xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision 9aa2cba7)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  */
7 
8 /*
9  * This file contains the core HCD code, and implements the Linux hc_driver
10  * API
11  */
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/platform_device.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/delay.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/usb.h>
22 
23 #include <linux/usb/hcd.h>
24 #include <linux/usb/ch11.h>
25 #include <linux/usb/of.h>
26 
27 #include "core.h"
28 #include "hcd.h"
29 
30 /*
31  * =========================================================================
32  *  Host Core Layer Functions
33  * =========================================================================
34  */
35 
36 /**
37  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
38  * used in both device and host modes
39  *
40  * @hsotg: Programming view of the DWC_otg controller
41  */
42 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
43 {
44 	u32 intmsk;
45 
46 	/* Clear any pending OTG Interrupts */
47 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
48 
49 	/* Clear any pending interrupts */
50 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
51 
52 	/* Enable the interrupts in the GINTMSK */
53 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
54 
55 	if (!hsotg->params.host_dma)
56 		intmsk |= GINTSTS_RXFLVL;
57 	if (!hsotg->params.external_id_pin_ctl)
58 		intmsk |= GINTSTS_CONIDSTSCHNG;
59 
60 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
61 		  GINTSTS_SESSREQINT;
62 
63 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
64 		intmsk |= GINTSTS_LPMTRANRCVD;
65 
66 	dwc2_writel(hsotg, intmsk, GINTMSK);
67 }
68 
69 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
70 {
71 	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
72 
73 	switch (hsotg->hw_params.arch) {
74 	case GHWCFG2_EXT_DMA_ARCH:
75 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
76 		return -EINVAL;
77 
78 	case GHWCFG2_INT_DMA_ARCH:
79 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
80 		if (hsotg->params.ahbcfg != -1) {
81 			ahbcfg &= GAHBCFG_CTRL_MASK;
82 			ahbcfg |= hsotg->params.ahbcfg &
83 				  ~GAHBCFG_CTRL_MASK;
84 		}
85 		break;
86 
87 	case GHWCFG2_SLAVE_ONLY_ARCH:
88 	default:
89 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
90 		break;
91 	}
92 
93 	if (hsotg->params.host_dma)
94 		ahbcfg |= GAHBCFG_DMA_EN;
95 	else
96 		hsotg->params.dma_desc_enable = false;
97 
98 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
99 
100 	return 0;
101 }
102 
103 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
104 {
105 	u32 usbcfg;
106 
107 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
108 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
109 
110 	switch (hsotg->hw_params.op_mode) {
111 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
112 		if (hsotg->params.otg_caps.hnp_support &&
113 		    hsotg->params.otg_caps.srp_support)
114 			usbcfg |= GUSBCFG_HNPCAP;
115 		fallthrough;
116 
117 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
118 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
119 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
120 		if (hsotg->params.otg_caps.srp_support)
121 			usbcfg |= GUSBCFG_SRPCAP;
122 		break;
123 
124 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
125 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
126 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
127 	default:
128 		break;
129 	}
130 
131 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
132 }
133 
134 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
135 {
136 	if (hsotg->vbus_supply)
137 		return regulator_enable(hsotg->vbus_supply);
138 
139 	return 0;
140 }
141 
142 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
143 {
144 	if (hsotg->vbus_supply)
145 		return regulator_disable(hsotg->vbus_supply);
146 
147 	return 0;
148 }
149 
150 /**
151  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
152  *
153  * @hsotg: Programming view of DWC_otg controller
154  */
155 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
156 {
157 	u32 intmsk;
158 
159 	dev_dbg(hsotg->dev, "%s()\n", __func__);
160 
161 	/* Disable all interrupts */
162 	dwc2_writel(hsotg, 0, GINTMSK);
163 	dwc2_writel(hsotg, 0, HAINTMSK);
164 
165 	/* Enable the common interrupts */
166 	dwc2_enable_common_interrupts(hsotg);
167 
168 	/* Enable host mode interrupts without disturbing common interrupts */
169 	intmsk = dwc2_readl(hsotg, GINTMSK);
170 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
171 	dwc2_writel(hsotg, intmsk, GINTMSK);
172 }
173 
174 /**
175  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
176  *
177  * @hsotg: Programming view of DWC_otg controller
178  */
179 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
180 {
181 	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
182 
183 	/* Disable host mode interrupts without disturbing common interrupts */
184 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
185 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
186 	dwc2_writel(hsotg, intmsk, GINTMSK);
187 }
188 
189 /*
190  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
191  * For system that have a total fifo depth that is smaller than the default
192  * RX + TX fifo size.
193  *
194  * @hsotg: Programming view of DWC_otg controller
195  */
196 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
197 {
198 	struct dwc2_core_params *params = &hsotg->params;
199 	struct dwc2_hw_params *hw = &hsotg->hw_params;
200 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
201 
202 	total_fifo_size = hw->total_fifo_size;
203 	rxfsiz = params->host_rx_fifo_size;
204 	nptxfsiz = params->host_nperio_tx_fifo_size;
205 	ptxfsiz = params->host_perio_tx_fifo_size;
206 
207 	/*
208 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
209 	 * allocation with support for high bandwidth endpoints. Synopsys
210 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
211 	 * non-periodic as 512.
212 	 */
213 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
214 		/*
215 		 * For Buffer DMA mode/Scatter Gather DMA mode
216 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
217 		 * with n = number of host channel.
218 		 * 2 * ((1024/4) + 2) = 516
219 		 */
220 		rxfsiz = 516 + hw->host_channels;
221 
222 		/*
223 		 * min non-periodic tx fifo depth
224 		 * 2 * (largest non-periodic USB packet used / 4)
225 		 * 2 * (512/4) = 256
226 		 */
227 		nptxfsiz = 256;
228 
229 		/*
230 		 * min periodic tx fifo depth
231 		 * (largest packet size*MC)/4
232 		 * (1024 * 3)/4 = 768
233 		 */
234 		ptxfsiz = 768;
235 
236 		params->host_rx_fifo_size = rxfsiz;
237 		params->host_nperio_tx_fifo_size = nptxfsiz;
238 		params->host_perio_tx_fifo_size = ptxfsiz;
239 	}
240 
241 	/*
242 	 * If the summation of RX, NPTX and PTX fifo sizes is still
243 	 * bigger than the total_fifo_size, then we have a problem.
244 	 *
245 	 * We won't be able to allocate as many endpoints. Right now,
246 	 * we're just printing an error message, but ideally this FIFO
247 	 * allocation algorithm would be improved in the future.
248 	 *
249 	 * FIXME improve this FIFO allocation algorithm.
250 	 */
251 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
252 		dev_err(hsotg->dev, "invalid fifo sizes\n");
253 }
254 
255 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
256 {
257 	struct dwc2_core_params *params = &hsotg->params;
258 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
259 
260 	if (!params->enable_dynamic_fifo)
261 		return;
262 
263 	dwc2_calculate_dynamic_fifo(hsotg);
264 
265 	/* Rx FIFO */
266 	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
267 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
268 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
269 	grxfsiz |= params->host_rx_fifo_size <<
270 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
271 	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
272 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
273 		dwc2_readl(hsotg, GRXFSIZ));
274 
275 	/* Non-periodic Tx FIFO */
276 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
277 		dwc2_readl(hsotg, GNPTXFSIZ));
278 	nptxfsiz = params->host_nperio_tx_fifo_size <<
279 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
280 	nptxfsiz |= params->host_rx_fifo_size <<
281 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
282 	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
283 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
284 		dwc2_readl(hsotg, GNPTXFSIZ));
285 
286 	/* Periodic Tx FIFO */
287 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
288 		dwc2_readl(hsotg, HPTXFSIZ));
289 	hptxfsiz = params->host_perio_tx_fifo_size <<
290 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
291 	hptxfsiz |= (params->host_rx_fifo_size +
292 		     params->host_nperio_tx_fifo_size) <<
293 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
294 	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
295 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
296 		dwc2_readl(hsotg, HPTXFSIZ));
297 
298 	if (hsotg->params.en_multiple_tx_fifo &&
299 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
300 		/*
301 		 * This feature was implemented in 2.91a version
302 		 * Global DFIFOCFG calculation for Host mode -
303 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
304 		 */
305 		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
306 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
307 		dfifocfg |= (params->host_rx_fifo_size +
308 			     params->host_nperio_tx_fifo_size +
309 			     params->host_perio_tx_fifo_size) <<
310 			    GDFIFOCFG_EPINFOBASE_SHIFT &
311 			    GDFIFOCFG_EPINFOBASE_MASK;
312 		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
313 	}
314 }
315 
316 /**
317  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
318  * the HFIR register according to PHY type and speed
319  *
320  * @hsotg: Programming view of DWC_otg controller
321  *
322  * NOTE: The caller can modify the value of the HFIR register only after the
323  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
324  * has been set
325  */
326 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
327 {
328 	u32 usbcfg;
329 	u32 hprt0;
330 	int clock = 60;	/* default value */
331 
332 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
333 	hprt0 = dwc2_readl(hsotg, HPRT0);
334 
335 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
336 	    !(usbcfg & GUSBCFG_PHYIF16))
337 		clock = 60;
338 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
339 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
340 		clock = 48;
341 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
342 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
343 		clock = 30;
344 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
345 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
346 		clock = 60;
347 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
348 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
349 		clock = 48;
350 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
351 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
352 		clock = 48;
353 	if ((usbcfg & GUSBCFG_PHYSEL) &&
354 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
355 		clock = 48;
356 
357 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
358 		/* High speed case */
359 		return 125 * clock - 1;
360 
361 	/* FS/LS case */
362 	return 1000 * clock - 1;
363 }
364 
365 /**
366  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
367  * buffer
368  *
369  * @hsotg: Programming view of DWC_otg controller
370  * @dest:    Destination buffer for the packet
371  * @bytes:   Number of bytes to copy to the destination
372  */
373 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
374 {
375 	u32 *data_buf = (u32 *)dest;
376 	int word_count = (bytes + 3) / 4;
377 	int i;
378 
379 	/*
380 	 * Todo: Account for the case where dest is not dword aligned. This
381 	 * requires reading data from the FIFO into a u32 temp buffer, then
382 	 * moving it into the data buffer.
383 	 */
384 
385 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
386 
387 	for (i = 0; i < word_count; i++, data_buf++)
388 		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
389 }
390 
391 /**
392  * dwc2_dump_channel_info() - Prints the state of a host channel
393  *
394  * @hsotg: Programming view of DWC_otg controller
395  * @chan:  Pointer to the channel to dump
396  *
397  * Must be called with interrupt disabled and spinlock held
398  *
399  * NOTE: This function will be removed once the peripheral controller code
400  * is integrated and the driver is stable
401  */
402 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
403 				   struct dwc2_host_chan *chan)
404 {
405 #ifdef VERBOSE_DEBUG
406 	int num_channels = hsotg->params.host_channels;
407 	struct dwc2_qh *qh;
408 	u32 hcchar;
409 	u32 hcsplt;
410 	u32 hctsiz;
411 	u32 hc_dma;
412 	int i;
413 
414 	if (!chan)
415 		return;
416 
417 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
418 	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
419 	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
420 	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
421 
422 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
423 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
424 		hcchar, hcsplt);
425 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
426 		hctsiz, hc_dma);
427 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
428 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
429 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
430 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
431 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
432 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
433 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
434 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
435 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
436 		(unsigned long)chan->xfer_dma);
437 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
438 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
439 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
440 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
441 			    qh_list_entry)
442 		dev_dbg(hsotg->dev, "    %p\n", qh);
443 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
444 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
445 			    qh_list_entry)
446 		dev_dbg(hsotg->dev, "    %p\n", qh);
447 	dev_dbg(hsotg->dev, "  NP active sched:\n");
448 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
449 			    qh_list_entry)
450 		dev_dbg(hsotg->dev, "    %p\n", qh);
451 	dev_dbg(hsotg->dev, "  Channels:\n");
452 	for (i = 0; i < num_channels; i++) {
453 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
454 
455 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
456 	}
457 #endif /* VERBOSE_DEBUG */
458 }
459 
460 static int _dwc2_hcd_start(struct usb_hcd *hcd);
461 
462 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
463 {
464 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
465 
466 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
467 	_dwc2_hcd_start(hcd);
468 }
469 
470 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
471 {
472 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
473 
474 	hcd->self.is_b_host = 0;
475 }
476 
477 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
478 			       int *hub_addr, int *hub_port)
479 {
480 	struct urb *urb = context;
481 
482 	if (urb->dev->tt)
483 		*hub_addr = urb->dev->tt->hub->devnum;
484 	else
485 		*hub_addr = 0;
486 	*hub_port = urb->dev->ttport;
487 }
488 
489 /*
490  * =========================================================================
491  *  Low Level Host Channel Access Functions
492  * =========================================================================
493  */
494 
495 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
496 				      struct dwc2_host_chan *chan)
497 {
498 	u32 hcintmsk = HCINTMSK_CHHLTD;
499 
500 	switch (chan->ep_type) {
501 	case USB_ENDPOINT_XFER_CONTROL:
502 	case USB_ENDPOINT_XFER_BULK:
503 		dev_vdbg(hsotg->dev, "control/bulk\n");
504 		hcintmsk |= HCINTMSK_XFERCOMPL;
505 		hcintmsk |= HCINTMSK_STALL;
506 		hcintmsk |= HCINTMSK_XACTERR;
507 		hcintmsk |= HCINTMSK_DATATGLERR;
508 		if (chan->ep_is_in) {
509 			hcintmsk |= HCINTMSK_BBLERR;
510 		} else {
511 			hcintmsk |= HCINTMSK_NAK;
512 			hcintmsk |= HCINTMSK_NYET;
513 			if (chan->do_ping)
514 				hcintmsk |= HCINTMSK_ACK;
515 		}
516 
517 		if (chan->do_split) {
518 			hcintmsk |= HCINTMSK_NAK;
519 			if (chan->complete_split)
520 				hcintmsk |= HCINTMSK_NYET;
521 			else
522 				hcintmsk |= HCINTMSK_ACK;
523 		}
524 
525 		if (chan->error_state)
526 			hcintmsk |= HCINTMSK_ACK;
527 		break;
528 
529 	case USB_ENDPOINT_XFER_INT:
530 		if (dbg_perio())
531 			dev_vdbg(hsotg->dev, "intr\n");
532 		hcintmsk |= HCINTMSK_XFERCOMPL;
533 		hcintmsk |= HCINTMSK_NAK;
534 		hcintmsk |= HCINTMSK_STALL;
535 		hcintmsk |= HCINTMSK_XACTERR;
536 		hcintmsk |= HCINTMSK_DATATGLERR;
537 		hcintmsk |= HCINTMSK_FRMOVRUN;
538 
539 		if (chan->ep_is_in)
540 			hcintmsk |= HCINTMSK_BBLERR;
541 		if (chan->error_state)
542 			hcintmsk |= HCINTMSK_ACK;
543 		if (chan->do_split) {
544 			if (chan->complete_split)
545 				hcintmsk |= HCINTMSK_NYET;
546 			else
547 				hcintmsk |= HCINTMSK_ACK;
548 		}
549 		break;
550 
551 	case USB_ENDPOINT_XFER_ISOC:
552 		if (dbg_perio())
553 			dev_vdbg(hsotg->dev, "isoc\n");
554 		hcintmsk |= HCINTMSK_XFERCOMPL;
555 		hcintmsk |= HCINTMSK_FRMOVRUN;
556 		hcintmsk |= HCINTMSK_ACK;
557 
558 		if (chan->ep_is_in) {
559 			hcintmsk |= HCINTMSK_XACTERR;
560 			hcintmsk |= HCINTMSK_BBLERR;
561 		}
562 		break;
563 	default:
564 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
565 		break;
566 	}
567 
568 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
569 	if (dbg_hc(chan))
570 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
571 }
572 
573 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
574 				    struct dwc2_host_chan *chan)
575 {
576 	u32 hcintmsk = HCINTMSK_CHHLTD;
577 
578 	/*
579 	 * For Descriptor DMA mode core halts the channel on AHB error.
580 	 * Interrupt is not required.
581 	 */
582 	if (!hsotg->params.dma_desc_enable) {
583 		if (dbg_hc(chan))
584 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
585 		hcintmsk |= HCINTMSK_AHBERR;
586 	} else {
587 		if (dbg_hc(chan))
588 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
589 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
590 			hcintmsk |= HCINTMSK_XFERCOMPL;
591 	}
592 
593 	if (chan->error_state && !chan->do_split &&
594 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
595 		if (dbg_hc(chan))
596 			dev_vdbg(hsotg->dev, "setting ACK\n");
597 		hcintmsk |= HCINTMSK_ACK;
598 		if (chan->ep_is_in) {
599 			hcintmsk |= HCINTMSK_DATATGLERR;
600 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
601 				hcintmsk |= HCINTMSK_NAK;
602 		}
603 	}
604 
605 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
606 	if (dbg_hc(chan))
607 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
608 }
609 
610 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
611 				struct dwc2_host_chan *chan)
612 {
613 	u32 intmsk;
614 
615 	if (hsotg->params.host_dma) {
616 		if (dbg_hc(chan))
617 			dev_vdbg(hsotg->dev, "DMA enabled\n");
618 		dwc2_hc_enable_dma_ints(hsotg, chan);
619 	} else {
620 		if (dbg_hc(chan))
621 			dev_vdbg(hsotg->dev, "DMA disabled\n");
622 		dwc2_hc_enable_slave_ints(hsotg, chan);
623 	}
624 
625 	/* Enable the top level host channel interrupt */
626 	intmsk = dwc2_readl(hsotg, HAINTMSK);
627 	intmsk |= 1 << chan->hc_num;
628 	dwc2_writel(hsotg, intmsk, HAINTMSK);
629 	if (dbg_hc(chan))
630 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
631 
632 	/* Make sure host channel interrupts are enabled */
633 	intmsk = dwc2_readl(hsotg, GINTMSK);
634 	intmsk |= GINTSTS_HCHINT;
635 	dwc2_writel(hsotg, intmsk, GINTMSK);
636 	if (dbg_hc(chan))
637 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
638 }
639 
640 /**
641  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
642  * a specific endpoint
643  *
644  * @hsotg: Programming view of DWC_otg controller
645  * @chan:  Information needed to initialize the host channel
646  *
647  * The HCCHARn register is set up with the characteristics specified in chan.
648  * Host channel interrupts that may need to be serviced while this transfer is
649  * in progress are enabled.
650  */
651 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
652 {
653 	u8 hc_num = chan->hc_num;
654 	u32 hcintmsk;
655 	u32 hcchar;
656 	u32 hcsplt = 0;
657 
658 	if (dbg_hc(chan))
659 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
660 
661 	/* Clear old interrupt conditions for this host channel */
662 	hcintmsk = 0xffffffff;
663 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
664 	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
665 
666 	/* Enable channel interrupts required for this transfer */
667 	dwc2_hc_enable_ints(hsotg, chan);
668 
669 	/*
670 	 * Program the HCCHARn register with the endpoint characteristics for
671 	 * the current transfer
672 	 */
673 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
674 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
675 	if (chan->ep_is_in)
676 		hcchar |= HCCHAR_EPDIR;
677 	if (chan->speed == USB_SPEED_LOW)
678 		hcchar |= HCCHAR_LSPDDEV;
679 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
680 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
681 	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
682 	if (dbg_hc(chan)) {
683 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
684 			 hc_num, hcchar);
685 
686 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
687 			 __func__, hc_num);
688 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
689 			 chan->dev_addr);
690 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
691 			 chan->ep_num);
692 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
693 			 chan->ep_is_in);
694 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
695 			 chan->speed == USB_SPEED_LOW);
696 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
697 			 chan->ep_type);
698 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
699 			 chan->max_packet);
700 	}
701 
702 	/* Program the HCSPLT register for SPLITs */
703 	if (chan->do_split) {
704 		if (dbg_hc(chan))
705 			dev_vdbg(hsotg->dev,
706 				 "Programming HC %d with split --> %s\n",
707 				 hc_num,
708 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
709 		if (chan->complete_split)
710 			hcsplt |= HCSPLT_COMPSPLT;
711 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
712 			  HCSPLT_XACTPOS_MASK;
713 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
714 			  HCSPLT_HUBADDR_MASK;
715 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
716 			  HCSPLT_PRTADDR_MASK;
717 		if (dbg_hc(chan)) {
718 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
719 				 chan->complete_split);
720 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
721 				 chan->xact_pos);
722 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
723 				 chan->hub_addr);
724 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
725 				 chan->hub_port);
726 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
727 				 chan->ep_is_in);
728 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
729 				 chan->max_packet);
730 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
731 				 chan->xfer_len);
732 		}
733 	}
734 
735 	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
736 }
737 
738 /**
739  * dwc2_hc_halt() - Attempts to halt a host channel
740  *
741  * @hsotg:       Controller register interface
742  * @chan:        Host channel to halt
743  * @halt_status: Reason for halting the channel
744  *
745  * This function should only be called in Slave mode or to abort a transfer in
746  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
747  * controller halts the channel when the transfer is complete or a condition
748  * occurs that requires application intervention.
749  *
750  * In slave mode, checks for a free request queue entry, then sets the Channel
751  * Enable and Channel Disable bits of the Host Channel Characteristics
752  * register of the specified channel to intiate the halt. If there is no free
753  * request queue entry, sets only the Channel Disable bit of the HCCHARn
754  * register to flush requests for this channel. In the latter case, sets a
755  * flag to indicate that the host channel needs to be halted when a request
756  * queue slot is open.
757  *
758  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
759  * HCCHARn register. The controller ensures there is space in the request
760  * queue before submitting the halt request.
761  *
762  * Some time may elapse before the core flushes any posted requests for this
763  * host channel and halts. The Channel Halted interrupt handler completes the
764  * deactivation of the host channel.
765  */
766 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
767 		  enum dwc2_halt_status halt_status)
768 {
769 	u32 nptxsts, hptxsts, hcchar;
770 
771 	if (dbg_hc(chan))
772 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
773 
774 	/*
775 	 * In buffer DMA or external DMA mode channel can't be halted
776 	 * for non-split periodic channels. At the end of the next
777 	 * uframe/frame (in the worst case), the core generates a channel
778 	 * halted and disables the channel automatically.
779 	 */
780 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
781 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
782 		if (!chan->do_split &&
783 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
784 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
785 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
786 				__func__);
787 			return;
788 		}
789 	}
790 
791 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
792 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
793 
794 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
795 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
796 		/*
797 		 * Disable all channel interrupts except Ch Halted. The QTD
798 		 * and QH state associated with this transfer has been cleared
799 		 * (in the case of URB_DEQUEUE), so the channel needs to be
800 		 * shut down carefully to prevent crashes.
801 		 */
802 		u32 hcintmsk = HCINTMSK_CHHLTD;
803 
804 		dev_vdbg(hsotg->dev, "dequeue/error\n");
805 		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
806 
807 		/*
808 		 * Make sure no other interrupts besides halt are currently
809 		 * pending. Handling another interrupt could cause a crash due
810 		 * to the QTD and QH state.
811 		 */
812 		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
813 
814 		/*
815 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
816 		 * even if the channel was already halted for some other
817 		 * reason
818 		 */
819 		chan->halt_status = halt_status;
820 
821 		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
822 		if (!(hcchar & HCCHAR_CHENA)) {
823 			/*
824 			 * The channel is either already halted or it hasn't
825 			 * started yet. In DMA mode, the transfer may halt if
826 			 * it finishes normally or a condition occurs that
827 			 * requires driver intervention. Don't want to halt
828 			 * the channel again. In either Slave or DMA mode,
829 			 * it's possible that the transfer has been assigned
830 			 * to a channel, but not started yet when an URB is
831 			 * dequeued. Don't want to halt a channel that hasn't
832 			 * started yet.
833 			 */
834 			return;
835 		}
836 	}
837 	if (chan->halt_pending) {
838 		/*
839 		 * A halt has already been issued for this channel. This might
840 		 * happen when a transfer is aborted by a higher level in
841 		 * the stack.
842 		 */
843 		dev_vdbg(hsotg->dev,
844 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
845 			 __func__, chan->hc_num);
846 		return;
847 	}
848 
849 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
850 
851 	/* No need to set the bit in DDMA for disabling the channel */
852 	/* TODO check it everywhere channel is disabled */
853 	if (!hsotg->params.dma_desc_enable) {
854 		if (dbg_hc(chan))
855 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
856 		hcchar |= HCCHAR_CHENA;
857 	} else {
858 		if (dbg_hc(chan))
859 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
860 	}
861 	hcchar |= HCCHAR_CHDIS;
862 
863 	if (!hsotg->params.host_dma) {
864 		if (dbg_hc(chan))
865 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
866 		hcchar |= HCCHAR_CHENA;
867 
868 		/* Check for space in the request queue to issue the halt */
869 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
870 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
871 			dev_vdbg(hsotg->dev, "control/bulk\n");
872 			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
873 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
874 				dev_vdbg(hsotg->dev, "Disabling channel\n");
875 				hcchar &= ~HCCHAR_CHENA;
876 			}
877 		} else {
878 			if (dbg_perio())
879 				dev_vdbg(hsotg->dev, "isoc/intr\n");
880 			hptxsts = dwc2_readl(hsotg, HPTXSTS);
881 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
882 			    hsotg->queuing_high_bandwidth) {
883 				if (dbg_perio())
884 					dev_vdbg(hsotg->dev, "Disabling channel\n");
885 				hcchar &= ~HCCHAR_CHENA;
886 			}
887 		}
888 	} else {
889 		if (dbg_hc(chan))
890 			dev_vdbg(hsotg->dev, "DMA enabled\n");
891 	}
892 
893 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
894 	chan->halt_status = halt_status;
895 
896 	if (hcchar & HCCHAR_CHENA) {
897 		if (dbg_hc(chan))
898 			dev_vdbg(hsotg->dev, "Channel enabled\n");
899 		chan->halt_pending = 1;
900 		chan->halt_on_queue = 0;
901 	} else {
902 		if (dbg_hc(chan))
903 			dev_vdbg(hsotg->dev, "Channel disabled\n");
904 		chan->halt_on_queue = 1;
905 	}
906 
907 	if (dbg_hc(chan)) {
908 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
909 			 chan->hc_num);
910 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
911 			 hcchar);
912 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
913 			 chan->halt_pending);
914 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
915 			 chan->halt_on_queue);
916 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
917 			 chan->halt_status);
918 	}
919 }
920 
921 /**
922  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
923  *
924  * @hsotg: Programming view of DWC_otg controller
925  * @chan:  Identifies the host channel to clean up
926  *
927  * This function is normally called after a transfer is done and the host
928  * channel is being released
929  */
930 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
931 {
932 	u32 hcintmsk;
933 
934 	chan->xfer_started = 0;
935 
936 	list_del_init(&chan->split_order_list_entry);
937 
938 	/*
939 	 * Clear channel interrupt enables and any unhandled channel interrupt
940 	 * conditions
941 	 */
942 	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
943 	hcintmsk = 0xffffffff;
944 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
945 	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
946 }
947 
948 /**
949  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
950  * which frame a periodic transfer should occur
951  *
952  * @hsotg:  Programming view of DWC_otg controller
953  * @chan:   Identifies the host channel to set up and its properties
954  * @hcchar: Current value of the HCCHAR register for the specified host channel
955  *
956  * This function has no effect on non-periodic transfers
957  */
958 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
959 				       struct dwc2_host_chan *chan, u32 *hcchar)
960 {
961 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
962 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
963 		int host_speed;
964 		int xfer_ns;
965 		int xfer_us;
966 		int bytes_in_fifo;
967 		u16 fifo_space;
968 		u16 frame_number;
969 		u16 wire_frame;
970 
971 		/*
972 		 * Try to figure out if we're an even or odd frame. If we set
973 		 * even and the current frame number is even the transfer
974 		 * will happen immediately.  Similar if both are odd. If one is
975 		 * even and the other is odd then the transfer will happen when
976 		 * the frame number ticks.
977 		 *
978 		 * There's a bit of a balancing act to get this right.
979 		 * Sometimes we may want to send data in the current frame (AK
980 		 * right away).  We might want to do this if the frame number
981 		 * _just_ ticked, but we might also want to do this in order
982 		 * to continue a split transaction that happened late in a
983 		 * microframe (so we didn't know to queue the next transfer
984 		 * until the frame number had ticked).  The problem is that we
985 		 * need a lot of knowledge to know if there's actually still
986 		 * time to send things or if it would be better to wait until
987 		 * the next frame.
988 		 *
989 		 * We can look at how much time is left in the current frame
990 		 * and make a guess about whether we'll have time to transfer.
991 		 * We'll do that.
992 		 */
993 
994 		/* Get speed host is running at */
995 		host_speed = (chan->speed != USB_SPEED_HIGH &&
996 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
997 
998 		/* See how many bytes are in the periodic FIFO right now */
999 		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1000 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1001 		bytes_in_fifo = sizeof(u32) *
1002 				(hsotg->params.host_perio_tx_fifo_size -
1003 				 fifo_space);
1004 
1005 		/*
1006 		 * Roughly estimate bus time for everything in the periodic
1007 		 * queue + our new transfer.  This is "rough" because we're
1008 		 * using a function that makes takes into account IN/OUT
1009 		 * and INT/ISO and we're just slamming in one value for all
1010 		 * transfers.  This should be an over-estimate and that should
1011 		 * be OK, but we can probably tighten it.
1012 		 */
1013 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1014 					    chan->xfer_len + bytes_in_fifo);
1015 		xfer_us = NS_TO_US(xfer_ns);
1016 
1017 		/* See what frame number we'll be at by the time we finish */
1018 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1019 
1020 		/* This is when we were scheduled to be on the wire */
1021 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1022 
1023 		/*
1024 		 * If we'd finish _after_ the frame we're scheduled in then
1025 		 * it's hopeless.  Just schedule right away and hope for the
1026 		 * best.  Note that it _might_ be wise to call back into the
1027 		 * scheduler to pick a better frame, but this is better than
1028 		 * nothing.
1029 		 */
1030 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1031 			dwc2_sch_vdbg(hsotg,
1032 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1033 				      chan->qh, wire_frame, frame_number,
1034 				      dwc2_frame_num_dec(frame_number,
1035 							 wire_frame));
1036 			wire_frame = frame_number;
1037 
1038 			/*
1039 			 * We picked a different frame number; communicate this
1040 			 * back to the scheduler so it doesn't try to schedule
1041 			 * another in the same frame.
1042 			 *
1043 			 * Remember that next_active_frame is 1 before the wire
1044 			 * frame.
1045 			 */
1046 			chan->qh->next_active_frame =
1047 				dwc2_frame_num_dec(frame_number, 1);
1048 		}
1049 
1050 		if (wire_frame & 1)
1051 			*hcchar |= HCCHAR_ODDFRM;
1052 		else
1053 			*hcchar &= ~HCCHAR_ODDFRM;
1054 	}
1055 }
1056 
1057 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1058 {
1059 	/* Set up the initial PID for the transfer */
1060 	if (chan->speed == USB_SPEED_HIGH) {
1061 		if (chan->ep_is_in) {
1062 			if (chan->multi_count == 1)
1063 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1064 			else if (chan->multi_count == 2)
1065 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1066 			else
1067 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1068 		} else {
1069 			if (chan->multi_count == 1)
1070 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1071 			else
1072 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1073 		}
1074 	} else {
1075 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1076 	}
1077 }
1078 
1079 /**
1080  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1081  * the Host Channel
1082  *
1083  * @hsotg: Programming view of DWC_otg controller
1084  * @chan:  Information needed to initialize the host channel
1085  *
1086  * This function should only be called in Slave mode. For a channel associated
1087  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1088  * associated with a periodic EP, the periodic Tx FIFO is written.
1089  *
1090  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1091  * the number of bytes written to the Tx FIFO.
1092  */
1093 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1094 				 struct dwc2_host_chan *chan)
1095 {
1096 	u32 i;
1097 	u32 remaining_count;
1098 	u32 byte_count;
1099 	u32 dword_count;
1100 	u32 *data_buf = (u32 *)chan->xfer_buf;
1101 
1102 	if (dbg_hc(chan))
1103 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1104 
1105 	remaining_count = chan->xfer_len - chan->xfer_count;
1106 	if (remaining_count > chan->max_packet)
1107 		byte_count = chan->max_packet;
1108 	else
1109 		byte_count = remaining_count;
1110 
1111 	dword_count = (byte_count + 3) / 4;
1112 
1113 	if (((unsigned long)data_buf & 0x3) == 0) {
1114 		/* xfer_buf is DWORD aligned */
1115 		for (i = 0; i < dword_count; i++, data_buf++)
1116 			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1117 	} else {
1118 		/* xfer_buf is not DWORD aligned */
1119 		for (i = 0; i < dword_count; i++, data_buf++) {
1120 			u32 data = data_buf[0] | data_buf[1] << 8 |
1121 				   data_buf[2] << 16 | data_buf[3] << 24;
1122 			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1123 		}
1124 	}
1125 
1126 	chan->xfer_count += byte_count;
1127 	chan->xfer_buf += byte_count;
1128 }
1129 
1130 /**
1131  * dwc2_hc_do_ping() - Starts a PING transfer
1132  *
1133  * @hsotg: Programming view of DWC_otg controller
1134  * @chan:  Information needed to initialize the host channel
1135  *
1136  * This function should only be called in Slave mode. The Do Ping bit is set in
1137  * the HCTSIZ register, then the channel is enabled.
1138  */
1139 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1140 			    struct dwc2_host_chan *chan)
1141 {
1142 	u32 hcchar;
1143 	u32 hctsiz;
1144 
1145 	if (dbg_hc(chan))
1146 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1147 			 chan->hc_num);
1148 
1149 	hctsiz = TSIZ_DOPNG;
1150 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1151 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1152 
1153 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1154 	hcchar |= HCCHAR_CHENA;
1155 	hcchar &= ~HCCHAR_CHDIS;
1156 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1157 }
1158 
1159 /**
1160  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1161  * channel and starts the transfer
1162  *
1163  * @hsotg: Programming view of DWC_otg controller
1164  * @chan:  Information needed to initialize the host channel. The xfer_len value
1165  *         may be reduced to accommodate the max widths of the XferSize and
1166  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1167  *         changed to reflect the final xfer_len value.
1168  *
1169  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1170  * the caller must ensure that there is sufficient space in the request queue
1171  * and Tx Data FIFO.
1172  *
1173  * For an OUT transfer in Slave mode, it loads a data packet into the
1174  * appropriate FIFO. If necessary, additional data packets are loaded in the
1175  * Host ISR.
1176  *
1177  * For an IN transfer in Slave mode, a data packet is requested. The data
1178  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1179  * additional data packets are requested in the Host ISR.
1180  *
1181  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1182  * register along with a packet count of 1 and the channel is enabled. This
1183  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1184  * simply set to 0 since no data transfer occurs in this case.
1185  *
1186  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1187  * all the information required to perform the subsequent data transfer. In
1188  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1189  * controller performs the entire PING protocol, then starts the data
1190  * transfer.
1191  */
1192 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1193 				   struct dwc2_host_chan *chan)
1194 {
1195 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1196 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1197 	u32 hcchar;
1198 	u32 hctsiz = 0;
1199 	u16 num_packets;
1200 	u32 ec_mc;
1201 
1202 	if (dbg_hc(chan))
1203 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1204 
1205 	if (chan->do_ping) {
1206 		if (!hsotg->params.host_dma) {
1207 			if (dbg_hc(chan))
1208 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1209 			dwc2_hc_do_ping(hsotg, chan);
1210 			chan->xfer_started = 1;
1211 			return;
1212 		}
1213 
1214 		if (dbg_hc(chan))
1215 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1216 
1217 		hctsiz |= TSIZ_DOPNG;
1218 	}
1219 
1220 	if (chan->do_split) {
1221 		if (dbg_hc(chan))
1222 			dev_vdbg(hsotg->dev, "split\n");
1223 		num_packets = 1;
1224 
1225 		if (chan->complete_split && !chan->ep_is_in)
1226 			/*
1227 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1228 			 * core doesn't expect any data written to the FIFO
1229 			 */
1230 			chan->xfer_len = 0;
1231 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1232 			chan->xfer_len = chan->max_packet;
1233 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1234 			chan->xfer_len = 188;
1235 
1236 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1237 			  TSIZ_XFERSIZE_MASK;
1238 
1239 		/* For split set ec_mc for immediate retries */
1240 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1241 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1242 			ec_mc = 3;
1243 		else
1244 			ec_mc = 1;
1245 	} else {
1246 		if (dbg_hc(chan))
1247 			dev_vdbg(hsotg->dev, "no split\n");
1248 		/*
1249 		 * Ensure that the transfer length and packet count will fit
1250 		 * in the widths allocated for them in the HCTSIZn register
1251 		 */
1252 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1253 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1254 			/*
1255 			 * Make sure the transfer size is no larger than one
1256 			 * (micro)frame's worth of data. (A check was done
1257 			 * when the periodic transfer was accepted to ensure
1258 			 * that a (micro)frame's worth of data can be
1259 			 * programmed into a channel.)
1260 			 */
1261 			u32 max_periodic_len =
1262 				chan->multi_count * chan->max_packet;
1263 
1264 			if (chan->xfer_len > max_periodic_len)
1265 				chan->xfer_len = max_periodic_len;
1266 		} else if (chan->xfer_len > max_hc_xfer_size) {
1267 			/*
1268 			 * Make sure that xfer_len is a multiple of max packet
1269 			 * size
1270 			 */
1271 			chan->xfer_len =
1272 				max_hc_xfer_size - chan->max_packet + 1;
1273 		}
1274 
1275 		if (chan->xfer_len > 0) {
1276 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1277 					chan->max_packet;
1278 			if (num_packets > max_hc_pkt_count) {
1279 				num_packets = max_hc_pkt_count;
1280 				chan->xfer_len = num_packets * chan->max_packet;
1281 			} else if (chan->ep_is_in) {
1282 				/*
1283 				 * Always program an integral # of max packets
1284 				 * for IN transfers.
1285 				 * Note: This assumes that the input buffer is
1286 				 * aligned and sized accordingly.
1287 				 */
1288 				chan->xfer_len = num_packets * chan->max_packet;
1289 			}
1290 		} else {
1291 			/* Need 1 packet for transfer length of 0 */
1292 			num_packets = 1;
1293 		}
1294 
1295 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1296 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1297 			/*
1298 			 * Make sure that the multi_count field matches the
1299 			 * actual transfer length
1300 			 */
1301 			chan->multi_count = num_packets;
1302 
1303 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1304 			dwc2_set_pid_isoc(chan);
1305 
1306 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1307 			  TSIZ_XFERSIZE_MASK;
1308 
1309 		/* The ec_mc gets the multi_count for non-split */
1310 		ec_mc = chan->multi_count;
1311 	}
1312 
1313 	chan->start_pkt_count = num_packets;
1314 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1315 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1316 		  TSIZ_SC_MC_PID_MASK;
1317 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1318 	if (dbg_hc(chan)) {
1319 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1320 			 hctsiz, chan->hc_num);
1321 
1322 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1323 			 chan->hc_num);
1324 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1325 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1326 			 TSIZ_XFERSIZE_SHIFT);
1327 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1328 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1329 			 TSIZ_PKTCNT_SHIFT);
1330 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1331 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1332 			 TSIZ_SC_MC_PID_SHIFT);
1333 	}
1334 
1335 	if (hsotg->params.host_dma) {
1336 		dma_addr_t dma_addr;
1337 
1338 		if (chan->align_buf) {
1339 			if (dbg_hc(chan))
1340 				dev_vdbg(hsotg->dev, "align_buf\n");
1341 			dma_addr = chan->align_buf;
1342 		} else {
1343 			dma_addr = chan->xfer_dma;
1344 		}
1345 		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1346 
1347 		if (dbg_hc(chan))
1348 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1349 				 (unsigned long)dma_addr, chan->hc_num);
1350 	}
1351 
1352 	/* Start the split */
1353 	if (chan->do_split) {
1354 		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1355 
1356 		hcsplt |= HCSPLT_SPLTENA;
1357 		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1358 	}
1359 
1360 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1361 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1362 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1363 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1364 
1365 	if (hcchar & HCCHAR_CHDIS)
1366 		dev_warn(hsotg->dev,
1367 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1368 			 __func__, chan->hc_num, hcchar);
1369 
1370 	/* Set host channel enable after all other setup is complete */
1371 	hcchar |= HCCHAR_CHENA;
1372 	hcchar &= ~HCCHAR_CHDIS;
1373 
1374 	if (dbg_hc(chan))
1375 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1376 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1377 			 HCCHAR_MULTICNT_SHIFT);
1378 
1379 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1380 	if (dbg_hc(chan))
1381 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1382 			 chan->hc_num);
1383 
1384 	chan->xfer_started = 1;
1385 	chan->requests++;
1386 
1387 	if (!hsotg->params.host_dma &&
1388 	    !chan->ep_is_in && chan->xfer_len > 0)
1389 		/* Load OUT packet into the appropriate Tx FIFO */
1390 		dwc2_hc_write_packet(hsotg, chan);
1391 }
1392 
1393 /**
1394  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1395  * host channel and starts the transfer in Descriptor DMA mode
1396  *
1397  * @hsotg: Programming view of DWC_otg controller
1398  * @chan:  Information needed to initialize the host channel
1399  *
1400  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1401  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1402  * with micro-frame bitmap.
1403  *
1404  * Initializes HCDMA register with descriptor list address and CTD value then
1405  * starts the transfer via enabling the channel.
1406  */
1407 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1408 				 struct dwc2_host_chan *chan)
1409 {
1410 	u32 hcchar;
1411 	u32 hctsiz = 0;
1412 
1413 	if (chan->do_ping)
1414 		hctsiz |= TSIZ_DOPNG;
1415 
1416 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1417 		dwc2_set_pid_isoc(chan);
1418 
1419 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1420 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1421 		  TSIZ_SC_MC_PID_MASK;
1422 
1423 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1424 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1425 
1426 	/* Non-zero only for high-speed interrupt endpoints */
1427 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1428 
1429 	if (dbg_hc(chan)) {
1430 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1431 			 chan->hc_num);
1432 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1433 			 chan->data_pid_start);
1434 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1435 	}
1436 
1437 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1438 
1439 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1440 				   chan->desc_list_sz, DMA_TO_DEVICE);
1441 
1442 	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1443 
1444 	if (dbg_hc(chan))
1445 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1446 			 &chan->desc_list_addr, chan->hc_num);
1447 
1448 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1449 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1450 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1451 		  HCCHAR_MULTICNT_MASK;
1452 
1453 	if (hcchar & HCCHAR_CHDIS)
1454 		dev_warn(hsotg->dev,
1455 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1456 			 __func__, chan->hc_num, hcchar);
1457 
1458 	/* Set host channel enable after all other setup is complete */
1459 	hcchar |= HCCHAR_CHENA;
1460 	hcchar &= ~HCCHAR_CHDIS;
1461 
1462 	if (dbg_hc(chan))
1463 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1464 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1465 			 HCCHAR_MULTICNT_SHIFT);
1466 
1467 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1468 	if (dbg_hc(chan))
1469 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1470 			 chan->hc_num);
1471 
1472 	chan->xfer_started = 1;
1473 	chan->requests++;
1474 }
1475 
1476 /**
1477  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1478  * a previous call to dwc2_hc_start_transfer()
1479  *
1480  * @hsotg: Programming view of DWC_otg controller
1481  * @chan:  Information needed to initialize the host channel
1482  *
1483  * The caller must ensure there is sufficient space in the request queue and Tx
1484  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1485  * the controller acts autonomously to complete transfers programmed to a host
1486  * channel.
1487  *
1488  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1489  * if there is any data remaining to be queued. For an IN transfer, another
1490  * data packet is always requested. For the SETUP phase of a control transfer,
1491  * this function does nothing.
1492  *
1493  * Return: 1 if a new request is queued, 0 if no more requests are required
1494  * for this transfer
1495  */
1496 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1497 				     struct dwc2_host_chan *chan)
1498 {
1499 	if (dbg_hc(chan))
1500 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1501 			 chan->hc_num);
1502 
1503 	if (chan->do_split)
1504 		/* SPLITs always queue just once per channel */
1505 		return 0;
1506 
1507 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1508 		/* SETUPs are queued only once since they can't be NAK'd */
1509 		return 0;
1510 
1511 	if (chan->ep_is_in) {
1512 		/*
1513 		 * Always queue another request for other IN transfers. If
1514 		 * back-to-back INs are issued and NAKs are received for both,
1515 		 * the driver may still be processing the first NAK when the
1516 		 * second NAK is received. When the interrupt handler clears
1517 		 * the NAK interrupt for the first NAK, the second NAK will
1518 		 * not be seen. So we can't depend on the NAK interrupt
1519 		 * handler to requeue a NAK'd request. Instead, IN requests
1520 		 * are issued each time this function is called. When the
1521 		 * transfer completes, the extra requests for the channel will
1522 		 * be flushed.
1523 		 */
1524 		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1525 
1526 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1527 		hcchar |= HCCHAR_CHENA;
1528 		hcchar &= ~HCCHAR_CHDIS;
1529 		if (dbg_hc(chan))
1530 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1531 				 hcchar);
1532 		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1533 		chan->requests++;
1534 		return 1;
1535 	}
1536 
1537 	/* OUT transfers */
1538 
1539 	if (chan->xfer_count < chan->xfer_len) {
1540 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1541 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1542 			u32 hcchar = dwc2_readl(hsotg,
1543 						HCCHAR(chan->hc_num));
1544 
1545 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1546 						   &hcchar);
1547 		}
1548 
1549 		/* Load OUT packet into the appropriate Tx FIFO */
1550 		dwc2_hc_write_packet(hsotg, chan);
1551 		chan->requests++;
1552 		return 1;
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 /*
1559  * =========================================================================
1560  *  HCD
1561  * =========================================================================
1562  */
1563 
1564 /*
1565  * Processes all the URBs in a single list of QHs. Completes them with
1566  * -ETIMEDOUT and frees the QTD.
1567  *
1568  * Must be called with interrupt disabled and spinlock held
1569  */
1570 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1571 				      struct list_head *qh_list)
1572 {
1573 	struct dwc2_qh *qh, *qh_tmp;
1574 	struct dwc2_qtd *qtd, *qtd_tmp;
1575 
1576 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1577 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1578 					 qtd_list_entry) {
1579 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1580 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1581 		}
1582 	}
1583 }
1584 
1585 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1586 			      struct list_head *qh_list)
1587 {
1588 	struct dwc2_qtd *qtd, *qtd_tmp;
1589 	struct dwc2_qh *qh, *qh_tmp;
1590 	unsigned long flags;
1591 
1592 	if (!qh_list->next)
1593 		/* The list hasn't been initialized yet */
1594 		return;
1595 
1596 	spin_lock_irqsave(&hsotg->lock, flags);
1597 
1598 	/* Ensure there are no QTDs or URBs left */
1599 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1600 
1601 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1602 		dwc2_hcd_qh_unlink(hsotg, qh);
1603 
1604 		/* Free each QTD in the QH's QTD list */
1605 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1606 					 qtd_list_entry)
1607 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1608 
1609 		if (qh->channel && qh->channel->qh == qh)
1610 			qh->channel->qh = NULL;
1611 
1612 		spin_unlock_irqrestore(&hsotg->lock, flags);
1613 		dwc2_hcd_qh_free(hsotg, qh);
1614 		spin_lock_irqsave(&hsotg->lock, flags);
1615 	}
1616 
1617 	spin_unlock_irqrestore(&hsotg->lock, flags);
1618 }
1619 
1620 /*
1621  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1622  * and periodic schedules. The QTD associated with each URB is removed from
1623  * the schedule and freed. This function may be called when a disconnect is
1624  * detected or when the HCD is being stopped.
1625  *
1626  * Must be called with interrupt disabled and spinlock held
1627  */
1628 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1629 {
1630 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1631 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1632 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1633 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1634 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1635 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1636 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1637 }
1638 
1639 /**
1640  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1641  *
1642  * @hsotg: Pointer to struct dwc2_hsotg
1643  */
1644 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1645 {
1646 	u32 hprt0;
1647 
1648 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1649 		/*
1650 		 * Reset the port. During a HNP mode switch the reset
1651 		 * needs to occur within 1ms and have a duration of at
1652 		 * least 50ms.
1653 		 */
1654 		hprt0 = dwc2_read_hprt0(hsotg);
1655 		hprt0 |= HPRT0_RST;
1656 		dwc2_writel(hsotg, hprt0, HPRT0);
1657 	}
1658 
1659 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1660 			   msecs_to_jiffies(50));
1661 }
1662 
1663 /* Must be called with interrupt disabled and spinlock held */
1664 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1665 {
1666 	int num_channels = hsotg->params.host_channels;
1667 	struct dwc2_host_chan *channel;
1668 	u32 hcchar;
1669 	int i;
1670 
1671 	if (!hsotg->params.host_dma) {
1672 		/* Flush out any channel requests in slave mode */
1673 		for (i = 0; i < num_channels; i++) {
1674 			channel = hsotg->hc_ptr_array[i];
1675 			if (!list_empty(&channel->hc_list_entry))
1676 				continue;
1677 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1678 			if (hcchar & HCCHAR_CHENA) {
1679 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1680 				hcchar |= HCCHAR_CHDIS;
1681 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1682 			}
1683 		}
1684 	}
1685 
1686 	for (i = 0; i < num_channels; i++) {
1687 		channel = hsotg->hc_ptr_array[i];
1688 		if (!list_empty(&channel->hc_list_entry))
1689 			continue;
1690 		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1691 		if (hcchar & HCCHAR_CHENA) {
1692 			/* Halt the channel */
1693 			hcchar |= HCCHAR_CHDIS;
1694 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1695 		}
1696 
1697 		dwc2_hc_cleanup(hsotg, channel);
1698 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1699 		/*
1700 		 * Added for Descriptor DMA to prevent channel double cleanup in
1701 		 * release_channel_ddma(), which is called from ep_disable when
1702 		 * device disconnects
1703 		 */
1704 		channel->qh = NULL;
1705 	}
1706 	/* All channels have been freed, mark them available */
1707 	if (hsotg->params.uframe_sched) {
1708 		hsotg->available_host_channels =
1709 			hsotg->params.host_channels;
1710 	} else {
1711 		hsotg->non_periodic_channels = 0;
1712 		hsotg->periodic_channels = 0;
1713 	}
1714 }
1715 
1716 /**
1717  * dwc2_hcd_connect() - Handles connect of the HCD
1718  *
1719  * @hsotg: Pointer to struct dwc2_hsotg
1720  *
1721  * Must be called with interrupt disabled and spinlock held
1722  */
1723 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1724 {
1725 	if (hsotg->lx_state != DWC2_L0)
1726 		usb_hcd_resume_root_hub(hsotg->priv);
1727 
1728 	hsotg->flags.b.port_connect_status_change = 1;
1729 	hsotg->flags.b.port_connect_status = 1;
1730 }
1731 
1732 /**
1733  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1734  *
1735  * @hsotg: Pointer to struct dwc2_hsotg
1736  * @force: If true, we won't try to reconnect even if we see device connected.
1737  *
1738  * Must be called with interrupt disabled and spinlock held
1739  */
1740 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1741 {
1742 	u32 intr;
1743 	u32 hprt0;
1744 
1745 	/* Set status flags for the hub driver */
1746 	hsotg->flags.b.port_connect_status_change = 1;
1747 	hsotg->flags.b.port_connect_status = 0;
1748 
1749 	/*
1750 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1751 	 * interrupt mask and status bits and disabling subsequent host
1752 	 * channel interrupts.
1753 	 */
1754 	intr = dwc2_readl(hsotg, GINTMSK);
1755 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1756 	dwc2_writel(hsotg, intr, GINTMSK);
1757 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1758 	dwc2_writel(hsotg, intr, GINTSTS);
1759 
1760 	/*
1761 	 * Turn off the vbus power only if the core has transitioned to device
1762 	 * mode. If still in host mode, need to keep power on to detect a
1763 	 * reconnection.
1764 	 */
1765 	if (dwc2_is_device_mode(hsotg)) {
1766 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1767 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1768 			dwc2_writel(hsotg, 0, HPRT0);
1769 		}
1770 
1771 		dwc2_disable_host_interrupts(hsotg);
1772 	}
1773 
1774 	/* Respond with an error status to all URBs in the schedule */
1775 	dwc2_kill_all_urbs(hsotg);
1776 
1777 	if (dwc2_is_host_mode(hsotg))
1778 		/* Clean up any host channels that were in use */
1779 		dwc2_hcd_cleanup_channels(hsotg);
1780 
1781 	dwc2_host_disconnect(hsotg);
1782 
1783 	/*
1784 	 * Add an extra check here to see if we're actually connected but
1785 	 * we don't have a detection interrupt pending.  This can happen if:
1786 	 *   1. hardware sees connect
1787 	 *   2. hardware sees disconnect
1788 	 *   3. hardware sees connect
1789 	 *   4. dwc2_port_intr() - clears connect interrupt
1790 	 *   5. dwc2_handle_common_intr() - calls here
1791 	 *
1792 	 * Without the extra check here we will end calling disconnect
1793 	 * and won't get any future interrupts to handle the connect.
1794 	 */
1795 	if (!force) {
1796 		hprt0 = dwc2_readl(hsotg, HPRT0);
1797 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1798 			dwc2_hcd_connect(hsotg);
1799 	}
1800 }
1801 
1802 /**
1803  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1804  *
1805  * @hsotg: Pointer to struct dwc2_hsotg
1806  */
1807 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1808 {
1809 	if (hsotg->bus_suspended) {
1810 		hsotg->flags.b.port_suspend_change = 1;
1811 		usb_hcd_resume_root_hub(hsotg->priv);
1812 	}
1813 
1814 	if (hsotg->lx_state == DWC2_L1)
1815 		hsotg->flags.b.port_l1_change = 1;
1816 }
1817 
1818 /**
1819  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1820  *
1821  * @hsotg: Pointer to struct dwc2_hsotg
1822  *
1823  * Must be called with interrupt disabled and spinlock held
1824  */
1825 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1826 {
1827 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1828 
1829 	/*
1830 	 * The root hub should be disconnected before this function is called.
1831 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1832 	 * and the QH lists (via ..._hcd_endpoint_disable).
1833 	 */
1834 
1835 	/* Turn off all host-specific interrupts */
1836 	dwc2_disable_host_interrupts(hsotg);
1837 
1838 	/* Turn off the vbus power */
1839 	dev_dbg(hsotg->dev, "PortPower off\n");
1840 	dwc2_writel(hsotg, 0, HPRT0);
1841 }
1842 
1843 /* Caller must hold driver lock */
1844 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1845 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1846 				struct dwc2_qtd *qtd)
1847 {
1848 	u32 intr_mask;
1849 	int retval;
1850 	int dev_speed;
1851 
1852 	if (!hsotg->flags.b.port_connect_status) {
1853 		/* No longer connected */
1854 		dev_err(hsotg->dev, "Not connected\n");
1855 		return -ENODEV;
1856 	}
1857 
1858 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1859 
1860 	/* Some configurations cannot support LS traffic on a FS root port */
1861 	if ((dev_speed == USB_SPEED_LOW) &&
1862 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1863 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1864 		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1865 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1866 
1867 		if (prtspd == HPRT0_SPD_FULL_SPEED)
1868 			return -ENODEV;
1869 	}
1870 
1871 	if (!qtd)
1872 		return -EINVAL;
1873 
1874 	dwc2_hcd_qtd_init(qtd, urb);
1875 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1876 	if (retval) {
1877 		dev_err(hsotg->dev,
1878 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1879 			retval);
1880 		return retval;
1881 	}
1882 
1883 	intr_mask = dwc2_readl(hsotg, GINTMSK);
1884 	if (!(intr_mask & GINTSTS_SOF)) {
1885 		enum dwc2_transaction_type tr_type;
1886 
1887 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1888 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1889 			/*
1890 			 * Do not schedule SG transactions until qtd has
1891 			 * URB_GIVEBACK_ASAP set
1892 			 */
1893 			return 0;
1894 
1895 		tr_type = dwc2_hcd_select_transactions(hsotg);
1896 		if (tr_type != DWC2_TRANSACTION_NONE)
1897 			dwc2_hcd_queue_transactions(hsotg, tr_type);
1898 	}
1899 
1900 	return 0;
1901 }
1902 
1903 /* Must be called with interrupt disabled and spinlock held */
1904 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1905 				struct dwc2_hcd_urb *urb)
1906 {
1907 	struct dwc2_qh *qh;
1908 	struct dwc2_qtd *urb_qtd;
1909 
1910 	urb_qtd = urb->qtd;
1911 	if (!urb_qtd) {
1912 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1913 		return -EINVAL;
1914 	}
1915 
1916 	qh = urb_qtd->qh;
1917 	if (!qh) {
1918 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1919 		return -EINVAL;
1920 	}
1921 
1922 	urb->priv = NULL;
1923 
1924 	if (urb_qtd->in_process && qh->channel) {
1925 		dwc2_dump_channel_info(hsotg, qh->channel);
1926 
1927 		/* The QTD is in process (it has been assigned to a channel) */
1928 		if (hsotg->flags.b.port_connect_status)
1929 			/*
1930 			 * If still connected (i.e. in host mode), halt the
1931 			 * channel so it can be used for other transfers. If
1932 			 * no longer connected, the host registers can't be
1933 			 * written to halt the channel since the core is in
1934 			 * device mode.
1935 			 */
1936 			dwc2_hc_halt(hsotg, qh->channel,
1937 				     DWC2_HC_XFER_URB_DEQUEUE);
1938 	}
1939 
1940 	/*
1941 	 * Free the QTD and clean up the associated QH. Leave the QH in the
1942 	 * schedule if it has any remaining QTDs.
1943 	 */
1944 	if (!hsotg->params.dma_desc_enable) {
1945 		u8 in_process = urb_qtd->in_process;
1946 
1947 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1948 		if (in_process) {
1949 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1950 			qh->channel = NULL;
1951 		} else if (list_empty(&qh->qtd_list)) {
1952 			dwc2_hcd_qh_unlink(hsotg, qh);
1953 		}
1954 	} else {
1955 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 /* Must NOT be called with interrupt disabled or spinlock held */
1962 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1963 				     struct usb_host_endpoint *ep, int retry)
1964 {
1965 	struct dwc2_qtd *qtd, *qtd_tmp;
1966 	struct dwc2_qh *qh;
1967 	unsigned long flags;
1968 	int rc;
1969 
1970 	spin_lock_irqsave(&hsotg->lock, flags);
1971 
1972 	qh = ep->hcpriv;
1973 	if (!qh) {
1974 		rc = -EINVAL;
1975 		goto err;
1976 	}
1977 
1978 	while (!list_empty(&qh->qtd_list) && retry--) {
1979 		if (retry == 0) {
1980 			dev_err(hsotg->dev,
1981 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
1982 			rc = -EBUSY;
1983 			goto err;
1984 		}
1985 
1986 		spin_unlock_irqrestore(&hsotg->lock, flags);
1987 		msleep(20);
1988 		spin_lock_irqsave(&hsotg->lock, flags);
1989 		qh = ep->hcpriv;
1990 		if (!qh) {
1991 			rc = -EINVAL;
1992 			goto err;
1993 		}
1994 	}
1995 
1996 	dwc2_hcd_qh_unlink(hsotg, qh);
1997 
1998 	/* Free each QTD in the QH's QTD list */
1999 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2000 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2001 
2002 	ep->hcpriv = NULL;
2003 
2004 	if (qh->channel && qh->channel->qh == qh)
2005 		qh->channel->qh = NULL;
2006 
2007 	spin_unlock_irqrestore(&hsotg->lock, flags);
2008 
2009 	dwc2_hcd_qh_free(hsotg, qh);
2010 
2011 	return 0;
2012 
2013 err:
2014 	ep->hcpriv = NULL;
2015 	spin_unlock_irqrestore(&hsotg->lock, flags);
2016 
2017 	return rc;
2018 }
2019 
2020 /* Must be called with interrupt disabled and spinlock held */
2021 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2022 				   struct usb_host_endpoint *ep)
2023 {
2024 	struct dwc2_qh *qh = ep->hcpriv;
2025 
2026 	if (!qh)
2027 		return -EINVAL;
2028 
2029 	qh->data_toggle = DWC2_HC_PID_DATA0;
2030 
2031 	return 0;
2032 }
2033 
2034 /**
2035  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2036  * prepares the core for device mode or host mode operation
2037  *
2038  * @hsotg:         Programming view of the DWC_otg controller
2039  * @initial_setup: If true then this is the first init for this instance.
2040  */
2041 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2042 {
2043 	u32 usbcfg, otgctl;
2044 	int retval;
2045 
2046 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2047 
2048 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2049 
2050 	/* Set ULPI External VBUS bit if needed */
2051 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2052 	if (hsotg->params.phy_ulpi_ext_vbus)
2053 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2054 
2055 	/* Set external TS Dline pulsing bit if needed */
2056 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2057 	if (hsotg->params.ts_dline)
2058 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2059 
2060 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2061 
2062 	/*
2063 	 * Reset the Controller
2064 	 *
2065 	 * We only need to reset the controller if this is a re-init.
2066 	 * For the first init we know for sure that earlier code reset us (it
2067 	 * needed to in order to properly detect various parameters).
2068 	 */
2069 	if (!initial_setup) {
2070 		retval = dwc2_core_reset(hsotg, false);
2071 		if (retval) {
2072 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2073 				__func__);
2074 			return retval;
2075 		}
2076 	}
2077 
2078 	/*
2079 	 * This needs to happen in FS mode before any other programming occurs
2080 	 */
2081 	retval = dwc2_phy_init(hsotg, initial_setup);
2082 	if (retval)
2083 		return retval;
2084 
2085 	/* Program the GAHBCFG Register */
2086 	retval = dwc2_gahbcfg_init(hsotg);
2087 	if (retval)
2088 		return retval;
2089 
2090 	/* Program the GUSBCFG register */
2091 	dwc2_gusbcfg_init(hsotg);
2092 
2093 	/* Program the GOTGCTL register */
2094 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2095 	otgctl &= ~GOTGCTL_OTGVER;
2096 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2097 
2098 	/* Clear the SRP success bit for FS-I2c */
2099 	hsotg->srp_success = 0;
2100 
2101 	/* Enable common interrupts */
2102 	dwc2_enable_common_interrupts(hsotg);
2103 
2104 	/*
2105 	 * Do device or host initialization based on mode during PCD and
2106 	 * HCD initialization
2107 	 */
2108 	if (dwc2_is_host_mode(hsotg)) {
2109 		dev_dbg(hsotg->dev, "Host Mode\n");
2110 		hsotg->op_state = OTG_STATE_A_HOST;
2111 	} else {
2112 		dev_dbg(hsotg->dev, "Device Mode\n");
2113 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2114 	}
2115 
2116 	return 0;
2117 }
2118 
2119 /**
2120  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2121  * Host mode
2122  *
2123  * @hsotg: Programming view of DWC_otg controller
2124  *
2125  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2126  * request queues. Host channels are reset to ensure that they are ready for
2127  * performing transfers.
2128  */
2129 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2130 {
2131 	u32 hcfg, hfir, otgctl, usbcfg;
2132 
2133 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2134 
2135 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2136 	 * The number of PHY clocks that the application programs in
2137 	 * this field is added to the high/full speed interpacket timeout
2138 	 * duration in the core to account for any additional delays
2139 	 * introduced by the PHY. This can be required, because the delay
2140 	 * introduced by the PHY in generating the linestate condition
2141 	 * can vary from one PHY to another.
2142 	 */
2143 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2144 	usbcfg |= GUSBCFG_TOUTCAL(7);
2145 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2146 
2147 	/* Restart the Phy Clock */
2148 	dwc2_writel(hsotg, 0, PCGCTL);
2149 
2150 	/* Initialize Host Configuration Register */
2151 	dwc2_init_fs_ls_pclk_sel(hsotg);
2152 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2153 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2154 		hcfg = dwc2_readl(hsotg, HCFG);
2155 		hcfg |= HCFG_FSLSSUPP;
2156 		dwc2_writel(hsotg, hcfg, HCFG);
2157 	}
2158 
2159 	/*
2160 	 * This bit allows dynamic reloading of the HFIR register during
2161 	 * runtime. This bit needs to be programmed during initial configuration
2162 	 * and its value must not be changed during runtime.
2163 	 */
2164 	if (hsotg->params.reload_ctl) {
2165 		hfir = dwc2_readl(hsotg, HFIR);
2166 		hfir |= HFIR_RLDCTRL;
2167 		dwc2_writel(hsotg, hfir, HFIR);
2168 	}
2169 
2170 	if (hsotg->params.dma_desc_enable) {
2171 		u32 op_mode = hsotg->hw_params.op_mode;
2172 
2173 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2174 		    !hsotg->hw_params.dma_desc_enable ||
2175 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2176 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2177 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2178 			dev_err(hsotg->dev,
2179 				"Hardware does not support descriptor DMA mode -\n");
2180 			dev_err(hsotg->dev,
2181 				"falling back to buffer DMA mode.\n");
2182 			hsotg->params.dma_desc_enable = false;
2183 		} else {
2184 			hcfg = dwc2_readl(hsotg, HCFG);
2185 			hcfg |= HCFG_DESCDMA;
2186 			dwc2_writel(hsotg, hcfg, HCFG);
2187 		}
2188 	}
2189 
2190 	/* Configure data FIFO sizes */
2191 	dwc2_config_fifos(hsotg);
2192 
2193 	/* TODO - check this */
2194 	/* Clear Host Set HNP Enable in the OTG Control Register */
2195 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2196 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2197 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2198 
2199 	/* Make sure the FIFOs are flushed */
2200 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2201 	dwc2_flush_rx_fifo(hsotg);
2202 
2203 	/* Clear Host Set HNP Enable in the OTG Control Register */
2204 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2205 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2206 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2207 
2208 	if (!hsotg->params.dma_desc_enable) {
2209 		int num_channels, i;
2210 		u32 hcchar;
2211 
2212 		/* Flush out any leftover queued requests */
2213 		num_channels = hsotg->params.host_channels;
2214 		for (i = 0; i < num_channels; i++) {
2215 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2216 			if (hcchar & HCCHAR_CHENA) {
2217 				hcchar &= ~HCCHAR_CHENA;
2218 				hcchar |= HCCHAR_CHDIS;
2219 				hcchar &= ~HCCHAR_EPDIR;
2220 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2221 			}
2222 		}
2223 
2224 		/* Halt all channels to put them into a known state */
2225 		for (i = 0; i < num_channels; i++) {
2226 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2227 			if (hcchar & HCCHAR_CHENA) {
2228 				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2229 				hcchar &= ~HCCHAR_EPDIR;
2230 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2231 				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2232 					__func__, i);
2233 
2234 				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2235 							      HCCHAR_CHENA,
2236 							      1000)) {
2237 					dev_warn(hsotg->dev,
2238 						 "Unable to clear enable on channel %d\n",
2239 						 i);
2240 				}
2241 			}
2242 		}
2243 	}
2244 
2245 	/* Enable ACG feature in host mode, if supported */
2246 	dwc2_enable_acg(hsotg);
2247 
2248 	/* Turn on the vbus power */
2249 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2250 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2251 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2252 
2253 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2254 			!!(hprt0 & HPRT0_PWR));
2255 		if (!(hprt0 & HPRT0_PWR)) {
2256 			hprt0 |= HPRT0_PWR;
2257 			dwc2_writel(hsotg, hprt0, HPRT0);
2258 		}
2259 	}
2260 
2261 	dwc2_enable_host_interrupts(hsotg);
2262 }
2263 
2264 /*
2265  * Initializes dynamic portions of the DWC_otg HCD state
2266  *
2267  * Must be called with interrupt disabled and spinlock held
2268  */
2269 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2270 {
2271 	struct dwc2_host_chan *chan, *chan_tmp;
2272 	int num_channels;
2273 	int i;
2274 
2275 	hsotg->flags.d32 = 0;
2276 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2277 
2278 	if (hsotg->params.uframe_sched) {
2279 		hsotg->available_host_channels =
2280 			hsotg->params.host_channels;
2281 	} else {
2282 		hsotg->non_periodic_channels = 0;
2283 		hsotg->periodic_channels = 0;
2284 	}
2285 
2286 	/*
2287 	 * Put all channels in the free channel list and clean up channel
2288 	 * states
2289 	 */
2290 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2291 				 hc_list_entry)
2292 		list_del_init(&chan->hc_list_entry);
2293 
2294 	num_channels = hsotg->params.host_channels;
2295 	for (i = 0; i < num_channels; i++) {
2296 		chan = hsotg->hc_ptr_array[i];
2297 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2298 		dwc2_hc_cleanup(hsotg, chan);
2299 	}
2300 
2301 	/* Initialize the DWC core for host mode operation */
2302 	dwc2_core_host_init(hsotg);
2303 }
2304 
2305 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2306 			       struct dwc2_host_chan *chan,
2307 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2308 {
2309 	int hub_addr, hub_port;
2310 
2311 	chan->do_split = 1;
2312 	chan->xact_pos = qtd->isoc_split_pos;
2313 	chan->complete_split = qtd->complete_split;
2314 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2315 	chan->hub_addr = (u8)hub_addr;
2316 	chan->hub_port = (u8)hub_port;
2317 }
2318 
2319 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2320 			      struct dwc2_host_chan *chan,
2321 			      struct dwc2_qtd *qtd)
2322 {
2323 	struct dwc2_hcd_urb *urb = qtd->urb;
2324 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2325 
2326 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2327 	case USB_ENDPOINT_XFER_CONTROL:
2328 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2329 
2330 		switch (qtd->control_phase) {
2331 		case DWC2_CONTROL_SETUP:
2332 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2333 			chan->do_ping = 0;
2334 			chan->ep_is_in = 0;
2335 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2336 			if (hsotg->params.host_dma)
2337 				chan->xfer_dma = urb->setup_dma;
2338 			else
2339 				chan->xfer_buf = urb->setup_packet;
2340 			chan->xfer_len = 8;
2341 			break;
2342 
2343 		case DWC2_CONTROL_DATA:
2344 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2345 			chan->data_pid_start = qtd->data_toggle;
2346 			break;
2347 
2348 		case DWC2_CONTROL_STATUS:
2349 			/*
2350 			 * Direction is opposite of data direction or IN if no
2351 			 * data
2352 			 */
2353 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2354 			if (urb->length == 0)
2355 				chan->ep_is_in = 1;
2356 			else
2357 				chan->ep_is_in =
2358 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2359 			if (chan->ep_is_in)
2360 				chan->do_ping = 0;
2361 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2362 			chan->xfer_len = 0;
2363 			if (hsotg->params.host_dma)
2364 				chan->xfer_dma = hsotg->status_buf_dma;
2365 			else
2366 				chan->xfer_buf = hsotg->status_buf;
2367 			break;
2368 		}
2369 		break;
2370 
2371 	case USB_ENDPOINT_XFER_BULK:
2372 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2373 		break;
2374 
2375 	case USB_ENDPOINT_XFER_INT:
2376 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2377 		break;
2378 
2379 	case USB_ENDPOINT_XFER_ISOC:
2380 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2381 		if (hsotg->params.dma_desc_enable)
2382 			break;
2383 
2384 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2385 		frame_desc->status = 0;
2386 
2387 		if (hsotg->params.host_dma) {
2388 			chan->xfer_dma = urb->dma;
2389 			chan->xfer_dma += frame_desc->offset +
2390 					qtd->isoc_split_offset;
2391 		} else {
2392 			chan->xfer_buf = urb->buf;
2393 			chan->xfer_buf += frame_desc->offset +
2394 					qtd->isoc_split_offset;
2395 		}
2396 
2397 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2398 
2399 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2400 			if (chan->xfer_len <= 188)
2401 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2402 			else
2403 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2404 		}
2405 		break;
2406 	}
2407 }
2408 
2409 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2410 					    struct dwc2_qh *qh,
2411 					    struct dwc2_host_chan *chan)
2412 {
2413 	if (!hsotg->unaligned_cache ||
2414 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2415 		return -ENOMEM;
2416 
2417 	if (!qh->dw_align_buf) {
2418 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2419 						    GFP_ATOMIC | GFP_DMA);
2420 		if (!qh->dw_align_buf)
2421 			return -ENOMEM;
2422 	}
2423 
2424 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2425 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2426 					      DMA_FROM_DEVICE);
2427 
2428 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2429 		dev_err(hsotg->dev, "can't map align_buf\n");
2430 		chan->align_buf = 0;
2431 		return -EINVAL;
2432 	}
2433 
2434 	chan->align_buf = qh->dw_align_buf_dma;
2435 	return 0;
2436 }
2437 
2438 #define DWC2_USB_DMA_ALIGN 4
2439 
2440 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2441 {
2442 	void *stored_xfer_buffer;
2443 	size_t length;
2444 
2445 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2446 		return;
2447 
2448 	/* Restore urb->transfer_buffer from the end of the allocated area */
2449 	memcpy(&stored_xfer_buffer,
2450 	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2451 			 dma_get_cache_alignment()),
2452 	       sizeof(urb->transfer_buffer));
2453 
2454 	if (usb_urb_dir_in(urb)) {
2455 		if (usb_pipeisoc(urb->pipe))
2456 			length = urb->transfer_buffer_length;
2457 		else
2458 			length = urb->actual_length;
2459 
2460 		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2461 	}
2462 	kfree(urb->transfer_buffer);
2463 	urb->transfer_buffer = stored_xfer_buffer;
2464 
2465 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2466 }
2467 
2468 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2469 {
2470 	void *kmalloc_ptr;
2471 	size_t kmalloc_size;
2472 
2473 	if (urb->num_sgs || urb->sg ||
2474 	    urb->transfer_buffer_length == 0 ||
2475 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2476 		return 0;
2477 
2478 	/*
2479 	 * Allocate a buffer with enough padding for original transfer_buffer
2480 	 * pointer. This allocation is guaranteed to be aligned properly for
2481 	 * DMA
2482 	 */
2483 	kmalloc_size = urb->transfer_buffer_length +
2484 		(dma_get_cache_alignment() - 1) +
2485 		sizeof(urb->transfer_buffer);
2486 
2487 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2488 	if (!kmalloc_ptr)
2489 		return -ENOMEM;
2490 
2491 	/*
2492 	 * Position value of original urb->transfer_buffer pointer to the end
2493 	 * of allocation for later referencing
2494 	 */
2495 	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2496 			 dma_get_cache_alignment()),
2497 	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2498 
2499 	if (usb_urb_dir_out(urb))
2500 		memcpy(kmalloc_ptr, urb->transfer_buffer,
2501 		       urb->transfer_buffer_length);
2502 	urb->transfer_buffer = kmalloc_ptr;
2503 
2504 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2505 
2506 	return 0;
2507 }
2508 
2509 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2510 				gfp_t mem_flags)
2511 {
2512 	int ret;
2513 
2514 	/* We assume setup_dma is always aligned; warn if not */
2515 	WARN_ON_ONCE(urb->setup_dma &&
2516 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2517 
2518 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2519 	if (ret)
2520 		return ret;
2521 
2522 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2523 	if (ret)
2524 		dwc2_free_dma_aligned_buffer(urb);
2525 
2526 	return ret;
2527 }
2528 
2529 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2530 {
2531 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2532 	dwc2_free_dma_aligned_buffer(urb);
2533 }
2534 
2535 /**
2536  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2537  * channel and initializes the host channel to perform the transactions. The
2538  * host channel is removed from the free list.
2539  *
2540  * @hsotg: The HCD state structure
2541  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2542  *         to a free host channel
2543  */
2544 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2545 {
2546 	struct dwc2_host_chan *chan;
2547 	struct dwc2_hcd_urb *urb;
2548 	struct dwc2_qtd *qtd;
2549 
2550 	if (dbg_qh(qh))
2551 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2552 
2553 	if (list_empty(&qh->qtd_list)) {
2554 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2555 		return -ENOMEM;
2556 	}
2557 
2558 	if (list_empty(&hsotg->free_hc_list)) {
2559 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2560 		return -ENOMEM;
2561 	}
2562 
2563 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2564 				hc_list_entry);
2565 
2566 	/* Remove host channel from free list */
2567 	list_del_init(&chan->hc_list_entry);
2568 
2569 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2570 	urb = qtd->urb;
2571 	qh->channel = chan;
2572 	qtd->in_process = 1;
2573 
2574 	/*
2575 	 * Use usb_pipedevice to determine device address. This address is
2576 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2577 	 */
2578 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2579 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2580 	chan->speed = qh->dev_speed;
2581 	chan->max_packet = qh->maxp;
2582 
2583 	chan->xfer_started = 0;
2584 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2585 	chan->error_state = (qtd->error_count > 0);
2586 	chan->halt_on_queue = 0;
2587 	chan->halt_pending = 0;
2588 	chan->requests = 0;
2589 
2590 	/*
2591 	 * The following values may be modified in the transfer type section
2592 	 * below. The xfer_len value may be reduced when the transfer is
2593 	 * started to accommodate the max widths of the XferSize and PktCnt
2594 	 * fields in the HCTSIZn register.
2595 	 */
2596 
2597 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2598 	if (chan->ep_is_in)
2599 		chan->do_ping = 0;
2600 	else
2601 		chan->do_ping = qh->ping_state;
2602 
2603 	chan->data_pid_start = qh->data_toggle;
2604 	chan->multi_count = 1;
2605 
2606 	if (urb->actual_length > urb->length &&
2607 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2608 		urb->actual_length = urb->length;
2609 
2610 	if (hsotg->params.host_dma)
2611 		chan->xfer_dma = urb->dma + urb->actual_length;
2612 	else
2613 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2614 
2615 	chan->xfer_len = urb->length - urb->actual_length;
2616 	chan->xfer_count = 0;
2617 
2618 	/* Set the split attributes if required */
2619 	if (qh->do_split)
2620 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2621 	else
2622 		chan->do_split = 0;
2623 
2624 	/* Set the transfer attributes */
2625 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2626 
2627 	/* For non-dword aligned buffers */
2628 	if (hsotg->params.host_dma && qh->do_split &&
2629 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2630 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2631 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2632 			dev_err(hsotg->dev,
2633 				"Failed to allocate memory to handle non-aligned buffer\n");
2634 			/* Add channel back to free list */
2635 			chan->align_buf = 0;
2636 			chan->multi_count = 0;
2637 			list_add_tail(&chan->hc_list_entry,
2638 				      &hsotg->free_hc_list);
2639 			qtd->in_process = 0;
2640 			qh->channel = NULL;
2641 			return -ENOMEM;
2642 		}
2643 	} else {
2644 		/*
2645 		 * We assume that DMA is always aligned in non-split
2646 		 * case or split out case. Warn if not.
2647 		 */
2648 		WARN_ON_ONCE(hsotg->params.host_dma &&
2649 			     (chan->xfer_dma & 0x3));
2650 		chan->align_buf = 0;
2651 	}
2652 
2653 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2654 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2655 		/*
2656 		 * This value may be modified when the transfer is started
2657 		 * to reflect the actual transfer length
2658 		 */
2659 		chan->multi_count = qh->maxp_mult;
2660 
2661 	if (hsotg->params.dma_desc_enable) {
2662 		chan->desc_list_addr = qh->desc_list_dma;
2663 		chan->desc_list_sz = qh->desc_list_sz;
2664 	}
2665 
2666 	dwc2_hc_init(hsotg, chan);
2667 	chan->qh = qh;
2668 
2669 	return 0;
2670 }
2671 
2672 /**
2673  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2674  * schedule and assigns them to available host channels. Called from the HCD
2675  * interrupt handler functions.
2676  *
2677  * @hsotg: The HCD state structure
2678  *
2679  * Return: The types of new transactions that were assigned to host channels
2680  */
2681 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2682 		struct dwc2_hsotg *hsotg)
2683 {
2684 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2685 	struct list_head *qh_ptr;
2686 	struct dwc2_qh *qh;
2687 	int num_channels;
2688 
2689 #ifdef DWC2_DEBUG_SOF
2690 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2691 #endif
2692 
2693 	/* Process entries in the periodic ready list */
2694 	qh_ptr = hsotg->periodic_sched_ready.next;
2695 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2696 		if (list_empty(&hsotg->free_hc_list))
2697 			break;
2698 		if (hsotg->params.uframe_sched) {
2699 			if (hsotg->available_host_channels <= 1)
2700 				break;
2701 			hsotg->available_host_channels--;
2702 		}
2703 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2704 		if (dwc2_assign_and_init_hc(hsotg, qh))
2705 			break;
2706 
2707 		/*
2708 		 * Move the QH from the periodic ready schedule to the
2709 		 * periodic assigned schedule
2710 		 */
2711 		qh_ptr = qh_ptr->next;
2712 		list_move_tail(&qh->qh_list_entry,
2713 			       &hsotg->periodic_sched_assigned);
2714 		ret_val = DWC2_TRANSACTION_PERIODIC;
2715 	}
2716 
2717 	/*
2718 	 * Process entries in the inactive portion of the non-periodic
2719 	 * schedule. Some free host channels may not be used if they are
2720 	 * reserved for periodic transfers.
2721 	 */
2722 	num_channels = hsotg->params.host_channels;
2723 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2724 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2725 		if (!hsotg->params.uframe_sched &&
2726 		    hsotg->non_periodic_channels >= num_channels -
2727 						hsotg->periodic_channels)
2728 			break;
2729 		if (list_empty(&hsotg->free_hc_list))
2730 			break;
2731 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2732 		if (hsotg->params.uframe_sched) {
2733 			if (hsotg->available_host_channels < 1)
2734 				break;
2735 			hsotg->available_host_channels--;
2736 		}
2737 
2738 		if (dwc2_assign_and_init_hc(hsotg, qh))
2739 			break;
2740 
2741 		/*
2742 		 * Move the QH from the non-periodic inactive schedule to the
2743 		 * non-periodic active schedule
2744 		 */
2745 		qh_ptr = qh_ptr->next;
2746 		list_move_tail(&qh->qh_list_entry,
2747 			       &hsotg->non_periodic_sched_active);
2748 
2749 		if (ret_val == DWC2_TRANSACTION_NONE)
2750 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2751 		else
2752 			ret_val = DWC2_TRANSACTION_ALL;
2753 
2754 		if (!hsotg->params.uframe_sched)
2755 			hsotg->non_periodic_channels++;
2756 	}
2757 
2758 	return ret_val;
2759 }
2760 
2761 /**
2762  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2763  * a host channel associated with either a periodic or non-periodic transfer
2764  *
2765  * @hsotg: The HCD state structure
2766  * @chan:  Host channel descriptor associated with either a periodic or
2767  *         non-periodic transfer
2768  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2769  *                     for periodic transfers or the non-periodic Tx FIFO
2770  *                     for non-periodic transfers
2771  *
2772  * Return: 1 if a request is queued and more requests may be needed to
2773  * complete the transfer, 0 if no more requests are required for this
2774  * transfer, -1 if there is insufficient space in the Tx FIFO
2775  *
2776  * This function assumes that there is space available in the appropriate
2777  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2778  * it checks whether space is available in the appropriate Tx FIFO.
2779  *
2780  * Must be called with interrupt disabled and spinlock held
2781  */
2782 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2783 				  struct dwc2_host_chan *chan,
2784 				  u16 fifo_dwords_avail)
2785 {
2786 	int retval = 0;
2787 
2788 	if (chan->do_split)
2789 		/* Put ourselves on the list to keep order straight */
2790 		list_move_tail(&chan->split_order_list_entry,
2791 			       &hsotg->split_order);
2792 
2793 	if (hsotg->params.host_dma && chan->qh) {
2794 		if (hsotg->params.dma_desc_enable) {
2795 			if (!chan->xfer_started ||
2796 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2797 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2798 				chan->qh->ping_state = 0;
2799 			}
2800 		} else if (!chan->xfer_started) {
2801 			dwc2_hc_start_transfer(hsotg, chan);
2802 			chan->qh->ping_state = 0;
2803 		}
2804 	} else if (chan->halt_pending) {
2805 		/* Don't queue a request if the channel has been halted */
2806 	} else if (chan->halt_on_queue) {
2807 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2808 	} else if (chan->do_ping) {
2809 		if (!chan->xfer_started)
2810 			dwc2_hc_start_transfer(hsotg, chan);
2811 	} else if (!chan->ep_is_in ||
2812 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2813 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2814 			if (!chan->xfer_started) {
2815 				dwc2_hc_start_transfer(hsotg, chan);
2816 				retval = 1;
2817 			} else {
2818 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2819 			}
2820 		} else {
2821 			retval = -1;
2822 		}
2823 	} else {
2824 		if (!chan->xfer_started) {
2825 			dwc2_hc_start_transfer(hsotg, chan);
2826 			retval = 1;
2827 		} else {
2828 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2829 		}
2830 	}
2831 
2832 	return retval;
2833 }
2834 
2835 /*
2836  * Processes periodic channels for the next frame and queues transactions for
2837  * these channels to the DWC_otg controller. After queueing transactions, the
2838  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2839  * to queue as Periodic Tx FIFO or request queue space becomes available.
2840  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2841  *
2842  * Must be called with interrupt disabled and spinlock held
2843  */
2844 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2845 {
2846 	struct list_head *qh_ptr;
2847 	struct dwc2_qh *qh;
2848 	u32 tx_status;
2849 	u32 fspcavail;
2850 	u32 gintmsk;
2851 	int status;
2852 	bool no_queue_space = false;
2853 	bool no_fifo_space = false;
2854 	u32 qspcavail;
2855 
2856 	/* If empty list then just adjust interrupt enables */
2857 	if (list_empty(&hsotg->periodic_sched_assigned))
2858 		goto exit;
2859 
2860 	if (dbg_perio())
2861 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2862 
2863 	tx_status = dwc2_readl(hsotg, HPTXSTS);
2864 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2865 		    TXSTS_QSPCAVAIL_SHIFT;
2866 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2867 		    TXSTS_FSPCAVAIL_SHIFT;
2868 
2869 	if (dbg_perio()) {
2870 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2871 			 qspcavail);
2872 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2873 			 fspcavail);
2874 	}
2875 
2876 	qh_ptr = hsotg->periodic_sched_assigned.next;
2877 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2878 		tx_status = dwc2_readl(hsotg, HPTXSTS);
2879 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2880 			    TXSTS_QSPCAVAIL_SHIFT;
2881 		if (qspcavail == 0) {
2882 			no_queue_space = true;
2883 			break;
2884 		}
2885 
2886 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2887 		if (!qh->channel) {
2888 			qh_ptr = qh_ptr->next;
2889 			continue;
2890 		}
2891 
2892 		/* Make sure EP's TT buffer is clean before queueing qtds */
2893 		if (qh->tt_buffer_dirty) {
2894 			qh_ptr = qh_ptr->next;
2895 			continue;
2896 		}
2897 
2898 		/*
2899 		 * Set a flag if we're queuing high-bandwidth in slave mode.
2900 		 * The flag prevents any halts to get into the request queue in
2901 		 * the middle of multiple high-bandwidth packets getting queued.
2902 		 */
2903 		if (!hsotg->params.host_dma &&
2904 		    qh->channel->multi_count > 1)
2905 			hsotg->queuing_high_bandwidth = 1;
2906 
2907 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2908 			    TXSTS_FSPCAVAIL_SHIFT;
2909 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2910 		if (status < 0) {
2911 			no_fifo_space = true;
2912 			break;
2913 		}
2914 
2915 		/*
2916 		 * In Slave mode, stay on the current transfer until there is
2917 		 * nothing more to do or the high-bandwidth request count is
2918 		 * reached. In DMA mode, only need to queue one request. The
2919 		 * controller automatically handles multiple packets for
2920 		 * high-bandwidth transfers.
2921 		 */
2922 		if (hsotg->params.host_dma || status == 0 ||
2923 		    qh->channel->requests == qh->channel->multi_count) {
2924 			qh_ptr = qh_ptr->next;
2925 			/*
2926 			 * Move the QH from the periodic assigned schedule to
2927 			 * the periodic queued schedule
2928 			 */
2929 			list_move_tail(&qh->qh_list_entry,
2930 				       &hsotg->periodic_sched_queued);
2931 
2932 			/* done queuing high bandwidth */
2933 			hsotg->queuing_high_bandwidth = 0;
2934 		}
2935 	}
2936 
2937 exit:
2938 	if (no_queue_space || no_fifo_space ||
2939 	    (!hsotg->params.host_dma &&
2940 	     !list_empty(&hsotg->periodic_sched_assigned))) {
2941 		/*
2942 		 * May need to queue more transactions as the request
2943 		 * queue or Tx FIFO empties. Enable the periodic Tx
2944 		 * FIFO empty interrupt. (Always use the half-empty
2945 		 * level to ensure that new requests are loaded as
2946 		 * soon as possible.)
2947 		 */
2948 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2949 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2950 			gintmsk |= GINTSTS_PTXFEMP;
2951 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2952 		}
2953 	} else {
2954 		/*
2955 		 * Disable the Tx FIFO empty interrupt since there are
2956 		 * no more transactions that need to be queued right
2957 		 * now. This function is called from interrupt
2958 		 * handlers to queue more transactions as transfer
2959 		 * states change.
2960 		 */
2961 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2962 		if (gintmsk & GINTSTS_PTXFEMP) {
2963 			gintmsk &= ~GINTSTS_PTXFEMP;
2964 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2965 		}
2966 	}
2967 }
2968 
2969 /*
2970  * Processes active non-periodic channels and queues transactions for these
2971  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
2972  * FIFO Empty interrupt is enabled if there are more transactions to queue as
2973  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
2974  * FIFO Empty interrupt is disabled.
2975  *
2976  * Must be called with interrupt disabled and spinlock held
2977  */
2978 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
2979 {
2980 	struct list_head *orig_qh_ptr;
2981 	struct dwc2_qh *qh;
2982 	u32 tx_status;
2983 	u32 qspcavail;
2984 	u32 fspcavail;
2985 	u32 gintmsk;
2986 	int status;
2987 	int no_queue_space = 0;
2988 	int no_fifo_space = 0;
2989 	int more_to_do = 0;
2990 
2991 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
2992 
2993 	tx_status = dwc2_readl(hsotg, GNPTXSTS);
2994 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2995 		    TXSTS_QSPCAVAIL_SHIFT;
2996 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2997 		    TXSTS_FSPCAVAIL_SHIFT;
2998 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
2999 		 qspcavail);
3000 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3001 		 fspcavail);
3002 
3003 	/*
3004 	 * Keep track of the starting point. Skip over the start-of-list
3005 	 * entry.
3006 	 */
3007 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3008 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3009 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3010 
3011 	/*
3012 	 * Process once through the active list or until no more space is
3013 	 * available in the request queue or the Tx FIFO
3014 	 */
3015 	do {
3016 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3017 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3018 			    TXSTS_QSPCAVAIL_SHIFT;
3019 		if (!hsotg->params.host_dma && qspcavail == 0) {
3020 			no_queue_space = 1;
3021 			break;
3022 		}
3023 
3024 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3025 				qh_list_entry);
3026 		if (!qh->channel)
3027 			goto next;
3028 
3029 		/* Make sure EP's TT buffer is clean before queueing qtds */
3030 		if (qh->tt_buffer_dirty)
3031 			goto next;
3032 
3033 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3034 			    TXSTS_FSPCAVAIL_SHIFT;
3035 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3036 
3037 		if (status > 0) {
3038 			more_to_do = 1;
3039 		} else if (status < 0) {
3040 			no_fifo_space = 1;
3041 			break;
3042 		}
3043 next:
3044 		/* Advance to next QH, skipping start-of-list entry */
3045 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3046 		if (hsotg->non_periodic_qh_ptr ==
3047 				&hsotg->non_periodic_sched_active)
3048 			hsotg->non_periodic_qh_ptr =
3049 					hsotg->non_periodic_qh_ptr->next;
3050 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3051 
3052 	if (!hsotg->params.host_dma) {
3053 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3054 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3055 			    TXSTS_QSPCAVAIL_SHIFT;
3056 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3057 			    TXSTS_FSPCAVAIL_SHIFT;
3058 		dev_vdbg(hsotg->dev,
3059 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3060 			 qspcavail);
3061 		dev_vdbg(hsotg->dev,
3062 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3063 			 fspcavail);
3064 
3065 		if (more_to_do || no_queue_space || no_fifo_space) {
3066 			/*
3067 			 * May need to queue more transactions as the request
3068 			 * queue or Tx FIFO empties. Enable the non-periodic
3069 			 * Tx FIFO empty interrupt. (Always use the half-empty
3070 			 * level to ensure that new requests are loaded as
3071 			 * soon as possible.)
3072 			 */
3073 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3074 			gintmsk |= GINTSTS_NPTXFEMP;
3075 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3076 		} else {
3077 			/*
3078 			 * Disable the Tx FIFO empty interrupt since there are
3079 			 * no more transactions that need to be queued right
3080 			 * now. This function is called from interrupt
3081 			 * handlers to queue more transactions as transfer
3082 			 * states change.
3083 			 */
3084 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3085 			gintmsk &= ~GINTSTS_NPTXFEMP;
3086 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3087 		}
3088 	}
3089 }
3090 
3091 /**
3092  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3093  * and queues transactions for these channels to the DWC_otg controller. Called
3094  * from the HCD interrupt handler functions.
3095  *
3096  * @hsotg:   The HCD state structure
3097  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3098  *           or both)
3099  *
3100  * Must be called with interrupt disabled and spinlock held
3101  */
3102 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3103 				 enum dwc2_transaction_type tr_type)
3104 {
3105 #ifdef DWC2_DEBUG_SOF
3106 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3107 #endif
3108 	/* Process host channels associated with periodic transfers */
3109 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3110 	    tr_type == DWC2_TRANSACTION_ALL)
3111 		dwc2_process_periodic_channels(hsotg);
3112 
3113 	/* Process host channels associated with non-periodic transfers */
3114 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3115 	    tr_type == DWC2_TRANSACTION_ALL) {
3116 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3117 			dwc2_process_non_periodic_channels(hsotg);
3118 		} else {
3119 			/*
3120 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3121 			 * there are no non-periodic transfers to process
3122 			 */
3123 			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3124 
3125 			gintmsk &= ~GINTSTS_NPTXFEMP;
3126 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3127 		}
3128 	}
3129 }
3130 
3131 static void dwc2_conn_id_status_change(struct work_struct *work)
3132 {
3133 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3134 						wf_otg);
3135 	u32 count = 0;
3136 	u32 gotgctl;
3137 	unsigned long flags;
3138 
3139 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3140 
3141 	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3142 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3143 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3144 		!!(gotgctl & GOTGCTL_CONID_B));
3145 
3146 	/* B-Device connector (Device Mode) */
3147 	if (gotgctl & GOTGCTL_CONID_B) {
3148 		dwc2_vbus_supply_exit(hsotg);
3149 		/* Wait for switch to device mode */
3150 		dev_dbg(hsotg->dev, "connId B\n");
3151 		if (hsotg->bus_suspended) {
3152 			dev_info(hsotg->dev,
3153 				 "Do port resume before switching to device mode\n");
3154 			dwc2_port_resume(hsotg);
3155 		}
3156 		while (!dwc2_is_device_mode(hsotg)) {
3157 			dev_info(hsotg->dev,
3158 				 "Waiting for Peripheral Mode, Mode=%s\n",
3159 				 dwc2_is_host_mode(hsotg) ? "Host" :
3160 				 "Peripheral");
3161 			msleep(20);
3162 			/*
3163 			 * Sometimes the initial GOTGCTRL read is wrong, so
3164 			 * check it again and jump to host mode if that was
3165 			 * the case.
3166 			 */
3167 			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3168 			if (!(gotgctl & GOTGCTL_CONID_B))
3169 				goto host;
3170 			if (++count > 250)
3171 				break;
3172 		}
3173 		if (count > 250)
3174 			dev_err(hsotg->dev,
3175 				"Connection id status change timed out\n");
3176 
3177 		/*
3178 		 * Exit Partial Power Down without restoring registers.
3179 		 * No need to check the return value as registers
3180 		 * are not being restored.
3181 		 */
3182 		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3183 			dwc2_exit_partial_power_down(hsotg, 0, false);
3184 
3185 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3186 		dwc2_core_init(hsotg, false);
3187 		dwc2_enable_global_interrupts(hsotg);
3188 		spin_lock_irqsave(&hsotg->lock, flags);
3189 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3190 		spin_unlock_irqrestore(&hsotg->lock, flags);
3191 		/* Enable ACG feature in device mode,if supported */
3192 		dwc2_enable_acg(hsotg);
3193 		dwc2_hsotg_core_connect(hsotg);
3194 	} else {
3195 host:
3196 		/* A-Device connector (Host Mode) */
3197 		dev_dbg(hsotg->dev, "connId A\n");
3198 		while (!dwc2_is_host_mode(hsotg)) {
3199 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3200 				 dwc2_is_host_mode(hsotg) ?
3201 				 "Host" : "Peripheral");
3202 			msleep(20);
3203 			if (++count > 250)
3204 				break;
3205 		}
3206 		if (count > 250)
3207 			dev_err(hsotg->dev,
3208 				"Connection id status change timed out\n");
3209 
3210 		spin_lock_irqsave(&hsotg->lock, flags);
3211 		dwc2_hsotg_disconnect(hsotg);
3212 		spin_unlock_irqrestore(&hsotg->lock, flags);
3213 
3214 		hsotg->op_state = OTG_STATE_A_HOST;
3215 		/* Initialize the Core for Host mode */
3216 		dwc2_core_init(hsotg, false);
3217 		dwc2_enable_global_interrupts(hsotg);
3218 		dwc2_hcd_start(hsotg);
3219 	}
3220 }
3221 
3222 static void dwc2_wakeup_detected(struct timer_list *t)
3223 {
3224 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3225 	u32 hprt0;
3226 
3227 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3228 
3229 	/*
3230 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3231 	 * so that OPT tests pass with all PHYs.)
3232 	 */
3233 	hprt0 = dwc2_read_hprt0(hsotg);
3234 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3235 	hprt0 &= ~HPRT0_RES;
3236 	dwc2_writel(hsotg, hprt0, HPRT0);
3237 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3238 		dwc2_readl(hsotg, HPRT0));
3239 
3240 	dwc2_hcd_rem_wakeup(hsotg);
3241 	hsotg->bus_suspended = false;
3242 
3243 	/* Change to L0 state */
3244 	hsotg->lx_state = DWC2_L0;
3245 }
3246 
3247 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3248 {
3249 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3250 
3251 	return hcd->self.b_hnp_enable;
3252 }
3253 
3254 /**
3255  * dwc2_port_suspend() - Put controller in suspend mode for host.
3256  *
3257  * @hsotg: Programming view of the DWC_otg controller
3258  * @windex: The control request wIndex field
3259  *
3260  * Return: non-zero if failed to enter suspend mode for host.
3261  *
3262  * This function is for entering Host mode suspend.
3263  * Must NOT be called with interrupt disabled or spinlock held.
3264  */
3265 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3266 {
3267 	unsigned long flags;
3268 	u32 pcgctl;
3269 	u32 gotgctl;
3270 	int ret = 0;
3271 
3272 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3273 
3274 	spin_lock_irqsave(&hsotg->lock, flags);
3275 
3276 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3277 		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3278 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3279 		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3280 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3281 	}
3282 
3283 	switch (hsotg->params.power_down) {
3284 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3285 		ret = dwc2_enter_partial_power_down(hsotg);
3286 		if (ret)
3287 			dev_err(hsotg->dev,
3288 				"enter partial_power_down failed.\n");
3289 		break;
3290 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3291 		/*
3292 		 * Perform spin unlock and lock because in
3293 		 * "dwc2_host_enter_hibernation()" function there is a spinlock
3294 		 * logic which prevents servicing of any IRQ during entering
3295 		 * hibernation.
3296 		 */
3297 		spin_unlock_irqrestore(&hsotg->lock, flags);
3298 		ret = dwc2_enter_hibernation(hsotg, 1);
3299 		if (ret)
3300 			dev_err(hsotg->dev, "enter hibernation failed.\n");
3301 		spin_lock_irqsave(&hsotg->lock, flags);
3302 		break;
3303 	case DWC2_POWER_DOWN_PARAM_NONE:
3304 		/*
3305 		 * If not hibernation nor partial power down are supported,
3306 		 * clock gating is used to save power.
3307 		 */
3308 		if (!hsotg->params.no_clock_gating)
3309 			dwc2_host_enter_clock_gating(hsotg);
3310 		break;
3311 	}
3312 
3313 	/* For HNP the bus must be suspended for at least 200ms */
3314 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3315 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3316 		pcgctl &= ~PCGCTL_STOPPCLK;
3317 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3318 
3319 		spin_unlock_irqrestore(&hsotg->lock, flags);
3320 
3321 		msleep(200);
3322 	} else {
3323 		spin_unlock_irqrestore(&hsotg->lock, flags);
3324 	}
3325 
3326 	return ret;
3327 }
3328 
3329 /**
3330  * dwc2_port_resume() - Exit controller from suspend mode for host.
3331  *
3332  * @hsotg: Programming view of the DWC_otg controller
3333  *
3334  * Return: non-zero if failed to exit suspend mode for host.
3335  *
3336  * This function is for exiting Host mode suspend.
3337  * Must NOT be called with interrupt disabled or spinlock held.
3338  */
3339 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3340 {
3341 	unsigned long flags;
3342 	int ret = 0;
3343 
3344 	spin_lock_irqsave(&hsotg->lock, flags);
3345 
3346 	switch (hsotg->params.power_down) {
3347 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3348 		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3349 		if (ret)
3350 			dev_err(hsotg->dev,
3351 				"exit partial_power_down failed.\n");
3352 		break;
3353 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3354 		/* Exit host hibernation. */
3355 		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3356 		if (ret)
3357 			dev_err(hsotg->dev, "exit hibernation failed.\n");
3358 		break;
3359 	case DWC2_POWER_DOWN_PARAM_NONE:
3360 		/*
3361 		 * If not hibernation nor partial power down are supported,
3362 		 * port resume is done using the clock gating programming flow.
3363 		 */
3364 		spin_unlock_irqrestore(&hsotg->lock, flags);
3365 		dwc2_host_exit_clock_gating(hsotg, 0);
3366 		spin_lock_irqsave(&hsotg->lock, flags);
3367 		break;
3368 	}
3369 
3370 	spin_unlock_irqrestore(&hsotg->lock, flags);
3371 
3372 	return ret;
3373 }
3374 
3375 /* Handles hub class-specific requests */
3376 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3377 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3378 {
3379 	struct usb_hub_descriptor *hub_desc;
3380 	int retval = 0;
3381 	u32 hprt0;
3382 	u32 port_status;
3383 	u32 speed;
3384 	u32 pcgctl;
3385 	u32 pwr;
3386 
3387 	switch (typereq) {
3388 	case ClearHubFeature:
3389 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3390 
3391 		switch (wvalue) {
3392 		case C_HUB_LOCAL_POWER:
3393 		case C_HUB_OVER_CURRENT:
3394 			/* Nothing required here */
3395 			break;
3396 
3397 		default:
3398 			retval = -EINVAL;
3399 			dev_err(hsotg->dev,
3400 				"ClearHubFeature request %1xh unknown\n",
3401 				wvalue);
3402 		}
3403 		break;
3404 
3405 	case ClearPortFeature:
3406 		if (wvalue != USB_PORT_FEAT_L1)
3407 			if (!windex || windex > 1)
3408 				goto error;
3409 		switch (wvalue) {
3410 		case USB_PORT_FEAT_ENABLE:
3411 			dev_dbg(hsotg->dev,
3412 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3413 			hprt0 = dwc2_read_hprt0(hsotg);
3414 			hprt0 |= HPRT0_ENA;
3415 			dwc2_writel(hsotg, hprt0, HPRT0);
3416 			break;
3417 
3418 		case USB_PORT_FEAT_SUSPEND:
3419 			dev_dbg(hsotg->dev,
3420 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3421 
3422 			if (hsotg->bus_suspended)
3423 				retval = dwc2_port_resume(hsotg);
3424 			break;
3425 
3426 		case USB_PORT_FEAT_POWER:
3427 			dev_dbg(hsotg->dev,
3428 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3429 			hprt0 = dwc2_read_hprt0(hsotg);
3430 			pwr = hprt0 & HPRT0_PWR;
3431 			hprt0 &= ~HPRT0_PWR;
3432 			dwc2_writel(hsotg, hprt0, HPRT0);
3433 			if (pwr)
3434 				dwc2_vbus_supply_exit(hsotg);
3435 			break;
3436 
3437 		case USB_PORT_FEAT_INDICATOR:
3438 			dev_dbg(hsotg->dev,
3439 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3440 			/* Port indicator not supported */
3441 			break;
3442 
3443 		case USB_PORT_FEAT_C_CONNECTION:
3444 			/*
3445 			 * Clears driver's internal Connect Status Change flag
3446 			 */
3447 			dev_dbg(hsotg->dev,
3448 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3449 			hsotg->flags.b.port_connect_status_change = 0;
3450 			break;
3451 
3452 		case USB_PORT_FEAT_C_RESET:
3453 			/* Clears driver's internal Port Reset Change flag */
3454 			dev_dbg(hsotg->dev,
3455 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3456 			hsotg->flags.b.port_reset_change = 0;
3457 			break;
3458 
3459 		case USB_PORT_FEAT_C_ENABLE:
3460 			/*
3461 			 * Clears the driver's internal Port Enable/Disable
3462 			 * Change flag
3463 			 */
3464 			dev_dbg(hsotg->dev,
3465 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3466 			hsotg->flags.b.port_enable_change = 0;
3467 			break;
3468 
3469 		case USB_PORT_FEAT_C_SUSPEND:
3470 			/*
3471 			 * Clears the driver's internal Port Suspend Change
3472 			 * flag, which is set when resume signaling on the host
3473 			 * port is complete
3474 			 */
3475 			dev_dbg(hsotg->dev,
3476 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3477 			hsotg->flags.b.port_suspend_change = 0;
3478 			break;
3479 
3480 		case USB_PORT_FEAT_C_PORT_L1:
3481 			dev_dbg(hsotg->dev,
3482 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3483 			hsotg->flags.b.port_l1_change = 0;
3484 			break;
3485 
3486 		case USB_PORT_FEAT_C_OVER_CURRENT:
3487 			dev_dbg(hsotg->dev,
3488 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3489 			hsotg->flags.b.port_over_current_change = 0;
3490 			break;
3491 
3492 		default:
3493 			retval = -EINVAL;
3494 			dev_err(hsotg->dev,
3495 				"ClearPortFeature request %1xh unknown or unsupported\n",
3496 				wvalue);
3497 		}
3498 		break;
3499 
3500 	case GetHubDescriptor:
3501 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3502 		hub_desc = (struct usb_hub_descriptor *)buf;
3503 		hub_desc->bDescLength = 9;
3504 		hub_desc->bDescriptorType = USB_DT_HUB;
3505 		hub_desc->bNbrPorts = 1;
3506 		hub_desc->wHubCharacteristics =
3507 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3508 				    HUB_CHAR_INDV_PORT_OCPM);
3509 		hub_desc->bPwrOn2PwrGood = 1;
3510 		hub_desc->bHubContrCurrent = 0;
3511 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3512 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3513 		break;
3514 
3515 	case GetHubStatus:
3516 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3517 		memset(buf, 0, 4);
3518 		break;
3519 
3520 	case GetPortStatus:
3521 		dev_vdbg(hsotg->dev,
3522 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3523 			 hsotg->flags.d32);
3524 		if (!windex || windex > 1)
3525 			goto error;
3526 
3527 		port_status = 0;
3528 		if (hsotg->flags.b.port_connect_status_change)
3529 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3530 		if (hsotg->flags.b.port_enable_change)
3531 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3532 		if (hsotg->flags.b.port_suspend_change)
3533 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3534 		if (hsotg->flags.b.port_l1_change)
3535 			port_status |= USB_PORT_STAT_C_L1 << 16;
3536 		if (hsotg->flags.b.port_reset_change)
3537 			port_status |= USB_PORT_STAT_C_RESET << 16;
3538 		if (hsotg->flags.b.port_over_current_change) {
3539 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3540 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3541 		}
3542 
3543 		if (!hsotg->flags.b.port_connect_status) {
3544 			/*
3545 			 * The port is disconnected, which means the core is
3546 			 * either in device mode or it soon will be. Just
3547 			 * return 0's for the remainder of the port status
3548 			 * since the port register can't be read if the core
3549 			 * is in device mode.
3550 			 */
3551 			*(__le32 *)buf = cpu_to_le32(port_status);
3552 			break;
3553 		}
3554 
3555 		hprt0 = dwc2_readl(hsotg, HPRT0);
3556 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3557 
3558 		if (hprt0 & HPRT0_CONNSTS)
3559 			port_status |= USB_PORT_STAT_CONNECTION;
3560 		if (hprt0 & HPRT0_ENA)
3561 			port_status |= USB_PORT_STAT_ENABLE;
3562 		if (hprt0 & HPRT0_SUSP)
3563 			port_status |= USB_PORT_STAT_SUSPEND;
3564 		if (hprt0 & HPRT0_OVRCURRACT)
3565 			port_status |= USB_PORT_STAT_OVERCURRENT;
3566 		if (hprt0 & HPRT0_RST)
3567 			port_status |= USB_PORT_STAT_RESET;
3568 		if (hprt0 & HPRT0_PWR)
3569 			port_status |= USB_PORT_STAT_POWER;
3570 
3571 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3572 		if (speed == HPRT0_SPD_HIGH_SPEED)
3573 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3574 		else if (speed == HPRT0_SPD_LOW_SPEED)
3575 			port_status |= USB_PORT_STAT_LOW_SPEED;
3576 
3577 		if (hprt0 & HPRT0_TSTCTL_MASK)
3578 			port_status |= USB_PORT_STAT_TEST;
3579 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3580 
3581 		if (hsotg->params.dma_desc_fs_enable) {
3582 			/*
3583 			 * Enable descriptor DMA only if a full speed
3584 			 * device is connected.
3585 			 */
3586 			if (hsotg->new_connection &&
3587 			    ((port_status &
3588 			      (USB_PORT_STAT_CONNECTION |
3589 			       USB_PORT_STAT_HIGH_SPEED |
3590 			       USB_PORT_STAT_LOW_SPEED)) ==
3591 			       USB_PORT_STAT_CONNECTION)) {
3592 				u32 hcfg;
3593 
3594 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3595 				hsotg->params.dma_desc_enable = true;
3596 				hcfg = dwc2_readl(hsotg, HCFG);
3597 				hcfg |= HCFG_DESCDMA;
3598 				dwc2_writel(hsotg, hcfg, HCFG);
3599 				hsotg->new_connection = false;
3600 			}
3601 		}
3602 
3603 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3604 		*(__le32 *)buf = cpu_to_le32(port_status);
3605 		break;
3606 
3607 	case SetHubFeature:
3608 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3609 		/* No HUB features supported */
3610 		break;
3611 
3612 	case SetPortFeature:
3613 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3614 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3615 			goto error;
3616 
3617 		if (!hsotg->flags.b.port_connect_status) {
3618 			/*
3619 			 * The port is disconnected, which means the core is
3620 			 * either in device mode or it soon will be. Just
3621 			 * return without doing anything since the port
3622 			 * register can't be written if the core is in device
3623 			 * mode.
3624 			 */
3625 			break;
3626 		}
3627 
3628 		switch (wvalue) {
3629 		case USB_PORT_FEAT_SUSPEND:
3630 			dev_dbg(hsotg->dev,
3631 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3632 			if (windex != hsotg->otg_port)
3633 				goto error;
3634 			if (!hsotg->bus_suspended)
3635 				retval = dwc2_port_suspend(hsotg, windex);
3636 			break;
3637 
3638 		case USB_PORT_FEAT_POWER:
3639 			dev_dbg(hsotg->dev,
3640 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3641 			hprt0 = dwc2_read_hprt0(hsotg);
3642 			pwr = hprt0 & HPRT0_PWR;
3643 			hprt0 |= HPRT0_PWR;
3644 			dwc2_writel(hsotg, hprt0, HPRT0);
3645 			if (!pwr)
3646 				dwc2_vbus_supply_init(hsotg);
3647 			break;
3648 
3649 		case USB_PORT_FEAT_RESET:
3650 			dev_dbg(hsotg->dev,
3651 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3652 
3653 			hprt0 = dwc2_read_hprt0(hsotg);
3654 
3655 			if (hsotg->hibernated) {
3656 				retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3657 				if (retval)
3658 					dev_err(hsotg->dev,
3659 						"exit hibernation failed\n");
3660 			}
3661 
3662 			if (hsotg->in_ppd) {
3663 				retval = dwc2_exit_partial_power_down(hsotg, 1,
3664 								      true);
3665 				if (retval)
3666 					dev_err(hsotg->dev,
3667 						"exit partial_power_down failed\n");
3668 			}
3669 
3670 			if (hsotg->params.power_down ==
3671 			    DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3672 				dwc2_host_exit_clock_gating(hsotg, 0);
3673 
3674 			pcgctl = dwc2_readl(hsotg, PCGCTL);
3675 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3676 			dwc2_writel(hsotg, pcgctl, PCGCTL);
3677 			/* ??? Original driver does this */
3678 			dwc2_writel(hsotg, 0, PCGCTL);
3679 
3680 			hprt0 = dwc2_read_hprt0(hsotg);
3681 			pwr = hprt0 & HPRT0_PWR;
3682 			/* Clear suspend bit if resetting from suspend state */
3683 			hprt0 &= ~HPRT0_SUSP;
3684 
3685 			/*
3686 			 * When B-Host the Port reset bit is set in the Start
3687 			 * HCD Callback function, so that the reset is started
3688 			 * within 1ms of the HNP success interrupt
3689 			 */
3690 			if (!dwc2_hcd_is_b_host(hsotg)) {
3691 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3692 				dev_dbg(hsotg->dev,
3693 					"In host mode, hprt0=%08x\n", hprt0);
3694 				dwc2_writel(hsotg, hprt0, HPRT0);
3695 				if (!pwr)
3696 					dwc2_vbus_supply_init(hsotg);
3697 			}
3698 
3699 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3700 			msleep(50);
3701 			hprt0 &= ~HPRT0_RST;
3702 			dwc2_writel(hsotg, hprt0, HPRT0);
3703 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3704 			break;
3705 
3706 		case USB_PORT_FEAT_INDICATOR:
3707 			dev_dbg(hsotg->dev,
3708 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3709 			/* Not supported */
3710 			break;
3711 
3712 		case USB_PORT_FEAT_TEST:
3713 			hprt0 = dwc2_read_hprt0(hsotg);
3714 			dev_dbg(hsotg->dev,
3715 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3716 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3717 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3718 			dwc2_writel(hsotg, hprt0, HPRT0);
3719 			break;
3720 
3721 		default:
3722 			retval = -EINVAL;
3723 			dev_err(hsotg->dev,
3724 				"SetPortFeature %1xh unknown or unsupported\n",
3725 				wvalue);
3726 			break;
3727 		}
3728 		break;
3729 
3730 	default:
3731 error:
3732 		retval = -EINVAL;
3733 		dev_dbg(hsotg->dev,
3734 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3735 			typereq, windex, wvalue);
3736 		break;
3737 	}
3738 
3739 	return retval;
3740 }
3741 
3742 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3743 {
3744 	int retval;
3745 
3746 	if (port != 1)
3747 		return -EINVAL;
3748 
3749 	retval = (hsotg->flags.b.port_connect_status_change ||
3750 		  hsotg->flags.b.port_reset_change ||
3751 		  hsotg->flags.b.port_enable_change ||
3752 		  hsotg->flags.b.port_suspend_change ||
3753 		  hsotg->flags.b.port_over_current_change);
3754 
3755 	if (retval) {
3756 		dev_dbg(hsotg->dev,
3757 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3758 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3759 			hsotg->flags.b.port_connect_status_change);
3760 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3761 			hsotg->flags.b.port_reset_change);
3762 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3763 			hsotg->flags.b.port_enable_change);
3764 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3765 			hsotg->flags.b.port_suspend_change);
3766 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3767 			hsotg->flags.b.port_over_current_change);
3768 	}
3769 
3770 	return retval;
3771 }
3772 
3773 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3774 {
3775 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3776 
3777 #ifdef DWC2_DEBUG_SOF
3778 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3779 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3780 #endif
3781 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3782 }
3783 
3784 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3785 {
3786 	u32 hprt = dwc2_readl(hsotg, HPRT0);
3787 	u32 hfir = dwc2_readl(hsotg, HFIR);
3788 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3789 	unsigned int us_per_frame;
3790 	unsigned int frame_number;
3791 	unsigned int remaining;
3792 	unsigned int interval;
3793 	unsigned int phy_clks;
3794 
3795 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3796 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3797 
3798 	/* Extract fields */
3799 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3800 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3801 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3802 
3803 	/*
3804 	 * Number of phy clocks since the last tick of the frame number after
3805 	 * "us" has passed.
3806 	 */
3807 	phy_clks = (interval - remaining) +
3808 		   DIV_ROUND_UP(interval * us, us_per_frame);
3809 
3810 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3811 }
3812 
3813 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3814 {
3815 	return hsotg->op_state == OTG_STATE_B_HOST;
3816 }
3817 
3818 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3819 					       int iso_desc_count,
3820 					       gfp_t mem_flags)
3821 {
3822 	struct dwc2_hcd_urb *urb;
3823 
3824 	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3825 	if (urb)
3826 		urb->packet_count = iso_desc_count;
3827 	return urb;
3828 }
3829 
3830 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3831 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3832 				      u8 ep_num, u8 ep_type, u8 ep_dir,
3833 				      u16 maxp, u16 maxp_mult)
3834 {
3835 	if (dbg_perio() ||
3836 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3837 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3838 		dev_vdbg(hsotg->dev,
3839 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3840 			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3841 	urb->pipe_info.dev_addr = dev_addr;
3842 	urb->pipe_info.ep_num = ep_num;
3843 	urb->pipe_info.pipe_type = ep_type;
3844 	urb->pipe_info.pipe_dir = ep_dir;
3845 	urb->pipe_info.maxp = maxp;
3846 	urb->pipe_info.maxp_mult = maxp_mult;
3847 }
3848 
3849 /*
3850  * NOTE: This function will be removed once the peripheral controller code
3851  * is integrated and the driver is stable
3852  */
3853 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3854 {
3855 #ifdef DEBUG
3856 	struct dwc2_host_chan *chan;
3857 	struct dwc2_hcd_urb *urb;
3858 	struct dwc2_qtd *qtd;
3859 	int num_channels;
3860 	u32 np_tx_status;
3861 	u32 p_tx_status;
3862 	int i;
3863 
3864 	num_channels = hsotg->params.host_channels;
3865 	dev_dbg(hsotg->dev, "\n");
3866 	dev_dbg(hsotg->dev,
3867 		"************************************************************\n");
3868 	dev_dbg(hsotg->dev, "HCD State:\n");
3869 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3870 
3871 	for (i = 0; i < num_channels; i++) {
3872 		chan = hsotg->hc_ptr_array[i];
3873 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3874 		dev_dbg(hsotg->dev,
3875 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3876 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3877 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3878 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3879 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3880 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3881 			chan->data_pid_start);
3882 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3883 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3884 			chan->xfer_started);
3885 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3886 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3887 			(unsigned long)chan->xfer_dma);
3888 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3889 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3890 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3891 			chan->halt_on_queue);
3892 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3893 			chan->halt_pending);
3894 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3895 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3896 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3897 			chan->complete_split);
3898 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3899 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3900 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3901 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3902 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3903 
3904 		if (chan->xfer_started) {
3905 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3906 
3907 			hfnum = dwc2_readl(hsotg, HFNUM);
3908 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3909 			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3910 			hcint = dwc2_readl(hsotg, HCINT(i));
3911 			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3912 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3913 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3914 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3915 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3916 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3917 		}
3918 
3919 		if (!(chan->xfer_started && chan->qh))
3920 			continue;
3921 
3922 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3923 			if (!qtd->in_process)
3924 				break;
3925 			urb = qtd->urb;
3926 			dev_dbg(hsotg->dev, "    URB Info:\n");
3927 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3928 				qtd, urb);
3929 			if (urb) {
3930 				dev_dbg(hsotg->dev,
3931 					"      Dev: %d, EP: %d %s\n",
3932 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3933 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3934 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3935 					"IN" : "OUT");
3936 				dev_dbg(hsotg->dev,
3937 					"      Max packet size: %d (%d mult)\n",
3938 					dwc2_hcd_get_maxp(&urb->pipe_info),
3939 					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3940 				dev_dbg(hsotg->dev,
3941 					"      transfer_buffer: %p\n",
3942 					urb->buf);
3943 				dev_dbg(hsotg->dev,
3944 					"      transfer_dma: %08lx\n",
3945 					(unsigned long)urb->dma);
3946 				dev_dbg(hsotg->dev,
3947 					"      transfer_buffer_length: %d\n",
3948 					urb->length);
3949 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3950 					urb->actual_length);
3951 			}
3952 		}
3953 	}
3954 
3955 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3956 		hsotg->non_periodic_channels);
3957 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3958 		hsotg->periodic_channels);
3959 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3960 	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3961 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3962 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3963 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3964 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3965 	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3966 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3967 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3968 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3969 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3970 	dwc2_dump_global_registers(hsotg);
3971 	dwc2_dump_host_registers(hsotg);
3972 	dev_dbg(hsotg->dev,
3973 		"************************************************************\n");
3974 	dev_dbg(hsotg->dev, "\n");
3975 #endif
3976 }
3977 
3978 struct wrapper_priv_data {
3979 	struct dwc2_hsotg *hsotg;
3980 };
3981 
3982 /* Gets the dwc2_hsotg from a usb_hcd */
3983 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3984 {
3985 	struct wrapper_priv_data *p;
3986 
3987 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3988 	return p->hsotg;
3989 }
3990 
3991 /**
3992  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3993  *
3994  * This will get the dwc2_tt structure (and ttport) associated with the given
3995  * context (which is really just a struct urb pointer).
3996  *
3997  * The first time this is called for a given TT we allocate memory for our
3998  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
3999  * then the refcount for the structure will go to 0 and we'll free it.
4000  *
4001  * @hsotg:     The HCD state structure for the DWC OTG controller.
4002  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4003  * @mem_flags: Flags for allocating memory.
4004  * @ttport:    We'll return this device's port number here.  That's used to
4005  *             reference into the bitmap if we're on a multi_tt hub.
4006  *
4007  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4008  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4009  */
4010 
4011 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4012 				      gfp_t mem_flags, int *ttport)
4013 {
4014 	struct urb *urb = context;
4015 	struct dwc2_tt *dwc_tt = NULL;
4016 
4017 	if (urb->dev->tt) {
4018 		*ttport = urb->dev->ttport;
4019 
4020 		dwc_tt = urb->dev->tt->hcpriv;
4021 		if (!dwc_tt) {
4022 			size_t bitmap_size;
4023 
4024 			/*
4025 			 * For single_tt we need one schedule.  For multi_tt
4026 			 * we need one per port.
4027 			 */
4028 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4029 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4030 			if (urb->dev->tt->multi)
4031 				bitmap_size *= urb->dev->tt->hub->maxchild;
4032 
4033 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4034 					 mem_flags);
4035 			if (!dwc_tt)
4036 				return NULL;
4037 
4038 			dwc_tt->usb_tt = urb->dev->tt;
4039 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4040 		}
4041 
4042 		dwc_tt->refcount++;
4043 	}
4044 
4045 	return dwc_tt;
4046 }
4047 
4048 /**
4049  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4050  *
4051  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4052  * of the structure are done.
4053  *
4054  * It's OK to call this with NULL.
4055  *
4056  * @hsotg:     The HCD state structure for the DWC OTG controller.
4057  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4058  */
4059 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4060 {
4061 	/* Model kfree and make put of NULL a no-op */
4062 	if (!dwc_tt)
4063 		return;
4064 
4065 	WARN_ON(dwc_tt->refcount < 1);
4066 
4067 	dwc_tt->refcount--;
4068 	if (!dwc_tt->refcount) {
4069 		dwc_tt->usb_tt->hcpriv = NULL;
4070 		kfree(dwc_tt);
4071 	}
4072 }
4073 
4074 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4075 {
4076 	struct urb *urb = context;
4077 
4078 	return urb->dev->speed;
4079 }
4080 
4081 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4082 					struct urb *urb)
4083 {
4084 	struct usb_bus *bus = hcd_to_bus(hcd);
4085 
4086 	if (urb->interval)
4087 		bus->bandwidth_allocated += bw / urb->interval;
4088 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4089 		bus->bandwidth_isoc_reqs++;
4090 	else
4091 		bus->bandwidth_int_reqs++;
4092 }
4093 
4094 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4095 				    struct urb *urb)
4096 {
4097 	struct usb_bus *bus = hcd_to_bus(hcd);
4098 
4099 	if (urb->interval)
4100 		bus->bandwidth_allocated -= bw / urb->interval;
4101 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4102 		bus->bandwidth_isoc_reqs--;
4103 	else
4104 		bus->bandwidth_int_reqs--;
4105 }
4106 
4107 /*
4108  * Sets the final status of an URB and returns it to the upper layer. Any
4109  * required cleanup of the URB is performed.
4110  *
4111  * Must be called with interrupt disabled and spinlock held
4112  */
4113 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4114 			int status)
4115 {
4116 	struct urb *urb;
4117 	int i;
4118 
4119 	if (!qtd) {
4120 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4121 		return;
4122 	}
4123 
4124 	if (!qtd->urb) {
4125 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4126 		return;
4127 	}
4128 
4129 	urb = qtd->urb->priv;
4130 	if (!urb) {
4131 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4132 		return;
4133 	}
4134 
4135 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4136 
4137 	if (dbg_urb(urb))
4138 		dev_vdbg(hsotg->dev,
4139 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4140 			 __func__, urb, usb_pipedevice(urb->pipe),
4141 			 usb_pipeendpoint(urb->pipe),
4142 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4143 			 urb->actual_length);
4144 
4145 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4146 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4147 		for (i = 0; i < urb->number_of_packets; ++i) {
4148 			urb->iso_frame_desc[i].actual_length =
4149 				dwc2_hcd_urb_get_iso_desc_actual_length(
4150 						qtd->urb, i);
4151 			urb->iso_frame_desc[i].status =
4152 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4153 		}
4154 	}
4155 
4156 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4157 		for (i = 0; i < urb->number_of_packets; i++)
4158 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4159 				 i, urb->iso_frame_desc[i].status);
4160 	}
4161 
4162 	urb->status = status;
4163 	if (!status) {
4164 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4165 		    urb->actual_length < urb->transfer_buffer_length)
4166 			urb->status = -EREMOTEIO;
4167 	}
4168 
4169 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4170 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4171 		struct usb_host_endpoint *ep = urb->ep;
4172 
4173 		if (ep)
4174 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4175 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4176 					urb);
4177 	}
4178 
4179 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4180 	urb->hcpriv = NULL;
4181 	kfree(qtd->urb);
4182 	qtd->urb = NULL;
4183 
4184 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4185 }
4186 
4187 /*
4188  * Work queue function for starting the HCD when A-Cable is connected
4189  */
4190 static void dwc2_hcd_start_func(struct work_struct *work)
4191 {
4192 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4193 						start_work.work);
4194 
4195 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4196 	dwc2_host_start(hsotg);
4197 }
4198 
4199 /*
4200  * Reset work queue function
4201  */
4202 static void dwc2_hcd_reset_func(struct work_struct *work)
4203 {
4204 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4205 						reset_work.work);
4206 	unsigned long flags;
4207 	u32 hprt0;
4208 
4209 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4210 
4211 	spin_lock_irqsave(&hsotg->lock, flags);
4212 
4213 	hprt0 = dwc2_read_hprt0(hsotg);
4214 	hprt0 &= ~HPRT0_RST;
4215 	dwc2_writel(hsotg, hprt0, HPRT0);
4216 	hsotg->flags.b.port_reset_change = 1;
4217 
4218 	spin_unlock_irqrestore(&hsotg->lock, flags);
4219 }
4220 
4221 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4222 {
4223 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4224 						phy_reset_work);
4225 	int ret;
4226 
4227 	ret = phy_reset(hsotg->phy);
4228 	if (ret)
4229 		dev_warn(hsotg->dev, "PHY reset failed\n");
4230 }
4231 
4232 /*
4233  * =========================================================================
4234  *  Linux HC Driver Functions
4235  * =========================================================================
4236  */
4237 
4238 /*
4239  * Initializes the DWC_otg controller and its root hub and prepares it for host
4240  * mode operation. Activates the root port. Returns 0 on success and a negative
4241  * error code on failure.
4242  */
4243 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4244 {
4245 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4246 	struct usb_bus *bus = hcd_to_bus(hcd);
4247 	unsigned long flags;
4248 	u32 hprt0;
4249 	int ret;
4250 
4251 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4252 
4253 	spin_lock_irqsave(&hsotg->lock, flags);
4254 	hsotg->lx_state = DWC2_L0;
4255 	hcd->state = HC_STATE_RUNNING;
4256 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4257 
4258 	if (dwc2_is_device_mode(hsotg)) {
4259 		spin_unlock_irqrestore(&hsotg->lock, flags);
4260 		return 0;	/* why 0 ?? */
4261 	}
4262 
4263 	dwc2_hcd_reinit(hsotg);
4264 
4265 	hprt0 = dwc2_read_hprt0(hsotg);
4266 	/* Has vbus power been turned on in dwc2_core_host_init ? */
4267 	if (hprt0 & HPRT0_PWR) {
4268 		/* Enable external vbus supply before resuming root hub */
4269 		spin_unlock_irqrestore(&hsotg->lock, flags);
4270 		ret = dwc2_vbus_supply_init(hsotg);
4271 		if (ret)
4272 			return ret;
4273 		spin_lock_irqsave(&hsotg->lock, flags);
4274 	}
4275 
4276 	/* Initialize and connect root hub if one is not already attached */
4277 	if (bus->root_hub) {
4278 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4279 		/* Inform the HUB driver to resume */
4280 		usb_hcd_resume_root_hub(hcd);
4281 	}
4282 
4283 	spin_unlock_irqrestore(&hsotg->lock, flags);
4284 
4285 	return 0;
4286 }
4287 
4288 /*
4289  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4290  * stopped.
4291  */
4292 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4293 {
4294 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4295 	unsigned long flags;
4296 	u32 hprt0;
4297 
4298 	/* Turn off all host-specific interrupts */
4299 	dwc2_disable_host_interrupts(hsotg);
4300 
4301 	/* Wait for interrupt processing to finish */
4302 	synchronize_irq(hcd->irq);
4303 
4304 	spin_lock_irqsave(&hsotg->lock, flags);
4305 	hprt0 = dwc2_read_hprt0(hsotg);
4306 	/* Ensure hcd is disconnected */
4307 	dwc2_hcd_disconnect(hsotg, true);
4308 	dwc2_hcd_stop(hsotg);
4309 	hsotg->lx_state = DWC2_L3;
4310 	hcd->state = HC_STATE_HALT;
4311 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4312 	spin_unlock_irqrestore(&hsotg->lock, flags);
4313 
4314 	/* keep balanced supply init/exit by checking HPRT0_PWR */
4315 	if (hprt0 & HPRT0_PWR)
4316 		dwc2_vbus_supply_exit(hsotg);
4317 
4318 	usleep_range(1000, 3000);
4319 }
4320 
4321 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4322 {
4323 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4324 	unsigned long flags;
4325 	int ret = 0;
4326 
4327 	spin_lock_irqsave(&hsotg->lock, flags);
4328 
4329 	if (dwc2_is_device_mode(hsotg))
4330 		goto unlock;
4331 
4332 	if (hsotg->lx_state != DWC2_L0)
4333 		goto unlock;
4334 
4335 	if (!HCD_HW_ACCESSIBLE(hcd))
4336 		goto unlock;
4337 
4338 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4339 		goto unlock;
4340 
4341 	if (hsotg->bus_suspended)
4342 		goto skip_power_saving;
4343 
4344 	if (hsotg->flags.b.port_connect_status == 0)
4345 		goto skip_power_saving;
4346 
4347 	switch (hsotg->params.power_down) {
4348 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4349 		/* Enter partial_power_down */
4350 		ret = dwc2_enter_partial_power_down(hsotg);
4351 		if (ret)
4352 			dev_err(hsotg->dev,
4353 				"enter partial_power_down failed\n");
4354 		/* After entering suspend, hardware is not accessible */
4355 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4356 		break;
4357 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4358 		/* Enter hibernation */
4359 		spin_unlock_irqrestore(&hsotg->lock, flags);
4360 		ret = dwc2_enter_hibernation(hsotg, 1);
4361 		if (ret)
4362 			dev_err(hsotg->dev, "enter hibernation failed\n");
4363 		spin_lock_irqsave(&hsotg->lock, flags);
4364 
4365 		/* After entering suspend, hardware is not accessible */
4366 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4367 		break;
4368 	case DWC2_POWER_DOWN_PARAM_NONE:
4369 		/*
4370 		 * If not hibernation nor partial power down are supported,
4371 		 * clock gating is used to save power.
4372 		 */
4373 		if (!hsotg->params.no_clock_gating) {
4374 			dwc2_host_enter_clock_gating(hsotg);
4375 
4376 			/* After entering suspend, hardware is not accessible */
4377 			clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4378 		}
4379 		break;
4380 	default:
4381 		goto skip_power_saving;
4382 	}
4383 
4384 	spin_unlock_irqrestore(&hsotg->lock, flags);
4385 	dwc2_vbus_supply_exit(hsotg);
4386 	spin_lock_irqsave(&hsotg->lock, flags);
4387 
4388 	/* Ask phy to be suspended */
4389 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4390 		spin_unlock_irqrestore(&hsotg->lock, flags);
4391 		usb_phy_set_suspend(hsotg->uphy, true);
4392 		spin_lock_irqsave(&hsotg->lock, flags);
4393 	}
4394 
4395 skip_power_saving:
4396 	hsotg->lx_state = DWC2_L2;
4397 unlock:
4398 	spin_unlock_irqrestore(&hsotg->lock, flags);
4399 
4400 	return ret;
4401 }
4402 
4403 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4404 {
4405 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4406 	unsigned long flags;
4407 	u32 hprt0;
4408 	int ret = 0;
4409 
4410 	spin_lock_irqsave(&hsotg->lock, flags);
4411 
4412 	if (dwc2_is_device_mode(hsotg))
4413 		goto unlock;
4414 
4415 	if (hsotg->lx_state != DWC2_L2)
4416 		goto unlock;
4417 
4418 	hprt0 = dwc2_read_hprt0(hsotg);
4419 
4420 	/*
4421 	 * Added port connection status checking which prevents exiting from
4422 	 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4423 	 * Power Down mode.
4424 	 */
4425 	if (hprt0 & HPRT0_CONNSTS) {
4426 		hsotg->lx_state = DWC2_L0;
4427 		goto unlock;
4428 	}
4429 
4430 	switch (hsotg->params.power_down) {
4431 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4432 		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4433 		if (ret)
4434 			dev_err(hsotg->dev,
4435 				"exit partial_power_down failed\n");
4436 		/*
4437 		 * Set HW accessible bit before powering on the controller
4438 		 * since an interrupt may rise.
4439 		 */
4440 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4441 		break;
4442 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4443 		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4444 		if (ret)
4445 			dev_err(hsotg->dev, "exit hibernation failed.\n");
4446 
4447 		/*
4448 		 * Set HW accessible bit before powering on the controller
4449 		 * since an interrupt may rise.
4450 		 */
4451 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4452 		break;
4453 	case DWC2_POWER_DOWN_PARAM_NONE:
4454 		/*
4455 		 * If not hibernation nor partial power down are supported,
4456 		 * port resume is done using the clock gating programming flow.
4457 		 */
4458 		spin_unlock_irqrestore(&hsotg->lock, flags);
4459 		dwc2_host_exit_clock_gating(hsotg, 0);
4460 
4461 		/*
4462 		 * Initialize the Core for Host mode, as after system resume
4463 		 * the global interrupts are disabled.
4464 		 */
4465 		dwc2_core_init(hsotg, false);
4466 		dwc2_enable_global_interrupts(hsotg);
4467 		dwc2_hcd_reinit(hsotg);
4468 		spin_lock_irqsave(&hsotg->lock, flags);
4469 
4470 		/*
4471 		 * Set HW accessible bit before powering on the controller
4472 		 * since an interrupt may rise.
4473 		 */
4474 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4475 		break;
4476 	default:
4477 		hsotg->lx_state = DWC2_L0;
4478 		goto unlock;
4479 	}
4480 
4481 	/* Change Root port status, as port status change occurred after resume.*/
4482 	hsotg->flags.b.port_suspend_change = 1;
4483 
4484 	/*
4485 	 * Enable power if not already done.
4486 	 * This must not be spinlocked since duration
4487 	 * of this call is unknown.
4488 	 */
4489 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4490 		spin_unlock_irqrestore(&hsotg->lock, flags);
4491 		usb_phy_set_suspend(hsotg->uphy, false);
4492 		spin_lock_irqsave(&hsotg->lock, flags);
4493 	}
4494 
4495 	/* Enable external vbus supply after resuming the port. */
4496 	spin_unlock_irqrestore(&hsotg->lock, flags);
4497 	dwc2_vbus_supply_init(hsotg);
4498 
4499 	/* Wait for controller to correctly update D+/D- level */
4500 	usleep_range(3000, 5000);
4501 	spin_lock_irqsave(&hsotg->lock, flags);
4502 
4503 	/*
4504 	 * Clear Port Enable and Port Status changes.
4505 	 * Enable Port Power.
4506 	 */
4507 	dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4508 			HPRT0_ENACHG, HPRT0);
4509 
4510 	/* Wait for controller to detect Port Connect */
4511 	spin_unlock_irqrestore(&hsotg->lock, flags);
4512 	usleep_range(5000, 7000);
4513 	spin_lock_irqsave(&hsotg->lock, flags);
4514 unlock:
4515 	spin_unlock_irqrestore(&hsotg->lock, flags);
4516 
4517 	return ret;
4518 }
4519 
4520 /* Returns the current frame number */
4521 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4522 {
4523 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4524 
4525 	return dwc2_hcd_get_frame_number(hsotg);
4526 }
4527 
4528 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4529 			       char *fn_name)
4530 {
4531 #ifdef VERBOSE_DEBUG
4532 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4533 	char *pipetype = NULL;
4534 	char *speed = NULL;
4535 
4536 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4537 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4538 		 usb_pipedevice(urb->pipe));
4539 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4540 		 usb_pipeendpoint(urb->pipe),
4541 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4542 
4543 	switch (usb_pipetype(urb->pipe)) {
4544 	case PIPE_CONTROL:
4545 		pipetype = "CONTROL";
4546 		break;
4547 	case PIPE_BULK:
4548 		pipetype = "BULK";
4549 		break;
4550 	case PIPE_INTERRUPT:
4551 		pipetype = "INTERRUPT";
4552 		break;
4553 	case PIPE_ISOCHRONOUS:
4554 		pipetype = "ISOCHRONOUS";
4555 		break;
4556 	}
4557 
4558 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4559 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4560 		 "IN" : "OUT");
4561 
4562 	switch (urb->dev->speed) {
4563 	case USB_SPEED_HIGH:
4564 		speed = "HIGH";
4565 		break;
4566 	case USB_SPEED_FULL:
4567 		speed = "FULL";
4568 		break;
4569 	case USB_SPEED_LOW:
4570 		speed = "LOW";
4571 		break;
4572 	default:
4573 		speed = "UNKNOWN";
4574 		break;
4575 	}
4576 
4577 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4578 	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4579 		 usb_endpoint_maxp(&urb->ep->desc),
4580 		 usb_endpoint_maxp_mult(&urb->ep->desc));
4581 
4582 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4583 		 urb->transfer_buffer_length);
4584 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4585 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4586 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4587 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4588 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4589 
4590 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4591 		int i;
4592 
4593 		for (i = 0; i < urb->number_of_packets; i++) {
4594 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4595 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4596 				 urb->iso_frame_desc[i].offset,
4597 				 urb->iso_frame_desc[i].length);
4598 		}
4599 	}
4600 #endif
4601 }
4602 
4603 /*
4604  * Starts processing a USB transfer request specified by a USB Request Block
4605  * (URB). mem_flags indicates the type of memory allocation to use while
4606  * processing this URB.
4607  */
4608 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4609 				 gfp_t mem_flags)
4610 {
4611 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4612 	struct usb_host_endpoint *ep = urb->ep;
4613 	struct dwc2_hcd_urb *dwc2_urb;
4614 	int i;
4615 	int retval;
4616 	int alloc_bandwidth = 0;
4617 	u8 ep_type = 0;
4618 	u32 tflags = 0;
4619 	void *buf;
4620 	unsigned long flags;
4621 	struct dwc2_qh *qh;
4622 	bool qh_allocated = false;
4623 	struct dwc2_qtd *qtd;
4624 	struct dwc2_gregs_backup *gr;
4625 
4626 	gr = &hsotg->gr_backup;
4627 
4628 	if (dbg_urb(urb)) {
4629 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4630 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4631 	}
4632 
4633 	if (hsotg->hibernated) {
4634 		if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4635 			retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4636 		else
4637 			retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4638 
4639 		if (retval)
4640 			dev_err(hsotg->dev,
4641 				"exit hibernation failed.\n");
4642 	}
4643 
4644 	if (hsotg->in_ppd) {
4645 		retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4646 		if (retval)
4647 			dev_err(hsotg->dev,
4648 				"exit partial_power_down failed\n");
4649 	}
4650 
4651 	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4652 	    hsotg->bus_suspended) {
4653 		if (dwc2_is_device_mode(hsotg))
4654 			dwc2_gadget_exit_clock_gating(hsotg, 0);
4655 		else
4656 			dwc2_host_exit_clock_gating(hsotg, 0);
4657 	}
4658 
4659 	if (!ep)
4660 		return -EINVAL;
4661 
4662 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4663 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4664 		spin_lock_irqsave(&hsotg->lock, flags);
4665 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4666 			alloc_bandwidth = 1;
4667 		spin_unlock_irqrestore(&hsotg->lock, flags);
4668 	}
4669 
4670 	switch (usb_pipetype(urb->pipe)) {
4671 	case PIPE_CONTROL:
4672 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4673 		break;
4674 	case PIPE_ISOCHRONOUS:
4675 		ep_type = USB_ENDPOINT_XFER_ISOC;
4676 		break;
4677 	case PIPE_BULK:
4678 		ep_type = USB_ENDPOINT_XFER_BULK;
4679 		break;
4680 	case PIPE_INTERRUPT:
4681 		ep_type = USB_ENDPOINT_XFER_INT;
4682 		break;
4683 	}
4684 
4685 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4686 				      mem_flags);
4687 	if (!dwc2_urb)
4688 		return -ENOMEM;
4689 
4690 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4691 				  usb_pipeendpoint(urb->pipe), ep_type,
4692 				  usb_pipein(urb->pipe),
4693 				  usb_endpoint_maxp(&ep->desc),
4694 				  usb_endpoint_maxp_mult(&ep->desc));
4695 
4696 	buf = urb->transfer_buffer;
4697 
4698 	if (hcd_uses_dma(hcd)) {
4699 		if (!buf && (urb->transfer_dma & 3)) {
4700 			dev_err(hsotg->dev,
4701 				"%s: unaligned transfer with no transfer_buffer",
4702 				__func__);
4703 			retval = -EINVAL;
4704 			goto fail0;
4705 		}
4706 	}
4707 
4708 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4709 		tflags |= URB_GIVEBACK_ASAP;
4710 	if (urb->transfer_flags & URB_ZERO_PACKET)
4711 		tflags |= URB_SEND_ZERO_PACKET;
4712 
4713 	dwc2_urb->priv = urb;
4714 	dwc2_urb->buf = buf;
4715 	dwc2_urb->dma = urb->transfer_dma;
4716 	dwc2_urb->length = urb->transfer_buffer_length;
4717 	dwc2_urb->setup_packet = urb->setup_packet;
4718 	dwc2_urb->setup_dma = urb->setup_dma;
4719 	dwc2_urb->flags = tflags;
4720 	dwc2_urb->interval = urb->interval;
4721 	dwc2_urb->status = -EINPROGRESS;
4722 
4723 	for (i = 0; i < urb->number_of_packets; ++i)
4724 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4725 						 urb->iso_frame_desc[i].offset,
4726 						 urb->iso_frame_desc[i].length);
4727 
4728 	urb->hcpriv = dwc2_urb;
4729 	qh = (struct dwc2_qh *)ep->hcpriv;
4730 	/* Create QH for the endpoint if it doesn't exist */
4731 	if (!qh) {
4732 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4733 		if (!qh) {
4734 			retval = -ENOMEM;
4735 			goto fail0;
4736 		}
4737 		ep->hcpriv = qh;
4738 		qh_allocated = true;
4739 	}
4740 
4741 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4742 	if (!qtd) {
4743 		retval = -ENOMEM;
4744 		goto fail1;
4745 	}
4746 
4747 	spin_lock_irqsave(&hsotg->lock, flags);
4748 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4749 	if (retval)
4750 		goto fail2;
4751 
4752 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4753 	if (retval)
4754 		goto fail3;
4755 
4756 	if (alloc_bandwidth) {
4757 		dwc2_allocate_bus_bandwidth(hcd,
4758 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4759 				urb);
4760 	}
4761 
4762 	spin_unlock_irqrestore(&hsotg->lock, flags);
4763 
4764 	return 0;
4765 
4766 fail3:
4767 	dwc2_urb->priv = NULL;
4768 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4769 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4770 		qh->channel->qh = NULL;
4771 fail2:
4772 	urb->hcpriv = NULL;
4773 	spin_unlock_irqrestore(&hsotg->lock, flags);
4774 	kfree(qtd);
4775 fail1:
4776 	if (qh_allocated) {
4777 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4778 
4779 		ep->hcpriv = NULL;
4780 		dwc2_hcd_qh_unlink(hsotg, qh);
4781 		/* Free each QTD in the QH's QTD list */
4782 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4783 					 qtd_list_entry)
4784 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4785 		dwc2_hcd_qh_free(hsotg, qh);
4786 	}
4787 fail0:
4788 	kfree(dwc2_urb);
4789 
4790 	return retval;
4791 }
4792 
4793 /*
4794  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4795  */
4796 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4797 				 int status)
4798 {
4799 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4800 	int rc;
4801 	unsigned long flags;
4802 
4803 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4804 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4805 
4806 	spin_lock_irqsave(&hsotg->lock, flags);
4807 
4808 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4809 	if (rc)
4810 		goto out;
4811 
4812 	if (!urb->hcpriv) {
4813 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4814 		goto out;
4815 	}
4816 
4817 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4818 
4819 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4820 
4821 	kfree(urb->hcpriv);
4822 	urb->hcpriv = NULL;
4823 
4824 	/* Higher layer software sets URB status */
4825 	spin_unlock(&hsotg->lock);
4826 	usb_hcd_giveback_urb(hcd, urb, status);
4827 	spin_lock(&hsotg->lock);
4828 
4829 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4830 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4831 out:
4832 	spin_unlock_irqrestore(&hsotg->lock, flags);
4833 
4834 	return rc;
4835 }
4836 
4837 /*
4838  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4839  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4840  * must already be dequeued.
4841  */
4842 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4843 				       struct usb_host_endpoint *ep)
4844 {
4845 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4846 
4847 	dev_dbg(hsotg->dev,
4848 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4849 		ep->desc.bEndpointAddress, ep->hcpriv);
4850 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4851 }
4852 
4853 /*
4854  * Resets endpoint specific parameter values, in current version used to reset
4855  * the data toggle (as a WA). This function can be called from usb_clear_halt
4856  * routine.
4857  */
4858 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4859 				     struct usb_host_endpoint *ep)
4860 {
4861 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4862 	unsigned long flags;
4863 
4864 	dev_dbg(hsotg->dev,
4865 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4866 		ep->desc.bEndpointAddress);
4867 
4868 	spin_lock_irqsave(&hsotg->lock, flags);
4869 	dwc2_hcd_endpoint_reset(hsotg, ep);
4870 	spin_unlock_irqrestore(&hsotg->lock, flags);
4871 }
4872 
4873 /*
4874  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4875  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4876  * interrupt.
4877  *
4878  * This function is called by the USB core when an interrupt occurs
4879  */
4880 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4881 {
4882 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4883 
4884 	return dwc2_handle_hcd_intr(hsotg);
4885 }
4886 
4887 /*
4888  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4889  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4890  * is the status change indicator for the single root port. Returns 1 if either
4891  * change indicator is 1, otherwise returns 0.
4892  */
4893 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4894 {
4895 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4896 
4897 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4898 	return buf[0] != 0;
4899 }
4900 
4901 /* Handles hub class-specific requests */
4902 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4903 				 u16 windex, char *buf, u16 wlength)
4904 {
4905 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4906 					  wvalue, windex, buf, wlength);
4907 	return retval;
4908 }
4909 
4910 /* Handles hub TT buffer clear completions */
4911 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4912 					       struct usb_host_endpoint *ep)
4913 {
4914 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4915 	struct dwc2_qh *qh;
4916 	unsigned long flags;
4917 
4918 	qh = ep->hcpriv;
4919 	if (!qh)
4920 		return;
4921 
4922 	spin_lock_irqsave(&hsotg->lock, flags);
4923 	qh->tt_buffer_dirty = 0;
4924 
4925 	if (hsotg->flags.b.port_connect_status)
4926 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4927 
4928 	spin_unlock_irqrestore(&hsotg->lock, flags);
4929 }
4930 
4931 /*
4932  * HPRT0_SPD_HIGH_SPEED: high speed
4933  * HPRT0_SPD_FULL_SPEED: full speed
4934  */
4935 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4936 {
4937 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4938 
4939 	if (hsotg->params.speed == speed)
4940 		return;
4941 
4942 	hsotg->params.speed = speed;
4943 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4944 }
4945 
4946 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4947 {
4948 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4949 
4950 	if (!hsotg->params.change_speed_quirk)
4951 		return;
4952 
4953 	/*
4954 	 * On removal, set speed to default high-speed.
4955 	 */
4956 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4957 	    udev->parent->speed < USB_SPEED_HIGH) {
4958 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4959 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4960 	}
4961 }
4962 
4963 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4964 {
4965 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4966 
4967 	if (!hsotg->params.change_speed_quirk)
4968 		return 0;
4969 
4970 	if (udev->speed == USB_SPEED_HIGH) {
4971 		dev_info(hsotg->dev, "Set speed to high-speed\n");
4972 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4973 	} else if ((udev->speed == USB_SPEED_FULL ||
4974 				udev->speed == USB_SPEED_LOW)) {
4975 		/*
4976 		 * Change speed setting to full-speed if there's
4977 		 * a full-speed or low-speed device plugged in.
4978 		 */
4979 		dev_info(hsotg->dev, "Set speed to full-speed\n");
4980 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4981 	}
4982 
4983 	return 0;
4984 }
4985 
4986 static struct hc_driver dwc2_hc_driver = {
4987 	.description = "dwc2_hsotg",
4988 	.product_desc = "DWC OTG Controller",
4989 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4990 
4991 	.irq = _dwc2_hcd_irq,
4992 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4993 
4994 	.start = _dwc2_hcd_start,
4995 	.stop = _dwc2_hcd_stop,
4996 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4997 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4998 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4999 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
5000 	.get_frame_number = _dwc2_hcd_get_frame_number,
5001 
5002 	.hub_status_data = _dwc2_hcd_hub_status_data,
5003 	.hub_control = _dwc2_hcd_hub_control,
5004 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5005 
5006 	.bus_suspend = _dwc2_hcd_suspend,
5007 	.bus_resume = _dwc2_hcd_resume,
5008 
5009 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
5010 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
5011 };
5012 
5013 /*
5014  * Frees secondary storage associated with the dwc2_hsotg structure contained
5015  * in the struct usb_hcd field
5016  */
5017 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5018 {
5019 	u32 ahbcfg;
5020 	u32 dctl;
5021 	int i;
5022 
5023 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5024 
5025 	/* Free memory for QH/QTD lists */
5026 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5027 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5028 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5029 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5030 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5031 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5032 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5033 
5034 	/* Free memory for the host channels */
5035 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5036 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5037 
5038 		if (chan) {
5039 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5040 				i, chan);
5041 			hsotg->hc_ptr_array[i] = NULL;
5042 			kfree(chan);
5043 		}
5044 	}
5045 
5046 	if (hsotg->params.host_dma) {
5047 		if (hsotg->status_buf) {
5048 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5049 					  hsotg->status_buf,
5050 					  hsotg->status_buf_dma);
5051 			hsotg->status_buf = NULL;
5052 		}
5053 	} else {
5054 		kfree(hsotg->status_buf);
5055 		hsotg->status_buf = NULL;
5056 	}
5057 
5058 	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5059 
5060 	/* Disable all interrupts */
5061 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5062 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5063 	dwc2_writel(hsotg, 0, GINTMSK);
5064 
5065 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5066 		dctl = dwc2_readl(hsotg, DCTL);
5067 		dctl |= DCTL_SFTDISCON;
5068 		dwc2_writel(hsotg, dctl, DCTL);
5069 	}
5070 
5071 	if (hsotg->wq_otg) {
5072 		if (!cancel_work_sync(&hsotg->wf_otg))
5073 			flush_workqueue(hsotg->wq_otg);
5074 		destroy_workqueue(hsotg->wq_otg);
5075 	}
5076 
5077 	cancel_work_sync(&hsotg->phy_reset_work);
5078 
5079 	del_timer(&hsotg->wkp_timer);
5080 }
5081 
5082 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5083 {
5084 	/* Turn off all host-specific interrupts */
5085 	dwc2_disable_host_interrupts(hsotg);
5086 
5087 	dwc2_hcd_free(hsotg);
5088 }
5089 
5090 /*
5091  * Initializes the HCD. This function allocates memory for and initializes the
5092  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5093  * USB bus with the core and calls the hc_driver->start() function. It returns
5094  * a negative error on failure.
5095  */
5096 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5097 {
5098 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5099 	struct resource *res;
5100 	struct usb_hcd *hcd;
5101 	struct dwc2_host_chan *channel;
5102 	u32 hcfg;
5103 	int i, num_channels;
5104 	int retval;
5105 
5106 	if (usb_disabled())
5107 		return -ENODEV;
5108 
5109 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5110 
5111 	retval = -ENOMEM;
5112 
5113 	hcfg = dwc2_readl(hsotg, HCFG);
5114 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5115 
5116 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5117 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5118 					 sizeof(*hsotg->frame_num_array),
5119 					 GFP_KERNEL);
5120 	if (!hsotg->frame_num_array)
5121 		goto error1;
5122 	hsotg->last_frame_num_array =
5123 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5124 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5125 	if (!hsotg->last_frame_num_array)
5126 		goto error1;
5127 #endif
5128 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5129 
5130 	/* Check if the bus driver or platform code has setup a dma_mask */
5131 	if (hsotg->params.host_dma &&
5132 	    !hsotg->dev->dma_mask) {
5133 		dev_warn(hsotg->dev,
5134 			 "dma_mask not set, disabling DMA\n");
5135 		hsotg->params.host_dma = false;
5136 		hsotg->params.dma_desc_enable = false;
5137 	}
5138 
5139 	/* Set device flags indicating whether the HCD supports DMA */
5140 	if (hsotg->params.host_dma) {
5141 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5142 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5143 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5144 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5145 	}
5146 
5147 	if (hsotg->params.change_speed_quirk) {
5148 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5149 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5150 	}
5151 
5152 	if (hsotg->params.host_dma)
5153 		dwc2_hc_driver.flags |= HCD_DMA;
5154 
5155 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5156 	if (!hcd)
5157 		goto error1;
5158 
5159 	hcd->has_tt = 1;
5160 
5161 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5162 	if (!res) {
5163 		retval = -EINVAL;
5164 		goto error2;
5165 	}
5166 	hcd->rsrc_start = res->start;
5167 	hcd->rsrc_len = resource_size(res);
5168 
5169 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5170 	hsotg->priv = hcd;
5171 
5172 	/*
5173 	 * Disable the global interrupt until all the interrupt handlers are
5174 	 * installed
5175 	 */
5176 	dwc2_disable_global_interrupts(hsotg);
5177 
5178 	/* Initialize the DWC_otg core, and select the Phy type */
5179 	retval = dwc2_core_init(hsotg, true);
5180 	if (retval)
5181 		goto error2;
5182 
5183 	/* Create new workqueue and init work */
5184 	retval = -ENOMEM;
5185 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5186 	if (!hsotg->wq_otg) {
5187 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5188 		goto error2;
5189 	}
5190 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5191 
5192 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5193 
5194 	/* Initialize the non-periodic schedule */
5195 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5196 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5197 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5198 
5199 	/* Initialize the periodic schedule */
5200 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5201 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5202 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5203 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5204 
5205 	INIT_LIST_HEAD(&hsotg->split_order);
5206 
5207 	/*
5208 	 * Create a host channel descriptor for each host channel implemented
5209 	 * in the controller. Initialize the channel descriptor array.
5210 	 */
5211 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5212 	num_channels = hsotg->params.host_channels;
5213 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5214 
5215 	for (i = 0; i < num_channels; i++) {
5216 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5217 		if (!channel)
5218 			goto error3;
5219 		channel->hc_num = i;
5220 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5221 		hsotg->hc_ptr_array[i] = channel;
5222 	}
5223 
5224 	/* Initialize work */
5225 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5226 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5227 	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5228 
5229 	/*
5230 	 * Allocate space for storing data on status transactions. Normally no
5231 	 * data is sent, but this space acts as a bit bucket. This must be
5232 	 * done after usb_add_hcd since that function allocates the DMA buffer
5233 	 * pool.
5234 	 */
5235 	if (hsotg->params.host_dma)
5236 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5237 					DWC2_HCD_STATUS_BUF_SIZE,
5238 					&hsotg->status_buf_dma, GFP_KERNEL);
5239 	else
5240 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5241 					  GFP_KERNEL);
5242 
5243 	if (!hsotg->status_buf)
5244 		goto error3;
5245 
5246 	/*
5247 	 * Create kmem caches to handle descriptor buffers in descriptor
5248 	 * DMA mode.
5249 	 * Alignment must be set to 512 bytes.
5250 	 */
5251 	if (hsotg->params.dma_desc_enable ||
5252 	    hsotg->params.dma_desc_fs_enable) {
5253 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5254 				sizeof(struct dwc2_dma_desc) *
5255 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5256 				NULL);
5257 		if (!hsotg->desc_gen_cache) {
5258 			dev_err(hsotg->dev,
5259 				"unable to create dwc2 generic desc cache\n");
5260 
5261 			/*
5262 			 * Disable descriptor dma mode since it will not be
5263 			 * usable.
5264 			 */
5265 			hsotg->params.dma_desc_enable = false;
5266 			hsotg->params.dma_desc_fs_enable = false;
5267 		}
5268 
5269 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5270 				sizeof(struct dwc2_dma_desc) *
5271 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5272 		if (!hsotg->desc_hsisoc_cache) {
5273 			dev_err(hsotg->dev,
5274 				"unable to create dwc2 hs isoc desc cache\n");
5275 
5276 			kmem_cache_destroy(hsotg->desc_gen_cache);
5277 
5278 			/*
5279 			 * Disable descriptor dma mode since it will not be
5280 			 * usable.
5281 			 */
5282 			hsotg->params.dma_desc_enable = false;
5283 			hsotg->params.dma_desc_fs_enable = false;
5284 		}
5285 	}
5286 
5287 	if (hsotg->params.host_dma) {
5288 		/*
5289 		 * Create kmem caches to handle non-aligned buffer
5290 		 * in Buffer DMA mode.
5291 		 */
5292 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5293 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5294 						SLAB_CACHE_DMA, NULL);
5295 		if (!hsotg->unaligned_cache)
5296 			dev_err(hsotg->dev,
5297 				"unable to create dwc2 unaligned cache\n");
5298 	}
5299 
5300 	hsotg->otg_port = 1;
5301 	hsotg->frame_list = NULL;
5302 	hsotg->frame_list_dma = 0;
5303 	hsotg->periodic_qh_count = 0;
5304 
5305 	/* Initiate lx_state to L3 disconnected state */
5306 	hsotg->lx_state = DWC2_L3;
5307 
5308 	hcd->self.otg_port = hsotg->otg_port;
5309 
5310 	/* Don't support SG list at this point */
5311 	hcd->self.sg_tablesize = 0;
5312 
5313 	hcd->tpl_support = of_usb_host_tpl_support(hsotg->dev->of_node);
5314 
5315 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5316 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5317 
5318 	/*
5319 	 * Finish generic HCD initialization and start the HCD. This function
5320 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5321 	 * IRQ line, and calls hcd_start method.
5322 	 */
5323 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5324 	if (retval < 0)
5325 		goto error4;
5326 
5327 	device_wakeup_enable(hcd->self.controller);
5328 
5329 	dwc2_hcd_dump_state(hsotg);
5330 
5331 	dwc2_enable_global_interrupts(hsotg);
5332 
5333 	return 0;
5334 
5335 error4:
5336 	kmem_cache_destroy(hsotg->unaligned_cache);
5337 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5338 	kmem_cache_destroy(hsotg->desc_gen_cache);
5339 error3:
5340 	dwc2_hcd_release(hsotg);
5341 error2:
5342 	usb_put_hcd(hcd);
5343 error1:
5344 
5345 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5346 	kfree(hsotg->last_frame_num_array);
5347 	kfree(hsotg->frame_num_array);
5348 #endif
5349 
5350 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5351 	return retval;
5352 }
5353 
5354 /*
5355  * Removes the HCD.
5356  * Frees memory and resources associated with the HCD and deregisters the bus.
5357  */
5358 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5359 {
5360 	struct usb_hcd *hcd;
5361 
5362 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5363 
5364 	hcd = dwc2_hsotg_to_hcd(hsotg);
5365 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5366 
5367 	if (!hcd) {
5368 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5369 			__func__);
5370 		return;
5371 	}
5372 
5373 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5374 		otg_set_host(hsotg->uphy->otg, NULL);
5375 
5376 	usb_remove_hcd(hcd);
5377 	hsotg->priv = NULL;
5378 
5379 	kmem_cache_destroy(hsotg->unaligned_cache);
5380 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5381 	kmem_cache_destroy(hsotg->desc_gen_cache);
5382 
5383 	dwc2_hcd_release(hsotg);
5384 	usb_put_hcd(hcd);
5385 
5386 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5387 	kfree(hsotg->last_frame_num_array);
5388 	kfree(hsotg->frame_num_array);
5389 #endif
5390 }
5391 
5392 /**
5393  * dwc2_backup_host_registers() - Backup controller host registers.
5394  * When suspending usb bus, registers needs to be backuped
5395  * if controller power is disabled once suspended.
5396  *
5397  * @hsotg: Programming view of the DWC_otg controller
5398  */
5399 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5400 {
5401 	struct dwc2_hregs_backup *hr;
5402 	int i;
5403 
5404 	dev_dbg(hsotg->dev, "%s\n", __func__);
5405 
5406 	/* Backup Host regs */
5407 	hr = &hsotg->hr_backup;
5408 	hr->hcfg = dwc2_readl(hsotg, HCFG);
5409 	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5410 	for (i = 0; i < hsotg->params.host_channels; ++i)
5411 		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5412 
5413 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5414 	hr->hfir = dwc2_readl(hsotg, HFIR);
5415 	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5416 	hr->valid = true;
5417 
5418 	return 0;
5419 }
5420 
5421 /**
5422  * dwc2_restore_host_registers() - Restore controller host registers.
5423  * When resuming usb bus, device registers needs to be restored
5424  * if controller power were disabled.
5425  *
5426  * @hsotg: Programming view of the DWC_otg controller
5427  */
5428 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5429 {
5430 	struct dwc2_hregs_backup *hr;
5431 	int i;
5432 
5433 	dev_dbg(hsotg->dev, "%s\n", __func__);
5434 
5435 	/* Restore host regs */
5436 	hr = &hsotg->hr_backup;
5437 	if (!hr->valid) {
5438 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5439 			__func__);
5440 		return -EINVAL;
5441 	}
5442 	hr->valid = false;
5443 
5444 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5445 	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5446 
5447 	for (i = 0; i < hsotg->params.host_channels; ++i)
5448 		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5449 
5450 	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5451 	dwc2_writel(hsotg, hr->hfir, HFIR);
5452 	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5453 	hsotg->frame_number = 0;
5454 
5455 	return 0;
5456 }
5457 
5458 /**
5459  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5460  *
5461  * @hsotg: Programming view of the DWC_otg controller
5462  */
5463 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5464 {
5465 	unsigned long flags;
5466 	int ret = 0;
5467 	u32 hprt0;
5468 	u32 pcgcctl;
5469 	u32 gusbcfg;
5470 	u32 gpwrdn;
5471 
5472 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5473 	ret = dwc2_backup_global_registers(hsotg);
5474 	if (ret) {
5475 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5476 			__func__);
5477 		return ret;
5478 	}
5479 	ret = dwc2_backup_host_registers(hsotg);
5480 	if (ret) {
5481 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5482 			__func__);
5483 		return ret;
5484 	}
5485 
5486 	/* Enter USB Suspend Mode */
5487 	hprt0 = dwc2_readl(hsotg, HPRT0);
5488 	hprt0 |= HPRT0_SUSP;
5489 	hprt0 &= ~HPRT0_ENA;
5490 	dwc2_writel(hsotg, hprt0, HPRT0);
5491 
5492 	/* Wait for the HPRT0.PrtSusp register field to be set */
5493 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5494 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5495 
5496 	/*
5497 	 * We need to disable interrupts to prevent servicing of any IRQ
5498 	 * during going to hibernation
5499 	 */
5500 	spin_lock_irqsave(&hsotg->lock, flags);
5501 	hsotg->lx_state = DWC2_L2;
5502 
5503 	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5504 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5505 		/* ULPI interface */
5506 		/* Suspend the Phy Clock */
5507 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5508 		pcgcctl |= PCGCTL_STOPPCLK;
5509 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5510 		udelay(10);
5511 
5512 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5513 		gpwrdn |= GPWRDN_PMUACTV;
5514 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5515 		udelay(10);
5516 	} else {
5517 		/* UTMI+ Interface */
5518 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5519 		gpwrdn |= GPWRDN_PMUACTV;
5520 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5521 		udelay(10);
5522 
5523 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5524 		pcgcctl |= PCGCTL_STOPPCLK;
5525 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5526 		udelay(10);
5527 	}
5528 
5529 	/* Enable interrupts from wake up logic */
5530 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5531 	gpwrdn |= GPWRDN_PMUINTSEL;
5532 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5533 	udelay(10);
5534 
5535 	/* Unmask host mode interrupts in GPWRDN */
5536 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5537 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5538 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5539 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5540 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5541 	udelay(10);
5542 
5543 	/* Enable Power Down Clamp */
5544 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5545 	gpwrdn |= GPWRDN_PWRDNCLMP;
5546 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5547 	udelay(10);
5548 
5549 	/* Switch off VDD */
5550 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5551 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5552 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5553 
5554 	hsotg->hibernated = 1;
5555 	hsotg->bus_suspended = 1;
5556 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5557 	spin_unlock_irqrestore(&hsotg->lock, flags);
5558 	return ret;
5559 }
5560 
5561 /*
5562  * dwc2_host_exit_hibernation()
5563  *
5564  * @hsotg: Programming view of the DWC_otg controller
5565  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5566  * @param reset: indicates whether resume is initiated by Reset.
5567  *
5568  * Return: non-zero if failed to enter to hibernation.
5569  *
5570  * This function is for exiting from Host mode hibernation by
5571  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5572  */
5573 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5574 			       int reset)
5575 {
5576 	u32 gpwrdn;
5577 	u32 hprt0;
5578 	int ret = 0;
5579 	struct dwc2_gregs_backup *gr;
5580 	struct dwc2_hregs_backup *hr;
5581 
5582 	gr = &hsotg->gr_backup;
5583 	hr = &hsotg->hr_backup;
5584 
5585 	dev_dbg(hsotg->dev,
5586 		"%s: called with rem_wakeup = %d reset = %d\n",
5587 		__func__, rem_wakeup, reset);
5588 
5589 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5590 	hsotg->hibernated = 0;
5591 
5592 	/*
5593 	 * This step is not described in functional spec but if not wait for
5594 	 * this delay, mismatch interrupts occurred because just after restore
5595 	 * core is in Device mode(gintsts.curmode == 0)
5596 	 */
5597 	mdelay(100);
5598 
5599 	/* Clear all pending interupts */
5600 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5601 
5602 	/* De-assert Restore */
5603 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5604 	gpwrdn &= ~GPWRDN_RESTORE;
5605 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5606 	udelay(10);
5607 
5608 	/* Restore GUSBCFG, HCFG */
5609 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5610 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5611 
5612 	/* De-assert Wakeup Logic */
5613 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5614 	gpwrdn &= ~GPWRDN_PMUACTV;
5615 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5616 	udelay(10);
5617 
5618 	hprt0 = hr->hprt0;
5619 	hprt0 |= HPRT0_PWR;
5620 	hprt0 &= ~HPRT0_ENA;
5621 	hprt0 &= ~HPRT0_SUSP;
5622 	dwc2_writel(hsotg, hprt0, HPRT0);
5623 
5624 	hprt0 = hr->hprt0;
5625 	hprt0 |= HPRT0_PWR;
5626 	hprt0 &= ~HPRT0_ENA;
5627 	hprt0 &= ~HPRT0_SUSP;
5628 
5629 	if (reset) {
5630 		hprt0 |= HPRT0_RST;
5631 		dwc2_writel(hsotg, hprt0, HPRT0);
5632 
5633 		/* Wait for Resume time and then program HPRT again */
5634 		mdelay(60);
5635 		hprt0 &= ~HPRT0_RST;
5636 		dwc2_writel(hsotg, hprt0, HPRT0);
5637 	} else {
5638 		hprt0 |= HPRT0_RES;
5639 		dwc2_writel(hsotg, hprt0, HPRT0);
5640 
5641 		/* Wait for Resume time and then program HPRT again */
5642 		mdelay(100);
5643 		hprt0 &= ~HPRT0_RES;
5644 		dwc2_writel(hsotg, hprt0, HPRT0);
5645 	}
5646 	/* Clear all interrupt status */
5647 	hprt0 = dwc2_readl(hsotg, HPRT0);
5648 	hprt0 |= HPRT0_CONNDET;
5649 	hprt0 |= HPRT0_ENACHG;
5650 	hprt0 &= ~HPRT0_ENA;
5651 	dwc2_writel(hsotg, hprt0, HPRT0);
5652 
5653 	hprt0 = dwc2_readl(hsotg, HPRT0);
5654 
5655 	/* Clear all pending interupts */
5656 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5657 
5658 	/* Restore global registers */
5659 	ret = dwc2_restore_global_registers(hsotg);
5660 	if (ret) {
5661 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5662 			__func__);
5663 		return ret;
5664 	}
5665 
5666 	/* Restore host registers */
5667 	ret = dwc2_restore_host_registers(hsotg);
5668 	if (ret) {
5669 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5670 			__func__);
5671 		return ret;
5672 	}
5673 
5674 	if (rem_wakeup) {
5675 		dwc2_hcd_rem_wakeup(hsotg);
5676 		/*
5677 		 * Change "port_connect_status_change" flag to re-enumerate,
5678 		 * because after exit from hibernation port connection status
5679 		 * is not detected.
5680 		 */
5681 		hsotg->flags.b.port_connect_status_change = 1;
5682 	}
5683 
5684 	hsotg->hibernated = 0;
5685 	hsotg->bus_suspended = 0;
5686 	hsotg->lx_state = DWC2_L0;
5687 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5688 	return ret;
5689 }
5690 
5691 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5692 {
5693 	struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5694 
5695 	/* If the controller isn't allowed to wakeup then we can power off. */
5696 	if (!device_may_wakeup(dwc2->dev))
5697 		return true;
5698 
5699 	/*
5700 	 * We don't want to power off the PHY if something under the
5701 	 * root hub has wakeup enabled.
5702 	 */
5703 	if (usb_wakeup_enabled_descendants(root_hub))
5704 		return false;
5705 
5706 	/* No reason to keep the PHY powered, so allow poweroff */
5707 	return true;
5708 }
5709 
5710 /**
5711  * dwc2_host_enter_partial_power_down() - Put controller in partial
5712  * power down.
5713  *
5714  * @hsotg: Programming view of the DWC_otg controller
5715  *
5716  * Return: non-zero if failed to enter host partial power down.
5717  *
5718  * This function is for entering Host mode partial power down.
5719  */
5720 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5721 {
5722 	u32 pcgcctl;
5723 	u32 hprt0;
5724 	int ret = 0;
5725 
5726 	dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5727 
5728 	/* Put this port in suspend mode. */
5729 	hprt0 = dwc2_read_hprt0(hsotg);
5730 	hprt0 |= HPRT0_SUSP;
5731 	dwc2_writel(hsotg, hprt0, HPRT0);
5732 	udelay(5);
5733 
5734 	/* Wait for the HPRT0.PrtSusp register field to be set */
5735 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5736 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5737 
5738 	/* Backup all registers */
5739 	ret = dwc2_backup_global_registers(hsotg);
5740 	if (ret) {
5741 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5742 			__func__);
5743 		return ret;
5744 	}
5745 
5746 	ret = dwc2_backup_host_registers(hsotg);
5747 	if (ret) {
5748 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5749 			__func__);
5750 		return ret;
5751 	}
5752 
5753 	/*
5754 	 * Clear any pending interrupts since dwc2 will not be able to
5755 	 * clear them after entering partial_power_down.
5756 	 */
5757 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5758 
5759 	/* Put the controller in low power state */
5760 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5761 
5762 	pcgcctl |= PCGCTL_PWRCLMP;
5763 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5764 	udelay(5);
5765 
5766 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5767 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5768 	udelay(5);
5769 
5770 	pcgcctl |= PCGCTL_STOPPCLK;
5771 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5772 
5773 	/* Set in_ppd flag to 1 as here core enters suspend. */
5774 	hsotg->in_ppd = 1;
5775 	hsotg->lx_state = DWC2_L2;
5776 	hsotg->bus_suspended = true;
5777 
5778 	dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5779 
5780 	return ret;
5781 }
5782 
5783 /*
5784  * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5785  * power down.
5786  *
5787  * @hsotg: Programming view of the DWC_otg controller
5788  * @rem_wakeup: indicates whether resume is initiated by Reset.
5789  * @restore: indicates whether need to restore the registers or not.
5790  *
5791  * Return: non-zero if failed to exit host partial power down.
5792  *
5793  * This function is for exiting from Host mode partial power down.
5794  */
5795 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5796 				      int rem_wakeup, bool restore)
5797 {
5798 	u32 pcgcctl;
5799 	int ret = 0;
5800 	u32 hprt0;
5801 
5802 	dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5803 
5804 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5805 	pcgcctl &= ~PCGCTL_STOPPCLK;
5806 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5807 	udelay(5);
5808 
5809 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5810 	pcgcctl &= ~PCGCTL_PWRCLMP;
5811 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5812 	udelay(5);
5813 
5814 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5815 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5816 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5817 
5818 	udelay(100);
5819 	if (restore) {
5820 		ret = dwc2_restore_global_registers(hsotg);
5821 		if (ret) {
5822 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5823 				__func__);
5824 			return ret;
5825 		}
5826 
5827 		ret = dwc2_restore_host_registers(hsotg);
5828 		if (ret) {
5829 			dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5830 				__func__);
5831 			return ret;
5832 		}
5833 	}
5834 
5835 	/* Drive resume signaling and exit suspend mode on the port. */
5836 	hprt0 = dwc2_read_hprt0(hsotg);
5837 	hprt0 |= HPRT0_RES;
5838 	hprt0 &= ~HPRT0_SUSP;
5839 	dwc2_writel(hsotg, hprt0, HPRT0);
5840 	udelay(5);
5841 
5842 	if (!rem_wakeup) {
5843 		/* Stop driveing resume signaling on the port. */
5844 		hprt0 = dwc2_read_hprt0(hsotg);
5845 		hprt0 &= ~HPRT0_RES;
5846 		dwc2_writel(hsotg, hprt0, HPRT0);
5847 
5848 		hsotg->bus_suspended = false;
5849 	} else {
5850 		/* Turn on the port power bit. */
5851 		hprt0 = dwc2_read_hprt0(hsotg);
5852 		hprt0 |= HPRT0_PWR;
5853 		dwc2_writel(hsotg, hprt0, HPRT0);
5854 
5855 		/* Connect hcd. */
5856 		dwc2_hcd_connect(hsotg);
5857 
5858 		mod_timer(&hsotg->wkp_timer,
5859 			  jiffies + msecs_to_jiffies(71));
5860 	}
5861 
5862 	/* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5863 	hsotg->in_ppd = 0;
5864 	hsotg->lx_state = DWC2_L0;
5865 
5866 	dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5867 	return ret;
5868 }
5869 
5870 /**
5871  * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5872  *
5873  * @hsotg: Programming view of the DWC_otg controller
5874  *
5875  * This function is for entering Host mode clock gating.
5876  */
5877 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5878 {
5879 	u32 hprt0;
5880 	u32 pcgctl;
5881 
5882 	dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5883 
5884 	/* Put this port in suspend mode. */
5885 	hprt0 = dwc2_read_hprt0(hsotg);
5886 	hprt0 |= HPRT0_SUSP;
5887 	dwc2_writel(hsotg, hprt0, HPRT0);
5888 
5889 	/* Set the Phy Clock bit as suspend is received. */
5890 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5891 	pcgctl |= PCGCTL_STOPPCLK;
5892 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5893 	udelay(5);
5894 
5895 	/* Set the Gate hclk as suspend is received. */
5896 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5897 	pcgctl |= PCGCTL_GATEHCLK;
5898 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5899 	udelay(5);
5900 
5901 	hsotg->bus_suspended = true;
5902 	hsotg->lx_state = DWC2_L2;
5903 }
5904 
5905 /**
5906  * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5907  *
5908  * @hsotg: Programming view of the DWC_otg controller
5909  * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5910  *
5911  * This function is for exiting Host mode clock gating.
5912  */
5913 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5914 {
5915 	u32 hprt0;
5916 	u32 pcgctl;
5917 
5918 	dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5919 
5920 	/* Clear the Gate hclk. */
5921 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5922 	pcgctl &= ~PCGCTL_GATEHCLK;
5923 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5924 	udelay(5);
5925 
5926 	/* Phy Clock bit. */
5927 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5928 	pcgctl &= ~PCGCTL_STOPPCLK;
5929 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5930 	udelay(5);
5931 
5932 	/* Drive resume signaling and exit suspend mode on the port. */
5933 	hprt0 = dwc2_read_hprt0(hsotg);
5934 	hprt0 |= HPRT0_RES;
5935 	hprt0 &= ~HPRT0_SUSP;
5936 	dwc2_writel(hsotg, hprt0, HPRT0);
5937 	udelay(5);
5938 
5939 	if (!rem_wakeup) {
5940 		/* In case of port resume need to wait for 40 ms */
5941 		msleep(USB_RESUME_TIMEOUT);
5942 
5943 		/* Stop driveing resume signaling on the port. */
5944 		hprt0 = dwc2_read_hprt0(hsotg);
5945 		hprt0 &= ~HPRT0_RES;
5946 		dwc2_writel(hsotg, hprt0, HPRT0);
5947 
5948 		hsotg->bus_suspended = false;
5949 		hsotg->lx_state = DWC2_L0;
5950 	} else {
5951 		mod_timer(&hsotg->wkp_timer,
5952 			  jiffies + msecs_to_jiffies(71));
5953 	}
5954 }
5955