xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision 9156a7ef)
1 /*
2  * hcd.c - DesignWare HS OTG Controller host-mode routines
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * This file contains the core HCD code, and implements the Linux hc_driver
39  * API
40  */
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/delay.h>
47 #include <linux/io.h>
48 #include <linux/slab.h>
49 #include <linux/usb.h>
50 
51 #include <linux/usb/hcd.h>
52 #include <linux/usb/ch11.h>
53 
54 #include "core.h"
55 #include "hcd.h"
56 
57 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
58 
59 /*
60  * =========================================================================
61  *  Host Core Layer Functions
62  * =========================================================================
63  */
64 
65 /**
66  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
67  * used in both device and host modes
68  *
69  * @hsotg: Programming view of the DWC_otg controller
70  */
71 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
72 {
73 	u32 intmsk;
74 
75 	/* Clear any pending OTG Interrupts */
76 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
77 
78 	/* Clear any pending interrupts */
79 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
80 
81 	/* Enable the interrupts in the GINTMSK */
82 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
83 
84 	if (!hsotg->params.host_dma)
85 		intmsk |= GINTSTS_RXFLVL;
86 	if (!hsotg->params.external_id_pin_ctl)
87 		intmsk |= GINTSTS_CONIDSTSCHNG;
88 
89 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
90 		  GINTSTS_SESSREQINT;
91 
92 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
93 }
94 
95 /*
96  * Initializes the FSLSPClkSel field of the HCFG register depending on the
97  * PHY type
98  */
99 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
100 {
101 	u32 hcfg, val;
102 
103 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
104 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
105 	     hsotg->params.ulpi_fs_ls) ||
106 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
107 		/* Full speed PHY */
108 		val = HCFG_FSLSPCLKSEL_48_MHZ;
109 	} else {
110 		/* High speed PHY running at full speed or high speed */
111 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
112 	}
113 
114 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
115 	hcfg = dwc2_readl(hsotg->regs + HCFG);
116 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
117 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
118 	dwc2_writel(hcfg, hsotg->regs + HCFG);
119 }
120 
121 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
122 {
123 	u32 usbcfg, i2cctl;
124 	int retval = 0;
125 
126 	/*
127 	 * core_init() is now called on every switch so only call the
128 	 * following for the first time through
129 	 */
130 	if (select_phy) {
131 		dev_dbg(hsotg->dev, "FS PHY selected\n");
132 
133 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
134 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
135 			usbcfg |= GUSBCFG_PHYSEL;
136 			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
137 
138 			/* Reset after a PHY select */
139 			retval = dwc2_core_reset_and_force_dr_mode(hsotg);
140 
141 			if (retval) {
142 				dev_err(hsotg->dev,
143 					"%s: Reset failed, aborting", __func__);
144 				return retval;
145 			}
146 		}
147 	}
148 
149 	/*
150 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
151 	 * do this on HNP Dev/Host mode switches (done in dev_init and
152 	 * host_init).
153 	 */
154 	if (dwc2_is_host_mode(hsotg))
155 		dwc2_init_fs_ls_pclk_sel(hsotg);
156 
157 	if (hsotg->params.i2c_enable) {
158 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
159 
160 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
161 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
162 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
163 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
164 
165 		/* Program GI2CCTL.I2CEn */
166 		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
167 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
168 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
169 		i2cctl &= ~GI2CCTL_I2CEN;
170 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
171 		i2cctl |= GI2CCTL_I2CEN;
172 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
173 	}
174 
175 	return retval;
176 }
177 
178 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
179 {
180 	u32 usbcfg, usbcfg_old;
181 	int retval = 0;
182 
183 	if (!select_phy)
184 		return 0;
185 
186 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
187 	usbcfg_old = usbcfg;
188 
189 	/*
190 	 * HS PHY parameters. These parameters are preserved during soft reset
191 	 * so only program the first time. Do a soft reset immediately after
192 	 * setting phyif.
193 	 */
194 	switch (hsotg->params.phy_type) {
195 	case DWC2_PHY_TYPE_PARAM_ULPI:
196 		/* ULPI interface */
197 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
198 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
199 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
200 		if (hsotg->params.phy_ulpi_ddr)
201 			usbcfg |= GUSBCFG_DDRSEL;
202 		break;
203 	case DWC2_PHY_TYPE_PARAM_UTMI:
204 		/* UTMI+ interface */
205 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
206 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
207 		if (hsotg->params.phy_utmi_width == 16)
208 			usbcfg |= GUSBCFG_PHYIF16;
209 		break;
210 	default:
211 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
212 		break;
213 	}
214 
215 	if (usbcfg != usbcfg_old) {
216 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
217 
218 		/* Reset after setting the PHY parameters */
219 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
220 		if (retval) {
221 			dev_err(hsotg->dev,
222 				"%s: Reset failed, aborting", __func__);
223 			return retval;
224 		}
225 	}
226 
227 	return retval;
228 }
229 
230 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
231 {
232 	u32 usbcfg;
233 	int retval = 0;
234 
235 	if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
236 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
237 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
238 		/* If FS/LS mode with FS/LS PHY */
239 		retval = dwc2_fs_phy_init(hsotg, select_phy);
240 		if (retval)
241 			return retval;
242 	} else {
243 		/* High speed PHY */
244 		retval = dwc2_hs_phy_init(hsotg, select_phy);
245 		if (retval)
246 			return retval;
247 	}
248 
249 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
250 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
251 	    hsotg->params.ulpi_fs_ls) {
252 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
253 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
254 		usbcfg |= GUSBCFG_ULPI_FS_LS;
255 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
256 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
257 	} else {
258 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
259 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
260 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
261 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
262 	}
263 
264 	return retval;
265 }
266 
267 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
268 {
269 	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
270 
271 	switch (hsotg->hw_params.arch) {
272 	case GHWCFG2_EXT_DMA_ARCH:
273 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
274 		return -EINVAL;
275 
276 	case GHWCFG2_INT_DMA_ARCH:
277 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
278 		if (hsotg->params.ahbcfg != -1) {
279 			ahbcfg &= GAHBCFG_CTRL_MASK;
280 			ahbcfg |= hsotg->params.ahbcfg &
281 				  ~GAHBCFG_CTRL_MASK;
282 		}
283 		break;
284 
285 	case GHWCFG2_SLAVE_ONLY_ARCH:
286 	default:
287 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
288 		break;
289 	}
290 
291 	dev_dbg(hsotg->dev, "host_dma:%d dma_desc_enable:%d\n",
292 		hsotg->params.host_dma,
293 		hsotg->params.dma_desc_enable);
294 
295 	if (hsotg->params.host_dma) {
296 		if (hsotg->params.dma_desc_enable)
297 			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
298 		else
299 			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
300 	} else {
301 		dev_dbg(hsotg->dev, "Using Slave mode\n");
302 		hsotg->params.dma_desc_enable = false;
303 	}
304 
305 	if (hsotg->params.host_dma)
306 		ahbcfg |= GAHBCFG_DMA_EN;
307 
308 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
309 
310 	return 0;
311 }
312 
313 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
314 {
315 	u32 usbcfg;
316 
317 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
318 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
319 
320 	switch (hsotg->hw_params.op_mode) {
321 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
322 		if (hsotg->params.otg_cap ==
323 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
324 			usbcfg |= GUSBCFG_HNPCAP;
325 		if (hsotg->params.otg_cap !=
326 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
327 			usbcfg |= GUSBCFG_SRPCAP;
328 		break;
329 
330 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
331 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
332 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
333 		if (hsotg->params.otg_cap !=
334 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
335 			usbcfg |= GUSBCFG_SRPCAP;
336 		break;
337 
338 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
339 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
340 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
341 	default:
342 		break;
343 	}
344 
345 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
346 }
347 
348 /**
349  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
350  *
351  * @hsotg: Programming view of DWC_otg controller
352  */
353 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
354 {
355 	u32 intmsk;
356 
357 	dev_dbg(hsotg->dev, "%s()\n", __func__);
358 
359 	/* Disable all interrupts */
360 	dwc2_writel(0, hsotg->regs + GINTMSK);
361 	dwc2_writel(0, hsotg->regs + HAINTMSK);
362 
363 	/* Enable the common interrupts */
364 	dwc2_enable_common_interrupts(hsotg);
365 
366 	/* Enable host mode interrupts without disturbing common interrupts */
367 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
368 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
369 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
370 }
371 
372 /**
373  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
374  *
375  * @hsotg: Programming view of DWC_otg controller
376  */
377 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
378 {
379 	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
380 
381 	/* Disable host mode interrupts without disturbing common interrupts */
382 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
383 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
384 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
385 }
386 
387 /*
388  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
389  * For system that have a total fifo depth that is smaller than the default
390  * RX + TX fifo size.
391  *
392  * @hsotg: Programming view of DWC_otg controller
393  */
394 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
395 {
396 	struct dwc2_core_params *params = &hsotg->params;
397 	struct dwc2_hw_params *hw = &hsotg->hw_params;
398 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
399 
400 	total_fifo_size = hw->total_fifo_size;
401 	rxfsiz = params->host_rx_fifo_size;
402 	nptxfsiz = params->host_nperio_tx_fifo_size;
403 	ptxfsiz = params->host_perio_tx_fifo_size;
404 
405 	/*
406 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
407 	 * allocation with support for high bandwidth endpoints. Synopsys
408 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
409 	 * non-periodic as 512.
410 	 */
411 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
412 		/*
413 		 * For Buffer DMA mode/Scatter Gather DMA mode
414 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
415 		 * with n = number of host channel.
416 		 * 2 * ((1024/4) + 2) = 516
417 		 */
418 		rxfsiz = 516 + hw->host_channels;
419 
420 		/*
421 		 * min non-periodic tx fifo depth
422 		 * 2 * (largest non-periodic USB packet used / 4)
423 		 * 2 * (512/4) = 256
424 		 */
425 		nptxfsiz = 256;
426 
427 		/*
428 		 * min periodic tx fifo depth
429 		 * (largest packet size*MC)/4
430 		 * (1024 * 3)/4 = 768
431 		 */
432 		ptxfsiz = 768;
433 
434 		params->host_rx_fifo_size = rxfsiz;
435 		params->host_nperio_tx_fifo_size = nptxfsiz;
436 		params->host_perio_tx_fifo_size = ptxfsiz;
437 	}
438 
439 	/*
440 	 * If the summation of RX, NPTX and PTX fifo sizes is still
441 	 * bigger than the total_fifo_size, then we have a problem.
442 	 *
443 	 * We won't be able to allocate as many endpoints. Right now,
444 	 * we're just printing an error message, but ideally this FIFO
445 	 * allocation algorithm would be improved in the future.
446 	 *
447 	 * FIXME improve this FIFO allocation algorithm.
448 	 */
449 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
450 		dev_err(hsotg->dev, "invalid fifo sizes\n");
451 }
452 
453 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
454 {
455 	struct dwc2_core_params *params = &hsotg->params;
456 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
457 
458 	if (!params->enable_dynamic_fifo)
459 		return;
460 
461 	dwc2_calculate_dynamic_fifo(hsotg);
462 
463 	/* Rx FIFO */
464 	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
465 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
466 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
467 	grxfsiz |= params->host_rx_fifo_size <<
468 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
469 	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
470 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
471 		dwc2_readl(hsotg->regs + GRXFSIZ));
472 
473 	/* Non-periodic Tx FIFO */
474 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
475 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
476 	nptxfsiz = params->host_nperio_tx_fifo_size <<
477 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
478 	nptxfsiz |= params->host_rx_fifo_size <<
479 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
480 	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
481 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
482 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
483 
484 	/* Periodic Tx FIFO */
485 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
486 		dwc2_readl(hsotg->regs + HPTXFSIZ));
487 	hptxfsiz = params->host_perio_tx_fifo_size <<
488 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
489 	hptxfsiz |= (params->host_rx_fifo_size +
490 		     params->host_nperio_tx_fifo_size) <<
491 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
492 	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
493 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
494 		dwc2_readl(hsotg->regs + HPTXFSIZ));
495 
496 	if (hsotg->params.en_multiple_tx_fifo &&
497 	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
498 		/*
499 		 * Global DFIFOCFG calculation for Host mode -
500 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
501 		 */
502 		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
503 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
504 		dfifocfg |= (params->host_rx_fifo_size +
505 			     params->host_nperio_tx_fifo_size +
506 			     params->host_perio_tx_fifo_size) <<
507 			    GDFIFOCFG_EPINFOBASE_SHIFT &
508 			    GDFIFOCFG_EPINFOBASE_MASK;
509 		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
510 	}
511 }
512 
513 /**
514  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
515  * the HFIR register according to PHY type and speed
516  *
517  * @hsotg: Programming view of DWC_otg controller
518  *
519  * NOTE: The caller can modify the value of the HFIR register only after the
520  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
521  * has been set
522  */
523 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
524 {
525 	u32 usbcfg;
526 	u32 hprt0;
527 	int clock = 60;	/* default value */
528 
529 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
530 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
531 
532 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
533 	    !(usbcfg & GUSBCFG_PHYIF16))
534 		clock = 60;
535 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
536 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
537 		clock = 48;
538 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
539 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
540 		clock = 30;
541 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
542 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
543 		clock = 60;
544 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
545 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
546 		clock = 48;
547 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
548 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
549 		clock = 48;
550 	if ((usbcfg & GUSBCFG_PHYSEL) &&
551 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
552 		clock = 48;
553 
554 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
555 		/* High speed case */
556 		return 125 * clock - 1;
557 
558 	/* FS/LS case */
559 	return 1000 * clock - 1;
560 }
561 
562 /**
563  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
564  * buffer
565  *
566  * @core_if: Programming view of DWC_otg controller
567  * @dest:    Destination buffer for the packet
568  * @bytes:   Number of bytes to copy to the destination
569  */
570 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
571 {
572 	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
573 	u32 *data_buf = (u32 *)dest;
574 	int word_count = (bytes + 3) / 4;
575 	int i;
576 
577 	/*
578 	 * Todo: Account for the case where dest is not dword aligned. This
579 	 * requires reading data from the FIFO into a u32 temp buffer, then
580 	 * moving it into the data buffer.
581 	 */
582 
583 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
584 
585 	for (i = 0; i < word_count; i++, data_buf++)
586 		*data_buf = dwc2_readl(fifo);
587 }
588 
589 /**
590  * dwc2_dump_channel_info() - Prints the state of a host channel
591  *
592  * @hsotg: Programming view of DWC_otg controller
593  * @chan:  Pointer to the channel to dump
594  *
595  * Must be called with interrupt disabled and spinlock held
596  *
597  * NOTE: This function will be removed once the peripheral controller code
598  * is integrated and the driver is stable
599  */
600 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
601 				   struct dwc2_host_chan *chan)
602 {
603 #ifdef VERBOSE_DEBUG
604 	int num_channels = hsotg->params.host_channels;
605 	struct dwc2_qh *qh;
606 	u32 hcchar;
607 	u32 hcsplt;
608 	u32 hctsiz;
609 	u32 hc_dma;
610 	int i;
611 
612 	if (!chan)
613 		return;
614 
615 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
616 	hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
617 	hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
618 	hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
619 
620 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
621 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
622 		hcchar, hcsplt);
623 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
624 		hctsiz, hc_dma);
625 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
626 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
627 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
628 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
629 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
630 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
631 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
632 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
633 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
634 		(unsigned long)chan->xfer_dma);
635 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
636 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
637 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
638 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
639 			    qh_list_entry)
640 		dev_dbg(hsotg->dev, "    %p\n", qh);
641 	dev_dbg(hsotg->dev, "  NP active sched:\n");
642 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
643 			    qh_list_entry)
644 		dev_dbg(hsotg->dev, "    %p\n", qh);
645 	dev_dbg(hsotg->dev, "  Channels:\n");
646 	for (i = 0; i < num_channels; i++) {
647 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
648 
649 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
650 	}
651 #endif /* VERBOSE_DEBUG */
652 }
653 
654 static int _dwc2_hcd_start(struct usb_hcd *hcd);
655 
656 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
657 {
658 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
659 
660 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
661 	_dwc2_hcd_start(hcd);
662 }
663 
664 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
665 {
666 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
667 
668 	hcd->self.is_b_host = 0;
669 }
670 
671 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
672 			       int *hub_addr, int *hub_port)
673 {
674 	struct urb *urb = context;
675 
676 	if (urb->dev->tt)
677 		*hub_addr = urb->dev->tt->hub->devnum;
678 	else
679 		*hub_addr = 0;
680 	*hub_port = urb->dev->ttport;
681 }
682 
683 /*
684  * =========================================================================
685  *  Low Level Host Channel Access Functions
686  * =========================================================================
687  */
688 
689 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
690 				      struct dwc2_host_chan *chan)
691 {
692 	u32 hcintmsk = HCINTMSK_CHHLTD;
693 
694 	switch (chan->ep_type) {
695 	case USB_ENDPOINT_XFER_CONTROL:
696 	case USB_ENDPOINT_XFER_BULK:
697 		dev_vdbg(hsotg->dev, "control/bulk\n");
698 		hcintmsk |= HCINTMSK_XFERCOMPL;
699 		hcintmsk |= HCINTMSK_STALL;
700 		hcintmsk |= HCINTMSK_XACTERR;
701 		hcintmsk |= HCINTMSK_DATATGLERR;
702 		if (chan->ep_is_in) {
703 			hcintmsk |= HCINTMSK_BBLERR;
704 		} else {
705 			hcintmsk |= HCINTMSK_NAK;
706 			hcintmsk |= HCINTMSK_NYET;
707 			if (chan->do_ping)
708 				hcintmsk |= HCINTMSK_ACK;
709 		}
710 
711 		if (chan->do_split) {
712 			hcintmsk |= HCINTMSK_NAK;
713 			if (chan->complete_split)
714 				hcintmsk |= HCINTMSK_NYET;
715 			else
716 				hcintmsk |= HCINTMSK_ACK;
717 		}
718 
719 		if (chan->error_state)
720 			hcintmsk |= HCINTMSK_ACK;
721 		break;
722 
723 	case USB_ENDPOINT_XFER_INT:
724 		if (dbg_perio())
725 			dev_vdbg(hsotg->dev, "intr\n");
726 		hcintmsk |= HCINTMSK_XFERCOMPL;
727 		hcintmsk |= HCINTMSK_NAK;
728 		hcintmsk |= HCINTMSK_STALL;
729 		hcintmsk |= HCINTMSK_XACTERR;
730 		hcintmsk |= HCINTMSK_DATATGLERR;
731 		hcintmsk |= HCINTMSK_FRMOVRUN;
732 
733 		if (chan->ep_is_in)
734 			hcintmsk |= HCINTMSK_BBLERR;
735 		if (chan->error_state)
736 			hcintmsk |= HCINTMSK_ACK;
737 		if (chan->do_split) {
738 			if (chan->complete_split)
739 				hcintmsk |= HCINTMSK_NYET;
740 			else
741 				hcintmsk |= HCINTMSK_ACK;
742 		}
743 		break;
744 
745 	case USB_ENDPOINT_XFER_ISOC:
746 		if (dbg_perio())
747 			dev_vdbg(hsotg->dev, "isoc\n");
748 		hcintmsk |= HCINTMSK_XFERCOMPL;
749 		hcintmsk |= HCINTMSK_FRMOVRUN;
750 		hcintmsk |= HCINTMSK_ACK;
751 
752 		if (chan->ep_is_in) {
753 			hcintmsk |= HCINTMSK_XACTERR;
754 			hcintmsk |= HCINTMSK_BBLERR;
755 		}
756 		break;
757 	default:
758 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
759 		break;
760 	}
761 
762 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
763 	if (dbg_hc(chan))
764 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
765 }
766 
767 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
768 				    struct dwc2_host_chan *chan)
769 {
770 	u32 hcintmsk = HCINTMSK_CHHLTD;
771 
772 	/*
773 	 * For Descriptor DMA mode core halts the channel on AHB error.
774 	 * Interrupt is not required.
775 	 */
776 	if (!hsotg->params.dma_desc_enable) {
777 		if (dbg_hc(chan))
778 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
779 		hcintmsk |= HCINTMSK_AHBERR;
780 	} else {
781 		if (dbg_hc(chan))
782 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
783 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
784 			hcintmsk |= HCINTMSK_XFERCOMPL;
785 	}
786 
787 	if (chan->error_state && !chan->do_split &&
788 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
789 		if (dbg_hc(chan))
790 			dev_vdbg(hsotg->dev, "setting ACK\n");
791 		hcintmsk |= HCINTMSK_ACK;
792 		if (chan->ep_is_in) {
793 			hcintmsk |= HCINTMSK_DATATGLERR;
794 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
795 				hcintmsk |= HCINTMSK_NAK;
796 		}
797 	}
798 
799 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
800 	if (dbg_hc(chan))
801 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
802 }
803 
804 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
805 				struct dwc2_host_chan *chan)
806 {
807 	u32 intmsk;
808 
809 	if (hsotg->params.host_dma) {
810 		if (dbg_hc(chan))
811 			dev_vdbg(hsotg->dev, "DMA enabled\n");
812 		dwc2_hc_enable_dma_ints(hsotg, chan);
813 	} else {
814 		if (dbg_hc(chan))
815 			dev_vdbg(hsotg->dev, "DMA disabled\n");
816 		dwc2_hc_enable_slave_ints(hsotg, chan);
817 	}
818 
819 	/* Enable the top level host channel interrupt */
820 	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
821 	intmsk |= 1 << chan->hc_num;
822 	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
823 	if (dbg_hc(chan))
824 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
825 
826 	/* Make sure host channel interrupts are enabled */
827 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
828 	intmsk |= GINTSTS_HCHINT;
829 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
830 	if (dbg_hc(chan))
831 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
832 }
833 
834 /**
835  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
836  * a specific endpoint
837  *
838  * @hsotg: Programming view of DWC_otg controller
839  * @chan:  Information needed to initialize the host channel
840  *
841  * The HCCHARn register is set up with the characteristics specified in chan.
842  * Host channel interrupts that may need to be serviced while this transfer is
843  * in progress are enabled.
844  */
845 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
846 {
847 	u8 hc_num = chan->hc_num;
848 	u32 hcintmsk;
849 	u32 hcchar;
850 	u32 hcsplt = 0;
851 
852 	if (dbg_hc(chan))
853 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
854 
855 	/* Clear old interrupt conditions for this host channel */
856 	hcintmsk = 0xffffffff;
857 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
858 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
859 
860 	/* Enable channel interrupts required for this transfer */
861 	dwc2_hc_enable_ints(hsotg, chan);
862 
863 	/*
864 	 * Program the HCCHARn register with the endpoint characteristics for
865 	 * the current transfer
866 	 */
867 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
868 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
869 	if (chan->ep_is_in)
870 		hcchar |= HCCHAR_EPDIR;
871 	if (chan->speed == USB_SPEED_LOW)
872 		hcchar |= HCCHAR_LSPDDEV;
873 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
874 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
875 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
876 	if (dbg_hc(chan)) {
877 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
878 			 hc_num, hcchar);
879 
880 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
881 			 __func__, hc_num);
882 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
883 			 chan->dev_addr);
884 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
885 			 chan->ep_num);
886 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
887 			 chan->ep_is_in);
888 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
889 			 chan->speed == USB_SPEED_LOW);
890 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
891 			 chan->ep_type);
892 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
893 			 chan->max_packet);
894 	}
895 
896 	/* Program the HCSPLT register for SPLITs */
897 	if (chan->do_split) {
898 		if (dbg_hc(chan))
899 			dev_vdbg(hsotg->dev,
900 				 "Programming HC %d with split --> %s\n",
901 				 hc_num,
902 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
903 		if (chan->complete_split)
904 			hcsplt |= HCSPLT_COMPSPLT;
905 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
906 			  HCSPLT_XACTPOS_MASK;
907 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
908 			  HCSPLT_HUBADDR_MASK;
909 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
910 			  HCSPLT_PRTADDR_MASK;
911 		if (dbg_hc(chan)) {
912 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
913 				 chan->complete_split);
914 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
915 				 chan->xact_pos);
916 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
917 				 chan->hub_addr);
918 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
919 				 chan->hub_port);
920 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
921 				 chan->ep_is_in);
922 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
923 				 chan->max_packet);
924 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
925 				 chan->xfer_len);
926 		}
927 	}
928 
929 	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
930 }
931 
932 /**
933  * dwc2_hc_halt() - Attempts to halt a host channel
934  *
935  * @hsotg:       Controller register interface
936  * @chan:        Host channel to halt
937  * @halt_status: Reason for halting the channel
938  *
939  * This function should only be called in Slave mode or to abort a transfer in
940  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
941  * controller halts the channel when the transfer is complete or a condition
942  * occurs that requires application intervention.
943  *
944  * In slave mode, checks for a free request queue entry, then sets the Channel
945  * Enable and Channel Disable bits of the Host Channel Characteristics
946  * register of the specified channel to intiate the halt. If there is no free
947  * request queue entry, sets only the Channel Disable bit of the HCCHARn
948  * register to flush requests for this channel. In the latter case, sets a
949  * flag to indicate that the host channel needs to be halted when a request
950  * queue slot is open.
951  *
952  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
953  * HCCHARn register. The controller ensures there is space in the request
954  * queue before submitting the halt request.
955  *
956  * Some time may elapse before the core flushes any posted requests for this
957  * host channel and halts. The Channel Halted interrupt handler completes the
958  * deactivation of the host channel.
959  */
960 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
961 		  enum dwc2_halt_status halt_status)
962 {
963 	u32 nptxsts, hptxsts, hcchar;
964 
965 	if (dbg_hc(chan))
966 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
967 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
968 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
969 
970 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
971 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
972 		/*
973 		 * Disable all channel interrupts except Ch Halted. The QTD
974 		 * and QH state associated with this transfer has been cleared
975 		 * (in the case of URB_DEQUEUE), so the channel needs to be
976 		 * shut down carefully to prevent crashes.
977 		 */
978 		u32 hcintmsk = HCINTMSK_CHHLTD;
979 
980 		dev_vdbg(hsotg->dev, "dequeue/error\n");
981 		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
982 
983 		/*
984 		 * Make sure no other interrupts besides halt are currently
985 		 * pending. Handling another interrupt could cause a crash due
986 		 * to the QTD and QH state.
987 		 */
988 		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
989 
990 		/*
991 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
992 		 * even if the channel was already halted for some other
993 		 * reason
994 		 */
995 		chan->halt_status = halt_status;
996 
997 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
998 		if (!(hcchar & HCCHAR_CHENA)) {
999 			/*
1000 			 * The channel is either already halted or it hasn't
1001 			 * started yet. In DMA mode, the transfer may halt if
1002 			 * it finishes normally or a condition occurs that
1003 			 * requires driver intervention. Don't want to halt
1004 			 * the channel again. In either Slave or DMA mode,
1005 			 * it's possible that the transfer has been assigned
1006 			 * to a channel, but not started yet when an URB is
1007 			 * dequeued. Don't want to halt a channel that hasn't
1008 			 * started yet.
1009 			 */
1010 			return;
1011 		}
1012 	}
1013 	if (chan->halt_pending) {
1014 		/*
1015 		 * A halt has already been issued for this channel. This might
1016 		 * happen when a transfer is aborted by a higher level in
1017 		 * the stack.
1018 		 */
1019 		dev_vdbg(hsotg->dev,
1020 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1021 			 __func__, chan->hc_num);
1022 		return;
1023 	}
1024 
1025 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1026 
1027 	/* No need to set the bit in DDMA for disabling the channel */
1028 	/* TODO check it everywhere channel is disabled */
1029 	if (!hsotg->params.dma_desc_enable) {
1030 		if (dbg_hc(chan))
1031 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1032 		hcchar |= HCCHAR_CHENA;
1033 	} else {
1034 		if (dbg_hc(chan))
1035 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1036 	}
1037 	hcchar |= HCCHAR_CHDIS;
1038 
1039 	if (!hsotg->params.host_dma) {
1040 		if (dbg_hc(chan))
1041 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1042 		hcchar |= HCCHAR_CHENA;
1043 
1044 		/* Check for space in the request queue to issue the halt */
1045 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1046 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1047 			dev_vdbg(hsotg->dev, "control/bulk\n");
1048 			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1049 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1050 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1051 				hcchar &= ~HCCHAR_CHENA;
1052 			}
1053 		} else {
1054 			if (dbg_perio())
1055 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1056 			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1057 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1058 			    hsotg->queuing_high_bandwidth) {
1059 				if (dbg_perio())
1060 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1061 				hcchar &= ~HCCHAR_CHENA;
1062 			}
1063 		}
1064 	} else {
1065 		if (dbg_hc(chan))
1066 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1067 	}
1068 
1069 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1070 	chan->halt_status = halt_status;
1071 
1072 	if (hcchar & HCCHAR_CHENA) {
1073 		if (dbg_hc(chan))
1074 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1075 		chan->halt_pending = 1;
1076 		chan->halt_on_queue = 0;
1077 	} else {
1078 		if (dbg_hc(chan))
1079 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1080 		chan->halt_on_queue = 1;
1081 	}
1082 
1083 	if (dbg_hc(chan)) {
1084 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1085 			 chan->hc_num);
1086 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1087 			 hcchar);
1088 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1089 			 chan->halt_pending);
1090 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1091 			 chan->halt_on_queue);
1092 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1093 			 chan->halt_status);
1094 	}
1095 }
1096 
1097 /**
1098  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1099  *
1100  * @hsotg: Programming view of DWC_otg controller
1101  * @chan:  Identifies the host channel to clean up
1102  *
1103  * This function is normally called after a transfer is done and the host
1104  * channel is being released
1105  */
1106 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1107 {
1108 	u32 hcintmsk;
1109 
1110 	chan->xfer_started = 0;
1111 
1112 	list_del_init(&chan->split_order_list_entry);
1113 
1114 	/*
1115 	 * Clear channel interrupt enables and any unhandled channel interrupt
1116 	 * conditions
1117 	 */
1118 	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1119 	hcintmsk = 0xffffffff;
1120 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1121 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1122 }
1123 
1124 /**
1125  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1126  * which frame a periodic transfer should occur
1127  *
1128  * @hsotg:  Programming view of DWC_otg controller
1129  * @chan:   Identifies the host channel to set up and its properties
1130  * @hcchar: Current value of the HCCHAR register for the specified host channel
1131  *
1132  * This function has no effect on non-periodic transfers
1133  */
1134 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1135 				       struct dwc2_host_chan *chan, u32 *hcchar)
1136 {
1137 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1138 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1139 		int host_speed;
1140 		int xfer_ns;
1141 		int xfer_us;
1142 		int bytes_in_fifo;
1143 		u16 fifo_space;
1144 		u16 frame_number;
1145 		u16 wire_frame;
1146 
1147 		/*
1148 		 * Try to figure out if we're an even or odd frame. If we set
1149 		 * even and the current frame number is even the the transfer
1150 		 * will happen immediately.  Similar if both are odd. If one is
1151 		 * even and the other is odd then the transfer will happen when
1152 		 * the frame number ticks.
1153 		 *
1154 		 * There's a bit of a balancing act to get this right.
1155 		 * Sometimes we may want to send data in the current frame (AK
1156 		 * right away).  We might want to do this if the frame number
1157 		 * _just_ ticked, but we might also want to do this in order
1158 		 * to continue a split transaction that happened late in a
1159 		 * microframe (so we didn't know to queue the next transfer
1160 		 * until the frame number had ticked).  The problem is that we
1161 		 * need a lot of knowledge to know if there's actually still
1162 		 * time to send things or if it would be better to wait until
1163 		 * the next frame.
1164 		 *
1165 		 * We can look at how much time is left in the current frame
1166 		 * and make a guess about whether we'll have time to transfer.
1167 		 * We'll do that.
1168 		 */
1169 
1170 		/* Get speed host is running at */
1171 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1172 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1173 
1174 		/* See how many bytes are in the periodic FIFO right now */
1175 		fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1176 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1177 		bytes_in_fifo = sizeof(u32) *
1178 				(hsotg->params.host_perio_tx_fifo_size -
1179 				 fifo_space);
1180 
1181 		/*
1182 		 * Roughly estimate bus time for everything in the periodic
1183 		 * queue + our new transfer.  This is "rough" because we're
1184 		 * using a function that makes takes into account IN/OUT
1185 		 * and INT/ISO and we're just slamming in one value for all
1186 		 * transfers.  This should be an over-estimate and that should
1187 		 * be OK, but we can probably tighten it.
1188 		 */
1189 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1190 					    chan->xfer_len + bytes_in_fifo);
1191 		xfer_us = NS_TO_US(xfer_ns);
1192 
1193 		/* See what frame number we'll be at by the time we finish */
1194 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1195 
1196 		/* This is when we were scheduled to be on the wire */
1197 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1198 
1199 		/*
1200 		 * If we'd finish _after_ the frame we're scheduled in then
1201 		 * it's hopeless.  Just schedule right away and hope for the
1202 		 * best.  Note that it _might_ be wise to call back into the
1203 		 * scheduler to pick a better frame, but this is better than
1204 		 * nothing.
1205 		 */
1206 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1207 			dwc2_sch_vdbg(hsotg,
1208 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1209 				      chan->qh, wire_frame, frame_number,
1210 				      dwc2_frame_num_dec(frame_number,
1211 							 wire_frame));
1212 			wire_frame = frame_number;
1213 
1214 			/*
1215 			 * We picked a different frame number; communicate this
1216 			 * back to the scheduler so it doesn't try to schedule
1217 			 * another in the same frame.
1218 			 *
1219 			 * Remember that next_active_frame is 1 before the wire
1220 			 * frame.
1221 			 */
1222 			chan->qh->next_active_frame =
1223 				dwc2_frame_num_dec(frame_number, 1);
1224 		}
1225 
1226 		if (wire_frame & 1)
1227 			*hcchar |= HCCHAR_ODDFRM;
1228 		else
1229 			*hcchar &= ~HCCHAR_ODDFRM;
1230 	}
1231 }
1232 
1233 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1234 {
1235 	/* Set up the initial PID for the transfer */
1236 	if (chan->speed == USB_SPEED_HIGH) {
1237 		if (chan->ep_is_in) {
1238 			if (chan->multi_count == 1)
1239 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1240 			else if (chan->multi_count == 2)
1241 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1242 			else
1243 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1244 		} else {
1245 			if (chan->multi_count == 1)
1246 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1247 			else
1248 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1249 		}
1250 	} else {
1251 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1252 	}
1253 }
1254 
1255 /**
1256  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1257  * the Host Channel
1258  *
1259  * @hsotg: Programming view of DWC_otg controller
1260  * @chan:  Information needed to initialize the host channel
1261  *
1262  * This function should only be called in Slave mode. For a channel associated
1263  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1264  * associated with a periodic EP, the periodic Tx FIFO is written.
1265  *
1266  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1267  * the number of bytes written to the Tx FIFO.
1268  */
1269 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1270 				 struct dwc2_host_chan *chan)
1271 {
1272 	u32 i;
1273 	u32 remaining_count;
1274 	u32 byte_count;
1275 	u32 dword_count;
1276 	u32 __iomem *data_fifo;
1277 	u32 *data_buf = (u32 *)chan->xfer_buf;
1278 
1279 	if (dbg_hc(chan))
1280 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1281 
1282 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1283 
1284 	remaining_count = chan->xfer_len - chan->xfer_count;
1285 	if (remaining_count > chan->max_packet)
1286 		byte_count = chan->max_packet;
1287 	else
1288 		byte_count = remaining_count;
1289 
1290 	dword_count = (byte_count + 3) / 4;
1291 
1292 	if (((unsigned long)data_buf & 0x3) == 0) {
1293 		/* xfer_buf is DWORD aligned */
1294 		for (i = 0; i < dword_count; i++, data_buf++)
1295 			dwc2_writel(*data_buf, data_fifo);
1296 	} else {
1297 		/* xfer_buf is not DWORD aligned */
1298 		for (i = 0; i < dword_count; i++, data_buf++) {
1299 			u32 data = data_buf[0] | data_buf[1] << 8 |
1300 				   data_buf[2] << 16 | data_buf[3] << 24;
1301 			dwc2_writel(data, data_fifo);
1302 		}
1303 	}
1304 
1305 	chan->xfer_count += byte_count;
1306 	chan->xfer_buf += byte_count;
1307 }
1308 
1309 /**
1310  * dwc2_hc_do_ping() - Starts a PING transfer
1311  *
1312  * @hsotg: Programming view of DWC_otg controller
1313  * @chan:  Information needed to initialize the host channel
1314  *
1315  * This function should only be called in Slave mode. The Do Ping bit is set in
1316  * the HCTSIZ register, then the channel is enabled.
1317  */
1318 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1319 			    struct dwc2_host_chan *chan)
1320 {
1321 	u32 hcchar;
1322 	u32 hctsiz;
1323 
1324 	if (dbg_hc(chan))
1325 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1326 			 chan->hc_num);
1327 
1328 	hctsiz = TSIZ_DOPNG;
1329 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1330 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1331 
1332 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1333 	hcchar |= HCCHAR_CHENA;
1334 	hcchar &= ~HCCHAR_CHDIS;
1335 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1336 }
1337 
1338 /**
1339  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1340  * channel and starts the transfer
1341  *
1342  * @hsotg: Programming view of DWC_otg controller
1343  * @chan:  Information needed to initialize the host channel. The xfer_len value
1344  *         may be reduced to accommodate the max widths of the XferSize and
1345  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1346  *         changed to reflect the final xfer_len value.
1347  *
1348  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1349  * the caller must ensure that there is sufficient space in the request queue
1350  * and Tx Data FIFO.
1351  *
1352  * For an OUT transfer in Slave mode, it loads a data packet into the
1353  * appropriate FIFO. If necessary, additional data packets are loaded in the
1354  * Host ISR.
1355  *
1356  * For an IN transfer in Slave mode, a data packet is requested. The data
1357  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1358  * additional data packets are requested in the Host ISR.
1359  *
1360  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1361  * register along with a packet count of 1 and the channel is enabled. This
1362  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1363  * simply set to 0 since no data transfer occurs in this case.
1364  *
1365  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1366  * all the information required to perform the subsequent data transfer. In
1367  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1368  * controller performs the entire PING protocol, then starts the data
1369  * transfer.
1370  */
1371 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1372 				   struct dwc2_host_chan *chan)
1373 {
1374 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1375 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1376 	u32 hcchar;
1377 	u32 hctsiz = 0;
1378 	u16 num_packets;
1379 	u32 ec_mc;
1380 
1381 	if (dbg_hc(chan))
1382 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1383 
1384 	if (chan->do_ping) {
1385 		if (!hsotg->params.host_dma) {
1386 			if (dbg_hc(chan))
1387 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1388 			dwc2_hc_do_ping(hsotg, chan);
1389 			chan->xfer_started = 1;
1390 			return;
1391 		}
1392 
1393 		if (dbg_hc(chan))
1394 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1395 
1396 		hctsiz |= TSIZ_DOPNG;
1397 	}
1398 
1399 	if (chan->do_split) {
1400 		if (dbg_hc(chan))
1401 			dev_vdbg(hsotg->dev, "split\n");
1402 		num_packets = 1;
1403 
1404 		if (chan->complete_split && !chan->ep_is_in)
1405 			/*
1406 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1407 			 * core doesn't expect any data written to the FIFO
1408 			 */
1409 			chan->xfer_len = 0;
1410 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1411 			chan->xfer_len = chan->max_packet;
1412 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1413 			chan->xfer_len = 188;
1414 
1415 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1416 			  TSIZ_XFERSIZE_MASK;
1417 
1418 		/* For split set ec_mc for immediate retries */
1419 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1420 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1421 			ec_mc = 3;
1422 		else
1423 			ec_mc = 1;
1424 	} else {
1425 		if (dbg_hc(chan))
1426 			dev_vdbg(hsotg->dev, "no split\n");
1427 		/*
1428 		 * Ensure that the transfer length and packet count will fit
1429 		 * in the widths allocated for them in the HCTSIZn register
1430 		 */
1431 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1432 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1433 			/*
1434 			 * Make sure the transfer size is no larger than one
1435 			 * (micro)frame's worth of data. (A check was done
1436 			 * when the periodic transfer was accepted to ensure
1437 			 * that a (micro)frame's worth of data can be
1438 			 * programmed into a channel.)
1439 			 */
1440 			u32 max_periodic_len =
1441 				chan->multi_count * chan->max_packet;
1442 
1443 			if (chan->xfer_len > max_periodic_len)
1444 				chan->xfer_len = max_periodic_len;
1445 		} else if (chan->xfer_len > max_hc_xfer_size) {
1446 			/*
1447 			 * Make sure that xfer_len is a multiple of max packet
1448 			 * size
1449 			 */
1450 			chan->xfer_len =
1451 				max_hc_xfer_size - chan->max_packet + 1;
1452 		}
1453 
1454 		if (chan->xfer_len > 0) {
1455 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1456 					chan->max_packet;
1457 			if (num_packets > max_hc_pkt_count) {
1458 				num_packets = max_hc_pkt_count;
1459 				chan->xfer_len = num_packets * chan->max_packet;
1460 			}
1461 		} else {
1462 			/* Need 1 packet for transfer length of 0 */
1463 			num_packets = 1;
1464 		}
1465 
1466 		if (chan->ep_is_in)
1467 			/*
1468 			 * Always program an integral # of max packets for IN
1469 			 * transfers
1470 			 */
1471 			chan->xfer_len = num_packets * chan->max_packet;
1472 
1473 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1474 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1475 			/*
1476 			 * Make sure that the multi_count field matches the
1477 			 * actual transfer length
1478 			 */
1479 			chan->multi_count = num_packets;
1480 
1481 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1482 			dwc2_set_pid_isoc(chan);
1483 
1484 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1485 			  TSIZ_XFERSIZE_MASK;
1486 
1487 		/* The ec_mc gets the multi_count for non-split */
1488 		ec_mc = chan->multi_count;
1489 	}
1490 
1491 	chan->start_pkt_count = num_packets;
1492 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1493 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1494 		  TSIZ_SC_MC_PID_MASK;
1495 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1496 	if (dbg_hc(chan)) {
1497 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1498 			 hctsiz, chan->hc_num);
1499 
1500 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1501 			 chan->hc_num);
1502 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1503 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1504 			 TSIZ_XFERSIZE_SHIFT);
1505 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1506 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1507 			 TSIZ_PKTCNT_SHIFT);
1508 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1509 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1510 			 TSIZ_SC_MC_PID_SHIFT);
1511 	}
1512 
1513 	if (hsotg->params.host_dma) {
1514 		dwc2_writel((u32)chan->xfer_dma,
1515 			    hsotg->regs + HCDMA(chan->hc_num));
1516 		if (dbg_hc(chan))
1517 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1518 				 (unsigned long)chan->xfer_dma, chan->hc_num);
1519 	}
1520 
1521 	/* Start the split */
1522 	if (chan->do_split) {
1523 		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1524 
1525 		hcsplt |= HCSPLT_SPLTENA;
1526 		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1527 	}
1528 
1529 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1530 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1531 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1532 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1533 
1534 	if (hcchar & HCCHAR_CHDIS)
1535 		dev_warn(hsotg->dev,
1536 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1537 			 __func__, chan->hc_num, hcchar);
1538 
1539 	/* Set host channel enable after all other setup is complete */
1540 	hcchar |= HCCHAR_CHENA;
1541 	hcchar &= ~HCCHAR_CHDIS;
1542 
1543 	if (dbg_hc(chan))
1544 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1545 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1546 			 HCCHAR_MULTICNT_SHIFT);
1547 
1548 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1549 	if (dbg_hc(chan))
1550 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1551 			 chan->hc_num);
1552 
1553 	chan->xfer_started = 1;
1554 	chan->requests++;
1555 
1556 	if (!hsotg->params.host_dma &&
1557 	    !chan->ep_is_in && chan->xfer_len > 0)
1558 		/* Load OUT packet into the appropriate Tx FIFO */
1559 		dwc2_hc_write_packet(hsotg, chan);
1560 }
1561 
1562 /**
1563  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1564  * host channel and starts the transfer in Descriptor DMA mode
1565  *
1566  * @hsotg: Programming view of DWC_otg controller
1567  * @chan:  Information needed to initialize the host channel
1568  *
1569  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1570  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1571  * with micro-frame bitmap.
1572  *
1573  * Initializes HCDMA register with descriptor list address and CTD value then
1574  * starts the transfer via enabling the channel.
1575  */
1576 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1577 				 struct dwc2_host_chan *chan)
1578 {
1579 	u32 hcchar;
1580 	u32 hctsiz = 0;
1581 
1582 	if (chan->do_ping)
1583 		hctsiz |= TSIZ_DOPNG;
1584 
1585 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1586 		dwc2_set_pid_isoc(chan);
1587 
1588 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1589 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1590 		  TSIZ_SC_MC_PID_MASK;
1591 
1592 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1593 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1594 
1595 	/* Non-zero only for high-speed interrupt endpoints */
1596 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1597 
1598 	if (dbg_hc(chan)) {
1599 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1600 			 chan->hc_num);
1601 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1602 			 chan->data_pid_start);
1603 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1604 	}
1605 
1606 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1607 
1608 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1609 				   chan->desc_list_sz, DMA_TO_DEVICE);
1610 
1611 	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1612 
1613 	if (dbg_hc(chan))
1614 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1615 			 &chan->desc_list_addr, chan->hc_num);
1616 
1617 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1618 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1619 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1620 		  HCCHAR_MULTICNT_MASK;
1621 
1622 	if (hcchar & HCCHAR_CHDIS)
1623 		dev_warn(hsotg->dev,
1624 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1625 			 __func__, chan->hc_num, hcchar);
1626 
1627 	/* Set host channel enable after all other setup is complete */
1628 	hcchar |= HCCHAR_CHENA;
1629 	hcchar &= ~HCCHAR_CHDIS;
1630 
1631 	if (dbg_hc(chan))
1632 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1633 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1634 			 HCCHAR_MULTICNT_SHIFT);
1635 
1636 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1637 	if (dbg_hc(chan))
1638 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1639 			 chan->hc_num);
1640 
1641 	chan->xfer_started = 1;
1642 	chan->requests++;
1643 }
1644 
1645 /**
1646  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1647  * a previous call to dwc2_hc_start_transfer()
1648  *
1649  * @hsotg: Programming view of DWC_otg controller
1650  * @chan:  Information needed to initialize the host channel
1651  *
1652  * The caller must ensure there is sufficient space in the request queue and Tx
1653  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1654  * the controller acts autonomously to complete transfers programmed to a host
1655  * channel.
1656  *
1657  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1658  * if there is any data remaining to be queued. For an IN transfer, another
1659  * data packet is always requested. For the SETUP phase of a control transfer,
1660  * this function does nothing.
1661  *
1662  * Return: 1 if a new request is queued, 0 if no more requests are required
1663  * for this transfer
1664  */
1665 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1666 				     struct dwc2_host_chan *chan)
1667 {
1668 	if (dbg_hc(chan))
1669 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1670 			 chan->hc_num);
1671 
1672 	if (chan->do_split)
1673 		/* SPLITs always queue just once per channel */
1674 		return 0;
1675 
1676 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1677 		/* SETUPs are queued only once since they can't be NAK'd */
1678 		return 0;
1679 
1680 	if (chan->ep_is_in) {
1681 		/*
1682 		 * Always queue another request for other IN transfers. If
1683 		 * back-to-back INs are issued and NAKs are received for both,
1684 		 * the driver may still be processing the first NAK when the
1685 		 * second NAK is received. When the interrupt handler clears
1686 		 * the NAK interrupt for the first NAK, the second NAK will
1687 		 * not be seen. So we can't depend on the NAK interrupt
1688 		 * handler to requeue a NAK'd request. Instead, IN requests
1689 		 * are issued each time this function is called. When the
1690 		 * transfer completes, the extra requests for the channel will
1691 		 * be flushed.
1692 		 */
1693 		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1694 
1695 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1696 		hcchar |= HCCHAR_CHENA;
1697 		hcchar &= ~HCCHAR_CHDIS;
1698 		if (dbg_hc(chan))
1699 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1700 				 hcchar);
1701 		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1702 		chan->requests++;
1703 		return 1;
1704 	}
1705 
1706 	/* OUT transfers */
1707 
1708 	if (chan->xfer_count < chan->xfer_len) {
1709 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1710 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1711 			u32 hcchar = dwc2_readl(hsotg->regs +
1712 						HCCHAR(chan->hc_num));
1713 
1714 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1715 						   &hcchar);
1716 		}
1717 
1718 		/* Load OUT packet into the appropriate Tx FIFO */
1719 		dwc2_hc_write_packet(hsotg, chan);
1720 		chan->requests++;
1721 		return 1;
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 /*
1728  * =========================================================================
1729  *  HCD
1730  * =========================================================================
1731  */
1732 
1733 /*
1734  * Processes all the URBs in a single list of QHs. Completes them with
1735  * -ETIMEDOUT and frees the QTD.
1736  *
1737  * Must be called with interrupt disabled and spinlock held
1738  */
1739 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1740 				      struct list_head *qh_list)
1741 {
1742 	struct dwc2_qh *qh, *qh_tmp;
1743 	struct dwc2_qtd *qtd, *qtd_tmp;
1744 
1745 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1746 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1747 					 qtd_list_entry) {
1748 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1749 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1750 		}
1751 	}
1752 }
1753 
1754 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1755 			      struct list_head *qh_list)
1756 {
1757 	struct dwc2_qtd *qtd, *qtd_tmp;
1758 	struct dwc2_qh *qh, *qh_tmp;
1759 	unsigned long flags;
1760 
1761 	if (!qh_list->next)
1762 		/* The list hasn't been initialized yet */
1763 		return;
1764 
1765 	spin_lock_irqsave(&hsotg->lock, flags);
1766 
1767 	/* Ensure there are no QTDs or URBs left */
1768 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1769 
1770 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1771 		dwc2_hcd_qh_unlink(hsotg, qh);
1772 
1773 		/* Free each QTD in the QH's QTD list */
1774 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1775 					 qtd_list_entry)
1776 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1777 
1778 		if (qh->channel && qh->channel->qh == qh)
1779 			qh->channel->qh = NULL;
1780 
1781 		spin_unlock_irqrestore(&hsotg->lock, flags);
1782 		dwc2_hcd_qh_free(hsotg, qh);
1783 		spin_lock_irqsave(&hsotg->lock, flags);
1784 	}
1785 
1786 	spin_unlock_irqrestore(&hsotg->lock, flags);
1787 }
1788 
1789 /*
1790  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1791  * and periodic schedules. The QTD associated with each URB is removed from
1792  * the schedule and freed. This function may be called when a disconnect is
1793  * detected or when the HCD is being stopped.
1794  *
1795  * Must be called with interrupt disabled and spinlock held
1796  */
1797 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1798 {
1799 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1800 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1801 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1802 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1803 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1804 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1805 }
1806 
1807 /**
1808  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1809  *
1810  * @hsotg: Pointer to struct dwc2_hsotg
1811  */
1812 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1813 {
1814 	u32 hprt0;
1815 
1816 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1817 		/*
1818 		 * Reset the port. During a HNP mode switch the reset
1819 		 * needs to occur within 1ms and have a duration of at
1820 		 * least 50ms.
1821 		 */
1822 		hprt0 = dwc2_read_hprt0(hsotg);
1823 		hprt0 |= HPRT0_RST;
1824 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
1825 	}
1826 
1827 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1828 			   msecs_to_jiffies(50));
1829 }
1830 
1831 /* Must be called with interrupt disabled and spinlock held */
1832 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1833 {
1834 	int num_channels = hsotg->params.host_channels;
1835 	struct dwc2_host_chan *channel;
1836 	u32 hcchar;
1837 	int i;
1838 
1839 	if (!hsotg->params.host_dma) {
1840 		/* Flush out any channel requests in slave mode */
1841 		for (i = 0; i < num_channels; i++) {
1842 			channel = hsotg->hc_ptr_array[i];
1843 			if (!list_empty(&channel->hc_list_entry))
1844 				continue;
1845 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1846 			if (hcchar & HCCHAR_CHENA) {
1847 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1848 				hcchar |= HCCHAR_CHDIS;
1849 				dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1850 			}
1851 		}
1852 	}
1853 
1854 	for (i = 0; i < num_channels; i++) {
1855 		channel = hsotg->hc_ptr_array[i];
1856 		if (!list_empty(&channel->hc_list_entry))
1857 			continue;
1858 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1859 		if (hcchar & HCCHAR_CHENA) {
1860 			/* Halt the channel */
1861 			hcchar |= HCCHAR_CHDIS;
1862 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1863 		}
1864 
1865 		dwc2_hc_cleanup(hsotg, channel);
1866 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1867 		/*
1868 		 * Added for Descriptor DMA to prevent channel double cleanup in
1869 		 * release_channel_ddma(), which is called from ep_disable when
1870 		 * device disconnects
1871 		 */
1872 		channel->qh = NULL;
1873 	}
1874 	/* All channels have been freed, mark them available */
1875 	if (hsotg->params.uframe_sched) {
1876 		hsotg->available_host_channels =
1877 			hsotg->params.host_channels;
1878 	} else {
1879 		hsotg->non_periodic_channels = 0;
1880 		hsotg->periodic_channels = 0;
1881 	}
1882 }
1883 
1884 /**
1885  * dwc2_hcd_connect() - Handles connect of the HCD
1886  *
1887  * @hsotg: Pointer to struct dwc2_hsotg
1888  *
1889  * Must be called with interrupt disabled and spinlock held
1890  */
1891 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1892 {
1893 	if (hsotg->lx_state != DWC2_L0)
1894 		usb_hcd_resume_root_hub(hsotg->priv);
1895 
1896 	hsotg->flags.b.port_connect_status_change = 1;
1897 	hsotg->flags.b.port_connect_status = 1;
1898 }
1899 
1900 /**
1901  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1902  *
1903  * @hsotg: Pointer to struct dwc2_hsotg
1904  * @force: If true, we won't try to reconnect even if we see device connected.
1905  *
1906  * Must be called with interrupt disabled and spinlock held
1907  */
1908 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1909 {
1910 	u32 intr;
1911 	u32 hprt0;
1912 
1913 	/* Set status flags for the hub driver */
1914 	hsotg->flags.b.port_connect_status_change = 1;
1915 	hsotg->flags.b.port_connect_status = 0;
1916 
1917 	/*
1918 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1919 	 * interrupt mask and status bits and disabling subsequent host
1920 	 * channel interrupts.
1921 	 */
1922 	intr = dwc2_readl(hsotg->regs + GINTMSK);
1923 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1924 	dwc2_writel(intr, hsotg->regs + GINTMSK);
1925 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1926 	dwc2_writel(intr, hsotg->regs + GINTSTS);
1927 
1928 	/*
1929 	 * Turn off the vbus power only if the core has transitioned to device
1930 	 * mode. If still in host mode, need to keep power on to detect a
1931 	 * reconnection.
1932 	 */
1933 	if (dwc2_is_device_mode(hsotg)) {
1934 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1935 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1936 			dwc2_writel(0, hsotg->regs + HPRT0);
1937 		}
1938 
1939 		dwc2_disable_host_interrupts(hsotg);
1940 	}
1941 
1942 	/* Respond with an error status to all URBs in the schedule */
1943 	dwc2_kill_all_urbs(hsotg);
1944 
1945 	if (dwc2_is_host_mode(hsotg))
1946 		/* Clean up any host channels that were in use */
1947 		dwc2_hcd_cleanup_channels(hsotg);
1948 
1949 	dwc2_host_disconnect(hsotg);
1950 
1951 	/*
1952 	 * Add an extra check here to see if we're actually connected but
1953 	 * we don't have a detection interrupt pending.  This can happen if:
1954 	 *   1. hardware sees connect
1955 	 *   2. hardware sees disconnect
1956 	 *   3. hardware sees connect
1957 	 *   4. dwc2_port_intr() - clears connect interrupt
1958 	 *   5. dwc2_handle_common_intr() - calls here
1959 	 *
1960 	 * Without the extra check here we will end calling disconnect
1961 	 * and won't get any future interrupts to handle the connect.
1962 	 */
1963 	if (!force) {
1964 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1965 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1966 			dwc2_hcd_connect(hsotg);
1967 	}
1968 }
1969 
1970 /**
1971  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1972  *
1973  * @hsotg: Pointer to struct dwc2_hsotg
1974  */
1975 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1976 {
1977 	if (hsotg->bus_suspended) {
1978 		hsotg->flags.b.port_suspend_change = 1;
1979 		usb_hcd_resume_root_hub(hsotg->priv);
1980 	}
1981 
1982 	if (hsotg->lx_state == DWC2_L1)
1983 		hsotg->flags.b.port_l1_change = 1;
1984 }
1985 
1986 /**
1987  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1988  *
1989  * @hsotg: Pointer to struct dwc2_hsotg
1990  *
1991  * Must be called with interrupt disabled and spinlock held
1992  */
1993 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1994 {
1995 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1996 
1997 	/*
1998 	 * The root hub should be disconnected before this function is called.
1999 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2000 	 * and the QH lists (via ..._hcd_endpoint_disable).
2001 	 */
2002 
2003 	/* Turn off all host-specific interrupts */
2004 	dwc2_disable_host_interrupts(hsotg);
2005 
2006 	/* Turn off the vbus power */
2007 	dev_dbg(hsotg->dev, "PortPower off\n");
2008 	dwc2_writel(0, hsotg->regs + HPRT0);
2009 }
2010 
2011 /* Caller must hold driver lock */
2012 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2013 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2014 				struct dwc2_qtd *qtd)
2015 {
2016 	u32 intr_mask;
2017 	int retval;
2018 	int dev_speed;
2019 
2020 	if (!hsotg->flags.b.port_connect_status) {
2021 		/* No longer connected */
2022 		dev_err(hsotg->dev, "Not connected\n");
2023 		return -ENODEV;
2024 	}
2025 
2026 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2027 
2028 	/* Some configurations cannot support LS traffic on a FS root port */
2029 	if ((dev_speed == USB_SPEED_LOW) &&
2030 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2031 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2032 		u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2033 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2034 
2035 		if (prtspd == HPRT0_SPD_FULL_SPEED)
2036 			return -ENODEV;
2037 	}
2038 
2039 	if (!qtd)
2040 		return -EINVAL;
2041 
2042 	dwc2_hcd_qtd_init(qtd, urb);
2043 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2044 	if (retval) {
2045 		dev_err(hsotg->dev,
2046 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2047 			retval);
2048 		return retval;
2049 	}
2050 
2051 	intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2052 	if (!(intr_mask & GINTSTS_SOF)) {
2053 		enum dwc2_transaction_type tr_type;
2054 
2055 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2056 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2057 			/*
2058 			 * Do not schedule SG transactions until qtd has
2059 			 * URB_GIVEBACK_ASAP set
2060 			 */
2061 			return 0;
2062 
2063 		tr_type = dwc2_hcd_select_transactions(hsotg);
2064 		if (tr_type != DWC2_TRANSACTION_NONE)
2065 			dwc2_hcd_queue_transactions(hsotg, tr_type);
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 /* Must be called with interrupt disabled and spinlock held */
2072 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2073 				struct dwc2_hcd_urb *urb)
2074 {
2075 	struct dwc2_qh *qh;
2076 	struct dwc2_qtd *urb_qtd;
2077 
2078 	urb_qtd = urb->qtd;
2079 	if (!urb_qtd) {
2080 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2081 		return -EINVAL;
2082 	}
2083 
2084 	qh = urb_qtd->qh;
2085 	if (!qh) {
2086 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2087 		return -EINVAL;
2088 	}
2089 
2090 	urb->priv = NULL;
2091 
2092 	if (urb_qtd->in_process && qh->channel) {
2093 		dwc2_dump_channel_info(hsotg, qh->channel);
2094 
2095 		/* The QTD is in process (it has been assigned to a channel) */
2096 		if (hsotg->flags.b.port_connect_status)
2097 			/*
2098 			 * If still connected (i.e. in host mode), halt the
2099 			 * channel so it can be used for other transfers. If
2100 			 * no longer connected, the host registers can't be
2101 			 * written to halt the channel since the core is in
2102 			 * device mode.
2103 			 */
2104 			dwc2_hc_halt(hsotg, qh->channel,
2105 				     DWC2_HC_XFER_URB_DEQUEUE);
2106 	}
2107 
2108 	/*
2109 	 * Free the QTD and clean up the associated QH. Leave the QH in the
2110 	 * schedule if it has any remaining QTDs.
2111 	 */
2112 	if (!hsotg->params.dma_desc_enable) {
2113 		u8 in_process = urb_qtd->in_process;
2114 
2115 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2116 		if (in_process) {
2117 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2118 			qh->channel = NULL;
2119 		} else if (list_empty(&qh->qtd_list)) {
2120 			dwc2_hcd_qh_unlink(hsotg, qh);
2121 		}
2122 	} else {
2123 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2124 	}
2125 
2126 	return 0;
2127 }
2128 
2129 /* Must NOT be called with interrupt disabled or spinlock held */
2130 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2131 				     struct usb_host_endpoint *ep, int retry)
2132 {
2133 	struct dwc2_qtd *qtd, *qtd_tmp;
2134 	struct dwc2_qh *qh;
2135 	unsigned long flags;
2136 	int rc;
2137 
2138 	spin_lock_irqsave(&hsotg->lock, flags);
2139 
2140 	qh = ep->hcpriv;
2141 	if (!qh) {
2142 		rc = -EINVAL;
2143 		goto err;
2144 	}
2145 
2146 	while (!list_empty(&qh->qtd_list) && retry--) {
2147 		if (retry == 0) {
2148 			dev_err(hsotg->dev,
2149 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2150 			rc = -EBUSY;
2151 			goto err;
2152 		}
2153 
2154 		spin_unlock_irqrestore(&hsotg->lock, flags);
2155 		msleep(20);
2156 		spin_lock_irqsave(&hsotg->lock, flags);
2157 		qh = ep->hcpriv;
2158 		if (!qh) {
2159 			rc = -EINVAL;
2160 			goto err;
2161 		}
2162 	}
2163 
2164 	dwc2_hcd_qh_unlink(hsotg, qh);
2165 
2166 	/* Free each QTD in the QH's QTD list */
2167 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2168 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2169 
2170 	ep->hcpriv = NULL;
2171 
2172 	if (qh->channel && qh->channel->qh == qh)
2173 		qh->channel->qh = NULL;
2174 
2175 	spin_unlock_irqrestore(&hsotg->lock, flags);
2176 
2177 	dwc2_hcd_qh_free(hsotg, qh);
2178 
2179 	return 0;
2180 
2181 err:
2182 	ep->hcpriv = NULL;
2183 	spin_unlock_irqrestore(&hsotg->lock, flags);
2184 
2185 	return rc;
2186 }
2187 
2188 /* Must be called with interrupt disabled and spinlock held */
2189 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2190 				   struct usb_host_endpoint *ep)
2191 {
2192 	struct dwc2_qh *qh = ep->hcpriv;
2193 
2194 	if (!qh)
2195 		return -EINVAL;
2196 
2197 	qh->data_toggle = DWC2_HC_PID_DATA0;
2198 
2199 	return 0;
2200 }
2201 
2202 /**
2203  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2204  * prepares the core for device mode or host mode operation
2205  *
2206  * @hsotg:         Programming view of the DWC_otg controller
2207  * @initial_setup: If true then this is the first init for this instance.
2208  */
2209 static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2210 {
2211 	u32 usbcfg, otgctl;
2212 	int retval;
2213 
2214 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2215 
2216 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2217 
2218 	/* Set ULPI External VBUS bit if needed */
2219 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2220 	if (hsotg->params.phy_ulpi_ext_vbus)
2221 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2222 
2223 	/* Set external TS Dline pulsing bit if needed */
2224 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2225 	if (hsotg->params.ts_dline)
2226 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2227 
2228 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2229 
2230 	/*
2231 	 * Reset the Controller
2232 	 *
2233 	 * We only need to reset the controller if this is a re-init.
2234 	 * For the first init we know for sure that earlier code reset us (it
2235 	 * needed to in order to properly detect various parameters).
2236 	 */
2237 	if (!initial_setup) {
2238 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
2239 		if (retval) {
2240 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2241 				__func__);
2242 			return retval;
2243 		}
2244 	}
2245 
2246 	/*
2247 	 * This needs to happen in FS mode before any other programming occurs
2248 	 */
2249 	retval = dwc2_phy_init(hsotg, initial_setup);
2250 	if (retval)
2251 		return retval;
2252 
2253 	/* Program the GAHBCFG Register */
2254 	retval = dwc2_gahbcfg_init(hsotg);
2255 	if (retval)
2256 		return retval;
2257 
2258 	/* Program the GUSBCFG register */
2259 	dwc2_gusbcfg_init(hsotg);
2260 
2261 	/* Program the GOTGCTL register */
2262 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2263 	otgctl &= ~GOTGCTL_OTGVER;
2264 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2265 
2266 	/* Clear the SRP success bit for FS-I2c */
2267 	hsotg->srp_success = 0;
2268 
2269 	/* Enable common interrupts */
2270 	dwc2_enable_common_interrupts(hsotg);
2271 
2272 	/*
2273 	 * Do device or host initialization based on mode during PCD and
2274 	 * HCD initialization
2275 	 */
2276 	if (dwc2_is_host_mode(hsotg)) {
2277 		dev_dbg(hsotg->dev, "Host Mode\n");
2278 		hsotg->op_state = OTG_STATE_A_HOST;
2279 	} else {
2280 		dev_dbg(hsotg->dev, "Device Mode\n");
2281 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2282 	}
2283 
2284 	return 0;
2285 }
2286 
2287 /**
2288  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2289  * Host mode
2290  *
2291  * @hsotg: Programming view of DWC_otg controller
2292  *
2293  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2294  * request queues. Host channels are reset to ensure that they are ready for
2295  * performing transfers.
2296  */
2297 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2298 {
2299 	u32 hcfg, hfir, otgctl;
2300 
2301 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2302 
2303 	/* Restart the Phy Clock */
2304 	dwc2_writel(0, hsotg->regs + PCGCTL);
2305 
2306 	/* Initialize Host Configuration Register */
2307 	dwc2_init_fs_ls_pclk_sel(hsotg);
2308 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2309 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2310 		hcfg = dwc2_readl(hsotg->regs + HCFG);
2311 		hcfg |= HCFG_FSLSSUPP;
2312 		dwc2_writel(hcfg, hsotg->regs + HCFG);
2313 	}
2314 
2315 	/*
2316 	 * This bit allows dynamic reloading of the HFIR register during
2317 	 * runtime. This bit needs to be programmed during initial configuration
2318 	 * and its value must not be changed during runtime.
2319 	 */
2320 	if (hsotg->params.reload_ctl) {
2321 		hfir = dwc2_readl(hsotg->regs + HFIR);
2322 		hfir |= HFIR_RLDCTRL;
2323 		dwc2_writel(hfir, hsotg->regs + HFIR);
2324 	}
2325 
2326 	if (hsotg->params.dma_desc_enable) {
2327 		u32 op_mode = hsotg->hw_params.op_mode;
2328 
2329 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2330 		    !hsotg->hw_params.dma_desc_enable ||
2331 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2332 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2333 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2334 			dev_err(hsotg->dev,
2335 				"Hardware does not support descriptor DMA mode -\n");
2336 			dev_err(hsotg->dev,
2337 				"falling back to buffer DMA mode.\n");
2338 			hsotg->params.dma_desc_enable = false;
2339 		} else {
2340 			hcfg = dwc2_readl(hsotg->regs + HCFG);
2341 			hcfg |= HCFG_DESCDMA;
2342 			dwc2_writel(hcfg, hsotg->regs + HCFG);
2343 		}
2344 	}
2345 
2346 	/* Configure data FIFO sizes */
2347 	dwc2_config_fifos(hsotg);
2348 
2349 	/* TODO - check this */
2350 	/* Clear Host Set HNP Enable in the OTG Control Register */
2351 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2352 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2353 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2354 
2355 	/* Make sure the FIFOs are flushed */
2356 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2357 	dwc2_flush_rx_fifo(hsotg);
2358 
2359 	/* Clear Host Set HNP Enable in the OTG Control Register */
2360 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2361 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2362 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2363 
2364 	if (!hsotg->params.dma_desc_enable) {
2365 		int num_channels, i;
2366 		u32 hcchar;
2367 
2368 		/* Flush out any leftover queued requests */
2369 		num_channels = hsotg->params.host_channels;
2370 		for (i = 0; i < num_channels; i++) {
2371 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2372 			hcchar &= ~HCCHAR_CHENA;
2373 			hcchar |= HCCHAR_CHDIS;
2374 			hcchar &= ~HCCHAR_EPDIR;
2375 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2376 		}
2377 
2378 		/* Halt all channels to put them into a known state */
2379 		for (i = 0; i < num_channels; i++) {
2380 			int count = 0;
2381 
2382 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2383 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2384 			hcchar &= ~HCCHAR_EPDIR;
2385 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2386 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2387 				__func__, i);
2388 			do {
2389 				hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2390 				if (++count > 1000) {
2391 					dev_err(hsotg->dev,
2392 						"Unable to clear enable on channel %d\n",
2393 						i);
2394 					break;
2395 				}
2396 				udelay(1);
2397 			} while (hcchar & HCCHAR_CHENA);
2398 		}
2399 	}
2400 
2401 	/* Turn on the vbus power */
2402 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2403 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2404 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2405 
2406 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2407 			!!(hprt0 & HPRT0_PWR));
2408 		if (!(hprt0 & HPRT0_PWR)) {
2409 			hprt0 |= HPRT0_PWR;
2410 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
2411 		}
2412 	}
2413 
2414 	dwc2_enable_host_interrupts(hsotg);
2415 }
2416 
2417 /*
2418  * Initializes dynamic portions of the DWC_otg HCD state
2419  *
2420  * Must be called with interrupt disabled and spinlock held
2421  */
2422 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2423 {
2424 	struct dwc2_host_chan *chan, *chan_tmp;
2425 	int num_channels;
2426 	int i;
2427 
2428 	hsotg->flags.d32 = 0;
2429 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2430 
2431 	if (hsotg->params.uframe_sched) {
2432 		hsotg->available_host_channels =
2433 			hsotg->params.host_channels;
2434 	} else {
2435 		hsotg->non_periodic_channels = 0;
2436 		hsotg->periodic_channels = 0;
2437 	}
2438 
2439 	/*
2440 	 * Put all channels in the free channel list and clean up channel
2441 	 * states
2442 	 */
2443 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2444 				 hc_list_entry)
2445 		list_del_init(&chan->hc_list_entry);
2446 
2447 	num_channels = hsotg->params.host_channels;
2448 	for (i = 0; i < num_channels; i++) {
2449 		chan = hsotg->hc_ptr_array[i];
2450 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2451 		dwc2_hc_cleanup(hsotg, chan);
2452 	}
2453 
2454 	/* Initialize the DWC core for host mode operation */
2455 	dwc2_core_host_init(hsotg);
2456 }
2457 
2458 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2459 			       struct dwc2_host_chan *chan,
2460 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2461 {
2462 	int hub_addr, hub_port;
2463 
2464 	chan->do_split = 1;
2465 	chan->xact_pos = qtd->isoc_split_pos;
2466 	chan->complete_split = qtd->complete_split;
2467 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2468 	chan->hub_addr = (u8)hub_addr;
2469 	chan->hub_port = (u8)hub_port;
2470 }
2471 
2472 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2473 			      struct dwc2_host_chan *chan,
2474 			      struct dwc2_qtd *qtd)
2475 {
2476 	struct dwc2_hcd_urb *urb = qtd->urb;
2477 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2478 
2479 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2480 	case USB_ENDPOINT_XFER_CONTROL:
2481 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2482 
2483 		switch (qtd->control_phase) {
2484 		case DWC2_CONTROL_SETUP:
2485 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2486 			chan->do_ping = 0;
2487 			chan->ep_is_in = 0;
2488 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2489 			if (hsotg->params.host_dma)
2490 				chan->xfer_dma = urb->setup_dma;
2491 			else
2492 				chan->xfer_buf = urb->setup_packet;
2493 			chan->xfer_len = 8;
2494 			break;
2495 
2496 		case DWC2_CONTROL_DATA:
2497 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2498 			chan->data_pid_start = qtd->data_toggle;
2499 			break;
2500 
2501 		case DWC2_CONTROL_STATUS:
2502 			/*
2503 			 * Direction is opposite of data direction or IN if no
2504 			 * data
2505 			 */
2506 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2507 			if (urb->length == 0)
2508 				chan->ep_is_in = 1;
2509 			else
2510 				chan->ep_is_in =
2511 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2512 			if (chan->ep_is_in)
2513 				chan->do_ping = 0;
2514 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2515 			chan->xfer_len = 0;
2516 			if (hsotg->params.host_dma)
2517 				chan->xfer_dma = hsotg->status_buf_dma;
2518 			else
2519 				chan->xfer_buf = hsotg->status_buf;
2520 			break;
2521 		}
2522 		break;
2523 
2524 	case USB_ENDPOINT_XFER_BULK:
2525 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2526 		break;
2527 
2528 	case USB_ENDPOINT_XFER_INT:
2529 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2530 		break;
2531 
2532 	case USB_ENDPOINT_XFER_ISOC:
2533 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2534 		if (hsotg->params.dma_desc_enable)
2535 			break;
2536 
2537 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2538 		frame_desc->status = 0;
2539 
2540 		if (hsotg->params.host_dma) {
2541 			chan->xfer_dma = urb->dma;
2542 			chan->xfer_dma += frame_desc->offset +
2543 					qtd->isoc_split_offset;
2544 		} else {
2545 			chan->xfer_buf = urb->buf;
2546 			chan->xfer_buf += frame_desc->offset +
2547 					qtd->isoc_split_offset;
2548 		}
2549 
2550 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2551 
2552 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2553 			if (chan->xfer_len <= 188)
2554 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2555 			else
2556 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2557 		}
2558 		break;
2559 	}
2560 }
2561 
2562 #define DWC2_USB_DMA_ALIGN 4
2563 
2564 struct dma_aligned_buffer {
2565 	void *kmalloc_ptr;
2566 	void *old_xfer_buffer;
2567 	u8 data[0];
2568 };
2569 
2570 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2571 {
2572 	struct dma_aligned_buffer *temp;
2573 
2574 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2575 		return;
2576 
2577 	temp = container_of(urb->transfer_buffer,
2578 			    struct dma_aligned_buffer, data);
2579 
2580 	if (usb_urb_dir_in(urb))
2581 		memcpy(temp->old_xfer_buffer, temp->data,
2582 		       urb->transfer_buffer_length);
2583 	urb->transfer_buffer = temp->old_xfer_buffer;
2584 	kfree(temp->kmalloc_ptr);
2585 
2586 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2587 }
2588 
2589 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2590 {
2591 	struct dma_aligned_buffer *temp, *kmalloc_ptr;
2592 	size_t kmalloc_size;
2593 
2594 	if (urb->num_sgs || urb->sg ||
2595 	    urb->transfer_buffer_length == 0 ||
2596 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2597 		return 0;
2598 
2599 	/* Allocate a buffer with enough padding for alignment */
2600 	kmalloc_size = urb->transfer_buffer_length +
2601 		sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2602 
2603 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2604 	if (!kmalloc_ptr)
2605 		return -ENOMEM;
2606 
2607 	/* Position our struct dma_aligned_buffer such that data is aligned */
2608 	temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2609 	temp->kmalloc_ptr = kmalloc_ptr;
2610 	temp->old_xfer_buffer = urb->transfer_buffer;
2611 	if (usb_urb_dir_out(urb))
2612 		memcpy(temp->data, urb->transfer_buffer,
2613 		       urb->transfer_buffer_length);
2614 	urb->transfer_buffer = temp->data;
2615 
2616 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2617 
2618 	return 0;
2619 }
2620 
2621 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2622 				gfp_t mem_flags)
2623 {
2624 	int ret;
2625 
2626 	/* We assume setup_dma is always aligned; warn if not */
2627 	WARN_ON_ONCE(urb->setup_dma &&
2628 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2629 
2630 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2631 	if (ret)
2632 		return ret;
2633 
2634 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2635 	if (ret)
2636 		dwc2_free_dma_aligned_buffer(urb);
2637 
2638 	return ret;
2639 }
2640 
2641 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2642 {
2643 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2644 	dwc2_free_dma_aligned_buffer(urb);
2645 }
2646 
2647 /**
2648  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2649  * channel and initializes the host channel to perform the transactions. The
2650  * host channel is removed from the free list.
2651  *
2652  * @hsotg: The HCD state structure
2653  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2654  *         to a free host channel
2655  */
2656 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2657 {
2658 	struct dwc2_host_chan *chan;
2659 	struct dwc2_hcd_urb *urb;
2660 	struct dwc2_qtd *qtd;
2661 
2662 	if (dbg_qh(qh))
2663 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2664 
2665 	if (list_empty(&qh->qtd_list)) {
2666 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2667 		return -ENOMEM;
2668 	}
2669 
2670 	if (list_empty(&hsotg->free_hc_list)) {
2671 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2672 		return -ENOMEM;
2673 	}
2674 
2675 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2676 				hc_list_entry);
2677 
2678 	/* Remove host channel from free list */
2679 	list_del_init(&chan->hc_list_entry);
2680 
2681 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2682 	urb = qtd->urb;
2683 	qh->channel = chan;
2684 	qtd->in_process = 1;
2685 
2686 	/*
2687 	 * Use usb_pipedevice to determine device address. This address is
2688 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2689 	 */
2690 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2691 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2692 	chan->speed = qh->dev_speed;
2693 	chan->max_packet = dwc2_max_packet(qh->maxp);
2694 
2695 	chan->xfer_started = 0;
2696 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2697 	chan->error_state = (qtd->error_count > 0);
2698 	chan->halt_on_queue = 0;
2699 	chan->halt_pending = 0;
2700 	chan->requests = 0;
2701 
2702 	/*
2703 	 * The following values may be modified in the transfer type section
2704 	 * below. The xfer_len value may be reduced when the transfer is
2705 	 * started to accommodate the max widths of the XferSize and PktCnt
2706 	 * fields in the HCTSIZn register.
2707 	 */
2708 
2709 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2710 	if (chan->ep_is_in)
2711 		chan->do_ping = 0;
2712 	else
2713 		chan->do_ping = qh->ping_state;
2714 
2715 	chan->data_pid_start = qh->data_toggle;
2716 	chan->multi_count = 1;
2717 
2718 	if (urb->actual_length > urb->length &&
2719 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2720 		urb->actual_length = urb->length;
2721 
2722 	if (hsotg->params.host_dma)
2723 		chan->xfer_dma = urb->dma + urb->actual_length;
2724 	else
2725 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2726 
2727 	chan->xfer_len = urb->length - urb->actual_length;
2728 	chan->xfer_count = 0;
2729 
2730 	/* Set the split attributes if required */
2731 	if (qh->do_split)
2732 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2733 	else
2734 		chan->do_split = 0;
2735 
2736 	/* Set the transfer attributes */
2737 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2738 
2739 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2740 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2741 		/*
2742 		 * This value may be modified when the transfer is started
2743 		 * to reflect the actual transfer length
2744 		 */
2745 		chan->multi_count = dwc2_hb_mult(qh->maxp);
2746 
2747 	if (hsotg->params.dma_desc_enable) {
2748 		chan->desc_list_addr = qh->desc_list_dma;
2749 		chan->desc_list_sz = qh->desc_list_sz;
2750 	}
2751 
2752 	dwc2_hc_init(hsotg, chan);
2753 	chan->qh = qh;
2754 
2755 	return 0;
2756 }
2757 
2758 /**
2759  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2760  * schedule and assigns them to available host channels. Called from the HCD
2761  * interrupt handler functions.
2762  *
2763  * @hsotg: The HCD state structure
2764  *
2765  * Return: The types of new transactions that were assigned to host channels
2766  */
2767 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2768 		struct dwc2_hsotg *hsotg)
2769 {
2770 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2771 	struct list_head *qh_ptr;
2772 	struct dwc2_qh *qh;
2773 	int num_channels;
2774 
2775 #ifdef DWC2_DEBUG_SOF
2776 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2777 #endif
2778 
2779 	/* Process entries in the periodic ready list */
2780 	qh_ptr = hsotg->periodic_sched_ready.next;
2781 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2782 		if (list_empty(&hsotg->free_hc_list))
2783 			break;
2784 		if (hsotg->params.uframe_sched) {
2785 			if (hsotg->available_host_channels <= 1)
2786 				break;
2787 			hsotg->available_host_channels--;
2788 		}
2789 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2790 		if (dwc2_assign_and_init_hc(hsotg, qh))
2791 			break;
2792 
2793 		/*
2794 		 * Move the QH from the periodic ready schedule to the
2795 		 * periodic assigned schedule
2796 		 */
2797 		qh_ptr = qh_ptr->next;
2798 		list_move_tail(&qh->qh_list_entry,
2799 			       &hsotg->periodic_sched_assigned);
2800 		ret_val = DWC2_TRANSACTION_PERIODIC;
2801 	}
2802 
2803 	/*
2804 	 * Process entries in the inactive portion of the non-periodic
2805 	 * schedule. Some free host channels may not be used if they are
2806 	 * reserved for periodic transfers.
2807 	 */
2808 	num_channels = hsotg->params.host_channels;
2809 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2810 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2811 		if (!hsotg->params.uframe_sched &&
2812 		    hsotg->non_periodic_channels >= num_channels -
2813 						hsotg->periodic_channels)
2814 			break;
2815 		if (list_empty(&hsotg->free_hc_list))
2816 			break;
2817 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2818 		if (hsotg->params.uframe_sched) {
2819 			if (hsotg->available_host_channels < 1)
2820 				break;
2821 			hsotg->available_host_channels--;
2822 		}
2823 
2824 		if (dwc2_assign_and_init_hc(hsotg, qh))
2825 			break;
2826 
2827 		/*
2828 		 * Move the QH from the non-periodic inactive schedule to the
2829 		 * non-periodic active schedule
2830 		 */
2831 		qh_ptr = qh_ptr->next;
2832 		list_move_tail(&qh->qh_list_entry,
2833 			       &hsotg->non_periodic_sched_active);
2834 
2835 		if (ret_val == DWC2_TRANSACTION_NONE)
2836 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2837 		else
2838 			ret_val = DWC2_TRANSACTION_ALL;
2839 
2840 		if (!hsotg->params.uframe_sched)
2841 			hsotg->non_periodic_channels++;
2842 	}
2843 
2844 	return ret_val;
2845 }
2846 
2847 /**
2848  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2849  * a host channel associated with either a periodic or non-periodic transfer
2850  *
2851  * @hsotg: The HCD state structure
2852  * @chan:  Host channel descriptor associated with either a periodic or
2853  *         non-periodic transfer
2854  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2855  *                     for periodic transfers or the non-periodic Tx FIFO
2856  *                     for non-periodic transfers
2857  *
2858  * Return: 1 if a request is queued and more requests may be needed to
2859  * complete the transfer, 0 if no more requests are required for this
2860  * transfer, -1 if there is insufficient space in the Tx FIFO
2861  *
2862  * This function assumes that there is space available in the appropriate
2863  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2864  * it checks whether space is available in the appropriate Tx FIFO.
2865  *
2866  * Must be called with interrupt disabled and spinlock held
2867  */
2868 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2869 				  struct dwc2_host_chan *chan,
2870 				  u16 fifo_dwords_avail)
2871 {
2872 	int retval = 0;
2873 
2874 	if (chan->do_split)
2875 		/* Put ourselves on the list to keep order straight */
2876 		list_move_tail(&chan->split_order_list_entry,
2877 			       &hsotg->split_order);
2878 
2879 	if (hsotg->params.host_dma) {
2880 		if (hsotg->params.dma_desc_enable) {
2881 			if (!chan->xfer_started ||
2882 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2883 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2884 				chan->qh->ping_state = 0;
2885 			}
2886 		} else if (!chan->xfer_started) {
2887 			dwc2_hc_start_transfer(hsotg, chan);
2888 			chan->qh->ping_state = 0;
2889 		}
2890 	} else if (chan->halt_pending) {
2891 		/* Don't queue a request if the channel has been halted */
2892 	} else if (chan->halt_on_queue) {
2893 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2894 	} else if (chan->do_ping) {
2895 		if (!chan->xfer_started)
2896 			dwc2_hc_start_transfer(hsotg, chan);
2897 	} else if (!chan->ep_is_in ||
2898 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2899 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2900 			if (!chan->xfer_started) {
2901 				dwc2_hc_start_transfer(hsotg, chan);
2902 				retval = 1;
2903 			} else {
2904 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2905 			}
2906 		} else {
2907 			retval = -1;
2908 		}
2909 	} else {
2910 		if (!chan->xfer_started) {
2911 			dwc2_hc_start_transfer(hsotg, chan);
2912 			retval = 1;
2913 		} else {
2914 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2915 		}
2916 	}
2917 
2918 	return retval;
2919 }
2920 
2921 /*
2922  * Processes periodic channels for the next frame and queues transactions for
2923  * these channels to the DWC_otg controller. After queueing transactions, the
2924  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2925  * to queue as Periodic Tx FIFO or request queue space becomes available.
2926  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2927  *
2928  * Must be called with interrupt disabled and spinlock held
2929  */
2930 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2931 {
2932 	struct list_head *qh_ptr;
2933 	struct dwc2_qh *qh;
2934 	u32 tx_status;
2935 	u32 fspcavail;
2936 	u32 gintmsk;
2937 	int status;
2938 	bool no_queue_space = false;
2939 	bool no_fifo_space = false;
2940 	u32 qspcavail;
2941 
2942 	/* If empty list then just adjust interrupt enables */
2943 	if (list_empty(&hsotg->periodic_sched_assigned))
2944 		goto exit;
2945 
2946 	if (dbg_perio())
2947 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2948 
2949 	tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2950 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2951 		    TXSTS_QSPCAVAIL_SHIFT;
2952 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2953 		    TXSTS_FSPCAVAIL_SHIFT;
2954 
2955 	if (dbg_perio()) {
2956 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2957 			 qspcavail);
2958 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2959 			 fspcavail);
2960 	}
2961 
2962 	qh_ptr = hsotg->periodic_sched_assigned.next;
2963 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2964 		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2965 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2966 			    TXSTS_QSPCAVAIL_SHIFT;
2967 		if (qspcavail == 0) {
2968 			no_queue_space = true;
2969 			break;
2970 		}
2971 
2972 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2973 		if (!qh->channel) {
2974 			qh_ptr = qh_ptr->next;
2975 			continue;
2976 		}
2977 
2978 		/* Make sure EP's TT buffer is clean before queueing qtds */
2979 		if (qh->tt_buffer_dirty) {
2980 			qh_ptr = qh_ptr->next;
2981 			continue;
2982 		}
2983 
2984 		/*
2985 		 * Set a flag if we're queuing high-bandwidth in slave mode.
2986 		 * The flag prevents any halts to get into the request queue in
2987 		 * the middle of multiple high-bandwidth packets getting queued.
2988 		 */
2989 		if (!hsotg->params.host_dma &&
2990 		    qh->channel->multi_count > 1)
2991 			hsotg->queuing_high_bandwidth = 1;
2992 
2993 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2994 			    TXSTS_FSPCAVAIL_SHIFT;
2995 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2996 		if (status < 0) {
2997 			no_fifo_space = true;
2998 			break;
2999 		}
3000 
3001 		/*
3002 		 * In Slave mode, stay on the current transfer until there is
3003 		 * nothing more to do or the high-bandwidth request count is
3004 		 * reached. In DMA mode, only need to queue one request. The
3005 		 * controller automatically handles multiple packets for
3006 		 * high-bandwidth transfers.
3007 		 */
3008 		if (hsotg->params.host_dma || status == 0 ||
3009 		    qh->channel->requests == qh->channel->multi_count) {
3010 			qh_ptr = qh_ptr->next;
3011 			/*
3012 			 * Move the QH from the periodic assigned schedule to
3013 			 * the periodic queued schedule
3014 			 */
3015 			list_move_tail(&qh->qh_list_entry,
3016 				       &hsotg->periodic_sched_queued);
3017 
3018 			/* done queuing high bandwidth */
3019 			hsotg->queuing_high_bandwidth = 0;
3020 		}
3021 	}
3022 
3023 exit:
3024 	if (no_queue_space || no_fifo_space ||
3025 	    (!hsotg->params.host_dma &&
3026 	     !list_empty(&hsotg->periodic_sched_assigned))) {
3027 		/*
3028 		 * May need to queue more transactions as the request
3029 		 * queue or Tx FIFO empties. Enable the periodic Tx
3030 		 * FIFO empty interrupt. (Always use the half-empty
3031 		 * level to ensure that new requests are loaded as
3032 		 * soon as possible.)
3033 		 */
3034 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3035 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3036 			gintmsk |= GINTSTS_PTXFEMP;
3037 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3038 		}
3039 	} else {
3040 		/*
3041 		 * Disable the Tx FIFO empty interrupt since there are
3042 		 * no more transactions that need to be queued right
3043 		 * now. This function is called from interrupt
3044 		 * handlers to queue more transactions as transfer
3045 		 * states change.
3046 		 */
3047 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3048 		if (gintmsk & GINTSTS_PTXFEMP) {
3049 			gintmsk &= ~GINTSTS_PTXFEMP;
3050 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3051 		}
3052 	}
3053 }
3054 
3055 /*
3056  * Processes active non-periodic channels and queues transactions for these
3057  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3058  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3059  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3060  * FIFO Empty interrupt is disabled.
3061  *
3062  * Must be called with interrupt disabled and spinlock held
3063  */
3064 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3065 {
3066 	struct list_head *orig_qh_ptr;
3067 	struct dwc2_qh *qh;
3068 	u32 tx_status;
3069 	u32 qspcavail;
3070 	u32 fspcavail;
3071 	u32 gintmsk;
3072 	int status;
3073 	int no_queue_space = 0;
3074 	int no_fifo_space = 0;
3075 	int more_to_do = 0;
3076 
3077 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3078 
3079 	tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3080 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3081 		    TXSTS_QSPCAVAIL_SHIFT;
3082 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3083 		    TXSTS_FSPCAVAIL_SHIFT;
3084 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3085 		 qspcavail);
3086 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3087 		 fspcavail);
3088 
3089 	/*
3090 	 * Keep track of the starting point. Skip over the start-of-list
3091 	 * entry.
3092 	 */
3093 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3094 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3095 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3096 
3097 	/*
3098 	 * Process once through the active list or until no more space is
3099 	 * available in the request queue or the Tx FIFO
3100 	 */
3101 	do {
3102 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3103 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3104 			    TXSTS_QSPCAVAIL_SHIFT;
3105 		if (!hsotg->params.host_dma && qspcavail == 0) {
3106 			no_queue_space = 1;
3107 			break;
3108 		}
3109 
3110 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3111 				qh_list_entry);
3112 		if (!qh->channel)
3113 			goto next;
3114 
3115 		/* Make sure EP's TT buffer is clean before queueing qtds */
3116 		if (qh->tt_buffer_dirty)
3117 			goto next;
3118 
3119 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3120 			    TXSTS_FSPCAVAIL_SHIFT;
3121 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3122 
3123 		if (status > 0) {
3124 			more_to_do = 1;
3125 		} else if (status < 0) {
3126 			no_fifo_space = 1;
3127 			break;
3128 		}
3129 next:
3130 		/* Advance to next QH, skipping start-of-list entry */
3131 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3132 		if (hsotg->non_periodic_qh_ptr ==
3133 				&hsotg->non_periodic_sched_active)
3134 			hsotg->non_periodic_qh_ptr =
3135 					hsotg->non_periodic_qh_ptr->next;
3136 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3137 
3138 	if (!hsotg->params.host_dma) {
3139 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3140 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3141 			    TXSTS_QSPCAVAIL_SHIFT;
3142 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3143 			    TXSTS_FSPCAVAIL_SHIFT;
3144 		dev_vdbg(hsotg->dev,
3145 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3146 			 qspcavail);
3147 		dev_vdbg(hsotg->dev,
3148 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3149 			 fspcavail);
3150 
3151 		if (more_to_do || no_queue_space || no_fifo_space) {
3152 			/*
3153 			 * May need to queue more transactions as the request
3154 			 * queue or Tx FIFO empties. Enable the non-periodic
3155 			 * Tx FIFO empty interrupt. (Always use the half-empty
3156 			 * level to ensure that new requests are loaded as
3157 			 * soon as possible.)
3158 			 */
3159 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3160 			gintmsk |= GINTSTS_NPTXFEMP;
3161 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3162 		} else {
3163 			/*
3164 			 * Disable the Tx FIFO empty interrupt since there are
3165 			 * no more transactions that need to be queued right
3166 			 * now. This function is called from interrupt
3167 			 * handlers to queue more transactions as transfer
3168 			 * states change.
3169 			 */
3170 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3171 			gintmsk &= ~GINTSTS_NPTXFEMP;
3172 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3173 		}
3174 	}
3175 }
3176 
3177 /**
3178  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3179  * and queues transactions for these channels to the DWC_otg controller. Called
3180  * from the HCD interrupt handler functions.
3181  *
3182  * @hsotg:   The HCD state structure
3183  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3184  *           or both)
3185  *
3186  * Must be called with interrupt disabled and spinlock held
3187  */
3188 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3189 				 enum dwc2_transaction_type tr_type)
3190 {
3191 #ifdef DWC2_DEBUG_SOF
3192 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3193 #endif
3194 	/* Process host channels associated with periodic transfers */
3195 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3196 	    tr_type == DWC2_TRANSACTION_ALL)
3197 		dwc2_process_periodic_channels(hsotg);
3198 
3199 	/* Process host channels associated with non-periodic transfers */
3200 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3201 	    tr_type == DWC2_TRANSACTION_ALL) {
3202 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3203 			dwc2_process_non_periodic_channels(hsotg);
3204 		} else {
3205 			/*
3206 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3207 			 * there are no non-periodic transfers to process
3208 			 */
3209 			u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3210 
3211 			gintmsk &= ~GINTSTS_NPTXFEMP;
3212 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3213 		}
3214 	}
3215 }
3216 
3217 static void dwc2_conn_id_status_change(struct work_struct *work)
3218 {
3219 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3220 						wf_otg);
3221 	u32 count = 0;
3222 	u32 gotgctl;
3223 	unsigned long flags;
3224 
3225 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3226 
3227 	gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3228 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3229 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3230 		!!(gotgctl & GOTGCTL_CONID_B));
3231 
3232 	/* B-Device connector (Device Mode) */
3233 	if (gotgctl & GOTGCTL_CONID_B) {
3234 		/* Wait for switch to device mode */
3235 		dev_dbg(hsotg->dev, "connId B\n");
3236 		if (hsotg->bus_suspended) {
3237 			dev_info(hsotg->dev,
3238 				 "Do port resume before switching to device mode\n");
3239 			dwc2_port_resume(hsotg);
3240 		}
3241 		while (!dwc2_is_device_mode(hsotg)) {
3242 			dev_info(hsotg->dev,
3243 				 "Waiting for Peripheral Mode, Mode=%s\n",
3244 				 dwc2_is_host_mode(hsotg) ? "Host" :
3245 				 "Peripheral");
3246 			msleep(20);
3247 			/*
3248 			 * Sometimes the initial GOTGCTRL read is wrong, so
3249 			 * check it again and jump to host mode if that was
3250 			 * the case.
3251 			 */
3252 			gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3253 			if (!(gotgctl & GOTGCTL_CONID_B))
3254 				goto host;
3255 			if (++count > 250)
3256 				break;
3257 		}
3258 		if (count > 250)
3259 			dev_err(hsotg->dev,
3260 				"Connection id status change timed out\n");
3261 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3262 		dwc2_core_init(hsotg, false);
3263 		dwc2_enable_global_interrupts(hsotg);
3264 		spin_lock_irqsave(&hsotg->lock, flags);
3265 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3266 		spin_unlock_irqrestore(&hsotg->lock, flags);
3267 		dwc2_hsotg_core_connect(hsotg);
3268 	} else {
3269 host:
3270 		/* A-Device connector (Host Mode) */
3271 		dev_dbg(hsotg->dev, "connId A\n");
3272 		while (!dwc2_is_host_mode(hsotg)) {
3273 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3274 				 dwc2_is_host_mode(hsotg) ?
3275 				 "Host" : "Peripheral");
3276 			msleep(20);
3277 			if (++count > 250)
3278 				break;
3279 		}
3280 		if (count > 250)
3281 			dev_err(hsotg->dev,
3282 				"Connection id status change timed out\n");
3283 		hsotg->op_state = OTG_STATE_A_HOST;
3284 
3285 		/* Initialize the Core for Host mode */
3286 		dwc2_core_init(hsotg, false);
3287 		dwc2_enable_global_interrupts(hsotg);
3288 		dwc2_hcd_start(hsotg);
3289 	}
3290 }
3291 
3292 static void dwc2_wakeup_detected(unsigned long data)
3293 {
3294 	struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
3295 	u32 hprt0;
3296 
3297 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3298 
3299 	/*
3300 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3301 	 * so that OPT tests pass with all PHYs.)
3302 	 */
3303 	hprt0 = dwc2_read_hprt0(hsotg);
3304 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3305 	hprt0 &= ~HPRT0_RES;
3306 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3307 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3308 		dwc2_readl(hsotg->regs + HPRT0));
3309 
3310 	dwc2_hcd_rem_wakeup(hsotg);
3311 	hsotg->bus_suspended = false;
3312 
3313 	/* Change to L0 state */
3314 	hsotg->lx_state = DWC2_L0;
3315 }
3316 
3317 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3318 {
3319 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3320 
3321 	return hcd->self.b_hnp_enable;
3322 }
3323 
3324 /* Must NOT be called with interrupt disabled or spinlock held */
3325 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3326 {
3327 	unsigned long flags;
3328 	u32 hprt0;
3329 	u32 pcgctl;
3330 	u32 gotgctl;
3331 
3332 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3333 
3334 	spin_lock_irqsave(&hsotg->lock, flags);
3335 
3336 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3337 		gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3338 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3339 		dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3340 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3341 	}
3342 
3343 	hprt0 = dwc2_read_hprt0(hsotg);
3344 	hprt0 |= HPRT0_SUSP;
3345 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3346 
3347 	hsotg->bus_suspended = true;
3348 
3349 	/*
3350 	 * If hibernation is supported, Phy clock will be suspended
3351 	 * after registers are backuped.
3352 	 */
3353 	if (!hsotg->params.hibernation) {
3354 		/* Suspend the Phy Clock */
3355 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3356 		pcgctl |= PCGCTL_STOPPCLK;
3357 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3358 		udelay(10);
3359 	}
3360 
3361 	/* For HNP the bus must be suspended for at least 200ms */
3362 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3363 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3364 		pcgctl &= ~PCGCTL_STOPPCLK;
3365 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3366 
3367 		spin_unlock_irqrestore(&hsotg->lock, flags);
3368 
3369 		msleep(200);
3370 	} else {
3371 		spin_unlock_irqrestore(&hsotg->lock, flags);
3372 	}
3373 }
3374 
3375 /* Must NOT be called with interrupt disabled or spinlock held */
3376 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3377 {
3378 	unsigned long flags;
3379 	u32 hprt0;
3380 	u32 pcgctl;
3381 
3382 	spin_lock_irqsave(&hsotg->lock, flags);
3383 
3384 	/*
3385 	 * If hibernation is supported, Phy clock is already resumed
3386 	 * after registers restore.
3387 	 */
3388 	if (!hsotg->params.hibernation) {
3389 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3390 		pcgctl &= ~PCGCTL_STOPPCLK;
3391 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3392 		spin_unlock_irqrestore(&hsotg->lock, flags);
3393 		msleep(20);
3394 		spin_lock_irqsave(&hsotg->lock, flags);
3395 	}
3396 
3397 	hprt0 = dwc2_read_hprt0(hsotg);
3398 	hprt0 |= HPRT0_RES;
3399 	hprt0 &= ~HPRT0_SUSP;
3400 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3401 	spin_unlock_irqrestore(&hsotg->lock, flags);
3402 
3403 	msleep(USB_RESUME_TIMEOUT);
3404 
3405 	spin_lock_irqsave(&hsotg->lock, flags);
3406 	hprt0 = dwc2_read_hprt0(hsotg);
3407 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3408 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3409 	hsotg->bus_suspended = false;
3410 	spin_unlock_irqrestore(&hsotg->lock, flags);
3411 }
3412 
3413 /* Handles hub class-specific requests */
3414 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3415 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3416 {
3417 	struct usb_hub_descriptor *hub_desc;
3418 	int retval = 0;
3419 	u32 hprt0;
3420 	u32 port_status;
3421 	u32 speed;
3422 	u32 pcgctl;
3423 
3424 	switch (typereq) {
3425 	case ClearHubFeature:
3426 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3427 
3428 		switch (wvalue) {
3429 		case C_HUB_LOCAL_POWER:
3430 		case C_HUB_OVER_CURRENT:
3431 			/* Nothing required here */
3432 			break;
3433 
3434 		default:
3435 			retval = -EINVAL;
3436 			dev_err(hsotg->dev,
3437 				"ClearHubFeature request %1xh unknown\n",
3438 				wvalue);
3439 		}
3440 		break;
3441 
3442 	case ClearPortFeature:
3443 		if (wvalue != USB_PORT_FEAT_L1)
3444 			if (!windex || windex > 1)
3445 				goto error;
3446 		switch (wvalue) {
3447 		case USB_PORT_FEAT_ENABLE:
3448 			dev_dbg(hsotg->dev,
3449 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3450 			hprt0 = dwc2_read_hprt0(hsotg);
3451 			hprt0 |= HPRT0_ENA;
3452 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3453 			break;
3454 
3455 		case USB_PORT_FEAT_SUSPEND:
3456 			dev_dbg(hsotg->dev,
3457 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3458 
3459 			if (hsotg->bus_suspended)
3460 				dwc2_port_resume(hsotg);
3461 			break;
3462 
3463 		case USB_PORT_FEAT_POWER:
3464 			dev_dbg(hsotg->dev,
3465 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3466 			hprt0 = dwc2_read_hprt0(hsotg);
3467 			hprt0 &= ~HPRT0_PWR;
3468 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3469 			break;
3470 
3471 		case USB_PORT_FEAT_INDICATOR:
3472 			dev_dbg(hsotg->dev,
3473 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3474 			/* Port indicator not supported */
3475 			break;
3476 
3477 		case USB_PORT_FEAT_C_CONNECTION:
3478 			/*
3479 			 * Clears driver's internal Connect Status Change flag
3480 			 */
3481 			dev_dbg(hsotg->dev,
3482 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3483 			hsotg->flags.b.port_connect_status_change = 0;
3484 			break;
3485 
3486 		case USB_PORT_FEAT_C_RESET:
3487 			/* Clears driver's internal Port Reset Change flag */
3488 			dev_dbg(hsotg->dev,
3489 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3490 			hsotg->flags.b.port_reset_change = 0;
3491 			break;
3492 
3493 		case USB_PORT_FEAT_C_ENABLE:
3494 			/*
3495 			 * Clears the driver's internal Port Enable/Disable
3496 			 * Change flag
3497 			 */
3498 			dev_dbg(hsotg->dev,
3499 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3500 			hsotg->flags.b.port_enable_change = 0;
3501 			break;
3502 
3503 		case USB_PORT_FEAT_C_SUSPEND:
3504 			/*
3505 			 * Clears the driver's internal Port Suspend Change
3506 			 * flag, which is set when resume signaling on the host
3507 			 * port is complete
3508 			 */
3509 			dev_dbg(hsotg->dev,
3510 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3511 			hsotg->flags.b.port_suspend_change = 0;
3512 			break;
3513 
3514 		case USB_PORT_FEAT_C_PORT_L1:
3515 			dev_dbg(hsotg->dev,
3516 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3517 			hsotg->flags.b.port_l1_change = 0;
3518 			break;
3519 
3520 		case USB_PORT_FEAT_C_OVER_CURRENT:
3521 			dev_dbg(hsotg->dev,
3522 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3523 			hsotg->flags.b.port_over_current_change = 0;
3524 			break;
3525 
3526 		default:
3527 			retval = -EINVAL;
3528 			dev_err(hsotg->dev,
3529 				"ClearPortFeature request %1xh unknown or unsupported\n",
3530 				wvalue);
3531 		}
3532 		break;
3533 
3534 	case GetHubDescriptor:
3535 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3536 		hub_desc = (struct usb_hub_descriptor *)buf;
3537 		hub_desc->bDescLength = 9;
3538 		hub_desc->bDescriptorType = USB_DT_HUB;
3539 		hub_desc->bNbrPorts = 1;
3540 		hub_desc->wHubCharacteristics =
3541 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3542 				    HUB_CHAR_INDV_PORT_OCPM);
3543 		hub_desc->bPwrOn2PwrGood = 1;
3544 		hub_desc->bHubContrCurrent = 0;
3545 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3546 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3547 		break;
3548 
3549 	case GetHubStatus:
3550 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3551 		memset(buf, 0, 4);
3552 		break;
3553 
3554 	case GetPortStatus:
3555 		dev_vdbg(hsotg->dev,
3556 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3557 			 hsotg->flags.d32);
3558 		if (!windex || windex > 1)
3559 			goto error;
3560 
3561 		port_status = 0;
3562 		if (hsotg->flags.b.port_connect_status_change)
3563 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3564 		if (hsotg->flags.b.port_enable_change)
3565 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3566 		if (hsotg->flags.b.port_suspend_change)
3567 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3568 		if (hsotg->flags.b.port_l1_change)
3569 			port_status |= USB_PORT_STAT_C_L1 << 16;
3570 		if (hsotg->flags.b.port_reset_change)
3571 			port_status |= USB_PORT_STAT_C_RESET << 16;
3572 		if (hsotg->flags.b.port_over_current_change) {
3573 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3574 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3575 		}
3576 
3577 		if (!hsotg->flags.b.port_connect_status) {
3578 			/*
3579 			 * The port is disconnected, which means the core is
3580 			 * either in device mode or it soon will be. Just
3581 			 * return 0's for the remainder of the port status
3582 			 * since the port register can't be read if the core
3583 			 * is in device mode.
3584 			 */
3585 			*(__le32 *)buf = cpu_to_le32(port_status);
3586 			break;
3587 		}
3588 
3589 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3590 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3591 
3592 		if (hprt0 & HPRT0_CONNSTS)
3593 			port_status |= USB_PORT_STAT_CONNECTION;
3594 		if (hprt0 & HPRT0_ENA)
3595 			port_status |= USB_PORT_STAT_ENABLE;
3596 		if (hprt0 & HPRT0_SUSP)
3597 			port_status |= USB_PORT_STAT_SUSPEND;
3598 		if (hprt0 & HPRT0_OVRCURRACT)
3599 			port_status |= USB_PORT_STAT_OVERCURRENT;
3600 		if (hprt0 & HPRT0_RST)
3601 			port_status |= USB_PORT_STAT_RESET;
3602 		if (hprt0 & HPRT0_PWR)
3603 			port_status |= USB_PORT_STAT_POWER;
3604 
3605 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3606 		if (speed == HPRT0_SPD_HIGH_SPEED)
3607 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3608 		else if (speed == HPRT0_SPD_LOW_SPEED)
3609 			port_status |= USB_PORT_STAT_LOW_SPEED;
3610 
3611 		if (hprt0 & HPRT0_TSTCTL_MASK)
3612 			port_status |= USB_PORT_STAT_TEST;
3613 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3614 
3615 		if (hsotg->params.dma_desc_fs_enable) {
3616 			/*
3617 			 * Enable descriptor DMA only if a full speed
3618 			 * device is connected.
3619 			 */
3620 			if (hsotg->new_connection &&
3621 			    ((port_status &
3622 			      (USB_PORT_STAT_CONNECTION |
3623 			       USB_PORT_STAT_HIGH_SPEED |
3624 			       USB_PORT_STAT_LOW_SPEED)) ==
3625 			       USB_PORT_STAT_CONNECTION)) {
3626 				u32 hcfg;
3627 
3628 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3629 				hsotg->params.dma_desc_enable = true;
3630 				hcfg = dwc2_readl(hsotg->regs + HCFG);
3631 				hcfg |= HCFG_DESCDMA;
3632 				dwc2_writel(hcfg, hsotg->regs + HCFG);
3633 				hsotg->new_connection = false;
3634 			}
3635 		}
3636 
3637 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3638 		*(__le32 *)buf = cpu_to_le32(port_status);
3639 		break;
3640 
3641 	case SetHubFeature:
3642 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3643 		/* No HUB features supported */
3644 		break;
3645 
3646 	case SetPortFeature:
3647 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3648 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3649 			goto error;
3650 
3651 		if (!hsotg->flags.b.port_connect_status) {
3652 			/*
3653 			 * The port is disconnected, which means the core is
3654 			 * either in device mode or it soon will be. Just
3655 			 * return without doing anything since the port
3656 			 * register can't be written if the core is in device
3657 			 * mode.
3658 			 */
3659 			break;
3660 		}
3661 
3662 		switch (wvalue) {
3663 		case USB_PORT_FEAT_SUSPEND:
3664 			dev_dbg(hsotg->dev,
3665 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3666 			if (windex != hsotg->otg_port)
3667 				goto error;
3668 			dwc2_port_suspend(hsotg, windex);
3669 			break;
3670 
3671 		case USB_PORT_FEAT_POWER:
3672 			dev_dbg(hsotg->dev,
3673 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3674 			hprt0 = dwc2_read_hprt0(hsotg);
3675 			hprt0 |= HPRT0_PWR;
3676 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3677 			break;
3678 
3679 		case USB_PORT_FEAT_RESET:
3680 			hprt0 = dwc2_read_hprt0(hsotg);
3681 			dev_dbg(hsotg->dev,
3682 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3683 			pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3684 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3685 			dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3686 			/* ??? Original driver does this */
3687 			dwc2_writel(0, hsotg->regs + PCGCTL);
3688 
3689 			hprt0 = dwc2_read_hprt0(hsotg);
3690 			/* Clear suspend bit if resetting from suspend state */
3691 			hprt0 &= ~HPRT0_SUSP;
3692 
3693 			/*
3694 			 * When B-Host the Port reset bit is set in the Start
3695 			 * HCD Callback function, so that the reset is started
3696 			 * within 1ms of the HNP success interrupt
3697 			 */
3698 			if (!dwc2_hcd_is_b_host(hsotg)) {
3699 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3700 				dev_dbg(hsotg->dev,
3701 					"In host mode, hprt0=%08x\n", hprt0);
3702 				dwc2_writel(hprt0, hsotg->regs + HPRT0);
3703 			}
3704 
3705 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3706 			msleep(50);
3707 			hprt0 &= ~HPRT0_RST;
3708 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3709 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3710 			break;
3711 
3712 		case USB_PORT_FEAT_INDICATOR:
3713 			dev_dbg(hsotg->dev,
3714 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3715 			/* Not supported */
3716 			break;
3717 
3718 		case USB_PORT_FEAT_TEST:
3719 			hprt0 = dwc2_read_hprt0(hsotg);
3720 			dev_dbg(hsotg->dev,
3721 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3722 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3723 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3724 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3725 			break;
3726 
3727 		default:
3728 			retval = -EINVAL;
3729 			dev_err(hsotg->dev,
3730 				"SetPortFeature %1xh unknown or unsupported\n",
3731 				wvalue);
3732 			break;
3733 		}
3734 		break;
3735 
3736 	default:
3737 error:
3738 		retval = -EINVAL;
3739 		dev_dbg(hsotg->dev,
3740 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3741 			typereq, windex, wvalue);
3742 		break;
3743 	}
3744 
3745 	return retval;
3746 }
3747 
3748 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3749 {
3750 	int retval;
3751 
3752 	if (port != 1)
3753 		return -EINVAL;
3754 
3755 	retval = (hsotg->flags.b.port_connect_status_change ||
3756 		  hsotg->flags.b.port_reset_change ||
3757 		  hsotg->flags.b.port_enable_change ||
3758 		  hsotg->flags.b.port_suspend_change ||
3759 		  hsotg->flags.b.port_over_current_change);
3760 
3761 	if (retval) {
3762 		dev_dbg(hsotg->dev,
3763 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3764 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3765 			hsotg->flags.b.port_connect_status_change);
3766 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3767 			hsotg->flags.b.port_reset_change);
3768 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3769 			hsotg->flags.b.port_enable_change);
3770 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3771 			hsotg->flags.b.port_suspend_change);
3772 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3773 			hsotg->flags.b.port_over_current_change);
3774 	}
3775 
3776 	return retval;
3777 }
3778 
3779 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3780 {
3781 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3782 
3783 #ifdef DWC2_DEBUG_SOF
3784 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3785 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3786 #endif
3787 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3788 }
3789 
3790 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3791 {
3792 	u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3793 	u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3794 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3795 	unsigned int us_per_frame;
3796 	unsigned int frame_number;
3797 	unsigned int remaining;
3798 	unsigned int interval;
3799 	unsigned int phy_clks;
3800 
3801 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3802 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3803 
3804 	/* Extract fields */
3805 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3806 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3807 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3808 
3809 	/*
3810 	 * Number of phy clocks since the last tick of the frame number after
3811 	 * "us" has passed.
3812 	 */
3813 	phy_clks = (interval - remaining) +
3814 		   DIV_ROUND_UP(interval * us, us_per_frame);
3815 
3816 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3817 }
3818 
3819 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3820 {
3821 	return hsotg->op_state == OTG_STATE_B_HOST;
3822 }
3823 
3824 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3825 					       int iso_desc_count,
3826 					       gfp_t mem_flags)
3827 {
3828 	struct dwc2_hcd_urb *urb;
3829 	u32 size = sizeof(*urb) + iso_desc_count *
3830 		   sizeof(struct dwc2_hcd_iso_packet_desc);
3831 
3832 	urb = kzalloc(size, mem_flags);
3833 	if (urb)
3834 		urb->packet_count = iso_desc_count;
3835 	return urb;
3836 }
3837 
3838 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3839 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3840 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3841 {
3842 	if (dbg_perio() ||
3843 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3844 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3845 		dev_vdbg(hsotg->dev,
3846 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3847 			 dev_addr, ep_num, ep_dir, ep_type, mps);
3848 	urb->pipe_info.dev_addr = dev_addr;
3849 	urb->pipe_info.ep_num = ep_num;
3850 	urb->pipe_info.pipe_type = ep_type;
3851 	urb->pipe_info.pipe_dir = ep_dir;
3852 	urb->pipe_info.mps = mps;
3853 }
3854 
3855 /*
3856  * NOTE: This function will be removed once the peripheral controller code
3857  * is integrated and the driver is stable
3858  */
3859 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3860 {
3861 #ifdef DEBUG
3862 	struct dwc2_host_chan *chan;
3863 	struct dwc2_hcd_urb *urb;
3864 	struct dwc2_qtd *qtd;
3865 	int num_channels;
3866 	u32 np_tx_status;
3867 	u32 p_tx_status;
3868 	int i;
3869 
3870 	num_channels = hsotg->params.host_channels;
3871 	dev_dbg(hsotg->dev, "\n");
3872 	dev_dbg(hsotg->dev,
3873 		"************************************************************\n");
3874 	dev_dbg(hsotg->dev, "HCD State:\n");
3875 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3876 
3877 	for (i = 0; i < num_channels; i++) {
3878 		chan = hsotg->hc_ptr_array[i];
3879 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3880 		dev_dbg(hsotg->dev,
3881 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3882 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3883 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3884 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3885 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3886 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3887 			chan->data_pid_start);
3888 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3889 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3890 			chan->xfer_started);
3891 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3892 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3893 			(unsigned long)chan->xfer_dma);
3894 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3895 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3896 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3897 			chan->halt_on_queue);
3898 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3899 			chan->halt_pending);
3900 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3901 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3902 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3903 			chan->complete_split);
3904 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3905 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3906 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3907 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3908 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3909 
3910 		if (chan->xfer_started) {
3911 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3912 
3913 			hfnum = dwc2_readl(hsotg->regs + HFNUM);
3914 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3915 			hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3916 			hcint = dwc2_readl(hsotg->regs + HCINT(i));
3917 			hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3918 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3919 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3920 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3921 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3922 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3923 		}
3924 
3925 		if (!(chan->xfer_started && chan->qh))
3926 			continue;
3927 
3928 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3929 			if (!qtd->in_process)
3930 				break;
3931 			urb = qtd->urb;
3932 			dev_dbg(hsotg->dev, "    URB Info:\n");
3933 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3934 				qtd, urb);
3935 			if (urb) {
3936 				dev_dbg(hsotg->dev,
3937 					"      Dev: %d, EP: %d %s\n",
3938 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3939 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3940 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3941 					"IN" : "OUT");
3942 				dev_dbg(hsotg->dev,
3943 					"      Max packet size: %d\n",
3944 					dwc2_hcd_get_mps(&urb->pipe_info));
3945 				dev_dbg(hsotg->dev,
3946 					"      transfer_buffer: %p\n",
3947 					urb->buf);
3948 				dev_dbg(hsotg->dev,
3949 					"      transfer_dma: %08lx\n",
3950 					(unsigned long)urb->dma);
3951 				dev_dbg(hsotg->dev,
3952 					"      transfer_buffer_length: %d\n",
3953 					urb->length);
3954 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3955 					urb->actual_length);
3956 			}
3957 		}
3958 	}
3959 
3960 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3961 		hsotg->non_periodic_channels);
3962 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3963 		hsotg->periodic_channels);
3964 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3965 	np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3966 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3967 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3968 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3969 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3970 	p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3971 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3972 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3973 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3974 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3975 	dwc2_hcd_dump_frrem(hsotg);
3976 	dwc2_dump_global_registers(hsotg);
3977 	dwc2_dump_host_registers(hsotg);
3978 	dev_dbg(hsotg->dev,
3979 		"************************************************************\n");
3980 	dev_dbg(hsotg->dev, "\n");
3981 #endif
3982 }
3983 
3984 /*
3985  * NOTE: This function will be removed once the peripheral controller code
3986  * is integrated and the driver is stable
3987  */
3988 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
3989 {
3990 #ifdef DWC2_DUMP_FRREM
3991 	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
3992 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3993 		hsotg->frrem_samples, hsotg->frrem_accum,
3994 		hsotg->frrem_samples > 0 ?
3995 		hsotg->frrem_accum / hsotg->frrem_samples : 0);
3996 	dev_dbg(hsotg->dev, "\n");
3997 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
3998 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3999 		hsotg->hfnum_7_samples,
4000 		hsotg->hfnum_7_frrem_accum,
4001 		hsotg->hfnum_7_samples > 0 ?
4002 		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
4003 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
4004 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4005 		hsotg->hfnum_0_samples,
4006 		hsotg->hfnum_0_frrem_accum,
4007 		hsotg->hfnum_0_samples > 0 ?
4008 		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
4009 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
4010 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4011 		hsotg->hfnum_other_samples,
4012 		hsotg->hfnum_other_frrem_accum,
4013 		hsotg->hfnum_other_samples > 0 ?
4014 		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
4015 		0);
4016 	dev_dbg(hsotg->dev, "\n");
4017 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
4018 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4019 		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
4020 		hsotg->hfnum_7_samples_a > 0 ?
4021 		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
4022 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
4023 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4024 		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
4025 		hsotg->hfnum_0_samples_a > 0 ?
4026 		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
4027 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
4028 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4029 		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
4030 		hsotg->hfnum_other_samples_a > 0 ?
4031 		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
4032 		: 0);
4033 	dev_dbg(hsotg->dev, "\n");
4034 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
4035 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4036 		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
4037 		hsotg->hfnum_7_samples_b > 0 ?
4038 		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
4039 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
4040 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4041 		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
4042 		(hsotg->hfnum_0_samples_b > 0) ?
4043 		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
4044 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
4045 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4046 		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
4047 		(hsotg->hfnum_other_samples_b > 0) ?
4048 		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
4049 		: 0);
4050 #endif
4051 }
4052 
4053 struct wrapper_priv_data {
4054 	struct dwc2_hsotg *hsotg;
4055 };
4056 
4057 /* Gets the dwc2_hsotg from a usb_hcd */
4058 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4059 {
4060 	struct wrapper_priv_data *p;
4061 
4062 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4063 	return p->hsotg;
4064 }
4065 
4066 /**
4067  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4068  *
4069  * This will get the dwc2_tt structure (and ttport) associated with the given
4070  * context (which is really just a struct urb pointer).
4071  *
4072  * The first time this is called for a given TT we allocate memory for our
4073  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4074  * then the refcount for the structure will go to 0 and we'll free it.
4075  *
4076  * @hsotg:     The HCD state structure for the DWC OTG controller.
4077  * @qh:        The QH structure.
4078  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4079  * @mem_flags: Flags for allocating memory.
4080  * @ttport:    We'll return this device's port number here.  That's used to
4081  *             reference into the bitmap if we're on a multi_tt hub.
4082  *
4083  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4084  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4085  */
4086 
4087 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4088 				      gfp_t mem_flags, int *ttport)
4089 {
4090 	struct urb *urb = context;
4091 	struct dwc2_tt *dwc_tt = NULL;
4092 
4093 	if (urb->dev->tt) {
4094 		*ttport = urb->dev->ttport;
4095 
4096 		dwc_tt = urb->dev->tt->hcpriv;
4097 		if (!dwc_tt) {
4098 			size_t bitmap_size;
4099 
4100 			/*
4101 			 * For single_tt we need one schedule.  For multi_tt
4102 			 * we need one per port.
4103 			 */
4104 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4105 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4106 			if (urb->dev->tt->multi)
4107 				bitmap_size *= urb->dev->tt->hub->maxchild;
4108 
4109 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4110 					 mem_flags);
4111 			if (!dwc_tt)
4112 				return NULL;
4113 
4114 			dwc_tt->usb_tt = urb->dev->tt;
4115 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4116 		}
4117 
4118 		dwc_tt->refcount++;
4119 	}
4120 
4121 	return dwc_tt;
4122 }
4123 
4124 /**
4125  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4126  *
4127  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4128  * of the structure are done.
4129  *
4130  * It's OK to call this with NULL.
4131  *
4132  * @hsotg:     The HCD state structure for the DWC OTG controller.
4133  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4134  */
4135 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4136 {
4137 	/* Model kfree and make put of NULL a no-op */
4138 	if (!dwc_tt)
4139 		return;
4140 
4141 	WARN_ON(dwc_tt->refcount < 1);
4142 
4143 	dwc_tt->refcount--;
4144 	if (!dwc_tt->refcount) {
4145 		dwc_tt->usb_tt->hcpriv = NULL;
4146 		kfree(dwc_tt);
4147 	}
4148 }
4149 
4150 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4151 {
4152 	struct urb *urb = context;
4153 
4154 	return urb->dev->speed;
4155 }
4156 
4157 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4158 					struct urb *urb)
4159 {
4160 	struct usb_bus *bus = hcd_to_bus(hcd);
4161 
4162 	if (urb->interval)
4163 		bus->bandwidth_allocated += bw / urb->interval;
4164 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4165 		bus->bandwidth_isoc_reqs++;
4166 	else
4167 		bus->bandwidth_int_reqs++;
4168 }
4169 
4170 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4171 				    struct urb *urb)
4172 {
4173 	struct usb_bus *bus = hcd_to_bus(hcd);
4174 
4175 	if (urb->interval)
4176 		bus->bandwidth_allocated -= bw / urb->interval;
4177 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4178 		bus->bandwidth_isoc_reqs--;
4179 	else
4180 		bus->bandwidth_int_reqs--;
4181 }
4182 
4183 /*
4184  * Sets the final status of an URB and returns it to the upper layer. Any
4185  * required cleanup of the URB is performed.
4186  *
4187  * Must be called with interrupt disabled and spinlock held
4188  */
4189 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4190 			int status)
4191 {
4192 	struct urb *urb;
4193 	int i;
4194 
4195 	if (!qtd) {
4196 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4197 		return;
4198 	}
4199 
4200 	if (!qtd->urb) {
4201 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4202 		return;
4203 	}
4204 
4205 	urb = qtd->urb->priv;
4206 	if (!urb) {
4207 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4208 		return;
4209 	}
4210 
4211 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4212 
4213 	if (dbg_urb(urb))
4214 		dev_vdbg(hsotg->dev,
4215 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4216 			 __func__, urb, usb_pipedevice(urb->pipe),
4217 			 usb_pipeendpoint(urb->pipe),
4218 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4219 			 urb->actual_length);
4220 
4221 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4222 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4223 		for (i = 0; i < urb->number_of_packets; ++i) {
4224 			urb->iso_frame_desc[i].actual_length =
4225 				dwc2_hcd_urb_get_iso_desc_actual_length(
4226 						qtd->urb, i);
4227 			urb->iso_frame_desc[i].status =
4228 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4229 		}
4230 	}
4231 
4232 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4233 		for (i = 0; i < urb->number_of_packets; i++)
4234 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4235 				 i, urb->iso_frame_desc[i].status);
4236 	}
4237 
4238 	urb->status = status;
4239 	if (!status) {
4240 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4241 		    urb->actual_length < urb->transfer_buffer_length)
4242 			urb->status = -EREMOTEIO;
4243 	}
4244 
4245 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4246 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4247 		struct usb_host_endpoint *ep = urb->ep;
4248 
4249 		if (ep)
4250 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4251 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4252 					urb);
4253 	}
4254 
4255 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4256 	urb->hcpriv = NULL;
4257 	kfree(qtd->urb);
4258 	qtd->urb = NULL;
4259 
4260 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4261 }
4262 
4263 /*
4264  * Work queue function for starting the HCD when A-Cable is connected
4265  */
4266 static void dwc2_hcd_start_func(struct work_struct *work)
4267 {
4268 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4269 						start_work.work);
4270 
4271 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4272 	dwc2_host_start(hsotg);
4273 }
4274 
4275 /*
4276  * Reset work queue function
4277  */
4278 static void dwc2_hcd_reset_func(struct work_struct *work)
4279 {
4280 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4281 						reset_work.work);
4282 	unsigned long flags;
4283 	u32 hprt0;
4284 
4285 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4286 
4287 	spin_lock_irqsave(&hsotg->lock, flags);
4288 
4289 	hprt0 = dwc2_read_hprt0(hsotg);
4290 	hprt0 &= ~HPRT0_RST;
4291 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
4292 	hsotg->flags.b.port_reset_change = 1;
4293 
4294 	spin_unlock_irqrestore(&hsotg->lock, flags);
4295 }
4296 
4297 /*
4298  * =========================================================================
4299  *  Linux HC Driver Functions
4300  * =========================================================================
4301  */
4302 
4303 /*
4304  * Initializes the DWC_otg controller and its root hub and prepares it for host
4305  * mode operation. Activates the root port. Returns 0 on success and a negative
4306  * error code on failure.
4307  */
4308 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4309 {
4310 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4311 	struct usb_bus *bus = hcd_to_bus(hcd);
4312 	unsigned long flags;
4313 
4314 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4315 
4316 	spin_lock_irqsave(&hsotg->lock, flags);
4317 	hsotg->lx_state = DWC2_L0;
4318 	hcd->state = HC_STATE_RUNNING;
4319 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4320 
4321 	if (dwc2_is_device_mode(hsotg)) {
4322 		spin_unlock_irqrestore(&hsotg->lock, flags);
4323 		return 0;	/* why 0 ?? */
4324 	}
4325 
4326 	dwc2_hcd_reinit(hsotg);
4327 
4328 	/* Initialize and connect root hub if one is not already attached */
4329 	if (bus->root_hub) {
4330 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4331 		/* Inform the HUB driver to resume */
4332 		usb_hcd_resume_root_hub(hcd);
4333 	}
4334 
4335 	spin_unlock_irqrestore(&hsotg->lock, flags);
4336 	return 0;
4337 }
4338 
4339 /*
4340  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4341  * stopped.
4342  */
4343 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4344 {
4345 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4346 	unsigned long flags;
4347 
4348 	/* Turn off all host-specific interrupts */
4349 	dwc2_disable_host_interrupts(hsotg);
4350 
4351 	/* Wait for interrupt processing to finish */
4352 	synchronize_irq(hcd->irq);
4353 
4354 	spin_lock_irqsave(&hsotg->lock, flags);
4355 	/* Ensure hcd is disconnected */
4356 	dwc2_hcd_disconnect(hsotg, true);
4357 	dwc2_hcd_stop(hsotg);
4358 	hsotg->lx_state = DWC2_L3;
4359 	hcd->state = HC_STATE_HALT;
4360 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4361 	spin_unlock_irqrestore(&hsotg->lock, flags);
4362 
4363 	usleep_range(1000, 3000);
4364 }
4365 
4366 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4367 {
4368 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4369 	unsigned long flags;
4370 	int ret = 0;
4371 	u32 hprt0;
4372 
4373 	spin_lock_irqsave(&hsotg->lock, flags);
4374 
4375 	if (hsotg->lx_state != DWC2_L0)
4376 		goto unlock;
4377 
4378 	if (!HCD_HW_ACCESSIBLE(hcd))
4379 		goto unlock;
4380 
4381 	if (!hsotg->params.hibernation)
4382 		goto skip_power_saving;
4383 
4384 	/*
4385 	 * Drive USB suspend and disable port Power
4386 	 * if usb bus is not suspended.
4387 	 */
4388 	if (!hsotg->bus_suspended) {
4389 		hprt0 = dwc2_read_hprt0(hsotg);
4390 		hprt0 |= HPRT0_SUSP;
4391 		hprt0 &= ~HPRT0_PWR;
4392 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
4393 	}
4394 
4395 	/* Enter hibernation */
4396 	ret = dwc2_enter_hibernation(hsotg);
4397 	if (ret) {
4398 		if (ret != -ENOTSUPP)
4399 			dev_err(hsotg->dev,
4400 				"enter hibernation failed\n");
4401 		goto skip_power_saving;
4402 	}
4403 
4404 	/* Ask phy to be suspended */
4405 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4406 		spin_unlock_irqrestore(&hsotg->lock, flags);
4407 		usb_phy_set_suspend(hsotg->uphy, true);
4408 		spin_lock_irqsave(&hsotg->lock, flags);
4409 	}
4410 
4411 	/* After entering hibernation, hardware is no more accessible */
4412 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4413 
4414 skip_power_saving:
4415 	hsotg->lx_state = DWC2_L2;
4416 unlock:
4417 	spin_unlock_irqrestore(&hsotg->lock, flags);
4418 
4419 	return ret;
4420 }
4421 
4422 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4423 {
4424 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4425 	unsigned long flags;
4426 	int ret = 0;
4427 
4428 	spin_lock_irqsave(&hsotg->lock, flags);
4429 
4430 	if (hsotg->lx_state != DWC2_L2)
4431 		goto unlock;
4432 
4433 	if (!hsotg->params.hibernation) {
4434 		hsotg->lx_state = DWC2_L0;
4435 		goto unlock;
4436 	}
4437 
4438 	/*
4439 	 * Set HW accessible bit before powering on the controller
4440 	 * since an interrupt may rise.
4441 	 */
4442 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4443 
4444 	/*
4445 	 * Enable power if not already done.
4446 	 * This must not be spinlocked since duration
4447 	 * of this call is unknown.
4448 	 */
4449 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4450 		spin_unlock_irqrestore(&hsotg->lock, flags);
4451 		usb_phy_set_suspend(hsotg->uphy, false);
4452 		spin_lock_irqsave(&hsotg->lock, flags);
4453 	}
4454 
4455 	/* Exit hibernation */
4456 	ret = dwc2_exit_hibernation(hsotg, true);
4457 	if (ret && (ret != -ENOTSUPP))
4458 		dev_err(hsotg->dev, "exit hibernation failed\n");
4459 
4460 	hsotg->lx_state = DWC2_L0;
4461 
4462 	spin_unlock_irqrestore(&hsotg->lock, flags);
4463 
4464 	if (hsotg->bus_suspended) {
4465 		spin_lock_irqsave(&hsotg->lock, flags);
4466 		hsotg->flags.b.port_suspend_change = 1;
4467 		spin_unlock_irqrestore(&hsotg->lock, flags);
4468 		dwc2_port_resume(hsotg);
4469 	} else {
4470 		/* Wait for controller to correctly update D+/D- level */
4471 		usleep_range(3000, 5000);
4472 
4473 		/*
4474 		 * Clear Port Enable and Port Status changes.
4475 		 * Enable Port Power.
4476 		 */
4477 		dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4478 				HPRT0_ENACHG, hsotg->regs + HPRT0);
4479 		/* Wait for controller to detect Port Connect */
4480 		usleep_range(5000, 7000);
4481 	}
4482 
4483 	return ret;
4484 unlock:
4485 	spin_unlock_irqrestore(&hsotg->lock, flags);
4486 
4487 	return ret;
4488 }
4489 
4490 /* Returns the current frame number */
4491 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4492 {
4493 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4494 
4495 	return dwc2_hcd_get_frame_number(hsotg);
4496 }
4497 
4498 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4499 			       char *fn_name)
4500 {
4501 #ifdef VERBOSE_DEBUG
4502 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4503 	char *pipetype;
4504 	char *speed;
4505 
4506 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4507 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4508 		 usb_pipedevice(urb->pipe));
4509 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4510 		 usb_pipeendpoint(urb->pipe),
4511 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4512 
4513 	switch (usb_pipetype(urb->pipe)) {
4514 	case PIPE_CONTROL:
4515 		pipetype = "CONTROL";
4516 		break;
4517 	case PIPE_BULK:
4518 		pipetype = "BULK";
4519 		break;
4520 	case PIPE_INTERRUPT:
4521 		pipetype = "INTERRUPT";
4522 		break;
4523 	case PIPE_ISOCHRONOUS:
4524 		pipetype = "ISOCHRONOUS";
4525 		break;
4526 	}
4527 
4528 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4529 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4530 		 "IN" : "OUT");
4531 
4532 	switch (urb->dev->speed) {
4533 	case USB_SPEED_HIGH:
4534 		speed = "HIGH";
4535 		break;
4536 	case USB_SPEED_FULL:
4537 		speed = "FULL";
4538 		break;
4539 	case USB_SPEED_LOW:
4540 		speed = "LOW";
4541 		break;
4542 	default:
4543 		speed = "UNKNOWN";
4544 		break;
4545 	}
4546 
4547 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4548 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4549 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4550 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4551 		 urb->transfer_buffer_length);
4552 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4553 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4554 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4555 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4556 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4557 
4558 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4559 		int i;
4560 
4561 		for (i = 0; i < urb->number_of_packets; i++) {
4562 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4563 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4564 				 urb->iso_frame_desc[i].offset,
4565 				 urb->iso_frame_desc[i].length);
4566 		}
4567 	}
4568 #endif
4569 }
4570 
4571 /*
4572  * Starts processing a USB transfer request specified by a USB Request Block
4573  * (URB). mem_flags indicates the type of memory allocation to use while
4574  * processing this URB.
4575  */
4576 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4577 				 gfp_t mem_flags)
4578 {
4579 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4580 	struct usb_host_endpoint *ep = urb->ep;
4581 	struct dwc2_hcd_urb *dwc2_urb;
4582 	int i;
4583 	int retval;
4584 	int alloc_bandwidth = 0;
4585 	u8 ep_type = 0;
4586 	u32 tflags = 0;
4587 	void *buf;
4588 	unsigned long flags;
4589 	struct dwc2_qh *qh;
4590 	bool qh_allocated = false;
4591 	struct dwc2_qtd *qtd;
4592 
4593 	if (dbg_urb(urb)) {
4594 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4595 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4596 	}
4597 
4598 	if (!ep)
4599 		return -EINVAL;
4600 
4601 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4602 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4603 		spin_lock_irqsave(&hsotg->lock, flags);
4604 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4605 			alloc_bandwidth = 1;
4606 		spin_unlock_irqrestore(&hsotg->lock, flags);
4607 	}
4608 
4609 	switch (usb_pipetype(urb->pipe)) {
4610 	case PIPE_CONTROL:
4611 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4612 		break;
4613 	case PIPE_ISOCHRONOUS:
4614 		ep_type = USB_ENDPOINT_XFER_ISOC;
4615 		break;
4616 	case PIPE_BULK:
4617 		ep_type = USB_ENDPOINT_XFER_BULK;
4618 		break;
4619 	case PIPE_INTERRUPT:
4620 		ep_type = USB_ENDPOINT_XFER_INT;
4621 		break;
4622 	}
4623 
4624 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4625 				      mem_flags);
4626 	if (!dwc2_urb)
4627 		return -ENOMEM;
4628 
4629 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4630 				  usb_pipeendpoint(urb->pipe), ep_type,
4631 				  usb_pipein(urb->pipe),
4632 				  usb_maxpacket(urb->dev, urb->pipe,
4633 						!(usb_pipein(urb->pipe))));
4634 
4635 	buf = urb->transfer_buffer;
4636 
4637 	if (hcd->self.uses_dma) {
4638 		if (!buf && (urb->transfer_dma & 3)) {
4639 			dev_err(hsotg->dev,
4640 				"%s: unaligned transfer with no transfer_buffer",
4641 				__func__);
4642 			retval = -EINVAL;
4643 			goto fail0;
4644 		}
4645 	}
4646 
4647 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4648 		tflags |= URB_GIVEBACK_ASAP;
4649 	if (urb->transfer_flags & URB_ZERO_PACKET)
4650 		tflags |= URB_SEND_ZERO_PACKET;
4651 
4652 	dwc2_urb->priv = urb;
4653 	dwc2_urb->buf = buf;
4654 	dwc2_urb->dma = urb->transfer_dma;
4655 	dwc2_urb->length = urb->transfer_buffer_length;
4656 	dwc2_urb->setup_packet = urb->setup_packet;
4657 	dwc2_urb->setup_dma = urb->setup_dma;
4658 	dwc2_urb->flags = tflags;
4659 	dwc2_urb->interval = urb->interval;
4660 	dwc2_urb->status = -EINPROGRESS;
4661 
4662 	for (i = 0; i < urb->number_of_packets; ++i)
4663 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4664 						 urb->iso_frame_desc[i].offset,
4665 						 urb->iso_frame_desc[i].length);
4666 
4667 	urb->hcpriv = dwc2_urb;
4668 	qh = (struct dwc2_qh *)ep->hcpriv;
4669 	/* Create QH for the endpoint if it doesn't exist */
4670 	if (!qh) {
4671 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4672 		if (!qh) {
4673 			retval = -ENOMEM;
4674 			goto fail0;
4675 		}
4676 		ep->hcpriv = qh;
4677 		qh_allocated = true;
4678 	}
4679 
4680 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4681 	if (!qtd) {
4682 		retval = -ENOMEM;
4683 		goto fail1;
4684 	}
4685 
4686 	spin_lock_irqsave(&hsotg->lock, flags);
4687 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4688 	if (retval)
4689 		goto fail2;
4690 
4691 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4692 	if (retval)
4693 		goto fail3;
4694 
4695 	if (alloc_bandwidth) {
4696 		dwc2_allocate_bus_bandwidth(hcd,
4697 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4698 				urb);
4699 	}
4700 
4701 	spin_unlock_irqrestore(&hsotg->lock, flags);
4702 
4703 	return 0;
4704 
4705 fail3:
4706 	dwc2_urb->priv = NULL;
4707 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4708 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4709 		qh->channel->qh = NULL;
4710 fail2:
4711 	spin_unlock_irqrestore(&hsotg->lock, flags);
4712 	urb->hcpriv = NULL;
4713 	kfree(qtd);
4714 	qtd = NULL;
4715 fail1:
4716 	if (qh_allocated) {
4717 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4718 
4719 		ep->hcpriv = NULL;
4720 		dwc2_hcd_qh_unlink(hsotg, qh);
4721 		/* Free each QTD in the QH's QTD list */
4722 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4723 					 qtd_list_entry)
4724 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4725 		dwc2_hcd_qh_free(hsotg, qh);
4726 	}
4727 fail0:
4728 	kfree(dwc2_urb);
4729 
4730 	return retval;
4731 }
4732 
4733 /*
4734  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4735  */
4736 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4737 				 int status)
4738 {
4739 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4740 	int rc;
4741 	unsigned long flags;
4742 
4743 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4744 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4745 
4746 	spin_lock_irqsave(&hsotg->lock, flags);
4747 
4748 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4749 	if (rc)
4750 		goto out;
4751 
4752 	if (!urb->hcpriv) {
4753 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4754 		goto out;
4755 	}
4756 
4757 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4758 
4759 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4760 
4761 	kfree(urb->hcpriv);
4762 	urb->hcpriv = NULL;
4763 
4764 	/* Higher layer software sets URB status */
4765 	spin_unlock(&hsotg->lock);
4766 	usb_hcd_giveback_urb(hcd, urb, status);
4767 	spin_lock(&hsotg->lock);
4768 
4769 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4770 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4771 out:
4772 	spin_unlock_irqrestore(&hsotg->lock, flags);
4773 
4774 	return rc;
4775 }
4776 
4777 /*
4778  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4779  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4780  * must already be dequeued.
4781  */
4782 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4783 				       struct usb_host_endpoint *ep)
4784 {
4785 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4786 
4787 	dev_dbg(hsotg->dev,
4788 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4789 		ep->desc.bEndpointAddress, ep->hcpriv);
4790 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4791 }
4792 
4793 /*
4794  * Resets endpoint specific parameter values, in current version used to reset
4795  * the data toggle (as a WA). This function can be called from usb_clear_halt
4796  * routine.
4797  */
4798 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4799 				     struct usb_host_endpoint *ep)
4800 {
4801 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4802 	unsigned long flags;
4803 
4804 	dev_dbg(hsotg->dev,
4805 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4806 		ep->desc.bEndpointAddress);
4807 
4808 	spin_lock_irqsave(&hsotg->lock, flags);
4809 	dwc2_hcd_endpoint_reset(hsotg, ep);
4810 	spin_unlock_irqrestore(&hsotg->lock, flags);
4811 }
4812 
4813 /*
4814  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4815  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4816  * interrupt.
4817  *
4818  * This function is called by the USB core when an interrupt occurs
4819  */
4820 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4821 {
4822 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4823 
4824 	return dwc2_handle_hcd_intr(hsotg);
4825 }
4826 
4827 /*
4828  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4829  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4830  * is the status change indicator for the single root port. Returns 1 if either
4831  * change indicator is 1, otherwise returns 0.
4832  */
4833 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4834 {
4835 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4836 
4837 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4838 	return buf[0] != 0;
4839 }
4840 
4841 /* Handles hub class-specific requests */
4842 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4843 				 u16 windex, char *buf, u16 wlength)
4844 {
4845 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4846 					  wvalue, windex, buf, wlength);
4847 	return retval;
4848 }
4849 
4850 /* Handles hub TT buffer clear completions */
4851 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4852 					       struct usb_host_endpoint *ep)
4853 {
4854 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4855 	struct dwc2_qh *qh;
4856 	unsigned long flags;
4857 
4858 	qh = ep->hcpriv;
4859 	if (!qh)
4860 		return;
4861 
4862 	spin_lock_irqsave(&hsotg->lock, flags);
4863 	qh->tt_buffer_dirty = 0;
4864 
4865 	if (hsotg->flags.b.port_connect_status)
4866 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4867 
4868 	spin_unlock_irqrestore(&hsotg->lock, flags);
4869 }
4870 
4871 static struct hc_driver dwc2_hc_driver = {
4872 	.description = "dwc2_hsotg",
4873 	.product_desc = "DWC OTG Controller",
4874 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4875 
4876 	.irq = _dwc2_hcd_irq,
4877 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4878 
4879 	.start = _dwc2_hcd_start,
4880 	.stop = _dwc2_hcd_stop,
4881 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4882 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4883 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4884 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4885 	.get_frame_number = _dwc2_hcd_get_frame_number,
4886 
4887 	.hub_status_data = _dwc2_hcd_hub_status_data,
4888 	.hub_control = _dwc2_hcd_hub_control,
4889 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4890 
4891 	.bus_suspend = _dwc2_hcd_suspend,
4892 	.bus_resume = _dwc2_hcd_resume,
4893 
4894 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4895 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4896 };
4897 
4898 /*
4899  * Frees secondary storage associated with the dwc2_hsotg structure contained
4900  * in the struct usb_hcd field
4901  */
4902 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4903 {
4904 	u32 ahbcfg;
4905 	u32 dctl;
4906 	int i;
4907 
4908 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4909 
4910 	/* Free memory for QH/QTD lists */
4911 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4912 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4913 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4914 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4915 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4916 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4917 
4918 	/* Free memory for the host channels */
4919 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4920 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4921 
4922 		if (chan) {
4923 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4924 				i, chan);
4925 			hsotg->hc_ptr_array[i] = NULL;
4926 			kfree(chan);
4927 		}
4928 	}
4929 
4930 	if (hsotg->params.host_dma) {
4931 		if (hsotg->status_buf) {
4932 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4933 					  hsotg->status_buf,
4934 					  hsotg->status_buf_dma);
4935 			hsotg->status_buf = NULL;
4936 		}
4937 	} else {
4938 		kfree(hsotg->status_buf);
4939 		hsotg->status_buf = NULL;
4940 	}
4941 
4942 	ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
4943 
4944 	/* Disable all interrupts */
4945 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4946 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
4947 	dwc2_writel(0, hsotg->regs + GINTMSK);
4948 
4949 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4950 		dctl = dwc2_readl(hsotg->regs + DCTL);
4951 		dctl |= DCTL_SFTDISCON;
4952 		dwc2_writel(dctl, hsotg->regs + DCTL);
4953 	}
4954 
4955 	if (hsotg->wq_otg) {
4956 		if (!cancel_work_sync(&hsotg->wf_otg))
4957 			flush_workqueue(hsotg->wq_otg);
4958 		destroy_workqueue(hsotg->wq_otg);
4959 	}
4960 
4961 	del_timer(&hsotg->wkp_timer);
4962 }
4963 
4964 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4965 {
4966 	/* Turn off all host-specific interrupts */
4967 	dwc2_disable_host_interrupts(hsotg);
4968 
4969 	dwc2_hcd_free(hsotg);
4970 }
4971 
4972 /*
4973  * Initializes the HCD. This function allocates memory for and initializes the
4974  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
4975  * USB bus with the core and calls the hc_driver->start() function. It returns
4976  * a negative error on failure.
4977  */
4978 int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
4979 {
4980 	struct usb_hcd *hcd;
4981 	struct dwc2_host_chan *channel;
4982 	u32 hcfg;
4983 	int i, num_channels;
4984 	int retval;
4985 
4986 	if (usb_disabled())
4987 		return -ENODEV;
4988 
4989 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
4990 
4991 	retval = -ENOMEM;
4992 
4993 	hcfg = dwc2_readl(hsotg->regs + HCFG);
4994 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
4995 
4996 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
4997 	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
4998 					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4999 	if (!hsotg->frame_num_array)
5000 		goto error1;
5001 	hsotg->last_frame_num_array = kzalloc(
5002 			sizeof(*hsotg->last_frame_num_array) *
5003 			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
5004 	if (!hsotg->last_frame_num_array)
5005 		goto error1;
5006 #endif
5007 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5008 
5009 	/* Check if the bus driver or platform code has setup a dma_mask */
5010 	if (hsotg->params.host_dma &&
5011 	    !hsotg->dev->dma_mask) {
5012 		dev_warn(hsotg->dev,
5013 			 "dma_mask not set, disabling DMA\n");
5014 		hsotg->params.host_dma = false;
5015 		hsotg->params.dma_desc_enable = false;
5016 	}
5017 
5018 	/* Set device flags indicating whether the HCD supports DMA */
5019 	if (hsotg->params.host_dma) {
5020 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5021 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5022 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5023 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5024 	}
5025 
5026 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5027 	if (!hcd)
5028 		goto error1;
5029 
5030 	if (!hsotg->params.host_dma)
5031 		hcd->self.uses_dma = 0;
5032 
5033 	hcd->has_tt = 1;
5034 
5035 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5036 	hsotg->priv = hcd;
5037 
5038 	/*
5039 	 * Disable the global interrupt until all the interrupt handlers are
5040 	 * installed
5041 	 */
5042 	dwc2_disable_global_interrupts(hsotg);
5043 
5044 	/* Initialize the DWC_otg core, and select the Phy type */
5045 	retval = dwc2_core_init(hsotg, true);
5046 	if (retval)
5047 		goto error2;
5048 
5049 	/* Create new workqueue and init work */
5050 	retval = -ENOMEM;
5051 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5052 	if (!hsotg->wq_otg) {
5053 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5054 		goto error2;
5055 	}
5056 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5057 
5058 	setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
5059 		    (unsigned long)hsotg);
5060 
5061 	/* Initialize the non-periodic schedule */
5062 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5063 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5064 
5065 	/* Initialize the periodic schedule */
5066 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5067 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5068 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5069 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5070 
5071 	INIT_LIST_HEAD(&hsotg->split_order);
5072 
5073 	/*
5074 	 * Create a host channel descriptor for each host channel implemented
5075 	 * in the controller. Initialize the channel descriptor array.
5076 	 */
5077 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5078 	num_channels = hsotg->params.host_channels;
5079 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5080 
5081 	for (i = 0; i < num_channels; i++) {
5082 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5083 		if (!channel)
5084 			goto error3;
5085 		channel->hc_num = i;
5086 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5087 		hsotg->hc_ptr_array[i] = channel;
5088 	}
5089 
5090 	/* Initialize hsotg start work */
5091 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5092 
5093 	/* Initialize port reset work */
5094 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5095 
5096 	/*
5097 	 * Allocate space for storing data on status transactions. Normally no
5098 	 * data is sent, but this space acts as a bit bucket. This must be
5099 	 * done after usb_add_hcd since that function allocates the DMA buffer
5100 	 * pool.
5101 	 */
5102 	if (hsotg->params.host_dma)
5103 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5104 					DWC2_HCD_STATUS_BUF_SIZE,
5105 					&hsotg->status_buf_dma, GFP_KERNEL);
5106 	else
5107 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5108 					  GFP_KERNEL);
5109 
5110 	if (!hsotg->status_buf)
5111 		goto error3;
5112 
5113 	/*
5114 	 * Create kmem caches to handle descriptor buffers in descriptor
5115 	 * DMA mode.
5116 	 * Alignment must be set to 512 bytes.
5117 	 */
5118 	if (hsotg->params.dma_desc_enable ||
5119 	    hsotg->params.dma_desc_fs_enable) {
5120 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5121 				sizeof(struct dwc2_dma_desc) *
5122 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5123 				NULL);
5124 		if (!hsotg->desc_gen_cache) {
5125 			dev_err(hsotg->dev,
5126 				"unable to create dwc2 generic desc cache\n");
5127 
5128 			/*
5129 			 * Disable descriptor dma mode since it will not be
5130 			 * usable.
5131 			 */
5132 			hsotg->params.dma_desc_enable = false;
5133 			hsotg->params.dma_desc_fs_enable = false;
5134 		}
5135 
5136 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5137 				sizeof(struct dwc2_dma_desc) *
5138 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5139 		if (!hsotg->desc_hsisoc_cache) {
5140 			dev_err(hsotg->dev,
5141 				"unable to create dwc2 hs isoc desc cache\n");
5142 
5143 			kmem_cache_destroy(hsotg->desc_gen_cache);
5144 
5145 			/*
5146 			 * Disable descriptor dma mode since it will not be
5147 			 * usable.
5148 			 */
5149 			hsotg->params.dma_desc_enable = false;
5150 			hsotg->params.dma_desc_fs_enable = false;
5151 		}
5152 	}
5153 
5154 	hsotg->otg_port = 1;
5155 	hsotg->frame_list = NULL;
5156 	hsotg->frame_list_dma = 0;
5157 	hsotg->periodic_qh_count = 0;
5158 
5159 	/* Initiate lx_state to L3 disconnected state */
5160 	hsotg->lx_state = DWC2_L3;
5161 
5162 	hcd->self.otg_port = hsotg->otg_port;
5163 
5164 	/* Don't support SG list at this point */
5165 	hcd->self.sg_tablesize = 0;
5166 
5167 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5168 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5169 
5170 	/*
5171 	 * Finish generic HCD initialization and start the HCD. This function
5172 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5173 	 * IRQ line, and calls hcd_start method.
5174 	 */
5175 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5176 	if (retval < 0)
5177 		goto error4;
5178 
5179 	device_wakeup_enable(hcd->self.controller);
5180 
5181 	dwc2_hcd_dump_state(hsotg);
5182 
5183 	dwc2_enable_global_interrupts(hsotg);
5184 
5185 	return 0;
5186 
5187 error4:
5188 	kmem_cache_destroy(hsotg->desc_gen_cache);
5189 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5190 error3:
5191 	dwc2_hcd_release(hsotg);
5192 error2:
5193 	usb_put_hcd(hcd);
5194 error1:
5195 
5196 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5197 	kfree(hsotg->last_frame_num_array);
5198 	kfree(hsotg->frame_num_array);
5199 #endif
5200 
5201 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5202 	return retval;
5203 }
5204 
5205 /*
5206  * Removes the HCD.
5207  * Frees memory and resources associated with the HCD and deregisters the bus.
5208  */
5209 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5210 {
5211 	struct usb_hcd *hcd;
5212 
5213 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5214 
5215 	hcd = dwc2_hsotg_to_hcd(hsotg);
5216 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5217 
5218 	if (!hcd) {
5219 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5220 			__func__);
5221 		return;
5222 	}
5223 
5224 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5225 		otg_set_host(hsotg->uphy->otg, NULL);
5226 
5227 	usb_remove_hcd(hcd);
5228 	hsotg->priv = NULL;
5229 
5230 	kmem_cache_destroy(hsotg->desc_gen_cache);
5231 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5232 
5233 	dwc2_hcd_release(hsotg);
5234 	usb_put_hcd(hcd);
5235 
5236 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5237 	kfree(hsotg->last_frame_num_array);
5238 	kfree(hsotg->frame_num_array);
5239 #endif
5240 }
5241 
5242 /**
5243  * dwc2_backup_host_registers() - Backup controller host registers.
5244  * When suspending usb bus, registers needs to be backuped
5245  * if controller power is disabled once suspended.
5246  *
5247  * @hsotg: Programming view of the DWC_otg controller
5248  */
5249 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5250 {
5251 	struct dwc2_hregs_backup *hr;
5252 	int i;
5253 
5254 	dev_dbg(hsotg->dev, "%s\n", __func__);
5255 
5256 	/* Backup Host regs */
5257 	hr = &hsotg->hr_backup;
5258 	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5259 	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5260 	for (i = 0; i < hsotg->params.host_channels; ++i)
5261 		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5262 
5263 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5264 	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5265 	hr->valid = true;
5266 
5267 	return 0;
5268 }
5269 
5270 /**
5271  * dwc2_restore_host_registers() - Restore controller host registers.
5272  * When resuming usb bus, device registers needs to be restored
5273  * if controller power were disabled.
5274  *
5275  * @hsotg: Programming view of the DWC_otg controller
5276  */
5277 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5278 {
5279 	struct dwc2_hregs_backup *hr;
5280 	int i;
5281 
5282 	dev_dbg(hsotg->dev, "%s\n", __func__);
5283 
5284 	/* Restore host regs */
5285 	hr = &hsotg->hr_backup;
5286 	if (!hr->valid) {
5287 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5288 			__func__);
5289 		return -EINVAL;
5290 	}
5291 	hr->valid = false;
5292 
5293 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5294 	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5295 
5296 	for (i = 0; i < hsotg->params.host_channels; ++i)
5297 		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5298 
5299 	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5300 	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5301 	hsotg->frame_number = 0;
5302 
5303 	return 0;
5304 }
5305