xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision 7c8e4a25)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 /*
60  * =========================================================================
61  *  Host Core Layer Functions
62  * =========================================================================
63  */
64 
65 /**
66  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
67  * used in both device and host modes
68  *
69  * @hsotg: Programming view of the DWC_otg controller
70  */
71 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
72 {
73 	u32 intmsk;
74 
75 	/* Clear any pending OTG Interrupts */
76 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
77 
78 	/* Clear any pending interrupts */
79 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
80 
81 	/* Enable the interrupts in the GINTMSK */
82 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
83 
84 	if (!hsotg->params.host_dma)
85 		intmsk |= GINTSTS_RXFLVL;
86 	if (!hsotg->params.external_id_pin_ctl)
87 		intmsk |= GINTSTS_CONIDSTSCHNG;
88 
89 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
90 		  GINTSTS_SESSREQINT;
91 
92 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
93 		intmsk |= GINTSTS_LPMTRANRCVD;
94 
95 	dwc2_writel(hsotg, intmsk, GINTMSK);
96 }
97 
98 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
99 {
100 	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
101 
102 	switch (hsotg->hw_params.arch) {
103 	case GHWCFG2_EXT_DMA_ARCH:
104 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
105 		return -EINVAL;
106 
107 	case GHWCFG2_INT_DMA_ARCH:
108 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
109 		if (hsotg->params.ahbcfg != -1) {
110 			ahbcfg &= GAHBCFG_CTRL_MASK;
111 			ahbcfg |= hsotg->params.ahbcfg &
112 				  ~GAHBCFG_CTRL_MASK;
113 		}
114 		break;
115 
116 	case GHWCFG2_SLAVE_ONLY_ARCH:
117 	default:
118 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
119 		break;
120 	}
121 
122 	if (hsotg->params.host_dma)
123 		ahbcfg |= GAHBCFG_DMA_EN;
124 	else
125 		hsotg->params.dma_desc_enable = false;
126 
127 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
128 
129 	return 0;
130 }
131 
132 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
133 {
134 	u32 usbcfg;
135 
136 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
137 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
138 
139 	switch (hsotg->hw_params.op_mode) {
140 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
141 		if (hsotg->params.otg_caps.hnp_support &&
142 		    hsotg->params.otg_caps.srp_support)
143 			usbcfg |= GUSBCFG_HNPCAP;
144 		fallthrough;
145 
146 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
147 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
148 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
149 		if (hsotg->params.otg_caps.srp_support)
150 			usbcfg |= GUSBCFG_SRPCAP;
151 		break;
152 
153 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
154 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
155 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
156 	default:
157 		break;
158 	}
159 
160 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
161 }
162 
163 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
164 {
165 	if (hsotg->vbus_supply)
166 		return regulator_enable(hsotg->vbus_supply);
167 
168 	return 0;
169 }
170 
171 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
172 {
173 	if (hsotg->vbus_supply)
174 		return regulator_disable(hsotg->vbus_supply);
175 
176 	return 0;
177 }
178 
179 /**
180  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
181  *
182  * @hsotg: Programming view of DWC_otg controller
183  */
184 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
185 {
186 	u32 intmsk;
187 
188 	dev_dbg(hsotg->dev, "%s()\n", __func__);
189 
190 	/* Disable all interrupts */
191 	dwc2_writel(hsotg, 0, GINTMSK);
192 	dwc2_writel(hsotg, 0, HAINTMSK);
193 
194 	/* Enable the common interrupts */
195 	dwc2_enable_common_interrupts(hsotg);
196 
197 	/* Enable host mode interrupts without disturbing common interrupts */
198 	intmsk = dwc2_readl(hsotg, GINTMSK);
199 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
200 	dwc2_writel(hsotg, intmsk, GINTMSK);
201 }
202 
203 /**
204  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
205  *
206  * @hsotg: Programming view of DWC_otg controller
207  */
208 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
209 {
210 	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
211 
212 	/* Disable host mode interrupts without disturbing common interrupts */
213 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
214 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
215 	dwc2_writel(hsotg, intmsk, GINTMSK);
216 }
217 
218 /*
219  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
220  * For system that have a total fifo depth that is smaller than the default
221  * RX + TX fifo size.
222  *
223  * @hsotg: Programming view of DWC_otg controller
224  */
225 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
226 {
227 	struct dwc2_core_params *params = &hsotg->params;
228 	struct dwc2_hw_params *hw = &hsotg->hw_params;
229 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
230 
231 	total_fifo_size = hw->total_fifo_size;
232 	rxfsiz = params->host_rx_fifo_size;
233 	nptxfsiz = params->host_nperio_tx_fifo_size;
234 	ptxfsiz = params->host_perio_tx_fifo_size;
235 
236 	/*
237 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
238 	 * allocation with support for high bandwidth endpoints. Synopsys
239 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
240 	 * non-periodic as 512.
241 	 */
242 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
243 		/*
244 		 * For Buffer DMA mode/Scatter Gather DMA mode
245 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
246 		 * with n = number of host channel.
247 		 * 2 * ((1024/4) + 2) = 516
248 		 */
249 		rxfsiz = 516 + hw->host_channels;
250 
251 		/*
252 		 * min non-periodic tx fifo depth
253 		 * 2 * (largest non-periodic USB packet used / 4)
254 		 * 2 * (512/4) = 256
255 		 */
256 		nptxfsiz = 256;
257 
258 		/*
259 		 * min periodic tx fifo depth
260 		 * (largest packet size*MC)/4
261 		 * (1024 * 3)/4 = 768
262 		 */
263 		ptxfsiz = 768;
264 
265 		params->host_rx_fifo_size = rxfsiz;
266 		params->host_nperio_tx_fifo_size = nptxfsiz;
267 		params->host_perio_tx_fifo_size = ptxfsiz;
268 	}
269 
270 	/*
271 	 * If the summation of RX, NPTX and PTX fifo sizes is still
272 	 * bigger than the total_fifo_size, then we have a problem.
273 	 *
274 	 * We won't be able to allocate as many endpoints. Right now,
275 	 * we're just printing an error message, but ideally this FIFO
276 	 * allocation algorithm would be improved in the future.
277 	 *
278 	 * FIXME improve this FIFO allocation algorithm.
279 	 */
280 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
281 		dev_err(hsotg->dev, "invalid fifo sizes\n");
282 }
283 
284 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
285 {
286 	struct dwc2_core_params *params = &hsotg->params;
287 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
288 
289 	if (!params->enable_dynamic_fifo)
290 		return;
291 
292 	dwc2_calculate_dynamic_fifo(hsotg);
293 
294 	/* Rx FIFO */
295 	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
296 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
297 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
298 	grxfsiz |= params->host_rx_fifo_size <<
299 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
300 	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
301 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
302 		dwc2_readl(hsotg, GRXFSIZ));
303 
304 	/* Non-periodic Tx FIFO */
305 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
306 		dwc2_readl(hsotg, GNPTXFSIZ));
307 	nptxfsiz = params->host_nperio_tx_fifo_size <<
308 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
309 	nptxfsiz |= params->host_rx_fifo_size <<
310 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
311 	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
312 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
313 		dwc2_readl(hsotg, GNPTXFSIZ));
314 
315 	/* Periodic Tx FIFO */
316 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
317 		dwc2_readl(hsotg, HPTXFSIZ));
318 	hptxfsiz = params->host_perio_tx_fifo_size <<
319 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
320 	hptxfsiz |= (params->host_rx_fifo_size +
321 		     params->host_nperio_tx_fifo_size) <<
322 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
323 	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
324 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
325 		dwc2_readl(hsotg, HPTXFSIZ));
326 
327 	if (hsotg->params.en_multiple_tx_fifo &&
328 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
329 		/*
330 		 * This feature was implemented in 2.91a version
331 		 * Global DFIFOCFG calculation for Host mode -
332 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
333 		 */
334 		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
335 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
336 		dfifocfg |= (params->host_rx_fifo_size +
337 			     params->host_nperio_tx_fifo_size +
338 			     params->host_perio_tx_fifo_size) <<
339 			    GDFIFOCFG_EPINFOBASE_SHIFT &
340 			    GDFIFOCFG_EPINFOBASE_MASK;
341 		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
342 	}
343 }
344 
345 /**
346  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
347  * the HFIR register according to PHY type and speed
348  *
349  * @hsotg: Programming view of DWC_otg controller
350  *
351  * NOTE: The caller can modify the value of the HFIR register only after the
352  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
353  * has been set
354  */
355 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
356 {
357 	u32 usbcfg;
358 	u32 hprt0;
359 	int clock = 60;	/* default value */
360 
361 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
362 	hprt0 = dwc2_readl(hsotg, HPRT0);
363 
364 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
365 	    !(usbcfg & GUSBCFG_PHYIF16))
366 		clock = 60;
367 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
368 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
369 		clock = 48;
370 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
371 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
372 		clock = 30;
373 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
374 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
375 		clock = 60;
376 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
377 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
378 		clock = 48;
379 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
380 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
381 		clock = 48;
382 	if ((usbcfg & GUSBCFG_PHYSEL) &&
383 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
384 		clock = 48;
385 
386 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
387 		/* High speed case */
388 		return 125 * clock - 1;
389 
390 	/* FS/LS case */
391 	return 1000 * clock - 1;
392 }
393 
394 /**
395  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
396  * buffer
397  *
398  * @hsotg: Programming view of DWC_otg controller
399  * @dest:    Destination buffer for the packet
400  * @bytes:   Number of bytes to copy to the destination
401  */
402 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
403 {
404 	u32 *data_buf = (u32 *)dest;
405 	int word_count = (bytes + 3) / 4;
406 	int i;
407 
408 	/*
409 	 * Todo: Account for the case where dest is not dword aligned. This
410 	 * requires reading data from the FIFO into a u32 temp buffer, then
411 	 * moving it into the data buffer.
412 	 */
413 
414 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
415 
416 	for (i = 0; i < word_count; i++, data_buf++)
417 		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
418 }
419 
420 /**
421  * dwc2_dump_channel_info() - Prints the state of a host channel
422  *
423  * @hsotg: Programming view of DWC_otg controller
424  * @chan:  Pointer to the channel to dump
425  *
426  * Must be called with interrupt disabled and spinlock held
427  *
428  * NOTE: This function will be removed once the peripheral controller code
429  * is integrated and the driver is stable
430  */
431 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
432 				   struct dwc2_host_chan *chan)
433 {
434 #ifdef VERBOSE_DEBUG
435 	int num_channels = hsotg->params.host_channels;
436 	struct dwc2_qh *qh;
437 	u32 hcchar;
438 	u32 hcsplt;
439 	u32 hctsiz;
440 	u32 hc_dma;
441 	int i;
442 
443 	if (!chan)
444 		return;
445 
446 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
447 	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
448 	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
449 	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
450 
451 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
452 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
453 		hcchar, hcsplt);
454 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
455 		hctsiz, hc_dma);
456 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
457 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
458 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
459 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
460 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
461 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
462 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
463 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
464 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
465 		(unsigned long)chan->xfer_dma);
466 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
467 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
468 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
469 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
470 			    qh_list_entry)
471 		dev_dbg(hsotg->dev, "    %p\n", qh);
472 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
473 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
474 			    qh_list_entry)
475 		dev_dbg(hsotg->dev, "    %p\n", qh);
476 	dev_dbg(hsotg->dev, "  NP active sched:\n");
477 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
478 			    qh_list_entry)
479 		dev_dbg(hsotg->dev, "    %p\n", qh);
480 	dev_dbg(hsotg->dev, "  Channels:\n");
481 	for (i = 0; i < num_channels; i++) {
482 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
483 
484 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
485 	}
486 #endif /* VERBOSE_DEBUG */
487 }
488 
489 static int _dwc2_hcd_start(struct usb_hcd *hcd);
490 
491 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
492 {
493 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
494 
495 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
496 	_dwc2_hcd_start(hcd);
497 }
498 
499 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
500 {
501 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
502 
503 	hcd->self.is_b_host = 0;
504 }
505 
506 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
507 			       int *hub_addr, int *hub_port)
508 {
509 	struct urb *urb = context;
510 
511 	if (urb->dev->tt)
512 		*hub_addr = urb->dev->tt->hub->devnum;
513 	else
514 		*hub_addr = 0;
515 	*hub_port = urb->dev->ttport;
516 }
517 
518 /*
519  * =========================================================================
520  *  Low Level Host Channel Access Functions
521  * =========================================================================
522  */
523 
524 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
525 				      struct dwc2_host_chan *chan)
526 {
527 	u32 hcintmsk = HCINTMSK_CHHLTD;
528 
529 	switch (chan->ep_type) {
530 	case USB_ENDPOINT_XFER_CONTROL:
531 	case USB_ENDPOINT_XFER_BULK:
532 		dev_vdbg(hsotg->dev, "control/bulk\n");
533 		hcintmsk |= HCINTMSK_XFERCOMPL;
534 		hcintmsk |= HCINTMSK_STALL;
535 		hcintmsk |= HCINTMSK_XACTERR;
536 		hcintmsk |= HCINTMSK_DATATGLERR;
537 		if (chan->ep_is_in) {
538 			hcintmsk |= HCINTMSK_BBLERR;
539 		} else {
540 			hcintmsk |= HCINTMSK_NAK;
541 			hcintmsk |= HCINTMSK_NYET;
542 			if (chan->do_ping)
543 				hcintmsk |= HCINTMSK_ACK;
544 		}
545 
546 		if (chan->do_split) {
547 			hcintmsk |= HCINTMSK_NAK;
548 			if (chan->complete_split)
549 				hcintmsk |= HCINTMSK_NYET;
550 			else
551 				hcintmsk |= HCINTMSK_ACK;
552 		}
553 
554 		if (chan->error_state)
555 			hcintmsk |= HCINTMSK_ACK;
556 		break;
557 
558 	case USB_ENDPOINT_XFER_INT:
559 		if (dbg_perio())
560 			dev_vdbg(hsotg->dev, "intr\n");
561 		hcintmsk |= HCINTMSK_XFERCOMPL;
562 		hcintmsk |= HCINTMSK_NAK;
563 		hcintmsk |= HCINTMSK_STALL;
564 		hcintmsk |= HCINTMSK_XACTERR;
565 		hcintmsk |= HCINTMSK_DATATGLERR;
566 		hcintmsk |= HCINTMSK_FRMOVRUN;
567 
568 		if (chan->ep_is_in)
569 			hcintmsk |= HCINTMSK_BBLERR;
570 		if (chan->error_state)
571 			hcintmsk |= HCINTMSK_ACK;
572 		if (chan->do_split) {
573 			if (chan->complete_split)
574 				hcintmsk |= HCINTMSK_NYET;
575 			else
576 				hcintmsk |= HCINTMSK_ACK;
577 		}
578 		break;
579 
580 	case USB_ENDPOINT_XFER_ISOC:
581 		if (dbg_perio())
582 			dev_vdbg(hsotg->dev, "isoc\n");
583 		hcintmsk |= HCINTMSK_XFERCOMPL;
584 		hcintmsk |= HCINTMSK_FRMOVRUN;
585 		hcintmsk |= HCINTMSK_ACK;
586 
587 		if (chan->ep_is_in) {
588 			hcintmsk |= HCINTMSK_XACTERR;
589 			hcintmsk |= HCINTMSK_BBLERR;
590 		}
591 		break;
592 	default:
593 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
594 		break;
595 	}
596 
597 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
598 	if (dbg_hc(chan))
599 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
600 }
601 
602 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
603 				    struct dwc2_host_chan *chan)
604 {
605 	u32 hcintmsk = HCINTMSK_CHHLTD;
606 
607 	/*
608 	 * For Descriptor DMA mode core halts the channel on AHB error.
609 	 * Interrupt is not required.
610 	 */
611 	if (!hsotg->params.dma_desc_enable) {
612 		if (dbg_hc(chan))
613 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
614 		hcintmsk |= HCINTMSK_AHBERR;
615 	} else {
616 		if (dbg_hc(chan))
617 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
618 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
619 			hcintmsk |= HCINTMSK_XFERCOMPL;
620 	}
621 
622 	if (chan->error_state && !chan->do_split &&
623 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
624 		if (dbg_hc(chan))
625 			dev_vdbg(hsotg->dev, "setting ACK\n");
626 		hcintmsk |= HCINTMSK_ACK;
627 		if (chan->ep_is_in) {
628 			hcintmsk |= HCINTMSK_DATATGLERR;
629 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
630 				hcintmsk |= HCINTMSK_NAK;
631 		}
632 	}
633 
634 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
635 	if (dbg_hc(chan))
636 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
637 }
638 
639 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
640 				struct dwc2_host_chan *chan)
641 {
642 	u32 intmsk;
643 
644 	if (hsotg->params.host_dma) {
645 		if (dbg_hc(chan))
646 			dev_vdbg(hsotg->dev, "DMA enabled\n");
647 		dwc2_hc_enable_dma_ints(hsotg, chan);
648 	} else {
649 		if (dbg_hc(chan))
650 			dev_vdbg(hsotg->dev, "DMA disabled\n");
651 		dwc2_hc_enable_slave_ints(hsotg, chan);
652 	}
653 
654 	/* Enable the top level host channel interrupt */
655 	intmsk = dwc2_readl(hsotg, HAINTMSK);
656 	intmsk |= 1 << chan->hc_num;
657 	dwc2_writel(hsotg, intmsk, HAINTMSK);
658 	if (dbg_hc(chan))
659 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
660 
661 	/* Make sure host channel interrupts are enabled */
662 	intmsk = dwc2_readl(hsotg, GINTMSK);
663 	intmsk |= GINTSTS_HCHINT;
664 	dwc2_writel(hsotg, intmsk, GINTMSK);
665 	if (dbg_hc(chan))
666 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
667 }
668 
669 /**
670  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
671  * a specific endpoint
672  *
673  * @hsotg: Programming view of DWC_otg controller
674  * @chan:  Information needed to initialize the host channel
675  *
676  * The HCCHARn register is set up with the characteristics specified in chan.
677  * Host channel interrupts that may need to be serviced while this transfer is
678  * in progress are enabled.
679  */
680 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
681 {
682 	u8 hc_num = chan->hc_num;
683 	u32 hcintmsk;
684 	u32 hcchar;
685 	u32 hcsplt = 0;
686 
687 	if (dbg_hc(chan))
688 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
689 
690 	/* Clear old interrupt conditions for this host channel */
691 	hcintmsk = 0xffffffff;
692 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
693 	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
694 
695 	/* Enable channel interrupts required for this transfer */
696 	dwc2_hc_enable_ints(hsotg, chan);
697 
698 	/*
699 	 * Program the HCCHARn register with the endpoint characteristics for
700 	 * the current transfer
701 	 */
702 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
703 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
704 	if (chan->ep_is_in)
705 		hcchar |= HCCHAR_EPDIR;
706 	if (chan->speed == USB_SPEED_LOW)
707 		hcchar |= HCCHAR_LSPDDEV;
708 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
709 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
710 	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
711 	if (dbg_hc(chan)) {
712 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
713 			 hc_num, hcchar);
714 
715 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
716 			 __func__, hc_num);
717 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
718 			 chan->dev_addr);
719 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
720 			 chan->ep_num);
721 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
722 			 chan->ep_is_in);
723 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
724 			 chan->speed == USB_SPEED_LOW);
725 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
726 			 chan->ep_type);
727 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
728 			 chan->max_packet);
729 	}
730 
731 	/* Program the HCSPLT register for SPLITs */
732 	if (chan->do_split) {
733 		if (dbg_hc(chan))
734 			dev_vdbg(hsotg->dev,
735 				 "Programming HC %d with split --> %s\n",
736 				 hc_num,
737 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
738 		if (chan->complete_split)
739 			hcsplt |= HCSPLT_COMPSPLT;
740 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
741 			  HCSPLT_XACTPOS_MASK;
742 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
743 			  HCSPLT_HUBADDR_MASK;
744 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
745 			  HCSPLT_PRTADDR_MASK;
746 		if (dbg_hc(chan)) {
747 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
748 				 chan->complete_split);
749 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
750 				 chan->xact_pos);
751 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
752 				 chan->hub_addr);
753 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
754 				 chan->hub_port);
755 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
756 				 chan->ep_is_in);
757 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
758 				 chan->max_packet);
759 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
760 				 chan->xfer_len);
761 		}
762 	}
763 
764 	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
765 }
766 
767 /**
768  * dwc2_hc_halt() - Attempts to halt a host channel
769  *
770  * @hsotg:       Controller register interface
771  * @chan:        Host channel to halt
772  * @halt_status: Reason for halting the channel
773  *
774  * This function should only be called in Slave mode or to abort a transfer in
775  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
776  * controller halts the channel when the transfer is complete or a condition
777  * occurs that requires application intervention.
778  *
779  * In slave mode, checks for a free request queue entry, then sets the Channel
780  * Enable and Channel Disable bits of the Host Channel Characteristics
781  * register of the specified channel to intiate the halt. If there is no free
782  * request queue entry, sets only the Channel Disable bit of the HCCHARn
783  * register to flush requests for this channel. In the latter case, sets a
784  * flag to indicate that the host channel needs to be halted when a request
785  * queue slot is open.
786  *
787  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
788  * HCCHARn register. The controller ensures there is space in the request
789  * queue before submitting the halt request.
790  *
791  * Some time may elapse before the core flushes any posted requests for this
792  * host channel and halts. The Channel Halted interrupt handler completes the
793  * deactivation of the host channel.
794  */
795 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
796 		  enum dwc2_halt_status halt_status)
797 {
798 	u32 nptxsts, hptxsts, hcchar;
799 
800 	if (dbg_hc(chan))
801 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
802 
803 	/*
804 	 * In buffer DMA or external DMA mode channel can't be halted
805 	 * for non-split periodic channels. At the end of the next
806 	 * uframe/frame (in the worst case), the core generates a channel
807 	 * halted and disables the channel automatically.
808 	 */
809 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
810 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
811 		if (!chan->do_split &&
812 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
813 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
814 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
815 				__func__);
816 			return;
817 		}
818 	}
819 
820 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
821 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
822 
823 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
824 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
825 		/*
826 		 * Disable all channel interrupts except Ch Halted. The QTD
827 		 * and QH state associated with this transfer has been cleared
828 		 * (in the case of URB_DEQUEUE), so the channel needs to be
829 		 * shut down carefully to prevent crashes.
830 		 */
831 		u32 hcintmsk = HCINTMSK_CHHLTD;
832 
833 		dev_vdbg(hsotg->dev, "dequeue/error\n");
834 		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
835 
836 		/*
837 		 * Make sure no other interrupts besides halt are currently
838 		 * pending. Handling another interrupt could cause a crash due
839 		 * to the QTD and QH state.
840 		 */
841 		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
842 
843 		/*
844 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
845 		 * even if the channel was already halted for some other
846 		 * reason
847 		 */
848 		chan->halt_status = halt_status;
849 
850 		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
851 		if (!(hcchar & HCCHAR_CHENA)) {
852 			/*
853 			 * The channel is either already halted or it hasn't
854 			 * started yet. In DMA mode, the transfer may halt if
855 			 * it finishes normally or a condition occurs that
856 			 * requires driver intervention. Don't want to halt
857 			 * the channel again. In either Slave or DMA mode,
858 			 * it's possible that the transfer has been assigned
859 			 * to a channel, but not started yet when an URB is
860 			 * dequeued. Don't want to halt a channel that hasn't
861 			 * started yet.
862 			 */
863 			return;
864 		}
865 	}
866 	if (chan->halt_pending) {
867 		/*
868 		 * A halt has already been issued for this channel. This might
869 		 * happen when a transfer is aborted by a higher level in
870 		 * the stack.
871 		 */
872 		dev_vdbg(hsotg->dev,
873 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
874 			 __func__, chan->hc_num);
875 		return;
876 	}
877 
878 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
879 
880 	/* No need to set the bit in DDMA for disabling the channel */
881 	/* TODO check it everywhere channel is disabled */
882 	if (!hsotg->params.dma_desc_enable) {
883 		if (dbg_hc(chan))
884 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
885 		hcchar |= HCCHAR_CHENA;
886 	} else {
887 		if (dbg_hc(chan))
888 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
889 	}
890 	hcchar |= HCCHAR_CHDIS;
891 
892 	if (!hsotg->params.host_dma) {
893 		if (dbg_hc(chan))
894 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
895 		hcchar |= HCCHAR_CHENA;
896 
897 		/* Check for space in the request queue to issue the halt */
898 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
899 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
900 			dev_vdbg(hsotg->dev, "control/bulk\n");
901 			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
902 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
903 				dev_vdbg(hsotg->dev, "Disabling channel\n");
904 				hcchar &= ~HCCHAR_CHENA;
905 			}
906 		} else {
907 			if (dbg_perio())
908 				dev_vdbg(hsotg->dev, "isoc/intr\n");
909 			hptxsts = dwc2_readl(hsotg, HPTXSTS);
910 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
911 			    hsotg->queuing_high_bandwidth) {
912 				if (dbg_perio())
913 					dev_vdbg(hsotg->dev, "Disabling channel\n");
914 				hcchar &= ~HCCHAR_CHENA;
915 			}
916 		}
917 	} else {
918 		if (dbg_hc(chan))
919 			dev_vdbg(hsotg->dev, "DMA enabled\n");
920 	}
921 
922 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
923 	chan->halt_status = halt_status;
924 
925 	if (hcchar & HCCHAR_CHENA) {
926 		if (dbg_hc(chan))
927 			dev_vdbg(hsotg->dev, "Channel enabled\n");
928 		chan->halt_pending = 1;
929 		chan->halt_on_queue = 0;
930 	} else {
931 		if (dbg_hc(chan))
932 			dev_vdbg(hsotg->dev, "Channel disabled\n");
933 		chan->halt_on_queue = 1;
934 	}
935 
936 	if (dbg_hc(chan)) {
937 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
938 			 chan->hc_num);
939 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
940 			 hcchar);
941 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
942 			 chan->halt_pending);
943 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
944 			 chan->halt_on_queue);
945 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
946 			 chan->halt_status);
947 	}
948 }
949 
950 /**
951  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
952  *
953  * @hsotg: Programming view of DWC_otg controller
954  * @chan:  Identifies the host channel to clean up
955  *
956  * This function is normally called after a transfer is done and the host
957  * channel is being released
958  */
959 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
960 {
961 	u32 hcintmsk;
962 
963 	chan->xfer_started = 0;
964 
965 	list_del_init(&chan->split_order_list_entry);
966 
967 	/*
968 	 * Clear channel interrupt enables and any unhandled channel interrupt
969 	 * conditions
970 	 */
971 	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
972 	hcintmsk = 0xffffffff;
973 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
974 	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
975 }
976 
977 /**
978  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
979  * which frame a periodic transfer should occur
980  *
981  * @hsotg:  Programming view of DWC_otg controller
982  * @chan:   Identifies the host channel to set up and its properties
983  * @hcchar: Current value of the HCCHAR register for the specified host channel
984  *
985  * This function has no effect on non-periodic transfers
986  */
987 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
988 				       struct dwc2_host_chan *chan, u32 *hcchar)
989 {
990 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
991 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
992 		int host_speed;
993 		int xfer_ns;
994 		int xfer_us;
995 		int bytes_in_fifo;
996 		u16 fifo_space;
997 		u16 frame_number;
998 		u16 wire_frame;
999 
1000 		/*
1001 		 * Try to figure out if we're an even or odd frame. If we set
1002 		 * even and the current frame number is even the the transfer
1003 		 * will happen immediately.  Similar if both are odd. If one is
1004 		 * even and the other is odd then the transfer will happen when
1005 		 * the frame number ticks.
1006 		 *
1007 		 * There's a bit of a balancing act to get this right.
1008 		 * Sometimes we may want to send data in the current frame (AK
1009 		 * right away).  We might want to do this if the frame number
1010 		 * _just_ ticked, but we might also want to do this in order
1011 		 * to continue a split transaction that happened late in a
1012 		 * microframe (so we didn't know to queue the next transfer
1013 		 * until the frame number had ticked).  The problem is that we
1014 		 * need a lot of knowledge to know if there's actually still
1015 		 * time to send things or if it would be better to wait until
1016 		 * the next frame.
1017 		 *
1018 		 * We can look at how much time is left in the current frame
1019 		 * and make a guess about whether we'll have time to transfer.
1020 		 * We'll do that.
1021 		 */
1022 
1023 		/* Get speed host is running at */
1024 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1025 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1026 
1027 		/* See how many bytes are in the periodic FIFO right now */
1028 		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1029 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1030 		bytes_in_fifo = sizeof(u32) *
1031 				(hsotg->params.host_perio_tx_fifo_size -
1032 				 fifo_space);
1033 
1034 		/*
1035 		 * Roughly estimate bus time for everything in the periodic
1036 		 * queue + our new transfer.  This is "rough" because we're
1037 		 * using a function that makes takes into account IN/OUT
1038 		 * and INT/ISO and we're just slamming in one value for all
1039 		 * transfers.  This should be an over-estimate and that should
1040 		 * be OK, but we can probably tighten it.
1041 		 */
1042 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1043 					    chan->xfer_len + bytes_in_fifo);
1044 		xfer_us = NS_TO_US(xfer_ns);
1045 
1046 		/* See what frame number we'll be at by the time we finish */
1047 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1048 
1049 		/* This is when we were scheduled to be on the wire */
1050 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1051 
1052 		/*
1053 		 * If we'd finish _after_ the frame we're scheduled in then
1054 		 * it's hopeless.  Just schedule right away and hope for the
1055 		 * best.  Note that it _might_ be wise to call back into the
1056 		 * scheduler to pick a better frame, but this is better than
1057 		 * nothing.
1058 		 */
1059 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1060 			dwc2_sch_vdbg(hsotg,
1061 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1062 				      chan->qh, wire_frame, frame_number,
1063 				      dwc2_frame_num_dec(frame_number,
1064 							 wire_frame));
1065 			wire_frame = frame_number;
1066 
1067 			/*
1068 			 * We picked a different frame number; communicate this
1069 			 * back to the scheduler so it doesn't try to schedule
1070 			 * another in the same frame.
1071 			 *
1072 			 * Remember that next_active_frame is 1 before the wire
1073 			 * frame.
1074 			 */
1075 			chan->qh->next_active_frame =
1076 				dwc2_frame_num_dec(frame_number, 1);
1077 		}
1078 
1079 		if (wire_frame & 1)
1080 			*hcchar |= HCCHAR_ODDFRM;
1081 		else
1082 			*hcchar &= ~HCCHAR_ODDFRM;
1083 	}
1084 }
1085 
1086 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1087 {
1088 	/* Set up the initial PID for the transfer */
1089 	if (chan->speed == USB_SPEED_HIGH) {
1090 		if (chan->ep_is_in) {
1091 			if (chan->multi_count == 1)
1092 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1093 			else if (chan->multi_count == 2)
1094 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1095 			else
1096 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1097 		} else {
1098 			if (chan->multi_count == 1)
1099 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1100 			else
1101 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1102 		}
1103 	} else {
1104 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1105 	}
1106 }
1107 
1108 /**
1109  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1110  * the Host Channel
1111  *
1112  * @hsotg: Programming view of DWC_otg controller
1113  * @chan:  Information needed to initialize the host channel
1114  *
1115  * This function should only be called in Slave mode. For a channel associated
1116  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1117  * associated with a periodic EP, the periodic Tx FIFO is written.
1118  *
1119  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1120  * the number of bytes written to the Tx FIFO.
1121  */
1122 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1123 				 struct dwc2_host_chan *chan)
1124 {
1125 	u32 i;
1126 	u32 remaining_count;
1127 	u32 byte_count;
1128 	u32 dword_count;
1129 	u32 *data_buf = (u32 *)chan->xfer_buf;
1130 
1131 	if (dbg_hc(chan))
1132 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1133 
1134 	remaining_count = chan->xfer_len - chan->xfer_count;
1135 	if (remaining_count > chan->max_packet)
1136 		byte_count = chan->max_packet;
1137 	else
1138 		byte_count = remaining_count;
1139 
1140 	dword_count = (byte_count + 3) / 4;
1141 
1142 	if (((unsigned long)data_buf & 0x3) == 0) {
1143 		/* xfer_buf is DWORD aligned */
1144 		for (i = 0; i < dword_count; i++, data_buf++)
1145 			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1146 	} else {
1147 		/* xfer_buf is not DWORD aligned */
1148 		for (i = 0; i < dword_count; i++, data_buf++) {
1149 			u32 data = data_buf[0] | data_buf[1] << 8 |
1150 				   data_buf[2] << 16 | data_buf[3] << 24;
1151 			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1152 		}
1153 	}
1154 
1155 	chan->xfer_count += byte_count;
1156 	chan->xfer_buf += byte_count;
1157 }
1158 
1159 /**
1160  * dwc2_hc_do_ping() - Starts a PING transfer
1161  *
1162  * @hsotg: Programming view of DWC_otg controller
1163  * @chan:  Information needed to initialize the host channel
1164  *
1165  * This function should only be called in Slave mode. The Do Ping bit is set in
1166  * the HCTSIZ register, then the channel is enabled.
1167  */
1168 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1169 			    struct dwc2_host_chan *chan)
1170 {
1171 	u32 hcchar;
1172 	u32 hctsiz;
1173 
1174 	if (dbg_hc(chan))
1175 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1176 			 chan->hc_num);
1177 
1178 	hctsiz = TSIZ_DOPNG;
1179 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1180 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1181 
1182 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1183 	hcchar |= HCCHAR_CHENA;
1184 	hcchar &= ~HCCHAR_CHDIS;
1185 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1186 }
1187 
1188 /**
1189  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1190  * channel and starts the transfer
1191  *
1192  * @hsotg: Programming view of DWC_otg controller
1193  * @chan:  Information needed to initialize the host channel. The xfer_len value
1194  *         may be reduced to accommodate the max widths of the XferSize and
1195  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1196  *         changed to reflect the final xfer_len value.
1197  *
1198  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1199  * the caller must ensure that there is sufficient space in the request queue
1200  * and Tx Data FIFO.
1201  *
1202  * For an OUT transfer in Slave mode, it loads a data packet into the
1203  * appropriate FIFO. If necessary, additional data packets are loaded in the
1204  * Host ISR.
1205  *
1206  * For an IN transfer in Slave mode, a data packet is requested. The data
1207  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1208  * additional data packets are requested in the Host ISR.
1209  *
1210  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1211  * register along with a packet count of 1 and the channel is enabled. This
1212  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1213  * simply set to 0 since no data transfer occurs in this case.
1214  *
1215  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1216  * all the information required to perform the subsequent data transfer. In
1217  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1218  * controller performs the entire PING protocol, then starts the data
1219  * transfer.
1220  */
1221 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1222 				   struct dwc2_host_chan *chan)
1223 {
1224 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1225 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1226 	u32 hcchar;
1227 	u32 hctsiz = 0;
1228 	u16 num_packets;
1229 	u32 ec_mc;
1230 
1231 	if (dbg_hc(chan))
1232 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1233 
1234 	if (chan->do_ping) {
1235 		if (!hsotg->params.host_dma) {
1236 			if (dbg_hc(chan))
1237 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1238 			dwc2_hc_do_ping(hsotg, chan);
1239 			chan->xfer_started = 1;
1240 			return;
1241 		}
1242 
1243 		if (dbg_hc(chan))
1244 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1245 
1246 		hctsiz |= TSIZ_DOPNG;
1247 	}
1248 
1249 	if (chan->do_split) {
1250 		if (dbg_hc(chan))
1251 			dev_vdbg(hsotg->dev, "split\n");
1252 		num_packets = 1;
1253 
1254 		if (chan->complete_split && !chan->ep_is_in)
1255 			/*
1256 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1257 			 * core doesn't expect any data written to the FIFO
1258 			 */
1259 			chan->xfer_len = 0;
1260 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1261 			chan->xfer_len = chan->max_packet;
1262 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1263 			chan->xfer_len = 188;
1264 
1265 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1266 			  TSIZ_XFERSIZE_MASK;
1267 
1268 		/* For split set ec_mc for immediate retries */
1269 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1270 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1271 			ec_mc = 3;
1272 		else
1273 			ec_mc = 1;
1274 	} else {
1275 		if (dbg_hc(chan))
1276 			dev_vdbg(hsotg->dev, "no split\n");
1277 		/*
1278 		 * Ensure that the transfer length and packet count will fit
1279 		 * in the widths allocated for them in the HCTSIZn register
1280 		 */
1281 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1282 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1283 			/*
1284 			 * Make sure the transfer size is no larger than one
1285 			 * (micro)frame's worth of data. (A check was done
1286 			 * when the periodic transfer was accepted to ensure
1287 			 * that a (micro)frame's worth of data can be
1288 			 * programmed into a channel.)
1289 			 */
1290 			u32 max_periodic_len =
1291 				chan->multi_count * chan->max_packet;
1292 
1293 			if (chan->xfer_len > max_periodic_len)
1294 				chan->xfer_len = max_periodic_len;
1295 		} else if (chan->xfer_len > max_hc_xfer_size) {
1296 			/*
1297 			 * Make sure that xfer_len is a multiple of max packet
1298 			 * size
1299 			 */
1300 			chan->xfer_len =
1301 				max_hc_xfer_size - chan->max_packet + 1;
1302 		}
1303 
1304 		if (chan->xfer_len > 0) {
1305 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1306 					chan->max_packet;
1307 			if (num_packets > max_hc_pkt_count) {
1308 				num_packets = max_hc_pkt_count;
1309 				chan->xfer_len = num_packets * chan->max_packet;
1310 			} else if (chan->ep_is_in) {
1311 				/*
1312 				 * Always program an integral # of max packets
1313 				 * for IN transfers.
1314 				 * Note: This assumes that the input buffer is
1315 				 * aligned and sized accordingly.
1316 				 */
1317 				chan->xfer_len = num_packets * chan->max_packet;
1318 			}
1319 		} else {
1320 			/* Need 1 packet for transfer length of 0 */
1321 			num_packets = 1;
1322 		}
1323 
1324 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1325 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1326 			/*
1327 			 * Make sure that the multi_count field matches the
1328 			 * actual transfer length
1329 			 */
1330 			chan->multi_count = num_packets;
1331 
1332 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1333 			dwc2_set_pid_isoc(chan);
1334 
1335 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1336 			  TSIZ_XFERSIZE_MASK;
1337 
1338 		/* The ec_mc gets the multi_count for non-split */
1339 		ec_mc = chan->multi_count;
1340 	}
1341 
1342 	chan->start_pkt_count = num_packets;
1343 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1344 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1345 		  TSIZ_SC_MC_PID_MASK;
1346 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1347 	if (dbg_hc(chan)) {
1348 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1349 			 hctsiz, chan->hc_num);
1350 
1351 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1352 			 chan->hc_num);
1353 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1354 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1355 			 TSIZ_XFERSIZE_SHIFT);
1356 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1357 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1358 			 TSIZ_PKTCNT_SHIFT);
1359 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1360 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1361 			 TSIZ_SC_MC_PID_SHIFT);
1362 	}
1363 
1364 	if (hsotg->params.host_dma) {
1365 		dma_addr_t dma_addr;
1366 
1367 		if (chan->align_buf) {
1368 			if (dbg_hc(chan))
1369 				dev_vdbg(hsotg->dev, "align_buf\n");
1370 			dma_addr = chan->align_buf;
1371 		} else {
1372 			dma_addr = chan->xfer_dma;
1373 		}
1374 		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1375 
1376 		if (dbg_hc(chan))
1377 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1378 				 (unsigned long)dma_addr, chan->hc_num);
1379 	}
1380 
1381 	/* Start the split */
1382 	if (chan->do_split) {
1383 		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1384 
1385 		hcsplt |= HCSPLT_SPLTENA;
1386 		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1387 	}
1388 
1389 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1390 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1391 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1392 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1393 
1394 	if (hcchar & HCCHAR_CHDIS)
1395 		dev_warn(hsotg->dev,
1396 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1397 			 __func__, chan->hc_num, hcchar);
1398 
1399 	/* Set host channel enable after all other setup is complete */
1400 	hcchar |= HCCHAR_CHENA;
1401 	hcchar &= ~HCCHAR_CHDIS;
1402 
1403 	if (dbg_hc(chan))
1404 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1405 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1406 			 HCCHAR_MULTICNT_SHIFT);
1407 
1408 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1409 	if (dbg_hc(chan))
1410 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1411 			 chan->hc_num);
1412 
1413 	chan->xfer_started = 1;
1414 	chan->requests++;
1415 
1416 	if (!hsotg->params.host_dma &&
1417 	    !chan->ep_is_in && chan->xfer_len > 0)
1418 		/* Load OUT packet into the appropriate Tx FIFO */
1419 		dwc2_hc_write_packet(hsotg, chan);
1420 }
1421 
1422 /**
1423  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1424  * host channel and starts the transfer in Descriptor DMA mode
1425  *
1426  * @hsotg: Programming view of DWC_otg controller
1427  * @chan:  Information needed to initialize the host channel
1428  *
1429  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1430  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1431  * with micro-frame bitmap.
1432  *
1433  * Initializes HCDMA register with descriptor list address and CTD value then
1434  * starts the transfer via enabling the channel.
1435  */
1436 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1437 				 struct dwc2_host_chan *chan)
1438 {
1439 	u32 hcchar;
1440 	u32 hctsiz = 0;
1441 
1442 	if (chan->do_ping)
1443 		hctsiz |= TSIZ_DOPNG;
1444 
1445 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1446 		dwc2_set_pid_isoc(chan);
1447 
1448 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1449 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1450 		  TSIZ_SC_MC_PID_MASK;
1451 
1452 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1453 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1454 
1455 	/* Non-zero only for high-speed interrupt endpoints */
1456 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1457 
1458 	if (dbg_hc(chan)) {
1459 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1460 			 chan->hc_num);
1461 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1462 			 chan->data_pid_start);
1463 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1464 	}
1465 
1466 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1467 
1468 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1469 				   chan->desc_list_sz, DMA_TO_DEVICE);
1470 
1471 	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1472 
1473 	if (dbg_hc(chan))
1474 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1475 			 &chan->desc_list_addr, chan->hc_num);
1476 
1477 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1478 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1479 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1480 		  HCCHAR_MULTICNT_MASK;
1481 
1482 	if (hcchar & HCCHAR_CHDIS)
1483 		dev_warn(hsotg->dev,
1484 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1485 			 __func__, chan->hc_num, hcchar);
1486 
1487 	/* Set host channel enable after all other setup is complete */
1488 	hcchar |= HCCHAR_CHENA;
1489 	hcchar &= ~HCCHAR_CHDIS;
1490 
1491 	if (dbg_hc(chan))
1492 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1493 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1494 			 HCCHAR_MULTICNT_SHIFT);
1495 
1496 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1497 	if (dbg_hc(chan))
1498 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1499 			 chan->hc_num);
1500 
1501 	chan->xfer_started = 1;
1502 	chan->requests++;
1503 }
1504 
1505 /**
1506  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1507  * a previous call to dwc2_hc_start_transfer()
1508  *
1509  * @hsotg: Programming view of DWC_otg controller
1510  * @chan:  Information needed to initialize the host channel
1511  *
1512  * The caller must ensure there is sufficient space in the request queue and Tx
1513  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1514  * the controller acts autonomously to complete transfers programmed to a host
1515  * channel.
1516  *
1517  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1518  * if there is any data remaining to be queued. For an IN transfer, another
1519  * data packet is always requested. For the SETUP phase of a control transfer,
1520  * this function does nothing.
1521  *
1522  * Return: 1 if a new request is queued, 0 if no more requests are required
1523  * for this transfer
1524  */
1525 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1526 				     struct dwc2_host_chan *chan)
1527 {
1528 	if (dbg_hc(chan))
1529 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1530 			 chan->hc_num);
1531 
1532 	if (chan->do_split)
1533 		/* SPLITs always queue just once per channel */
1534 		return 0;
1535 
1536 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1537 		/* SETUPs are queued only once since they can't be NAK'd */
1538 		return 0;
1539 
1540 	if (chan->ep_is_in) {
1541 		/*
1542 		 * Always queue another request for other IN transfers. If
1543 		 * back-to-back INs are issued and NAKs are received for both,
1544 		 * the driver may still be processing the first NAK when the
1545 		 * second NAK is received. When the interrupt handler clears
1546 		 * the NAK interrupt for the first NAK, the second NAK will
1547 		 * not be seen. So we can't depend on the NAK interrupt
1548 		 * handler to requeue a NAK'd request. Instead, IN requests
1549 		 * are issued each time this function is called. When the
1550 		 * transfer completes, the extra requests for the channel will
1551 		 * be flushed.
1552 		 */
1553 		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1554 
1555 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1556 		hcchar |= HCCHAR_CHENA;
1557 		hcchar &= ~HCCHAR_CHDIS;
1558 		if (dbg_hc(chan))
1559 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1560 				 hcchar);
1561 		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1562 		chan->requests++;
1563 		return 1;
1564 	}
1565 
1566 	/* OUT transfers */
1567 
1568 	if (chan->xfer_count < chan->xfer_len) {
1569 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1570 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1571 			u32 hcchar = dwc2_readl(hsotg,
1572 						HCCHAR(chan->hc_num));
1573 
1574 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1575 						   &hcchar);
1576 		}
1577 
1578 		/* Load OUT packet into the appropriate Tx FIFO */
1579 		dwc2_hc_write_packet(hsotg, chan);
1580 		chan->requests++;
1581 		return 1;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 /*
1588  * =========================================================================
1589  *  HCD
1590  * =========================================================================
1591  */
1592 
1593 /*
1594  * Processes all the URBs in a single list of QHs. Completes them with
1595  * -ETIMEDOUT and frees the QTD.
1596  *
1597  * Must be called with interrupt disabled and spinlock held
1598  */
1599 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1600 				      struct list_head *qh_list)
1601 {
1602 	struct dwc2_qh *qh, *qh_tmp;
1603 	struct dwc2_qtd *qtd, *qtd_tmp;
1604 
1605 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1606 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1607 					 qtd_list_entry) {
1608 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1609 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1610 		}
1611 	}
1612 }
1613 
1614 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1615 			      struct list_head *qh_list)
1616 {
1617 	struct dwc2_qtd *qtd, *qtd_tmp;
1618 	struct dwc2_qh *qh, *qh_tmp;
1619 	unsigned long flags;
1620 
1621 	if (!qh_list->next)
1622 		/* The list hasn't been initialized yet */
1623 		return;
1624 
1625 	spin_lock_irqsave(&hsotg->lock, flags);
1626 
1627 	/* Ensure there are no QTDs or URBs left */
1628 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1629 
1630 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1631 		dwc2_hcd_qh_unlink(hsotg, qh);
1632 
1633 		/* Free each QTD in the QH's QTD list */
1634 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1635 					 qtd_list_entry)
1636 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1637 
1638 		if (qh->channel && qh->channel->qh == qh)
1639 			qh->channel->qh = NULL;
1640 
1641 		spin_unlock_irqrestore(&hsotg->lock, flags);
1642 		dwc2_hcd_qh_free(hsotg, qh);
1643 		spin_lock_irqsave(&hsotg->lock, flags);
1644 	}
1645 
1646 	spin_unlock_irqrestore(&hsotg->lock, flags);
1647 }
1648 
1649 /*
1650  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1651  * and periodic schedules. The QTD associated with each URB is removed from
1652  * the schedule and freed. This function may be called when a disconnect is
1653  * detected or when the HCD is being stopped.
1654  *
1655  * Must be called with interrupt disabled and spinlock held
1656  */
1657 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1658 {
1659 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1660 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1661 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1662 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1663 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1664 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1665 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1666 }
1667 
1668 /**
1669  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1670  *
1671  * @hsotg: Pointer to struct dwc2_hsotg
1672  */
1673 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1674 {
1675 	u32 hprt0;
1676 
1677 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1678 		/*
1679 		 * Reset the port. During a HNP mode switch the reset
1680 		 * needs to occur within 1ms and have a duration of at
1681 		 * least 50ms.
1682 		 */
1683 		hprt0 = dwc2_read_hprt0(hsotg);
1684 		hprt0 |= HPRT0_RST;
1685 		dwc2_writel(hsotg, hprt0, HPRT0);
1686 	}
1687 
1688 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1689 			   msecs_to_jiffies(50));
1690 }
1691 
1692 /* Must be called with interrupt disabled and spinlock held */
1693 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1694 {
1695 	int num_channels = hsotg->params.host_channels;
1696 	struct dwc2_host_chan *channel;
1697 	u32 hcchar;
1698 	int i;
1699 
1700 	if (!hsotg->params.host_dma) {
1701 		/* Flush out any channel requests in slave mode */
1702 		for (i = 0; i < num_channels; i++) {
1703 			channel = hsotg->hc_ptr_array[i];
1704 			if (!list_empty(&channel->hc_list_entry))
1705 				continue;
1706 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1707 			if (hcchar & HCCHAR_CHENA) {
1708 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1709 				hcchar |= HCCHAR_CHDIS;
1710 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1711 			}
1712 		}
1713 	}
1714 
1715 	for (i = 0; i < num_channels; i++) {
1716 		channel = hsotg->hc_ptr_array[i];
1717 		if (!list_empty(&channel->hc_list_entry))
1718 			continue;
1719 		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1720 		if (hcchar & HCCHAR_CHENA) {
1721 			/* Halt the channel */
1722 			hcchar |= HCCHAR_CHDIS;
1723 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1724 		}
1725 
1726 		dwc2_hc_cleanup(hsotg, channel);
1727 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1728 		/*
1729 		 * Added for Descriptor DMA to prevent channel double cleanup in
1730 		 * release_channel_ddma(), which is called from ep_disable when
1731 		 * device disconnects
1732 		 */
1733 		channel->qh = NULL;
1734 	}
1735 	/* All channels have been freed, mark them available */
1736 	if (hsotg->params.uframe_sched) {
1737 		hsotg->available_host_channels =
1738 			hsotg->params.host_channels;
1739 	} else {
1740 		hsotg->non_periodic_channels = 0;
1741 		hsotg->periodic_channels = 0;
1742 	}
1743 }
1744 
1745 /**
1746  * dwc2_hcd_connect() - Handles connect of the HCD
1747  *
1748  * @hsotg: Pointer to struct dwc2_hsotg
1749  *
1750  * Must be called with interrupt disabled and spinlock held
1751  */
1752 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1753 {
1754 	if (hsotg->lx_state != DWC2_L0)
1755 		usb_hcd_resume_root_hub(hsotg->priv);
1756 
1757 	hsotg->flags.b.port_connect_status_change = 1;
1758 	hsotg->flags.b.port_connect_status = 1;
1759 }
1760 
1761 /**
1762  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1763  *
1764  * @hsotg: Pointer to struct dwc2_hsotg
1765  * @force: If true, we won't try to reconnect even if we see device connected.
1766  *
1767  * Must be called with interrupt disabled and spinlock held
1768  */
1769 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1770 {
1771 	u32 intr;
1772 	u32 hprt0;
1773 
1774 	/* Set status flags for the hub driver */
1775 	hsotg->flags.b.port_connect_status_change = 1;
1776 	hsotg->flags.b.port_connect_status = 0;
1777 
1778 	/*
1779 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1780 	 * interrupt mask and status bits and disabling subsequent host
1781 	 * channel interrupts.
1782 	 */
1783 	intr = dwc2_readl(hsotg, GINTMSK);
1784 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1785 	dwc2_writel(hsotg, intr, GINTMSK);
1786 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1787 	dwc2_writel(hsotg, intr, GINTSTS);
1788 
1789 	/*
1790 	 * Turn off the vbus power only if the core has transitioned to device
1791 	 * mode. If still in host mode, need to keep power on to detect a
1792 	 * reconnection.
1793 	 */
1794 	if (dwc2_is_device_mode(hsotg)) {
1795 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1796 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1797 			dwc2_writel(hsotg, 0, HPRT0);
1798 		}
1799 
1800 		dwc2_disable_host_interrupts(hsotg);
1801 	}
1802 
1803 	/* Respond with an error status to all URBs in the schedule */
1804 	dwc2_kill_all_urbs(hsotg);
1805 
1806 	if (dwc2_is_host_mode(hsotg))
1807 		/* Clean up any host channels that were in use */
1808 		dwc2_hcd_cleanup_channels(hsotg);
1809 
1810 	dwc2_host_disconnect(hsotg);
1811 
1812 	/*
1813 	 * Add an extra check here to see if we're actually connected but
1814 	 * we don't have a detection interrupt pending.  This can happen if:
1815 	 *   1. hardware sees connect
1816 	 *   2. hardware sees disconnect
1817 	 *   3. hardware sees connect
1818 	 *   4. dwc2_port_intr() - clears connect interrupt
1819 	 *   5. dwc2_handle_common_intr() - calls here
1820 	 *
1821 	 * Without the extra check here we will end calling disconnect
1822 	 * and won't get any future interrupts to handle the connect.
1823 	 */
1824 	if (!force) {
1825 		hprt0 = dwc2_readl(hsotg, HPRT0);
1826 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1827 			dwc2_hcd_connect(hsotg);
1828 	}
1829 }
1830 
1831 /**
1832  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1833  *
1834  * @hsotg: Pointer to struct dwc2_hsotg
1835  */
1836 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1837 {
1838 	if (hsotg->bus_suspended) {
1839 		hsotg->flags.b.port_suspend_change = 1;
1840 		usb_hcd_resume_root_hub(hsotg->priv);
1841 	}
1842 
1843 	if (hsotg->lx_state == DWC2_L1)
1844 		hsotg->flags.b.port_l1_change = 1;
1845 }
1846 
1847 /**
1848  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1849  *
1850  * @hsotg: Pointer to struct dwc2_hsotg
1851  *
1852  * Must be called with interrupt disabled and spinlock held
1853  */
1854 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1855 {
1856 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1857 
1858 	/*
1859 	 * The root hub should be disconnected before this function is called.
1860 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1861 	 * and the QH lists (via ..._hcd_endpoint_disable).
1862 	 */
1863 
1864 	/* Turn off all host-specific interrupts */
1865 	dwc2_disable_host_interrupts(hsotg);
1866 
1867 	/* Turn off the vbus power */
1868 	dev_dbg(hsotg->dev, "PortPower off\n");
1869 	dwc2_writel(hsotg, 0, HPRT0);
1870 }
1871 
1872 /* Caller must hold driver lock */
1873 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1874 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1875 				struct dwc2_qtd *qtd)
1876 {
1877 	u32 intr_mask;
1878 	int retval;
1879 	int dev_speed;
1880 
1881 	if (!hsotg->flags.b.port_connect_status) {
1882 		/* No longer connected */
1883 		dev_err(hsotg->dev, "Not connected\n");
1884 		return -ENODEV;
1885 	}
1886 
1887 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1888 
1889 	/* Some configurations cannot support LS traffic on a FS root port */
1890 	if ((dev_speed == USB_SPEED_LOW) &&
1891 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1892 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1893 		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1894 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1895 
1896 		if (prtspd == HPRT0_SPD_FULL_SPEED)
1897 			return -ENODEV;
1898 	}
1899 
1900 	if (!qtd)
1901 		return -EINVAL;
1902 
1903 	dwc2_hcd_qtd_init(qtd, urb);
1904 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1905 	if (retval) {
1906 		dev_err(hsotg->dev,
1907 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1908 			retval);
1909 		return retval;
1910 	}
1911 
1912 	intr_mask = dwc2_readl(hsotg, GINTMSK);
1913 	if (!(intr_mask & GINTSTS_SOF)) {
1914 		enum dwc2_transaction_type tr_type;
1915 
1916 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1917 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1918 			/*
1919 			 * Do not schedule SG transactions until qtd has
1920 			 * URB_GIVEBACK_ASAP set
1921 			 */
1922 			return 0;
1923 
1924 		tr_type = dwc2_hcd_select_transactions(hsotg);
1925 		if (tr_type != DWC2_TRANSACTION_NONE)
1926 			dwc2_hcd_queue_transactions(hsotg, tr_type);
1927 	}
1928 
1929 	return 0;
1930 }
1931 
1932 /* Must be called with interrupt disabled and spinlock held */
1933 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1934 				struct dwc2_hcd_urb *urb)
1935 {
1936 	struct dwc2_qh *qh;
1937 	struct dwc2_qtd *urb_qtd;
1938 
1939 	urb_qtd = urb->qtd;
1940 	if (!urb_qtd) {
1941 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1942 		return -EINVAL;
1943 	}
1944 
1945 	qh = urb_qtd->qh;
1946 	if (!qh) {
1947 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1948 		return -EINVAL;
1949 	}
1950 
1951 	urb->priv = NULL;
1952 
1953 	if (urb_qtd->in_process && qh->channel) {
1954 		dwc2_dump_channel_info(hsotg, qh->channel);
1955 
1956 		/* The QTD is in process (it has been assigned to a channel) */
1957 		if (hsotg->flags.b.port_connect_status)
1958 			/*
1959 			 * If still connected (i.e. in host mode), halt the
1960 			 * channel so it can be used for other transfers. If
1961 			 * no longer connected, the host registers can't be
1962 			 * written to halt the channel since the core is in
1963 			 * device mode.
1964 			 */
1965 			dwc2_hc_halt(hsotg, qh->channel,
1966 				     DWC2_HC_XFER_URB_DEQUEUE);
1967 	}
1968 
1969 	/*
1970 	 * Free the QTD and clean up the associated QH. Leave the QH in the
1971 	 * schedule if it has any remaining QTDs.
1972 	 */
1973 	if (!hsotg->params.dma_desc_enable) {
1974 		u8 in_process = urb_qtd->in_process;
1975 
1976 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1977 		if (in_process) {
1978 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1979 			qh->channel = NULL;
1980 		} else if (list_empty(&qh->qtd_list)) {
1981 			dwc2_hcd_qh_unlink(hsotg, qh);
1982 		}
1983 	} else {
1984 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 /* Must NOT be called with interrupt disabled or spinlock held */
1991 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1992 				     struct usb_host_endpoint *ep, int retry)
1993 {
1994 	struct dwc2_qtd *qtd, *qtd_tmp;
1995 	struct dwc2_qh *qh;
1996 	unsigned long flags;
1997 	int rc;
1998 
1999 	spin_lock_irqsave(&hsotg->lock, flags);
2000 
2001 	qh = ep->hcpriv;
2002 	if (!qh) {
2003 		rc = -EINVAL;
2004 		goto err;
2005 	}
2006 
2007 	while (!list_empty(&qh->qtd_list) && retry--) {
2008 		if (retry == 0) {
2009 			dev_err(hsotg->dev,
2010 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2011 			rc = -EBUSY;
2012 			goto err;
2013 		}
2014 
2015 		spin_unlock_irqrestore(&hsotg->lock, flags);
2016 		msleep(20);
2017 		spin_lock_irqsave(&hsotg->lock, flags);
2018 		qh = ep->hcpriv;
2019 		if (!qh) {
2020 			rc = -EINVAL;
2021 			goto err;
2022 		}
2023 	}
2024 
2025 	dwc2_hcd_qh_unlink(hsotg, qh);
2026 
2027 	/* Free each QTD in the QH's QTD list */
2028 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2029 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2030 
2031 	ep->hcpriv = NULL;
2032 
2033 	if (qh->channel && qh->channel->qh == qh)
2034 		qh->channel->qh = NULL;
2035 
2036 	spin_unlock_irqrestore(&hsotg->lock, flags);
2037 
2038 	dwc2_hcd_qh_free(hsotg, qh);
2039 
2040 	return 0;
2041 
2042 err:
2043 	ep->hcpriv = NULL;
2044 	spin_unlock_irqrestore(&hsotg->lock, flags);
2045 
2046 	return rc;
2047 }
2048 
2049 /* Must be called with interrupt disabled and spinlock held */
2050 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2051 				   struct usb_host_endpoint *ep)
2052 {
2053 	struct dwc2_qh *qh = ep->hcpriv;
2054 
2055 	if (!qh)
2056 		return -EINVAL;
2057 
2058 	qh->data_toggle = DWC2_HC_PID_DATA0;
2059 
2060 	return 0;
2061 }
2062 
2063 /**
2064  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2065  * prepares the core for device mode or host mode operation
2066  *
2067  * @hsotg:         Programming view of the DWC_otg controller
2068  * @initial_setup: If true then this is the first init for this instance.
2069  */
2070 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2071 {
2072 	u32 usbcfg, otgctl;
2073 	int retval;
2074 
2075 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2076 
2077 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2078 
2079 	/* Set ULPI External VBUS bit if needed */
2080 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2081 	if (hsotg->params.phy_ulpi_ext_vbus)
2082 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2083 
2084 	/* Set external TS Dline pulsing bit if needed */
2085 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2086 	if (hsotg->params.ts_dline)
2087 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2088 
2089 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2090 
2091 	/*
2092 	 * Reset the Controller
2093 	 *
2094 	 * We only need to reset the controller if this is a re-init.
2095 	 * For the first init we know for sure that earlier code reset us (it
2096 	 * needed to in order to properly detect various parameters).
2097 	 */
2098 	if (!initial_setup) {
2099 		retval = dwc2_core_reset(hsotg, false);
2100 		if (retval) {
2101 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2102 				__func__);
2103 			return retval;
2104 		}
2105 	}
2106 
2107 	/*
2108 	 * This needs to happen in FS mode before any other programming occurs
2109 	 */
2110 	retval = dwc2_phy_init(hsotg, initial_setup);
2111 	if (retval)
2112 		return retval;
2113 
2114 	/* Program the GAHBCFG Register */
2115 	retval = dwc2_gahbcfg_init(hsotg);
2116 	if (retval)
2117 		return retval;
2118 
2119 	/* Program the GUSBCFG register */
2120 	dwc2_gusbcfg_init(hsotg);
2121 
2122 	/* Program the GOTGCTL register */
2123 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2124 	otgctl &= ~GOTGCTL_OTGVER;
2125 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2126 
2127 	/* Clear the SRP success bit for FS-I2c */
2128 	hsotg->srp_success = 0;
2129 
2130 	/* Enable common interrupts */
2131 	dwc2_enable_common_interrupts(hsotg);
2132 
2133 	/*
2134 	 * Do device or host initialization based on mode during PCD and
2135 	 * HCD initialization
2136 	 */
2137 	if (dwc2_is_host_mode(hsotg)) {
2138 		dev_dbg(hsotg->dev, "Host Mode\n");
2139 		hsotg->op_state = OTG_STATE_A_HOST;
2140 	} else {
2141 		dev_dbg(hsotg->dev, "Device Mode\n");
2142 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 /**
2149  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2150  * Host mode
2151  *
2152  * @hsotg: Programming view of DWC_otg controller
2153  *
2154  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2155  * request queues. Host channels are reset to ensure that they are ready for
2156  * performing transfers.
2157  */
2158 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2159 {
2160 	u32 hcfg, hfir, otgctl, usbcfg;
2161 
2162 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2163 
2164 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2165 	 * The number of PHY clocks that the application programs in
2166 	 * this field is added to the high/full speed interpacket timeout
2167 	 * duration in the core to account for any additional delays
2168 	 * introduced by the PHY. This can be required, because the delay
2169 	 * introduced by the PHY in generating the linestate condition
2170 	 * can vary from one PHY to another.
2171 	 */
2172 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2173 	usbcfg |= GUSBCFG_TOUTCAL(7);
2174 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2175 
2176 	/* Restart the Phy Clock */
2177 	dwc2_writel(hsotg, 0, PCGCTL);
2178 
2179 	/* Initialize Host Configuration Register */
2180 	dwc2_init_fs_ls_pclk_sel(hsotg);
2181 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2182 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2183 		hcfg = dwc2_readl(hsotg, HCFG);
2184 		hcfg |= HCFG_FSLSSUPP;
2185 		dwc2_writel(hsotg, hcfg, HCFG);
2186 	}
2187 
2188 	/*
2189 	 * This bit allows dynamic reloading of the HFIR register during
2190 	 * runtime. This bit needs to be programmed during initial configuration
2191 	 * and its value must not be changed during runtime.
2192 	 */
2193 	if (hsotg->params.reload_ctl) {
2194 		hfir = dwc2_readl(hsotg, HFIR);
2195 		hfir |= HFIR_RLDCTRL;
2196 		dwc2_writel(hsotg, hfir, HFIR);
2197 	}
2198 
2199 	if (hsotg->params.dma_desc_enable) {
2200 		u32 op_mode = hsotg->hw_params.op_mode;
2201 
2202 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2203 		    !hsotg->hw_params.dma_desc_enable ||
2204 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2205 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2206 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2207 			dev_err(hsotg->dev,
2208 				"Hardware does not support descriptor DMA mode -\n");
2209 			dev_err(hsotg->dev,
2210 				"falling back to buffer DMA mode.\n");
2211 			hsotg->params.dma_desc_enable = false;
2212 		} else {
2213 			hcfg = dwc2_readl(hsotg, HCFG);
2214 			hcfg |= HCFG_DESCDMA;
2215 			dwc2_writel(hsotg, hcfg, HCFG);
2216 		}
2217 	}
2218 
2219 	/* Configure data FIFO sizes */
2220 	dwc2_config_fifos(hsotg);
2221 
2222 	/* TODO - check this */
2223 	/* Clear Host Set HNP Enable in the OTG Control Register */
2224 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2225 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2226 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2227 
2228 	/* Make sure the FIFOs are flushed */
2229 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2230 	dwc2_flush_rx_fifo(hsotg);
2231 
2232 	/* Clear Host Set HNP Enable in the OTG Control Register */
2233 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2234 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2235 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2236 
2237 	if (!hsotg->params.dma_desc_enable) {
2238 		int num_channels, i;
2239 		u32 hcchar;
2240 
2241 		/* Flush out any leftover queued requests */
2242 		num_channels = hsotg->params.host_channels;
2243 		for (i = 0; i < num_channels; i++) {
2244 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2245 			if (hcchar & HCCHAR_CHENA) {
2246 				hcchar &= ~HCCHAR_CHENA;
2247 				hcchar |= HCCHAR_CHDIS;
2248 				hcchar &= ~HCCHAR_EPDIR;
2249 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2250 			}
2251 		}
2252 
2253 		/* Halt all channels to put them into a known state */
2254 		for (i = 0; i < num_channels; i++) {
2255 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2256 			if (hcchar & HCCHAR_CHENA) {
2257 				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2258 				hcchar &= ~HCCHAR_EPDIR;
2259 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2260 				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2261 					__func__, i);
2262 
2263 				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2264 							      HCCHAR_CHENA,
2265 							      1000)) {
2266 					dev_warn(hsotg->dev,
2267 						 "Unable to clear enable on channel %d\n",
2268 						 i);
2269 				}
2270 			}
2271 		}
2272 	}
2273 
2274 	/* Enable ACG feature in host mode, if supported */
2275 	dwc2_enable_acg(hsotg);
2276 
2277 	/* Turn on the vbus power */
2278 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2279 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2280 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2281 
2282 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2283 			!!(hprt0 & HPRT0_PWR));
2284 		if (!(hprt0 & HPRT0_PWR)) {
2285 			hprt0 |= HPRT0_PWR;
2286 			dwc2_writel(hsotg, hprt0, HPRT0);
2287 		}
2288 	}
2289 
2290 	dwc2_enable_host_interrupts(hsotg);
2291 }
2292 
2293 /*
2294  * Initializes dynamic portions of the DWC_otg HCD state
2295  *
2296  * Must be called with interrupt disabled and spinlock held
2297  */
2298 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2299 {
2300 	struct dwc2_host_chan *chan, *chan_tmp;
2301 	int num_channels;
2302 	int i;
2303 
2304 	hsotg->flags.d32 = 0;
2305 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2306 
2307 	if (hsotg->params.uframe_sched) {
2308 		hsotg->available_host_channels =
2309 			hsotg->params.host_channels;
2310 	} else {
2311 		hsotg->non_periodic_channels = 0;
2312 		hsotg->periodic_channels = 0;
2313 	}
2314 
2315 	/*
2316 	 * Put all channels in the free channel list and clean up channel
2317 	 * states
2318 	 */
2319 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2320 				 hc_list_entry)
2321 		list_del_init(&chan->hc_list_entry);
2322 
2323 	num_channels = hsotg->params.host_channels;
2324 	for (i = 0; i < num_channels; i++) {
2325 		chan = hsotg->hc_ptr_array[i];
2326 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2327 		dwc2_hc_cleanup(hsotg, chan);
2328 	}
2329 
2330 	/* Initialize the DWC core for host mode operation */
2331 	dwc2_core_host_init(hsotg);
2332 }
2333 
2334 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2335 			       struct dwc2_host_chan *chan,
2336 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2337 {
2338 	int hub_addr, hub_port;
2339 
2340 	chan->do_split = 1;
2341 	chan->xact_pos = qtd->isoc_split_pos;
2342 	chan->complete_split = qtd->complete_split;
2343 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2344 	chan->hub_addr = (u8)hub_addr;
2345 	chan->hub_port = (u8)hub_port;
2346 }
2347 
2348 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2349 			      struct dwc2_host_chan *chan,
2350 			      struct dwc2_qtd *qtd)
2351 {
2352 	struct dwc2_hcd_urb *urb = qtd->urb;
2353 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2354 
2355 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2356 	case USB_ENDPOINT_XFER_CONTROL:
2357 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2358 
2359 		switch (qtd->control_phase) {
2360 		case DWC2_CONTROL_SETUP:
2361 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2362 			chan->do_ping = 0;
2363 			chan->ep_is_in = 0;
2364 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2365 			if (hsotg->params.host_dma)
2366 				chan->xfer_dma = urb->setup_dma;
2367 			else
2368 				chan->xfer_buf = urb->setup_packet;
2369 			chan->xfer_len = 8;
2370 			break;
2371 
2372 		case DWC2_CONTROL_DATA:
2373 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2374 			chan->data_pid_start = qtd->data_toggle;
2375 			break;
2376 
2377 		case DWC2_CONTROL_STATUS:
2378 			/*
2379 			 * Direction is opposite of data direction or IN if no
2380 			 * data
2381 			 */
2382 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2383 			if (urb->length == 0)
2384 				chan->ep_is_in = 1;
2385 			else
2386 				chan->ep_is_in =
2387 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2388 			if (chan->ep_is_in)
2389 				chan->do_ping = 0;
2390 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2391 			chan->xfer_len = 0;
2392 			if (hsotg->params.host_dma)
2393 				chan->xfer_dma = hsotg->status_buf_dma;
2394 			else
2395 				chan->xfer_buf = hsotg->status_buf;
2396 			break;
2397 		}
2398 		break;
2399 
2400 	case USB_ENDPOINT_XFER_BULK:
2401 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2402 		break;
2403 
2404 	case USB_ENDPOINT_XFER_INT:
2405 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2406 		break;
2407 
2408 	case USB_ENDPOINT_XFER_ISOC:
2409 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2410 		if (hsotg->params.dma_desc_enable)
2411 			break;
2412 
2413 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2414 		frame_desc->status = 0;
2415 
2416 		if (hsotg->params.host_dma) {
2417 			chan->xfer_dma = urb->dma;
2418 			chan->xfer_dma += frame_desc->offset +
2419 					qtd->isoc_split_offset;
2420 		} else {
2421 			chan->xfer_buf = urb->buf;
2422 			chan->xfer_buf += frame_desc->offset +
2423 					qtd->isoc_split_offset;
2424 		}
2425 
2426 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2427 
2428 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2429 			if (chan->xfer_len <= 188)
2430 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2431 			else
2432 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2433 		}
2434 		break;
2435 	}
2436 }
2437 
2438 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2439 					    struct dwc2_qh *qh,
2440 					    struct dwc2_host_chan *chan)
2441 {
2442 	if (!hsotg->unaligned_cache ||
2443 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2444 		return -ENOMEM;
2445 
2446 	if (!qh->dw_align_buf) {
2447 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2448 						    GFP_ATOMIC | GFP_DMA);
2449 		if (!qh->dw_align_buf)
2450 			return -ENOMEM;
2451 	}
2452 
2453 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2454 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2455 					      DMA_FROM_DEVICE);
2456 
2457 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2458 		dev_err(hsotg->dev, "can't map align_buf\n");
2459 		chan->align_buf = 0;
2460 		return -EINVAL;
2461 	}
2462 
2463 	chan->align_buf = qh->dw_align_buf_dma;
2464 	return 0;
2465 }
2466 
2467 #define DWC2_USB_DMA_ALIGN 4
2468 
2469 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2470 {
2471 	void *stored_xfer_buffer;
2472 	size_t length;
2473 
2474 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2475 		return;
2476 
2477 	/* Restore urb->transfer_buffer from the end of the allocated area */
2478 	memcpy(&stored_xfer_buffer,
2479 	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2480 			 dma_get_cache_alignment()),
2481 	       sizeof(urb->transfer_buffer));
2482 
2483 	if (usb_urb_dir_in(urb)) {
2484 		if (usb_pipeisoc(urb->pipe))
2485 			length = urb->transfer_buffer_length;
2486 		else
2487 			length = urb->actual_length;
2488 
2489 		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2490 	}
2491 	kfree(urb->transfer_buffer);
2492 	urb->transfer_buffer = stored_xfer_buffer;
2493 
2494 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2495 }
2496 
2497 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2498 {
2499 	void *kmalloc_ptr;
2500 	size_t kmalloc_size;
2501 
2502 	if (urb->num_sgs || urb->sg ||
2503 	    urb->transfer_buffer_length == 0 ||
2504 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2505 		return 0;
2506 
2507 	/*
2508 	 * Allocate a buffer with enough padding for original transfer_buffer
2509 	 * pointer. This allocation is guaranteed to be aligned properly for
2510 	 * DMA
2511 	 */
2512 	kmalloc_size = urb->transfer_buffer_length +
2513 		(dma_get_cache_alignment() - 1) +
2514 		sizeof(urb->transfer_buffer);
2515 
2516 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2517 	if (!kmalloc_ptr)
2518 		return -ENOMEM;
2519 
2520 	/*
2521 	 * Position value of original urb->transfer_buffer pointer to the end
2522 	 * of allocation for later referencing
2523 	 */
2524 	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2525 			 dma_get_cache_alignment()),
2526 	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2527 
2528 	if (usb_urb_dir_out(urb))
2529 		memcpy(kmalloc_ptr, urb->transfer_buffer,
2530 		       urb->transfer_buffer_length);
2531 	urb->transfer_buffer = kmalloc_ptr;
2532 
2533 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2534 
2535 	return 0;
2536 }
2537 
2538 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2539 				gfp_t mem_flags)
2540 {
2541 	int ret;
2542 
2543 	/* We assume setup_dma is always aligned; warn if not */
2544 	WARN_ON_ONCE(urb->setup_dma &&
2545 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2546 
2547 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2548 	if (ret)
2549 		return ret;
2550 
2551 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2552 	if (ret)
2553 		dwc2_free_dma_aligned_buffer(urb);
2554 
2555 	return ret;
2556 }
2557 
2558 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2559 {
2560 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2561 	dwc2_free_dma_aligned_buffer(urb);
2562 }
2563 
2564 /**
2565  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2566  * channel and initializes the host channel to perform the transactions. The
2567  * host channel is removed from the free list.
2568  *
2569  * @hsotg: The HCD state structure
2570  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2571  *         to a free host channel
2572  */
2573 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2574 {
2575 	struct dwc2_host_chan *chan;
2576 	struct dwc2_hcd_urb *urb;
2577 	struct dwc2_qtd *qtd;
2578 
2579 	if (dbg_qh(qh))
2580 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2581 
2582 	if (list_empty(&qh->qtd_list)) {
2583 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2584 		return -ENOMEM;
2585 	}
2586 
2587 	if (list_empty(&hsotg->free_hc_list)) {
2588 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2589 		return -ENOMEM;
2590 	}
2591 
2592 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2593 				hc_list_entry);
2594 
2595 	/* Remove host channel from free list */
2596 	list_del_init(&chan->hc_list_entry);
2597 
2598 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2599 	urb = qtd->urb;
2600 	qh->channel = chan;
2601 	qtd->in_process = 1;
2602 
2603 	/*
2604 	 * Use usb_pipedevice to determine device address. This address is
2605 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2606 	 */
2607 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2608 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2609 	chan->speed = qh->dev_speed;
2610 	chan->max_packet = qh->maxp;
2611 
2612 	chan->xfer_started = 0;
2613 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2614 	chan->error_state = (qtd->error_count > 0);
2615 	chan->halt_on_queue = 0;
2616 	chan->halt_pending = 0;
2617 	chan->requests = 0;
2618 
2619 	/*
2620 	 * The following values may be modified in the transfer type section
2621 	 * below. The xfer_len value may be reduced when the transfer is
2622 	 * started to accommodate the max widths of the XferSize and PktCnt
2623 	 * fields in the HCTSIZn register.
2624 	 */
2625 
2626 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2627 	if (chan->ep_is_in)
2628 		chan->do_ping = 0;
2629 	else
2630 		chan->do_ping = qh->ping_state;
2631 
2632 	chan->data_pid_start = qh->data_toggle;
2633 	chan->multi_count = 1;
2634 
2635 	if (urb->actual_length > urb->length &&
2636 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2637 		urb->actual_length = urb->length;
2638 
2639 	if (hsotg->params.host_dma)
2640 		chan->xfer_dma = urb->dma + urb->actual_length;
2641 	else
2642 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2643 
2644 	chan->xfer_len = urb->length - urb->actual_length;
2645 	chan->xfer_count = 0;
2646 
2647 	/* Set the split attributes if required */
2648 	if (qh->do_split)
2649 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2650 	else
2651 		chan->do_split = 0;
2652 
2653 	/* Set the transfer attributes */
2654 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2655 
2656 	/* For non-dword aligned buffers */
2657 	if (hsotg->params.host_dma && qh->do_split &&
2658 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2659 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2660 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2661 			dev_err(hsotg->dev,
2662 				"Failed to allocate memory to handle non-aligned buffer\n");
2663 			/* Add channel back to free list */
2664 			chan->align_buf = 0;
2665 			chan->multi_count = 0;
2666 			list_add_tail(&chan->hc_list_entry,
2667 				      &hsotg->free_hc_list);
2668 			qtd->in_process = 0;
2669 			qh->channel = NULL;
2670 			return -ENOMEM;
2671 		}
2672 	} else {
2673 		/*
2674 		 * We assume that DMA is always aligned in non-split
2675 		 * case or split out case. Warn if not.
2676 		 */
2677 		WARN_ON_ONCE(hsotg->params.host_dma &&
2678 			     (chan->xfer_dma & 0x3));
2679 		chan->align_buf = 0;
2680 	}
2681 
2682 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2683 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2684 		/*
2685 		 * This value may be modified when the transfer is started
2686 		 * to reflect the actual transfer length
2687 		 */
2688 		chan->multi_count = qh->maxp_mult;
2689 
2690 	if (hsotg->params.dma_desc_enable) {
2691 		chan->desc_list_addr = qh->desc_list_dma;
2692 		chan->desc_list_sz = qh->desc_list_sz;
2693 	}
2694 
2695 	dwc2_hc_init(hsotg, chan);
2696 	chan->qh = qh;
2697 
2698 	return 0;
2699 }
2700 
2701 /**
2702  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2703  * schedule and assigns them to available host channels. Called from the HCD
2704  * interrupt handler functions.
2705  *
2706  * @hsotg: The HCD state structure
2707  *
2708  * Return: The types of new transactions that were assigned to host channels
2709  */
2710 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2711 		struct dwc2_hsotg *hsotg)
2712 {
2713 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2714 	struct list_head *qh_ptr;
2715 	struct dwc2_qh *qh;
2716 	int num_channels;
2717 
2718 #ifdef DWC2_DEBUG_SOF
2719 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2720 #endif
2721 
2722 	/* Process entries in the periodic ready list */
2723 	qh_ptr = hsotg->periodic_sched_ready.next;
2724 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2725 		if (list_empty(&hsotg->free_hc_list))
2726 			break;
2727 		if (hsotg->params.uframe_sched) {
2728 			if (hsotg->available_host_channels <= 1)
2729 				break;
2730 			hsotg->available_host_channels--;
2731 		}
2732 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2733 		if (dwc2_assign_and_init_hc(hsotg, qh))
2734 			break;
2735 
2736 		/*
2737 		 * Move the QH from the periodic ready schedule to the
2738 		 * periodic assigned schedule
2739 		 */
2740 		qh_ptr = qh_ptr->next;
2741 		list_move_tail(&qh->qh_list_entry,
2742 			       &hsotg->periodic_sched_assigned);
2743 		ret_val = DWC2_TRANSACTION_PERIODIC;
2744 	}
2745 
2746 	/*
2747 	 * Process entries in the inactive portion of the non-periodic
2748 	 * schedule. Some free host channels may not be used if they are
2749 	 * reserved for periodic transfers.
2750 	 */
2751 	num_channels = hsotg->params.host_channels;
2752 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2753 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2754 		if (!hsotg->params.uframe_sched &&
2755 		    hsotg->non_periodic_channels >= num_channels -
2756 						hsotg->periodic_channels)
2757 			break;
2758 		if (list_empty(&hsotg->free_hc_list))
2759 			break;
2760 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2761 		if (hsotg->params.uframe_sched) {
2762 			if (hsotg->available_host_channels < 1)
2763 				break;
2764 			hsotg->available_host_channels--;
2765 		}
2766 
2767 		if (dwc2_assign_and_init_hc(hsotg, qh))
2768 			break;
2769 
2770 		/*
2771 		 * Move the QH from the non-periodic inactive schedule to the
2772 		 * non-periodic active schedule
2773 		 */
2774 		qh_ptr = qh_ptr->next;
2775 		list_move_tail(&qh->qh_list_entry,
2776 			       &hsotg->non_periodic_sched_active);
2777 
2778 		if (ret_val == DWC2_TRANSACTION_NONE)
2779 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2780 		else
2781 			ret_val = DWC2_TRANSACTION_ALL;
2782 
2783 		if (!hsotg->params.uframe_sched)
2784 			hsotg->non_periodic_channels++;
2785 	}
2786 
2787 	return ret_val;
2788 }
2789 
2790 /**
2791  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2792  * a host channel associated with either a periodic or non-periodic transfer
2793  *
2794  * @hsotg: The HCD state structure
2795  * @chan:  Host channel descriptor associated with either a periodic or
2796  *         non-periodic transfer
2797  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2798  *                     for periodic transfers or the non-periodic Tx FIFO
2799  *                     for non-periodic transfers
2800  *
2801  * Return: 1 if a request is queued and more requests may be needed to
2802  * complete the transfer, 0 if no more requests are required for this
2803  * transfer, -1 if there is insufficient space in the Tx FIFO
2804  *
2805  * This function assumes that there is space available in the appropriate
2806  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2807  * it checks whether space is available in the appropriate Tx FIFO.
2808  *
2809  * Must be called with interrupt disabled and spinlock held
2810  */
2811 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2812 				  struct dwc2_host_chan *chan,
2813 				  u16 fifo_dwords_avail)
2814 {
2815 	int retval = 0;
2816 
2817 	if (chan->do_split)
2818 		/* Put ourselves on the list to keep order straight */
2819 		list_move_tail(&chan->split_order_list_entry,
2820 			       &hsotg->split_order);
2821 
2822 	if (hsotg->params.host_dma && chan->qh) {
2823 		if (hsotg->params.dma_desc_enable) {
2824 			if (!chan->xfer_started ||
2825 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2826 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2827 				chan->qh->ping_state = 0;
2828 			}
2829 		} else if (!chan->xfer_started) {
2830 			dwc2_hc_start_transfer(hsotg, chan);
2831 			chan->qh->ping_state = 0;
2832 		}
2833 	} else if (chan->halt_pending) {
2834 		/* Don't queue a request if the channel has been halted */
2835 	} else if (chan->halt_on_queue) {
2836 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2837 	} else if (chan->do_ping) {
2838 		if (!chan->xfer_started)
2839 			dwc2_hc_start_transfer(hsotg, chan);
2840 	} else if (!chan->ep_is_in ||
2841 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2842 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2843 			if (!chan->xfer_started) {
2844 				dwc2_hc_start_transfer(hsotg, chan);
2845 				retval = 1;
2846 			} else {
2847 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2848 			}
2849 		} else {
2850 			retval = -1;
2851 		}
2852 	} else {
2853 		if (!chan->xfer_started) {
2854 			dwc2_hc_start_transfer(hsotg, chan);
2855 			retval = 1;
2856 		} else {
2857 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2858 		}
2859 	}
2860 
2861 	return retval;
2862 }
2863 
2864 /*
2865  * Processes periodic channels for the next frame and queues transactions for
2866  * these channels to the DWC_otg controller. After queueing transactions, the
2867  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2868  * to queue as Periodic Tx FIFO or request queue space becomes available.
2869  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2870  *
2871  * Must be called with interrupt disabled and spinlock held
2872  */
2873 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2874 {
2875 	struct list_head *qh_ptr;
2876 	struct dwc2_qh *qh;
2877 	u32 tx_status;
2878 	u32 fspcavail;
2879 	u32 gintmsk;
2880 	int status;
2881 	bool no_queue_space = false;
2882 	bool no_fifo_space = false;
2883 	u32 qspcavail;
2884 
2885 	/* If empty list then just adjust interrupt enables */
2886 	if (list_empty(&hsotg->periodic_sched_assigned))
2887 		goto exit;
2888 
2889 	if (dbg_perio())
2890 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2891 
2892 	tx_status = dwc2_readl(hsotg, HPTXSTS);
2893 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2894 		    TXSTS_QSPCAVAIL_SHIFT;
2895 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2896 		    TXSTS_FSPCAVAIL_SHIFT;
2897 
2898 	if (dbg_perio()) {
2899 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2900 			 qspcavail);
2901 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2902 			 fspcavail);
2903 	}
2904 
2905 	qh_ptr = hsotg->periodic_sched_assigned.next;
2906 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2907 		tx_status = dwc2_readl(hsotg, HPTXSTS);
2908 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2909 			    TXSTS_QSPCAVAIL_SHIFT;
2910 		if (qspcavail == 0) {
2911 			no_queue_space = true;
2912 			break;
2913 		}
2914 
2915 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2916 		if (!qh->channel) {
2917 			qh_ptr = qh_ptr->next;
2918 			continue;
2919 		}
2920 
2921 		/* Make sure EP's TT buffer is clean before queueing qtds */
2922 		if (qh->tt_buffer_dirty) {
2923 			qh_ptr = qh_ptr->next;
2924 			continue;
2925 		}
2926 
2927 		/*
2928 		 * Set a flag if we're queuing high-bandwidth in slave mode.
2929 		 * The flag prevents any halts to get into the request queue in
2930 		 * the middle of multiple high-bandwidth packets getting queued.
2931 		 */
2932 		if (!hsotg->params.host_dma &&
2933 		    qh->channel->multi_count > 1)
2934 			hsotg->queuing_high_bandwidth = 1;
2935 
2936 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2937 			    TXSTS_FSPCAVAIL_SHIFT;
2938 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2939 		if (status < 0) {
2940 			no_fifo_space = true;
2941 			break;
2942 		}
2943 
2944 		/*
2945 		 * In Slave mode, stay on the current transfer until there is
2946 		 * nothing more to do or the high-bandwidth request count is
2947 		 * reached. In DMA mode, only need to queue one request. The
2948 		 * controller automatically handles multiple packets for
2949 		 * high-bandwidth transfers.
2950 		 */
2951 		if (hsotg->params.host_dma || status == 0 ||
2952 		    qh->channel->requests == qh->channel->multi_count) {
2953 			qh_ptr = qh_ptr->next;
2954 			/*
2955 			 * Move the QH from the periodic assigned schedule to
2956 			 * the periodic queued schedule
2957 			 */
2958 			list_move_tail(&qh->qh_list_entry,
2959 				       &hsotg->periodic_sched_queued);
2960 
2961 			/* done queuing high bandwidth */
2962 			hsotg->queuing_high_bandwidth = 0;
2963 		}
2964 	}
2965 
2966 exit:
2967 	if (no_queue_space || no_fifo_space ||
2968 	    (!hsotg->params.host_dma &&
2969 	     !list_empty(&hsotg->periodic_sched_assigned))) {
2970 		/*
2971 		 * May need to queue more transactions as the request
2972 		 * queue or Tx FIFO empties. Enable the periodic Tx
2973 		 * FIFO empty interrupt. (Always use the half-empty
2974 		 * level to ensure that new requests are loaded as
2975 		 * soon as possible.)
2976 		 */
2977 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2978 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2979 			gintmsk |= GINTSTS_PTXFEMP;
2980 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2981 		}
2982 	} else {
2983 		/*
2984 		 * Disable the Tx FIFO empty interrupt since there are
2985 		 * no more transactions that need to be queued right
2986 		 * now. This function is called from interrupt
2987 		 * handlers to queue more transactions as transfer
2988 		 * states change.
2989 		 */
2990 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2991 		if (gintmsk & GINTSTS_PTXFEMP) {
2992 			gintmsk &= ~GINTSTS_PTXFEMP;
2993 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2994 		}
2995 	}
2996 }
2997 
2998 /*
2999  * Processes active non-periodic channels and queues transactions for these
3000  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3001  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3002  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3003  * FIFO Empty interrupt is disabled.
3004  *
3005  * Must be called with interrupt disabled and spinlock held
3006  */
3007 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3008 {
3009 	struct list_head *orig_qh_ptr;
3010 	struct dwc2_qh *qh;
3011 	u32 tx_status;
3012 	u32 qspcavail;
3013 	u32 fspcavail;
3014 	u32 gintmsk;
3015 	int status;
3016 	int no_queue_space = 0;
3017 	int no_fifo_space = 0;
3018 	int more_to_do = 0;
3019 
3020 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3021 
3022 	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3023 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3024 		    TXSTS_QSPCAVAIL_SHIFT;
3025 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3026 		    TXSTS_FSPCAVAIL_SHIFT;
3027 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3028 		 qspcavail);
3029 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3030 		 fspcavail);
3031 
3032 	/*
3033 	 * Keep track of the starting point. Skip over the start-of-list
3034 	 * entry.
3035 	 */
3036 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3037 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3038 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3039 
3040 	/*
3041 	 * Process once through the active list or until no more space is
3042 	 * available in the request queue or the Tx FIFO
3043 	 */
3044 	do {
3045 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3046 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3047 			    TXSTS_QSPCAVAIL_SHIFT;
3048 		if (!hsotg->params.host_dma && qspcavail == 0) {
3049 			no_queue_space = 1;
3050 			break;
3051 		}
3052 
3053 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3054 				qh_list_entry);
3055 		if (!qh->channel)
3056 			goto next;
3057 
3058 		/* Make sure EP's TT buffer is clean before queueing qtds */
3059 		if (qh->tt_buffer_dirty)
3060 			goto next;
3061 
3062 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3063 			    TXSTS_FSPCAVAIL_SHIFT;
3064 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3065 
3066 		if (status > 0) {
3067 			more_to_do = 1;
3068 		} else if (status < 0) {
3069 			no_fifo_space = 1;
3070 			break;
3071 		}
3072 next:
3073 		/* Advance to next QH, skipping start-of-list entry */
3074 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3075 		if (hsotg->non_periodic_qh_ptr ==
3076 				&hsotg->non_periodic_sched_active)
3077 			hsotg->non_periodic_qh_ptr =
3078 					hsotg->non_periodic_qh_ptr->next;
3079 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3080 
3081 	if (!hsotg->params.host_dma) {
3082 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3083 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3084 			    TXSTS_QSPCAVAIL_SHIFT;
3085 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3086 			    TXSTS_FSPCAVAIL_SHIFT;
3087 		dev_vdbg(hsotg->dev,
3088 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3089 			 qspcavail);
3090 		dev_vdbg(hsotg->dev,
3091 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3092 			 fspcavail);
3093 
3094 		if (more_to_do || no_queue_space || no_fifo_space) {
3095 			/*
3096 			 * May need to queue more transactions as the request
3097 			 * queue or Tx FIFO empties. Enable the non-periodic
3098 			 * Tx FIFO empty interrupt. (Always use the half-empty
3099 			 * level to ensure that new requests are loaded as
3100 			 * soon as possible.)
3101 			 */
3102 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3103 			gintmsk |= GINTSTS_NPTXFEMP;
3104 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3105 		} else {
3106 			/*
3107 			 * Disable the Tx FIFO empty interrupt since there are
3108 			 * no more transactions that need to be queued right
3109 			 * now. This function is called from interrupt
3110 			 * handlers to queue more transactions as transfer
3111 			 * states change.
3112 			 */
3113 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3114 			gintmsk &= ~GINTSTS_NPTXFEMP;
3115 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3116 		}
3117 	}
3118 }
3119 
3120 /**
3121  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3122  * and queues transactions for these channels to the DWC_otg controller. Called
3123  * from the HCD interrupt handler functions.
3124  *
3125  * @hsotg:   The HCD state structure
3126  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3127  *           or both)
3128  *
3129  * Must be called with interrupt disabled and spinlock held
3130  */
3131 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3132 				 enum dwc2_transaction_type tr_type)
3133 {
3134 #ifdef DWC2_DEBUG_SOF
3135 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3136 #endif
3137 	/* Process host channels associated with periodic transfers */
3138 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3139 	    tr_type == DWC2_TRANSACTION_ALL)
3140 		dwc2_process_periodic_channels(hsotg);
3141 
3142 	/* Process host channels associated with non-periodic transfers */
3143 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3144 	    tr_type == DWC2_TRANSACTION_ALL) {
3145 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3146 			dwc2_process_non_periodic_channels(hsotg);
3147 		} else {
3148 			/*
3149 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3150 			 * there are no non-periodic transfers to process
3151 			 */
3152 			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3153 
3154 			gintmsk &= ~GINTSTS_NPTXFEMP;
3155 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3156 		}
3157 	}
3158 }
3159 
3160 static void dwc2_conn_id_status_change(struct work_struct *work)
3161 {
3162 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3163 						wf_otg);
3164 	u32 count = 0;
3165 	u32 gotgctl;
3166 	unsigned long flags;
3167 
3168 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3169 
3170 	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3171 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3172 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3173 		!!(gotgctl & GOTGCTL_CONID_B));
3174 
3175 	/* B-Device connector (Device Mode) */
3176 	if (gotgctl & GOTGCTL_CONID_B) {
3177 		dwc2_vbus_supply_exit(hsotg);
3178 		/* Wait for switch to device mode */
3179 		dev_dbg(hsotg->dev, "connId B\n");
3180 		if (hsotg->bus_suspended) {
3181 			dev_info(hsotg->dev,
3182 				 "Do port resume before switching to device mode\n");
3183 			dwc2_port_resume(hsotg);
3184 		}
3185 		while (!dwc2_is_device_mode(hsotg)) {
3186 			dev_info(hsotg->dev,
3187 				 "Waiting for Peripheral Mode, Mode=%s\n",
3188 				 dwc2_is_host_mode(hsotg) ? "Host" :
3189 				 "Peripheral");
3190 			msleep(20);
3191 			/*
3192 			 * Sometimes the initial GOTGCTRL read is wrong, so
3193 			 * check it again and jump to host mode if that was
3194 			 * the case.
3195 			 */
3196 			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3197 			if (!(gotgctl & GOTGCTL_CONID_B))
3198 				goto host;
3199 			if (++count > 250)
3200 				break;
3201 		}
3202 		if (count > 250)
3203 			dev_err(hsotg->dev,
3204 				"Connection id status change timed out\n");
3205 
3206 		/*
3207 		 * Exit Partial Power Down without restoring registers.
3208 		 * No need to check the return value as registers
3209 		 * are not being restored.
3210 		 */
3211 		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3212 			dwc2_exit_partial_power_down(hsotg, 0, false);
3213 
3214 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3215 		dwc2_core_init(hsotg, false);
3216 		dwc2_enable_global_interrupts(hsotg);
3217 		spin_lock_irqsave(&hsotg->lock, flags);
3218 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3219 		spin_unlock_irqrestore(&hsotg->lock, flags);
3220 		/* Enable ACG feature in device mode,if supported */
3221 		dwc2_enable_acg(hsotg);
3222 		dwc2_hsotg_core_connect(hsotg);
3223 	} else {
3224 host:
3225 		/* A-Device connector (Host Mode) */
3226 		dev_dbg(hsotg->dev, "connId A\n");
3227 		while (!dwc2_is_host_mode(hsotg)) {
3228 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3229 				 dwc2_is_host_mode(hsotg) ?
3230 				 "Host" : "Peripheral");
3231 			msleep(20);
3232 			if (++count > 250)
3233 				break;
3234 		}
3235 		if (count > 250)
3236 			dev_err(hsotg->dev,
3237 				"Connection id status change timed out\n");
3238 
3239 		spin_lock_irqsave(&hsotg->lock, flags);
3240 		dwc2_hsotg_disconnect(hsotg);
3241 		spin_unlock_irqrestore(&hsotg->lock, flags);
3242 
3243 		hsotg->op_state = OTG_STATE_A_HOST;
3244 		/* Initialize the Core for Host mode */
3245 		dwc2_core_init(hsotg, false);
3246 		dwc2_enable_global_interrupts(hsotg);
3247 		dwc2_hcd_start(hsotg);
3248 	}
3249 }
3250 
3251 static void dwc2_wakeup_detected(struct timer_list *t)
3252 {
3253 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3254 	u32 hprt0;
3255 
3256 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3257 
3258 	/*
3259 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3260 	 * so that OPT tests pass with all PHYs.)
3261 	 */
3262 	hprt0 = dwc2_read_hprt0(hsotg);
3263 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3264 	hprt0 &= ~HPRT0_RES;
3265 	dwc2_writel(hsotg, hprt0, HPRT0);
3266 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3267 		dwc2_readl(hsotg, HPRT0));
3268 
3269 	dwc2_hcd_rem_wakeup(hsotg);
3270 	hsotg->bus_suspended = false;
3271 
3272 	/* Change to L0 state */
3273 	hsotg->lx_state = DWC2_L0;
3274 }
3275 
3276 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3277 {
3278 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3279 
3280 	return hcd->self.b_hnp_enable;
3281 }
3282 
3283 /**
3284  * dwc2_port_suspend() - Put controller in suspend mode for host.
3285  *
3286  * @hsotg: Programming view of the DWC_otg controller
3287  * @windex: The control request wIndex field
3288  *
3289  * Return: non-zero if failed to enter suspend mode for host.
3290  *
3291  * This function is for entering Host mode suspend.
3292  * Must NOT be called with interrupt disabled or spinlock held.
3293  */
3294 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3295 {
3296 	unsigned long flags;
3297 	u32 pcgctl;
3298 	u32 gotgctl;
3299 	int ret = 0;
3300 
3301 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3302 
3303 	spin_lock_irqsave(&hsotg->lock, flags);
3304 
3305 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3306 		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3307 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3308 		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3309 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3310 	}
3311 
3312 	switch (hsotg->params.power_down) {
3313 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3314 		ret = dwc2_enter_partial_power_down(hsotg);
3315 		if (ret)
3316 			dev_err(hsotg->dev,
3317 				"enter partial_power_down failed.\n");
3318 		break;
3319 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3320 		/*
3321 		 * Perform spin unlock and lock because in
3322 		 * "dwc2_host_enter_hibernation()" function there is a spinlock
3323 		 * logic which prevents servicing of any IRQ during entering
3324 		 * hibernation.
3325 		 */
3326 		spin_unlock_irqrestore(&hsotg->lock, flags);
3327 		ret = dwc2_enter_hibernation(hsotg, 1);
3328 		if (ret)
3329 			dev_err(hsotg->dev, "enter hibernation failed.\n");
3330 		spin_lock_irqsave(&hsotg->lock, flags);
3331 		break;
3332 	case DWC2_POWER_DOWN_PARAM_NONE:
3333 		/*
3334 		 * If not hibernation nor partial power down are supported,
3335 		 * clock gating is used to save power.
3336 		 */
3337 		if (!hsotg->params.no_clock_gating)
3338 			dwc2_host_enter_clock_gating(hsotg);
3339 		break;
3340 	}
3341 
3342 	/* For HNP the bus must be suspended for at least 200ms */
3343 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3344 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3345 		pcgctl &= ~PCGCTL_STOPPCLK;
3346 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3347 
3348 		spin_unlock_irqrestore(&hsotg->lock, flags);
3349 
3350 		msleep(200);
3351 	} else {
3352 		spin_unlock_irqrestore(&hsotg->lock, flags);
3353 	}
3354 
3355 	return ret;
3356 }
3357 
3358 /**
3359  * dwc2_port_resume() - Exit controller from suspend mode for host.
3360  *
3361  * @hsotg: Programming view of the DWC_otg controller
3362  *
3363  * Return: non-zero if failed to exit suspend mode for host.
3364  *
3365  * This function is for exiting Host mode suspend.
3366  * Must NOT be called with interrupt disabled or spinlock held.
3367  */
3368 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3369 {
3370 	unsigned long flags;
3371 	int ret = 0;
3372 
3373 	spin_lock_irqsave(&hsotg->lock, flags);
3374 
3375 	switch (hsotg->params.power_down) {
3376 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3377 		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3378 		if (ret)
3379 			dev_err(hsotg->dev,
3380 				"exit partial_power_down failed.\n");
3381 		break;
3382 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3383 		/* Exit host hibernation. */
3384 		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3385 		if (ret)
3386 			dev_err(hsotg->dev, "exit hibernation failed.\n");
3387 		break;
3388 	case DWC2_POWER_DOWN_PARAM_NONE:
3389 		/*
3390 		 * If not hibernation nor partial power down are supported,
3391 		 * port resume is done using the clock gating programming flow.
3392 		 */
3393 		spin_unlock_irqrestore(&hsotg->lock, flags);
3394 		dwc2_host_exit_clock_gating(hsotg, 0);
3395 		spin_lock_irqsave(&hsotg->lock, flags);
3396 		break;
3397 	}
3398 
3399 	spin_unlock_irqrestore(&hsotg->lock, flags);
3400 
3401 	return ret;
3402 }
3403 
3404 /* Handles hub class-specific requests */
3405 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3406 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3407 {
3408 	struct usb_hub_descriptor *hub_desc;
3409 	int retval = 0;
3410 	u32 hprt0;
3411 	u32 port_status;
3412 	u32 speed;
3413 	u32 pcgctl;
3414 	u32 pwr;
3415 
3416 	switch (typereq) {
3417 	case ClearHubFeature:
3418 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3419 
3420 		switch (wvalue) {
3421 		case C_HUB_LOCAL_POWER:
3422 		case C_HUB_OVER_CURRENT:
3423 			/* Nothing required here */
3424 			break;
3425 
3426 		default:
3427 			retval = -EINVAL;
3428 			dev_err(hsotg->dev,
3429 				"ClearHubFeature request %1xh unknown\n",
3430 				wvalue);
3431 		}
3432 		break;
3433 
3434 	case ClearPortFeature:
3435 		if (wvalue != USB_PORT_FEAT_L1)
3436 			if (!windex || windex > 1)
3437 				goto error;
3438 		switch (wvalue) {
3439 		case USB_PORT_FEAT_ENABLE:
3440 			dev_dbg(hsotg->dev,
3441 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3442 			hprt0 = dwc2_read_hprt0(hsotg);
3443 			hprt0 |= HPRT0_ENA;
3444 			dwc2_writel(hsotg, hprt0, HPRT0);
3445 			break;
3446 
3447 		case USB_PORT_FEAT_SUSPEND:
3448 			dev_dbg(hsotg->dev,
3449 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3450 
3451 			if (hsotg->bus_suspended)
3452 				retval = dwc2_port_resume(hsotg);
3453 			break;
3454 
3455 		case USB_PORT_FEAT_POWER:
3456 			dev_dbg(hsotg->dev,
3457 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3458 			hprt0 = dwc2_read_hprt0(hsotg);
3459 			pwr = hprt0 & HPRT0_PWR;
3460 			hprt0 &= ~HPRT0_PWR;
3461 			dwc2_writel(hsotg, hprt0, HPRT0);
3462 			if (pwr)
3463 				dwc2_vbus_supply_exit(hsotg);
3464 			break;
3465 
3466 		case USB_PORT_FEAT_INDICATOR:
3467 			dev_dbg(hsotg->dev,
3468 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3469 			/* Port indicator not supported */
3470 			break;
3471 
3472 		case USB_PORT_FEAT_C_CONNECTION:
3473 			/*
3474 			 * Clears driver's internal Connect Status Change flag
3475 			 */
3476 			dev_dbg(hsotg->dev,
3477 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3478 			hsotg->flags.b.port_connect_status_change = 0;
3479 			break;
3480 
3481 		case USB_PORT_FEAT_C_RESET:
3482 			/* Clears driver's internal Port Reset Change flag */
3483 			dev_dbg(hsotg->dev,
3484 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3485 			hsotg->flags.b.port_reset_change = 0;
3486 			break;
3487 
3488 		case USB_PORT_FEAT_C_ENABLE:
3489 			/*
3490 			 * Clears the driver's internal Port Enable/Disable
3491 			 * Change flag
3492 			 */
3493 			dev_dbg(hsotg->dev,
3494 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3495 			hsotg->flags.b.port_enable_change = 0;
3496 			break;
3497 
3498 		case USB_PORT_FEAT_C_SUSPEND:
3499 			/*
3500 			 * Clears the driver's internal Port Suspend Change
3501 			 * flag, which is set when resume signaling on the host
3502 			 * port is complete
3503 			 */
3504 			dev_dbg(hsotg->dev,
3505 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3506 			hsotg->flags.b.port_suspend_change = 0;
3507 			break;
3508 
3509 		case USB_PORT_FEAT_C_PORT_L1:
3510 			dev_dbg(hsotg->dev,
3511 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3512 			hsotg->flags.b.port_l1_change = 0;
3513 			break;
3514 
3515 		case USB_PORT_FEAT_C_OVER_CURRENT:
3516 			dev_dbg(hsotg->dev,
3517 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3518 			hsotg->flags.b.port_over_current_change = 0;
3519 			break;
3520 
3521 		default:
3522 			retval = -EINVAL;
3523 			dev_err(hsotg->dev,
3524 				"ClearPortFeature request %1xh unknown or unsupported\n",
3525 				wvalue);
3526 		}
3527 		break;
3528 
3529 	case GetHubDescriptor:
3530 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3531 		hub_desc = (struct usb_hub_descriptor *)buf;
3532 		hub_desc->bDescLength = 9;
3533 		hub_desc->bDescriptorType = USB_DT_HUB;
3534 		hub_desc->bNbrPorts = 1;
3535 		hub_desc->wHubCharacteristics =
3536 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3537 				    HUB_CHAR_INDV_PORT_OCPM);
3538 		hub_desc->bPwrOn2PwrGood = 1;
3539 		hub_desc->bHubContrCurrent = 0;
3540 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3541 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3542 		break;
3543 
3544 	case GetHubStatus:
3545 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3546 		memset(buf, 0, 4);
3547 		break;
3548 
3549 	case GetPortStatus:
3550 		dev_vdbg(hsotg->dev,
3551 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3552 			 hsotg->flags.d32);
3553 		if (!windex || windex > 1)
3554 			goto error;
3555 
3556 		port_status = 0;
3557 		if (hsotg->flags.b.port_connect_status_change)
3558 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3559 		if (hsotg->flags.b.port_enable_change)
3560 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3561 		if (hsotg->flags.b.port_suspend_change)
3562 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3563 		if (hsotg->flags.b.port_l1_change)
3564 			port_status |= USB_PORT_STAT_C_L1 << 16;
3565 		if (hsotg->flags.b.port_reset_change)
3566 			port_status |= USB_PORT_STAT_C_RESET << 16;
3567 		if (hsotg->flags.b.port_over_current_change) {
3568 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3569 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3570 		}
3571 
3572 		if (!hsotg->flags.b.port_connect_status) {
3573 			/*
3574 			 * The port is disconnected, which means the core is
3575 			 * either in device mode or it soon will be. Just
3576 			 * return 0's for the remainder of the port status
3577 			 * since the port register can't be read if the core
3578 			 * is in device mode.
3579 			 */
3580 			*(__le32 *)buf = cpu_to_le32(port_status);
3581 			break;
3582 		}
3583 
3584 		hprt0 = dwc2_readl(hsotg, HPRT0);
3585 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3586 
3587 		if (hprt0 & HPRT0_CONNSTS)
3588 			port_status |= USB_PORT_STAT_CONNECTION;
3589 		if (hprt0 & HPRT0_ENA)
3590 			port_status |= USB_PORT_STAT_ENABLE;
3591 		if (hprt0 & HPRT0_SUSP)
3592 			port_status |= USB_PORT_STAT_SUSPEND;
3593 		if (hprt0 & HPRT0_OVRCURRACT)
3594 			port_status |= USB_PORT_STAT_OVERCURRENT;
3595 		if (hprt0 & HPRT0_RST)
3596 			port_status |= USB_PORT_STAT_RESET;
3597 		if (hprt0 & HPRT0_PWR)
3598 			port_status |= USB_PORT_STAT_POWER;
3599 
3600 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3601 		if (speed == HPRT0_SPD_HIGH_SPEED)
3602 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3603 		else if (speed == HPRT0_SPD_LOW_SPEED)
3604 			port_status |= USB_PORT_STAT_LOW_SPEED;
3605 
3606 		if (hprt0 & HPRT0_TSTCTL_MASK)
3607 			port_status |= USB_PORT_STAT_TEST;
3608 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3609 
3610 		if (hsotg->params.dma_desc_fs_enable) {
3611 			/*
3612 			 * Enable descriptor DMA only if a full speed
3613 			 * device is connected.
3614 			 */
3615 			if (hsotg->new_connection &&
3616 			    ((port_status &
3617 			      (USB_PORT_STAT_CONNECTION |
3618 			       USB_PORT_STAT_HIGH_SPEED |
3619 			       USB_PORT_STAT_LOW_SPEED)) ==
3620 			       USB_PORT_STAT_CONNECTION)) {
3621 				u32 hcfg;
3622 
3623 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3624 				hsotg->params.dma_desc_enable = true;
3625 				hcfg = dwc2_readl(hsotg, HCFG);
3626 				hcfg |= HCFG_DESCDMA;
3627 				dwc2_writel(hsotg, hcfg, HCFG);
3628 				hsotg->new_connection = false;
3629 			}
3630 		}
3631 
3632 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3633 		*(__le32 *)buf = cpu_to_le32(port_status);
3634 		break;
3635 
3636 	case SetHubFeature:
3637 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3638 		/* No HUB features supported */
3639 		break;
3640 
3641 	case SetPortFeature:
3642 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3643 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3644 			goto error;
3645 
3646 		if (!hsotg->flags.b.port_connect_status) {
3647 			/*
3648 			 * The port is disconnected, which means the core is
3649 			 * either in device mode or it soon will be. Just
3650 			 * return without doing anything since the port
3651 			 * register can't be written if the core is in device
3652 			 * mode.
3653 			 */
3654 			break;
3655 		}
3656 
3657 		switch (wvalue) {
3658 		case USB_PORT_FEAT_SUSPEND:
3659 			dev_dbg(hsotg->dev,
3660 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3661 			if (windex != hsotg->otg_port)
3662 				goto error;
3663 			if (!hsotg->bus_suspended)
3664 				retval = dwc2_port_suspend(hsotg, windex);
3665 			break;
3666 
3667 		case USB_PORT_FEAT_POWER:
3668 			dev_dbg(hsotg->dev,
3669 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3670 			hprt0 = dwc2_read_hprt0(hsotg);
3671 			pwr = hprt0 & HPRT0_PWR;
3672 			hprt0 |= HPRT0_PWR;
3673 			dwc2_writel(hsotg, hprt0, HPRT0);
3674 			if (!pwr)
3675 				dwc2_vbus_supply_init(hsotg);
3676 			break;
3677 
3678 		case USB_PORT_FEAT_RESET:
3679 			dev_dbg(hsotg->dev,
3680 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3681 
3682 			hprt0 = dwc2_read_hprt0(hsotg);
3683 
3684 			if (hsotg->hibernated) {
3685 				retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3686 				if (retval)
3687 					dev_err(hsotg->dev,
3688 						"exit hibernation failed\n");
3689 			}
3690 
3691 			if (hsotg->in_ppd) {
3692 				retval = dwc2_exit_partial_power_down(hsotg, 1,
3693 								      true);
3694 				if (retval)
3695 					dev_err(hsotg->dev,
3696 						"exit partial_power_down failed\n");
3697 			}
3698 
3699 			if (hsotg->params.power_down ==
3700 			    DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3701 				dwc2_host_exit_clock_gating(hsotg, 0);
3702 
3703 			pcgctl = dwc2_readl(hsotg, PCGCTL);
3704 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3705 			dwc2_writel(hsotg, pcgctl, PCGCTL);
3706 			/* ??? Original driver does this */
3707 			dwc2_writel(hsotg, 0, PCGCTL);
3708 
3709 			hprt0 = dwc2_read_hprt0(hsotg);
3710 			pwr = hprt0 & HPRT0_PWR;
3711 			/* Clear suspend bit if resetting from suspend state */
3712 			hprt0 &= ~HPRT0_SUSP;
3713 
3714 			/*
3715 			 * When B-Host the Port reset bit is set in the Start
3716 			 * HCD Callback function, so that the reset is started
3717 			 * within 1ms of the HNP success interrupt
3718 			 */
3719 			if (!dwc2_hcd_is_b_host(hsotg)) {
3720 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3721 				dev_dbg(hsotg->dev,
3722 					"In host mode, hprt0=%08x\n", hprt0);
3723 				dwc2_writel(hsotg, hprt0, HPRT0);
3724 				if (!pwr)
3725 					dwc2_vbus_supply_init(hsotg);
3726 			}
3727 
3728 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3729 			msleep(50);
3730 			hprt0 &= ~HPRT0_RST;
3731 			dwc2_writel(hsotg, hprt0, HPRT0);
3732 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3733 			break;
3734 
3735 		case USB_PORT_FEAT_INDICATOR:
3736 			dev_dbg(hsotg->dev,
3737 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3738 			/* Not supported */
3739 			break;
3740 
3741 		case USB_PORT_FEAT_TEST:
3742 			hprt0 = dwc2_read_hprt0(hsotg);
3743 			dev_dbg(hsotg->dev,
3744 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3745 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3746 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3747 			dwc2_writel(hsotg, hprt0, HPRT0);
3748 			break;
3749 
3750 		default:
3751 			retval = -EINVAL;
3752 			dev_err(hsotg->dev,
3753 				"SetPortFeature %1xh unknown or unsupported\n",
3754 				wvalue);
3755 			break;
3756 		}
3757 		break;
3758 
3759 	default:
3760 error:
3761 		retval = -EINVAL;
3762 		dev_dbg(hsotg->dev,
3763 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3764 			typereq, windex, wvalue);
3765 		break;
3766 	}
3767 
3768 	return retval;
3769 }
3770 
3771 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3772 {
3773 	int retval;
3774 
3775 	if (port != 1)
3776 		return -EINVAL;
3777 
3778 	retval = (hsotg->flags.b.port_connect_status_change ||
3779 		  hsotg->flags.b.port_reset_change ||
3780 		  hsotg->flags.b.port_enable_change ||
3781 		  hsotg->flags.b.port_suspend_change ||
3782 		  hsotg->flags.b.port_over_current_change);
3783 
3784 	if (retval) {
3785 		dev_dbg(hsotg->dev,
3786 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3787 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3788 			hsotg->flags.b.port_connect_status_change);
3789 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3790 			hsotg->flags.b.port_reset_change);
3791 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3792 			hsotg->flags.b.port_enable_change);
3793 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3794 			hsotg->flags.b.port_suspend_change);
3795 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3796 			hsotg->flags.b.port_over_current_change);
3797 	}
3798 
3799 	return retval;
3800 }
3801 
3802 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3803 {
3804 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3805 
3806 #ifdef DWC2_DEBUG_SOF
3807 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3808 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3809 #endif
3810 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3811 }
3812 
3813 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3814 {
3815 	u32 hprt = dwc2_readl(hsotg, HPRT0);
3816 	u32 hfir = dwc2_readl(hsotg, HFIR);
3817 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3818 	unsigned int us_per_frame;
3819 	unsigned int frame_number;
3820 	unsigned int remaining;
3821 	unsigned int interval;
3822 	unsigned int phy_clks;
3823 
3824 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3825 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3826 
3827 	/* Extract fields */
3828 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3829 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3830 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3831 
3832 	/*
3833 	 * Number of phy clocks since the last tick of the frame number after
3834 	 * "us" has passed.
3835 	 */
3836 	phy_clks = (interval - remaining) +
3837 		   DIV_ROUND_UP(interval * us, us_per_frame);
3838 
3839 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3840 }
3841 
3842 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3843 {
3844 	return hsotg->op_state == OTG_STATE_B_HOST;
3845 }
3846 
3847 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3848 					       int iso_desc_count,
3849 					       gfp_t mem_flags)
3850 {
3851 	struct dwc2_hcd_urb *urb;
3852 
3853 	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3854 	if (urb)
3855 		urb->packet_count = iso_desc_count;
3856 	return urb;
3857 }
3858 
3859 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3860 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3861 				      u8 ep_num, u8 ep_type, u8 ep_dir,
3862 				      u16 maxp, u16 maxp_mult)
3863 {
3864 	if (dbg_perio() ||
3865 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3866 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3867 		dev_vdbg(hsotg->dev,
3868 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3869 			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3870 	urb->pipe_info.dev_addr = dev_addr;
3871 	urb->pipe_info.ep_num = ep_num;
3872 	urb->pipe_info.pipe_type = ep_type;
3873 	urb->pipe_info.pipe_dir = ep_dir;
3874 	urb->pipe_info.maxp = maxp;
3875 	urb->pipe_info.maxp_mult = maxp_mult;
3876 }
3877 
3878 /*
3879  * NOTE: This function will be removed once the peripheral controller code
3880  * is integrated and the driver is stable
3881  */
3882 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3883 {
3884 #ifdef DEBUG
3885 	struct dwc2_host_chan *chan;
3886 	struct dwc2_hcd_urb *urb;
3887 	struct dwc2_qtd *qtd;
3888 	int num_channels;
3889 	u32 np_tx_status;
3890 	u32 p_tx_status;
3891 	int i;
3892 
3893 	num_channels = hsotg->params.host_channels;
3894 	dev_dbg(hsotg->dev, "\n");
3895 	dev_dbg(hsotg->dev,
3896 		"************************************************************\n");
3897 	dev_dbg(hsotg->dev, "HCD State:\n");
3898 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3899 
3900 	for (i = 0; i < num_channels; i++) {
3901 		chan = hsotg->hc_ptr_array[i];
3902 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3903 		dev_dbg(hsotg->dev,
3904 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3905 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3906 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3907 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3908 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3909 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3910 			chan->data_pid_start);
3911 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3912 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3913 			chan->xfer_started);
3914 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3915 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3916 			(unsigned long)chan->xfer_dma);
3917 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3918 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3919 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3920 			chan->halt_on_queue);
3921 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3922 			chan->halt_pending);
3923 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3924 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3925 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3926 			chan->complete_split);
3927 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3928 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3929 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3930 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3931 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3932 
3933 		if (chan->xfer_started) {
3934 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3935 
3936 			hfnum = dwc2_readl(hsotg, HFNUM);
3937 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3938 			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3939 			hcint = dwc2_readl(hsotg, HCINT(i));
3940 			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3941 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3942 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3943 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3944 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3945 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3946 		}
3947 
3948 		if (!(chan->xfer_started && chan->qh))
3949 			continue;
3950 
3951 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3952 			if (!qtd->in_process)
3953 				break;
3954 			urb = qtd->urb;
3955 			dev_dbg(hsotg->dev, "    URB Info:\n");
3956 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3957 				qtd, urb);
3958 			if (urb) {
3959 				dev_dbg(hsotg->dev,
3960 					"      Dev: %d, EP: %d %s\n",
3961 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3962 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3963 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3964 					"IN" : "OUT");
3965 				dev_dbg(hsotg->dev,
3966 					"      Max packet size: %d (%d mult)\n",
3967 					dwc2_hcd_get_maxp(&urb->pipe_info),
3968 					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3969 				dev_dbg(hsotg->dev,
3970 					"      transfer_buffer: %p\n",
3971 					urb->buf);
3972 				dev_dbg(hsotg->dev,
3973 					"      transfer_dma: %08lx\n",
3974 					(unsigned long)urb->dma);
3975 				dev_dbg(hsotg->dev,
3976 					"      transfer_buffer_length: %d\n",
3977 					urb->length);
3978 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3979 					urb->actual_length);
3980 			}
3981 		}
3982 	}
3983 
3984 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3985 		hsotg->non_periodic_channels);
3986 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3987 		hsotg->periodic_channels);
3988 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3989 	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3990 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3991 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3992 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3993 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3994 	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3995 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3996 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3997 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3998 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3999 	dwc2_dump_global_registers(hsotg);
4000 	dwc2_dump_host_registers(hsotg);
4001 	dev_dbg(hsotg->dev,
4002 		"************************************************************\n");
4003 	dev_dbg(hsotg->dev, "\n");
4004 #endif
4005 }
4006 
4007 struct wrapper_priv_data {
4008 	struct dwc2_hsotg *hsotg;
4009 };
4010 
4011 /* Gets the dwc2_hsotg from a usb_hcd */
4012 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4013 {
4014 	struct wrapper_priv_data *p;
4015 
4016 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4017 	return p->hsotg;
4018 }
4019 
4020 /**
4021  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4022  *
4023  * This will get the dwc2_tt structure (and ttport) associated with the given
4024  * context (which is really just a struct urb pointer).
4025  *
4026  * The first time this is called for a given TT we allocate memory for our
4027  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4028  * then the refcount for the structure will go to 0 and we'll free it.
4029  *
4030  * @hsotg:     The HCD state structure for the DWC OTG controller.
4031  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4032  * @mem_flags: Flags for allocating memory.
4033  * @ttport:    We'll return this device's port number here.  That's used to
4034  *             reference into the bitmap if we're on a multi_tt hub.
4035  *
4036  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4037  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4038  */
4039 
4040 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4041 				      gfp_t mem_flags, int *ttport)
4042 {
4043 	struct urb *urb = context;
4044 	struct dwc2_tt *dwc_tt = NULL;
4045 
4046 	if (urb->dev->tt) {
4047 		*ttport = urb->dev->ttport;
4048 
4049 		dwc_tt = urb->dev->tt->hcpriv;
4050 		if (!dwc_tt) {
4051 			size_t bitmap_size;
4052 
4053 			/*
4054 			 * For single_tt we need one schedule.  For multi_tt
4055 			 * we need one per port.
4056 			 */
4057 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4058 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4059 			if (urb->dev->tt->multi)
4060 				bitmap_size *= urb->dev->tt->hub->maxchild;
4061 
4062 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4063 					 mem_flags);
4064 			if (!dwc_tt)
4065 				return NULL;
4066 
4067 			dwc_tt->usb_tt = urb->dev->tt;
4068 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4069 		}
4070 
4071 		dwc_tt->refcount++;
4072 	}
4073 
4074 	return dwc_tt;
4075 }
4076 
4077 /**
4078  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4079  *
4080  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4081  * of the structure are done.
4082  *
4083  * It's OK to call this with NULL.
4084  *
4085  * @hsotg:     The HCD state structure for the DWC OTG controller.
4086  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4087  */
4088 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4089 {
4090 	/* Model kfree and make put of NULL a no-op */
4091 	if (!dwc_tt)
4092 		return;
4093 
4094 	WARN_ON(dwc_tt->refcount < 1);
4095 
4096 	dwc_tt->refcount--;
4097 	if (!dwc_tt->refcount) {
4098 		dwc_tt->usb_tt->hcpriv = NULL;
4099 		kfree(dwc_tt);
4100 	}
4101 }
4102 
4103 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4104 {
4105 	struct urb *urb = context;
4106 
4107 	return urb->dev->speed;
4108 }
4109 
4110 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4111 					struct urb *urb)
4112 {
4113 	struct usb_bus *bus = hcd_to_bus(hcd);
4114 
4115 	if (urb->interval)
4116 		bus->bandwidth_allocated += bw / urb->interval;
4117 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4118 		bus->bandwidth_isoc_reqs++;
4119 	else
4120 		bus->bandwidth_int_reqs++;
4121 }
4122 
4123 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4124 				    struct urb *urb)
4125 {
4126 	struct usb_bus *bus = hcd_to_bus(hcd);
4127 
4128 	if (urb->interval)
4129 		bus->bandwidth_allocated -= bw / urb->interval;
4130 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4131 		bus->bandwidth_isoc_reqs--;
4132 	else
4133 		bus->bandwidth_int_reqs--;
4134 }
4135 
4136 /*
4137  * Sets the final status of an URB and returns it to the upper layer. Any
4138  * required cleanup of the URB is performed.
4139  *
4140  * Must be called with interrupt disabled and spinlock held
4141  */
4142 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4143 			int status)
4144 {
4145 	struct urb *urb;
4146 	int i;
4147 
4148 	if (!qtd) {
4149 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4150 		return;
4151 	}
4152 
4153 	if (!qtd->urb) {
4154 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4155 		return;
4156 	}
4157 
4158 	urb = qtd->urb->priv;
4159 	if (!urb) {
4160 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4161 		return;
4162 	}
4163 
4164 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4165 
4166 	if (dbg_urb(urb))
4167 		dev_vdbg(hsotg->dev,
4168 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4169 			 __func__, urb, usb_pipedevice(urb->pipe),
4170 			 usb_pipeendpoint(urb->pipe),
4171 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4172 			 urb->actual_length);
4173 
4174 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4175 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4176 		for (i = 0; i < urb->number_of_packets; ++i) {
4177 			urb->iso_frame_desc[i].actual_length =
4178 				dwc2_hcd_urb_get_iso_desc_actual_length(
4179 						qtd->urb, i);
4180 			urb->iso_frame_desc[i].status =
4181 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4182 		}
4183 	}
4184 
4185 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4186 		for (i = 0; i < urb->number_of_packets; i++)
4187 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4188 				 i, urb->iso_frame_desc[i].status);
4189 	}
4190 
4191 	urb->status = status;
4192 	if (!status) {
4193 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4194 		    urb->actual_length < urb->transfer_buffer_length)
4195 			urb->status = -EREMOTEIO;
4196 	}
4197 
4198 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4199 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4200 		struct usb_host_endpoint *ep = urb->ep;
4201 
4202 		if (ep)
4203 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4204 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4205 					urb);
4206 	}
4207 
4208 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4209 	urb->hcpriv = NULL;
4210 	kfree(qtd->urb);
4211 	qtd->urb = NULL;
4212 
4213 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4214 }
4215 
4216 /*
4217  * Work queue function for starting the HCD when A-Cable is connected
4218  */
4219 static void dwc2_hcd_start_func(struct work_struct *work)
4220 {
4221 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4222 						start_work.work);
4223 
4224 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4225 	dwc2_host_start(hsotg);
4226 }
4227 
4228 /*
4229  * Reset work queue function
4230  */
4231 static void dwc2_hcd_reset_func(struct work_struct *work)
4232 {
4233 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4234 						reset_work.work);
4235 	unsigned long flags;
4236 	u32 hprt0;
4237 
4238 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4239 
4240 	spin_lock_irqsave(&hsotg->lock, flags);
4241 
4242 	hprt0 = dwc2_read_hprt0(hsotg);
4243 	hprt0 &= ~HPRT0_RST;
4244 	dwc2_writel(hsotg, hprt0, HPRT0);
4245 	hsotg->flags.b.port_reset_change = 1;
4246 
4247 	spin_unlock_irqrestore(&hsotg->lock, flags);
4248 }
4249 
4250 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4251 {
4252 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4253 						phy_reset_work);
4254 	int ret;
4255 
4256 	ret = phy_reset(hsotg->phy);
4257 	if (ret)
4258 		dev_warn(hsotg->dev, "PHY reset failed\n");
4259 }
4260 
4261 /*
4262  * =========================================================================
4263  *  Linux HC Driver Functions
4264  * =========================================================================
4265  */
4266 
4267 /*
4268  * Initializes the DWC_otg controller and its root hub and prepares it for host
4269  * mode operation. Activates the root port. Returns 0 on success and a negative
4270  * error code on failure.
4271  */
4272 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4273 {
4274 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4275 	struct usb_bus *bus = hcd_to_bus(hcd);
4276 	unsigned long flags;
4277 	u32 hprt0;
4278 	int ret;
4279 
4280 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4281 
4282 	spin_lock_irqsave(&hsotg->lock, flags);
4283 	hsotg->lx_state = DWC2_L0;
4284 	hcd->state = HC_STATE_RUNNING;
4285 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4286 
4287 	if (dwc2_is_device_mode(hsotg)) {
4288 		spin_unlock_irqrestore(&hsotg->lock, flags);
4289 		return 0;	/* why 0 ?? */
4290 	}
4291 
4292 	dwc2_hcd_reinit(hsotg);
4293 
4294 	hprt0 = dwc2_read_hprt0(hsotg);
4295 	/* Has vbus power been turned on in dwc2_core_host_init ? */
4296 	if (hprt0 & HPRT0_PWR) {
4297 		/* Enable external vbus supply before resuming root hub */
4298 		spin_unlock_irqrestore(&hsotg->lock, flags);
4299 		ret = dwc2_vbus_supply_init(hsotg);
4300 		if (ret)
4301 			return ret;
4302 		spin_lock_irqsave(&hsotg->lock, flags);
4303 	}
4304 
4305 	/* Initialize and connect root hub if one is not already attached */
4306 	if (bus->root_hub) {
4307 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4308 		/* Inform the HUB driver to resume */
4309 		usb_hcd_resume_root_hub(hcd);
4310 	}
4311 
4312 	spin_unlock_irqrestore(&hsotg->lock, flags);
4313 
4314 	return 0;
4315 }
4316 
4317 /*
4318  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4319  * stopped.
4320  */
4321 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4322 {
4323 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4324 	unsigned long flags;
4325 	u32 hprt0;
4326 
4327 	/* Turn off all host-specific interrupts */
4328 	dwc2_disable_host_interrupts(hsotg);
4329 
4330 	/* Wait for interrupt processing to finish */
4331 	synchronize_irq(hcd->irq);
4332 
4333 	spin_lock_irqsave(&hsotg->lock, flags);
4334 	hprt0 = dwc2_read_hprt0(hsotg);
4335 	/* Ensure hcd is disconnected */
4336 	dwc2_hcd_disconnect(hsotg, true);
4337 	dwc2_hcd_stop(hsotg);
4338 	hsotg->lx_state = DWC2_L3;
4339 	hcd->state = HC_STATE_HALT;
4340 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4341 	spin_unlock_irqrestore(&hsotg->lock, flags);
4342 
4343 	/* keep balanced supply init/exit by checking HPRT0_PWR */
4344 	if (hprt0 & HPRT0_PWR)
4345 		dwc2_vbus_supply_exit(hsotg);
4346 
4347 	usleep_range(1000, 3000);
4348 }
4349 
4350 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4351 {
4352 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4353 	unsigned long flags;
4354 	int ret = 0;
4355 
4356 	spin_lock_irqsave(&hsotg->lock, flags);
4357 
4358 	if (dwc2_is_device_mode(hsotg))
4359 		goto unlock;
4360 
4361 	if (hsotg->lx_state != DWC2_L0)
4362 		goto unlock;
4363 
4364 	if (!HCD_HW_ACCESSIBLE(hcd))
4365 		goto unlock;
4366 
4367 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4368 		goto unlock;
4369 
4370 	if (hsotg->bus_suspended)
4371 		goto skip_power_saving;
4372 
4373 	if (hsotg->flags.b.port_connect_status == 0)
4374 		goto skip_power_saving;
4375 
4376 	switch (hsotg->params.power_down) {
4377 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4378 		/* Enter partial_power_down */
4379 		ret = dwc2_enter_partial_power_down(hsotg);
4380 		if (ret)
4381 			dev_err(hsotg->dev,
4382 				"enter partial_power_down failed\n");
4383 		/* After entering suspend, hardware is not accessible */
4384 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4385 		break;
4386 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4387 		/* Enter hibernation */
4388 		spin_unlock_irqrestore(&hsotg->lock, flags);
4389 		ret = dwc2_enter_hibernation(hsotg, 1);
4390 		if (ret)
4391 			dev_err(hsotg->dev, "enter hibernation failed\n");
4392 		spin_lock_irqsave(&hsotg->lock, flags);
4393 
4394 		/* After entering suspend, hardware is not accessible */
4395 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4396 		break;
4397 	case DWC2_POWER_DOWN_PARAM_NONE:
4398 		/*
4399 		 * If not hibernation nor partial power down are supported,
4400 		 * clock gating is used to save power.
4401 		 */
4402 		if (!hsotg->params.no_clock_gating) {
4403 			dwc2_host_enter_clock_gating(hsotg);
4404 
4405 			/* After entering suspend, hardware is not accessible */
4406 			clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4407 		}
4408 		break;
4409 	default:
4410 		goto skip_power_saving;
4411 	}
4412 
4413 	spin_unlock_irqrestore(&hsotg->lock, flags);
4414 	dwc2_vbus_supply_exit(hsotg);
4415 	spin_lock_irqsave(&hsotg->lock, flags);
4416 
4417 	/* Ask phy to be suspended */
4418 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4419 		spin_unlock_irqrestore(&hsotg->lock, flags);
4420 		usb_phy_set_suspend(hsotg->uphy, true);
4421 		spin_lock_irqsave(&hsotg->lock, flags);
4422 	}
4423 
4424 skip_power_saving:
4425 	hsotg->lx_state = DWC2_L2;
4426 unlock:
4427 	spin_unlock_irqrestore(&hsotg->lock, flags);
4428 
4429 	return ret;
4430 }
4431 
4432 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4433 {
4434 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4435 	unsigned long flags;
4436 	u32 hprt0;
4437 	int ret = 0;
4438 
4439 	spin_lock_irqsave(&hsotg->lock, flags);
4440 
4441 	if (dwc2_is_device_mode(hsotg))
4442 		goto unlock;
4443 
4444 	if (hsotg->lx_state != DWC2_L2)
4445 		goto unlock;
4446 
4447 	hprt0 = dwc2_read_hprt0(hsotg);
4448 
4449 	/*
4450 	 * Added port connection status checking which prevents exiting from
4451 	 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4452 	 * Power Down mode.
4453 	 */
4454 	if (hprt0 & HPRT0_CONNSTS) {
4455 		hsotg->lx_state = DWC2_L0;
4456 		goto unlock;
4457 	}
4458 
4459 	switch (hsotg->params.power_down) {
4460 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4461 		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4462 		if (ret)
4463 			dev_err(hsotg->dev,
4464 				"exit partial_power_down failed\n");
4465 		/*
4466 		 * Set HW accessible bit before powering on the controller
4467 		 * since an interrupt may rise.
4468 		 */
4469 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4470 		break;
4471 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4472 		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4473 		if (ret)
4474 			dev_err(hsotg->dev, "exit hibernation failed.\n");
4475 
4476 		/*
4477 		 * Set HW accessible bit before powering on the controller
4478 		 * since an interrupt may rise.
4479 		 */
4480 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4481 		break;
4482 	case DWC2_POWER_DOWN_PARAM_NONE:
4483 		/*
4484 		 * If not hibernation nor partial power down are supported,
4485 		 * port resume is done using the clock gating programming flow.
4486 		 */
4487 		spin_unlock_irqrestore(&hsotg->lock, flags);
4488 		dwc2_host_exit_clock_gating(hsotg, 0);
4489 
4490 		/*
4491 		 * Initialize the Core for Host mode, as after system resume
4492 		 * the global interrupts are disabled.
4493 		 */
4494 		dwc2_core_init(hsotg, false);
4495 		dwc2_enable_global_interrupts(hsotg);
4496 		dwc2_hcd_reinit(hsotg);
4497 		spin_lock_irqsave(&hsotg->lock, flags);
4498 
4499 		/*
4500 		 * Set HW accessible bit before powering on the controller
4501 		 * since an interrupt may rise.
4502 		 */
4503 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4504 		break;
4505 	default:
4506 		hsotg->lx_state = DWC2_L0;
4507 		goto unlock;
4508 	}
4509 
4510 	/* Change Root port status, as port status change occurred after resume.*/
4511 	hsotg->flags.b.port_suspend_change = 1;
4512 
4513 	/*
4514 	 * Enable power if not already done.
4515 	 * This must not be spinlocked since duration
4516 	 * of this call is unknown.
4517 	 */
4518 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4519 		spin_unlock_irqrestore(&hsotg->lock, flags);
4520 		usb_phy_set_suspend(hsotg->uphy, false);
4521 		spin_lock_irqsave(&hsotg->lock, flags);
4522 	}
4523 
4524 	/* Enable external vbus supply after resuming the port. */
4525 	spin_unlock_irqrestore(&hsotg->lock, flags);
4526 	dwc2_vbus_supply_init(hsotg);
4527 
4528 	/* Wait for controller to correctly update D+/D- level */
4529 	usleep_range(3000, 5000);
4530 	spin_lock_irqsave(&hsotg->lock, flags);
4531 
4532 	/*
4533 	 * Clear Port Enable and Port Status changes.
4534 	 * Enable Port Power.
4535 	 */
4536 	dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4537 			HPRT0_ENACHG, HPRT0);
4538 
4539 	/* Wait for controller to detect Port Connect */
4540 	spin_unlock_irqrestore(&hsotg->lock, flags);
4541 	usleep_range(5000, 7000);
4542 	spin_lock_irqsave(&hsotg->lock, flags);
4543 unlock:
4544 	spin_unlock_irqrestore(&hsotg->lock, flags);
4545 
4546 	return ret;
4547 }
4548 
4549 /* Returns the current frame number */
4550 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4551 {
4552 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4553 
4554 	return dwc2_hcd_get_frame_number(hsotg);
4555 }
4556 
4557 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4558 			       char *fn_name)
4559 {
4560 #ifdef VERBOSE_DEBUG
4561 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4562 	char *pipetype = NULL;
4563 	char *speed = NULL;
4564 
4565 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4566 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4567 		 usb_pipedevice(urb->pipe));
4568 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4569 		 usb_pipeendpoint(urb->pipe),
4570 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4571 
4572 	switch (usb_pipetype(urb->pipe)) {
4573 	case PIPE_CONTROL:
4574 		pipetype = "CONTROL";
4575 		break;
4576 	case PIPE_BULK:
4577 		pipetype = "BULK";
4578 		break;
4579 	case PIPE_INTERRUPT:
4580 		pipetype = "INTERRUPT";
4581 		break;
4582 	case PIPE_ISOCHRONOUS:
4583 		pipetype = "ISOCHRONOUS";
4584 		break;
4585 	}
4586 
4587 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4588 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4589 		 "IN" : "OUT");
4590 
4591 	switch (urb->dev->speed) {
4592 	case USB_SPEED_HIGH:
4593 		speed = "HIGH";
4594 		break;
4595 	case USB_SPEED_FULL:
4596 		speed = "FULL";
4597 		break;
4598 	case USB_SPEED_LOW:
4599 		speed = "LOW";
4600 		break;
4601 	default:
4602 		speed = "UNKNOWN";
4603 		break;
4604 	}
4605 
4606 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4607 	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4608 		 usb_endpoint_maxp(&urb->ep->desc),
4609 		 usb_endpoint_maxp_mult(&urb->ep->desc));
4610 
4611 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4612 		 urb->transfer_buffer_length);
4613 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4614 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4615 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4616 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4617 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4618 
4619 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4620 		int i;
4621 
4622 		for (i = 0; i < urb->number_of_packets; i++) {
4623 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4624 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4625 				 urb->iso_frame_desc[i].offset,
4626 				 urb->iso_frame_desc[i].length);
4627 		}
4628 	}
4629 #endif
4630 }
4631 
4632 /*
4633  * Starts processing a USB transfer request specified by a USB Request Block
4634  * (URB). mem_flags indicates the type of memory allocation to use while
4635  * processing this URB.
4636  */
4637 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4638 				 gfp_t mem_flags)
4639 {
4640 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4641 	struct usb_host_endpoint *ep = urb->ep;
4642 	struct dwc2_hcd_urb *dwc2_urb;
4643 	int i;
4644 	int retval;
4645 	int alloc_bandwidth = 0;
4646 	u8 ep_type = 0;
4647 	u32 tflags = 0;
4648 	void *buf;
4649 	unsigned long flags;
4650 	struct dwc2_qh *qh;
4651 	bool qh_allocated = false;
4652 	struct dwc2_qtd *qtd;
4653 	struct dwc2_gregs_backup *gr;
4654 
4655 	gr = &hsotg->gr_backup;
4656 
4657 	if (dbg_urb(urb)) {
4658 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4659 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4660 	}
4661 
4662 	if (hsotg->hibernated) {
4663 		if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4664 			retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4665 		else
4666 			retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4667 
4668 		if (retval)
4669 			dev_err(hsotg->dev,
4670 				"exit hibernation failed.\n");
4671 	}
4672 
4673 	if (hsotg->in_ppd) {
4674 		retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4675 		if (retval)
4676 			dev_err(hsotg->dev,
4677 				"exit partial_power_down failed\n");
4678 	}
4679 
4680 	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4681 	    hsotg->bus_suspended) {
4682 		if (dwc2_is_device_mode(hsotg))
4683 			dwc2_gadget_exit_clock_gating(hsotg, 0);
4684 		else
4685 			dwc2_host_exit_clock_gating(hsotg, 0);
4686 	}
4687 
4688 	if (!ep)
4689 		return -EINVAL;
4690 
4691 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4692 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4693 		spin_lock_irqsave(&hsotg->lock, flags);
4694 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4695 			alloc_bandwidth = 1;
4696 		spin_unlock_irqrestore(&hsotg->lock, flags);
4697 	}
4698 
4699 	switch (usb_pipetype(urb->pipe)) {
4700 	case PIPE_CONTROL:
4701 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4702 		break;
4703 	case PIPE_ISOCHRONOUS:
4704 		ep_type = USB_ENDPOINT_XFER_ISOC;
4705 		break;
4706 	case PIPE_BULK:
4707 		ep_type = USB_ENDPOINT_XFER_BULK;
4708 		break;
4709 	case PIPE_INTERRUPT:
4710 		ep_type = USB_ENDPOINT_XFER_INT;
4711 		break;
4712 	}
4713 
4714 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4715 				      mem_flags);
4716 	if (!dwc2_urb)
4717 		return -ENOMEM;
4718 
4719 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4720 				  usb_pipeendpoint(urb->pipe), ep_type,
4721 				  usb_pipein(urb->pipe),
4722 				  usb_endpoint_maxp(&ep->desc),
4723 				  usb_endpoint_maxp_mult(&ep->desc));
4724 
4725 	buf = urb->transfer_buffer;
4726 
4727 	if (hcd_uses_dma(hcd)) {
4728 		if (!buf && (urb->transfer_dma & 3)) {
4729 			dev_err(hsotg->dev,
4730 				"%s: unaligned transfer with no transfer_buffer",
4731 				__func__);
4732 			retval = -EINVAL;
4733 			goto fail0;
4734 		}
4735 	}
4736 
4737 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4738 		tflags |= URB_GIVEBACK_ASAP;
4739 	if (urb->transfer_flags & URB_ZERO_PACKET)
4740 		tflags |= URB_SEND_ZERO_PACKET;
4741 
4742 	dwc2_urb->priv = urb;
4743 	dwc2_urb->buf = buf;
4744 	dwc2_urb->dma = urb->transfer_dma;
4745 	dwc2_urb->length = urb->transfer_buffer_length;
4746 	dwc2_urb->setup_packet = urb->setup_packet;
4747 	dwc2_urb->setup_dma = urb->setup_dma;
4748 	dwc2_urb->flags = tflags;
4749 	dwc2_urb->interval = urb->interval;
4750 	dwc2_urb->status = -EINPROGRESS;
4751 
4752 	for (i = 0; i < urb->number_of_packets; ++i)
4753 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4754 						 urb->iso_frame_desc[i].offset,
4755 						 urb->iso_frame_desc[i].length);
4756 
4757 	urb->hcpriv = dwc2_urb;
4758 	qh = (struct dwc2_qh *)ep->hcpriv;
4759 	/* Create QH for the endpoint if it doesn't exist */
4760 	if (!qh) {
4761 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4762 		if (!qh) {
4763 			retval = -ENOMEM;
4764 			goto fail0;
4765 		}
4766 		ep->hcpriv = qh;
4767 		qh_allocated = true;
4768 	}
4769 
4770 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4771 	if (!qtd) {
4772 		retval = -ENOMEM;
4773 		goto fail1;
4774 	}
4775 
4776 	spin_lock_irqsave(&hsotg->lock, flags);
4777 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4778 	if (retval)
4779 		goto fail2;
4780 
4781 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4782 	if (retval)
4783 		goto fail3;
4784 
4785 	if (alloc_bandwidth) {
4786 		dwc2_allocate_bus_bandwidth(hcd,
4787 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4788 				urb);
4789 	}
4790 
4791 	spin_unlock_irqrestore(&hsotg->lock, flags);
4792 
4793 	return 0;
4794 
4795 fail3:
4796 	dwc2_urb->priv = NULL;
4797 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4798 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4799 		qh->channel->qh = NULL;
4800 fail2:
4801 	spin_unlock_irqrestore(&hsotg->lock, flags);
4802 	urb->hcpriv = NULL;
4803 	kfree(qtd);
4804 fail1:
4805 	if (qh_allocated) {
4806 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4807 
4808 		ep->hcpriv = NULL;
4809 		dwc2_hcd_qh_unlink(hsotg, qh);
4810 		/* Free each QTD in the QH's QTD list */
4811 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4812 					 qtd_list_entry)
4813 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4814 		dwc2_hcd_qh_free(hsotg, qh);
4815 	}
4816 fail0:
4817 	kfree(dwc2_urb);
4818 
4819 	return retval;
4820 }
4821 
4822 /*
4823  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4824  */
4825 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4826 				 int status)
4827 {
4828 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4829 	int rc;
4830 	unsigned long flags;
4831 
4832 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4833 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4834 
4835 	spin_lock_irqsave(&hsotg->lock, flags);
4836 
4837 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4838 	if (rc)
4839 		goto out;
4840 
4841 	if (!urb->hcpriv) {
4842 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4843 		goto out;
4844 	}
4845 
4846 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4847 
4848 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4849 
4850 	kfree(urb->hcpriv);
4851 	urb->hcpriv = NULL;
4852 
4853 	/* Higher layer software sets URB status */
4854 	spin_unlock(&hsotg->lock);
4855 	usb_hcd_giveback_urb(hcd, urb, status);
4856 	spin_lock(&hsotg->lock);
4857 
4858 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4859 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4860 out:
4861 	spin_unlock_irqrestore(&hsotg->lock, flags);
4862 
4863 	return rc;
4864 }
4865 
4866 /*
4867  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4868  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4869  * must already be dequeued.
4870  */
4871 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4872 				       struct usb_host_endpoint *ep)
4873 {
4874 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4875 
4876 	dev_dbg(hsotg->dev,
4877 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4878 		ep->desc.bEndpointAddress, ep->hcpriv);
4879 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4880 }
4881 
4882 /*
4883  * Resets endpoint specific parameter values, in current version used to reset
4884  * the data toggle (as a WA). This function can be called from usb_clear_halt
4885  * routine.
4886  */
4887 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4888 				     struct usb_host_endpoint *ep)
4889 {
4890 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4891 	unsigned long flags;
4892 
4893 	dev_dbg(hsotg->dev,
4894 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4895 		ep->desc.bEndpointAddress);
4896 
4897 	spin_lock_irqsave(&hsotg->lock, flags);
4898 	dwc2_hcd_endpoint_reset(hsotg, ep);
4899 	spin_unlock_irqrestore(&hsotg->lock, flags);
4900 }
4901 
4902 /*
4903  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4904  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4905  * interrupt.
4906  *
4907  * This function is called by the USB core when an interrupt occurs
4908  */
4909 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4910 {
4911 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4912 
4913 	return dwc2_handle_hcd_intr(hsotg);
4914 }
4915 
4916 /*
4917  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4918  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4919  * is the status change indicator for the single root port. Returns 1 if either
4920  * change indicator is 1, otherwise returns 0.
4921  */
4922 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4923 {
4924 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4925 
4926 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4927 	return buf[0] != 0;
4928 }
4929 
4930 /* Handles hub class-specific requests */
4931 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4932 				 u16 windex, char *buf, u16 wlength)
4933 {
4934 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4935 					  wvalue, windex, buf, wlength);
4936 	return retval;
4937 }
4938 
4939 /* Handles hub TT buffer clear completions */
4940 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4941 					       struct usb_host_endpoint *ep)
4942 {
4943 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4944 	struct dwc2_qh *qh;
4945 	unsigned long flags;
4946 
4947 	qh = ep->hcpriv;
4948 	if (!qh)
4949 		return;
4950 
4951 	spin_lock_irqsave(&hsotg->lock, flags);
4952 	qh->tt_buffer_dirty = 0;
4953 
4954 	if (hsotg->flags.b.port_connect_status)
4955 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4956 
4957 	spin_unlock_irqrestore(&hsotg->lock, flags);
4958 }
4959 
4960 /*
4961  * HPRT0_SPD_HIGH_SPEED: high speed
4962  * HPRT0_SPD_FULL_SPEED: full speed
4963  */
4964 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4965 {
4966 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4967 
4968 	if (hsotg->params.speed == speed)
4969 		return;
4970 
4971 	hsotg->params.speed = speed;
4972 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4973 }
4974 
4975 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4976 {
4977 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4978 
4979 	if (!hsotg->params.change_speed_quirk)
4980 		return;
4981 
4982 	/*
4983 	 * On removal, set speed to default high-speed.
4984 	 */
4985 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4986 	    udev->parent->speed < USB_SPEED_HIGH) {
4987 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4988 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4989 	}
4990 }
4991 
4992 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4993 {
4994 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4995 
4996 	if (!hsotg->params.change_speed_quirk)
4997 		return 0;
4998 
4999 	if (udev->speed == USB_SPEED_HIGH) {
5000 		dev_info(hsotg->dev, "Set speed to high-speed\n");
5001 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5002 	} else if ((udev->speed == USB_SPEED_FULL ||
5003 				udev->speed == USB_SPEED_LOW)) {
5004 		/*
5005 		 * Change speed setting to full-speed if there's
5006 		 * a full-speed or low-speed device plugged in.
5007 		 */
5008 		dev_info(hsotg->dev, "Set speed to full-speed\n");
5009 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5010 	}
5011 
5012 	return 0;
5013 }
5014 
5015 static struct hc_driver dwc2_hc_driver = {
5016 	.description = "dwc2_hsotg",
5017 	.product_desc = "DWC OTG Controller",
5018 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
5019 
5020 	.irq = _dwc2_hcd_irq,
5021 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5022 
5023 	.start = _dwc2_hcd_start,
5024 	.stop = _dwc2_hcd_stop,
5025 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
5026 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
5027 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
5028 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
5029 	.get_frame_number = _dwc2_hcd_get_frame_number,
5030 
5031 	.hub_status_data = _dwc2_hcd_hub_status_data,
5032 	.hub_control = _dwc2_hcd_hub_control,
5033 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5034 
5035 	.bus_suspend = _dwc2_hcd_suspend,
5036 	.bus_resume = _dwc2_hcd_resume,
5037 
5038 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
5039 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
5040 };
5041 
5042 /*
5043  * Frees secondary storage associated with the dwc2_hsotg structure contained
5044  * in the struct usb_hcd field
5045  */
5046 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5047 {
5048 	u32 ahbcfg;
5049 	u32 dctl;
5050 	int i;
5051 
5052 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5053 
5054 	/* Free memory for QH/QTD lists */
5055 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5056 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5057 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5058 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5059 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5060 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5061 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5062 
5063 	/* Free memory for the host channels */
5064 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5065 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5066 
5067 		if (chan) {
5068 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5069 				i, chan);
5070 			hsotg->hc_ptr_array[i] = NULL;
5071 			kfree(chan);
5072 		}
5073 	}
5074 
5075 	if (hsotg->params.host_dma) {
5076 		if (hsotg->status_buf) {
5077 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5078 					  hsotg->status_buf,
5079 					  hsotg->status_buf_dma);
5080 			hsotg->status_buf = NULL;
5081 		}
5082 	} else {
5083 		kfree(hsotg->status_buf);
5084 		hsotg->status_buf = NULL;
5085 	}
5086 
5087 	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5088 
5089 	/* Disable all interrupts */
5090 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5091 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5092 	dwc2_writel(hsotg, 0, GINTMSK);
5093 
5094 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5095 		dctl = dwc2_readl(hsotg, DCTL);
5096 		dctl |= DCTL_SFTDISCON;
5097 		dwc2_writel(hsotg, dctl, DCTL);
5098 	}
5099 
5100 	if (hsotg->wq_otg) {
5101 		if (!cancel_work_sync(&hsotg->wf_otg))
5102 			flush_workqueue(hsotg->wq_otg);
5103 		destroy_workqueue(hsotg->wq_otg);
5104 	}
5105 
5106 	cancel_work_sync(&hsotg->phy_reset_work);
5107 
5108 	del_timer(&hsotg->wkp_timer);
5109 }
5110 
5111 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5112 {
5113 	/* Turn off all host-specific interrupts */
5114 	dwc2_disable_host_interrupts(hsotg);
5115 
5116 	dwc2_hcd_free(hsotg);
5117 }
5118 
5119 /*
5120  * Initializes the HCD. This function allocates memory for and initializes the
5121  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5122  * USB bus with the core and calls the hc_driver->start() function. It returns
5123  * a negative error on failure.
5124  */
5125 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5126 {
5127 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5128 	struct resource *res;
5129 	struct usb_hcd *hcd;
5130 	struct dwc2_host_chan *channel;
5131 	u32 hcfg;
5132 	int i, num_channels;
5133 	int retval;
5134 
5135 	if (usb_disabled())
5136 		return -ENODEV;
5137 
5138 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5139 
5140 	retval = -ENOMEM;
5141 
5142 	hcfg = dwc2_readl(hsotg, HCFG);
5143 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5144 
5145 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5146 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5147 					 sizeof(*hsotg->frame_num_array),
5148 					 GFP_KERNEL);
5149 	if (!hsotg->frame_num_array)
5150 		goto error1;
5151 	hsotg->last_frame_num_array =
5152 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5153 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5154 	if (!hsotg->last_frame_num_array)
5155 		goto error1;
5156 #endif
5157 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5158 
5159 	/* Check if the bus driver or platform code has setup a dma_mask */
5160 	if (hsotg->params.host_dma &&
5161 	    !hsotg->dev->dma_mask) {
5162 		dev_warn(hsotg->dev,
5163 			 "dma_mask not set, disabling DMA\n");
5164 		hsotg->params.host_dma = false;
5165 		hsotg->params.dma_desc_enable = false;
5166 	}
5167 
5168 	/* Set device flags indicating whether the HCD supports DMA */
5169 	if (hsotg->params.host_dma) {
5170 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5171 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5172 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5173 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5174 	}
5175 
5176 	if (hsotg->params.change_speed_quirk) {
5177 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5178 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5179 	}
5180 
5181 	if (hsotg->params.host_dma)
5182 		dwc2_hc_driver.flags |= HCD_DMA;
5183 
5184 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5185 	if (!hcd)
5186 		goto error1;
5187 
5188 	hcd->has_tt = 1;
5189 
5190 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5191 	if (!res) {
5192 		retval = -EINVAL;
5193 		goto error2;
5194 	}
5195 	hcd->rsrc_start = res->start;
5196 	hcd->rsrc_len = resource_size(res);
5197 
5198 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5199 	hsotg->priv = hcd;
5200 
5201 	/*
5202 	 * Disable the global interrupt until all the interrupt handlers are
5203 	 * installed
5204 	 */
5205 	dwc2_disable_global_interrupts(hsotg);
5206 
5207 	/* Initialize the DWC_otg core, and select the Phy type */
5208 	retval = dwc2_core_init(hsotg, true);
5209 	if (retval)
5210 		goto error2;
5211 
5212 	/* Create new workqueue and init work */
5213 	retval = -ENOMEM;
5214 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5215 	if (!hsotg->wq_otg) {
5216 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5217 		goto error2;
5218 	}
5219 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5220 
5221 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5222 
5223 	/* Initialize the non-periodic schedule */
5224 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5225 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5226 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5227 
5228 	/* Initialize the periodic schedule */
5229 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5230 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5231 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5232 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5233 
5234 	INIT_LIST_HEAD(&hsotg->split_order);
5235 
5236 	/*
5237 	 * Create a host channel descriptor for each host channel implemented
5238 	 * in the controller. Initialize the channel descriptor array.
5239 	 */
5240 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5241 	num_channels = hsotg->params.host_channels;
5242 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5243 
5244 	for (i = 0; i < num_channels; i++) {
5245 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5246 		if (!channel)
5247 			goto error3;
5248 		channel->hc_num = i;
5249 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5250 		hsotg->hc_ptr_array[i] = channel;
5251 	}
5252 
5253 	/* Initialize work */
5254 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5255 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5256 	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5257 
5258 	/*
5259 	 * Allocate space for storing data on status transactions. Normally no
5260 	 * data is sent, but this space acts as a bit bucket. This must be
5261 	 * done after usb_add_hcd since that function allocates the DMA buffer
5262 	 * pool.
5263 	 */
5264 	if (hsotg->params.host_dma)
5265 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5266 					DWC2_HCD_STATUS_BUF_SIZE,
5267 					&hsotg->status_buf_dma, GFP_KERNEL);
5268 	else
5269 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5270 					  GFP_KERNEL);
5271 
5272 	if (!hsotg->status_buf)
5273 		goto error3;
5274 
5275 	/*
5276 	 * Create kmem caches to handle descriptor buffers in descriptor
5277 	 * DMA mode.
5278 	 * Alignment must be set to 512 bytes.
5279 	 */
5280 	if (hsotg->params.dma_desc_enable ||
5281 	    hsotg->params.dma_desc_fs_enable) {
5282 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5283 				sizeof(struct dwc2_dma_desc) *
5284 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5285 				NULL);
5286 		if (!hsotg->desc_gen_cache) {
5287 			dev_err(hsotg->dev,
5288 				"unable to create dwc2 generic desc cache\n");
5289 
5290 			/*
5291 			 * Disable descriptor dma mode since it will not be
5292 			 * usable.
5293 			 */
5294 			hsotg->params.dma_desc_enable = false;
5295 			hsotg->params.dma_desc_fs_enable = false;
5296 		}
5297 
5298 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5299 				sizeof(struct dwc2_dma_desc) *
5300 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5301 		if (!hsotg->desc_hsisoc_cache) {
5302 			dev_err(hsotg->dev,
5303 				"unable to create dwc2 hs isoc desc cache\n");
5304 
5305 			kmem_cache_destroy(hsotg->desc_gen_cache);
5306 
5307 			/*
5308 			 * Disable descriptor dma mode since it will not be
5309 			 * usable.
5310 			 */
5311 			hsotg->params.dma_desc_enable = false;
5312 			hsotg->params.dma_desc_fs_enable = false;
5313 		}
5314 	}
5315 
5316 	if (hsotg->params.host_dma) {
5317 		/*
5318 		 * Create kmem caches to handle non-aligned buffer
5319 		 * in Buffer DMA mode.
5320 		 */
5321 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5322 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5323 						SLAB_CACHE_DMA, NULL);
5324 		if (!hsotg->unaligned_cache)
5325 			dev_err(hsotg->dev,
5326 				"unable to create dwc2 unaligned cache\n");
5327 	}
5328 
5329 	hsotg->otg_port = 1;
5330 	hsotg->frame_list = NULL;
5331 	hsotg->frame_list_dma = 0;
5332 	hsotg->periodic_qh_count = 0;
5333 
5334 	/* Initiate lx_state to L3 disconnected state */
5335 	hsotg->lx_state = DWC2_L3;
5336 
5337 	hcd->self.otg_port = hsotg->otg_port;
5338 
5339 	/* Don't support SG list at this point */
5340 	hcd->self.sg_tablesize = 0;
5341 
5342 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5343 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5344 
5345 	/*
5346 	 * Finish generic HCD initialization and start the HCD. This function
5347 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5348 	 * IRQ line, and calls hcd_start method.
5349 	 */
5350 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5351 	if (retval < 0)
5352 		goto error4;
5353 
5354 	device_wakeup_enable(hcd->self.controller);
5355 
5356 	dwc2_hcd_dump_state(hsotg);
5357 
5358 	dwc2_enable_global_interrupts(hsotg);
5359 
5360 	return 0;
5361 
5362 error4:
5363 	kmem_cache_destroy(hsotg->unaligned_cache);
5364 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5365 	kmem_cache_destroy(hsotg->desc_gen_cache);
5366 error3:
5367 	dwc2_hcd_release(hsotg);
5368 error2:
5369 	usb_put_hcd(hcd);
5370 error1:
5371 
5372 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5373 	kfree(hsotg->last_frame_num_array);
5374 	kfree(hsotg->frame_num_array);
5375 #endif
5376 
5377 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5378 	return retval;
5379 }
5380 
5381 /*
5382  * Removes the HCD.
5383  * Frees memory and resources associated with the HCD and deregisters the bus.
5384  */
5385 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5386 {
5387 	struct usb_hcd *hcd;
5388 
5389 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5390 
5391 	hcd = dwc2_hsotg_to_hcd(hsotg);
5392 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5393 
5394 	if (!hcd) {
5395 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5396 			__func__);
5397 		return;
5398 	}
5399 
5400 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5401 		otg_set_host(hsotg->uphy->otg, NULL);
5402 
5403 	usb_remove_hcd(hcd);
5404 	hsotg->priv = NULL;
5405 
5406 	kmem_cache_destroy(hsotg->unaligned_cache);
5407 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5408 	kmem_cache_destroy(hsotg->desc_gen_cache);
5409 
5410 	dwc2_hcd_release(hsotg);
5411 	usb_put_hcd(hcd);
5412 
5413 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5414 	kfree(hsotg->last_frame_num_array);
5415 	kfree(hsotg->frame_num_array);
5416 #endif
5417 }
5418 
5419 /**
5420  * dwc2_backup_host_registers() - Backup controller host registers.
5421  * When suspending usb bus, registers needs to be backuped
5422  * if controller power is disabled once suspended.
5423  *
5424  * @hsotg: Programming view of the DWC_otg controller
5425  */
5426 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5427 {
5428 	struct dwc2_hregs_backup *hr;
5429 	int i;
5430 
5431 	dev_dbg(hsotg->dev, "%s\n", __func__);
5432 
5433 	/* Backup Host regs */
5434 	hr = &hsotg->hr_backup;
5435 	hr->hcfg = dwc2_readl(hsotg, HCFG);
5436 	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5437 	for (i = 0; i < hsotg->params.host_channels; ++i)
5438 		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5439 
5440 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5441 	hr->hfir = dwc2_readl(hsotg, HFIR);
5442 	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5443 	hr->valid = true;
5444 
5445 	return 0;
5446 }
5447 
5448 /**
5449  * dwc2_restore_host_registers() - Restore controller host registers.
5450  * When resuming usb bus, device registers needs to be restored
5451  * if controller power were disabled.
5452  *
5453  * @hsotg: Programming view of the DWC_otg controller
5454  */
5455 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5456 {
5457 	struct dwc2_hregs_backup *hr;
5458 	int i;
5459 
5460 	dev_dbg(hsotg->dev, "%s\n", __func__);
5461 
5462 	/* Restore host regs */
5463 	hr = &hsotg->hr_backup;
5464 	if (!hr->valid) {
5465 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5466 			__func__);
5467 		return -EINVAL;
5468 	}
5469 	hr->valid = false;
5470 
5471 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5472 	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5473 
5474 	for (i = 0; i < hsotg->params.host_channels; ++i)
5475 		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5476 
5477 	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5478 	dwc2_writel(hsotg, hr->hfir, HFIR);
5479 	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5480 	hsotg->frame_number = 0;
5481 
5482 	return 0;
5483 }
5484 
5485 /**
5486  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5487  *
5488  * @hsotg: Programming view of the DWC_otg controller
5489  */
5490 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5491 {
5492 	unsigned long flags;
5493 	int ret = 0;
5494 	u32 hprt0;
5495 	u32 pcgcctl;
5496 	u32 gusbcfg;
5497 	u32 gpwrdn;
5498 
5499 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5500 	ret = dwc2_backup_global_registers(hsotg);
5501 	if (ret) {
5502 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5503 			__func__);
5504 		return ret;
5505 	}
5506 	ret = dwc2_backup_host_registers(hsotg);
5507 	if (ret) {
5508 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5509 			__func__);
5510 		return ret;
5511 	}
5512 
5513 	/* Enter USB Suspend Mode */
5514 	hprt0 = dwc2_readl(hsotg, HPRT0);
5515 	hprt0 |= HPRT0_SUSP;
5516 	hprt0 &= ~HPRT0_ENA;
5517 	dwc2_writel(hsotg, hprt0, HPRT0);
5518 
5519 	/* Wait for the HPRT0.PrtSusp register field to be set */
5520 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5521 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5522 
5523 	/*
5524 	 * We need to disable interrupts to prevent servicing of any IRQ
5525 	 * during going to hibernation
5526 	 */
5527 	spin_lock_irqsave(&hsotg->lock, flags);
5528 	hsotg->lx_state = DWC2_L2;
5529 
5530 	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5531 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5532 		/* ULPI interface */
5533 		/* Suspend the Phy Clock */
5534 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5535 		pcgcctl |= PCGCTL_STOPPCLK;
5536 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5537 		udelay(10);
5538 
5539 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5540 		gpwrdn |= GPWRDN_PMUACTV;
5541 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5542 		udelay(10);
5543 	} else {
5544 		/* UTMI+ Interface */
5545 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5546 		gpwrdn |= GPWRDN_PMUACTV;
5547 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5548 		udelay(10);
5549 
5550 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5551 		pcgcctl |= PCGCTL_STOPPCLK;
5552 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5553 		udelay(10);
5554 	}
5555 
5556 	/* Enable interrupts from wake up logic */
5557 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5558 	gpwrdn |= GPWRDN_PMUINTSEL;
5559 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5560 	udelay(10);
5561 
5562 	/* Unmask host mode interrupts in GPWRDN */
5563 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5564 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5565 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5566 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5567 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5568 	udelay(10);
5569 
5570 	/* Enable Power Down Clamp */
5571 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5572 	gpwrdn |= GPWRDN_PWRDNCLMP;
5573 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5574 	udelay(10);
5575 
5576 	/* Switch off VDD */
5577 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5578 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5579 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5580 
5581 	hsotg->hibernated = 1;
5582 	hsotg->bus_suspended = 1;
5583 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5584 	spin_unlock_irqrestore(&hsotg->lock, flags);
5585 	return ret;
5586 }
5587 
5588 /*
5589  * dwc2_host_exit_hibernation()
5590  *
5591  * @hsotg: Programming view of the DWC_otg controller
5592  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5593  * @param reset: indicates whether resume is initiated by Reset.
5594  *
5595  * Return: non-zero if failed to enter to hibernation.
5596  *
5597  * This function is for exiting from Host mode hibernation by
5598  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5599  */
5600 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5601 			       int reset)
5602 {
5603 	u32 gpwrdn;
5604 	u32 hprt0;
5605 	int ret = 0;
5606 	struct dwc2_gregs_backup *gr;
5607 	struct dwc2_hregs_backup *hr;
5608 
5609 	gr = &hsotg->gr_backup;
5610 	hr = &hsotg->hr_backup;
5611 
5612 	dev_dbg(hsotg->dev,
5613 		"%s: called with rem_wakeup = %d reset = %d\n",
5614 		__func__, rem_wakeup, reset);
5615 
5616 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5617 	hsotg->hibernated = 0;
5618 
5619 	/*
5620 	 * This step is not described in functional spec but if not wait for
5621 	 * this delay, mismatch interrupts occurred because just after restore
5622 	 * core is in Device mode(gintsts.curmode == 0)
5623 	 */
5624 	mdelay(100);
5625 
5626 	/* Clear all pending interupts */
5627 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5628 
5629 	/* De-assert Restore */
5630 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5631 	gpwrdn &= ~GPWRDN_RESTORE;
5632 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5633 	udelay(10);
5634 
5635 	/* Restore GUSBCFG, HCFG */
5636 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5637 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5638 
5639 	/* De-assert Wakeup Logic */
5640 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5641 	gpwrdn &= ~GPWRDN_PMUACTV;
5642 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5643 	udelay(10);
5644 
5645 	hprt0 = hr->hprt0;
5646 	hprt0 |= HPRT0_PWR;
5647 	hprt0 &= ~HPRT0_ENA;
5648 	hprt0 &= ~HPRT0_SUSP;
5649 	dwc2_writel(hsotg, hprt0, HPRT0);
5650 
5651 	hprt0 = hr->hprt0;
5652 	hprt0 |= HPRT0_PWR;
5653 	hprt0 &= ~HPRT0_ENA;
5654 	hprt0 &= ~HPRT0_SUSP;
5655 
5656 	if (reset) {
5657 		hprt0 |= HPRT0_RST;
5658 		dwc2_writel(hsotg, hprt0, HPRT0);
5659 
5660 		/* Wait for Resume time and then program HPRT again */
5661 		mdelay(60);
5662 		hprt0 &= ~HPRT0_RST;
5663 		dwc2_writel(hsotg, hprt0, HPRT0);
5664 	} else {
5665 		hprt0 |= HPRT0_RES;
5666 		dwc2_writel(hsotg, hprt0, HPRT0);
5667 
5668 		/* Wait for Resume time and then program HPRT again */
5669 		mdelay(100);
5670 		hprt0 &= ~HPRT0_RES;
5671 		dwc2_writel(hsotg, hprt0, HPRT0);
5672 	}
5673 	/* Clear all interrupt status */
5674 	hprt0 = dwc2_readl(hsotg, HPRT0);
5675 	hprt0 |= HPRT0_CONNDET;
5676 	hprt0 |= HPRT0_ENACHG;
5677 	hprt0 &= ~HPRT0_ENA;
5678 	dwc2_writel(hsotg, hprt0, HPRT0);
5679 
5680 	hprt0 = dwc2_readl(hsotg, HPRT0);
5681 
5682 	/* Clear all pending interupts */
5683 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5684 
5685 	/* Restore global registers */
5686 	ret = dwc2_restore_global_registers(hsotg);
5687 	if (ret) {
5688 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5689 			__func__);
5690 		return ret;
5691 	}
5692 
5693 	/* Restore host registers */
5694 	ret = dwc2_restore_host_registers(hsotg);
5695 	if (ret) {
5696 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5697 			__func__);
5698 		return ret;
5699 	}
5700 
5701 	if (rem_wakeup) {
5702 		dwc2_hcd_rem_wakeup(hsotg);
5703 		/*
5704 		 * Change "port_connect_status_change" flag to re-enumerate,
5705 		 * because after exit from hibernation port connection status
5706 		 * is not detected.
5707 		 */
5708 		hsotg->flags.b.port_connect_status_change = 1;
5709 	}
5710 
5711 	hsotg->hibernated = 0;
5712 	hsotg->bus_suspended = 0;
5713 	hsotg->lx_state = DWC2_L0;
5714 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5715 	return ret;
5716 }
5717 
5718 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5719 {
5720 	struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5721 
5722 	/* If the controller isn't allowed to wakeup then we can power off. */
5723 	if (!device_may_wakeup(dwc2->dev))
5724 		return true;
5725 
5726 	/*
5727 	 * We don't want to power off the PHY if something under the
5728 	 * root hub has wakeup enabled.
5729 	 */
5730 	if (usb_wakeup_enabled_descendants(root_hub))
5731 		return false;
5732 
5733 	/* No reason to keep the PHY powered, so allow poweroff */
5734 	return true;
5735 }
5736 
5737 /**
5738  * dwc2_host_enter_partial_power_down() - Put controller in partial
5739  * power down.
5740  *
5741  * @hsotg: Programming view of the DWC_otg controller
5742  *
5743  * Return: non-zero if failed to enter host partial power down.
5744  *
5745  * This function is for entering Host mode partial power down.
5746  */
5747 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5748 {
5749 	u32 pcgcctl;
5750 	u32 hprt0;
5751 	int ret = 0;
5752 
5753 	dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5754 
5755 	/* Put this port in suspend mode. */
5756 	hprt0 = dwc2_read_hprt0(hsotg);
5757 	hprt0 |= HPRT0_SUSP;
5758 	dwc2_writel(hsotg, hprt0, HPRT0);
5759 	udelay(5);
5760 
5761 	/* Wait for the HPRT0.PrtSusp register field to be set */
5762 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5763 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5764 
5765 	/* Backup all registers */
5766 	ret = dwc2_backup_global_registers(hsotg);
5767 	if (ret) {
5768 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5769 			__func__);
5770 		return ret;
5771 	}
5772 
5773 	ret = dwc2_backup_host_registers(hsotg);
5774 	if (ret) {
5775 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5776 			__func__);
5777 		return ret;
5778 	}
5779 
5780 	/*
5781 	 * Clear any pending interrupts since dwc2 will not be able to
5782 	 * clear them after entering partial_power_down.
5783 	 */
5784 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5785 
5786 	/* Put the controller in low power state */
5787 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5788 
5789 	pcgcctl |= PCGCTL_PWRCLMP;
5790 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5791 	udelay(5);
5792 
5793 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5794 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5795 	udelay(5);
5796 
5797 	pcgcctl |= PCGCTL_STOPPCLK;
5798 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5799 
5800 	/* Set in_ppd flag to 1 as here core enters suspend. */
5801 	hsotg->in_ppd = 1;
5802 	hsotg->lx_state = DWC2_L2;
5803 	hsotg->bus_suspended = true;
5804 
5805 	dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5806 
5807 	return ret;
5808 }
5809 
5810 /*
5811  * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5812  * power down.
5813  *
5814  * @hsotg: Programming view of the DWC_otg controller
5815  * @rem_wakeup: indicates whether resume is initiated by Reset.
5816  * @restore: indicates whether need to restore the registers or not.
5817  *
5818  * Return: non-zero if failed to exit host partial power down.
5819  *
5820  * This function is for exiting from Host mode partial power down.
5821  */
5822 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5823 				      int rem_wakeup, bool restore)
5824 {
5825 	u32 pcgcctl;
5826 	int ret = 0;
5827 	u32 hprt0;
5828 
5829 	dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5830 
5831 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5832 	pcgcctl &= ~PCGCTL_STOPPCLK;
5833 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5834 	udelay(5);
5835 
5836 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5837 	pcgcctl &= ~PCGCTL_PWRCLMP;
5838 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5839 	udelay(5);
5840 
5841 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5842 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5843 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5844 
5845 	udelay(100);
5846 	if (restore) {
5847 		ret = dwc2_restore_global_registers(hsotg);
5848 		if (ret) {
5849 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5850 				__func__);
5851 			return ret;
5852 		}
5853 
5854 		ret = dwc2_restore_host_registers(hsotg);
5855 		if (ret) {
5856 			dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5857 				__func__);
5858 			return ret;
5859 		}
5860 	}
5861 
5862 	/* Drive resume signaling and exit suspend mode on the port. */
5863 	hprt0 = dwc2_read_hprt0(hsotg);
5864 	hprt0 |= HPRT0_RES;
5865 	hprt0 &= ~HPRT0_SUSP;
5866 	dwc2_writel(hsotg, hprt0, HPRT0);
5867 	udelay(5);
5868 
5869 	if (!rem_wakeup) {
5870 		/* Stop driveing resume signaling on the port. */
5871 		hprt0 = dwc2_read_hprt0(hsotg);
5872 		hprt0 &= ~HPRT0_RES;
5873 		dwc2_writel(hsotg, hprt0, HPRT0);
5874 
5875 		hsotg->bus_suspended = false;
5876 	} else {
5877 		/* Turn on the port power bit. */
5878 		hprt0 = dwc2_read_hprt0(hsotg);
5879 		hprt0 |= HPRT0_PWR;
5880 		dwc2_writel(hsotg, hprt0, HPRT0);
5881 
5882 		/* Connect hcd. */
5883 		dwc2_hcd_connect(hsotg);
5884 
5885 		mod_timer(&hsotg->wkp_timer,
5886 			  jiffies + msecs_to_jiffies(71));
5887 	}
5888 
5889 	/* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5890 	hsotg->in_ppd = 0;
5891 	hsotg->lx_state = DWC2_L0;
5892 
5893 	dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5894 	return ret;
5895 }
5896 
5897 /**
5898  * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5899  *
5900  * @hsotg: Programming view of the DWC_otg controller
5901  *
5902  * This function is for entering Host mode clock gating.
5903  */
5904 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5905 {
5906 	u32 hprt0;
5907 	u32 pcgctl;
5908 
5909 	dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5910 
5911 	/* Put this port in suspend mode. */
5912 	hprt0 = dwc2_read_hprt0(hsotg);
5913 	hprt0 |= HPRT0_SUSP;
5914 	dwc2_writel(hsotg, hprt0, HPRT0);
5915 
5916 	/* Set the Phy Clock bit as suspend is received. */
5917 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5918 	pcgctl |= PCGCTL_STOPPCLK;
5919 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5920 	udelay(5);
5921 
5922 	/* Set the Gate hclk as suspend is received. */
5923 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5924 	pcgctl |= PCGCTL_GATEHCLK;
5925 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5926 	udelay(5);
5927 
5928 	hsotg->bus_suspended = true;
5929 	hsotg->lx_state = DWC2_L2;
5930 }
5931 
5932 /**
5933  * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5934  *
5935  * @hsotg: Programming view of the DWC_otg controller
5936  * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5937  *
5938  * This function is for exiting Host mode clock gating.
5939  */
5940 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5941 {
5942 	u32 hprt0;
5943 	u32 pcgctl;
5944 
5945 	dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5946 
5947 	/* Clear the Gate hclk. */
5948 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5949 	pcgctl &= ~PCGCTL_GATEHCLK;
5950 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5951 	udelay(5);
5952 
5953 	/* Phy Clock bit. */
5954 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5955 	pcgctl &= ~PCGCTL_STOPPCLK;
5956 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5957 	udelay(5);
5958 
5959 	/* Drive resume signaling and exit suspend mode on the port. */
5960 	hprt0 = dwc2_read_hprt0(hsotg);
5961 	hprt0 |= HPRT0_RES;
5962 	hprt0 &= ~HPRT0_SUSP;
5963 	dwc2_writel(hsotg, hprt0, HPRT0);
5964 	udelay(5);
5965 
5966 	if (!rem_wakeup) {
5967 		/* In case of port resume need to wait for 40 ms */
5968 		msleep(USB_RESUME_TIMEOUT);
5969 
5970 		/* Stop driveing resume signaling on the port. */
5971 		hprt0 = dwc2_read_hprt0(hsotg);
5972 		hprt0 &= ~HPRT0_RES;
5973 		dwc2_writel(hsotg, hprt0, HPRT0);
5974 
5975 		hsotg->bus_suspended = false;
5976 		hsotg->lx_state = DWC2_L0;
5977 	} else {
5978 		mod_timer(&hsotg->wkp_timer,
5979 			  jiffies + msecs_to_jiffies(71));
5980 	}
5981 }
5982