1359  * and queues transactions for these channels to the DWC_otg controller. Called
1360  * from the HCD interrupt handler functions.
1361  *
1362  * @hsotg:   The HCD state structure
1363  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
1364  *           or both)
1365  *
1366  * Must be called with interrupt disabled and spinlock held
1367  */
1368 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
1369 				 enum dwc2_transaction_type tr_type)
1370 {
1371 #ifdef DWC2_DEBUG_SOF
1372 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
1373 #endif
1374 	/* Process host channels associated with periodic transfers */
1375 	if ((tr_type == DWC2_TRANSACTION_PERIODIC ||
1376 	     tr_type == DWC2_TRANSACTION_ALL) &&
1377 	    !list_empty(&hsotg->periodic_sched_assigned))
1378 		dwc2_process_periodic_channels(hsotg);
1379 
1380 	/* Process host channels associated with non-periodic transfers */
1381 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
1382 	    tr_type == DWC2_TRANSACTION_ALL) {
1383 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
1384 			dwc2_process_non_periodic_channels(hsotg);
1385 		} else {
1386 			/*
1387 			 * Ensure NP Tx FIFO empty interrupt is disabled when
1388 			 * there are no non-periodic transfers to process
1389 			 */
1390 			u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
1391 
1392 			gintmsk &= ~GINTSTS_NPTXFEMP;
1393 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
1394 		}
1395 	}
1396 }
1397 
1398 static void dwc2_conn_id_status_change(struct work_struct *work)
1399 {
1400 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
1401 						wf_otg);
1402 	u32 count = 0;
1403 	u32 gotgctl;
1404 	unsigned long flags;
1405 
1406 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1407 
1408 	gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1409 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
1410 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
1411 		!!(gotgctl & GOTGCTL_CONID_B));
1412 
1413 	/* B-Device connector (Device Mode) */
1414 	if (gotgctl & GOTGCTL_CONID_B) {
1415 		/* Wait for switch to device mode */
1416 		dev_dbg(hsotg->dev, "connId B\n");
1417 		while (!dwc2_is_device_mode(hsotg)) {
1418 			dev_info(hsotg->dev,
1419 				 "Waiting for Peripheral Mode, Mode=%s\n",
1420 				 dwc2_is_host_mode(hsotg) ? "Host" :
1421 				 "Peripheral");
1422 			usleep_range(20000, 40000);
1423 			if (++count > 250)
1424 				break;
1425 		}
1426 		if (count > 250)
1427 			dev_err(hsotg->dev,
1428 				"Connection id status change timed out\n");
1429 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
1430 		dwc2_core_init(hsotg, false);
1431 		dwc2_enable_global_interrupts(hsotg);
1432 		spin_lock_irqsave(&hsotg->lock, flags);
1433 		dwc2_hsotg_core_init_disconnected(hsotg, false);
1434 		spin_unlock_irqrestore(&hsotg->lock, flags);
1435 		dwc2_hsotg_core_connect(hsotg);
1436 	} else {
1437 		/* A-Device connector (Host Mode) */
1438 		dev_dbg(hsotg->dev, "connId A\n");
1439 		while (!dwc2_is_host_mode(hsotg)) {
1440 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
1441 				 dwc2_is_host_mode(hsotg) ?
1442 				 "Host" : "Peripheral");
1443 			usleep_range(20000, 40000);
1444 			if (++count > 250)
1445 				break;
1446 		}
1447 		if (count > 250)
1448 			dev_err(hsotg->dev,
1449 				"Connection id status change timed out\n");
1450 		hsotg->op_state = OTG_STATE_A_HOST;
1451 
1452 		/* Initialize the Core for Host mode */
1453 		dwc2_core_init(hsotg, false);
1454 		dwc2_enable_global_interrupts(hsotg);
1455 		dwc2_hcd_start(hsotg);
1456 	}
1457 }
1458 
1459 static void dwc2_wakeup_detected(unsigned long data)
1460 {
1461 	struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
1462 	u32 hprt0;
1463 
1464 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1465 
1466 	/*
1467 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
1468 	 * so that OPT tests pass with all PHYs.)
1469 	 */
1470 	hprt0 = dwc2_read_hprt0(hsotg);
1471 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
1472 	hprt0 &= ~HPRT0_RES;
1473 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
1474 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
1475 		dwc2_readl(hsotg->regs + HPRT0));
1476 
1477 	dwc2_hcd_rem_wakeup(hsotg);
1478 	hsotg->bus_suspended = 0;
1479 
1480 	/* Change to L0 state */
1481 	hsotg->lx_state = DWC2_L0;
1482 }
1483 
1484 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
1485 {
1486 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
1487 
1488 	return hcd->self.b_hnp_enable;
1489 }
1490 
1491 /* Must NOT be called with interrupt disabled or spinlock held */
1492 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1493 {
1494 	unsigned long flags;
1495 	u32 hprt0;
1496 	u32 pcgctl;
1497 	u32 gotgctl;
1498 
1499 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1500 
1501 	spin_lock_irqsave(&hsotg->lock, flags);
1502 
1503 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
1504 		gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1505 		gotgctl |= GOTGCTL_HSTSETHNPEN;
1506 		dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
1507 		hsotg->op_state = OTG_STATE_A_SUSPEND;
1508 	}
1509 
1510 	hprt0 = dwc2_read_hprt0(hsotg);
1511 	hprt0 |= HPRT0_SUSP;
1512 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
1513 
1514 	hsotg->bus_suspended = 1;
1515 
1516 	/*
1517 	 * If hibernation is supported, Phy clock will be suspended
1518 	 * after registers are backuped.
1519 	 */
1520 	if (!hsotg->core_params->hibernation) {
1521 		/* Suspend the Phy Clock */
1522 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
1523 		pcgctl |= PCGCTL_STOPPCLK;
1524 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
1525 		udelay(10);
1526 	}
1527 
1528 	/* For HNP the bus must be suspended for at least 200ms */
1529 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
1530 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
1531 		pcgctl &= ~PCGCTL_STOPPCLK;
1532 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
1533 
1534 		spin_unlock_irqrestore(&hsotg->lock, flags);
1535 
1536 		usleep_range(200000, 250000);
1537 	} else {
1538 		spin_unlock_irqrestore(&hsotg->lock, flags);
1539 	}
1540 }
1541 
1542 /* Must NOT be called with interrupt disabled or spinlock held */
1543 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
1544 {
1545 	unsigned long flags;
1546 	u32 hprt0;
1547 	u32 pcgctl;
1548 
1549 	spin_lock_irqsave(&hsotg->lock, flags);
1550 
1551 	/*
1552 	 * If hibernation is supported, Phy clock is already resumed
1553 	 * after registers restore.
1554 	 */
1555 	if (!hsotg->core_params->hibernation) {
1556 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
1557 		pcgctl &= ~PCGCTL_STOPPCLK;
1558 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
1559 		spin_unlock_irqrestore(&hsotg->lock, flags);
1560 		usleep_range(20000, 40000);
1561 		spin_lock_irqsave(&hsotg->lock, flags);
1562 	}
1563 
1564 	hprt0 = dwc2_read_hprt0(hsotg);
1565 	hprt0 |= HPRT0_RES;
1566 	hprt0 &= ~HPRT0_SUSP;
1567 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
1568 	spin_unlock_irqrestore(&hsotg->lock, flags);
1569 
1570 	msleep(USB_RESUME_TIMEOUT);
1571 
1572 	spin_lock_irqsave(&hsotg->lock, flags);
1573 	hprt0 = dwc2_read_hprt0(hsotg);
1574 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
1575 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
1576 	hsotg->bus_suspended = 0;
1577 	spin_unlock_irqrestore(&hsotg->lock, flags);
1578 }
1579 
1580 /* Handles hub class-specific requests */
1581 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
1582 				u16 wvalue, u16 windex, char *buf, u16 wlength)
1583 {
1584 	struct usb_hub_descriptor *hub_desc;
1585 	int retval = 0;
1586 	u32 hprt0;
1587 	u32 port_status;
1588 	u32 speed;
1589 	u32 pcgctl;
1590 
1591 	switch (typereq) {
1592 	case ClearHubFeature:
1593 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
1594 
1595 		switch (wvalue) {
1596 		case C_HUB_LOCAL_POWER:
1597 		case C_HUB_OVER_CURRENT:
1598 			/* Nothing required here */
1599 			break;
1600 
1601 		default:
1602 			retval = -EINVAL;
1603 			dev_err(hsotg->dev,
1604 				"ClearHubFeature request %1xh unknown\n",
1605 				wvalue);
1606 		}
1607 		break;
1608 
1609 	case ClearPortFeature:
1610 		if (wvalue != USB_PORT_FEAT_L1)
1611 			if (!windex || windex > 1)
1612 				goto error;
1613 		switch (wvalue) {
1614 		case USB_PORT_FEAT_ENABLE:
1615 			dev_dbg(hsotg->dev,
1616 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
1617 			hprt0 = dwc2_read_hprt0(hsotg);
1618 			hprt0 |= HPRT0_ENA;
1619 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
1620 			break;
1621 
1622 		case USB_PORT_FEAT_SUSPEND:
1623 			dev_dbg(hsotg->dev,
1624 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
1625 
1626 			if (hsotg->bus_suspended)
1627 				dwc2_port_resume(hsotg);
1628 			break;
1629 
1630 		case USB_PORT_FEAT_POWER:
1631 			dev_dbg(hsotg->dev,
1632 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
1633 			hprt0 = dwc2_read_hprt0(hsotg);
1634 			hprt0 &= ~HPRT0_PWR;
1635 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
1636 			break;
1637 
1638 		case USB_PORT_FEAT_INDICATOR:
1639 			dev_dbg(hsotg->dev,
1640 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
1641 			/* Port indicator not supported */
1642 			break;
1643 
1644 		case USB_PORT_FEAT_C_CONNECTION:
1645 			/*
1646 			 * Clears driver's internal Connect Status Change flag
1647 			 */
1648 			dev_dbg(hsotg->dev,
1649 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
1650 			hsotg->flags.b.port_connect_status_change = 0;
1651 			break;
1652 
1653 		case USB_PORT_FEAT_C_RESET:
1654 			/* Clears driver's internal Port Reset Change flag */
1655 			dev_dbg(hsotg->dev,
1656 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
1657 			hsotg->flags.b.port_reset_change = 0;
1658 			break;
1659 
1660 		case USB_PORT_FEAT_C_ENABLE:
1661 			/*
1662 			 * Clears the driver's internal Port Enable/Disable
1663 			 * Change flag
1664 			 */
1665 			dev_dbg(hsotg->dev,
1666 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
1667 			hsotg->flags.b.port_enable_change = 0;
1668 			break;
1669 
1670 		case USB_PORT_FEAT_C_SUSPEND:
1671 			/*
1672 			 * Clears the driver's internal Port Suspend Change
1673 			 * flag, which is set when resume signaling on the host
1674 			 * port is complete
1675 			 */
1676 			dev_dbg(hsotg->dev,
1677 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
1678 			hsotg->flags.b.port_suspend_change = 0;
1679 			break;
1680 
1681 		case USB_PORT_FEAT_C_PORT_L1:
1682 			dev_dbg(hsotg->dev,
1683 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
1684 			hsotg->flags.b.port_l1_change = 0;
1685 			break;
1686 
1687 		case USB_PORT_FEAT_C_OVER_CURRENT:
1688 			dev_dbg(hsotg->dev,
1689 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
1690 			hsotg->flags.b.port_over_current_change = 0;
1691 			break;
1692 
1693 		default:
1694 			retval = -EINVAL;
1695 			dev_err(hsotg->dev,
1696 				"ClearPortFeature request %1xh unknown or unsupported\n",
1697 				wvalue);
1698 		}
1699 		break;
1700 
1701 	case GetHubDescriptor:
1702 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
1703 		hub_desc = (struct usb_hub_descriptor *)buf;
1704 		hub_desc->bDescLength = 9;
1705 		hub_desc->bDescriptorType = USB_DT_HUB;
1706 		hub_desc->bNbrPorts = 1;
1707 		hub_desc->wHubCharacteristics =
1708 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
1709 				    HUB_CHAR_INDV_PORT_OCPM);
1710 		hub_desc->bPwrOn2PwrGood = 1;
1711 		hub_desc->bHubContrCurrent = 0;
1712 		hub_desc->u.hs.DeviceRemovable[0] = 0;
1713 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
1714 		break;
1715 
1716 	case GetHubStatus:
1717 		dev_dbg(hsotg->dev, "GetHubStatus\n");
1718 		memset(buf, 0, 4);
1719 		break;
1720 
1721 	case GetPortStatus:
1722 		dev_vdbg(hsotg->dev,
1723 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
1724 			 hsotg->flags.d32);
1725 		if (!windex || windex > 1)
1726 			goto error;
1727 
1728 		port_status = 0;
1729 		if (hsotg->flags.b.port_connect_status_change)
1730 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
1731 		if (hsotg->flags.b.port_enable_change)
1732 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
1733 		if (hsotg->flags.b.port_suspend_change)
1734 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
1735 		if (hsotg->flags.b.port_l1_change)
1736 			port_status |= USB_PORT_STAT_C_L1 << 16;
1737 		if (hsotg->flags.b.port_reset_change)
1738 			port_status |= USB_PORT_STAT_C_RESET << 16;
1739 		if (hsotg->flags.b.port_over_current_change) {
1740 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
1741 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1742 		}
1743 
1744 		if (!hsotg->flags.b.port_connect_status) {
1745 			/*
1746 			 * The port is disconnected, which means the core is
1747 			 * either in device mode or it soon will be. Just
1748 			 * return 0's for the remainder of the port status
1749 			 * since the port register can't be read if the core
1750 			 * is in device mode.
1751 			 */
1752 			*(__le32 *)buf = cpu_to_le32(port_status);
1753 			break;
1754 		}
1755 
1756 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1757 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
1758 
1759 		if (hprt0 & HPRT0_CONNSTS)
1760 			port_status |= USB_PORT_STAT_CONNECTION;
1761 		if (hprt0 & HPRT0_ENA)
1762 			port_status |= USB_PORT_STAT_ENABLE;
1763 		if (hprt0 & HPRT0_SUSP)
1764 			port_status |= USB_PORT_STAT_SUSPEND;
1765 		if (hprt0 & HPRT0_OVRCURRACT)
1766 			port_status |= USB_PORT_STAT_OVERCURRENT;
1767 		if (hprt0 & HPRT0_RST)
1768 			port_status |= USB_PORT_STAT_RESET;
1769 		if (hprt0 & HPRT0_PWR)
1770 			port_status |= USB_PORT_STAT_POWER;
1771 
1772 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1773 		if (speed == HPRT0_SPD_HIGH_SPEED)
1774 			port_status |= USB_PORT_STAT_HIGH_SPEED;
1775 		else if (speed == HPRT0_SPD_LOW_SPEED)
1776 			port_status |= USB_PORT_STAT_LOW_SPEED;
1777 
1778 		if (hprt0 & HPRT0_TSTCTL_MASK)
1779 			port_status |= USB_PORT_STAT_TEST;
1780 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
1781 
1782 		if (hsotg->core_params->dma_desc_fs_enable) {
1783 			/*
1784 			 * Enable descriptor DMA only if a full speed
1785 			 * device is connected.
1786 			 */
1787 			if (hsotg->new_connection &&
1788 			    ((port_status &
1789 			      (USB_PORT_STAT_CONNECTION |
1790 			       USB_PORT_STAT_HIGH_SPEED |
1791 			       USB_PORT_STAT_LOW_SPEED)) ==
1792 			       USB_PORT_STAT_CONNECTION)) {
1793 				u32 hcfg;
1794 
1795 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
1796 				hsotg->core_params->dma_desc_enable = 1;
1797 				hcfg = dwc2_readl(hsotg->regs + HCFG);
1798 				hcfg |= HCFG_DESCDMA;
1799 				dwc2_writel(hcfg, hsotg->regs + HCFG);
1800 				hsotg->new_connection = false;
1801 			}
1802 		}
1803 
1804 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
1805 		*(__le32 *)buf = cpu_to_le32(port_status);
1806 		break;
1807 
1808 	case SetHubFeature:
1809 		dev_dbg(hsotg->dev, "SetHubFeature\n");
1810 		/* No HUB features supported */
1811 		break;
1812 
1813 	case SetPortFeature:
1814 		dev_dbg(hsotg->dev, "SetPortFeature\n");
1815 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
1816 			goto error;
1817 
1818 		if (!hsotg->flags.b.port_connect_status) {
1819 			/*
1820 			 * The port is disconnected, which means the core is
1821 			 * either in device mode or it soon will be. Just
1822 			 * return without doing anything since the port
1823 			 * register can't be written if the core is in device
1824 			 * mode.
1825 			 */
1826 			break;
1827 		}
1828 
1829 		switch (wvalue) {
1830 		case USB_PORT_FEAT_SUSPEND:
1831 			dev_dbg(hsotg->dev,
1832 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
1833 			if (windex != hsotg->otg_port)
1834 				goto error;
1835 			dwc2_port_suspend(hsotg, windex);
1836 			break;
1837 
1838 		case USB_PORT_FEAT_POWER:
1839 			dev_dbg(hsotg->dev,
1840 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
1841 			hprt0 = dwc2_read_hprt0(hsotg);
1842 			hprt0 |= HPRT0_PWR;
1843 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
1844 			break;
1845 
1846 		case USB_PORT_FEAT_RESET:
1847 			hprt0 = dwc2_read_hprt0(hsotg);
1848 			dev_dbg(hsotg->dev,
1849 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
1850 			pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
1851 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
1852 			dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
1853 			/* ??? Original driver does this */
1854 			dwc2_writel(0, hsotg->regs + PCGCTL);
1855 
1856 			hprt0 = dwc2_read_hprt0(hsotg);
1857 			/* Clear suspend bit if resetting from suspend state */
1858 			hprt0 &= ~HPRT0_SUSP;
1859 
1860 			/*
1861 			 * When B-Host the Port reset bit is set in the Start
1862 			 * HCD Callback function, so that the reset is started
1863 			 * within 1ms of the HNP success interrupt
1864 			 */
1865 			if (!dwc2_hcd_is_b_host(hsotg)) {
1866 				hprt0 |= HPRT0_PWR | HPRT0_RST;
1867 				dev_dbg(hsotg->dev,
1868 					"In host mode, hprt0=%08x\n", hprt0);
1869 				dwc2_writel(hprt0, hsotg->regs + HPRT0);
1870 			}
1871 
1872 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
1873 			usleep_range(50000, 70000);
1874 			hprt0 &= ~HPRT0_RST;
1875 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
1876 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
1877 			break;
1878 
1879 		case USB_PORT_FEAT_INDICATOR:
1880 			dev_dbg(hsotg->dev,
1881 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
1882 			/* Not supported */
1883 			break;
1884 
1885 		case USB_PORT_FEAT_TEST:
1886 			hprt0 = dwc2_read_hprt0(hsotg);
1887 			dev_dbg(hsotg->dev,
1888 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
1889 			hprt0 &= ~HPRT0_TSTCTL_MASK;
1890 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
1891 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
1892 			break;
1893 
1894 		default:
1895 			retval = -EINVAL;
1896 			dev_err(hsotg->dev,
1897 				"SetPortFeature %1xh unknown or unsupported\n",
1898 				wvalue);
1899 			break;
1900 		}
1901 		break;
1902 
1903 	default:
1904 error:
1905 		retval = -EINVAL;
1906 		dev_dbg(hsotg->dev,
1907 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
1908 			typereq, windex, wvalue);
1909 		break;
1910 	}
1911 
1912 	return retval;
1913 }
1914 
1915 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
1916 {
1917 	int retval;
1918 
1919 	if (port != 1)
1920 		return -EINVAL;
1921 
1922 	retval = (hsotg->flags.b.port_connect_status_change ||
1923 		  hsotg->flags.b.port_reset_change ||
1924 		  hsotg->flags.b.port_enable_change ||
1925 		  hsotg->flags.b.port_suspend_change ||
1926 		  hsotg->flags.b.port_over_current_change);
1927 
1928 	if (retval) {
1929 		dev_dbg(hsotg->dev,
1930 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
1931 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
1932 			hsotg->flags.b.port_connect_status_change);
1933 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
1934 			hsotg->flags.b.port_reset_change);
1935 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
1936 			hsotg->flags.b.port_enable_change);
1937 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
1938 			hsotg->flags.b.port_suspend_change);
1939 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
1940 			hsotg->flags.b.port_over_current_change);
1941 	}
1942 
1943 	return retval;
1944 }
1945 
1946 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1947 {
1948 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
1949 
1950 #ifdef DWC2_DEBUG_SOF
1951 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
1952 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
1953 #endif
1954 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
1955 }
1956 
1957 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
1958 {
1959 	return hsotg->op_state == OTG_STATE_B_HOST;
1960 }
1961 
1962 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
1963 					       int iso_desc_count,
1964 					       gfp_t mem_flags)
1965 {
1966 	struct dwc2_hcd_urb *urb;
1967 	u32 size = sizeof(*urb) + iso_desc_count *
1968 		   sizeof(struct dwc2_hcd_iso_packet_desc);
1969 
1970 	urb = kzalloc(size, mem_flags);
1971 	if (urb)
1972 		urb->packet_count = iso_desc_count;
1973 	return urb;
1974 }
1975 
1976 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
1977 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
1978 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
1979 {
1980 	if (dbg_perio() ||
1981 	    ep_type == USB_ENDPOINT_XFER_BULK ||
1982 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
1983 		dev_vdbg(hsotg->dev,
1984 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
1985 			 dev_addr, ep_num, ep_dir, ep_type, mps);
1986 	urb->pipe_info.dev_addr = dev_addr;
1987 	urb->pipe_info.ep_num = ep_num;
1988 	urb->pipe_info.pipe_type = ep_type;
1989 	urb->pipe_info.pipe_dir = ep_dir;
1990 	urb->pipe_info.mps = mps;
1991 }
1992 
1993 /*
1994  * NOTE: This function will be removed once the peripheral controller code
1995  * is integrated and the driver is stable
1996  */
1997 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
1998 {
1999 #ifdef DEBUG
2000 	struct dwc2_host_chan *chan;
2001 	struct dwc2_hcd_urb *urb;
2002 	struct dwc2_qtd *qtd;
2003 	int num_channels;
2004 	u32 np_tx_status;
2005 	u32 p_tx_status;
2006 	int i;
2007 
2008 	num_channels = hsotg->core_params->host_channels;
2009 	dev_dbg(hsotg->dev, "\n");
2010 	dev_dbg(hsotg->dev,
2011 		"************************************************************\n");
2012 	dev_dbg(hsotg->dev, "HCD State:\n");
2013 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
2014 
2015 	for (i = 0; i < num_channels; i++) {
2016 		chan = hsotg->hc_ptr_array[i];
2017 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
2018 		dev_dbg(hsotg->dev,
2019 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
2020 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
2021 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
2022 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
2023 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
2024 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
2025 			chan->data_pid_start);
2026 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
2027 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
2028 			chan->xfer_started);
2029 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
2030 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
2031 			(unsigned long)chan->xfer_dma);
2032 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
2033 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
2034 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
2035 			chan->halt_on_queue);
2036 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
2037 			chan->halt_pending);
2038 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
2039 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
2040 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
2041 			chan->complete_split);
2042 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
2043 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
2044 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
2045 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
2046 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
2047 
2048 		if (chan->xfer_started) {
2049 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
2050 
2051 			hfnum = dwc2_readl(hsotg->regs + HFNUM);
2052 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2053 			hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
2054 			hcint = dwc2_readl(hsotg->regs + HCINT(i));
2055 			hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
2056 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
2057 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
2058 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
2059 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
2060 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
2061 		}
2062 
2063 		if (!(chan->xfer_started && chan->qh))
2064 			continue;
2065 
2066 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
2067 			if (!qtd->in_process)
2068 				break;
2069 			urb = qtd->urb;
2070 			dev_dbg(hsotg->dev, "    URB Info:\n");
2071 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
2072 				qtd, urb);
2073 			if (urb) {
2074 				dev_dbg(hsotg->dev,
2075 					"      Dev: %d, EP: %d %s\n",
2076 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
2077 					dwc2_hcd_get_ep_num(&urb->pipe_info),
2078 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
2079 					"IN" : "OUT");
2080 				dev_dbg(hsotg->dev,
2081 					"      Max packet size: %d\n",
2082 					dwc2_hcd_get_mps(&urb->pipe_info));
2083 				dev_dbg(hsotg->dev,
2084 					"      transfer_buffer: %p\n",
2085 					urb->buf);
2086 				dev_dbg(hsotg->dev,
2087 					"      transfer_dma: %08lx\n",
2088 					(unsigned long)urb->dma);
2089 				dev_dbg(hsotg->dev,
2090 					"      transfer_buffer_length: %d\n",
2091 					urb->length);
2092 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
2093 					urb->actual_length);
2094 			}
2095 		}
2096 	}
2097 
2098 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
2099 		hsotg->non_periodic_channels);
2100 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
2101 		hsotg->periodic_channels);
2102 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
2103 	np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
2104 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
2105 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
2106 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
2107 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
2108 	p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2109 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
2110 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
2111 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
2112 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
2113 	dwc2_hcd_dump_frrem(hsotg);
2114 	dwc2_dump_global_registers(hsotg);
2115 	dwc2_dump_host_registers(hsotg);
2116 	dev_dbg(hsotg->dev,
2117 		"************************************************************\n");
2118 	dev_dbg(hsotg->dev, "\n");
2119 #endif
2120 }
2121 
2122 /*
2123  * NOTE: This function will be removed once the peripheral controller code
2124  * is integrated and the driver is stable
2125  */
2126 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
2127 {
2128 #ifdef DWC2_DUMP_FRREM
2129 	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
2130 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2131 		hsotg->frrem_samples, hsotg->frrem_accum,
2132 		hsotg->frrem_samples > 0 ?
2133 		hsotg->frrem_accum / hsotg->frrem_samples : 0);
2134 	dev_dbg(hsotg->dev, "\n");
2135 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
2136 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2137 		hsotg->hfnum_7_samples,
2138 		hsotg->hfnum_7_frrem_accum,
2139 		hsotg->hfnum_7_samples > 0 ?
2140 		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
2141 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
2142 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2143 		hsotg->hfnum_0_samples,
2144 		hsotg->hfnum_0_frrem_accum,
2145 		hsotg->hfnum_0_samples > 0 ?
2146 		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
2147 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
2148 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2149 		hsotg->hfnum_other_samples,
2150 		hsotg->hfnum_other_frrem_accum,
2151 		hsotg->hfnum_other_samples > 0 ?
2152 		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
2153 		0);
2154 	dev_dbg(hsotg->dev, "\n");
2155 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
2156 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2157 		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
2158 		hsotg->hfnum_7_samples_a > 0 ?
2159 		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
2160 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
2161 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2162 		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
2163 		hsotg->hfnum_0_samples_a > 0 ?
2164 		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
2165 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
2166 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2167 		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
2168 		hsotg->hfnum_other_samples_a > 0 ?
2169 		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
2170 		: 0);
2171 	dev_dbg(hsotg->dev, "\n");
2172 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
2173 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2174 		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
2175 		hsotg->hfnum_7_samples_b > 0 ?
2176 		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
2177 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
2178 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2179 		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
2180 		(hsotg->hfnum_0_samples_b > 0) ?
2181 		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
2182 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
2183 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2184 		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
2185 		(hsotg->hfnum_other_samples_b > 0) ?
2186 		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
2187 		: 0);
2188 #endif
2189 }
2190 
2191 struct wrapper_priv_data {
2192 	struct dwc2_hsotg *hsotg;
2193 };
2194 
2195 /* Gets the dwc2_hsotg from a usb_hcd */
2196 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
2197 {
2198 	struct wrapper_priv_data *p;
2199 
2200 	p = (struct wrapper_priv_data *) &hcd->hcd_priv;
2201 	return p->hsotg;
2202 }
2203 
2204 static int _dwc2_hcd_start(struct usb_hcd *hcd);
2205 
2206 void dwc2_host_start(struct dwc2_hsotg *hsotg)
2207 {
2208 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
2209 
2210 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
2211 	_dwc2_hcd_start(hcd);
2212 }
2213 
2214 void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
2215 {
2216 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
2217 
2218 	hcd->self.is_b_host = 0;
2219 }
2220 
2221 void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
2222 			int *hub_port)
2223 {
2224 	struct urb *urb = context;
2225 
2226 	if (urb->dev->tt)
2227 		*hub_addr = urb->dev->tt->hub->devnum;
2228 	else
2229 		*hub_addr = 0;
2230 	*hub_port = urb->dev->ttport;
2231 }
2232 
2233 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
2234 {
2235 	struct urb *urb = context;
2236 
2237 	return urb->dev->speed;
2238 }
2239 
2240 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
2241 					struct urb *urb)
2242 {
2243 	struct usb_bus *bus = hcd_to_bus(hcd);
2244 
2245 	if (urb->interval)
2246 		bus->bandwidth_allocated += bw / urb->interval;
2247 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2248 		bus->bandwidth_isoc_reqs++;
2249 	else
2250 		bus->bandwidth_int_reqs++;
2251 }
2252 
2253 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
2254 				    struct urb *urb)
2255 {
2256 	struct usb_bus *bus = hcd_to_bus(hcd);
2257 
2258 	if (urb->interval)
2259 		bus->bandwidth_allocated -= bw / urb->interval;
2260 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2261 		bus->bandwidth_isoc_reqs--;
2262 	else
2263 		bus->bandwidth_int_reqs--;
2264 }
2265 
2266 /*
2267  * Sets the final status of an URB and returns it to the upper layer. Any
2268  * required cleanup of the URB is performed.
2269  *
2270  * Must be called with interrupt disabled and spinlock held
2271  */
2272 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2273 			int status)
2274 {
2275 	struct urb *urb;
2276 	int i;
2277 
2278 	if (!qtd) {
2279 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
2280 		return;
2281 	}
2282 
2283 	if (!qtd->urb) {
2284 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
2285 		return;
2286 	}
2287 
2288 	urb = qtd->urb->priv;
2289 	if (!urb) {
2290 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
2291 		return;
2292 	}
2293 
2294 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
2295 
2296 	if (dbg_urb(urb))
2297 		dev_vdbg(hsotg->dev,
2298 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
2299 			 __func__, urb, usb_pipedevice(urb->pipe),
2300 			 usb_pipeendpoint(urb->pipe),
2301 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
2302 			 urb->actual_length);
2303 
2304 
2305 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2306 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
2307 		for (i = 0; i < urb->number_of_packets; ++i) {
2308 			urb->iso_frame_desc[i].actual_length =
2309 				dwc2_hcd_urb_get_iso_desc_actual_length(
2310 						qtd->urb, i);
2311 			urb->iso_frame_desc[i].status =
2312 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
2313 		}
2314 	}
2315 
2316 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
2317 		for (i = 0; i < urb->number_of_packets; i++)
2318 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
2319 				 i, urb->iso_frame_desc[i].status);
2320 	}
2321 
2322 	urb->status = status;
2323 	if (!status) {
2324 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
2325 		    urb->actual_length < urb->transfer_buffer_length)
2326 			urb->status = -EREMOTEIO;
2327 	}
2328 
2329 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
2330 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
2331 		struct usb_host_endpoint *ep = urb->ep;
2332 
2333 		if (ep)
2334 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
2335 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
2336 					urb);
2337 	}
2338 
2339 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
2340 	urb->hcpriv = NULL;
2341 	kfree(qtd->urb);
2342 	qtd->urb = NULL;
2343 
2344 	spin_unlock(&hsotg->lock);
2345 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
2346 	spin_lock(&hsotg->lock);
2347 }
2348 
2349 /*
2350  * Work queue function for starting the HCD when A-Cable is connected
2351  */
2352 static void dwc2_hcd_start_func(struct work_struct *work)
2353 {
2354 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
2355 						start_work.work);
2356 
2357 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
2358 	dwc2_host_start(hsotg);
2359 }
2360 
2361 /*
2362  * Reset work queue function
2363  */
2364 static void dwc2_hcd_reset_func(struct work_struct *work)
2365 {
2366 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
2367 						reset_work.work);
2368 	unsigned long flags;
2369 	u32 hprt0;
2370 
2371 	dev_dbg(hsotg->dev, "USB RESET function called\n");
2372 
2373 	spin_lock_irqsave(&hsotg->lock, flags);
2374 
2375 	hprt0 = dwc2_read_hprt0(hsotg);
2376 	hprt0 &= ~HPRT0_RST;
2377 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
2378 	hsotg->flags.b.port_reset_change = 1;
2379 
2380 	spin_unlock_irqrestore(&hsotg->lock, flags);
2381 }
2382 
2383 /*
2384  * =========================================================================
2385  *  Linux HC Driver Functions
2386  * =========================================================================
2387  */
2388 
2389 /*
2390  * Initializes the DWC_otg controller and its root hub and prepares it for host
2391  * mode operation. Activates the root port. Returns 0 on success and a negative
2392  * error code on failure.
2393  */
2394 static int _dwc2_hcd_start(struct usb_hcd *hcd)
2395 {
2396 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2397 	struct usb_bus *bus = hcd_to_bus(hcd);
2398 	unsigned long flags;
2399 
2400 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
2401 
2402 	spin_lock_irqsave(&hsotg->lock, flags);
2403 	hsotg->lx_state = DWC2_L0;
2404 	hcd->state = HC_STATE_RUNNING;
2405 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2406 
2407 	if (dwc2_is_device_mode(hsotg)) {
2408 		spin_unlock_irqrestore(&hsotg->lock, flags);
2409 		return 0;	/* why 0 ?? */
2410 	}
2411 
2412 	dwc2_hcd_reinit(hsotg);
2413 
2414 	/* Initialize and connect root hub if one is not already attached */
2415 	if (bus->root_hub) {
2416 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
2417 		/* Inform the HUB driver to resume */
2418 		usb_hcd_resume_root_hub(hcd);
2419 	}
2420 
2421 	spin_unlock_irqrestore(&hsotg->lock, flags);
2422 	return 0;
2423 }
2424 
2425 /*
2426  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
2427  * stopped.
2428  */
2429 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
2430 {
2431 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2432 	unsigned long flags;
2433 
2434 	/* Turn off all host-specific interrupts */
2435 	dwc2_disable_host_interrupts(hsotg);
2436 
2437 	/* Wait for interrupt processing to finish */
2438 	synchronize_irq(hcd->irq);
2439 
2440 	spin_lock_irqsave(&hsotg->lock, flags);
2441 	/* Ensure hcd is disconnected */
2442 	dwc2_hcd_disconnect(hsotg, true);
2443 	dwc2_hcd_stop(hsotg);
2444 	hsotg->lx_state = DWC2_L3;
2445 	hcd->state = HC_STATE_HALT;
2446 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2447 	spin_unlock_irqrestore(&hsotg->lock, flags);
2448 
2449 	usleep_range(1000, 3000);
2450 }
2451 
2452 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
2453 {
2454 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2455 	unsigned long flags;
2456 	int ret = 0;
2457 	u32 hprt0;
2458 
2459 	spin_lock_irqsave(&hsotg->lock, flags);
2460 
2461 	if (hsotg->lx_state != DWC2_L0)
2462 		goto unlock;
2463 
2464 	if (!HCD_HW_ACCESSIBLE(hcd))
2465 		goto unlock;
2466 
2467 	if (!hsotg->core_params->hibernation)
2468 		goto skip_power_saving;
2469 
2470 	/*
2471 	 * Drive USB suspend and disable port Power
2472 	 * if usb bus is not suspended.
2473 	 */
2474 	if (!hsotg->bus_suspended) {
2475 		hprt0 = dwc2_read_hprt0(hsotg);
2476 		hprt0 |= HPRT0_SUSP;
2477 		hprt0 &= ~HPRT0_PWR;
2478 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
2479 	}
2480 
2481 	/* Enter hibernation */
2482 	ret = dwc2_enter_hibernation(hsotg);
2483 	if (ret) {
2484 		if (ret != -ENOTSUPP)
2485 			dev_err(hsotg->dev,
2486 				"enter hibernation failed\n");
2487 		goto skip_power_saving;
2488 	}
2489 
2490 	/* Ask phy to be suspended */
2491 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
2492 		spin_unlock_irqrestore(&hsotg->lock, flags);
2493 		usb_phy_set_suspend(hsotg->uphy, true);
2494 		spin_lock_irqsave(&hsotg->lock, flags);
2495 	}
2496 
2497 	/* After entering hibernation, hardware is no more accessible */
2498 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2499 
2500 skip_power_saving:
2501 	hsotg->lx_state = DWC2_L2;
2502 unlock:
2503 	spin_unlock_irqrestore(&hsotg->lock, flags);
2504 
2505 	return ret;
2506 }
2507 
2508 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
2509 {
2510 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2511 	unsigned long flags;
2512 	int ret = 0;
2513 
2514 	spin_lock_irqsave(&hsotg->lock, flags);
2515 
2516 	if (hsotg->lx_state != DWC2_L2)
2517 		goto unlock;
2518 
2519 	if (!hsotg->core_params->hibernation) {
2520 		hsotg->lx_state = DWC2_L0;
2521 		goto unlock;
2522 	}
2523 
2524 	/*
2525 	 * Set HW accessible bit before powering on the controller
2526 	 * since an interrupt may rise.
2527 	 */
2528 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2529 
2530 	/*
2531 	 * Enable power if not already done.
2532 	 * This must not be spinlocked since duration
2533 	 * of this call is unknown.
2534 	 */
2535 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
2536 		spin_unlock_irqrestore(&hsotg->lock, flags);
2537 		usb_phy_set_suspend(hsotg->uphy, false);
2538 		spin_lock_irqsave(&hsotg->lock, flags);
2539 	}
2540 
2541 	/* Exit hibernation */
2542 	ret = dwc2_exit_hibernation(hsotg, true);
2543 	if (ret && (ret != -ENOTSUPP))
2544 		dev_err(hsotg->dev, "exit hibernation failed\n");
2545 
2546 	hsotg->lx_state = DWC2_L0;
2547 
2548 	spin_unlock_irqrestore(&hsotg->lock, flags);
2549 
2550 	if (hsotg->bus_suspended) {
2551 		spin_lock_irqsave(&hsotg->lock, flags);
2552 		hsotg->flags.b.port_suspend_change = 1;
2553 		spin_unlock_irqrestore(&hsotg->lock, flags);
2554 		dwc2_port_resume(hsotg);
2555 	} else {
2556 		/* Wait for controller to correctly update D+/D- level */
2557 		usleep_range(3000, 5000);
2558 
2559 		/*
2560 		 * Clear Port Enable and Port Status changes.
2561 		 * Enable Port Power.
2562 		 */
2563 		dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
2564 				HPRT0_ENACHG, hsotg->regs + HPRT0);
2565 		/* Wait for controller to detect Port Connect */
2566 		usleep_range(5000, 7000);
2567 	}
2568 
2569 	return ret;
2570 unlock:
2571 	spin_unlock_irqrestore(&hsotg->lock, flags);
2572 
2573 	return ret;
2574 }
2575 
2576 /* Returns the current frame number */
2577 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
2578 {
2579 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2580 
2581 	return dwc2_hcd_get_frame_number(hsotg);
2582 }
2583 
2584 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
2585 			       char *fn_name)
2586 {
2587 #ifdef VERBOSE_DEBUG
2588 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2589 	char *pipetype;
2590 	char *speed;
2591 
2592 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
2593 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
2594 		 usb_pipedevice(urb->pipe));
2595 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
2596 		 usb_pipeendpoint(urb->pipe),
2597 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
2598 
2599 	switch (usb_pipetype(urb->pipe)) {
2600 	case PIPE_CONTROL:
2601 		pipetype = "CONTROL";
2602 		break;
2603 	case PIPE_BULK:
2604 		pipetype = "BULK";
2605 		break;
2606 	case PIPE_INTERRUPT:
2607 		pipetype = "INTERRUPT";
2608 		break;
2609 	case PIPE_ISOCHRONOUS:
2610 		pipetype = "ISOCHRONOUS";
2611 		break;
2612 	default:
2613 		pipetype = "UNKNOWN";
2614 		break;
2615 	}
2616 
2617 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
2618 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
2619 		 "IN" : "OUT");
2620 
2621 	switch (urb->dev->speed) {
2622 	case USB_SPEED_HIGH:
2623 		speed = "HIGH";
2624 		break;
2625 	case USB_SPEED_FULL:
2626 		speed = "FULL";
2627 		break;
2628 	case USB_SPEED_LOW:
2629 		speed = "LOW";
2630 		break;
2631 	default:
2632 		speed = "UNKNOWN";
2633 		break;
2634 	}
2635 
2636 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
2637 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
2638 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
2639 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
2640 		 urb->transfer_buffer_length);
2641 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
2642 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
2643 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
2644 		 urb->setup_packet, (unsigned long)urb->setup_dma);
2645 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
2646 
2647 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2648 		int i;
2649 
2650 		for (i = 0; i < urb->number_of_packets; i++) {
2651 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
2652 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
2653 				 urb->iso_frame_desc[i].offset,
2654 				 urb->iso_frame_desc[i].length);
2655 		}
2656 	}
2657 #endif
2658 }
2659 
2660 /*
2661  * Starts processing a USB transfer request specified by a USB Request Block
2662  * (URB). mem_flags indicates the type of memory allocation to use while
2663  * processing this URB.
2664  */
2665 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2666 				 gfp_t mem_flags)
2667 {
2668 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2669 	struct usb_host_endpoint *ep = urb->ep;
2670 	struct dwc2_hcd_urb *dwc2_urb;
2671 	int i;
2672 	int retval;
2673 	int alloc_bandwidth = 0;
2674 	u8 ep_type = 0;
2675 	u32 tflags = 0;
2676 	void *buf;
2677 	unsigned long flags;
2678 	struct dwc2_qh *qh;
2679 	bool qh_allocated = false;
2680 	struct dwc2_qtd *qtd;
2681 
2682 	if (dbg_urb(urb)) {
2683 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
2684 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
2685 	}
2686 
2687 	if (ep == NULL)
2688 		return -EINVAL;
2689 
2690 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
2691 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
2692 		spin_lock_irqsave(&hsotg->lock, flags);
2693 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
2694 			alloc_bandwidth = 1;
2695 		spin_unlock_irqrestore(&hsotg->lock, flags);
2696 	}
2697 
2698 	switch (usb_pipetype(urb->pipe)) {
2699 	case PIPE_CONTROL:
2700 		ep_type = USB_ENDPOINT_XFER_CONTROL;
2701 		break;
2702 	case PIPE_ISOCHRONOUS:
2703 		ep_type = USB_ENDPOINT_XFER_ISOC;
2704 		break;
2705 	case PIPE_BULK:
2706 		ep_type = USB_ENDPOINT_XFER_BULK;
2707 		break;
2708 	case PIPE_INTERRUPT:
2709 		ep_type = USB_ENDPOINT_XFER_INT;
2710 		break;
2711 	default:
2712 		dev_warn(hsotg->dev, "Wrong ep type\n");
2713 	}
2714 
2715 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
2716 				      mem_flags);
2717 	if (!dwc2_urb)
2718 		return -ENOMEM;
2719 
2720 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
2721 				  usb_pipeendpoint(urb->pipe), ep_type,
2722 				  usb_pipein(urb->pipe),
2723 				  usb_maxpacket(urb->dev, urb->pipe,
2724 						!(usb_pipein(urb->pipe))));
2725 
2726 	buf = urb->transfer_buffer;
2727 
2728 	if (hcd->self.uses_dma) {
2729 		if (!buf && (urb->transfer_dma & 3)) {
2730 			dev_err(hsotg->dev,
2731 				"%s: unaligned transfer with no transfer_buffer",
2732 				__func__);
2733 			retval = -EINVAL;
2734 			goto fail0;
2735 		}
2736 	}
2737 
2738 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
2739 		tflags |= URB_GIVEBACK_ASAP;
2740 	if (urb->transfer_flags & URB_ZERO_PACKET)
2741 		tflags |= URB_SEND_ZERO_PACKET;
2742 
2743 	dwc2_urb->priv = urb;
2744 	dwc2_urb->buf = buf;
2745 	dwc2_urb->dma = urb->transfer_dma;
2746 	dwc2_urb->length = urb->transfer_buffer_length;
2747 	dwc2_urb->setup_packet = urb->setup_packet;
2748 	dwc2_urb->setup_dma = urb->setup_dma;
2749 	dwc2_urb->flags = tflags;
2750 	dwc2_urb->interval = urb->interval;
2751 	dwc2_urb->status = -EINPROGRESS;
2752 
2753 	for (i = 0; i < urb->number_of_packets; ++i)
2754 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
2755 						 urb->iso_frame_desc[i].offset,
2756 						 urb->iso_frame_desc[i].length);
2757 
2758 	urb->hcpriv = dwc2_urb;
2759 	qh = (struct dwc2_qh *) ep->hcpriv;
2760 	/* Create QH for the endpoint if it doesn't exist */
2761 	if (!qh) {
2762 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
2763 		if (!qh) {
2764 			retval = -ENOMEM;
2765 			goto fail0;
2766 		}
2767 		ep->hcpriv = qh;
2768 		qh_allocated = true;
2769 	}
2770 
2771 	qtd = kzalloc(sizeof(*qtd), mem_flags);
2772 	if (!qtd) {
2773 		retval = -ENOMEM;
2774 		goto fail1;
2775 	}
2776 
2777 	spin_lock_irqsave(&hsotg->lock, flags);
2778 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
2779 	if (retval)
2780 		goto fail2;
2781 
2782 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
2783 	if (retval)
2784 		goto fail3;
2785 
2786 	if (alloc_bandwidth) {
2787 		dwc2_allocate_bus_bandwidth(hcd,
2788 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
2789 				urb);
2790 	}
2791 
2792 	spin_unlock_irqrestore(&hsotg->lock, flags);
2793 
2794 	return 0;
2795 
2796 fail3:
2797 	dwc2_urb->priv = NULL;
2798 	usb_hcd_unlink_urb_from_ep(hcd, urb);
2799 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
2800 		qh->channel->qh = NULL;
2801 fail2:
2802 	spin_unlock_irqrestore(&hsotg->lock, flags);
2803 	urb->hcpriv = NULL;
2804 	kfree(qtd);
2805 fail1:
2806 	if (qh_allocated) {
2807 		struct dwc2_qtd *qtd2, *qtd2_tmp;
2808 
2809 		ep->hcpriv = NULL;
2810 		dwc2_hcd_qh_unlink(hsotg, qh);
2811 		/* Free each QTD in the QH's QTD list */
2812 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
2813 							 qtd_list_entry)
2814 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
2815 		dwc2_hcd_qh_free(hsotg, qh);
2816 	}
2817 fail0:
2818 	kfree(dwc2_urb);
2819 
2820 	return retval;
2821 }
2822 
2823 /*
2824  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
2825  */
2826 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
2827 				 int status)
2828 {
2829 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2830 	int rc;
2831 	unsigned long flags;
2832 
2833 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
2834 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
2835 
2836 	spin_lock_irqsave(&hsotg->lock, flags);
2837 
2838 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
2839 	if (rc)
2840 		goto out;
2841 
2842 	if (!urb->hcpriv) {
2843 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
2844 		goto out;
2845 	}
2846 
2847 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
2848 
2849 	usb_hcd_unlink_urb_from_ep(hcd, urb);
2850 
2851 	kfree(urb->hcpriv);
2852 	urb->hcpriv = NULL;
2853 
2854 	/* Higher layer software sets URB status */
2855 	spin_unlock(&hsotg->lock);
2856 	usb_hcd_giveback_urb(hcd, urb, status);
2857 	spin_lock(&hsotg->lock);
2858 
2859 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
2860 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
2861 out:
2862 	spin_unlock_irqrestore(&hsotg->lock, flags);
2863 
2864 	return rc;
2865 }
2866 
2867 /*
2868  * Frees resources in the DWC_otg controller related to a given endpoint. Also
2869  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
2870  * must already be dequeued.
2871  */
2872 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
2873 				       struct usb_host_endpoint *ep)
2874 {
2875 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2876 
2877 	dev_dbg(hsotg->dev,
2878 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
2879 		ep->desc.bEndpointAddress, ep->hcpriv);
2880 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
2881 }
2882 
2883 /*
2884  * Resets endpoint specific parameter values, in current version used to reset
2885  * the data toggle (as a WA). This function can be called from usb_clear_halt
2886  * routine.
2887  */
2888 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
2889 				     struct usb_host_endpoint *ep)
2890 {
2891 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2892 	unsigned long flags;
2893 
2894 	dev_dbg(hsotg->dev,
2895 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
2896 		ep->desc.bEndpointAddress);
2897 
2898 	spin_lock_irqsave(&hsotg->lock, flags);
2899 	dwc2_hcd_endpoint_reset(hsotg, ep);
2900 	spin_unlock_irqrestore(&hsotg->lock, flags);
2901 }
2902 
2903 /*
2904  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
2905  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
2906  * interrupt.
2907  *
2908  * This function is called by the USB core when an interrupt occurs
2909  */
2910 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
2911 {
2912 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2913 
2914 	return dwc2_handle_hcd_intr(hsotg);
2915 }
2916 
2917 /*
2918  * Creates Status Change bitmap for the root hub and root port. The bitmap is
2919  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
2920  * is the status change indicator for the single root port. Returns 1 if either
2921  * change indicator is 1, otherwise returns 0.
2922  */
2923 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
2924 {
2925 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2926 
2927 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
2928 	return buf[0] != 0;
2929 }
2930 
2931 /* Handles hub class-specific requests */
2932 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
2933 				 u16 windex, char *buf, u16 wlength)
2934 {
2935 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
2936 					  wvalue, windex, buf, wlength);
2937 	return retval;
2938 }
2939 
2940 /* Handles hub TT buffer clear completions */
2941 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
2942 					       struct usb_host_endpoint *ep)
2943 {
2944 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2945 	struct dwc2_qh *qh;
2946 	unsigned long flags;
2947 
2948 	qh = ep->hcpriv;
2949 	if (!qh)
2950 		return;
2951 
2952 	spin_lock_irqsave(&hsotg->lock, flags);
2953 	qh->tt_buffer_dirty = 0;
2954 
2955 	if (hsotg->flags.b.port_connect_status)
2956 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
2957 
2958 	spin_unlock_irqrestore(&hsotg->lock, flags);
2959 }
2960 
2961 static struct hc_driver dwc2_hc_driver = {
2962 	.description = "dwc2_hsotg",
2963 	.product_desc = "DWC OTG Controller",
2964 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
2965 
2966 	.irq = _dwc2_hcd_irq,
2967 	.flags = HCD_MEMORY | HCD_USB2,
2968 
2969 	.start = _dwc2_hcd_start,
2970 	.stop = _dwc2_hcd_stop,
2971 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
2972 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
2973 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
2974 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
2975 	.get_frame_number = _dwc2_hcd_get_frame_number,
2976 
2977 	.hub_status_data = _dwc2_hcd_hub_status_data,
2978 	.hub_control = _dwc2_hcd_hub_control,
2979 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
2980 
2981 	.bus_suspend = _dwc2_hcd_suspend,
2982 	.bus_resume = _dwc2_hcd_resume,
2983 
2984 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
2985 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
2986 };
2987 
2988 /*
2989  * Frees secondary storage associated with the dwc2_hsotg structure contained
2990  * in the struct usb_hcd field
2991  */
2992 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
2993 {
2994 	u32 ahbcfg;
2995 	u32 dctl;
2996 	int i;
2997 
2998 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
2999 
3000 	/* Free memory for QH/QTD lists */
3001 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
3002 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
3003 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
3004 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
3005 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
3006 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
3007 
3008 	/* Free memory for the host channels */
3009 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
3010 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
3011 
3012 		if (chan != NULL) {
3013 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
3014 				i, chan);
3015 			hsotg->hc_ptr_array[i] = NULL;
3016 			kfree(chan);
3017 		}
3018 	}
3019 
3020 	if (hsotg->core_params->dma_enable > 0) {
3021 		if (hsotg->status_buf) {
3022 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
3023 					  hsotg->status_buf,
3024 					  hsotg->status_buf_dma);
3025 			hsotg->status_buf = NULL;
3026 		}
3027 	} else {
3028 		kfree(hsotg->status_buf);
3029 		hsotg->status_buf = NULL;
3030 	}
3031 
3032 	ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
3033 
3034 	/* Disable all interrupts */
3035 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
3036 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
3037 	dwc2_writel(0, hsotg->regs + GINTMSK);
3038 
3039 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
3040 		dctl = dwc2_readl(hsotg->regs + DCTL);
3041 		dctl |= DCTL_SFTDISCON;
3042 		dwc2_writel(dctl, hsotg->regs + DCTL);
3043 	}
3044 
3045 	if (hsotg->wq_otg) {
3046 		if (!cancel_work_sync(&hsotg->wf_otg))
3047 			flush_workqueue(hsotg->wq_otg);
3048 		destroy_workqueue(hsotg->wq_otg);
3049 	}
3050 
3051 	del_timer(&hsotg->wkp_timer);
3052 }
3053 
3054 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
3055 {
3056 	/* Turn off all host-specific interrupts */
3057 	dwc2_disable_host_interrupts(hsotg);
3058 
3059 	dwc2_hcd_free(hsotg);
3060 }
3061 
3062 /*
3063  * Initializes the HCD. This function allocates memory for and initializes the
3064  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
3065  * USB bus with the core and calls the hc_driver->start() function. It returns
3066  * a negative error on failure.
3067  */
3068 int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
3069 {
3070 	struct usb_hcd *hcd;
3071 	struct dwc2_host_chan *channel;
3072 	u32 hcfg;
3073 	int i, num_channels;
3074 	int retval;
3075 
3076 	if (usb_disabled())
3077 		return -ENODEV;
3078 
3079 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
3080 
3081 	retval = -ENOMEM;
3082 
3083 	hcfg = dwc2_readl(hsotg->regs + HCFG);
3084 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
3085 
3086 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
3087 	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
3088 					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
3089 	if (!hsotg->frame_num_array)
3090 		goto error1;
3091 	hsotg->last_frame_num_array = kzalloc(
3092 			sizeof(*hsotg->last_frame_num_array) *
3093 			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
3094 	if (!hsotg->last_frame_num_array)
3095 		goto error1;
3096 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
3097 #endif
3098 
3099 	/* Check if the bus driver or platform code has setup a dma_mask */
3100 	if (hsotg->core_params->dma_enable > 0 &&
3101 	    hsotg->dev->dma_mask == NULL) {
3102 		dev_warn(hsotg->dev,
3103 			 "dma_mask not set, disabling DMA\n");
3104 		hsotg->core_params->dma_enable = 0;
3105 		hsotg->core_params->dma_desc_enable = 0;
3106 	}
3107 
3108 	/* Set device flags indicating whether the HCD supports DMA */
3109 	if (hsotg->core_params->dma_enable > 0) {
3110 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
3111 			dev_warn(hsotg->dev, "can't set DMA mask\n");
3112 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
3113 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
3114 	}
3115 
3116 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
3117 	if (!hcd)
3118 		goto error1;
3119 
3120 	if (hsotg->core_params->dma_enable <= 0)
3121 		hcd->self.uses_dma = 0;
3122 
3123 	hcd->has_tt = 1;
3124 
3125 	((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
3126 	hsotg->priv = hcd;
3127 
3128 	/*
3129 	 * Disable the global interrupt until all the interrupt handlers are
3130 	 * installed
3131 	 */
3132 	dwc2_disable_global_interrupts(hsotg);
3133 
3134 	/* Initialize the DWC_otg core, and select the Phy type */
3135 	retval = dwc2_core_init(hsotg, true);
3136 	if (retval)
3137 		goto error2;
3138 
3139 	/* Create new workqueue and init work */
3140 	retval = -ENOMEM;
3141 	hsotg->wq_otg = create_singlethread_workqueue("dwc2");
3142 	if (!hsotg->wq_otg) {
3143 		dev_err(hsotg->dev, "Failed to create workqueue\n");
3144 		goto error2;
3145 	}
3146 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
3147 
3148 	setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
3149 		    (unsigned long)hsotg);
3150 
3151 	/* Initialize the non-periodic schedule */
3152 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
3153 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
3154 
3155 	/* Initialize the periodic schedule */
3156 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
3157 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
3158 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
3159 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
3160 
3161 	INIT_LIST_HEAD(&hsotg->split_order);
3162 
3163 	/*
3164 	 * Create a host channel descriptor for each host channel implemented
3165 	 * in the controller. Initialize the channel descriptor array.
3166 	 */
3167 	INIT_LIST_HEAD(&hsotg->free_hc_list);
3168 	num_channels = hsotg->core_params->host_channels;
3169 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
3170 
3171 	for (i = 0; i < num_channels; i++) {
3172 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
3173 		if (channel == NULL)
3174 			goto error3;
3175 		channel->hc_num = i;
3176 		INIT_LIST_HEAD(&channel->split_order_list_entry);
3177 		hsotg->hc_ptr_array[i] = channel;
3178 	}
3179 
3180 	if (hsotg->core_params->uframe_sched > 0)
3181 		dwc2_hcd_init_usecs(hsotg);
3182 
3183 	/* Initialize hsotg start work */
3184 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
3185 
3186 	/* Initialize port reset work */
3187 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
3188 
3189 	/*
3190 	 * Allocate space for storing data on status transactions. Normally no
3191 	 * data is sent, but this space acts as a bit bucket. This must be
3192 	 * done after usb_add_hcd since that function allocates the DMA buffer
3193 	 * pool.
3194 	 */
3195 	if (hsotg->core_params->dma_enable > 0)
3196 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
3197 					DWC2_HCD_STATUS_BUF_SIZE,
3198 					&hsotg->status_buf_dma, GFP_KERNEL);
3199 	else
3200 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
3201 					  GFP_KERNEL);
3202 
3203 	if (!hsotg->status_buf)
3204 		goto error3;
3205 
3206 	/*
3207 	 * Create kmem caches to handle descriptor buffers in descriptor
3208 	 * DMA mode.
3209 	 * Alignment must be set to 512 bytes.
3210 	 */
3211 	if (hsotg->core_params->dma_desc_enable ||
3212 	    hsotg->core_params->dma_desc_fs_enable) {
3213 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
3214 				sizeof(struct dwc2_hcd_dma_desc) *
3215 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
3216 				NULL);
3217 		if (!hsotg->desc_gen_cache) {
3218 			dev_err(hsotg->dev,
3219 				"unable to create dwc2 generic desc cache\n");
3220 
3221 			/*
3222 			 * Disable descriptor dma mode since it will not be
3223 			 * usable.
3224 			 */
3225 			hsotg->core_params->dma_desc_enable = 0;
3226 			hsotg->core_params->dma_desc_fs_enable = 0;
3227 		}
3228 
3229 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
3230 				sizeof(struct dwc2_hcd_dma_desc) *
3231 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
3232 		if (!hsotg->desc_hsisoc_cache) {
3233 			dev_err(hsotg->dev,
3234 				"unable to create dwc2 hs isoc desc cache\n");
3235 
3236 			kmem_cache_destroy(hsotg->desc_gen_cache);
3237 
3238 			/*
3239 			 * Disable descriptor dma mode since it will not be
3240 			 * usable.
3241 			 */
3242 			hsotg->core_params->dma_desc_enable = 0;
3243 			hsotg->core_params->dma_desc_fs_enable = 0;
3244 		}
3245 	}
3246 
3247 	hsotg->otg_port = 1;
3248 	hsotg->frame_list = NULL;
3249 	hsotg->frame_list_dma = 0;
3250 	hsotg->periodic_qh_count = 0;
3251 
3252 	/* Initiate lx_state to L3 disconnected state */
3253 	hsotg->lx_state = DWC2_L3;
3254 
3255 	hcd->self.otg_port = hsotg->otg_port;
3256 
3257 	/* Don't support SG list at this point */
3258 	hcd->self.sg_tablesize = 0;
3259 
3260 	if (!IS_ERR_OR_NULL(hsotg->uphy))
3261 		otg_set_host(hsotg->uphy->otg, &hcd->self);
3262 
3263 	/*
3264 	 * Finish generic HCD initialization and start the HCD. This function
3265 	 * allocates the DMA buffer pool, registers the USB bus, requests the
3266 	 * IRQ line, and calls hcd_start method.
3267 	 */
3268 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
3269 	if (retval < 0)
3270 		goto error4;
3271 
3272 	device_wakeup_enable(hcd->self.controller);
3273 
3274 	dwc2_hcd_dump_state(hsotg);
3275 
3276 	dwc2_enable_global_interrupts(hsotg);
3277 
3278 	return 0;
3279 
3280 error4:
3281 	kmem_cache_destroy(hsotg->desc_gen_cache);
3282 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
3283 error3:
3284 	dwc2_hcd_release(hsotg);
3285 error2:
3286 	usb_put_hcd(hcd);
3287 error1:
3288 	kfree(hsotg->core_params);
3289 
3290 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
3291 	kfree(hsotg->last_frame_num_array);
3292 	kfree(hsotg->frame_num_array);
3293 #endif
3294 
3295 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
3296 	return retval;
3297 }
3298 
3299 /*
3300  * Removes the HCD.
3301  * Frees memory and resources associated with the HCD and deregisters the bus.
3302  */
3303 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
3304 {
3305 	struct usb_hcd *hcd;
3306 
3307 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
3308 
3309 	hcd = dwc2_hsotg_to_hcd(hsotg);
3310 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
3311 
3312 	if (!hcd) {
3313 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
3314 			__func__);
3315 		return;
3316 	}
3317 
3318 	if (!IS_ERR_OR_NULL(hsotg->uphy))
3319 		otg_set_host(hsotg->uphy->otg, NULL);
3320 
3321 	usb_remove_hcd(hcd);
3322 	hsotg->priv = NULL;
3323 
3324 	kmem_cache_destroy(hsotg->desc_gen_cache);
3325 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
3326 
3327 	dwc2_hcd_release(hsotg);
3328 	usb_put_hcd(hcd);
3329 
3330 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
3331 	kfree(hsotg->last_frame_num_array);
3332 	kfree(hsotg->frame_num_array);
3333 #endif
3334 }
3335