1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * hcd.c - DesignWare HS OTG Controller host-mode routines 4 * 5 * Copyright (C) 2004-2013 Synopsys, Inc. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The names of the above-listed copyright holders may not be used 17 * to endorse or promote products derived from this software without 18 * specific prior written permission. 19 * 20 * ALTERNATIVELY, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any 23 * later version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * This file contains the core HCD code, and implements the Linux hc_driver 40 * API 41 */ 42 #include <linux/kernel.h> 43 #include <linux/module.h> 44 #include <linux/spinlock.h> 45 #include <linux/interrupt.h> 46 #include <linux/platform_device.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/delay.h> 49 #include <linux/io.h> 50 #include <linux/slab.h> 51 #include <linux/usb.h> 52 53 #include <linux/usb/hcd.h> 54 #include <linux/usb/ch11.h> 55 56 #include "core.h" 57 #include "hcd.h" 58 59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg); 60 61 /* 62 * ========================================================================= 63 * Host Core Layer Functions 64 * ========================================================================= 65 */ 66 67 /** 68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts, 69 * used in both device and host modes 70 * 71 * @hsotg: Programming view of the DWC_otg controller 72 */ 73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg) 74 { 75 u32 intmsk; 76 77 /* Clear any pending OTG Interrupts */ 78 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT); 79 80 /* Clear any pending interrupts */ 81 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 82 83 /* Enable the interrupts in the GINTMSK */ 84 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT; 85 86 if (!hsotg->params.host_dma) 87 intmsk |= GINTSTS_RXFLVL; 88 if (!hsotg->params.external_id_pin_ctl) 89 intmsk |= GINTSTS_CONIDSTSCHNG; 90 91 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP | 92 GINTSTS_SESSREQINT; 93 94 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm) 95 intmsk |= GINTSTS_LPMTRANRCVD; 96 97 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 98 } 99 100 /* 101 * Initializes the FSLSPClkSel field of the HCFG register depending on the 102 * PHY type 103 */ 104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg) 105 { 106 u32 hcfg, val; 107 108 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI && 109 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED && 110 hsotg->params.ulpi_fs_ls) || 111 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) { 112 /* Full speed PHY */ 113 val = HCFG_FSLSPCLKSEL_48_MHZ; 114 } else { 115 /* High speed PHY running at full speed or high speed */ 116 val = HCFG_FSLSPCLKSEL_30_60_MHZ; 117 } 118 119 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val); 120 hcfg = dwc2_readl(hsotg->regs + HCFG); 121 hcfg &= ~HCFG_FSLSPCLKSEL_MASK; 122 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT; 123 dwc2_writel(hcfg, hsotg->regs + HCFG); 124 } 125 126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 127 { 128 u32 usbcfg, ggpio, i2cctl; 129 int retval = 0; 130 131 /* 132 * core_init() is now called on every switch so only call the 133 * following for the first time through 134 */ 135 if (select_phy) { 136 dev_dbg(hsotg->dev, "FS PHY selected\n"); 137 138 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 139 if (!(usbcfg & GUSBCFG_PHYSEL)) { 140 usbcfg |= GUSBCFG_PHYSEL; 141 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 142 143 /* Reset after a PHY select */ 144 retval = dwc2_core_reset(hsotg, false); 145 146 if (retval) { 147 dev_err(hsotg->dev, 148 "%s: Reset failed, aborting", __func__); 149 return retval; 150 } 151 } 152 153 if (hsotg->params.activate_stm_fs_transceiver) { 154 ggpio = dwc2_readl(hsotg->regs + GGPIO); 155 if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) { 156 dev_dbg(hsotg->dev, "Activating transceiver\n"); 157 /* 158 * STM32F4x9 uses the GGPIO register as general 159 * core configuration register. 160 */ 161 ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN; 162 dwc2_writel(ggpio, hsotg->regs + GGPIO); 163 } 164 } 165 } 166 167 /* 168 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also 169 * do this on HNP Dev/Host mode switches (done in dev_init and 170 * host_init). 171 */ 172 if (dwc2_is_host_mode(hsotg)) 173 dwc2_init_fs_ls_pclk_sel(hsotg); 174 175 if (hsotg->params.i2c_enable) { 176 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n"); 177 178 /* Program GUSBCFG.OtgUtmiFsSel to I2C */ 179 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 180 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL; 181 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 182 183 /* Program GI2CCTL.I2CEn */ 184 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL); 185 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK; 186 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT; 187 i2cctl &= ~GI2CCTL_I2CEN; 188 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL); 189 i2cctl |= GI2CCTL_I2CEN; 190 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL); 191 } 192 193 return retval; 194 } 195 196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 197 { 198 u32 usbcfg, usbcfg_old; 199 int retval = 0; 200 201 if (!select_phy) 202 return 0; 203 204 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 205 usbcfg_old = usbcfg; 206 207 /* 208 * HS PHY parameters. These parameters are preserved during soft reset 209 * so only program the first time. Do a soft reset immediately after 210 * setting phyif. 211 */ 212 switch (hsotg->params.phy_type) { 213 case DWC2_PHY_TYPE_PARAM_ULPI: 214 /* ULPI interface */ 215 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n"); 216 usbcfg |= GUSBCFG_ULPI_UTMI_SEL; 217 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL); 218 if (hsotg->params.phy_ulpi_ddr) 219 usbcfg |= GUSBCFG_DDRSEL; 220 221 /* Set external VBUS indicator as needed. */ 222 if (hsotg->params.oc_disable) 223 usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND | 224 GUSBCFG_INDICATORPASSTHROUGH); 225 break; 226 case DWC2_PHY_TYPE_PARAM_UTMI: 227 /* UTMI+ interface */ 228 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n"); 229 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16); 230 if (hsotg->params.phy_utmi_width == 16) 231 usbcfg |= GUSBCFG_PHYIF16; 232 break; 233 default: 234 dev_err(hsotg->dev, "FS PHY selected at HS!\n"); 235 break; 236 } 237 238 if (usbcfg != usbcfg_old) { 239 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 240 241 /* Reset after setting the PHY parameters */ 242 retval = dwc2_core_reset(hsotg, false); 243 if (retval) { 244 dev_err(hsotg->dev, 245 "%s: Reset failed, aborting", __func__); 246 return retval; 247 } 248 } 249 250 return retval; 251 } 252 253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 254 { 255 u32 usbcfg; 256 int retval = 0; 257 258 if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 259 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) && 260 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) { 261 /* If FS/LS mode with FS/LS PHY */ 262 retval = dwc2_fs_phy_init(hsotg, select_phy); 263 if (retval) 264 return retval; 265 } else { 266 /* High speed PHY */ 267 retval = dwc2_hs_phy_init(hsotg, select_phy); 268 if (retval) 269 return retval; 270 } 271 272 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI && 273 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED && 274 hsotg->params.ulpi_fs_ls) { 275 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n"); 276 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 277 usbcfg |= GUSBCFG_ULPI_FS_LS; 278 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M; 279 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 280 } else { 281 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 282 usbcfg &= ~GUSBCFG_ULPI_FS_LS; 283 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M; 284 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 285 } 286 287 return retval; 288 } 289 290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg) 291 { 292 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG); 293 294 switch (hsotg->hw_params.arch) { 295 case GHWCFG2_EXT_DMA_ARCH: 296 dev_err(hsotg->dev, "External DMA Mode not supported\n"); 297 return -EINVAL; 298 299 case GHWCFG2_INT_DMA_ARCH: 300 dev_dbg(hsotg->dev, "Internal DMA Mode\n"); 301 if (hsotg->params.ahbcfg != -1) { 302 ahbcfg &= GAHBCFG_CTRL_MASK; 303 ahbcfg |= hsotg->params.ahbcfg & 304 ~GAHBCFG_CTRL_MASK; 305 } 306 break; 307 308 case GHWCFG2_SLAVE_ONLY_ARCH: 309 default: 310 dev_dbg(hsotg->dev, "Slave Only Mode\n"); 311 break; 312 } 313 314 if (hsotg->params.host_dma) 315 ahbcfg |= GAHBCFG_DMA_EN; 316 else 317 hsotg->params.dma_desc_enable = false; 318 319 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG); 320 321 return 0; 322 } 323 324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg) 325 { 326 u32 usbcfg; 327 328 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 329 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP); 330 331 switch (hsotg->hw_params.op_mode) { 332 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE: 333 if (hsotg->params.otg_cap == 334 DWC2_CAP_PARAM_HNP_SRP_CAPABLE) 335 usbcfg |= GUSBCFG_HNPCAP; 336 if (hsotg->params.otg_cap != 337 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE) 338 usbcfg |= GUSBCFG_SRPCAP; 339 break; 340 341 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE: 342 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE: 343 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST: 344 if (hsotg->params.otg_cap != 345 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE) 346 usbcfg |= GUSBCFG_SRPCAP; 347 break; 348 349 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE: 350 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE: 351 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST: 352 default: 353 break; 354 } 355 356 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 357 } 358 359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg) 360 { 361 int ret; 362 363 hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus"); 364 if (IS_ERR(hsotg->vbus_supply)) { 365 ret = PTR_ERR(hsotg->vbus_supply); 366 hsotg->vbus_supply = NULL; 367 return ret == -ENODEV ? 0 : ret; 368 } 369 370 return regulator_enable(hsotg->vbus_supply); 371 } 372 373 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg) 374 { 375 if (hsotg->vbus_supply) 376 return regulator_disable(hsotg->vbus_supply); 377 378 return 0; 379 } 380 381 /** 382 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts 383 * 384 * @hsotg: Programming view of DWC_otg controller 385 */ 386 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg) 387 { 388 u32 intmsk; 389 390 dev_dbg(hsotg->dev, "%s()\n", __func__); 391 392 /* Disable all interrupts */ 393 dwc2_writel(0, hsotg->regs + GINTMSK); 394 dwc2_writel(0, hsotg->regs + HAINTMSK); 395 396 /* Enable the common interrupts */ 397 dwc2_enable_common_interrupts(hsotg); 398 399 /* Enable host mode interrupts without disturbing common interrupts */ 400 intmsk = dwc2_readl(hsotg->regs + GINTMSK); 401 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT; 402 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 403 } 404 405 /** 406 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts 407 * 408 * @hsotg: Programming view of DWC_otg controller 409 */ 410 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg) 411 { 412 u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK); 413 414 /* Disable host mode interrupts without disturbing common interrupts */ 415 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT | 416 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT); 417 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 418 } 419 420 /* 421 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size 422 * For system that have a total fifo depth that is smaller than the default 423 * RX + TX fifo size. 424 * 425 * @hsotg: Programming view of DWC_otg controller 426 */ 427 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg) 428 { 429 struct dwc2_core_params *params = &hsotg->params; 430 struct dwc2_hw_params *hw = &hsotg->hw_params; 431 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size; 432 433 total_fifo_size = hw->total_fifo_size; 434 rxfsiz = params->host_rx_fifo_size; 435 nptxfsiz = params->host_nperio_tx_fifo_size; 436 ptxfsiz = params->host_perio_tx_fifo_size; 437 438 /* 439 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth 440 * allocation with support for high bandwidth endpoints. Synopsys 441 * defines MPS(Max Packet size) for a periodic EP=1024, and for 442 * non-periodic as 512. 443 */ 444 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) { 445 /* 446 * For Buffer DMA mode/Scatter Gather DMA mode 447 * 2 * ((Largest Packet size / 4) + 1 + 1) + n 448 * with n = number of host channel. 449 * 2 * ((1024/4) + 2) = 516 450 */ 451 rxfsiz = 516 + hw->host_channels; 452 453 /* 454 * min non-periodic tx fifo depth 455 * 2 * (largest non-periodic USB packet used / 4) 456 * 2 * (512/4) = 256 457 */ 458 nptxfsiz = 256; 459 460 /* 461 * min periodic tx fifo depth 462 * (largest packet size*MC)/4 463 * (1024 * 3)/4 = 768 464 */ 465 ptxfsiz = 768; 466 467 params->host_rx_fifo_size = rxfsiz; 468 params->host_nperio_tx_fifo_size = nptxfsiz; 469 params->host_perio_tx_fifo_size = ptxfsiz; 470 } 471 472 /* 473 * If the summation of RX, NPTX and PTX fifo sizes is still 474 * bigger than the total_fifo_size, then we have a problem. 475 * 476 * We won't be able to allocate as many endpoints. Right now, 477 * we're just printing an error message, but ideally this FIFO 478 * allocation algorithm would be improved in the future. 479 * 480 * FIXME improve this FIFO allocation algorithm. 481 */ 482 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz))) 483 dev_err(hsotg->dev, "invalid fifo sizes\n"); 484 } 485 486 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg) 487 { 488 struct dwc2_core_params *params = &hsotg->params; 489 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz; 490 491 if (!params->enable_dynamic_fifo) 492 return; 493 494 dwc2_calculate_dynamic_fifo(hsotg); 495 496 /* Rx FIFO */ 497 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ); 498 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz); 499 grxfsiz &= ~GRXFSIZ_DEPTH_MASK; 500 grxfsiz |= params->host_rx_fifo_size << 501 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK; 502 dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ); 503 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", 504 dwc2_readl(hsotg->regs + GRXFSIZ)); 505 506 /* Non-periodic Tx FIFO */ 507 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n", 508 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 509 nptxfsiz = params->host_nperio_tx_fifo_size << 510 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; 511 nptxfsiz |= params->host_rx_fifo_size << 512 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; 513 dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ); 514 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n", 515 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 516 517 /* Periodic Tx FIFO */ 518 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n", 519 dwc2_readl(hsotg->regs + HPTXFSIZ)); 520 hptxfsiz = params->host_perio_tx_fifo_size << 521 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; 522 hptxfsiz |= (params->host_rx_fifo_size + 523 params->host_nperio_tx_fifo_size) << 524 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; 525 dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ); 526 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n", 527 dwc2_readl(hsotg->regs + HPTXFSIZ)); 528 529 if (hsotg->params.en_multiple_tx_fifo && 530 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) { 531 /* 532 * This feature was implemented in 2.91a version 533 * Global DFIFOCFG calculation for Host mode - 534 * include RxFIFO, NPTXFIFO and HPTXFIFO 535 */ 536 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG); 537 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK; 538 dfifocfg |= (params->host_rx_fifo_size + 539 params->host_nperio_tx_fifo_size + 540 params->host_perio_tx_fifo_size) << 541 GDFIFOCFG_EPINFOBASE_SHIFT & 542 GDFIFOCFG_EPINFOBASE_MASK; 543 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG); 544 } 545 } 546 547 /** 548 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for 549 * the HFIR register according to PHY type and speed 550 * 551 * @hsotg: Programming view of DWC_otg controller 552 * 553 * NOTE: The caller can modify the value of the HFIR register only after the 554 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort) 555 * has been set 556 */ 557 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg) 558 { 559 u32 usbcfg; 560 u32 hprt0; 561 int clock = 60; /* default value */ 562 563 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 564 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 565 566 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) && 567 !(usbcfg & GUSBCFG_PHYIF16)) 568 clock = 60; 569 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type == 570 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI) 571 clock = 48; 572 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 573 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) 574 clock = 30; 575 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 576 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16)) 577 clock = 60; 578 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 579 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) 580 clock = 48; 581 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) && 582 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI) 583 clock = 48; 584 if ((usbcfg & GUSBCFG_PHYSEL) && 585 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) 586 clock = 48; 587 588 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED) 589 /* High speed case */ 590 return 125 * clock - 1; 591 592 /* FS/LS case */ 593 return 1000 * clock - 1; 594 } 595 596 /** 597 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination 598 * buffer 599 * 600 * @hsotg: Programming view of DWC_otg controller 601 * @dest: Destination buffer for the packet 602 * @bytes: Number of bytes to copy to the destination 603 */ 604 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes) 605 { 606 u32 __iomem *fifo = hsotg->regs + HCFIFO(0); 607 u32 *data_buf = (u32 *)dest; 608 int word_count = (bytes + 3) / 4; 609 int i; 610 611 /* 612 * Todo: Account for the case where dest is not dword aligned. This 613 * requires reading data from the FIFO into a u32 temp buffer, then 614 * moving it into the data buffer. 615 */ 616 617 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes); 618 619 for (i = 0; i < word_count; i++, data_buf++) 620 *data_buf = dwc2_readl(fifo); 621 } 622 623 /** 624 * dwc2_dump_channel_info() - Prints the state of a host channel 625 * 626 * @hsotg: Programming view of DWC_otg controller 627 * @chan: Pointer to the channel to dump 628 * 629 * Must be called with interrupt disabled and spinlock held 630 * 631 * NOTE: This function will be removed once the peripheral controller code 632 * is integrated and the driver is stable 633 */ 634 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg, 635 struct dwc2_host_chan *chan) 636 { 637 #ifdef VERBOSE_DEBUG 638 int num_channels = hsotg->params.host_channels; 639 struct dwc2_qh *qh; 640 u32 hcchar; 641 u32 hcsplt; 642 u32 hctsiz; 643 u32 hc_dma; 644 int i; 645 646 if (!chan) 647 return; 648 649 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 650 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num)); 651 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num)); 652 hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num)); 653 654 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan); 655 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n", 656 hcchar, hcsplt); 657 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n", 658 hctsiz, hc_dma); 659 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", 660 chan->dev_addr, chan->ep_num, chan->ep_is_in); 661 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); 662 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); 663 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start); 664 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started); 665 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); 666 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); 667 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", 668 (unsigned long)chan->xfer_dma); 669 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); 670 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); 671 dev_dbg(hsotg->dev, " NP inactive sched:\n"); 672 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive, 673 qh_list_entry) 674 dev_dbg(hsotg->dev, " %p\n", qh); 675 dev_dbg(hsotg->dev, " NP waiting sched:\n"); 676 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting, 677 qh_list_entry) 678 dev_dbg(hsotg->dev, " %p\n", qh); 679 dev_dbg(hsotg->dev, " NP active sched:\n"); 680 list_for_each_entry(qh, &hsotg->non_periodic_sched_active, 681 qh_list_entry) 682 dev_dbg(hsotg->dev, " %p\n", qh); 683 dev_dbg(hsotg->dev, " Channels:\n"); 684 for (i = 0; i < num_channels; i++) { 685 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; 686 687 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan); 688 } 689 #endif /* VERBOSE_DEBUG */ 690 } 691 692 static int _dwc2_hcd_start(struct usb_hcd *hcd); 693 694 static void dwc2_host_start(struct dwc2_hsotg *hsotg) 695 { 696 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 697 698 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg); 699 _dwc2_hcd_start(hcd); 700 } 701 702 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg) 703 { 704 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 705 706 hcd->self.is_b_host = 0; 707 } 708 709 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, 710 int *hub_addr, int *hub_port) 711 { 712 struct urb *urb = context; 713 714 if (urb->dev->tt) 715 *hub_addr = urb->dev->tt->hub->devnum; 716 else 717 *hub_addr = 0; 718 *hub_port = urb->dev->ttport; 719 } 720 721 /* 722 * ========================================================================= 723 * Low Level Host Channel Access Functions 724 * ========================================================================= 725 */ 726 727 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg, 728 struct dwc2_host_chan *chan) 729 { 730 u32 hcintmsk = HCINTMSK_CHHLTD; 731 732 switch (chan->ep_type) { 733 case USB_ENDPOINT_XFER_CONTROL: 734 case USB_ENDPOINT_XFER_BULK: 735 dev_vdbg(hsotg->dev, "control/bulk\n"); 736 hcintmsk |= HCINTMSK_XFERCOMPL; 737 hcintmsk |= HCINTMSK_STALL; 738 hcintmsk |= HCINTMSK_XACTERR; 739 hcintmsk |= HCINTMSK_DATATGLERR; 740 if (chan->ep_is_in) { 741 hcintmsk |= HCINTMSK_BBLERR; 742 } else { 743 hcintmsk |= HCINTMSK_NAK; 744 hcintmsk |= HCINTMSK_NYET; 745 if (chan->do_ping) 746 hcintmsk |= HCINTMSK_ACK; 747 } 748 749 if (chan->do_split) { 750 hcintmsk |= HCINTMSK_NAK; 751 if (chan->complete_split) 752 hcintmsk |= HCINTMSK_NYET; 753 else 754 hcintmsk |= HCINTMSK_ACK; 755 } 756 757 if (chan->error_state) 758 hcintmsk |= HCINTMSK_ACK; 759 break; 760 761 case USB_ENDPOINT_XFER_INT: 762 if (dbg_perio()) 763 dev_vdbg(hsotg->dev, "intr\n"); 764 hcintmsk |= HCINTMSK_XFERCOMPL; 765 hcintmsk |= HCINTMSK_NAK; 766 hcintmsk |= HCINTMSK_STALL; 767 hcintmsk |= HCINTMSK_XACTERR; 768 hcintmsk |= HCINTMSK_DATATGLERR; 769 hcintmsk |= HCINTMSK_FRMOVRUN; 770 771 if (chan->ep_is_in) 772 hcintmsk |= HCINTMSK_BBLERR; 773 if (chan->error_state) 774 hcintmsk |= HCINTMSK_ACK; 775 if (chan->do_split) { 776 if (chan->complete_split) 777 hcintmsk |= HCINTMSK_NYET; 778 else 779 hcintmsk |= HCINTMSK_ACK; 780 } 781 break; 782 783 case USB_ENDPOINT_XFER_ISOC: 784 if (dbg_perio()) 785 dev_vdbg(hsotg->dev, "isoc\n"); 786 hcintmsk |= HCINTMSK_XFERCOMPL; 787 hcintmsk |= HCINTMSK_FRMOVRUN; 788 hcintmsk |= HCINTMSK_ACK; 789 790 if (chan->ep_is_in) { 791 hcintmsk |= HCINTMSK_XACTERR; 792 hcintmsk |= HCINTMSK_BBLERR; 793 } 794 break; 795 default: 796 dev_err(hsotg->dev, "## Unknown EP type ##\n"); 797 break; 798 } 799 800 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 801 if (dbg_hc(chan)) 802 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); 803 } 804 805 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg, 806 struct dwc2_host_chan *chan) 807 { 808 u32 hcintmsk = HCINTMSK_CHHLTD; 809 810 /* 811 * For Descriptor DMA mode core halts the channel on AHB error. 812 * Interrupt is not required. 813 */ 814 if (!hsotg->params.dma_desc_enable) { 815 if (dbg_hc(chan)) 816 dev_vdbg(hsotg->dev, "desc DMA disabled\n"); 817 hcintmsk |= HCINTMSK_AHBERR; 818 } else { 819 if (dbg_hc(chan)) 820 dev_vdbg(hsotg->dev, "desc DMA enabled\n"); 821 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 822 hcintmsk |= HCINTMSK_XFERCOMPL; 823 } 824 825 if (chan->error_state && !chan->do_split && 826 chan->ep_type != USB_ENDPOINT_XFER_ISOC) { 827 if (dbg_hc(chan)) 828 dev_vdbg(hsotg->dev, "setting ACK\n"); 829 hcintmsk |= HCINTMSK_ACK; 830 if (chan->ep_is_in) { 831 hcintmsk |= HCINTMSK_DATATGLERR; 832 if (chan->ep_type != USB_ENDPOINT_XFER_INT) 833 hcintmsk |= HCINTMSK_NAK; 834 } 835 } 836 837 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 838 if (dbg_hc(chan)) 839 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); 840 } 841 842 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg, 843 struct dwc2_host_chan *chan) 844 { 845 u32 intmsk; 846 847 if (hsotg->params.host_dma) { 848 if (dbg_hc(chan)) 849 dev_vdbg(hsotg->dev, "DMA enabled\n"); 850 dwc2_hc_enable_dma_ints(hsotg, chan); 851 } else { 852 if (dbg_hc(chan)) 853 dev_vdbg(hsotg->dev, "DMA disabled\n"); 854 dwc2_hc_enable_slave_ints(hsotg, chan); 855 } 856 857 /* Enable the top level host channel interrupt */ 858 intmsk = dwc2_readl(hsotg->regs + HAINTMSK); 859 intmsk |= 1 << chan->hc_num; 860 dwc2_writel(intmsk, hsotg->regs + HAINTMSK); 861 if (dbg_hc(chan)) 862 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk); 863 864 /* Make sure host channel interrupts are enabled */ 865 intmsk = dwc2_readl(hsotg->regs + GINTMSK); 866 intmsk |= GINTSTS_HCHINT; 867 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 868 if (dbg_hc(chan)) 869 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk); 870 } 871 872 /** 873 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from 874 * a specific endpoint 875 * 876 * @hsotg: Programming view of DWC_otg controller 877 * @chan: Information needed to initialize the host channel 878 * 879 * The HCCHARn register is set up with the characteristics specified in chan. 880 * Host channel interrupts that may need to be serviced while this transfer is 881 * in progress are enabled. 882 */ 883 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 884 { 885 u8 hc_num = chan->hc_num; 886 u32 hcintmsk; 887 u32 hcchar; 888 u32 hcsplt = 0; 889 890 if (dbg_hc(chan)) 891 dev_vdbg(hsotg->dev, "%s()\n", __func__); 892 893 /* Clear old interrupt conditions for this host channel */ 894 hcintmsk = 0xffffffff; 895 hcintmsk &= ~HCINTMSK_RESERVED14_31; 896 dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num)); 897 898 /* Enable channel interrupts required for this transfer */ 899 dwc2_hc_enable_ints(hsotg, chan); 900 901 /* 902 * Program the HCCHARn register with the endpoint characteristics for 903 * the current transfer 904 */ 905 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK; 906 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK; 907 if (chan->ep_is_in) 908 hcchar |= HCCHAR_EPDIR; 909 if (chan->speed == USB_SPEED_LOW) 910 hcchar |= HCCHAR_LSPDDEV; 911 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK; 912 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK; 913 dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num)); 914 if (dbg_hc(chan)) { 915 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n", 916 hc_num, hcchar); 917 918 dev_vdbg(hsotg->dev, "%s: Channel %d\n", 919 __func__, hc_num); 920 dev_vdbg(hsotg->dev, " Dev Addr: %d\n", 921 chan->dev_addr); 922 dev_vdbg(hsotg->dev, " Ep Num: %d\n", 923 chan->ep_num); 924 dev_vdbg(hsotg->dev, " Is In: %d\n", 925 chan->ep_is_in); 926 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n", 927 chan->speed == USB_SPEED_LOW); 928 dev_vdbg(hsotg->dev, " Ep Type: %d\n", 929 chan->ep_type); 930 dev_vdbg(hsotg->dev, " Max Pkt: %d\n", 931 chan->max_packet); 932 } 933 934 /* Program the HCSPLT register for SPLITs */ 935 if (chan->do_split) { 936 if (dbg_hc(chan)) 937 dev_vdbg(hsotg->dev, 938 "Programming HC %d with split --> %s\n", 939 hc_num, 940 chan->complete_split ? "CSPLIT" : "SSPLIT"); 941 if (chan->complete_split) 942 hcsplt |= HCSPLT_COMPSPLT; 943 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT & 944 HCSPLT_XACTPOS_MASK; 945 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT & 946 HCSPLT_HUBADDR_MASK; 947 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT & 948 HCSPLT_PRTADDR_MASK; 949 if (dbg_hc(chan)) { 950 dev_vdbg(hsotg->dev, " comp split %d\n", 951 chan->complete_split); 952 dev_vdbg(hsotg->dev, " xact pos %d\n", 953 chan->xact_pos); 954 dev_vdbg(hsotg->dev, " hub addr %d\n", 955 chan->hub_addr); 956 dev_vdbg(hsotg->dev, " hub port %d\n", 957 chan->hub_port); 958 dev_vdbg(hsotg->dev, " is_in %d\n", 959 chan->ep_is_in); 960 dev_vdbg(hsotg->dev, " Max Pkt %d\n", 961 chan->max_packet); 962 dev_vdbg(hsotg->dev, " xferlen %d\n", 963 chan->xfer_len); 964 } 965 } 966 967 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num)); 968 } 969 970 /** 971 * dwc2_hc_halt() - Attempts to halt a host channel 972 * 973 * @hsotg: Controller register interface 974 * @chan: Host channel to halt 975 * @halt_status: Reason for halting the channel 976 * 977 * This function should only be called in Slave mode or to abort a transfer in 978 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the 979 * controller halts the channel when the transfer is complete or a condition 980 * occurs that requires application intervention. 981 * 982 * In slave mode, checks for a free request queue entry, then sets the Channel 983 * Enable and Channel Disable bits of the Host Channel Characteristics 984 * register of the specified channel to intiate the halt. If there is no free 985 * request queue entry, sets only the Channel Disable bit of the HCCHARn 986 * register to flush requests for this channel. In the latter case, sets a 987 * flag to indicate that the host channel needs to be halted when a request 988 * queue slot is open. 989 * 990 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the 991 * HCCHARn register. The controller ensures there is space in the request 992 * queue before submitting the halt request. 993 * 994 * Some time may elapse before the core flushes any posted requests for this 995 * host channel and halts. The Channel Halted interrupt handler completes the 996 * deactivation of the host channel. 997 */ 998 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, 999 enum dwc2_halt_status halt_status) 1000 { 1001 u32 nptxsts, hptxsts, hcchar; 1002 1003 if (dbg_hc(chan)) 1004 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1005 1006 /* 1007 * In buffer DMA or external DMA mode channel can't be halted 1008 * for non-split periodic channels. At the end of the next 1009 * uframe/frame (in the worst case), the core generates a channel 1010 * halted and disables the channel automatically. 1011 */ 1012 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) || 1013 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) { 1014 if (!chan->do_split && 1015 (chan->ep_type == USB_ENDPOINT_XFER_ISOC || 1016 chan->ep_type == USB_ENDPOINT_XFER_INT)) { 1017 dev_err(hsotg->dev, "%s() Channel can't be halted\n", 1018 __func__); 1019 return; 1020 } 1021 } 1022 1023 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS) 1024 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status); 1025 1026 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE || 1027 halt_status == DWC2_HC_XFER_AHB_ERR) { 1028 /* 1029 * Disable all channel interrupts except Ch Halted. The QTD 1030 * and QH state associated with this transfer has been cleared 1031 * (in the case of URB_DEQUEUE), so the channel needs to be 1032 * shut down carefully to prevent crashes. 1033 */ 1034 u32 hcintmsk = HCINTMSK_CHHLTD; 1035 1036 dev_vdbg(hsotg->dev, "dequeue/error\n"); 1037 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 1038 1039 /* 1040 * Make sure no other interrupts besides halt are currently 1041 * pending. Handling another interrupt could cause a crash due 1042 * to the QTD and QH state. 1043 */ 1044 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num)); 1045 1046 /* 1047 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR 1048 * even if the channel was already halted for some other 1049 * reason 1050 */ 1051 chan->halt_status = halt_status; 1052 1053 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1054 if (!(hcchar & HCCHAR_CHENA)) { 1055 /* 1056 * The channel is either already halted or it hasn't 1057 * started yet. In DMA mode, the transfer may halt if 1058 * it finishes normally or a condition occurs that 1059 * requires driver intervention. Don't want to halt 1060 * the channel again. In either Slave or DMA mode, 1061 * it's possible that the transfer has been assigned 1062 * to a channel, but not started yet when an URB is 1063 * dequeued. Don't want to halt a channel that hasn't 1064 * started yet. 1065 */ 1066 return; 1067 } 1068 } 1069 if (chan->halt_pending) { 1070 /* 1071 * A halt has already been issued for this channel. This might 1072 * happen when a transfer is aborted by a higher level in 1073 * the stack. 1074 */ 1075 dev_vdbg(hsotg->dev, 1076 "*** %s: Channel %d, chan->halt_pending already set ***\n", 1077 __func__, chan->hc_num); 1078 return; 1079 } 1080 1081 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1082 1083 /* No need to set the bit in DDMA for disabling the channel */ 1084 /* TODO check it everywhere channel is disabled */ 1085 if (!hsotg->params.dma_desc_enable) { 1086 if (dbg_hc(chan)) 1087 dev_vdbg(hsotg->dev, "desc DMA disabled\n"); 1088 hcchar |= HCCHAR_CHENA; 1089 } else { 1090 if (dbg_hc(chan)) 1091 dev_dbg(hsotg->dev, "desc DMA enabled\n"); 1092 } 1093 hcchar |= HCCHAR_CHDIS; 1094 1095 if (!hsotg->params.host_dma) { 1096 if (dbg_hc(chan)) 1097 dev_vdbg(hsotg->dev, "DMA not enabled\n"); 1098 hcchar |= HCCHAR_CHENA; 1099 1100 /* Check for space in the request queue to issue the halt */ 1101 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL || 1102 chan->ep_type == USB_ENDPOINT_XFER_BULK) { 1103 dev_vdbg(hsotg->dev, "control/bulk\n"); 1104 nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS); 1105 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) { 1106 dev_vdbg(hsotg->dev, "Disabling channel\n"); 1107 hcchar &= ~HCCHAR_CHENA; 1108 } 1109 } else { 1110 if (dbg_perio()) 1111 dev_vdbg(hsotg->dev, "isoc/intr\n"); 1112 hptxsts = dwc2_readl(hsotg->regs + HPTXSTS); 1113 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 || 1114 hsotg->queuing_high_bandwidth) { 1115 if (dbg_perio()) 1116 dev_vdbg(hsotg->dev, "Disabling channel\n"); 1117 hcchar &= ~HCCHAR_CHENA; 1118 } 1119 } 1120 } else { 1121 if (dbg_hc(chan)) 1122 dev_vdbg(hsotg->dev, "DMA enabled\n"); 1123 } 1124 1125 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1126 chan->halt_status = halt_status; 1127 1128 if (hcchar & HCCHAR_CHENA) { 1129 if (dbg_hc(chan)) 1130 dev_vdbg(hsotg->dev, "Channel enabled\n"); 1131 chan->halt_pending = 1; 1132 chan->halt_on_queue = 0; 1133 } else { 1134 if (dbg_hc(chan)) 1135 dev_vdbg(hsotg->dev, "Channel disabled\n"); 1136 chan->halt_on_queue = 1; 1137 } 1138 1139 if (dbg_hc(chan)) { 1140 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1141 chan->hc_num); 1142 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n", 1143 hcchar); 1144 dev_vdbg(hsotg->dev, " halt_pending: %d\n", 1145 chan->halt_pending); 1146 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n", 1147 chan->halt_on_queue); 1148 dev_vdbg(hsotg->dev, " halt_status: %d\n", 1149 chan->halt_status); 1150 } 1151 } 1152 1153 /** 1154 * dwc2_hc_cleanup() - Clears the transfer state for a host channel 1155 * 1156 * @hsotg: Programming view of DWC_otg controller 1157 * @chan: Identifies the host channel to clean up 1158 * 1159 * This function is normally called after a transfer is done and the host 1160 * channel is being released 1161 */ 1162 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 1163 { 1164 u32 hcintmsk; 1165 1166 chan->xfer_started = 0; 1167 1168 list_del_init(&chan->split_order_list_entry); 1169 1170 /* 1171 * Clear channel interrupt enables and any unhandled channel interrupt 1172 * conditions 1173 */ 1174 dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num)); 1175 hcintmsk = 0xffffffff; 1176 hcintmsk &= ~HCINTMSK_RESERVED14_31; 1177 dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num)); 1178 } 1179 1180 /** 1181 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in 1182 * which frame a periodic transfer should occur 1183 * 1184 * @hsotg: Programming view of DWC_otg controller 1185 * @chan: Identifies the host channel to set up and its properties 1186 * @hcchar: Current value of the HCCHAR register for the specified host channel 1187 * 1188 * This function has no effect on non-periodic transfers 1189 */ 1190 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg, 1191 struct dwc2_host_chan *chan, u32 *hcchar) 1192 { 1193 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1194 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1195 int host_speed; 1196 int xfer_ns; 1197 int xfer_us; 1198 int bytes_in_fifo; 1199 u16 fifo_space; 1200 u16 frame_number; 1201 u16 wire_frame; 1202 1203 /* 1204 * Try to figure out if we're an even or odd frame. If we set 1205 * even and the current frame number is even the the transfer 1206 * will happen immediately. Similar if both are odd. If one is 1207 * even and the other is odd then the transfer will happen when 1208 * the frame number ticks. 1209 * 1210 * There's a bit of a balancing act to get this right. 1211 * Sometimes we may want to send data in the current frame (AK 1212 * right away). We might want to do this if the frame number 1213 * _just_ ticked, but we might also want to do this in order 1214 * to continue a split transaction that happened late in a 1215 * microframe (so we didn't know to queue the next transfer 1216 * until the frame number had ticked). The problem is that we 1217 * need a lot of knowledge to know if there's actually still 1218 * time to send things or if it would be better to wait until 1219 * the next frame. 1220 * 1221 * We can look at how much time is left in the current frame 1222 * and make a guess about whether we'll have time to transfer. 1223 * We'll do that. 1224 */ 1225 1226 /* Get speed host is running at */ 1227 host_speed = (chan->speed != USB_SPEED_HIGH && 1228 !chan->do_split) ? chan->speed : USB_SPEED_HIGH; 1229 1230 /* See how many bytes are in the periodic FIFO right now */ 1231 fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) & 1232 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; 1233 bytes_in_fifo = sizeof(u32) * 1234 (hsotg->params.host_perio_tx_fifo_size - 1235 fifo_space); 1236 1237 /* 1238 * Roughly estimate bus time for everything in the periodic 1239 * queue + our new transfer. This is "rough" because we're 1240 * using a function that makes takes into account IN/OUT 1241 * and INT/ISO and we're just slamming in one value for all 1242 * transfers. This should be an over-estimate and that should 1243 * be OK, but we can probably tighten it. 1244 */ 1245 xfer_ns = usb_calc_bus_time(host_speed, false, false, 1246 chan->xfer_len + bytes_in_fifo); 1247 xfer_us = NS_TO_US(xfer_ns); 1248 1249 /* See what frame number we'll be at by the time we finish */ 1250 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us); 1251 1252 /* This is when we were scheduled to be on the wire */ 1253 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1); 1254 1255 /* 1256 * If we'd finish _after_ the frame we're scheduled in then 1257 * it's hopeless. Just schedule right away and hope for the 1258 * best. Note that it _might_ be wise to call back into the 1259 * scheduler to pick a better frame, but this is better than 1260 * nothing. 1261 */ 1262 if (dwc2_frame_num_gt(frame_number, wire_frame)) { 1263 dwc2_sch_vdbg(hsotg, 1264 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n", 1265 chan->qh, wire_frame, frame_number, 1266 dwc2_frame_num_dec(frame_number, 1267 wire_frame)); 1268 wire_frame = frame_number; 1269 1270 /* 1271 * We picked a different frame number; communicate this 1272 * back to the scheduler so it doesn't try to schedule 1273 * another in the same frame. 1274 * 1275 * Remember that next_active_frame is 1 before the wire 1276 * frame. 1277 */ 1278 chan->qh->next_active_frame = 1279 dwc2_frame_num_dec(frame_number, 1); 1280 } 1281 1282 if (wire_frame & 1) 1283 *hcchar |= HCCHAR_ODDFRM; 1284 else 1285 *hcchar &= ~HCCHAR_ODDFRM; 1286 } 1287 } 1288 1289 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan) 1290 { 1291 /* Set up the initial PID for the transfer */ 1292 if (chan->speed == USB_SPEED_HIGH) { 1293 if (chan->ep_is_in) { 1294 if (chan->multi_count == 1) 1295 chan->data_pid_start = DWC2_HC_PID_DATA0; 1296 else if (chan->multi_count == 2) 1297 chan->data_pid_start = DWC2_HC_PID_DATA1; 1298 else 1299 chan->data_pid_start = DWC2_HC_PID_DATA2; 1300 } else { 1301 if (chan->multi_count == 1) 1302 chan->data_pid_start = DWC2_HC_PID_DATA0; 1303 else 1304 chan->data_pid_start = DWC2_HC_PID_MDATA; 1305 } 1306 } else { 1307 chan->data_pid_start = DWC2_HC_PID_DATA0; 1308 } 1309 } 1310 1311 /** 1312 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with 1313 * the Host Channel 1314 * 1315 * @hsotg: Programming view of DWC_otg controller 1316 * @chan: Information needed to initialize the host channel 1317 * 1318 * This function should only be called in Slave mode. For a channel associated 1319 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel 1320 * associated with a periodic EP, the periodic Tx FIFO is written. 1321 * 1322 * Upon return the xfer_buf and xfer_count fields in chan are incremented by 1323 * the number of bytes written to the Tx FIFO. 1324 */ 1325 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg, 1326 struct dwc2_host_chan *chan) 1327 { 1328 u32 i; 1329 u32 remaining_count; 1330 u32 byte_count; 1331 u32 dword_count; 1332 u32 __iomem *data_fifo; 1333 u32 *data_buf = (u32 *)chan->xfer_buf; 1334 1335 if (dbg_hc(chan)) 1336 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1337 1338 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num)); 1339 1340 remaining_count = chan->xfer_len - chan->xfer_count; 1341 if (remaining_count > chan->max_packet) 1342 byte_count = chan->max_packet; 1343 else 1344 byte_count = remaining_count; 1345 1346 dword_count = (byte_count + 3) / 4; 1347 1348 if (((unsigned long)data_buf & 0x3) == 0) { 1349 /* xfer_buf is DWORD aligned */ 1350 for (i = 0; i < dword_count; i++, data_buf++) 1351 dwc2_writel(*data_buf, data_fifo); 1352 } else { 1353 /* xfer_buf is not DWORD aligned */ 1354 for (i = 0; i < dword_count; i++, data_buf++) { 1355 u32 data = data_buf[0] | data_buf[1] << 8 | 1356 data_buf[2] << 16 | data_buf[3] << 24; 1357 dwc2_writel(data, data_fifo); 1358 } 1359 } 1360 1361 chan->xfer_count += byte_count; 1362 chan->xfer_buf += byte_count; 1363 } 1364 1365 /** 1366 * dwc2_hc_do_ping() - Starts a PING transfer 1367 * 1368 * @hsotg: Programming view of DWC_otg controller 1369 * @chan: Information needed to initialize the host channel 1370 * 1371 * This function should only be called in Slave mode. The Do Ping bit is set in 1372 * the HCTSIZ register, then the channel is enabled. 1373 */ 1374 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, 1375 struct dwc2_host_chan *chan) 1376 { 1377 u32 hcchar; 1378 u32 hctsiz; 1379 1380 if (dbg_hc(chan)) 1381 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1382 chan->hc_num); 1383 1384 hctsiz = TSIZ_DOPNG; 1385 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT; 1386 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1387 1388 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1389 hcchar |= HCCHAR_CHENA; 1390 hcchar &= ~HCCHAR_CHDIS; 1391 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1392 } 1393 1394 /** 1395 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host 1396 * channel and starts the transfer 1397 * 1398 * @hsotg: Programming view of DWC_otg controller 1399 * @chan: Information needed to initialize the host channel. The xfer_len value 1400 * may be reduced to accommodate the max widths of the XferSize and 1401 * PktCnt fields in the HCTSIZn register. The multi_count value may be 1402 * changed to reflect the final xfer_len value. 1403 * 1404 * This function may be called in either Slave mode or DMA mode. In Slave mode, 1405 * the caller must ensure that there is sufficient space in the request queue 1406 * and Tx Data FIFO. 1407 * 1408 * For an OUT transfer in Slave mode, it loads a data packet into the 1409 * appropriate FIFO. If necessary, additional data packets are loaded in the 1410 * Host ISR. 1411 * 1412 * For an IN transfer in Slave mode, a data packet is requested. The data 1413 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, 1414 * additional data packets are requested in the Host ISR. 1415 * 1416 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ 1417 * register along with a packet count of 1 and the channel is enabled. This 1418 * causes a single PING transaction to occur. Other fields in HCTSIZ are 1419 * simply set to 0 since no data transfer occurs in this case. 1420 * 1421 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with 1422 * all the information required to perform the subsequent data transfer. In 1423 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the 1424 * controller performs the entire PING protocol, then starts the data 1425 * transfer. 1426 */ 1427 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg, 1428 struct dwc2_host_chan *chan) 1429 { 1430 u32 max_hc_xfer_size = hsotg->params.max_transfer_size; 1431 u16 max_hc_pkt_count = hsotg->params.max_packet_count; 1432 u32 hcchar; 1433 u32 hctsiz = 0; 1434 u16 num_packets; 1435 u32 ec_mc; 1436 1437 if (dbg_hc(chan)) 1438 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1439 1440 if (chan->do_ping) { 1441 if (!hsotg->params.host_dma) { 1442 if (dbg_hc(chan)) 1443 dev_vdbg(hsotg->dev, "ping, no DMA\n"); 1444 dwc2_hc_do_ping(hsotg, chan); 1445 chan->xfer_started = 1; 1446 return; 1447 } 1448 1449 if (dbg_hc(chan)) 1450 dev_vdbg(hsotg->dev, "ping, DMA\n"); 1451 1452 hctsiz |= TSIZ_DOPNG; 1453 } 1454 1455 if (chan->do_split) { 1456 if (dbg_hc(chan)) 1457 dev_vdbg(hsotg->dev, "split\n"); 1458 num_packets = 1; 1459 1460 if (chan->complete_split && !chan->ep_is_in) 1461 /* 1462 * For CSPLIT OUT Transfer, set the size to 0 so the 1463 * core doesn't expect any data written to the FIFO 1464 */ 1465 chan->xfer_len = 0; 1466 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet) 1467 chan->xfer_len = chan->max_packet; 1468 else if (!chan->ep_is_in && chan->xfer_len > 188) 1469 chan->xfer_len = 188; 1470 1471 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & 1472 TSIZ_XFERSIZE_MASK; 1473 1474 /* For split set ec_mc for immediate retries */ 1475 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1476 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1477 ec_mc = 3; 1478 else 1479 ec_mc = 1; 1480 } else { 1481 if (dbg_hc(chan)) 1482 dev_vdbg(hsotg->dev, "no split\n"); 1483 /* 1484 * Ensure that the transfer length and packet count will fit 1485 * in the widths allocated for them in the HCTSIZn register 1486 */ 1487 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1488 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1489 /* 1490 * Make sure the transfer size is no larger than one 1491 * (micro)frame's worth of data. (A check was done 1492 * when the periodic transfer was accepted to ensure 1493 * that a (micro)frame's worth of data can be 1494 * programmed into a channel.) 1495 */ 1496 u32 max_periodic_len = 1497 chan->multi_count * chan->max_packet; 1498 1499 if (chan->xfer_len > max_periodic_len) 1500 chan->xfer_len = max_periodic_len; 1501 } else if (chan->xfer_len > max_hc_xfer_size) { 1502 /* 1503 * Make sure that xfer_len is a multiple of max packet 1504 * size 1505 */ 1506 chan->xfer_len = 1507 max_hc_xfer_size - chan->max_packet + 1; 1508 } 1509 1510 if (chan->xfer_len > 0) { 1511 num_packets = (chan->xfer_len + chan->max_packet - 1) / 1512 chan->max_packet; 1513 if (num_packets > max_hc_pkt_count) { 1514 num_packets = max_hc_pkt_count; 1515 chan->xfer_len = num_packets * chan->max_packet; 1516 } 1517 } else { 1518 /* Need 1 packet for transfer length of 0 */ 1519 num_packets = 1; 1520 } 1521 1522 if (chan->ep_is_in) 1523 /* 1524 * Always program an integral # of max packets for IN 1525 * transfers 1526 */ 1527 chan->xfer_len = num_packets * chan->max_packet; 1528 1529 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1530 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1531 /* 1532 * Make sure that the multi_count field matches the 1533 * actual transfer length 1534 */ 1535 chan->multi_count = num_packets; 1536 1537 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1538 dwc2_set_pid_isoc(chan); 1539 1540 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & 1541 TSIZ_XFERSIZE_MASK; 1542 1543 /* The ec_mc gets the multi_count for non-split */ 1544 ec_mc = chan->multi_count; 1545 } 1546 1547 chan->start_pkt_count = num_packets; 1548 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK; 1549 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & 1550 TSIZ_SC_MC_PID_MASK; 1551 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1552 if (dbg_hc(chan)) { 1553 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n", 1554 hctsiz, chan->hc_num); 1555 1556 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1557 chan->hc_num); 1558 dev_vdbg(hsotg->dev, " Xfer Size: %d\n", 1559 (hctsiz & TSIZ_XFERSIZE_MASK) >> 1560 TSIZ_XFERSIZE_SHIFT); 1561 dev_vdbg(hsotg->dev, " Num Pkts: %d\n", 1562 (hctsiz & TSIZ_PKTCNT_MASK) >> 1563 TSIZ_PKTCNT_SHIFT); 1564 dev_vdbg(hsotg->dev, " Start PID: %d\n", 1565 (hctsiz & TSIZ_SC_MC_PID_MASK) >> 1566 TSIZ_SC_MC_PID_SHIFT); 1567 } 1568 1569 if (hsotg->params.host_dma) { 1570 dwc2_writel((u32)chan->xfer_dma, 1571 hsotg->regs + HCDMA(chan->hc_num)); 1572 if (dbg_hc(chan)) 1573 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n", 1574 (unsigned long)chan->xfer_dma, chan->hc_num); 1575 } 1576 1577 /* Start the split */ 1578 if (chan->do_split) { 1579 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num)); 1580 1581 hcsplt |= HCSPLT_SPLTENA; 1582 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num)); 1583 } 1584 1585 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1586 hcchar &= ~HCCHAR_MULTICNT_MASK; 1587 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK; 1588 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); 1589 1590 if (hcchar & HCCHAR_CHDIS) 1591 dev_warn(hsotg->dev, 1592 "%s: chdis set, channel %d, hcchar 0x%08x\n", 1593 __func__, chan->hc_num, hcchar); 1594 1595 /* Set host channel enable after all other setup is complete */ 1596 hcchar |= HCCHAR_CHENA; 1597 hcchar &= ~HCCHAR_CHDIS; 1598 1599 if (dbg_hc(chan)) 1600 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", 1601 (hcchar & HCCHAR_MULTICNT_MASK) >> 1602 HCCHAR_MULTICNT_SHIFT); 1603 1604 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1605 if (dbg_hc(chan)) 1606 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, 1607 chan->hc_num); 1608 1609 chan->xfer_started = 1; 1610 chan->requests++; 1611 1612 if (!hsotg->params.host_dma && 1613 !chan->ep_is_in && chan->xfer_len > 0) 1614 /* Load OUT packet into the appropriate Tx FIFO */ 1615 dwc2_hc_write_packet(hsotg, chan); 1616 } 1617 1618 /** 1619 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a 1620 * host channel and starts the transfer in Descriptor DMA mode 1621 * 1622 * @hsotg: Programming view of DWC_otg controller 1623 * @chan: Information needed to initialize the host channel 1624 * 1625 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set. 1626 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field 1627 * with micro-frame bitmap. 1628 * 1629 * Initializes HCDMA register with descriptor list address and CTD value then 1630 * starts the transfer via enabling the channel. 1631 */ 1632 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg, 1633 struct dwc2_host_chan *chan) 1634 { 1635 u32 hcchar; 1636 u32 hctsiz = 0; 1637 1638 if (chan->do_ping) 1639 hctsiz |= TSIZ_DOPNG; 1640 1641 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1642 dwc2_set_pid_isoc(chan); 1643 1644 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */ 1645 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & 1646 TSIZ_SC_MC_PID_MASK; 1647 1648 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */ 1649 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK; 1650 1651 /* Non-zero only for high-speed interrupt endpoints */ 1652 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK; 1653 1654 if (dbg_hc(chan)) { 1655 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1656 chan->hc_num); 1657 dev_vdbg(hsotg->dev, " Start PID: %d\n", 1658 chan->data_pid_start); 1659 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1); 1660 } 1661 1662 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1663 1664 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr, 1665 chan->desc_list_sz, DMA_TO_DEVICE); 1666 1667 dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num)); 1668 1669 if (dbg_hc(chan)) 1670 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n", 1671 &chan->desc_list_addr, chan->hc_num); 1672 1673 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1674 hcchar &= ~HCCHAR_MULTICNT_MASK; 1675 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT & 1676 HCCHAR_MULTICNT_MASK; 1677 1678 if (hcchar & HCCHAR_CHDIS) 1679 dev_warn(hsotg->dev, 1680 "%s: chdis set, channel %d, hcchar 0x%08x\n", 1681 __func__, chan->hc_num, hcchar); 1682 1683 /* Set host channel enable after all other setup is complete */ 1684 hcchar |= HCCHAR_CHENA; 1685 hcchar &= ~HCCHAR_CHDIS; 1686 1687 if (dbg_hc(chan)) 1688 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", 1689 (hcchar & HCCHAR_MULTICNT_MASK) >> 1690 HCCHAR_MULTICNT_SHIFT); 1691 1692 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1693 if (dbg_hc(chan)) 1694 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, 1695 chan->hc_num); 1696 1697 chan->xfer_started = 1; 1698 chan->requests++; 1699 } 1700 1701 /** 1702 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by 1703 * a previous call to dwc2_hc_start_transfer() 1704 * 1705 * @hsotg: Programming view of DWC_otg controller 1706 * @chan: Information needed to initialize the host channel 1707 * 1708 * The caller must ensure there is sufficient space in the request queue and Tx 1709 * Data FIFO. This function should only be called in Slave mode. In DMA mode, 1710 * the controller acts autonomously to complete transfers programmed to a host 1711 * channel. 1712 * 1713 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO 1714 * if there is any data remaining to be queued. For an IN transfer, another 1715 * data packet is always requested. For the SETUP phase of a control transfer, 1716 * this function does nothing. 1717 * 1718 * Return: 1 if a new request is queued, 0 if no more requests are required 1719 * for this transfer 1720 */ 1721 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg, 1722 struct dwc2_host_chan *chan) 1723 { 1724 if (dbg_hc(chan)) 1725 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1726 chan->hc_num); 1727 1728 if (chan->do_split) 1729 /* SPLITs always queue just once per channel */ 1730 return 0; 1731 1732 if (chan->data_pid_start == DWC2_HC_PID_SETUP) 1733 /* SETUPs are queued only once since they can't be NAK'd */ 1734 return 0; 1735 1736 if (chan->ep_is_in) { 1737 /* 1738 * Always queue another request for other IN transfers. If 1739 * back-to-back INs are issued and NAKs are received for both, 1740 * the driver may still be processing the first NAK when the 1741 * second NAK is received. When the interrupt handler clears 1742 * the NAK interrupt for the first NAK, the second NAK will 1743 * not be seen. So we can't depend on the NAK interrupt 1744 * handler to requeue a NAK'd request. Instead, IN requests 1745 * are issued each time this function is called. When the 1746 * transfer completes, the extra requests for the channel will 1747 * be flushed. 1748 */ 1749 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1750 1751 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); 1752 hcchar |= HCCHAR_CHENA; 1753 hcchar &= ~HCCHAR_CHDIS; 1754 if (dbg_hc(chan)) 1755 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n", 1756 hcchar); 1757 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1758 chan->requests++; 1759 return 1; 1760 } 1761 1762 /* OUT transfers */ 1763 1764 if (chan->xfer_count < chan->xfer_len) { 1765 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1766 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1767 u32 hcchar = dwc2_readl(hsotg->regs + 1768 HCCHAR(chan->hc_num)); 1769 1770 dwc2_hc_set_even_odd_frame(hsotg, chan, 1771 &hcchar); 1772 } 1773 1774 /* Load OUT packet into the appropriate Tx FIFO */ 1775 dwc2_hc_write_packet(hsotg, chan); 1776 chan->requests++; 1777 return 1; 1778 } 1779 1780 return 0; 1781 } 1782 1783 /* 1784 * ========================================================================= 1785 * HCD 1786 * ========================================================================= 1787 */ 1788 1789 /* 1790 * Processes all the URBs in a single list of QHs. Completes them with 1791 * -ETIMEDOUT and frees the QTD. 1792 * 1793 * Must be called with interrupt disabled and spinlock held 1794 */ 1795 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg, 1796 struct list_head *qh_list) 1797 { 1798 struct dwc2_qh *qh, *qh_tmp; 1799 struct dwc2_qtd *qtd, *qtd_tmp; 1800 1801 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { 1802 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, 1803 qtd_list_entry) { 1804 dwc2_host_complete(hsotg, qtd, -ECONNRESET); 1805 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 1806 } 1807 } 1808 } 1809 1810 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg, 1811 struct list_head *qh_list) 1812 { 1813 struct dwc2_qtd *qtd, *qtd_tmp; 1814 struct dwc2_qh *qh, *qh_tmp; 1815 unsigned long flags; 1816 1817 if (!qh_list->next) 1818 /* The list hasn't been initialized yet */ 1819 return; 1820 1821 spin_lock_irqsave(&hsotg->lock, flags); 1822 1823 /* Ensure there are no QTDs or URBs left */ 1824 dwc2_kill_urbs_in_qh_list(hsotg, qh_list); 1825 1826 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { 1827 dwc2_hcd_qh_unlink(hsotg, qh); 1828 1829 /* Free each QTD in the QH's QTD list */ 1830 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, 1831 qtd_list_entry) 1832 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 1833 1834 if (qh->channel && qh->channel->qh == qh) 1835 qh->channel->qh = NULL; 1836 1837 spin_unlock_irqrestore(&hsotg->lock, flags); 1838 dwc2_hcd_qh_free(hsotg, qh); 1839 spin_lock_irqsave(&hsotg->lock, flags); 1840 } 1841 1842 spin_unlock_irqrestore(&hsotg->lock, flags); 1843 } 1844 1845 /* 1846 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic 1847 * and periodic schedules. The QTD associated with each URB is removed from 1848 * the schedule and freed. This function may be called when a disconnect is 1849 * detected or when the HCD is being stopped. 1850 * 1851 * Must be called with interrupt disabled and spinlock held 1852 */ 1853 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg) 1854 { 1855 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive); 1856 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting); 1857 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active); 1858 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive); 1859 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready); 1860 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned); 1861 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued); 1862 } 1863 1864 /** 1865 * dwc2_hcd_start() - Starts the HCD when switching to Host mode 1866 * 1867 * @hsotg: Pointer to struct dwc2_hsotg 1868 */ 1869 void dwc2_hcd_start(struct dwc2_hsotg *hsotg) 1870 { 1871 u32 hprt0; 1872 1873 if (hsotg->op_state == OTG_STATE_B_HOST) { 1874 /* 1875 * Reset the port. During a HNP mode switch the reset 1876 * needs to occur within 1ms and have a duration of at 1877 * least 50ms. 1878 */ 1879 hprt0 = dwc2_read_hprt0(hsotg); 1880 hprt0 |= HPRT0_RST; 1881 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1882 } 1883 1884 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work, 1885 msecs_to_jiffies(50)); 1886 } 1887 1888 /* Must be called with interrupt disabled and spinlock held */ 1889 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg) 1890 { 1891 int num_channels = hsotg->params.host_channels; 1892 struct dwc2_host_chan *channel; 1893 u32 hcchar; 1894 int i; 1895 1896 if (!hsotg->params.host_dma) { 1897 /* Flush out any channel requests in slave mode */ 1898 for (i = 0; i < num_channels; i++) { 1899 channel = hsotg->hc_ptr_array[i]; 1900 if (!list_empty(&channel->hc_list_entry)) 1901 continue; 1902 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 1903 if (hcchar & HCCHAR_CHENA) { 1904 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR); 1905 hcchar |= HCCHAR_CHDIS; 1906 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 1907 } 1908 } 1909 } 1910 1911 for (i = 0; i < num_channels; i++) { 1912 channel = hsotg->hc_ptr_array[i]; 1913 if (!list_empty(&channel->hc_list_entry)) 1914 continue; 1915 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 1916 if (hcchar & HCCHAR_CHENA) { 1917 /* Halt the channel */ 1918 hcchar |= HCCHAR_CHDIS; 1919 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 1920 } 1921 1922 dwc2_hc_cleanup(hsotg, channel); 1923 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list); 1924 /* 1925 * Added for Descriptor DMA to prevent channel double cleanup in 1926 * release_channel_ddma(), which is called from ep_disable when 1927 * device disconnects 1928 */ 1929 channel->qh = NULL; 1930 } 1931 /* All channels have been freed, mark them available */ 1932 if (hsotg->params.uframe_sched) { 1933 hsotg->available_host_channels = 1934 hsotg->params.host_channels; 1935 } else { 1936 hsotg->non_periodic_channels = 0; 1937 hsotg->periodic_channels = 0; 1938 } 1939 } 1940 1941 /** 1942 * dwc2_hcd_connect() - Handles connect of the HCD 1943 * 1944 * @hsotg: Pointer to struct dwc2_hsotg 1945 * 1946 * Must be called with interrupt disabled and spinlock held 1947 */ 1948 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) 1949 { 1950 if (hsotg->lx_state != DWC2_L0) 1951 usb_hcd_resume_root_hub(hsotg->priv); 1952 1953 hsotg->flags.b.port_connect_status_change = 1; 1954 hsotg->flags.b.port_connect_status = 1; 1955 } 1956 1957 /** 1958 * dwc2_hcd_disconnect() - Handles disconnect of the HCD 1959 * 1960 * @hsotg: Pointer to struct dwc2_hsotg 1961 * @force: If true, we won't try to reconnect even if we see device connected. 1962 * 1963 * Must be called with interrupt disabled and spinlock held 1964 */ 1965 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) 1966 { 1967 u32 intr; 1968 u32 hprt0; 1969 1970 /* Set status flags for the hub driver */ 1971 hsotg->flags.b.port_connect_status_change = 1; 1972 hsotg->flags.b.port_connect_status = 0; 1973 1974 /* 1975 * Shutdown any transfers in process by clearing the Tx FIFO Empty 1976 * interrupt mask and status bits and disabling subsequent host 1977 * channel interrupts. 1978 */ 1979 intr = dwc2_readl(hsotg->regs + GINTMSK); 1980 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT); 1981 dwc2_writel(intr, hsotg->regs + GINTMSK); 1982 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT; 1983 dwc2_writel(intr, hsotg->regs + GINTSTS); 1984 1985 /* 1986 * Turn off the vbus power only if the core has transitioned to device 1987 * mode. If still in host mode, need to keep power on to detect a 1988 * reconnection. 1989 */ 1990 if (dwc2_is_device_mode(hsotg)) { 1991 if (hsotg->op_state != OTG_STATE_A_SUSPEND) { 1992 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n"); 1993 dwc2_writel(0, hsotg->regs + HPRT0); 1994 } 1995 1996 dwc2_disable_host_interrupts(hsotg); 1997 } 1998 1999 /* Respond with an error status to all URBs in the schedule */ 2000 dwc2_kill_all_urbs(hsotg); 2001 2002 if (dwc2_is_host_mode(hsotg)) 2003 /* Clean up any host channels that were in use */ 2004 dwc2_hcd_cleanup_channels(hsotg); 2005 2006 dwc2_host_disconnect(hsotg); 2007 2008 /* 2009 * Add an extra check here to see if we're actually connected but 2010 * we don't have a detection interrupt pending. This can happen if: 2011 * 1. hardware sees connect 2012 * 2. hardware sees disconnect 2013 * 3. hardware sees connect 2014 * 4. dwc2_port_intr() - clears connect interrupt 2015 * 5. dwc2_handle_common_intr() - calls here 2016 * 2017 * Without the extra check here we will end calling disconnect 2018 * and won't get any future interrupts to handle the connect. 2019 */ 2020 if (!force) { 2021 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 2022 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS)) 2023 dwc2_hcd_connect(hsotg); 2024 } 2025 } 2026 2027 /** 2028 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup 2029 * 2030 * @hsotg: Pointer to struct dwc2_hsotg 2031 */ 2032 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg) 2033 { 2034 if (hsotg->bus_suspended) { 2035 hsotg->flags.b.port_suspend_change = 1; 2036 usb_hcd_resume_root_hub(hsotg->priv); 2037 } 2038 2039 if (hsotg->lx_state == DWC2_L1) 2040 hsotg->flags.b.port_l1_change = 1; 2041 } 2042 2043 /** 2044 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner 2045 * 2046 * @hsotg: Pointer to struct dwc2_hsotg 2047 * 2048 * Must be called with interrupt disabled and spinlock held 2049 */ 2050 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg) 2051 { 2052 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n"); 2053 2054 /* 2055 * The root hub should be disconnected before this function is called. 2056 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) 2057 * and the QH lists (via ..._hcd_endpoint_disable). 2058 */ 2059 2060 /* Turn off all host-specific interrupts */ 2061 dwc2_disable_host_interrupts(hsotg); 2062 2063 /* Turn off the vbus power */ 2064 dev_dbg(hsotg->dev, "PortPower off\n"); 2065 dwc2_writel(0, hsotg->regs + HPRT0); 2066 } 2067 2068 /* Caller must hold driver lock */ 2069 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg, 2070 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh, 2071 struct dwc2_qtd *qtd) 2072 { 2073 u32 intr_mask; 2074 int retval; 2075 int dev_speed; 2076 2077 if (!hsotg->flags.b.port_connect_status) { 2078 /* No longer connected */ 2079 dev_err(hsotg->dev, "Not connected\n"); 2080 return -ENODEV; 2081 } 2082 2083 dev_speed = dwc2_host_get_speed(hsotg, urb->priv); 2084 2085 /* Some configurations cannot support LS traffic on a FS root port */ 2086 if ((dev_speed == USB_SPEED_LOW) && 2087 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) && 2088 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) { 2089 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 2090 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 2091 2092 if (prtspd == HPRT0_SPD_FULL_SPEED) 2093 return -ENODEV; 2094 } 2095 2096 if (!qtd) 2097 return -EINVAL; 2098 2099 dwc2_hcd_qtd_init(qtd, urb); 2100 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh); 2101 if (retval) { 2102 dev_err(hsotg->dev, 2103 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n", 2104 retval); 2105 return retval; 2106 } 2107 2108 intr_mask = dwc2_readl(hsotg->regs + GINTMSK); 2109 if (!(intr_mask & GINTSTS_SOF)) { 2110 enum dwc2_transaction_type tr_type; 2111 2112 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK && 2113 !(qtd->urb->flags & URB_GIVEBACK_ASAP)) 2114 /* 2115 * Do not schedule SG transactions until qtd has 2116 * URB_GIVEBACK_ASAP set 2117 */ 2118 return 0; 2119 2120 tr_type = dwc2_hcd_select_transactions(hsotg); 2121 if (tr_type != DWC2_TRANSACTION_NONE) 2122 dwc2_hcd_queue_transactions(hsotg, tr_type); 2123 } 2124 2125 return 0; 2126 } 2127 2128 /* Must be called with interrupt disabled and spinlock held */ 2129 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg, 2130 struct dwc2_hcd_urb *urb) 2131 { 2132 struct dwc2_qh *qh; 2133 struct dwc2_qtd *urb_qtd; 2134 2135 urb_qtd = urb->qtd; 2136 if (!urb_qtd) { 2137 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n"); 2138 return -EINVAL; 2139 } 2140 2141 qh = urb_qtd->qh; 2142 if (!qh) { 2143 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n"); 2144 return -EINVAL; 2145 } 2146 2147 urb->priv = NULL; 2148 2149 if (urb_qtd->in_process && qh->channel) { 2150 dwc2_dump_channel_info(hsotg, qh->channel); 2151 2152 /* The QTD is in process (it has been assigned to a channel) */ 2153 if (hsotg->flags.b.port_connect_status) 2154 /* 2155 * If still connected (i.e. in host mode), halt the 2156 * channel so it can be used for other transfers. If 2157 * no longer connected, the host registers can't be 2158 * written to halt the channel since the core is in 2159 * device mode. 2160 */ 2161 dwc2_hc_halt(hsotg, qh->channel, 2162 DWC2_HC_XFER_URB_DEQUEUE); 2163 } 2164 2165 /* 2166 * Free the QTD and clean up the associated QH. Leave the QH in the 2167 * schedule if it has any remaining QTDs. 2168 */ 2169 if (!hsotg->params.dma_desc_enable) { 2170 u8 in_process = urb_qtd->in_process; 2171 2172 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); 2173 if (in_process) { 2174 dwc2_hcd_qh_deactivate(hsotg, qh, 0); 2175 qh->channel = NULL; 2176 } else if (list_empty(&qh->qtd_list)) { 2177 dwc2_hcd_qh_unlink(hsotg, qh); 2178 } 2179 } else { 2180 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); 2181 } 2182 2183 return 0; 2184 } 2185 2186 /* Must NOT be called with interrupt disabled or spinlock held */ 2187 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg, 2188 struct usb_host_endpoint *ep, int retry) 2189 { 2190 struct dwc2_qtd *qtd, *qtd_tmp; 2191 struct dwc2_qh *qh; 2192 unsigned long flags; 2193 int rc; 2194 2195 spin_lock_irqsave(&hsotg->lock, flags); 2196 2197 qh = ep->hcpriv; 2198 if (!qh) { 2199 rc = -EINVAL; 2200 goto err; 2201 } 2202 2203 while (!list_empty(&qh->qtd_list) && retry--) { 2204 if (retry == 0) { 2205 dev_err(hsotg->dev, 2206 "## timeout in dwc2_hcd_endpoint_disable() ##\n"); 2207 rc = -EBUSY; 2208 goto err; 2209 } 2210 2211 spin_unlock_irqrestore(&hsotg->lock, flags); 2212 msleep(20); 2213 spin_lock_irqsave(&hsotg->lock, flags); 2214 qh = ep->hcpriv; 2215 if (!qh) { 2216 rc = -EINVAL; 2217 goto err; 2218 } 2219 } 2220 2221 dwc2_hcd_qh_unlink(hsotg, qh); 2222 2223 /* Free each QTD in the QH's QTD list */ 2224 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) 2225 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 2226 2227 ep->hcpriv = NULL; 2228 2229 if (qh->channel && qh->channel->qh == qh) 2230 qh->channel->qh = NULL; 2231 2232 spin_unlock_irqrestore(&hsotg->lock, flags); 2233 2234 dwc2_hcd_qh_free(hsotg, qh); 2235 2236 return 0; 2237 2238 err: 2239 ep->hcpriv = NULL; 2240 spin_unlock_irqrestore(&hsotg->lock, flags); 2241 2242 return rc; 2243 } 2244 2245 /* Must be called with interrupt disabled and spinlock held */ 2246 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg, 2247 struct usb_host_endpoint *ep) 2248 { 2249 struct dwc2_qh *qh = ep->hcpriv; 2250 2251 if (!qh) 2252 return -EINVAL; 2253 2254 qh->data_toggle = DWC2_HC_PID_DATA0; 2255 2256 return 0; 2257 } 2258 2259 /** 2260 * dwc2_core_init() - Initializes the DWC_otg controller registers and 2261 * prepares the core for device mode or host mode operation 2262 * 2263 * @hsotg: Programming view of the DWC_otg controller 2264 * @initial_setup: If true then this is the first init for this instance. 2265 */ 2266 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup) 2267 { 2268 u32 usbcfg, otgctl; 2269 int retval; 2270 2271 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); 2272 2273 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 2274 2275 /* Set ULPI External VBUS bit if needed */ 2276 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV; 2277 if (hsotg->params.phy_ulpi_ext_vbus) 2278 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV; 2279 2280 /* Set external TS Dline pulsing bit if needed */ 2281 usbcfg &= ~GUSBCFG_TERMSELDLPULSE; 2282 if (hsotg->params.ts_dline) 2283 usbcfg |= GUSBCFG_TERMSELDLPULSE; 2284 2285 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 2286 2287 /* 2288 * Reset the Controller 2289 * 2290 * We only need to reset the controller if this is a re-init. 2291 * For the first init we know for sure that earlier code reset us (it 2292 * needed to in order to properly detect various parameters). 2293 */ 2294 if (!initial_setup) { 2295 retval = dwc2_core_reset(hsotg, false); 2296 if (retval) { 2297 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n", 2298 __func__); 2299 return retval; 2300 } 2301 } 2302 2303 /* 2304 * This needs to happen in FS mode before any other programming occurs 2305 */ 2306 retval = dwc2_phy_init(hsotg, initial_setup); 2307 if (retval) 2308 return retval; 2309 2310 /* Program the GAHBCFG Register */ 2311 retval = dwc2_gahbcfg_init(hsotg); 2312 if (retval) 2313 return retval; 2314 2315 /* Program the GUSBCFG register */ 2316 dwc2_gusbcfg_init(hsotg); 2317 2318 /* Program the GOTGCTL register */ 2319 otgctl = dwc2_readl(hsotg->regs + GOTGCTL); 2320 otgctl &= ~GOTGCTL_OTGVER; 2321 dwc2_writel(otgctl, hsotg->regs + GOTGCTL); 2322 2323 /* Clear the SRP success bit for FS-I2c */ 2324 hsotg->srp_success = 0; 2325 2326 /* Enable common interrupts */ 2327 dwc2_enable_common_interrupts(hsotg); 2328 2329 /* 2330 * Do device or host initialization based on mode during PCD and 2331 * HCD initialization 2332 */ 2333 if (dwc2_is_host_mode(hsotg)) { 2334 dev_dbg(hsotg->dev, "Host Mode\n"); 2335 hsotg->op_state = OTG_STATE_A_HOST; 2336 } else { 2337 dev_dbg(hsotg->dev, "Device Mode\n"); 2338 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 2339 } 2340 2341 return 0; 2342 } 2343 2344 /** 2345 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for 2346 * Host mode 2347 * 2348 * @hsotg: Programming view of DWC_otg controller 2349 * 2350 * This function flushes the Tx and Rx FIFOs and flushes any entries in the 2351 * request queues. Host channels are reset to ensure that they are ready for 2352 * performing transfers. 2353 */ 2354 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg) 2355 { 2356 u32 hcfg, hfir, otgctl, usbcfg; 2357 2358 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); 2359 2360 /* Set HS/FS Timeout Calibration to 7 (max available value). 2361 * The number of PHY clocks that the application programs in 2362 * this field is added to the high/full speed interpacket timeout 2363 * duration in the core to account for any additional delays 2364 * introduced by the PHY. This can be required, because the delay 2365 * introduced by the PHY in generating the linestate condition 2366 * can vary from one PHY to another. 2367 */ 2368 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 2369 usbcfg |= GUSBCFG_TOUTCAL(7); 2370 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 2371 2372 /* Restart the Phy Clock */ 2373 dwc2_writel(0, hsotg->regs + PCGCTL); 2374 2375 /* Initialize Host Configuration Register */ 2376 dwc2_init_fs_ls_pclk_sel(hsotg); 2377 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 2378 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) { 2379 hcfg = dwc2_readl(hsotg->regs + HCFG); 2380 hcfg |= HCFG_FSLSSUPP; 2381 dwc2_writel(hcfg, hsotg->regs + HCFG); 2382 } 2383 2384 /* 2385 * This bit allows dynamic reloading of the HFIR register during 2386 * runtime. This bit needs to be programmed during initial configuration 2387 * and its value must not be changed during runtime. 2388 */ 2389 if (hsotg->params.reload_ctl) { 2390 hfir = dwc2_readl(hsotg->regs + HFIR); 2391 hfir |= HFIR_RLDCTRL; 2392 dwc2_writel(hfir, hsotg->regs + HFIR); 2393 } 2394 2395 if (hsotg->params.dma_desc_enable) { 2396 u32 op_mode = hsotg->hw_params.op_mode; 2397 2398 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a || 2399 !hsotg->hw_params.dma_desc_enable || 2400 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE || 2401 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE || 2402 op_mode == GHWCFG2_OP_MODE_UNDEFINED) { 2403 dev_err(hsotg->dev, 2404 "Hardware does not support descriptor DMA mode -\n"); 2405 dev_err(hsotg->dev, 2406 "falling back to buffer DMA mode.\n"); 2407 hsotg->params.dma_desc_enable = false; 2408 } else { 2409 hcfg = dwc2_readl(hsotg->regs + HCFG); 2410 hcfg |= HCFG_DESCDMA; 2411 dwc2_writel(hcfg, hsotg->regs + HCFG); 2412 } 2413 } 2414 2415 /* Configure data FIFO sizes */ 2416 dwc2_config_fifos(hsotg); 2417 2418 /* TODO - check this */ 2419 /* Clear Host Set HNP Enable in the OTG Control Register */ 2420 otgctl = dwc2_readl(hsotg->regs + GOTGCTL); 2421 otgctl &= ~GOTGCTL_HSTSETHNPEN; 2422 dwc2_writel(otgctl, hsotg->regs + GOTGCTL); 2423 2424 /* Make sure the FIFOs are flushed */ 2425 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */); 2426 dwc2_flush_rx_fifo(hsotg); 2427 2428 /* Clear Host Set HNP Enable in the OTG Control Register */ 2429 otgctl = dwc2_readl(hsotg->regs + GOTGCTL); 2430 otgctl &= ~GOTGCTL_HSTSETHNPEN; 2431 dwc2_writel(otgctl, hsotg->regs + GOTGCTL); 2432 2433 if (!hsotg->params.dma_desc_enable) { 2434 int num_channels, i; 2435 u32 hcchar; 2436 2437 /* Flush out any leftover queued requests */ 2438 num_channels = hsotg->params.host_channels; 2439 for (i = 0; i < num_channels; i++) { 2440 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 2441 hcchar &= ~HCCHAR_CHENA; 2442 hcchar |= HCCHAR_CHDIS; 2443 hcchar &= ~HCCHAR_EPDIR; 2444 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 2445 } 2446 2447 /* Halt all channels to put them into a known state */ 2448 for (i = 0; i < num_channels; i++) { 2449 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 2450 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS; 2451 hcchar &= ~HCCHAR_EPDIR; 2452 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 2453 dev_dbg(hsotg->dev, "%s: Halt channel %d\n", 2454 __func__, i); 2455 2456 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i), 2457 HCCHAR_CHENA, 1000)) { 2458 dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n", 2459 i); 2460 } 2461 } 2462 } 2463 2464 /* Enable ACG feature in host mode, if supported */ 2465 dwc2_enable_acg(hsotg); 2466 2467 /* Turn on the vbus power */ 2468 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state); 2469 if (hsotg->op_state == OTG_STATE_A_HOST) { 2470 u32 hprt0 = dwc2_read_hprt0(hsotg); 2471 2472 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n", 2473 !!(hprt0 & HPRT0_PWR)); 2474 if (!(hprt0 & HPRT0_PWR)) { 2475 hprt0 |= HPRT0_PWR; 2476 dwc2_writel(hprt0, hsotg->regs + HPRT0); 2477 } 2478 } 2479 2480 dwc2_enable_host_interrupts(hsotg); 2481 } 2482 2483 /* 2484 * Initializes dynamic portions of the DWC_otg HCD state 2485 * 2486 * Must be called with interrupt disabled and spinlock held 2487 */ 2488 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg) 2489 { 2490 struct dwc2_host_chan *chan, *chan_tmp; 2491 int num_channels; 2492 int i; 2493 2494 hsotg->flags.d32 = 0; 2495 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active; 2496 2497 if (hsotg->params.uframe_sched) { 2498 hsotg->available_host_channels = 2499 hsotg->params.host_channels; 2500 } else { 2501 hsotg->non_periodic_channels = 0; 2502 hsotg->periodic_channels = 0; 2503 } 2504 2505 /* 2506 * Put all channels in the free channel list and clean up channel 2507 * states 2508 */ 2509 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list, 2510 hc_list_entry) 2511 list_del_init(&chan->hc_list_entry); 2512 2513 num_channels = hsotg->params.host_channels; 2514 for (i = 0; i < num_channels; i++) { 2515 chan = hsotg->hc_ptr_array[i]; 2516 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list); 2517 dwc2_hc_cleanup(hsotg, chan); 2518 } 2519 2520 /* Initialize the DWC core for host mode operation */ 2521 dwc2_core_host_init(hsotg); 2522 } 2523 2524 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg, 2525 struct dwc2_host_chan *chan, 2526 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) 2527 { 2528 int hub_addr, hub_port; 2529 2530 chan->do_split = 1; 2531 chan->xact_pos = qtd->isoc_split_pos; 2532 chan->complete_split = qtd->complete_split; 2533 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port); 2534 chan->hub_addr = (u8)hub_addr; 2535 chan->hub_port = (u8)hub_port; 2536 } 2537 2538 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg, 2539 struct dwc2_host_chan *chan, 2540 struct dwc2_qtd *qtd) 2541 { 2542 struct dwc2_hcd_urb *urb = qtd->urb; 2543 struct dwc2_hcd_iso_packet_desc *frame_desc; 2544 2545 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) { 2546 case USB_ENDPOINT_XFER_CONTROL: 2547 chan->ep_type = USB_ENDPOINT_XFER_CONTROL; 2548 2549 switch (qtd->control_phase) { 2550 case DWC2_CONTROL_SETUP: 2551 dev_vdbg(hsotg->dev, " Control setup transaction\n"); 2552 chan->do_ping = 0; 2553 chan->ep_is_in = 0; 2554 chan->data_pid_start = DWC2_HC_PID_SETUP; 2555 if (hsotg->params.host_dma) 2556 chan->xfer_dma = urb->setup_dma; 2557 else 2558 chan->xfer_buf = urb->setup_packet; 2559 chan->xfer_len = 8; 2560 break; 2561 2562 case DWC2_CONTROL_DATA: 2563 dev_vdbg(hsotg->dev, " Control data transaction\n"); 2564 chan->data_pid_start = qtd->data_toggle; 2565 break; 2566 2567 case DWC2_CONTROL_STATUS: 2568 /* 2569 * Direction is opposite of data direction or IN if no 2570 * data 2571 */ 2572 dev_vdbg(hsotg->dev, " Control status transaction\n"); 2573 if (urb->length == 0) 2574 chan->ep_is_in = 1; 2575 else 2576 chan->ep_is_in = 2577 dwc2_hcd_is_pipe_out(&urb->pipe_info); 2578 if (chan->ep_is_in) 2579 chan->do_ping = 0; 2580 chan->data_pid_start = DWC2_HC_PID_DATA1; 2581 chan->xfer_len = 0; 2582 if (hsotg->params.host_dma) 2583 chan->xfer_dma = hsotg->status_buf_dma; 2584 else 2585 chan->xfer_buf = hsotg->status_buf; 2586 break; 2587 } 2588 break; 2589 2590 case USB_ENDPOINT_XFER_BULK: 2591 chan->ep_type = USB_ENDPOINT_XFER_BULK; 2592 break; 2593 2594 case USB_ENDPOINT_XFER_INT: 2595 chan->ep_type = USB_ENDPOINT_XFER_INT; 2596 break; 2597 2598 case USB_ENDPOINT_XFER_ISOC: 2599 chan->ep_type = USB_ENDPOINT_XFER_ISOC; 2600 if (hsotg->params.dma_desc_enable) 2601 break; 2602 2603 frame_desc = &urb->iso_descs[qtd->isoc_frame_index]; 2604 frame_desc->status = 0; 2605 2606 if (hsotg->params.host_dma) { 2607 chan->xfer_dma = urb->dma; 2608 chan->xfer_dma += frame_desc->offset + 2609 qtd->isoc_split_offset; 2610 } else { 2611 chan->xfer_buf = urb->buf; 2612 chan->xfer_buf += frame_desc->offset + 2613 qtd->isoc_split_offset; 2614 } 2615 2616 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset; 2617 2618 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) { 2619 if (chan->xfer_len <= 188) 2620 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL; 2621 else 2622 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN; 2623 } 2624 break; 2625 } 2626 } 2627 2628 #define DWC2_USB_DMA_ALIGN 4 2629 2630 struct dma_aligned_buffer { 2631 void *kmalloc_ptr; 2632 void *old_xfer_buffer; 2633 u8 data[0]; 2634 }; 2635 2636 static void dwc2_free_dma_aligned_buffer(struct urb *urb) 2637 { 2638 struct dma_aligned_buffer *temp; 2639 2640 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER)) 2641 return; 2642 2643 temp = container_of(urb->transfer_buffer, 2644 struct dma_aligned_buffer, data); 2645 2646 if (usb_urb_dir_in(urb)) 2647 memcpy(temp->old_xfer_buffer, temp->data, 2648 urb->transfer_buffer_length); 2649 urb->transfer_buffer = temp->old_xfer_buffer; 2650 kfree(temp->kmalloc_ptr); 2651 2652 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER; 2653 } 2654 2655 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags) 2656 { 2657 struct dma_aligned_buffer *temp, *kmalloc_ptr; 2658 size_t kmalloc_size; 2659 2660 if (urb->num_sgs || urb->sg || 2661 urb->transfer_buffer_length == 0 || 2662 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1))) 2663 return 0; 2664 2665 /* Allocate a buffer with enough padding for alignment */ 2666 kmalloc_size = urb->transfer_buffer_length + 2667 sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1; 2668 2669 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags); 2670 if (!kmalloc_ptr) 2671 return -ENOMEM; 2672 2673 /* Position our struct dma_aligned_buffer such that data is aligned */ 2674 temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1; 2675 temp->kmalloc_ptr = kmalloc_ptr; 2676 temp->old_xfer_buffer = urb->transfer_buffer; 2677 if (usb_urb_dir_out(urb)) 2678 memcpy(temp->data, urb->transfer_buffer, 2679 urb->transfer_buffer_length); 2680 urb->transfer_buffer = temp->data; 2681 2682 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER; 2683 2684 return 0; 2685 } 2686 2687 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 2688 gfp_t mem_flags) 2689 { 2690 int ret; 2691 2692 /* We assume setup_dma is always aligned; warn if not */ 2693 WARN_ON_ONCE(urb->setup_dma && 2694 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1))); 2695 2696 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags); 2697 if (ret) 2698 return ret; 2699 2700 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 2701 if (ret) 2702 dwc2_free_dma_aligned_buffer(urb); 2703 2704 return ret; 2705 } 2706 2707 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 2708 { 2709 usb_hcd_unmap_urb_for_dma(hcd, urb); 2710 dwc2_free_dma_aligned_buffer(urb); 2711 } 2712 2713 /** 2714 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host 2715 * channel and initializes the host channel to perform the transactions. The 2716 * host channel is removed from the free list. 2717 * 2718 * @hsotg: The HCD state structure 2719 * @qh: Transactions from the first QTD for this QH are selected and assigned 2720 * to a free host channel 2721 */ 2722 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 2723 { 2724 struct dwc2_host_chan *chan; 2725 struct dwc2_hcd_urb *urb; 2726 struct dwc2_qtd *qtd; 2727 2728 if (dbg_qh(qh)) 2729 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh); 2730 2731 if (list_empty(&qh->qtd_list)) { 2732 dev_dbg(hsotg->dev, "No QTDs in QH list\n"); 2733 return -ENOMEM; 2734 } 2735 2736 if (list_empty(&hsotg->free_hc_list)) { 2737 dev_dbg(hsotg->dev, "No free channel to assign\n"); 2738 return -ENOMEM; 2739 } 2740 2741 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan, 2742 hc_list_entry); 2743 2744 /* Remove host channel from free list */ 2745 list_del_init(&chan->hc_list_entry); 2746 2747 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry); 2748 urb = qtd->urb; 2749 qh->channel = chan; 2750 qtd->in_process = 1; 2751 2752 /* 2753 * Use usb_pipedevice to determine device address. This address is 2754 * 0 before the SET_ADDRESS command and the correct address afterward. 2755 */ 2756 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info); 2757 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info); 2758 chan->speed = qh->dev_speed; 2759 chan->max_packet = dwc2_max_packet(qh->maxp); 2760 2761 chan->xfer_started = 0; 2762 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS; 2763 chan->error_state = (qtd->error_count > 0); 2764 chan->halt_on_queue = 0; 2765 chan->halt_pending = 0; 2766 chan->requests = 0; 2767 2768 /* 2769 * The following values may be modified in the transfer type section 2770 * below. The xfer_len value may be reduced when the transfer is 2771 * started to accommodate the max widths of the XferSize and PktCnt 2772 * fields in the HCTSIZn register. 2773 */ 2774 2775 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0); 2776 if (chan->ep_is_in) 2777 chan->do_ping = 0; 2778 else 2779 chan->do_ping = qh->ping_state; 2780 2781 chan->data_pid_start = qh->data_toggle; 2782 chan->multi_count = 1; 2783 2784 if (urb->actual_length > urb->length && 2785 !dwc2_hcd_is_pipe_in(&urb->pipe_info)) 2786 urb->actual_length = urb->length; 2787 2788 if (hsotg->params.host_dma) 2789 chan->xfer_dma = urb->dma + urb->actual_length; 2790 else 2791 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length; 2792 2793 chan->xfer_len = urb->length - urb->actual_length; 2794 chan->xfer_count = 0; 2795 2796 /* Set the split attributes if required */ 2797 if (qh->do_split) 2798 dwc2_hc_init_split(hsotg, chan, qtd, urb); 2799 else 2800 chan->do_split = 0; 2801 2802 /* Set the transfer attributes */ 2803 dwc2_hc_init_xfer(hsotg, chan, qtd); 2804 2805 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 2806 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 2807 /* 2808 * This value may be modified when the transfer is started 2809 * to reflect the actual transfer length 2810 */ 2811 chan->multi_count = dwc2_hb_mult(qh->maxp); 2812 2813 if (hsotg->params.dma_desc_enable) { 2814 chan->desc_list_addr = qh->desc_list_dma; 2815 chan->desc_list_sz = qh->desc_list_sz; 2816 } 2817 2818 dwc2_hc_init(hsotg, chan); 2819 chan->qh = qh; 2820 2821 return 0; 2822 } 2823 2824 /** 2825 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer 2826 * schedule and assigns them to available host channels. Called from the HCD 2827 * interrupt handler functions. 2828 * 2829 * @hsotg: The HCD state structure 2830 * 2831 * Return: The types of new transactions that were assigned to host channels 2832 */ 2833 enum dwc2_transaction_type dwc2_hcd_select_transactions( 2834 struct dwc2_hsotg *hsotg) 2835 { 2836 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE; 2837 struct list_head *qh_ptr; 2838 struct dwc2_qh *qh; 2839 int num_channels; 2840 2841 #ifdef DWC2_DEBUG_SOF 2842 dev_vdbg(hsotg->dev, " Select Transactions\n"); 2843 #endif 2844 2845 /* Process entries in the periodic ready list */ 2846 qh_ptr = hsotg->periodic_sched_ready.next; 2847 while (qh_ptr != &hsotg->periodic_sched_ready) { 2848 if (list_empty(&hsotg->free_hc_list)) 2849 break; 2850 if (hsotg->params.uframe_sched) { 2851 if (hsotg->available_host_channels <= 1) 2852 break; 2853 hsotg->available_host_channels--; 2854 } 2855 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 2856 if (dwc2_assign_and_init_hc(hsotg, qh)) 2857 break; 2858 2859 /* 2860 * Move the QH from the periodic ready schedule to the 2861 * periodic assigned schedule 2862 */ 2863 qh_ptr = qh_ptr->next; 2864 list_move_tail(&qh->qh_list_entry, 2865 &hsotg->periodic_sched_assigned); 2866 ret_val = DWC2_TRANSACTION_PERIODIC; 2867 } 2868 2869 /* 2870 * Process entries in the inactive portion of the non-periodic 2871 * schedule. Some free host channels may not be used if they are 2872 * reserved for periodic transfers. 2873 */ 2874 num_channels = hsotg->params.host_channels; 2875 qh_ptr = hsotg->non_periodic_sched_inactive.next; 2876 while (qh_ptr != &hsotg->non_periodic_sched_inactive) { 2877 if (!hsotg->params.uframe_sched && 2878 hsotg->non_periodic_channels >= num_channels - 2879 hsotg->periodic_channels) 2880 break; 2881 if (list_empty(&hsotg->free_hc_list)) 2882 break; 2883 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 2884 if (hsotg->params.uframe_sched) { 2885 if (hsotg->available_host_channels < 1) 2886 break; 2887 hsotg->available_host_channels--; 2888 } 2889 2890 if (dwc2_assign_and_init_hc(hsotg, qh)) 2891 break; 2892 2893 /* 2894 * Move the QH from the non-periodic inactive schedule to the 2895 * non-periodic active schedule 2896 */ 2897 qh_ptr = qh_ptr->next; 2898 list_move_tail(&qh->qh_list_entry, 2899 &hsotg->non_periodic_sched_active); 2900 2901 if (ret_val == DWC2_TRANSACTION_NONE) 2902 ret_val = DWC2_TRANSACTION_NON_PERIODIC; 2903 else 2904 ret_val = DWC2_TRANSACTION_ALL; 2905 2906 if (!hsotg->params.uframe_sched) 2907 hsotg->non_periodic_channels++; 2908 } 2909 2910 return ret_val; 2911 } 2912 2913 /** 2914 * dwc2_queue_transaction() - Attempts to queue a single transaction request for 2915 * a host channel associated with either a periodic or non-periodic transfer 2916 * 2917 * @hsotg: The HCD state structure 2918 * @chan: Host channel descriptor associated with either a periodic or 2919 * non-periodic transfer 2920 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO 2921 * for periodic transfers or the non-periodic Tx FIFO 2922 * for non-periodic transfers 2923 * 2924 * Return: 1 if a request is queued and more requests may be needed to 2925 * complete the transfer, 0 if no more requests are required for this 2926 * transfer, -1 if there is insufficient space in the Tx FIFO 2927 * 2928 * This function assumes that there is space available in the appropriate 2929 * request queue. For an OUT transfer or SETUP transaction in Slave mode, 2930 * it checks whether space is available in the appropriate Tx FIFO. 2931 * 2932 * Must be called with interrupt disabled and spinlock held 2933 */ 2934 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg, 2935 struct dwc2_host_chan *chan, 2936 u16 fifo_dwords_avail) 2937 { 2938 int retval = 0; 2939 2940 if (chan->do_split) 2941 /* Put ourselves on the list to keep order straight */ 2942 list_move_tail(&chan->split_order_list_entry, 2943 &hsotg->split_order); 2944 2945 if (hsotg->params.host_dma) { 2946 if (hsotg->params.dma_desc_enable) { 2947 if (!chan->xfer_started || 2948 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 2949 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh); 2950 chan->qh->ping_state = 0; 2951 } 2952 } else if (!chan->xfer_started) { 2953 dwc2_hc_start_transfer(hsotg, chan); 2954 chan->qh->ping_state = 0; 2955 } 2956 } else if (chan->halt_pending) { 2957 /* Don't queue a request if the channel has been halted */ 2958 } else if (chan->halt_on_queue) { 2959 dwc2_hc_halt(hsotg, chan, chan->halt_status); 2960 } else if (chan->do_ping) { 2961 if (!chan->xfer_started) 2962 dwc2_hc_start_transfer(hsotg, chan); 2963 } else if (!chan->ep_is_in || 2964 chan->data_pid_start == DWC2_HC_PID_SETUP) { 2965 if ((fifo_dwords_avail * 4) >= chan->max_packet) { 2966 if (!chan->xfer_started) { 2967 dwc2_hc_start_transfer(hsotg, chan); 2968 retval = 1; 2969 } else { 2970 retval = dwc2_hc_continue_transfer(hsotg, chan); 2971 } 2972 } else { 2973 retval = -1; 2974 } 2975 } else { 2976 if (!chan->xfer_started) { 2977 dwc2_hc_start_transfer(hsotg, chan); 2978 retval = 1; 2979 } else { 2980 retval = dwc2_hc_continue_transfer(hsotg, chan); 2981 } 2982 } 2983 2984 return retval; 2985 } 2986 2987 /* 2988 * Processes periodic channels for the next frame and queues transactions for 2989 * these channels to the DWC_otg controller. After queueing transactions, the 2990 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions 2991 * to queue as Periodic Tx FIFO or request queue space becomes available. 2992 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. 2993 * 2994 * Must be called with interrupt disabled and spinlock held 2995 */ 2996 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg) 2997 { 2998 struct list_head *qh_ptr; 2999 struct dwc2_qh *qh; 3000 u32 tx_status; 3001 u32 fspcavail; 3002 u32 gintmsk; 3003 int status; 3004 bool no_queue_space = false; 3005 bool no_fifo_space = false; 3006 u32 qspcavail; 3007 3008 /* If empty list then just adjust interrupt enables */ 3009 if (list_empty(&hsotg->periodic_sched_assigned)) 3010 goto exit; 3011 3012 if (dbg_perio()) 3013 dev_vdbg(hsotg->dev, "Queue periodic transactions\n"); 3014 3015 tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 3016 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3017 TXSTS_QSPCAVAIL_SHIFT; 3018 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3019 TXSTS_FSPCAVAIL_SHIFT; 3020 3021 if (dbg_perio()) { 3022 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n", 3023 qspcavail); 3024 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n", 3025 fspcavail); 3026 } 3027 3028 qh_ptr = hsotg->periodic_sched_assigned.next; 3029 while (qh_ptr != &hsotg->periodic_sched_assigned) { 3030 tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 3031 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3032 TXSTS_QSPCAVAIL_SHIFT; 3033 if (qspcavail == 0) { 3034 no_queue_space = true; 3035 break; 3036 } 3037 3038 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 3039 if (!qh->channel) { 3040 qh_ptr = qh_ptr->next; 3041 continue; 3042 } 3043 3044 /* Make sure EP's TT buffer is clean before queueing qtds */ 3045 if (qh->tt_buffer_dirty) { 3046 qh_ptr = qh_ptr->next; 3047 continue; 3048 } 3049 3050 /* 3051 * Set a flag if we're queuing high-bandwidth in slave mode. 3052 * The flag prevents any halts to get into the request queue in 3053 * the middle of multiple high-bandwidth packets getting queued. 3054 */ 3055 if (!hsotg->params.host_dma && 3056 qh->channel->multi_count > 1) 3057 hsotg->queuing_high_bandwidth = 1; 3058 3059 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3060 TXSTS_FSPCAVAIL_SHIFT; 3061 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); 3062 if (status < 0) { 3063 no_fifo_space = true; 3064 break; 3065 } 3066 3067 /* 3068 * In Slave mode, stay on the current transfer until there is 3069 * nothing more to do or the high-bandwidth request count is 3070 * reached. In DMA mode, only need to queue one request. The 3071 * controller automatically handles multiple packets for 3072 * high-bandwidth transfers. 3073 */ 3074 if (hsotg->params.host_dma || status == 0 || 3075 qh->channel->requests == qh->channel->multi_count) { 3076 qh_ptr = qh_ptr->next; 3077 /* 3078 * Move the QH from the periodic assigned schedule to 3079 * the periodic queued schedule 3080 */ 3081 list_move_tail(&qh->qh_list_entry, 3082 &hsotg->periodic_sched_queued); 3083 3084 /* done queuing high bandwidth */ 3085 hsotg->queuing_high_bandwidth = 0; 3086 } 3087 } 3088 3089 exit: 3090 if (no_queue_space || no_fifo_space || 3091 (!hsotg->params.host_dma && 3092 !list_empty(&hsotg->periodic_sched_assigned))) { 3093 /* 3094 * May need to queue more transactions as the request 3095 * queue or Tx FIFO empties. Enable the periodic Tx 3096 * FIFO empty interrupt. (Always use the half-empty 3097 * level to ensure that new requests are loaded as 3098 * soon as possible.) 3099 */ 3100 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3101 if (!(gintmsk & GINTSTS_PTXFEMP)) { 3102 gintmsk |= GINTSTS_PTXFEMP; 3103 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3104 } 3105 } else { 3106 /* 3107 * Disable the Tx FIFO empty interrupt since there are 3108 * no more transactions that need to be queued right 3109 * now. This function is called from interrupt 3110 * handlers to queue more transactions as transfer 3111 * states change. 3112 */ 3113 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3114 if (gintmsk & GINTSTS_PTXFEMP) { 3115 gintmsk &= ~GINTSTS_PTXFEMP; 3116 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3117 } 3118 } 3119 } 3120 3121 /* 3122 * Processes active non-periodic channels and queues transactions for these 3123 * channels to the DWC_otg controller. After queueing transactions, the NP Tx 3124 * FIFO Empty interrupt is enabled if there are more transactions to queue as 3125 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx 3126 * FIFO Empty interrupt is disabled. 3127 * 3128 * Must be called with interrupt disabled and spinlock held 3129 */ 3130 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg) 3131 { 3132 struct list_head *orig_qh_ptr; 3133 struct dwc2_qh *qh; 3134 u32 tx_status; 3135 u32 qspcavail; 3136 u32 fspcavail; 3137 u32 gintmsk; 3138 int status; 3139 int no_queue_space = 0; 3140 int no_fifo_space = 0; 3141 int more_to_do = 0; 3142 3143 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n"); 3144 3145 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 3146 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3147 TXSTS_QSPCAVAIL_SHIFT; 3148 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3149 TXSTS_FSPCAVAIL_SHIFT; 3150 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n", 3151 qspcavail); 3152 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n", 3153 fspcavail); 3154 3155 /* 3156 * Keep track of the starting point. Skip over the start-of-list 3157 * entry. 3158 */ 3159 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active) 3160 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; 3161 orig_qh_ptr = hsotg->non_periodic_qh_ptr; 3162 3163 /* 3164 * Process once through the active list or until no more space is 3165 * available in the request queue or the Tx FIFO 3166 */ 3167 do { 3168 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 3169 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3170 TXSTS_QSPCAVAIL_SHIFT; 3171 if (!hsotg->params.host_dma && qspcavail == 0) { 3172 no_queue_space = 1; 3173 break; 3174 } 3175 3176 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh, 3177 qh_list_entry); 3178 if (!qh->channel) 3179 goto next; 3180 3181 /* Make sure EP's TT buffer is clean before queueing qtds */ 3182 if (qh->tt_buffer_dirty) 3183 goto next; 3184 3185 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3186 TXSTS_FSPCAVAIL_SHIFT; 3187 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); 3188 3189 if (status > 0) { 3190 more_to_do = 1; 3191 } else if (status < 0) { 3192 no_fifo_space = 1; 3193 break; 3194 } 3195 next: 3196 /* Advance to next QH, skipping start-of-list entry */ 3197 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; 3198 if (hsotg->non_periodic_qh_ptr == 3199 &hsotg->non_periodic_sched_active) 3200 hsotg->non_periodic_qh_ptr = 3201 hsotg->non_periodic_qh_ptr->next; 3202 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr); 3203 3204 if (!hsotg->params.host_dma) { 3205 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 3206 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3207 TXSTS_QSPCAVAIL_SHIFT; 3208 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3209 TXSTS_FSPCAVAIL_SHIFT; 3210 dev_vdbg(hsotg->dev, 3211 " NP Tx Req Queue Space Avail (after queue): %d\n", 3212 qspcavail); 3213 dev_vdbg(hsotg->dev, 3214 " NP Tx FIFO Space Avail (after queue): %d\n", 3215 fspcavail); 3216 3217 if (more_to_do || no_queue_space || no_fifo_space) { 3218 /* 3219 * May need to queue more transactions as the request 3220 * queue or Tx FIFO empties. Enable the non-periodic 3221 * Tx FIFO empty interrupt. (Always use the half-empty 3222 * level to ensure that new requests are loaded as 3223 * soon as possible.) 3224 */ 3225 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3226 gintmsk |= GINTSTS_NPTXFEMP; 3227 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3228 } else { 3229 /* 3230 * Disable the Tx FIFO empty interrupt since there are 3231 * no more transactions that need to be queued right 3232 * now. This function is called from interrupt 3233 * handlers to queue more transactions as transfer 3234 * states change. 3235 */ 3236 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3237 gintmsk &= ~GINTSTS_NPTXFEMP; 3238 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3239 } 3240 } 3241 } 3242 3243 /** 3244 * dwc2_hcd_queue_transactions() - Processes the currently active host channels 3245 * and queues transactions for these channels to the DWC_otg controller. Called 3246 * from the HCD interrupt handler functions. 3247 * 3248 * @hsotg: The HCD state structure 3249 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic, 3250 * or both) 3251 * 3252 * Must be called with interrupt disabled and spinlock held 3253 */ 3254 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, 3255 enum dwc2_transaction_type tr_type) 3256 { 3257 #ifdef DWC2_DEBUG_SOF 3258 dev_vdbg(hsotg->dev, "Queue Transactions\n"); 3259 #endif 3260 /* Process host channels associated with periodic transfers */ 3261 if (tr_type == DWC2_TRANSACTION_PERIODIC || 3262 tr_type == DWC2_TRANSACTION_ALL) 3263 dwc2_process_periodic_channels(hsotg); 3264 3265 /* Process host channels associated with non-periodic transfers */ 3266 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC || 3267 tr_type == DWC2_TRANSACTION_ALL) { 3268 if (!list_empty(&hsotg->non_periodic_sched_active)) { 3269 dwc2_process_non_periodic_channels(hsotg); 3270 } else { 3271 /* 3272 * Ensure NP Tx FIFO empty interrupt is disabled when 3273 * there are no non-periodic transfers to process 3274 */ 3275 u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3276 3277 gintmsk &= ~GINTSTS_NPTXFEMP; 3278 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3279 } 3280 } 3281 } 3282 3283 static void dwc2_conn_id_status_change(struct work_struct *work) 3284 { 3285 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 3286 wf_otg); 3287 u32 count = 0; 3288 u32 gotgctl; 3289 unsigned long flags; 3290 3291 dev_dbg(hsotg->dev, "%s()\n", __func__); 3292 3293 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 3294 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl); 3295 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n", 3296 !!(gotgctl & GOTGCTL_CONID_B)); 3297 3298 /* B-Device connector (Device Mode) */ 3299 if (gotgctl & GOTGCTL_CONID_B) { 3300 dwc2_vbus_supply_exit(hsotg); 3301 /* Wait for switch to device mode */ 3302 dev_dbg(hsotg->dev, "connId B\n"); 3303 if (hsotg->bus_suspended) { 3304 dev_info(hsotg->dev, 3305 "Do port resume before switching to device mode\n"); 3306 dwc2_port_resume(hsotg); 3307 } 3308 while (!dwc2_is_device_mode(hsotg)) { 3309 dev_info(hsotg->dev, 3310 "Waiting for Peripheral Mode, Mode=%s\n", 3311 dwc2_is_host_mode(hsotg) ? "Host" : 3312 "Peripheral"); 3313 msleep(20); 3314 /* 3315 * Sometimes the initial GOTGCTRL read is wrong, so 3316 * check it again and jump to host mode if that was 3317 * the case. 3318 */ 3319 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 3320 if (!(gotgctl & GOTGCTL_CONID_B)) 3321 goto host; 3322 if (++count > 250) 3323 break; 3324 } 3325 if (count > 250) 3326 dev_err(hsotg->dev, 3327 "Connection id status change timed out\n"); 3328 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 3329 dwc2_core_init(hsotg, false); 3330 dwc2_enable_global_interrupts(hsotg); 3331 spin_lock_irqsave(&hsotg->lock, flags); 3332 dwc2_hsotg_core_init_disconnected(hsotg, false); 3333 spin_unlock_irqrestore(&hsotg->lock, flags); 3334 /* Enable ACG feature in device mode,if supported */ 3335 dwc2_enable_acg(hsotg); 3336 dwc2_hsotg_core_connect(hsotg); 3337 } else { 3338 host: 3339 /* A-Device connector (Host Mode) */ 3340 dev_dbg(hsotg->dev, "connId A\n"); 3341 while (!dwc2_is_host_mode(hsotg)) { 3342 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n", 3343 dwc2_is_host_mode(hsotg) ? 3344 "Host" : "Peripheral"); 3345 msleep(20); 3346 if (++count > 250) 3347 break; 3348 } 3349 if (count > 250) 3350 dev_err(hsotg->dev, 3351 "Connection id status change timed out\n"); 3352 3353 spin_lock_irqsave(&hsotg->lock, flags); 3354 dwc2_hsotg_disconnect(hsotg); 3355 spin_unlock_irqrestore(&hsotg->lock, flags); 3356 3357 hsotg->op_state = OTG_STATE_A_HOST; 3358 /* Initialize the Core for Host mode */ 3359 dwc2_core_init(hsotg, false); 3360 dwc2_enable_global_interrupts(hsotg); 3361 dwc2_hcd_start(hsotg); 3362 } 3363 } 3364 3365 static void dwc2_wakeup_detected(struct timer_list *t) 3366 { 3367 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer); 3368 u32 hprt0; 3369 3370 dev_dbg(hsotg->dev, "%s()\n", __func__); 3371 3372 /* 3373 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms 3374 * so that OPT tests pass with all PHYs.) 3375 */ 3376 hprt0 = dwc2_read_hprt0(hsotg); 3377 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0); 3378 hprt0 &= ~HPRT0_RES; 3379 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3380 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n", 3381 dwc2_readl(hsotg->regs + HPRT0)); 3382 3383 dwc2_hcd_rem_wakeup(hsotg); 3384 hsotg->bus_suspended = false; 3385 3386 /* Change to L0 state */ 3387 hsotg->lx_state = DWC2_L0; 3388 } 3389 3390 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg) 3391 { 3392 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 3393 3394 return hcd->self.b_hnp_enable; 3395 } 3396 3397 /* Must NOT be called with interrupt disabled or spinlock held */ 3398 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex) 3399 { 3400 unsigned long flags; 3401 u32 hprt0; 3402 u32 pcgctl; 3403 u32 gotgctl; 3404 3405 dev_dbg(hsotg->dev, "%s()\n", __func__); 3406 3407 spin_lock_irqsave(&hsotg->lock, flags); 3408 3409 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) { 3410 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 3411 gotgctl |= GOTGCTL_HSTSETHNPEN; 3412 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL); 3413 hsotg->op_state = OTG_STATE_A_SUSPEND; 3414 } 3415 3416 hprt0 = dwc2_read_hprt0(hsotg); 3417 hprt0 |= HPRT0_SUSP; 3418 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3419 3420 hsotg->bus_suspended = true; 3421 3422 /* 3423 * If power_down is supported, Phy clock will be suspended 3424 * after registers are backuped. 3425 */ 3426 if (!hsotg->params.power_down) { 3427 /* Suspend the Phy Clock */ 3428 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3429 pcgctl |= PCGCTL_STOPPCLK; 3430 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3431 udelay(10); 3432 } 3433 3434 /* For HNP the bus must be suspended for at least 200ms */ 3435 if (dwc2_host_is_b_hnp_enabled(hsotg)) { 3436 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3437 pcgctl &= ~PCGCTL_STOPPCLK; 3438 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3439 3440 spin_unlock_irqrestore(&hsotg->lock, flags); 3441 3442 msleep(200); 3443 } else { 3444 spin_unlock_irqrestore(&hsotg->lock, flags); 3445 } 3446 } 3447 3448 /* Must NOT be called with interrupt disabled or spinlock held */ 3449 static void dwc2_port_resume(struct dwc2_hsotg *hsotg) 3450 { 3451 unsigned long flags; 3452 u32 hprt0; 3453 u32 pcgctl; 3454 3455 spin_lock_irqsave(&hsotg->lock, flags); 3456 3457 /* 3458 * If power_down is supported, Phy clock is already resumed 3459 * after registers restore. 3460 */ 3461 if (!hsotg->params.power_down) { 3462 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3463 pcgctl &= ~PCGCTL_STOPPCLK; 3464 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3465 spin_unlock_irqrestore(&hsotg->lock, flags); 3466 msleep(20); 3467 spin_lock_irqsave(&hsotg->lock, flags); 3468 } 3469 3470 hprt0 = dwc2_read_hprt0(hsotg); 3471 hprt0 |= HPRT0_RES; 3472 hprt0 &= ~HPRT0_SUSP; 3473 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3474 spin_unlock_irqrestore(&hsotg->lock, flags); 3475 3476 msleep(USB_RESUME_TIMEOUT); 3477 3478 spin_lock_irqsave(&hsotg->lock, flags); 3479 hprt0 = dwc2_read_hprt0(hsotg); 3480 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP); 3481 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3482 hsotg->bus_suspended = false; 3483 spin_unlock_irqrestore(&hsotg->lock, flags); 3484 } 3485 3486 /* Handles hub class-specific requests */ 3487 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq, 3488 u16 wvalue, u16 windex, char *buf, u16 wlength) 3489 { 3490 struct usb_hub_descriptor *hub_desc; 3491 int retval = 0; 3492 u32 hprt0; 3493 u32 port_status; 3494 u32 speed; 3495 u32 pcgctl; 3496 3497 switch (typereq) { 3498 case ClearHubFeature: 3499 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue); 3500 3501 switch (wvalue) { 3502 case C_HUB_LOCAL_POWER: 3503 case C_HUB_OVER_CURRENT: 3504 /* Nothing required here */ 3505 break; 3506 3507 default: 3508 retval = -EINVAL; 3509 dev_err(hsotg->dev, 3510 "ClearHubFeature request %1xh unknown\n", 3511 wvalue); 3512 } 3513 break; 3514 3515 case ClearPortFeature: 3516 if (wvalue != USB_PORT_FEAT_L1) 3517 if (!windex || windex > 1) 3518 goto error; 3519 switch (wvalue) { 3520 case USB_PORT_FEAT_ENABLE: 3521 dev_dbg(hsotg->dev, 3522 "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); 3523 hprt0 = dwc2_read_hprt0(hsotg); 3524 hprt0 |= HPRT0_ENA; 3525 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3526 break; 3527 3528 case USB_PORT_FEAT_SUSPEND: 3529 dev_dbg(hsotg->dev, 3530 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); 3531 3532 if (hsotg->bus_suspended) { 3533 if (hsotg->hibernated) 3534 dwc2_exit_hibernation(hsotg, 0, 0, 1); 3535 else 3536 dwc2_port_resume(hsotg); 3537 } 3538 break; 3539 3540 case USB_PORT_FEAT_POWER: 3541 dev_dbg(hsotg->dev, 3542 "ClearPortFeature USB_PORT_FEAT_POWER\n"); 3543 hprt0 = dwc2_read_hprt0(hsotg); 3544 hprt0 &= ~HPRT0_PWR; 3545 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3546 break; 3547 3548 case USB_PORT_FEAT_INDICATOR: 3549 dev_dbg(hsotg->dev, 3550 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); 3551 /* Port indicator not supported */ 3552 break; 3553 3554 case USB_PORT_FEAT_C_CONNECTION: 3555 /* 3556 * Clears driver's internal Connect Status Change flag 3557 */ 3558 dev_dbg(hsotg->dev, 3559 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); 3560 hsotg->flags.b.port_connect_status_change = 0; 3561 break; 3562 3563 case USB_PORT_FEAT_C_RESET: 3564 /* Clears driver's internal Port Reset Change flag */ 3565 dev_dbg(hsotg->dev, 3566 "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); 3567 hsotg->flags.b.port_reset_change = 0; 3568 break; 3569 3570 case USB_PORT_FEAT_C_ENABLE: 3571 /* 3572 * Clears the driver's internal Port Enable/Disable 3573 * Change flag 3574 */ 3575 dev_dbg(hsotg->dev, 3576 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); 3577 hsotg->flags.b.port_enable_change = 0; 3578 break; 3579 3580 case USB_PORT_FEAT_C_SUSPEND: 3581 /* 3582 * Clears the driver's internal Port Suspend Change 3583 * flag, which is set when resume signaling on the host 3584 * port is complete 3585 */ 3586 dev_dbg(hsotg->dev, 3587 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); 3588 hsotg->flags.b.port_suspend_change = 0; 3589 break; 3590 3591 case USB_PORT_FEAT_C_PORT_L1: 3592 dev_dbg(hsotg->dev, 3593 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n"); 3594 hsotg->flags.b.port_l1_change = 0; 3595 break; 3596 3597 case USB_PORT_FEAT_C_OVER_CURRENT: 3598 dev_dbg(hsotg->dev, 3599 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); 3600 hsotg->flags.b.port_over_current_change = 0; 3601 break; 3602 3603 default: 3604 retval = -EINVAL; 3605 dev_err(hsotg->dev, 3606 "ClearPortFeature request %1xh unknown or unsupported\n", 3607 wvalue); 3608 } 3609 break; 3610 3611 case GetHubDescriptor: 3612 dev_dbg(hsotg->dev, "GetHubDescriptor\n"); 3613 hub_desc = (struct usb_hub_descriptor *)buf; 3614 hub_desc->bDescLength = 9; 3615 hub_desc->bDescriptorType = USB_DT_HUB; 3616 hub_desc->bNbrPorts = 1; 3617 hub_desc->wHubCharacteristics = 3618 cpu_to_le16(HUB_CHAR_COMMON_LPSM | 3619 HUB_CHAR_INDV_PORT_OCPM); 3620 hub_desc->bPwrOn2PwrGood = 1; 3621 hub_desc->bHubContrCurrent = 0; 3622 hub_desc->u.hs.DeviceRemovable[0] = 0; 3623 hub_desc->u.hs.DeviceRemovable[1] = 0xff; 3624 break; 3625 3626 case GetHubStatus: 3627 dev_dbg(hsotg->dev, "GetHubStatus\n"); 3628 memset(buf, 0, 4); 3629 break; 3630 3631 case GetPortStatus: 3632 dev_vdbg(hsotg->dev, 3633 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex, 3634 hsotg->flags.d32); 3635 if (!windex || windex > 1) 3636 goto error; 3637 3638 port_status = 0; 3639 if (hsotg->flags.b.port_connect_status_change) 3640 port_status |= USB_PORT_STAT_C_CONNECTION << 16; 3641 if (hsotg->flags.b.port_enable_change) 3642 port_status |= USB_PORT_STAT_C_ENABLE << 16; 3643 if (hsotg->flags.b.port_suspend_change) 3644 port_status |= USB_PORT_STAT_C_SUSPEND << 16; 3645 if (hsotg->flags.b.port_l1_change) 3646 port_status |= USB_PORT_STAT_C_L1 << 16; 3647 if (hsotg->flags.b.port_reset_change) 3648 port_status |= USB_PORT_STAT_C_RESET << 16; 3649 if (hsotg->flags.b.port_over_current_change) { 3650 dev_warn(hsotg->dev, "Overcurrent change detected\n"); 3651 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3652 } 3653 3654 if (!hsotg->flags.b.port_connect_status) { 3655 /* 3656 * The port is disconnected, which means the core is 3657 * either in device mode or it soon will be. Just 3658 * return 0's for the remainder of the port status 3659 * since the port register can't be read if the core 3660 * is in device mode. 3661 */ 3662 *(__le32 *)buf = cpu_to_le32(port_status); 3663 break; 3664 } 3665 3666 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 3667 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0); 3668 3669 if (hprt0 & HPRT0_CONNSTS) 3670 port_status |= USB_PORT_STAT_CONNECTION; 3671 if (hprt0 & HPRT0_ENA) 3672 port_status |= USB_PORT_STAT_ENABLE; 3673 if (hprt0 & HPRT0_SUSP) 3674 port_status |= USB_PORT_STAT_SUSPEND; 3675 if (hprt0 & HPRT0_OVRCURRACT) 3676 port_status |= USB_PORT_STAT_OVERCURRENT; 3677 if (hprt0 & HPRT0_RST) 3678 port_status |= USB_PORT_STAT_RESET; 3679 if (hprt0 & HPRT0_PWR) 3680 port_status |= USB_PORT_STAT_POWER; 3681 3682 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 3683 if (speed == HPRT0_SPD_HIGH_SPEED) 3684 port_status |= USB_PORT_STAT_HIGH_SPEED; 3685 else if (speed == HPRT0_SPD_LOW_SPEED) 3686 port_status |= USB_PORT_STAT_LOW_SPEED; 3687 3688 if (hprt0 & HPRT0_TSTCTL_MASK) 3689 port_status |= USB_PORT_STAT_TEST; 3690 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ 3691 3692 if (hsotg->params.dma_desc_fs_enable) { 3693 /* 3694 * Enable descriptor DMA only if a full speed 3695 * device is connected. 3696 */ 3697 if (hsotg->new_connection && 3698 ((port_status & 3699 (USB_PORT_STAT_CONNECTION | 3700 USB_PORT_STAT_HIGH_SPEED | 3701 USB_PORT_STAT_LOW_SPEED)) == 3702 USB_PORT_STAT_CONNECTION)) { 3703 u32 hcfg; 3704 3705 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n"); 3706 hsotg->params.dma_desc_enable = true; 3707 hcfg = dwc2_readl(hsotg->regs + HCFG); 3708 hcfg |= HCFG_DESCDMA; 3709 dwc2_writel(hcfg, hsotg->regs + HCFG); 3710 hsotg->new_connection = false; 3711 } 3712 } 3713 3714 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status); 3715 *(__le32 *)buf = cpu_to_le32(port_status); 3716 break; 3717 3718 case SetHubFeature: 3719 dev_dbg(hsotg->dev, "SetHubFeature\n"); 3720 /* No HUB features supported */ 3721 break; 3722 3723 case SetPortFeature: 3724 dev_dbg(hsotg->dev, "SetPortFeature\n"); 3725 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1)) 3726 goto error; 3727 3728 if (!hsotg->flags.b.port_connect_status) { 3729 /* 3730 * The port is disconnected, which means the core is 3731 * either in device mode or it soon will be. Just 3732 * return without doing anything since the port 3733 * register can't be written if the core is in device 3734 * mode. 3735 */ 3736 break; 3737 } 3738 3739 switch (wvalue) { 3740 case USB_PORT_FEAT_SUSPEND: 3741 dev_dbg(hsotg->dev, 3742 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); 3743 if (windex != hsotg->otg_port) 3744 goto error; 3745 if (hsotg->params.power_down == 2) 3746 dwc2_enter_hibernation(hsotg, 1); 3747 else 3748 dwc2_port_suspend(hsotg, windex); 3749 break; 3750 3751 case USB_PORT_FEAT_POWER: 3752 dev_dbg(hsotg->dev, 3753 "SetPortFeature - USB_PORT_FEAT_POWER\n"); 3754 hprt0 = dwc2_read_hprt0(hsotg); 3755 hprt0 |= HPRT0_PWR; 3756 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3757 break; 3758 3759 case USB_PORT_FEAT_RESET: 3760 if (hsotg->params.power_down == 2 && 3761 hsotg->hibernated) 3762 dwc2_exit_hibernation(hsotg, 0, 1, 1); 3763 hprt0 = dwc2_read_hprt0(hsotg); 3764 dev_dbg(hsotg->dev, 3765 "SetPortFeature - USB_PORT_FEAT_RESET\n"); 3766 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3767 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK); 3768 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3769 /* ??? Original driver does this */ 3770 dwc2_writel(0, hsotg->regs + PCGCTL); 3771 3772 hprt0 = dwc2_read_hprt0(hsotg); 3773 /* Clear suspend bit if resetting from suspend state */ 3774 hprt0 &= ~HPRT0_SUSP; 3775 3776 /* 3777 * When B-Host the Port reset bit is set in the Start 3778 * HCD Callback function, so that the reset is started 3779 * within 1ms of the HNP success interrupt 3780 */ 3781 if (!dwc2_hcd_is_b_host(hsotg)) { 3782 hprt0 |= HPRT0_PWR | HPRT0_RST; 3783 dev_dbg(hsotg->dev, 3784 "In host mode, hprt0=%08x\n", hprt0); 3785 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3786 } 3787 3788 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ 3789 msleep(50); 3790 hprt0 &= ~HPRT0_RST; 3791 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3792 hsotg->lx_state = DWC2_L0; /* Now back to On state */ 3793 break; 3794 3795 case USB_PORT_FEAT_INDICATOR: 3796 dev_dbg(hsotg->dev, 3797 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); 3798 /* Not supported */ 3799 break; 3800 3801 case USB_PORT_FEAT_TEST: 3802 hprt0 = dwc2_read_hprt0(hsotg); 3803 dev_dbg(hsotg->dev, 3804 "SetPortFeature - USB_PORT_FEAT_TEST\n"); 3805 hprt0 &= ~HPRT0_TSTCTL_MASK; 3806 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT; 3807 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3808 break; 3809 3810 default: 3811 retval = -EINVAL; 3812 dev_err(hsotg->dev, 3813 "SetPortFeature %1xh unknown or unsupported\n", 3814 wvalue); 3815 break; 3816 } 3817 break; 3818 3819 default: 3820 error: 3821 retval = -EINVAL; 3822 dev_dbg(hsotg->dev, 3823 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n", 3824 typereq, windex, wvalue); 3825 break; 3826 } 3827 3828 return retval; 3829 } 3830 3831 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port) 3832 { 3833 int retval; 3834 3835 if (port != 1) 3836 return -EINVAL; 3837 3838 retval = (hsotg->flags.b.port_connect_status_change || 3839 hsotg->flags.b.port_reset_change || 3840 hsotg->flags.b.port_enable_change || 3841 hsotg->flags.b.port_suspend_change || 3842 hsotg->flags.b.port_over_current_change); 3843 3844 if (retval) { 3845 dev_dbg(hsotg->dev, 3846 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n"); 3847 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n", 3848 hsotg->flags.b.port_connect_status_change); 3849 dev_dbg(hsotg->dev, " port_reset_change: %d\n", 3850 hsotg->flags.b.port_reset_change); 3851 dev_dbg(hsotg->dev, " port_enable_change: %d\n", 3852 hsotg->flags.b.port_enable_change); 3853 dev_dbg(hsotg->dev, " port_suspend_change: %d\n", 3854 hsotg->flags.b.port_suspend_change); 3855 dev_dbg(hsotg->dev, " port_over_current_change: %d\n", 3856 hsotg->flags.b.port_over_current_change); 3857 } 3858 3859 return retval; 3860 } 3861 3862 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) 3863 { 3864 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM); 3865 3866 #ifdef DWC2_DEBUG_SOF 3867 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n", 3868 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT); 3869 #endif 3870 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; 3871 } 3872 3873 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us) 3874 { 3875 u32 hprt = dwc2_readl(hsotg->regs + HPRT0); 3876 u32 hfir = dwc2_readl(hsotg->regs + HFIR); 3877 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM); 3878 unsigned int us_per_frame; 3879 unsigned int frame_number; 3880 unsigned int remaining; 3881 unsigned int interval; 3882 unsigned int phy_clks; 3883 3884 /* High speed has 125 us per (micro) frame; others are 1 ms per */ 3885 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125; 3886 3887 /* Extract fields */ 3888 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; 3889 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT; 3890 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT; 3891 3892 /* 3893 * Number of phy clocks since the last tick of the frame number after 3894 * "us" has passed. 3895 */ 3896 phy_clks = (interval - remaining) + 3897 DIV_ROUND_UP(interval * us, us_per_frame); 3898 3899 return dwc2_frame_num_inc(frame_number, phy_clks / interval); 3900 } 3901 3902 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg) 3903 { 3904 return hsotg->op_state == OTG_STATE_B_HOST; 3905 } 3906 3907 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg, 3908 int iso_desc_count, 3909 gfp_t mem_flags) 3910 { 3911 struct dwc2_hcd_urb *urb; 3912 u32 size = sizeof(*urb) + iso_desc_count * 3913 sizeof(struct dwc2_hcd_iso_packet_desc); 3914 3915 urb = kzalloc(size, mem_flags); 3916 if (urb) 3917 urb->packet_count = iso_desc_count; 3918 return urb; 3919 } 3920 3921 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg, 3922 struct dwc2_hcd_urb *urb, u8 dev_addr, 3923 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps) 3924 { 3925 if (dbg_perio() || 3926 ep_type == USB_ENDPOINT_XFER_BULK || 3927 ep_type == USB_ENDPOINT_XFER_CONTROL) 3928 dev_vdbg(hsotg->dev, 3929 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n", 3930 dev_addr, ep_num, ep_dir, ep_type, mps); 3931 urb->pipe_info.dev_addr = dev_addr; 3932 urb->pipe_info.ep_num = ep_num; 3933 urb->pipe_info.pipe_type = ep_type; 3934 urb->pipe_info.pipe_dir = ep_dir; 3935 urb->pipe_info.mps = mps; 3936 } 3937 3938 /* 3939 * NOTE: This function will be removed once the peripheral controller code 3940 * is integrated and the driver is stable 3941 */ 3942 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg) 3943 { 3944 #ifdef DEBUG 3945 struct dwc2_host_chan *chan; 3946 struct dwc2_hcd_urb *urb; 3947 struct dwc2_qtd *qtd; 3948 int num_channels; 3949 u32 np_tx_status; 3950 u32 p_tx_status; 3951 int i; 3952 3953 num_channels = hsotg->params.host_channels; 3954 dev_dbg(hsotg->dev, "\n"); 3955 dev_dbg(hsotg->dev, 3956 "************************************************************\n"); 3957 dev_dbg(hsotg->dev, "HCD State:\n"); 3958 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels); 3959 3960 for (i = 0; i < num_channels; i++) { 3961 chan = hsotg->hc_ptr_array[i]; 3962 dev_dbg(hsotg->dev, " Channel %d:\n", i); 3963 dev_dbg(hsotg->dev, 3964 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", 3965 chan->dev_addr, chan->ep_num, chan->ep_is_in); 3966 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed); 3967 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); 3968 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); 3969 dev_dbg(hsotg->dev, " data_pid_start: %d\n", 3970 chan->data_pid_start); 3971 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count); 3972 dev_dbg(hsotg->dev, " xfer_started: %d\n", 3973 chan->xfer_started); 3974 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); 3975 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", 3976 (unsigned long)chan->xfer_dma); 3977 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); 3978 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count); 3979 dev_dbg(hsotg->dev, " halt_on_queue: %d\n", 3980 chan->halt_on_queue); 3981 dev_dbg(hsotg->dev, " halt_pending: %d\n", 3982 chan->halt_pending); 3983 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); 3984 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split); 3985 dev_dbg(hsotg->dev, " complete_split: %d\n", 3986 chan->complete_split); 3987 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr); 3988 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port); 3989 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos); 3990 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests); 3991 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); 3992 3993 if (chan->xfer_started) { 3994 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk; 3995 3996 hfnum = dwc2_readl(hsotg->regs + HFNUM); 3997 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 3998 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i)); 3999 hcint = dwc2_readl(hsotg->regs + HCINT(i)); 4000 hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i)); 4001 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum); 4002 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar); 4003 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz); 4004 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint); 4005 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk); 4006 } 4007 4008 if (!(chan->xfer_started && chan->qh)) 4009 continue; 4010 4011 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) { 4012 if (!qtd->in_process) 4013 break; 4014 urb = qtd->urb; 4015 dev_dbg(hsotg->dev, " URB Info:\n"); 4016 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n", 4017 qtd, urb); 4018 if (urb) { 4019 dev_dbg(hsotg->dev, 4020 " Dev: %d, EP: %d %s\n", 4021 dwc2_hcd_get_dev_addr(&urb->pipe_info), 4022 dwc2_hcd_get_ep_num(&urb->pipe_info), 4023 dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 4024 "IN" : "OUT"); 4025 dev_dbg(hsotg->dev, 4026 " Max packet size: %d\n", 4027 dwc2_hcd_get_mps(&urb->pipe_info)); 4028 dev_dbg(hsotg->dev, 4029 " transfer_buffer: %p\n", 4030 urb->buf); 4031 dev_dbg(hsotg->dev, 4032 " transfer_dma: %08lx\n", 4033 (unsigned long)urb->dma); 4034 dev_dbg(hsotg->dev, 4035 " transfer_buffer_length: %d\n", 4036 urb->length); 4037 dev_dbg(hsotg->dev, " actual_length: %d\n", 4038 urb->actual_length); 4039 } 4040 } 4041 } 4042 4043 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n", 4044 hsotg->non_periodic_channels); 4045 dev_dbg(hsotg->dev, " periodic_channels: %d\n", 4046 hsotg->periodic_channels); 4047 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs); 4048 np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 4049 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n", 4050 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); 4051 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n", 4052 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); 4053 p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 4054 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n", 4055 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); 4056 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n", 4057 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); 4058 dwc2_dump_global_registers(hsotg); 4059 dwc2_dump_host_registers(hsotg); 4060 dev_dbg(hsotg->dev, 4061 "************************************************************\n"); 4062 dev_dbg(hsotg->dev, "\n"); 4063 #endif 4064 } 4065 4066 struct wrapper_priv_data { 4067 struct dwc2_hsotg *hsotg; 4068 }; 4069 4070 /* Gets the dwc2_hsotg from a usb_hcd */ 4071 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd) 4072 { 4073 struct wrapper_priv_data *p; 4074 4075 p = (struct wrapper_priv_data *)&hcd->hcd_priv; 4076 return p->hsotg; 4077 } 4078 4079 /** 4080 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context 4081 * 4082 * This will get the dwc2_tt structure (and ttport) associated with the given 4083 * context (which is really just a struct urb pointer). 4084 * 4085 * The first time this is called for a given TT we allocate memory for our 4086 * structure. When everyone is done and has called dwc2_host_put_tt_info() 4087 * then the refcount for the structure will go to 0 and we'll free it. 4088 * 4089 * @hsotg: The HCD state structure for the DWC OTG controller. 4090 * @context: The priv pointer from a struct dwc2_hcd_urb. 4091 * @mem_flags: Flags for allocating memory. 4092 * @ttport: We'll return this device's port number here. That's used to 4093 * reference into the bitmap if we're on a multi_tt hub. 4094 * 4095 * Return: a pointer to a struct dwc2_tt. Don't forget to call 4096 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure. 4097 */ 4098 4099 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context, 4100 gfp_t mem_flags, int *ttport) 4101 { 4102 struct urb *urb = context; 4103 struct dwc2_tt *dwc_tt = NULL; 4104 4105 if (urb->dev->tt) { 4106 *ttport = urb->dev->ttport; 4107 4108 dwc_tt = urb->dev->tt->hcpriv; 4109 if (!dwc_tt) { 4110 size_t bitmap_size; 4111 4112 /* 4113 * For single_tt we need one schedule. For multi_tt 4114 * we need one per port. 4115 */ 4116 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP * 4117 sizeof(dwc_tt->periodic_bitmaps[0]); 4118 if (urb->dev->tt->multi) 4119 bitmap_size *= urb->dev->tt->hub->maxchild; 4120 4121 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size, 4122 mem_flags); 4123 if (!dwc_tt) 4124 return NULL; 4125 4126 dwc_tt->usb_tt = urb->dev->tt; 4127 dwc_tt->usb_tt->hcpriv = dwc_tt; 4128 } 4129 4130 dwc_tt->refcount++; 4131 } 4132 4133 return dwc_tt; 4134 } 4135 4136 /** 4137 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info() 4138 * 4139 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders 4140 * of the structure are done. 4141 * 4142 * It's OK to call this with NULL. 4143 * 4144 * @hsotg: The HCD state structure for the DWC OTG controller. 4145 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info. 4146 */ 4147 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt) 4148 { 4149 /* Model kfree and make put of NULL a no-op */ 4150 if (!dwc_tt) 4151 return; 4152 4153 WARN_ON(dwc_tt->refcount < 1); 4154 4155 dwc_tt->refcount--; 4156 if (!dwc_tt->refcount) { 4157 dwc_tt->usb_tt->hcpriv = NULL; 4158 kfree(dwc_tt); 4159 } 4160 } 4161 4162 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context) 4163 { 4164 struct urb *urb = context; 4165 4166 return urb->dev->speed; 4167 } 4168 4169 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw, 4170 struct urb *urb) 4171 { 4172 struct usb_bus *bus = hcd_to_bus(hcd); 4173 4174 if (urb->interval) 4175 bus->bandwidth_allocated += bw / urb->interval; 4176 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 4177 bus->bandwidth_isoc_reqs++; 4178 else 4179 bus->bandwidth_int_reqs++; 4180 } 4181 4182 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw, 4183 struct urb *urb) 4184 { 4185 struct usb_bus *bus = hcd_to_bus(hcd); 4186 4187 if (urb->interval) 4188 bus->bandwidth_allocated -= bw / urb->interval; 4189 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 4190 bus->bandwidth_isoc_reqs--; 4191 else 4192 bus->bandwidth_int_reqs--; 4193 } 4194 4195 /* 4196 * Sets the final status of an URB and returns it to the upper layer. Any 4197 * required cleanup of the URB is performed. 4198 * 4199 * Must be called with interrupt disabled and spinlock held 4200 */ 4201 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 4202 int status) 4203 { 4204 struct urb *urb; 4205 int i; 4206 4207 if (!qtd) { 4208 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__); 4209 return; 4210 } 4211 4212 if (!qtd->urb) { 4213 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__); 4214 return; 4215 } 4216 4217 urb = qtd->urb->priv; 4218 if (!urb) { 4219 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__); 4220 return; 4221 } 4222 4223 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb); 4224 4225 if (dbg_urb(urb)) 4226 dev_vdbg(hsotg->dev, 4227 "%s: urb %p device %d ep %d-%s status %d actual %d\n", 4228 __func__, urb, usb_pipedevice(urb->pipe), 4229 usb_pipeendpoint(urb->pipe), 4230 usb_pipein(urb->pipe) ? "IN" : "OUT", status, 4231 urb->actual_length); 4232 4233 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 4234 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb); 4235 for (i = 0; i < urb->number_of_packets; ++i) { 4236 urb->iso_frame_desc[i].actual_length = 4237 dwc2_hcd_urb_get_iso_desc_actual_length( 4238 qtd->urb, i); 4239 urb->iso_frame_desc[i].status = 4240 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i); 4241 } 4242 } 4243 4244 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) { 4245 for (i = 0; i < urb->number_of_packets; i++) 4246 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n", 4247 i, urb->iso_frame_desc[i].status); 4248 } 4249 4250 urb->status = status; 4251 if (!status) { 4252 if ((urb->transfer_flags & URB_SHORT_NOT_OK) && 4253 urb->actual_length < urb->transfer_buffer_length) 4254 urb->status = -EREMOTEIO; 4255 } 4256 4257 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || 4258 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 4259 struct usb_host_endpoint *ep = urb->ep; 4260 4261 if (ep) 4262 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg), 4263 dwc2_hcd_get_ep_bandwidth(hsotg, ep), 4264 urb); 4265 } 4266 4267 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb); 4268 urb->hcpriv = NULL; 4269 kfree(qtd->urb); 4270 qtd->urb = NULL; 4271 4272 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status); 4273 } 4274 4275 /* 4276 * Work queue function for starting the HCD when A-Cable is connected 4277 */ 4278 static void dwc2_hcd_start_func(struct work_struct *work) 4279 { 4280 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 4281 start_work.work); 4282 4283 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg); 4284 dwc2_host_start(hsotg); 4285 } 4286 4287 /* 4288 * Reset work queue function 4289 */ 4290 static void dwc2_hcd_reset_func(struct work_struct *work) 4291 { 4292 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 4293 reset_work.work); 4294 unsigned long flags; 4295 u32 hprt0; 4296 4297 dev_dbg(hsotg->dev, "USB RESET function called\n"); 4298 4299 spin_lock_irqsave(&hsotg->lock, flags); 4300 4301 hprt0 = dwc2_read_hprt0(hsotg); 4302 hprt0 &= ~HPRT0_RST; 4303 dwc2_writel(hprt0, hsotg->regs + HPRT0); 4304 hsotg->flags.b.port_reset_change = 1; 4305 4306 spin_unlock_irqrestore(&hsotg->lock, flags); 4307 } 4308 4309 /* 4310 * ========================================================================= 4311 * Linux HC Driver Functions 4312 * ========================================================================= 4313 */ 4314 4315 /* 4316 * Initializes the DWC_otg controller and its root hub and prepares it for host 4317 * mode operation. Activates the root port. Returns 0 on success and a negative 4318 * error code on failure. 4319 */ 4320 static int _dwc2_hcd_start(struct usb_hcd *hcd) 4321 { 4322 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4323 struct usb_bus *bus = hcd_to_bus(hcd); 4324 unsigned long flags; 4325 4326 dev_dbg(hsotg->dev, "DWC OTG HCD START\n"); 4327 4328 spin_lock_irqsave(&hsotg->lock, flags); 4329 hsotg->lx_state = DWC2_L0; 4330 hcd->state = HC_STATE_RUNNING; 4331 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4332 4333 if (dwc2_is_device_mode(hsotg)) { 4334 spin_unlock_irqrestore(&hsotg->lock, flags); 4335 return 0; /* why 0 ?? */ 4336 } 4337 4338 dwc2_hcd_reinit(hsotg); 4339 4340 /* Initialize and connect root hub if one is not already attached */ 4341 if (bus->root_hub) { 4342 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n"); 4343 /* Inform the HUB driver to resume */ 4344 usb_hcd_resume_root_hub(hcd); 4345 } 4346 4347 spin_unlock_irqrestore(&hsotg->lock, flags); 4348 4349 return dwc2_vbus_supply_init(hsotg); 4350 } 4351 4352 /* 4353 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are 4354 * stopped. 4355 */ 4356 static void _dwc2_hcd_stop(struct usb_hcd *hcd) 4357 { 4358 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4359 unsigned long flags; 4360 4361 /* Turn off all host-specific interrupts */ 4362 dwc2_disable_host_interrupts(hsotg); 4363 4364 /* Wait for interrupt processing to finish */ 4365 synchronize_irq(hcd->irq); 4366 4367 spin_lock_irqsave(&hsotg->lock, flags); 4368 /* Ensure hcd is disconnected */ 4369 dwc2_hcd_disconnect(hsotg, true); 4370 dwc2_hcd_stop(hsotg); 4371 hsotg->lx_state = DWC2_L3; 4372 hcd->state = HC_STATE_HALT; 4373 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4374 spin_unlock_irqrestore(&hsotg->lock, flags); 4375 4376 dwc2_vbus_supply_exit(hsotg); 4377 4378 usleep_range(1000, 3000); 4379 } 4380 4381 static int _dwc2_hcd_suspend(struct usb_hcd *hcd) 4382 { 4383 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4384 unsigned long flags; 4385 int ret = 0; 4386 u32 hprt0; 4387 4388 spin_lock_irqsave(&hsotg->lock, flags); 4389 4390 if (dwc2_is_device_mode(hsotg)) 4391 goto unlock; 4392 4393 if (hsotg->lx_state != DWC2_L0) 4394 goto unlock; 4395 4396 if (!HCD_HW_ACCESSIBLE(hcd)) 4397 goto unlock; 4398 4399 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL) 4400 goto unlock; 4401 4402 if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) 4403 goto skip_power_saving; 4404 4405 /* 4406 * Drive USB suspend and disable port Power 4407 * if usb bus is not suspended. 4408 */ 4409 if (!hsotg->bus_suspended) { 4410 hprt0 = dwc2_read_hprt0(hsotg); 4411 hprt0 |= HPRT0_SUSP; 4412 hprt0 &= ~HPRT0_PWR; 4413 dwc2_writel(hprt0, hsotg->regs + HPRT0); 4414 dwc2_vbus_supply_exit(hsotg); 4415 } 4416 4417 /* Enter partial_power_down */ 4418 ret = dwc2_enter_partial_power_down(hsotg); 4419 if (ret) { 4420 if (ret != -ENOTSUPP) 4421 dev_err(hsotg->dev, 4422 "enter partial_power_down failed\n"); 4423 goto skip_power_saving; 4424 } 4425 4426 /* Ask phy to be suspended */ 4427 if (!IS_ERR_OR_NULL(hsotg->uphy)) { 4428 spin_unlock_irqrestore(&hsotg->lock, flags); 4429 usb_phy_set_suspend(hsotg->uphy, true); 4430 spin_lock_irqsave(&hsotg->lock, flags); 4431 } 4432 4433 /* After entering partial_power_down, hardware is no more accessible */ 4434 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4435 4436 skip_power_saving: 4437 hsotg->lx_state = DWC2_L2; 4438 unlock: 4439 spin_unlock_irqrestore(&hsotg->lock, flags); 4440 4441 return ret; 4442 } 4443 4444 static int _dwc2_hcd_resume(struct usb_hcd *hcd) 4445 { 4446 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4447 unsigned long flags; 4448 int ret = 0; 4449 4450 spin_lock_irqsave(&hsotg->lock, flags); 4451 4452 if (dwc2_is_device_mode(hsotg)) 4453 goto unlock; 4454 4455 if (hsotg->lx_state != DWC2_L2) 4456 goto unlock; 4457 4458 if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) { 4459 hsotg->lx_state = DWC2_L0; 4460 goto unlock; 4461 } 4462 4463 /* 4464 * Set HW accessible bit before powering on the controller 4465 * since an interrupt may rise. 4466 */ 4467 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4468 4469 /* 4470 * Enable power if not already done. 4471 * This must not be spinlocked since duration 4472 * of this call is unknown. 4473 */ 4474 if (!IS_ERR_OR_NULL(hsotg->uphy)) { 4475 spin_unlock_irqrestore(&hsotg->lock, flags); 4476 usb_phy_set_suspend(hsotg->uphy, false); 4477 spin_lock_irqsave(&hsotg->lock, flags); 4478 } 4479 4480 /* Exit partial_power_down */ 4481 ret = dwc2_exit_partial_power_down(hsotg, true); 4482 if (ret && (ret != -ENOTSUPP)) 4483 dev_err(hsotg->dev, "exit partial_power_down failed\n"); 4484 4485 hsotg->lx_state = DWC2_L0; 4486 4487 spin_unlock_irqrestore(&hsotg->lock, flags); 4488 4489 if (hsotg->bus_suspended) { 4490 spin_lock_irqsave(&hsotg->lock, flags); 4491 hsotg->flags.b.port_suspend_change = 1; 4492 spin_unlock_irqrestore(&hsotg->lock, flags); 4493 dwc2_port_resume(hsotg); 4494 } else { 4495 dwc2_vbus_supply_init(hsotg); 4496 4497 /* Wait for controller to correctly update D+/D- level */ 4498 usleep_range(3000, 5000); 4499 4500 /* 4501 * Clear Port Enable and Port Status changes. 4502 * Enable Port Power. 4503 */ 4504 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET | 4505 HPRT0_ENACHG, hsotg->regs + HPRT0); 4506 /* Wait for controller to detect Port Connect */ 4507 usleep_range(5000, 7000); 4508 } 4509 4510 return ret; 4511 unlock: 4512 spin_unlock_irqrestore(&hsotg->lock, flags); 4513 4514 return ret; 4515 } 4516 4517 /* Returns the current frame number */ 4518 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd) 4519 { 4520 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4521 4522 return dwc2_hcd_get_frame_number(hsotg); 4523 } 4524 4525 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb, 4526 char *fn_name) 4527 { 4528 #ifdef VERBOSE_DEBUG 4529 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4530 char *pipetype = NULL; 4531 char *speed = NULL; 4532 4533 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb); 4534 dev_vdbg(hsotg->dev, " Device address: %d\n", 4535 usb_pipedevice(urb->pipe)); 4536 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n", 4537 usb_pipeendpoint(urb->pipe), 4538 usb_pipein(urb->pipe) ? "IN" : "OUT"); 4539 4540 switch (usb_pipetype(urb->pipe)) { 4541 case PIPE_CONTROL: 4542 pipetype = "CONTROL"; 4543 break; 4544 case PIPE_BULK: 4545 pipetype = "BULK"; 4546 break; 4547 case PIPE_INTERRUPT: 4548 pipetype = "INTERRUPT"; 4549 break; 4550 case PIPE_ISOCHRONOUS: 4551 pipetype = "ISOCHRONOUS"; 4552 break; 4553 } 4554 4555 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype, 4556 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ? 4557 "IN" : "OUT"); 4558 4559 switch (urb->dev->speed) { 4560 case USB_SPEED_HIGH: 4561 speed = "HIGH"; 4562 break; 4563 case USB_SPEED_FULL: 4564 speed = "FULL"; 4565 break; 4566 case USB_SPEED_LOW: 4567 speed = "LOW"; 4568 break; 4569 default: 4570 speed = "UNKNOWN"; 4571 break; 4572 } 4573 4574 dev_vdbg(hsotg->dev, " Speed: %s\n", speed); 4575 dev_vdbg(hsotg->dev, " Max packet size: %d\n", 4576 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); 4577 dev_vdbg(hsotg->dev, " Data buffer length: %d\n", 4578 urb->transfer_buffer_length); 4579 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n", 4580 urb->transfer_buffer, (unsigned long)urb->transfer_dma); 4581 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n", 4582 urb->setup_packet, (unsigned long)urb->setup_dma); 4583 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval); 4584 4585 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 4586 int i; 4587 4588 for (i = 0; i < urb->number_of_packets; i++) { 4589 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i); 4590 dev_vdbg(hsotg->dev, " offset: %d, length %d\n", 4591 urb->iso_frame_desc[i].offset, 4592 urb->iso_frame_desc[i].length); 4593 } 4594 } 4595 #endif 4596 } 4597 4598 /* 4599 * Starts processing a USB transfer request specified by a USB Request Block 4600 * (URB). mem_flags indicates the type of memory allocation to use while 4601 * processing this URB. 4602 */ 4603 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 4604 gfp_t mem_flags) 4605 { 4606 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4607 struct usb_host_endpoint *ep = urb->ep; 4608 struct dwc2_hcd_urb *dwc2_urb; 4609 int i; 4610 int retval; 4611 int alloc_bandwidth = 0; 4612 u8 ep_type = 0; 4613 u32 tflags = 0; 4614 void *buf; 4615 unsigned long flags; 4616 struct dwc2_qh *qh; 4617 bool qh_allocated = false; 4618 struct dwc2_qtd *qtd; 4619 4620 if (dbg_urb(urb)) { 4621 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n"); 4622 dwc2_dump_urb_info(hcd, urb, "urb_enqueue"); 4623 } 4624 4625 if (!ep) 4626 return -EINVAL; 4627 4628 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || 4629 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 4630 spin_lock_irqsave(&hsotg->lock, flags); 4631 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep)) 4632 alloc_bandwidth = 1; 4633 spin_unlock_irqrestore(&hsotg->lock, flags); 4634 } 4635 4636 switch (usb_pipetype(urb->pipe)) { 4637 case PIPE_CONTROL: 4638 ep_type = USB_ENDPOINT_XFER_CONTROL; 4639 break; 4640 case PIPE_ISOCHRONOUS: 4641 ep_type = USB_ENDPOINT_XFER_ISOC; 4642 break; 4643 case PIPE_BULK: 4644 ep_type = USB_ENDPOINT_XFER_BULK; 4645 break; 4646 case PIPE_INTERRUPT: 4647 ep_type = USB_ENDPOINT_XFER_INT; 4648 break; 4649 } 4650 4651 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets, 4652 mem_flags); 4653 if (!dwc2_urb) 4654 return -ENOMEM; 4655 4656 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe), 4657 usb_pipeendpoint(urb->pipe), ep_type, 4658 usb_pipein(urb->pipe), 4659 usb_maxpacket(urb->dev, urb->pipe, 4660 !(usb_pipein(urb->pipe)))); 4661 4662 buf = urb->transfer_buffer; 4663 4664 if (hcd->self.uses_dma) { 4665 if (!buf && (urb->transfer_dma & 3)) { 4666 dev_err(hsotg->dev, 4667 "%s: unaligned transfer with no transfer_buffer", 4668 __func__); 4669 retval = -EINVAL; 4670 goto fail0; 4671 } 4672 } 4673 4674 if (!(urb->transfer_flags & URB_NO_INTERRUPT)) 4675 tflags |= URB_GIVEBACK_ASAP; 4676 if (urb->transfer_flags & URB_ZERO_PACKET) 4677 tflags |= URB_SEND_ZERO_PACKET; 4678 4679 dwc2_urb->priv = urb; 4680 dwc2_urb->buf = buf; 4681 dwc2_urb->dma = urb->transfer_dma; 4682 dwc2_urb->length = urb->transfer_buffer_length; 4683 dwc2_urb->setup_packet = urb->setup_packet; 4684 dwc2_urb->setup_dma = urb->setup_dma; 4685 dwc2_urb->flags = tflags; 4686 dwc2_urb->interval = urb->interval; 4687 dwc2_urb->status = -EINPROGRESS; 4688 4689 for (i = 0; i < urb->number_of_packets; ++i) 4690 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i, 4691 urb->iso_frame_desc[i].offset, 4692 urb->iso_frame_desc[i].length); 4693 4694 urb->hcpriv = dwc2_urb; 4695 qh = (struct dwc2_qh *)ep->hcpriv; 4696 /* Create QH for the endpoint if it doesn't exist */ 4697 if (!qh) { 4698 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags); 4699 if (!qh) { 4700 retval = -ENOMEM; 4701 goto fail0; 4702 } 4703 ep->hcpriv = qh; 4704 qh_allocated = true; 4705 } 4706 4707 qtd = kzalloc(sizeof(*qtd), mem_flags); 4708 if (!qtd) { 4709 retval = -ENOMEM; 4710 goto fail1; 4711 } 4712 4713 spin_lock_irqsave(&hsotg->lock, flags); 4714 retval = usb_hcd_link_urb_to_ep(hcd, urb); 4715 if (retval) 4716 goto fail2; 4717 4718 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd); 4719 if (retval) 4720 goto fail3; 4721 4722 if (alloc_bandwidth) { 4723 dwc2_allocate_bus_bandwidth(hcd, 4724 dwc2_hcd_get_ep_bandwidth(hsotg, ep), 4725 urb); 4726 } 4727 4728 spin_unlock_irqrestore(&hsotg->lock, flags); 4729 4730 return 0; 4731 4732 fail3: 4733 dwc2_urb->priv = NULL; 4734 usb_hcd_unlink_urb_from_ep(hcd, urb); 4735 if (qh_allocated && qh->channel && qh->channel->qh == qh) 4736 qh->channel->qh = NULL; 4737 fail2: 4738 spin_unlock_irqrestore(&hsotg->lock, flags); 4739 urb->hcpriv = NULL; 4740 kfree(qtd); 4741 qtd = NULL; 4742 fail1: 4743 if (qh_allocated) { 4744 struct dwc2_qtd *qtd2, *qtd2_tmp; 4745 4746 ep->hcpriv = NULL; 4747 dwc2_hcd_qh_unlink(hsotg, qh); 4748 /* Free each QTD in the QH's QTD list */ 4749 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list, 4750 qtd_list_entry) 4751 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh); 4752 dwc2_hcd_qh_free(hsotg, qh); 4753 } 4754 fail0: 4755 kfree(dwc2_urb); 4756 4757 return retval; 4758 } 4759 4760 /* 4761 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success. 4762 */ 4763 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, 4764 int status) 4765 { 4766 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4767 int rc; 4768 unsigned long flags; 4769 4770 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n"); 4771 dwc2_dump_urb_info(hcd, urb, "urb_dequeue"); 4772 4773 spin_lock_irqsave(&hsotg->lock, flags); 4774 4775 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 4776 if (rc) 4777 goto out; 4778 4779 if (!urb->hcpriv) { 4780 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n"); 4781 goto out; 4782 } 4783 4784 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv); 4785 4786 usb_hcd_unlink_urb_from_ep(hcd, urb); 4787 4788 kfree(urb->hcpriv); 4789 urb->hcpriv = NULL; 4790 4791 /* Higher layer software sets URB status */ 4792 spin_unlock(&hsotg->lock); 4793 usb_hcd_giveback_urb(hcd, urb, status); 4794 spin_lock(&hsotg->lock); 4795 4796 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n"); 4797 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status); 4798 out: 4799 spin_unlock_irqrestore(&hsotg->lock, flags); 4800 4801 return rc; 4802 } 4803 4804 /* 4805 * Frees resources in the DWC_otg controller related to a given endpoint. Also 4806 * clears state in the HCD related to the endpoint. Any URBs for the endpoint 4807 * must already be dequeued. 4808 */ 4809 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd, 4810 struct usb_host_endpoint *ep) 4811 { 4812 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4813 4814 dev_dbg(hsotg->dev, 4815 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n", 4816 ep->desc.bEndpointAddress, ep->hcpriv); 4817 dwc2_hcd_endpoint_disable(hsotg, ep, 250); 4818 } 4819 4820 /* 4821 * Resets endpoint specific parameter values, in current version used to reset 4822 * the data toggle (as a WA). This function can be called from usb_clear_halt 4823 * routine. 4824 */ 4825 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd, 4826 struct usb_host_endpoint *ep) 4827 { 4828 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4829 unsigned long flags; 4830 4831 dev_dbg(hsotg->dev, 4832 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n", 4833 ep->desc.bEndpointAddress); 4834 4835 spin_lock_irqsave(&hsotg->lock, flags); 4836 dwc2_hcd_endpoint_reset(hsotg, ep); 4837 spin_unlock_irqrestore(&hsotg->lock, flags); 4838 } 4839 4840 /* 4841 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if 4842 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid 4843 * interrupt. 4844 * 4845 * This function is called by the USB core when an interrupt occurs 4846 */ 4847 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd) 4848 { 4849 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4850 4851 return dwc2_handle_hcd_intr(hsotg); 4852 } 4853 4854 /* 4855 * Creates Status Change bitmap for the root hub and root port. The bitmap is 4856 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 4857 * is the status change indicator for the single root port. Returns 1 if either 4858 * change indicator is 1, otherwise returns 0. 4859 */ 4860 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf) 4861 { 4862 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4863 4864 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1; 4865 return buf[0] != 0; 4866 } 4867 4868 /* Handles hub class-specific requests */ 4869 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue, 4870 u16 windex, char *buf, u16 wlength) 4871 { 4872 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq, 4873 wvalue, windex, buf, wlength); 4874 return retval; 4875 } 4876 4877 /* Handles hub TT buffer clear completions */ 4878 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd, 4879 struct usb_host_endpoint *ep) 4880 { 4881 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4882 struct dwc2_qh *qh; 4883 unsigned long flags; 4884 4885 qh = ep->hcpriv; 4886 if (!qh) 4887 return; 4888 4889 spin_lock_irqsave(&hsotg->lock, flags); 4890 qh->tt_buffer_dirty = 0; 4891 4892 if (hsotg->flags.b.port_connect_status) 4893 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL); 4894 4895 spin_unlock_irqrestore(&hsotg->lock, flags); 4896 } 4897 4898 /* 4899 * HPRT0_SPD_HIGH_SPEED: high speed 4900 * HPRT0_SPD_FULL_SPEED: full speed 4901 */ 4902 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed) 4903 { 4904 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4905 4906 if (hsotg->params.speed == speed) 4907 return; 4908 4909 hsotg->params.speed = speed; 4910 queue_work(hsotg->wq_otg, &hsotg->wf_otg); 4911 } 4912 4913 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 4914 { 4915 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4916 4917 if (!hsotg->params.change_speed_quirk) 4918 return; 4919 4920 /* 4921 * On removal, set speed to default high-speed. 4922 */ 4923 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN && 4924 udev->parent->speed < USB_SPEED_HIGH) { 4925 dev_info(hsotg->dev, "Set speed to default high-speed\n"); 4926 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED); 4927 } 4928 } 4929 4930 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 4931 { 4932 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4933 4934 if (!hsotg->params.change_speed_quirk) 4935 return 0; 4936 4937 if (udev->speed == USB_SPEED_HIGH) { 4938 dev_info(hsotg->dev, "Set speed to high-speed\n"); 4939 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED); 4940 } else if ((udev->speed == USB_SPEED_FULL || 4941 udev->speed == USB_SPEED_LOW)) { 4942 /* 4943 * Change speed setting to full-speed if there's 4944 * a full-speed or low-speed device plugged in. 4945 */ 4946 dev_info(hsotg->dev, "Set speed to full-speed\n"); 4947 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED); 4948 } 4949 4950 return 0; 4951 } 4952 4953 static struct hc_driver dwc2_hc_driver = { 4954 .description = "dwc2_hsotg", 4955 .product_desc = "DWC OTG Controller", 4956 .hcd_priv_size = sizeof(struct wrapper_priv_data), 4957 4958 .irq = _dwc2_hcd_irq, 4959 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH, 4960 4961 .start = _dwc2_hcd_start, 4962 .stop = _dwc2_hcd_stop, 4963 .urb_enqueue = _dwc2_hcd_urb_enqueue, 4964 .urb_dequeue = _dwc2_hcd_urb_dequeue, 4965 .endpoint_disable = _dwc2_hcd_endpoint_disable, 4966 .endpoint_reset = _dwc2_hcd_endpoint_reset, 4967 .get_frame_number = _dwc2_hcd_get_frame_number, 4968 4969 .hub_status_data = _dwc2_hcd_hub_status_data, 4970 .hub_control = _dwc2_hcd_hub_control, 4971 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete, 4972 4973 .bus_suspend = _dwc2_hcd_suspend, 4974 .bus_resume = _dwc2_hcd_resume, 4975 4976 .map_urb_for_dma = dwc2_map_urb_for_dma, 4977 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma, 4978 }; 4979 4980 /* 4981 * Frees secondary storage associated with the dwc2_hsotg structure contained 4982 * in the struct usb_hcd field 4983 */ 4984 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg) 4985 { 4986 u32 ahbcfg; 4987 u32 dctl; 4988 int i; 4989 4990 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n"); 4991 4992 /* Free memory for QH/QTD lists */ 4993 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive); 4994 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting); 4995 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active); 4996 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive); 4997 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready); 4998 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned); 4999 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued); 5000 5001 /* Free memory for the host channels */ 5002 for (i = 0; i < MAX_EPS_CHANNELS; i++) { 5003 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; 5004 5005 if (chan) { 5006 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n", 5007 i, chan); 5008 hsotg->hc_ptr_array[i] = NULL; 5009 kfree(chan); 5010 } 5011 } 5012 5013 if (hsotg->params.host_dma) { 5014 if (hsotg->status_buf) { 5015 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE, 5016 hsotg->status_buf, 5017 hsotg->status_buf_dma); 5018 hsotg->status_buf = NULL; 5019 } 5020 } else { 5021 kfree(hsotg->status_buf); 5022 hsotg->status_buf = NULL; 5023 } 5024 5025 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG); 5026 5027 /* Disable all interrupts */ 5028 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN; 5029 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG); 5030 dwc2_writel(0, hsotg->regs + GINTMSK); 5031 5032 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) { 5033 dctl = dwc2_readl(hsotg->regs + DCTL); 5034 dctl |= DCTL_SFTDISCON; 5035 dwc2_writel(dctl, hsotg->regs + DCTL); 5036 } 5037 5038 if (hsotg->wq_otg) { 5039 if (!cancel_work_sync(&hsotg->wf_otg)) 5040 flush_workqueue(hsotg->wq_otg); 5041 destroy_workqueue(hsotg->wq_otg); 5042 } 5043 5044 del_timer(&hsotg->wkp_timer); 5045 } 5046 5047 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg) 5048 { 5049 /* Turn off all host-specific interrupts */ 5050 dwc2_disable_host_interrupts(hsotg); 5051 5052 dwc2_hcd_free(hsotg); 5053 } 5054 5055 /* 5056 * Initializes the HCD. This function allocates memory for and initializes the 5057 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the 5058 * USB bus with the core and calls the hc_driver->start() function. It returns 5059 * a negative error on failure. 5060 */ 5061 int dwc2_hcd_init(struct dwc2_hsotg *hsotg) 5062 { 5063 struct platform_device *pdev = to_platform_device(hsotg->dev); 5064 struct resource *res; 5065 struct usb_hcd *hcd; 5066 struct dwc2_host_chan *channel; 5067 u32 hcfg; 5068 int i, num_channels; 5069 int retval; 5070 5071 if (usb_disabled()) 5072 return -ENODEV; 5073 5074 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n"); 5075 5076 retval = -ENOMEM; 5077 5078 hcfg = dwc2_readl(hsotg->regs + HCFG); 5079 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg); 5080 5081 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5082 hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) * 5083 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL); 5084 if (!hsotg->frame_num_array) 5085 goto error1; 5086 hsotg->last_frame_num_array = kzalloc( 5087 sizeof(*hsotg->last_frame_num_array) * 5088 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL); 5089 if (!hsotg->last_frame_num_array) 5090 goto error1; 5091 #endif 5092 hsotg->last_frame_num = HFNUM_MAX_FRNUM; 5093 5094 /* Check if the bus driver or platform code has setup a dma_mask */ 5095 if (hsotg->params.host_dma && 5096 !hsotg->dev->dma_mask) { 5097 dev_warn(hsotg->dev, 5098 "dma_mask not set, disabling DMA\n"); 5099 hsotg->params.host_dma = false; 5100 hsotg->params.dma_desc_enable = false; 5101 } 5102 5103 /* Set device flags indicating whether the HCD supports DMA */ 5104 if (hsotg->params.host_dma) { 5105 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) 5106 dev_warn(hsotg->dev, "can't set DMA mask\n"); 5107 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) 5108 dev_warn(hsotg->dev, "can't set coherent DMA mask\n"); 5109 } 5110 5111 if (hsotg->params.change_speed_quirk) { 5112 dwc2_hc_driver.free_dev = dwc2_free_dev; 5113 dwc2_hc_driver.reset_device = dwc2_reset_device; 5114 } 5115 5116 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev)); 5117 if (!hcd) 5118 goto error1; 5119 5120 if (!hsotg->params.host_dma) 5121 hcd->self.uses_dma = 0; 5122 5123 hcd->has_tt = 1; 5124 5125 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 5126 hcd->rsrc_start = res->start; 5127 hcd->rsrc_len = resource_size(res); 5128 5129 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg; 5130 hsotg->priv = hcd; 5131 5132 /* 5133 * Disable the global interrupt until all the interrupt handlers are 5134 * installed 5135 */ 5136 dwc2_disable_global_interrupts(hsotg); 5137 5138 /* Initialize the DWC_otg core, and select the Phy type */ 5139 retval = dwc2_core_init(hsotg, true); 5140 if (retval) 5141 goto error2; 5142 5143 /* Create new workqueue and init work */ 5144 retval = -ENOMEM; 5145 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0); 5146 if (!hsotg->wq_otg) { 5147 dev_err(hsotg->dev, "Failed to create workqueue\n"); 5148 goto error2; 5149 } 5150 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change); 5151 5152 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0); 5153 5154 /* Initialize the non-periodic schedule */ 5155 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive); 5156 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting); 5157 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active); 5158 5159 /* Initialize the periodic schedule */ 5160 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive); 5161 INIT_LIST_HEAD(&hsotg->periodic_sched_ready); 5162 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned); 5163 INIT_LIST_HEAD(&hsotg->periodic_sched_queued); 5164 5165 INIT_LIST_HEAD(&hsotg->split_order); 5166 5167 /* 5168 * Create a host channel descriptor for each host channel implemented 5169 * in the controller. Initialize the channel descriptor array. 5170 */ 5171 INIT_LIST_HEAD(&hsotg->free_hc_list); 5172 num_channels = hsotg->params.host_channels; 5173 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array)); 5174 5175 for (i = 0; i < num_channels; i++) { 5176 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 5177 if (!channel) 5178 goto error3; 5179 channel->hc_num = i; 5180 INIT_LIST_HEAD(&channel->split_order_list_entry); 5181 hsotg->hc_ptr_array[i] = channel; 5182 } 5183 5184 /* Initialize hsotg start work */ 5185 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func); 5186 5187 /* Initialize port reset work */ 5188 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func); 5189 5190 /* 5191 * Allocate space for storing data on status transactions. Normally no 5192 * data is sent, but this space acts as a bit bucket. This must be 5193 * done after usb_add_hcd since that function allocates the DMA buffer 5194 * pool. 5195 */ 5196 if (hsotg->params.host_dma) 5197 hsotg->status_buf = dma_alloc_coherent(hsotg->dev, 5198 DWC2_HCD_STATUS_BUF_SIZE, 5199 &hsotg->status_buf_dma, GFP_KERNEL); 5200 else 5201 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE, 5202 GFP_KERNEL); 5203 5204 if (!hsotg->status_buf) 5205 goto error3; 5206 5207 /* 5208 * Create kmem caches to handle descriptor buffers in descriptor 5209 * DMA mode. 5210 * Alignment must be set to 512 bytes. 5211 */ 5212 if (hsotg->params.dma_desc_enable || 5213 hsotg->params.dma_desc_fs_enable) { 5214 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc", 5215 sizeof(struct dwc2_dma_desc) * 5216 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA, 5217 NULL); 5218 if (!hsotg->desc_gen_cache) { 5219 dev_err(hsotg->dev, 5220 "unable to create dwc2 generic desc cache\n"); 5221 5222 /* 5223 * Disable descriptor dma mode since it will not be 5224 * usable. 5225 */ 5226 hsotg->params.dma_desc_enable = false; 5227 hsotg->params.dma_desc_fs_enable = false; 5228 } 5229 5230 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc", 5231 sizeof(struct dwc2_dma_desc) * 5232 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL); 5233 if (!hsotg->desc_hsisoc_cache) { 5234 dev_err(hsotg->dev, 5235 "unable to create dwc2 hs isoc desc cache\n"); 5236 5237 kmem_cache_destroy(hsotg->desc_gen_cache); 5238 5239 /* 5240 * Disable descriptor dma mode since it will not be 5241 * usable. 5242 */ 5243 hsotg->params.dma_desc_enable = false; 5244 hsotg->params.dma_desc_fs_enable = false; 5245 } 5246 } 5247 5248 hsotg->otg_port = 1; 5249 hsotg->frame_list = NULL; 5250 hsotg->frame_list_dma = 0; 5251 hsotg->periodic_qh_count = 0; 5252 5253 /* Initiate lx_state to L3 disconnected state */ 5254 hsotg->lx_state = DWC2_L3; 5255 5256 hcd->self.otg_port = hsotg->otg_port; 5257 5258 /* Don't support SG list at this point */ 5259 hcd->self.sg_tablesize = 0; 5260 5261 if (!IS_ERR_OR_NULL(hsotg->uphy)) 5262 otg_set_host(hsotg->uphy->otg, &hcd->self); 5263 5264 /* 5265 * Finish generic HCD initialization and start the HCD. This function 5266 * allocates the DMA buffer pool, registers the USB bus, requests the 5267 * IRQ line, and calls hcd_start method. 5268 */ 5269 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED); 5270 if (retval < 0) 5271 goto error4; 5272 5273 device_wakeup_enable(hcd->self.controller); 5274 5275 dwc2_hcd_dump_state(hsotg); 5276 5277 dwc2_enable_global_interrupts(hsotg); 5278 5279 return 0; 5280 5281 error4: 5282 kmem_cache_destroy(hsotg->desc_gen_cache); 5283 kmem_cache_destroy(hsotg->desc_hsisoc_cache); 5284 error3: 5285 dwc2_hcd_release(hsotg); 5286 error2: 5287 usb_put_hcd(hcd); 5288 error1: 5289 5290 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5291 kfree(hsotg->last_frame_num_array); 5292 kfree(hsotg->frame_num_array); 5293 #endif 5294 5295 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval); 5296 return retval; 5297 } 5298 5299 /* 5300 * Removes the HCD. 5301 * Frees memory and resources associated with the HCD and deregisters the bus. 5302 */ 5303 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) 5304 { 5305 struct usb_hcd *hcd; 5306 5307 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n"); 5308 5309 hcd = dwc2_hsotg_to_hcd(hsotg); 5310 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd); 5311 5312 if (!hcd) { 5313 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n", 5314 __func__); 5315 return; 5316 } 5317 5318 if (!IS_ERR_OR_NULL(hsotg->uphy)) 5319 otg_set_host(hsotg->uphy->otg, NULL); 5320 5321 usb_remove_hcd(hcd); 5322 hsotg->priv = NULL; 5323 5324 kmem_cache_destroy(hsotg->desc_gen_cache); 5325 kmem_cache_destroy(hsotg->desc_hsisoc_cache); 5326 5327 dwc2_hcd_release(hsotg); 5328 usb_put_hcd(hcd); 5329 5330 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5331 kfree(hsotg->last_frame_num_array); 5332 kfree(hsotg->frame_num_array); 5333 #endif 5334 } 5335 5336 /** 5337 * dwc2_backup_host_registers() - Backup controller host registers. 5338 * When suspending usb bus, registers needs to be backuped 5339 * if controller power is disabled once suspended. 5340 * 5341 * @hsotg: Programming view of the DWC_otg controller 5342 */ 5343 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg) 5344 { 5345 struct dwc2_hregs_backup *hr; 5346 int i; 5347 5348 dev_dbg(hsotg->dev, "%s\n", __func__); 5349 5350 /* Backup Host regs */ 5351 hr = &hsotg->hr_backup; 5352 hr->hcfg = dwc2_readl(hsotg->regs + HCFG); 5353 hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK); 5354 for (i = 0; i < hsotg->params.host_channels; ++i) 5355 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i)); 5356 5357 hr->hprt0 = dwc2_read_hprt0(hsotg); 5358 hr->hfir = dwc2_readl(hsotg->regs + HFIR); 5359 hr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ); 5360 hr->valid = true; 5361 5362 return 0; 5363 } 5364 5365 /** 5366 * dwc2_restore_host_registers() - Restore controller host registers. 5367 * When resuming usb bus, device registers needs to be restored 5368 * if controller power were disabled. 5369 * 5370 * @hsotg: Programming view of the DWC_otg controller 5371 */ 5372 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg) 5373 { 5374 struct dwc2_hregs_backup *hr; 5375 int i; 5376 5377 dev_dbg(hsotg->dev, "%s\n", __func__); 5378 5379 /* Restore host regs */ 5380 hr = &hsotg->hr_backup; 5381 if (!hr->valid) { 5382 dev_err(hsotg->dev, "%s: no host registers to restore\n", 5383 __func__); 5384 return -EINVAL; 5385 } 5386 hr->valid = false; 5387 5388 dwc2_writel(hr->hcfg, hsotg->regs + HCFG); 5389 dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK); 5390 5391 for (i = 0; i < hsotg->params.host_channels; ++i) 5392 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i)); 5393 5394 dwc2_writel(hr->hprt0, hsotg->regs + HPRT0); 5395 dwc2_writel(hr->hfir, hsotg->regs + HFIR); 5396 dwc2_writel(hr->hptxfsiz, hsotg->regs + HPTXFSIZ); 5397 hsotg->frame_number = 0; 5398 5399 return 0; 5400 } 5401 5402 /** 5403 * dwc2_host_enter_hibernation() - Put controller in Hibernation. 5404 * 5405 * @hsotg: Programming view of the DWC_otg controller 5406 */ 5407 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg) 5408 { 5409 unsigned long flags; 5410 int ret = 0; 5411 u32 hprt0; 5412 u32 pcgcctl; 5413 u32 gusbcfg; 5414 u32 gpwrdn; 5415 5416 dev_dbg(hsotg->dev, "Preparing host for hibernation\n"); 5417 ret = dwc2_backup_global_registers(hsotg); 5418 if (ret) { 5419 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5420 __func__); 5421 return ret; 5422 } 5423 ret = dwc2_backup_host_registers(hsotg); 5424 if (ret) { 5425 dev_err(hsotg->dev, "%s: failed to backup host registers\n", 5426 __func__); 5427 return ret; 5428 } 5429 5430 /* Enter USB Suspend Mode */ 5431 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 5432 hprt0 |= HPRT0_SUSP; 5433 hprt0 &= ~HPRT0_ENA; 5434 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5435 5436 /* Wait for the HPRT0.PrtSusp register field to be set */ 5437 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 300)) 5438 dev_warn(hsotg->dev, "Suspend wasn't generated\n"); 5439 5440 /* 5441 * We need to disable interrupts to prevent servicing of any IRQ 5442 * during going to hibernation 5443 */ 5444 spin_lock_irqsave(&hsotg->lock, flags); 5445 hsotg->lx_state = DWC2_L2; 5446 5447 gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 5448 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) { 5449 /* ULPI interface */ 5450 /* Suspend the Phy Clock */ 5451 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL); 5452 pcgcctl |= PCGCTL_STOPPCLK; 5453 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL); 5454 udelay(10); 5455 5456 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5457 gpwrdn |= GPWRDN_PMUACTV; 5458 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5459 udelay(10); 5460 } else { 5461 /* UTMI+ Interface */ 5462 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5463 gpwrdn |= GPWRDN_PMUACTV; 5464 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5465 udelay(10); 5466 5467 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL); 5468 pcgcctl |= PCGCTL_STOPPCLK; 5469 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL); 5470 udelay(10); 5471 } 5472 5473 /* Enable interrupts from wake up logic */ 5474 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5475 gpwrdn |= GPWRDN_PMUINTSEL; 5476 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5477 udelay(10); 5478 5479 /* Unmask host mode interrupts in GPWRDN */ 5480 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5481 gpwrdn |= GPWRDN_DISCONN_DET_MSK; 5482 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5483 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5484 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5485 udelay(10); 5486 5487 /* Enable Power Down Clamp */ 5488 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5489 gpwrdn |= GPWRDN_PWRDNCLMP; 5490 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5491 udelay(10); 5492 5493 /* Switch off VDD */ 5494 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5495 gpwrdn |= GPWRDN_PWRDNSWTCH; 5496 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5497 5498 hsotg->hibernated = 1; 5499 hsotg->bus_suspended = 1; 5500 dev_dbg(hsotg->dev, "Host hibernation completed\n"); 5501 spin_unlock_irqrestore(&hsotg->lock, flags); 5502 return ret; 5503 } 5504 5505 /* 5506 * dwc2_host_exit_hibernation() 5507 * 5508 * @hsotg: Programming view of the DWC_otg controller 5509 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5510 * @param reset: indicates whether resume is initiated by Reset. 5511 * 5512 * Return: non-zero if failed to enter to hibernation. 5513 * 5514 * This function is for exiting from Host mode hibernation by 5515 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup. 5516 */ 5517 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup, 5518 int reset) 5519 { 5520 u32 gpwrdn; 5521 u32 hprt0; 5522 int ret = 0; 5523 struct dwc2_gregs_backup *gr; 5524 struct dwc2_hregs_backup *hr; 5525 5526 gr = &hsotg->gr_backup; 5527 hr = &hsotg->hr_backup; 5528 5529 dev_dbg(hsotg->dev, 5530 "%s: called with rem_wakeup = %d reset = %d\n", 5531 __func__, rem_wakeup, reset); 5532 5533 dwc2_hib_restore_common(hsotg, rem_wakeup, 1); 5534 hsotg->hibernated = 0; 5535 5536 /* 5537 * This step is not described in functional spec but if not wait for 5538 * this delay, mismatch interrupts occurred because just after restore 5539 * core is in Device mode(gintsts.curmode == 0) 5540 */ 5541 mdelay(100); 5542 5543 /* Clear all pending interupts */ 5544 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 5545 5546 /* De-assert Restore */ 5547 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5548 gpwrdn &= ~GPWRDN_RESTORE; 5549 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5550 udelay(10); 5551 5552 /* Restore GUSBCFG, HCFG */ 5553 dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG); 5554 dwc2_writel(hr->hcfg, hsotg->regs + HCFG); 5555 5556 /* De-assert Wakeup Logic */ 5557 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5558 gpwrdn &= ~GPWRDN_PMUACTV; 5559 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5560 udelay(10); 5561 5562 hprt0 = hr->hprt0; 5563 hprt0 |= HPRT0_PWR; 5564 hprt0 &= ~HPRT0_ENA; 5565 hprt0 &= ~HPRT0_SUSP; 5566 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5567 5568 hprt0 = hr->hprt0; 5569 hprt0 |= HPRT0_PWR; 5570 hprt0 &= ~HPRT0_ENA; 5571 hprt0 &= ~HPRT0_SUSP; 5572 5573 if (reset) { 5574 hprt0 |= HPRT0_RST; 5575 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5576 5577 /* Wait for Resume time and then program HPRT again */ 5578 mdelay(60); 5579 hprt0 &= ~HPRT0_RST; 5580 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5581 } else { 5582 hprt0 |= HPRT0_RES; 5583 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5584 5585 /* Wait for Resume time and then program HPRT again */ 5586 mdelay(100); 5587 hprt0 &= ~HPRT0_RES; 5588 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5589 } 5590 /* Clear all interrupt status */ 5591 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 5592 hprt0 |= HPRT0_CONNDET; 5593 hprt0 |= HPRT0_ENACHG; 5594 hprt0 &= ~HPRT0_ENA; 5595 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5596 5597 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 5598 5599 /* Clear all pending interupts */ 5600 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 5601 5602 /* Restore global registers */ 5603 ret = dwc2_restore_global_registers(hsotg); 5604 if (ret) { 5605 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5606 __func__); 5607 return ret; 5608 } 5609 5610 /* Restore host registers */ 5611 ret = dwc2_restore_host_registers(hsotg); 5612 if (ret) { 5613 dev_err(hsotg->dev, "%s: failed to restore host registers\n", 5614 __func__); 5615 return ret; 5616 } 5617 5618 hsotg->hibernated = 0; 5619 hsotg->bus_suspended = 0; 5620 hsotg->lx_state = DWC2_L0; 5621 dev_dbg(hsotg->dev, "Host hibernation restore complete\n"); 5622 return ret; 5623 } 5624