1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * hcd.c - DesignWare HS OTG Controller host-mode routines 4 * 5 * Copyright (C) 2004-2013 Synopsys, Inc. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The names of the above-listed copyright holders may not be used 17 * to endorse or promote products derived from this software without 18 * specific prior written permission. 19 * 20 * ALTERNATIVELY, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any 23 * later version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * This file contains the core HCD code, and implements the Linux hc_driver 40 * API 41 */ 42 #include <linux/kernel.h> 43 #include <linux/module.h> 44 #include <linux/spinlock.h> 45 #include <linux/interrupt.h> 46 #include <linux/platform_device.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/delay.h> 49 #include <linux/io.h> 50 #include <linux/slab.h> 51 #include <linux/usb.h> 52 53 #include <linux/usb/hcd.h> 54 #include <linux/usb/ch11.h> 55 56 #include "core.h" 57 #include "hcd.h" 58 59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg); 60 61 /* 62 * ========================================================================= 63 * Host Core Layer Functions 64 * ========================================================================= 65 */ 66 67 /** 68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts, 69 * used in both device and host modes 70 * 71 * @hsotg: Programming view of the DWC_otg controller 72 */ 73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg) 74 { 75 u32 intmsk; 76 77 /* Clear any pending OTG Interrupts */ 78 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 79 80 /* Clear any pending interrupts */ 81 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 82 83 /* Enable the interrupts in the GINTMSK */ 84 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT; 85 86 if (!hsotg->params.host_dma) 87 intmsk |= GINTSTS_RXFLVL; 88 if (!hsotg->params.external_id_pin_ctl) 89 intmsk |= GINTSTS_CONIDSTSCHNG; 90 91 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP | 92 GINTSTS_SESSREQINT; 93 94 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm) 95 intmsk |= GINTSTS_LPMTRANRCVD; 96 97 dwc2_writel(hsotg, intmsk, GINTMSK); 98 } 99 100 /* 101 * Initializes the FSLSPClkSel field of the HCFG register depending on the 102 * PHY type 103 */ 104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg) 105 { 106 u32 hcfg, val; 107 108 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI && 109 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED && 110 hsotg->params.ulpi_fs_ls) || 111 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) { 112 /* Full speed PHY */ 113 val = HCFG_FSLSPCLKSEL_48_MHZ; 114 } else { 115 /* High speed PHY running at full speed or high speed */ 116 val = HCFG_FSLSPCLKSEL_30_60_MHZ; 117 } 118 119 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val); 120 hcfg = dwc2_readl(hsotg, HCFG); 121 hcfg &= ~HCFG_FSLSPCLKSEL_MASK; 122 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT; 123 dwc2_writel(hsotg, hcfg, HCFG); 124 } 125 126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 127 { 128 u32 usbcfg, ggpio, i2cctl; 129 int retval = 0; 130 131 /* 132 * core_init() is now called on every switch so only call the 133 * following for the first time through 134 */ 135 if (select_phy) { 136 dev_dbg(hsotg->dev, "FS PHY selected\n"); 137 138 usbcfg = dwc2_readl(hsotg, GUSBCFG); 139 if (!(usbcfg & GUSBCFG_PHYSEL)) { 140 usbcfg |= GUSBCFG_PHYSEL; 141 dwc2_writel(hsotg, usbcfg, GUSBCFG); 142 143 /* Reset after a PHY select */ 144 retval = dwc2_core_reset(hsotg, false); 145 146 if (retval) { 147 dev_err(hsotg->dev, 148 "%s: Reset failed, aborting", __func__); 149 return retval; 150 } 151 } 152 153 if (hsotg->params.activate_stm_fs_transceiver) { 154 ggpio = dwc2_readl(hsotg, GGPIO); 155 if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) { 156 dev_dbg(hsotg->dev, "Activating transceiver\n"); 157 /* 158 * STM32F4x9 uses the GGPIO register as general 159 * core configuration register. 160 */ 161 ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN; 162 dwc2_writel(hsotg, ggpio, GGPIO); 163 } 164 } 165 } 166 167 /* 168 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also 169 * do this on HNP Dev/Host mode switches (done in dev_init and 170 * host_init). 171 */ 172 if (dwc2_is_host_mode(hsotg)) 173 dwc2_init_fs_ls_pclk_sel(hsotg); 174 175 if (hsotg->params.i2c_enable) { 176 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n"); 177 178 /* Program GUSBCFG.OtgUtmiFsSel to I2C */ 179 usbcfg = dwc2_readl(hsotg, GUSBCFG); 180 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL; 181 dwc2_writel(hsotg, usbcfg, GUSBCFG); 182 183 /* Program GI2CCTL.I2CEn */ 184 i2cctl = dwc2_readl(hsotg, GI2CCTL); 185 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK; 186 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT; 187 i2cctl &= ~GI2CCTL_I2CEN; 188 dwc2_writel(hsotg, i2cctl, GI2CCTL); 189 i2cctl |= GI2CCTL_I2CEN; 190 dwc2_writel(hsotg, i2cctl, GI2CCTL); 191 } 192 193 return retval; 194 } 195 196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 197 { 198 u32 usbcfg, usbcfg_old; 199 int retval = 0; 200 201 if (!select_phy) 202 return 0; 203 204 usbcfg = dwc2_readl(hsotg, GUSBCFG); 205 usbcfg_old = usbcfg; 206 207 /* 208 * HS PHY parameters. These parameters are preserved during soft reset 209 * so only program the first time. Do a soft reset immediately after 210 * setting phyif. 211 */ 212 switch (hsotg->params.phy_type) { 213 case DWC2_PHY_TYPE_PARAM_ULPI: 214 /* ULPI interface */ 215 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n"); 216 usbcfg |= GUSBCFG_ULPI_UTMI_SEL; 217 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL); 218 if (hsotg->params.phy_ulpi_ddr) 219 usbcfg |= GUSBCFG_DDRSEL; 220 221 /* Set external VBUS indicator as needed. */ 222 if (hsotg->params.oc_disable) 223 usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND | 224 GUSBCFG_INDICATORPASSTHROUGH); 225 break; 226 case DWC2_PHY_TYPE_PARAM_UTMI: 227 /* UTMI+ interface */ 228 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n"); 229 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16); 230 if (hsotg->params.phy_utmi_width == 16) 231 usbcfg |= GUSBCFG_PHYIF16; 232 break; 233 default: 234 dev_err(hsotg->dev, "FS PHY selected at HS!\n"); 235 break; 236 } 237 238 if (usbcfg != usbcfg_old) { 239 dwc2_writel(hsotg, usbcfg, GUSBCFG); 240 241 /* Reset after setting the PHY parameters */ 242 retval = dwc2_core_reset(hsotg, false); 243 if (retval) { 244 dev_err(hsotg->dev, 245 "%s: Reset failed, aborting", __func__); 246 return retval; 247 } 248 } 249 250 return retval; 251 } 252 253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 254 { 255 u32 usbcfg; 256 int retval = 0; 257 258 if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 259 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) && 260 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) { 261 /* If FS/LS mode with FS/LS PHY */ 262 retval = dwc2_fs_phy_init(hsotg, select_phy); 263 if (retval) 264 return retval; 265 } else { 266 /* High speed PHY */ 267 retval = dwc2_hs_phy_init(hsotg, select_phy); 268 if (retval) 269 return retval; 270 } 271 272 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI && 273 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED && 274 hsotg->params.ulpi_fs_ls) { 275 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n"); 276 usbcfg = dwc2_readl(hsotg, GUSBCFG); 277 usbcfg |= GUSBCFG_ULPI_FS_LS; 278 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M; 279 dwc2_writel(hsotg, usbcfg, GUSBCFG); 280 } else { 281 usbcfg = dwc2_readl(hsotg, GUSBCFG); 282 usbcfg &= ~GUSBCFG_ULPI_FS_LS; 283 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M; 284 dwc2_writel(hsotg, usbcfg, GUSBCFG); 285 } 286 287 return retval; 288 } 289 290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg) 291 { 292 u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG); 293 294 switch (hsotg->hw_params.arch) { 295 case GHWCFG2_EXT_DMA_ARCH: 296 dev_err(hsotg->dev, "External DMA Mode not supported\n"); 297 return -EINVAL; 298 299 case GHWCFG2_INT_DMA_ARCH: 300 dev_dbg(hsotg->dev, "Internal DMA Mode\n"); 301 if (hsotg->params.ahbcfg != -1) { 302 ahbcfg &= GAHBCFG_CTRL_MASK; 303 ahbcfg |= hsotg->params.ahbcfg & 304 ~GAHBCFG_CTRL_MASK; 305 } 306 break; 307 308 case GHWCFG2_SLAVE_ONLY_ARCH: 309 default: 310 dev_dbg(hsotg->dev, "Slave Only Mode\n"); 311 break; 312 } 313 314 if (hsotg->params.host_dma) 315 ahbcfg |= GAHBCFG_DMA_EN; 316 else 317 hsotg->params.dma_desc_enable = false; 318 319 dwc2_writel(hsotg, ahbcfg, GAHBCFG); 320 321 return 0; 322 } 323 324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg) 325 { 326 u32 usbcfg; 327 328 usbcfg = dwc2_readl(hsotg, GUSBCFG); 329 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP); 330 331 switch (hsotg->hw_params.op_mode) { 332 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE: 333 if (hsotg->params.otg_cap == 334 DWC2_CAP_PARAM_HNP_SRP_CAPABLE) 335 usbcfg |= GUSBCFG_HNPCAP; 336 if (hsotg->params.otg_cap != 337 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE) 338 usbcfg |= GUSBCFG_SRPCAP; 339 break; 340 341 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE: 342 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE: 343 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST: 344 if (hsotg->params.otg_cap != 345 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE) 346 usbcfg |= GUSBCFG_SRPCAP; 347 break; 348 349 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE: 350 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE: 351 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST: 352 default: 353 break; 354 } 355 356 dwc2_writel(hsotg, usbcfg, GUSBCFG); 357 } 358 359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg) 360 { 361 if (hsotg->vbus_supply) 362 return regulator_enable(hsotg->vbus_supply); 363 364 return 0; 365 } 366 367 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg) 368 { 369 if (hsotg->vbus_supply) 370 return regulator_disable(hsotg->vbus_supply); 371 372 return 0; 373 } 374 375 /** 376 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts 377 * 378 * @hsotg: Programming view of DWC_otg controller 379 */ 380 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg) 381 { 382 u32 intmsk; 383 384 dev_dbg(hsotg->dev, "%s()\n", __func__); 385 386 /* Disable all interrupts */ 387 dwc2_writel(hsotg, 0, GINTMSK); 388 dwc2_writel(hsotg, 0, HAINTMSK); 389 390 /* Enable the common interrupts */ 391 dwc2_enable_common_interrupts(hsotg); 392 393 /* Enable host mode interrupts without disturbing common interrupts */ 394 intmsk = dwc2_readl(hsotg, GINTMSK); 395 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT; 396 dwc2_writel(hsotg, intmsk, GINTMSK); 397 } 398 399 /** 400 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts 401 * 402 * @hsotg: Programming view of DWC_otg controller 403 */ 404 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg) 405 { 406 u32 intmsk = dwc2_readl(hsotg, GINTMSK); 407 408 /* Disable host mode interrupts without disturbing common interrupts */ 409 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT | 410 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT); 411 dwc2_writel(hsotg, intmsk, GINTMSK); 412 } 413 414 /* 415 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size 416 * For system that have a total fifo depth that is smaller than the default 417 * RX + TX fifo size. 418 * 419 * @hsotg: Programming view of DWC_otg controller 420 */ 421 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg) 422 { 423 struct dwc2_core_params *params = &hsotg->params; 424 struct dwc2_hw_params *hw = &hsotg->hw_params; 425 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size; 426 427 total_fifo_size = hw->total_fifo_size; 428 rxfsiz = params->host_rx_fifo_size; 429 nptxfsiz = params->host_nperio_tx_fifo_size; 430 ptxfsiz = params->host_perio_tx_fifo_size; 431 432 /* 433 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth 434 * allocation with support for high bandwidth endpoints. Synopsys 435 * defines MPS(Max Packet size) for a periodic EP=1024, and for 436 * non-periodic as 512. 437 */ 438 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) { 439 /* 440 * For Buffer DMA mode/Scatter Gather DMA mode 441 * 2 * ((Largest Packet size / 4) + 1 + 1) + n 442 * with n = number of host channel. 443 * 2 * ((1024/4) + 2) = 516 444 */ 445 rxfsiz = 516 + hw->host_channels; 446 447 /* 448 * min non-periodic tx fifo depth 449 * 2 * (largest non-periodic USB packet used / 4) 450 * 2 * (512/4) = 256 451 */ 452 nptxfsiz = 256; 453 454 /* 455 * min periodic tx fifo depth 456 * (largest packet size*MC)/4 457 * (1024 * 3)/4 = 768 458 */ 459 ptxfsiz = 768; 460 461 params->host_rx_fifo_size = rxfsiz; 462 params->host_nperio_tx_fifo_size = nptxfsiz; 463 params->host_perio_tx_fifo_size = ptxfsiz; 464 } 465 466 /* 467 * If the summation of RX, NPTX and PTX fifo sizes is still 468 * bigger than the total_fifo_size, then we have a problem. 469 * 470 * We won't be able to allocate as many endpoints. Right now, 471 * we're just printing an error message, but ideally this FIFO 472 * allocation algorithm would be improved in the future. 473 * 474 * FIXME improve this FIFO allocation algorithm. 475 */ 476 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz))) 477 dev_err(hsotg->dev, "invalid fifo sizes\n"); 478 } 479 480 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg) 481 { 482 struct dwc2_core_params *params = &hsotg->params; 483 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz; 484 485 if (!params->enable_dynamic_fifo) 486 return; 487 488 dwc2_calculate_dynamic_fifo(hsotg); 489 490 /* Rx FIFO */ 491 grxfsiz = dwc2_readl(hsotg, GRXFSIZ); 492 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz); 493 grxfsiz &= ~GRXFSIZ_DEPTH_MASK; 494 grxfsiz |= params->host_rx_fifo_size << 495 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK; 496 dwc2_writel(hsotg, grxfsiz, GRXFSIZ); 497 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", 498 dwc2_readl(hsotg, GRXFSIZ)); 499 500 /* Non-periodic Tx FIFO */ 501 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n", 502 dwc2_readl(hsotg, GNPTXFSIZ)); 503 nptxfsiz = params->host_nperio_tx_fifo_size << 504 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; 505 nptxfsiz |= params->host_rx_fifo_size << 506 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; 507 dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ); 508 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n", 509 dwc2_readl(hsotg, GNPTXFSIZ)); 510 511 /* Periodic Tx FIFO */ 512 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n", 513 dwc2_readl(hsotg, HPTXFSIZ)); 514 hptxfsiz = params->host_perio_tx_fifo_size << 515 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; 516 hptxfsiz |= (params->host_rx_fifo_size + 517 params->host_nperio_tx_fifo_size) << 518 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; 519 dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ); 520 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n", 521 dwc2_readl(hsotg, HPTXFSIZ)); 522 523 if (hsotg->params.en_multiple_tx_fifo && 524 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) { 525 /* 526 * This feature was implemented in 2.91a version 527 * Global DFIFOCFG calculation for Host mode - 528 * include RxFIFO, NPTXFIFO and HPTXFIFO 529 */ 530 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG); 531 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK; 532 dfifocfg |= (params->host_rx_fifo_size + 533 params->host_nperio_tx_fifo_size + 534 params->host_perio_tx_fifo_size) << 535 GDFIFOCFG_EPINFOBASE_SHIFT & 536 GDFIFOCFG_EPINFOBASE_MASK; 537 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG); 538 } 539 } 540 541 /** 542 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for 543 * the HFIR register according to PHY type and speed 544 * 545 * @hsotg: Programming view of DWC_otg controller 546 * 547 * NOTE: The caller can modify the value of the HFIR register only after the 548 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort) 549 * has been set 550 */ 551 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg) 552 { 553 u32 usbcfg; 554 u32 hprt0; 555 int clock = 60; /* default value */ 556 557 usbcfg = dwc2_readl(hsotg, GUSBCFG); 558 hprt0 = dwc2_readl(hsotg, HPRT0); 559 560 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) && 561 !(usbcfg & GUSBCFG_PHYIF16)) 562 clock = 60; 563 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type == 564 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI) 565 clock = 48; 566 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 567 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) 568 clock = 30; 569 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 570 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16)) 571 clock = 60; 572 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 573 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) 574 clock = 48; 575 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) && 576 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI) 577 clock = 48; 578 if ((usbcfg & GUSBCFG_PHYSEL) && 579 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) 580 clock = 48; 581 582 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED) 583 /* High speed case */ 584 return 125 * clock - 1; 585 586 /* FS/LS case */ 587 return 1000 * clock - 1; 588 } 589 590 /** 591 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination 592 * buffer 593 * 594 * @hsotg: Programming view of DWC_otg controller 595 * @dest: Destination buffer for the packet 596 * @bytes: Number of bytes to copy to the destination 597 */ 598 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes) 599 { 600 u32 *data_buf = (u32 *)dest; 601 int word_count = (bytes + 3) / 4; 602 int i; 603 604 /* 605 * Todo: Account for the case where dest is not dword aligned. This 606 * requires reading data from the FIFO into a u32 temp buffer, then 607 * moving it into the data buffer. 608 */ 609 610 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes); 611 612 for (i = 0; i < word_count; i++, data_buf++) 613 *data_buf = dwc2_readl(hsotg, HCFIFO(0)); 614 } 615 616 /** 617 * dwc2_dump_channel_info() - Prints the state of a host channel 618 * 619 * @hsotg: Programming view of DWC_otg controller 620 * @chan: Pointer to the channel to dump 621 * 622 * Must be called with interrupt disabled and spinlock held 623 * 624 * NOTE: This function will be removed once the peripheral controller code 625 * is integrated and the driver is stable 626 */ 627 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg, 628 struct dwc2_host_chan *chan) 629 { 630 #ifdef VERBOSE_DEBUG 631 int num_channels = hsotg->params.host_channels; 632 struct dwc2_qh *qh; 633 u32 hcchar; 634 u32 hcsplt; 635 u32 hctsiz; 636 u32 hc_dma; 637 int i; 638 639 if (!chan) 640 return; 641 642 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); 643 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num)); 644 hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num)); 645 hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num)); 646 647 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan); 648 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n", 649 hcchar, hcsplt); 650 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n", 651 hctsiz, hc_dma); 652 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", 653 chan->dev_addr, chan->ep_num, chan->ep_is_in); 654 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); 655 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); 656 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start); 657 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started); 658 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); 659 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); 660 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", 661 (unsigned long)chan->xfer_dma); 662 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); 663 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); 664 dev_dbg(hsotg->dev, " NP inactive sched:\n"); 665 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive, 666 qh_list_entry) 667 dev_dbg(hsotg->dev, " %p\n", qh); 668 dev_dbg(hsotg->dev, " NP waiting sched:\n"); 669 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting, 670 qh_list_entry) 671 dev_dbg(hsotg->dev, " %p\n", qh); 672 dev_dbg(hsotg->dev, " NP active sched:\n"); 673 list_for_each_entry(qh, &hsotg->non_periodic_sched_active, 674 qh_list_entry) 675 dev_dbg(hsotg->dev, " %p\n", qh); 676 dev_dbg(hsotg->dev, " Channels:\n"); 677 for (i = 0; i < num_channels; i++) { 678 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; 679 680 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan); 681 } 682 #endif /* VERBOSE_DEBUG */ 683 } 684 685 static int _dwc2_hcd_start(struct usb_hcd *hcd); 686 687 static void dwc2_host_start(struct dwc2_hsotg *hsotg) 688 { 689 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 690 691 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg); 692 _dwc2_hcd_start(hcd); 693 } 694 695 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg) 696 { 697 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 698 699 hcd->self.is_b_host = 0; 700 } 701 702 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, 703 int *hub_addr, int *hub_port) 704 { 705 struct urb *urb = context; 706 707 if (urb->dev->tt) 708 *hub_addr = urb->dev->tt->hub->devnum; 709 else 710 *hub_addr = 0; 711 *hub_port = urb->dev->ttport; 712 } 713 714 /* 715 * ========================================================================= 716 * Low Level Host Channel Access Functions 717 * ========================================================================= 718 */ 719 720 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg, 721 struct dwc2_host_chan *chan) 722 { 723 u32 hcintmsk = HCINTMSK_CHHLTD; 724 725 switch (chan->ep_type) { 726 case USB_ENDPOINT_XFER_CONTROL: 727 case USB_ENDPOINT_XFER_BULK: 728 dev_vdbg(hsotg->dev, "control/bulk\n"); 729 hcintmsk |= HCINTMSK_XFERCOMPL; 730 hcintmsk |= HCINTMSK_STALL; 731 hcintmsk |= HCINTMSK_XACTERR; 732 hcintmsk |= HCINTMSK_DATATGLERR; 733 if (chan->ep_is_in) { 734 hcintmsk |= HCINTMSK_BBLERR; 735 } else { 736 hcintmsk |= HCINTMSK_NAK; 737 hcintmsk |= HCINTMSK_NYET; 738 if (chan->do_ping) 739 hcintmsk |= HCINTMSK_ACK; 740 } 741 742 if (chan->do_split) { 743 hcintmsk |= HCINTMSK_NAK; 744 if (chan->complete_split) 745 hcintmsk |= HCINTMSK_NYET; 746 else 747 hcintmsk |= HCINTMSK_ACK; 748 } 749 750 if (chan->error_state) 751 hcintmsk |= HCINTMSK_ACK; 752 break; 753 754 case USB_ENDPOINT_XFER_INT: 755 if (dbg_perio()) 756 dev_vdbg(hsotg->dev, "intr\n"); 757 hcintmsk |= HCINTMSK_XFERCOMPL; 758 hcintmsk |= HCINTMSK_NAK; 759 hcintmsk |= HCINTMSK_STALL; 760 hcintmsk |= HCINTMSK_XACTERR; 761 hcintmsk |= HCINTMSK_DATATGLERR; 762 hcintmsk |= HCINTMSK_FRMOVRUN; 763 764 if (chan->ep_is_in) 765 hcintmsk |= HCINTMSK_BBLERR; 766 if (chan->error_state) 767 hcintmsk |= HCINTMSK_ACK; 768 if (chan->do_split) { 769 if (chan->complete_split) 770 hcintmsk |= HCINTMSK_NYET; 771 else 772 hcintmsk |= HCINTMSK_ACK; 773 } 774 break; 775 776 case USB_ENDPOINT_XFER_ISOC: 777 if (dbg_perio()) 778 dev_vdbg(hsotg->dev, "isoc\n"); 779 hcintmsk |= HCINTMSK_XFERCOMPL; 780 hcintmsk |= HCINTMSK_FRMOVRUN; 781 hcintmsk |= HCINTMSK_ACK; 782 783 if (chan->ep_is_in) { 784 hcintmsk |= HCINTMSK_XACTERR; 785 hcintmsk |= HCINTMSK_BBLERR; 786 } 787 break; 788 default: 789 dev_err(hsotg->dev, "## Unknown EP type ##\n"); 790 break; 791 } 792 793 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num)); 794 if (dbg_hc(chan)) 795 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); 796 } 797 798 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg, 799 struct dwc2_host_chan *chan) 800 { 801 u32 hcintmsk = HCINTMSK_CHHLTD; 802 803 /* 804 * For Descriptor DMA mode core halts the channel on AHB error. 805 * Interrupt is not required. 806 */ 807 if (!hsotg->params.dma_desc_enable) { 808 if (dbg_hc(chan)) 809 dev_vdbg(hsotg->dev, "desc DMA disabled\n"); 810 hcintmsk |= HCINTMSK_AHBERR; 811 } else { 812 if (dbg_hc(chan)) 813 dev_vdbg(hsotg->dev, "desc DMA enabled\n"); 814 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 815 hcintmsk |= HCINTMSK_XFERCOMPL; 816 } 817 818 if (chan->error_state && !chan->do_split && 819 chan->ep_type != USB_ENDPOINT_XFER_ISOC) { 820 if (dbg_hc(chan)) 821 dev_vdbg(hsotg->dev, "setting ACK\n"); 822 hcintmsk |= HCINTMSK_ACK; 823 if (chan->ep_is_in) { 824 hcintmsk |= HCINTMSK_DATATGLERR; 825 if (chan->ep_type != USB_ENDPOINT_XFER_INT) 826 hcintmsk |= HCINTMSK_NAK; 827 } 828 } 829 830 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num)); 831 if (dbg_hc(chan)) 832 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); 833 } 834 835 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg, 836 struct dwc2_host_chan *chan) 837 { 838 u32 intmsk; 839 840 if (hsotg->params.host_dma) { 841 if (dbg_hc(chan)) 842 dev_vdbg(hsotg->dev, "DMA enabled\n"); 843 dwc2_hc_enable_dma_ints(hsotg, chan); 844 } else { 845 if (dbg_hc(chan)) 846 dev_vdbg(hsotg->dev, "DMA disabled\n"); 847 dwc2_hc_enable_slave_ints(hsotg, chan); 848 } 849 850 /* Enable the top level host channel interrupt */ 851 intmsk = dwc2_readl(hsotg, HAINTMSK); 852 intmsk |= 1 << chan->hc_num; 853 dwc2_writel(hsotg, intmsk, HAINTMSK); 854 if (dbg_hc(chan)) 855 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk); 856 857 /* Make sure host channel interrupts are enabled */ 858 intmsk = dwc2_readl(hsotg, GINTMSK); 859 intmsk |= GINTSTS_HCHINT; 860 dwc2_writel(hsotg, intmsk, GINTMSK); 861 if (dbg_hc(chan)) 862 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk); 863 } 864 865 /** 866 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from 867 * a specific endpoint 868 * 869 * @hsotg: Programming view of DWC_otg controller 870 * @chan: Information needed to initialize the host channel 871 * 872 * The HCCHARn register is set up with the characteristics specified in chan. 873 * Host channel interrupts that may need to be serviced while this transfer is 874 * in progress are enabled. 875 */ 876 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 877 { 878 u8 hc_num = chan->hc_num; 879 u32 hcintmsk; 880 u32 hcchar; 881 u32 hcsplt = 0; 882 883 if (dbg_hc(chan)) 884 dev_vdbg(hsotg->dev, "%s()\n", __func__); 885 886 /* Clear old interrupt conditions for this host channel */ 887 hcintmsk = 0xffffffff; 888 hcintmsk &= ~HCINTMSK_RESERVED14_31; 889 dwc2_writel(hsotg, hcintmsk, HCINT(hc_num)); 890 891 /* Enable channel interrupts required for this transfer */ 892 dwc2_hc_enable_ints(hsotg, chan); 893 894 /* 895 * Program the HCCHARn register with the endpoint characteristics for 896 * the current transfer 897 */ 898 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK; 899 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK; 900 if (chan->ep_is_in) 901 hcchar |= HCCHAR_EPDIR; 902 if (chan->speed == USB_SPEED_LOW) 903 hcchar |= HCCHAR_LSPDDEV; 904 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK; 905 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK; 906 dwc2_writel(hsotg, hcchar, HCCHAR(hc_num)); 907 if (dbg_hc(chan)) { 908 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n", 909 hc_num, hcchar); 910 911 dev_vdbg(hsotg->dev, "%s: Channel %d\n", 912 __func__, hc_num); 913 dev_vdbg(hsotg->dev, " Dev Addr: %d\n", 914 chan->dev_addr); 915 dev_vdbg(hsotg->dev, " Ep Num: %d\n", 916 chan->ep_num); 917 dev_vdbg(hsotg->dev, " Is In: %d\n", 918 chan->ep_is_in); 919 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n", 920 chan->speed == USB_SPEED_LOW); 921 dev_vdbg(hsotg->dev, " Ep Type: %d\n", 922 chan->ep_type); 923 dev_vdbg(hsotg->dev, " Max Pkt: %d\n", 924 chan->max_packet); 925 } 926 927 /* Program the HCSPLT register for SPLITs */ 928 if (chan->do_split) { 929 if (dbg_hc(chan)) 930 dev_vdbg(hsotg->dev, 931 "Programming HC %d with split --> %s\n", 932 hc_num, 933 chan->complete_split ? "CSPLIT" : "SSPLIT"); 934 if (chan->complete_split) 935 hcsplt |= HCSPLT_COMPSPLT; 936 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT & 937 HCSPLT_XACTPOS_MASK; 938 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT & 939 HCSPLT_HUBADDR_MASK; 940 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT & 941 HCSPLT_PRTADDR_MASK; 942 if (dbg_hc(chan)) { 943 dev_vdbg(hsotg->dev, " comp split %d\n", 944 chan->complete_split); 945 dev_vdbg(hsotg->dev, " xact pos %d\n", 946 chan->xact_pos); 947 dev_vdbg(hsotg->dev, " hub addr %d\n", 948 chan->hub_addr); 949 dev_vdbg(hsotg->dev, " hub port %d\n", 950 chan->hub_port); 951 dev_vdbg(hsotg->dev, " is_in %d\n", 952 chan->ep_is_in); 953 dev_vdbg(hsotg->dev, " Max Pkt %d\n", 954 chan->max_packet); 955 dev_vdbg(hsotg->dev, " xferlen %d\n", 956 chan->xfer_len); 957 } 958 } 959 960 dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num)); 961 } 962 963 /** 964 * dwc2_hc_halt() - Attempts to halt a host channel 965 * 966 * @hsotg: Controller register interface 967 * @chan: Host channel to halt 968 * @halt_status: Reason for halting the channel 969 * 970 * This function should only be called in Slave mode or to abort a transfer in 971 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the 972 * controller halts the channel when the transfer is complete or a condition 973 * occurs that requires application intervention. 974 * 975 * In slave mode, checks for a free request queue entry, then sets the Channel 976 * Enable and Channel Disable bits of the Host Channel Characteristics 977 * register of the specified channel to intiate the halt. If there is no free 978 * request queue entry, sets only the Channel Disable bit of the HCCHARn 979 * register to flush requests for this channel. In the latter case, sets a 980 * flag to indicate that the host channel needs to be halted when a request 981 * queue slot is open. 982 * 983 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the 984 * HCCHARn register. The controller ensures there is space in the request 985 * queue before submitting the halt request. 986 * 987 * Some time may elapse before the core flushes any posted requests for this 988 * host channel and halts. The Channel Halted interrupt handler completes the 989 * deactivation of the host channel. 990 */ 991 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, 992 enum dwc2_halt_status halt_status) 993 { 994 u32 nptxsts, hptxsts, hcchar; 995 996 if (dbg_hc(chan)) 997 dev_vdbg(hsotg->dev, "%s()\n", __func__); 998 999 /* 1000 * In buffer DMA or external DMA mode channel can't be halted 1001 * for non-split periodic channels. At the end of the next 1002 * uframe/frame (in the worst case), the core generates a channel 1003 * halted and disables the channel automatically. 1004 */ 1005 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) || 1006 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) { 1007 if (!chan->do_split && 1008 (chan->ep_type == USB_ENDPOINT_XFER_ISOC || 1009 chan->ep_type == USB_ENDPOINT_XFER_INT)) { 1010 dev_err(hsotg->dev, "%s() Channel can't be halted\n", 1011 __func__); 1012 return; 1013 } 1014 } 1015 1016 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS) 1017 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status); 1018 1019 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE || 1020 halt_status == DWC2_HC_XFER_AHB_ERR) { 1021 /* 1022 * Disable all channel interrupts except Ch Halted. The QTD 1023 * and QH state associated with this transfer has been cleared 1024 * (in the case of URB_DEQUEUE), so the channel needs to be 1025 * shut down carefully to prevent crashes. 1026 */ 1027 u32 hcintmsk = HCINTMSK_CHHLTD; 1028 1029 dev_vdbg(hsotg->dev, "dequeue/error\n"); 1030 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num)); 1031 1032 /* 1033 * Make sure no other interrupts besides halt are currently 1034 * pending. Handling another interrupt could cause a crash due 1035 * to the QTD and QH state. 1036 */ 1037 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num)); 1038 1039 /* 1040 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR 1041 * even if the channel was already halted for some other 1042 * reason 1043 */ 1044 chan->halt_status = halt_status; 1045 1046 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); 1047 if (!(hcchar & HCCHAR_CHENA)) { 1048 /* 1049 * The channel is either already halted or it hasn't 1050 * started yet. In DMA mode, the transfer may halt if 1051 * it finishes normally or a condition occurs that 1052 * requires driver intervention. Don't want to halt 1053 * the channel again. In either Slave or DMA mode, 1054 * it's possible that the transfer has been assigned 1055 * to a channel, but not started yet when an URB is 1056 * dequeued. Don't want to halt a channel that hasn't 1057 * started yet. 1058 */ 1059 return; 1060 } 1061 } 1062 if (chan->halt_pending) { 1063 /* 1064 * A halt has already been issued for this channel. This might 1065 * happen when a transfer is aborted by a higher level in 1066 * the stack. 1067 */ 1068 dev_vdbg(hsotg->dev, 1069 "*** %s: Channel %d, chan->halt_pending already set ***\n", 1070 __func__, chan->hc_num); 1071 return; 1072 } 1073 1074 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); 1075 1076 /* No need to set the bit in DDMA for disabling the channel */ 1077 /* TODO check it everywhere channel is disabled */ 1078 if (!hsotg->params.dma_desc_enable) { 1079 if (dbg_hc(chan)) 1080 dev_vdbg(hsotg->dev, "desc DMA disabled\n"); 1081 hcchar |= HCCHAR_CHENA; 1082 } else { 1083 if (dbg_hc(chan)) 1084 dev_dbg(hsotg->dev, "desc DMA enabled\n"); 1085 } 1086 hcchar |= HCCHAR_CHDIS; 1087 1088 if (!hsotg->params.host_dma) { 1089 if (dbg_hc(chan)) 1090 dev_vdbg(hsotg->dev, "DMA not enabled\n"); 1091 hcchar |= HCCHAR_CHENA; 1092 1093 /* Check for space in the request queue to issue the halt */ 1094 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL || 1095 chan->ep_type == USB_ENDPOINT_XFER_BULK) { 1096 dev_vdbg(hsotg->dev, "control/bulk\n"); 1097 nptxsts = dwc2_readl(hsotg, GNPTXSTS); 1098 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) { 1099 dev_vdbg(hsotg->dev, "Disabling channel\n"); 1100 hcchar &= ~HCCHAR_CHENA; 1101 } 1102 } else { 1103 if (dbg_perio()) 1104 dev_vdbg(hsotg->dev, "isoc/intr\n"); 1105 hptxsts = dwc2_readl(hsotg, HPTXSTS); 1106 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 || 1107 hsotg->queuing_high_bandwidth) { 1108 if (dbg_perio()) 1109 dev_vdbg(hsotg->dev, "Disabling channel\n"); 1110 hcchar &= ~HCCHAR_CHENA; 1111 } 1112 } 1113 } else { 1114 if (dbg_hc(chan)) 1115 dev_vdbg(hsotg->dev, "DMA enabled\n"); 1116 } 1117 1118 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num)); 1119 chan->halt_status = halt_status; 1120 1121 if (hcchar & HCCHAR_CHENA) { 1122 if (dbg_hc(chan)) 1123 dev_vdbg(hsotg->dev, "Channel enabled\n"); 1124 chan->halt_pending = 1; 1125 chan->halt_on_queue = 0; 1126 } else { 1127 if (dbg_hc(chan)) 1128 dev_vdbg(hsotg->dev, "Channel disabled\n"); 1129 chan->halt_on_queue = 1; 1130 } 1131 1132 if (dbg_hc(chan)) { 1133 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1134 chan->hc_num); 1135 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n", 1136 hcchar); 1137 dev_vdbg(hsotg->dev, " halt_pending: %d\n", 1138 chan->halt_pending); 1139 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n", 1140 chan->halt_on_queue); 1141 dev_vdbg(hsotg->dev, " halt_status: %d\n", 1142 chan->halt_status); 1143 } 1144 } 1145 1146 /** 1147 * dwc2_hc_cleanup() - Clears the transfer state for a host channel 1148 * 1149 * @hsotg: Programming view of DWC_otg controller 1150 * @chan: Identifies the host channel to clean up 1151 * 1152 * This function is normally called after a transfer is done and the host 1153 * channel is being released 1154 */ 1155 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 1156 { 1157 u32 hcintmsk; 1158 1159 chan->xfer_started = 0; 1160 1161 list_del_init(&chan->split_order_list_entry); 1162 1163 /* 1164 * Clear channel interrupt enables and any unhandled channel interrupt 1165 * conditions 1166 */ 1167 dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num)); 1168 hcintmsk = 0xffffffff; 1169 hcintmsk &= ~HCINTMSK_RESERVED14_31; 1170 dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num)); 1171 } 1172 1173 /** 1174 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in 1175 * which frame a periodic transfer should occur 1176 * 1177 * @hsotg: Programming view of DWC_otg controller 1178 * @chan: Identifies the host channel to set up and its properties 1179 * @hcchar: Current value of the HCCHAR register for the specified host channel 1180 * 1181 * This function has no effect on non-periodic transfers 1182 */ 1183 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg, 1184 struct dwc2_host_chan *chan, u32 *hcchar) 1185 { 1186 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1187 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1188 int host_speed; 1189 int xfer_ns; 1190 int xfer_us; 1191 int bytes_in_fifo; 1192 u16 fifo_space; 1193 u16 frame_number; 1194 u16 wire_frame; 1195 1196 /* 1197 * Try to figure out if we're an even or odd frame. If we set 1198 * even and the current frame number is even the the transfer 1199 * will happen immediately. Similar if both are odd. If one is 1200 * even and the other is odd then the transfer will happen when 1201 * the frame number ticks. 1202 * 1203 * There's a bit of a balancing act to get this right. 1204 * Sometimes we may want to send data in the current frame (AK 1205 * right away). We might want to do this if the frame number 1206 * _just_ ticked, but we might also want to do this in order 1207 * to continue a split transaction that happened late in a 1208 * microframe (so we didn't know to queue the next transfer 1209 * until the frame number had ticked). The problem is that we 1210 * need a lot of knowledge to know if there's actually still 1211 * time to send things or if it would be better to wait until 1212 * the next frame. 1213 * 1214 * We can look at how much time is left in the current frame 1215 * and make a guess about whether we'll have time to transfer. 1216 * We'll do that. 1217 */ 1218 1219 /* Get speed host is running at */ 1220 host_speed = (chan->speed != USB_SPEED_HIGH && 1221 !chan->do_split) ? chan->speed : USB_SPEED_HIGH; 1222 1223 /* See how many bytes are in the periodic FIFO right now */ 1224 fifo_space = (dwc2_readl(hsotg, HPTXSTS) & 1225 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; 1226 bytes_in_fifo = sizeof(u32) * 1227 (hsotg->params.host_perio_tx_fifo_size - 1228 fifo_space); 1229 1230 /* 1231 * Roughly estimate bus time for everything in the periodic 1232 * queue + our new transfer. This is "rough" because we're 1233 * using a function that makes takes into account IN/OUT 1234 * and INT/ISO and we're just slamming in one value for all 1235 * transfers. This should be an over-estimate and that should 1236 * be OK, but we can probably tighten it. 1237 */ 1238 xfer_ns = usb_calc_bus_time(host_speed, false, false, 1239 chan->xfer_len + bytes_in_fifo); 1240 xfer_us = NS_TO_US(xfer_ns); 1241 1242 /* See what frame number we'll be at by the time we finish */ 1243 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us); 1244 1245 /* This is when we were scheduled to be on the wire */ 1246 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1); 1247 1248 /* 1249 * If we'd finish _after_ the frame we're scheduled in then 1250 * it's hopeless. Just schedule right away and hope for the 1251 * best. Note that it _might_ be wise to call back into the 1252 * scheduler to pick a better frame, but this is better than 1253 * nothing. 1254 */ 1255 if (dwc2_frame_num_gt(frame_number, wire_frame)) { 1256 dwc2_sch_vdbg(hsotg, 1257 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n", 1258 chan->qh, wire_frame, frame_number, 1259 dwc2_frame_num_dec(frame_number, 1260 wire_frame)); 1261 wire_frame = frame_number; 1262 1263 /* 1264 * We picked a different frame number; communicate this 1265 * back to the scheduler so it doesn't try to schedule 1266 * another in the same frame. 1267 * 1268 * Remember that next_active_frame is 1 before the wire 1269 * frame. 1270 */ 1271 chan->qh->next_active_frame = 1272 dwc2_frame_num_dec(frame_number, 1); 1273 } 1274 1275 if (wire_frame & 1) 1276 *hcchar |= HCCHAR_ODDFRM; 1277 else 1278 *hcchar &= ~HCCHAR_ODDFRM; 1279 } 1280 } 1281 1282 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan) 1283 { 1284 /* Set up the initial PID for the transfer */ 1285 if (chan->speed == USB_SPEED_HIGH) { 1286 if (chan->ep_is_in) { 1287 if (chan->multi_count == 1) 1288 chan->data_pid_start = DWC2_HC_PID_DATA0; 1289 else if (chan->multi_count == 2) 1290 chan->data_pid_start = DWC2_HC_PID_DATA1; 1291 else 1292 chan->data_pid_start = DWC2_HC_PID_DATA2; 1293 } else { 1294 if (chan->multi_count == 1) 1295 chan->data_pid_start = DWC2_HC_PID_DATA0; 1296 else 1297 chan->data_pid_start = DWC2_HC_PID_MDATA; 1298 } 1299 } else { 1300 chan->data_pid_start = DWC2_HC_PID_DATA0; 1301 } 1302 } 1303 1304 /** 1305 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with 1306 * the Host Channel 1307 * 1308 * @hsotg: Programming view of DWC_otg controller 1309 * @chan: Information needed to initialize the host channel 1310 * 1311 * This function should only be called in Slave mode. For a channel associated 1312 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel 1313 * associated with a periodic EP, the periodic Tx FIFO is written. 1314 * 1315 * Upon return the xfer_buf and xfer_count fields in chan are incremented by 1316 * the number of bytes written to the Tx FIFO. 1317 */ 1318 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg, 1319 struct dwc2_host_chan *chan) 1320 { 1321 u32 i; 1322 u32 remaining_count; 1323 u32 byte_count; 1324 u32 dword_count; 1325 u32 *data_buf = (u32 *)chan->xfer_buf; 1326 1327 if (dbg_hc(chan)) 1328 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1329 1330 remaining_count = chan->xfer_len - chan->xfer_count; 1331 if (remaining_count > chan->max_packet) 1332 byte_count = chan->max_packet; 1333 else 1334 byte_count = remaining_count; 1335 1336 dword_count = (byte_count + 3) / 4; 1337 1338 if (((unsigned long)data_buf & 0x3) == 0) { 1339 /* xfer_buf is DWORD aligned */ 1340 for (i = 0; i < dword_count; i++, data_buf++) 1341 dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num)); 1342 } else { 1343 /* xfer_buf is not DWORD aligned */ 1344 for (i = 0; i < dword_count; i++, data_buf++) { 1345 u32 data = data_buf[0] | data_buf[1] << 8 | 1346 data_buf[2] << 16 | data_buf[3] << 24; 1347 dwc2_writel(hsotg, data, HCFIFO(chan->hc_num)); 1348 } 1349 } 1350 1351 chan->xfer_count += byte_count; 1352 chan->xfer_buf += byte_count; 1353 } 1354 1355 /** 1356 * dwc2_hc_do_ping() - Starts a PING transfer 1357 * 1358 * @hsotg: Programming view of DWC_otg controller 1359 * @chan: Information needed to initialize the host channel 1360 * 1361 * This function should only be called in Slave mode. The Do Ping bit is set in 1362 * the HCTSIZ register, then the channel is enabled. 1363 */ 1364 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, 1365 struct dwc2_host_chan *chan) 1366 { 1367 u32 hcchar; 1368 u32 hctsiz; 1369 1370 if (dbg_hc(chan)) 1371 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1372 chan->hc_num); 1373 1374 hctsiz = TSIZ_DOPNG; 1375 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT; 1376 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num)); 1377 1378 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); 1379 hcchar |= HCCHAR_CHENA; 1380 hcchar &= ~HCCHAR_CHDIS; 1381 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num)); 1382 } 1383 1384 /** 1385 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host 1386 * channel and starts the transfer 1387 * 1388 * @hsotg: Programming view of DWC_otg controller 1389 * @chan: Information needed to initialize the host channel. The xfer_len value 1390 * may be reduced to accommodate the max widths of the XferSize and 1391 * PktCnt fields in the HCTSIZn register. The multi_count value may be 1392 * changed to reflect the final xfer_len value. 1393 * 1394 * This function may be called in either Slave mode or DMA mode. In Slave mode, 1395 * the caller must ensure that there is sufficient space in the request queue 1396 * and Tx Data FIFO. 1397 * 1398 * For an OUT transfer in Slave mode, it loads a data packet into the 1399 * appropriate FIFO. If necessary, additional data packets are loaded in the 1400 * Host ISR. 1401 * 1402 * For an IN transfer in Slave mode, a data packet is requested. The data 1403 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, 1404 * additional data packets are requested in the Host ISR. 1405 * 1406 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ 1407 * register along with a packet count of 1 and the channel is enabled. This 1408 * causes a single PING transaction to occur. Other fields in HCTSIZ are 1409 * simply set to 0 since no data transfer occurs in this case. 1410 * 1411 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with 1412 * all the information required to perform the subsequent data transfer. In 1413 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the 1414 * controller performs the entire PING protocol, then starts the data 1415 * transfer. 1416 */ 1417 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg, 1418 struct dwc2_host_chan *chan) 1419 { 1420 u32 max_hc_xfer_size = hsotg->params.max_transfer_size; 1421 u16 max_hc_pkt_count = hsotg->params.max_packet_count; 1422 u32 hcchar; 1423 u32 hctsiz = 0; 1424 u16 num_packets; 1425 u32 ec_mc; 1426 1427 if (dbg_hc(chan)) 1428 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1429 1430 if (chan->do_ping) { 1431 if (!hsotg->params.host_dma) { 1432 if (dbg_hc(chan)) 1433 dev_vdbg(hsotg->dev, "ping, no DMA\n"); 1434 dwc2_hc_do_ping(hsotg, chan); 1435 chan->xfer_started = 1; 1436 return; 1437 } 1438 1439 if (dbg_hc(chan)) 1440 dev_vdbg(hsotg->dev, "ping, DMA\n"); 1441 1442 hctsiz |= TSIZ_DOPNG; 1443 } 1444 1445 if (chan->do_split) { 1446 if (dbg_hc(chan)) 1447 dev_vdbg(hsotg->dev, "split\n"); 1448 num_packets = 1; 1449 1450 if (chan->complete_split && !chan->ep_is_in) 1451 /* 1452 * For CSPLIT OUT Transfer, set the size to 0 so the 1453 * core doesn't expect any data written to the FIFO 1454 */ 1455 chan->xfer_len = 0; 1456 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet) 1457 chan->xfer_len = chan->max_packet; 1458 else if (!chan->ep_is_in && chan->xfer_len > 188) 1459 chan->xfer_len = 188; 1460 1461 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & 1462 TSIZ_XFERSIZE_MASK; 1463 1464 /* For split set ec_mc for immediate retries */ 1465 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1466 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1467 ec_mc = 3; 1468 else 1469 ec_mc = 1; 1470 } else { 1471 if (dbg_hc(chan)) 1472 dev_vdbg(hsotg->dev, "no split\n"); 1473 /* 1474 * Ensure that the transfer length and packet count will fit 1475 * in the widths allocated for them in the HCTSIZn register 1476 */ 1477 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1478 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1479 /* 1480 * Make sure the transfer size is no larger than one 1481 * (micro)frame's worth of data. (A check was done 1482 * when the periodic transfer was accepted to ensure 1483 * that a (micro)frame's worth of data can be 1484 * programmed into a channel.) 1485 */ 1486 u32 max_periodic_len = 1487 chan->multi_count * chan->max_packet; 1488 1489 if (chan->xfer_len > max_periodic_len) 1490 chan->xfer_len = max_periodic_len; 1491 } else if (chan->xfer_len > max_hc_xfer_size) { 1492 /* 1493 * Make sure that xfer_len is a multiple of max packet 1494 * size 1495 */ 1496 chan->xfer_len = 1497 max_hc_xfer_size - chan->max_packet + 1; 1498 } 1499 1500 if (chan->xfer_len > 0) { 1501 num_packets = (chan->xfer_len + chan->max_packet - 1) / 1502 chan->max_packet; 1503 if (num_packets > max_hc_pkt_count) { 1504 num_packets = max_hc_pkt_count; 1505 chan->xfer_len = num_packets * chan->max_packet; 1506 } 1507 } else { 1508 /* Need 1 packet for transfer length of 0 */ 1509 num_packets = 1; 1510 } 1511 1512 if (chan->ep_is_in) 1513 /* 1514 * Always program an integral # of max packets for IN 1515 * transfers 1516 */ 1517 chan->xfer_len = num_packets * chan->max_packet; 1518 1519 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1520 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1521 /* 1522 * Make sure that the multi_count field matches the 1523 * actual transfer length 1524 */ 1525 chan->multi_count = num_packets; 1526 1527 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1528 dwc2_set_pid_isoc(chan); 1529 1530 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & 1531 TSIZ_XFERSIZE_MASK; 1532 1533 /* The ec_mc gets the multi_count for non-split */ 1534 ec_mc = chan->multi_count; 1535 } 1536 1537 chan->start_pkt_count = num_packets; 1538 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK; 1539 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & 1540 TSIZ_SC_MC_PID_MASK; 1541 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num)); 1542 if (dbg_hc(chan)) { 1543 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n", 1544 hctsiz, chan->hc_num); 1545 1546 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1547 chan->hc_num); 1548 dev_vdbg(hsotg->dev, " Xfer Size: %d\n", 1549 (hctsiz & TSIZ_XFERSIZE_MASK) >> 1550 TSIZ_XFERSIZE_SHIFT); 1551 dev_vdbg(hsotg->dev, " Num Pkts: %d\n", 1552 (hctsiz & TSIZ_PKTCNT_MASK) >> 1553 TSIZ_PKTCNT_SHIFT); 1554 dev_vdbg(hsotg->dev, " Start PID: %d\n", 1555 (hctsiz & TSIZ_SC_MC_PID_MASK) >> 1556 TSIZ_SC_MC_PID_SHIFT); 1557 } 1558 1559 if (hsotg->params.host_dma) { 1560 dma_addr_t dma_addr; 1561 1562 if (chan->align_buf) { 1563 if (dbg_hc(chan)) 1564 dev_vdbg(hsotg->dev, "align_buf\n"); 1565 dma_addr = chan->align_buf; 1566 } else { 1567 dma_addr = chan->xfer_dma; 1568 } 1569 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num)); 1570 1571 if (dbg_hc(chan)) 1572 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n", 1573 (unsigned long)dma_addr, chan->hc_num); 1574 } 1575 1576 /* Start the split */ 1577 if (chan->do_split) { 1578 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num)); 1579 1580 hcsplt |= HCSPLT_SPLTENA; 1581 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num)); 1582 } 1583 1584 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); 1585 hcchar &= ~HCCHAR_MULTICNT_MASK; 1586 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK; 1587 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); 1588 1589 if (hcchar & HCCHAR_CHDIS) 1590 dev_warn(hsotg->dev, 1591 "%s: chdis set, channel %d, hcchar 0x%08x\n", 1592 __func__, chan->hc_num, hcchar); 1593 1594 /* Set host channel enable after all other setup is complete */ 1595 hcchar |= HCCHAR_CHENA; 1596 hcchar &= ~HCCHAR_CHDIS; 1597 1598 if (dbg_hc(chan)) 1599 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", 1600 (hcchar & HCCHAR_MULTICNT_MASK) >> 1601 HCCHAR_MULTICNT_SHIFT); 1602 1603 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num)); 1604 if (dbg_hc(chan)) 1605 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, 1606 chan->hc_num); 1607 1608 chan->xfer_started = 1; 1609 chan->requests++; 1610 1611 if (!hsotg->params.host_dma && 1612 !chan->ep_is_in && chan->xfer_len > 0) 1613 /* Load OUT packet into the appropriate Tx FIFO */ 1614 dwc2_hc_write_packet(hsotg, chan); 1615 } 1616 1617 /** 1618 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a 1619 * host channel and starts the transfer in Descriptor DMA mode 1620 * 1621 * @hsotg: Programming view of DWC_otg controller 1622 * @chan: Information needed to initialize the host channel 1623 * 1624 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set. 1625 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field 1626 * with micro-frame bitmap. 1627 * 1628 * Initializes HCDMA register with descriptor list address and CTD value then 1629 * starts the transfer via enabling the channel. 1630 */ 1631 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg, 1632 struct dwc2_host_chan *chan) 1633 { 1634 u32 hcchar; 1635 u32 hctsiz = 0; 1636 1637 if (chan->do_ping) 1638 hctsiz |= TSIZ_DOPNG; 1639 1640 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1641 dwc2_set_pid_isoc(chan); 1642 1643 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */ 1644 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & 1645 TSIZ_SC_MC_PID_MASK; 1646 1647 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */ 1648 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK; 1649 1650 /* Non-zero only for high-speed interrupt endpoints */ 1651 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK; 1652 1653 if (dbg_hc(chan)) { 1654 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1655 chan->hc_num); 1656 dev_vdbg(hsotg->dev, " Start PID: %d\n", 1657 chan->data_pid_start); 1658 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1); 1659 } 1660 1661 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num)); 1662 1663 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr, 1664 chan->desc_list_sz, DMA_TO_DEVICE); 1665 1666 dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num)); 1667 1668 if (dbg_hc(chan)) 1669 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n", 1670 &chan->desc_list_addr, chan->hc_num); 1671 1672 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); 1673 hcchar &= ~HCCHAR_MULTICNT_MASK; 1674 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT & 1675 HCCHAR_MULTICNT_MASK; 1676 1677 if (hcchar & HCCHAR_CHDIS) 1678 dev_warn(hsotg->dev, 1679 "%s: chdis set, channel %d, hcchar 0x%08x\n", 1680 __func__, chan->hc_num, hcchar); 1681 1682 /* Set host channel enable after all other setup is complete */ 1683 hcchar |= HCCHAR_CHENA; 1684 hcchar &= ~HCCHAR_CHDIS; 1685 1686 if (dbg_hc(chan)) 1687 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", 1688 (hcchar & HCCHAR_MULTICNT_MASK) >> 1689 HCCHAR_MULTICNT_SHIFT); 1690 1691 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num)); 1692 if (dbg_hc(chan)) 1693 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, 1694 chan->hc_num); 1695 1696 chan->xfer_started = 1; 1697 chan->requests++; 1698 } 1699 1700 /** 1701 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by 1702 * a previous call to dwc2_hc_start_transfer() 1703 * 1704 * @hsotg: Programming view of DWC_otg controller 1705 * @chan: Information needed to initialize the host channel 1706 * 1707 * The caller must ensure there is sufficient space in the request queue and Tx 1708 * Data FIFO. This function should only be called in Slave mode. In DMA mode, 1709 * the controller acts autonomously to complete transfers programmed to a host 1710 * channel. 1711 * 1712 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO 1713 * if there is any data remaining to be queued. For an IN transfer, another 1714 * data packet is always requested. For the SETUP phase of a control transfer, 1715 * this function does nothing. 1716 * 1717 * Return: 1 if a new request is queued, 0 if no more requests are required 1718 * for this transfer 1719 */ 1720 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg, 1721 struct dwc2_host_chan *chan) 1722 { 1723 if (dbg_hc(chan)) 1724 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1725 chan->hc_num); 1726 1727 if (chan->do_split) 1728 /* SPLITs always queue just once per channel */ 1729 return 0; 1730 1731 if (chan->data_pid_start == DWC2_HC_PID_SETUP) 1732 /* SETUPs are queued only once since they can't be NAK'd */ 1733 return 0; 1734 1735 if (chan->ep_is_in) { 1736 /* 1737 * Always queue another request for other IN transfers. If 1738 * back-to-back INs are issued and NAKs are received for both, 1739 * the driver may still be processing the first NAK when the 1740 * second NAK is received. When the interrupt handler clears 1741 * the NAK interrupt for the first NAK, the second NAK will 1742 * not be seen. So we can't depend on the NAK interrupt 1743 * handler to requeue a NAK'd request. Instead, IN requests 1744 * are issued each time this function is called. When the 1745 * transfer completes, the extra requests for the channel will 1746 * be flushed. 1747 */ 1748 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); 1749 1750 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); 1751 hcchar |= HCCHAR_CHENA; 1752 hcchar &= ~HCCHAR_CHDIS; 1753 if (dbg_hc(chan)) 1754 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n", 1755 hcchar); 1756 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num)); 1757 chan->requests++; 1758 return 1; 1759 } 1760 1761 /* OUT transfers */ 1762 1763 if (chan->xfer_count < chan->xfer_len) { 1764 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1765 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1766 u32 hcchar = dwc2_readl(hsotg, 1767 HCCHAR(chan->hc_num)); 1768 1769 dwc2_hc_set_even_odd_frame(hsotg, chan, 1770 &hcchar); 1771 } 1772 1773 /* Load OUT packet into the appropriate Tx FIFO */ 1774 dwc2_hc_write_packet(hsotg, chan); 1775 chan->requests++; 1776 return 1; 1777 } 1778 1779 return 0; 1780 } 1781 1782 /* 1783 * ========================================================================= 1784 * HCD 1785 * ========================================================================= 1786 */ 1787 1788 /* 1789 * Processes all the URBs in a single list of QHs. Completes them with 1790 * -ETIMEDOUT and frees the QTD. 1791 * 1792 * Must be called with interrupt disabled and spinlock held 1793 */ 1794 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg, 1795 struct list_head *qh_list) 1796 { 1797 struct dwc2_qh *qh, *qh_tmp; 1798 struct dwc2_qtd *qtd, *qtd_tmp; 1799 1800 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { 1801 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, 1802 qtd_list_entry) { 1803 dwc2_host_complete(hsotg, qtd, -ECONNRESET); 1804 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 1805 } 1806 } 1807 } 1808 1809 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg, 1810 struct list_head *qh_list) 1811 { 1812 struct dwc2_qtd *qtd, *qtd_tmp; 1813 struct dwc2_qh *qh, *qh_tmp; 1814 unsigned long flags; 1815 1816 if (!qh_list->next) 1817 /* The list hasn't been initialized yet */ 1818 return; 1819 1820 spin_lock_irqsave(&hsotg->lock, flags); 1821 1822 /* Ensure there are no QTDs or URBs left */ 1823 dwc2_kill_urbs_in_qh_list(hsotg, qh_list); 1824 1825 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { 1826 dwc2_hcd_qh_unlink(hsotg, qh); 1827 1828 /* Free each QTD in the QH's QTD list */ 1829 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, 1830 qtd_list_entry) 1831 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 1832 1833 if (qh->channel && qh->channel->qh == qh) 1834 qh->channel->qh = NULL; 1835 1836 spin_unlock_irqrestore(&hsotg->lock, flags); 1837 dwc2_hcd_qh_free(hsotg, qh); 1838 spin_lock_irqsave(&hsotg->lock, flags); 1839 } 1840 1841 spin_unlock_irqrestore(&hsotg->lock, flags); 1842 } 1843 1844 /* 1845 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic 1846 * and periodic schedules. The QTD associated with each URB is removed from 1847 * the schedule and freed. This function may be called when a disconnect is 1848 * detected or when the HCD is being stopped. 1849 * 1850 * Must be called with interrupt disabled and spinlock held 1851 */ 1852 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg) 1853 { 1854 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive); 1855 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting); 1856 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active); 1857 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive); 1858 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready); 1859 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned); 1860 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued); 1861 } 1862 1863 /** 1864 * dwc2_hcd_start() - Starts the HCD when switching to Host mode 1865 * 1866 * @hsotg: Pointer to struct dwc2_hsotg 1867 */ 1868 void dwc2_hcd_start(struct dwc2_hsotg *hsotg) 1869 { 1870 u32 hprt0; 1871 1872 if (hsotg->op_state == OTG_STATE_B_HOST) { 1873 /* 1874 * Reset the port. During a HNP mode switch the reset 1875 * needs to occur within 1ms and have a duration of at 1876 * least 50ms. 1877 */ 1878 hprt0 = dwc2_read_hprt0(hsotg); 1879 hprt0 |= HPRT0_RST; 1880 dwc2_writel(hsotg, hprt0, HPRT0); 1881 } 1882 1883 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work, 1884 msecs_to_jiffies(50)); 1885 } 1886 1887 /* Must be called with interrupt disabled and spinlock held */ 1888 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg) 1889 { 1890 int num_channels = hsotg->params.host_channels; 1891 struct dwc2_host_chan *channel; 1892 u32 hcchar; 1893 int i; 1894 1895 if (!hsotg->params.host_dma) { 1896 /* Flush out any channel requests in slave mode */ 1897 for (i = 0; i < num_channels; i++) { 1898 channel = hsotg->hc_ptr_array[i]; 1899 if (!list_empty(&channel->hc_list_entry)) 1900 continue; 1901 hcchar = dwc2_readl(hsotg, HCCHAR(i)); 1902 if (hcchar & HCCHAR_CHENA) { 1903 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR); 1904 hcchar |= HCCHAR_CHDIS; 1905 dwc2_writel(hsotg, hcchar, HCCHAR(i)); 1906 } 1907 } 1908 } 1909 1910 for (i = 0; i < num_channels; i++) { 1911 channel = hsotg->hc_ptr_array[i]; 1912 if (!list_empty(&channel->hc_list_entry)) 1913 continue; 1914 hcchar = dwc2_readl(hsotg, HCCHAR(i)); 1915 if (hcchar & HCCHAR_CHENA) { 1916 /* Halt the channel */ 1917 hcchar |= HCCHAR_CHDIS; 1918 dwc2_writel(hsotg, hcchar, HCCHAR(i)); 1919 } 1920 1921 dwc2_hc_cleanup(hsotg, channel); 1922 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list); 1923 /* 1924 * Added for Descriptor DMA to prevent channel double cleanup in 1925 * release_channel_ddma(), which is called from ep_disable when 1926 * device disconnects 1927 */ 1928 channel->qh = NULL; 1929 } 1930 /* All channels have been freed, mark them available */ 1931 if (hsotg->params.uframe_sched) { 1932 hsotg->available_host_channels = 1933 hsotg->params.host_channels; 1934 } else { 1935 hsotg->non_periodic_channels = 0; 1936 hsotg->periodic_channels = 0; 1937 } 1938 } 1939 1940 /** 1941 * dwc2_hcd_connect() - Handles connect of the HCD 1942 * 1943 * @hsotg: Pointer to struct dwc2_hsotg 1944 * 1945 * Must be called with interrupt disabled and spinlock held 1946 */ 1947 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) 1948 { 1949 if (hsotg->lx_state != DWC2_L0) 1950 usb_hcd_resume_root_hub(hsotg->priv); 1951 1952 hsotg->flags.b.port_connect_status_change = 1; 1953 hsotg->flags.b.port_connect_status = 1; 1954 } 1955 1956 /** 1957 * dwc2_hcd_disconnect() - Handles disconnect of the HCD 1958 * 1959 * @hsotg: Pointer to struct dwc2_hsotg 1960 * @force: If true, we won't try to reconnect even if we see device connected. 1961 * 1962 * Must be called with interrupt disabled and spinlock held 1963 */ 1964 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) 1965 { 1966 u32 intr; 1967 u32 hprt0; 1968 1969 /* Set status flags for the hub driver */ 1970 hsotg->flags.b.port_connect_status_change = 1; 1971 hsotg->flags.b.port_connect_status = 0; 1972 1973 /* 1974 * Shutdown any transfers in process by clearing the Tx FIFO Empty 1975 * interrupt mask and status bits and disabling subsequent host 1976 * channel interrupts. 1977 */ 1978 intr = dwc2_readl(hsotg, GINTMSK); 1979 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT); 1980 dwc2_writel(hsotg, intr, GINTMSK); 1981 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT; 1982 dwc2_writel(hsotg, intr, GINTSTS); 1983 1984 /* 1985 * Turn off the vbus power only if the core has transitioned to device 1986 * mode. If still in host mode, need to keep power on to detect a 1987 * reconnection. 1988 */ 1989 if (dwc2_is_device_mode(hsotg)) { 1990 if (hsotg->op_state != OTG_STATE_A_SUSPEND) { 1991 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n"); 1992 dwc2_writel(hsotg, 0, HPRT0); 1993 } 1994 1995 dwc2_disable_host_interrupts(hsotg); 1996 } 1997 1998 /* Respond with an error status to all URBs in the schedule */ 1999 dwc2_kill_all_urbs(hsotg); 2000 2001 if (dwc2_is_host_mode(hsotg)) 2002 /* Clean up any host channels that were in use */ 2003 dwc2_hcd_cleanup_channels(hsotg); 2004 2005 dwc2_host_disconnect(hsotg); 2006 2007 /* 2008 * Add an extra check here to see if we're actually connected but 2009 * we don't have a detection interrupt pending. This can happen if: 2010 * 1. hardware sees connect 2011 * 2. hardware sees disconnect 2012 * 3. hardware sees connect 2013 * 4. dwc2_port_intr() - clears connect interrupt 2014 * 5. dwc2_handle_common_intr() - calls here 2015 * 2016 * Without the extra check here we will end calling disconnect 2017 * and won't get any future interrupts to handle the connect. 2018 */ 2019 if (!force) { 2020 hprt0 = dwc2_readl(hsotg, HPRT0); 2021 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS)) 2022 dwc2_hcd_connect(hsotg); 2023 } 2024 } 2025 2026 /** 2027 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup 2028 * 2029 * @hsotg: Pointer to struct dwc2_hsotg 2030 */ 2031 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg) 2032 { 2033 if (hsotg->bus_suspended) { 2034 hsotg->flags.b.port_suspend_change = 1; 2035 usb_hcd_resume_root_hub(hsotg->priv); 2036 } 2037 2038 if (hsotg->lx_state == DWC2_L1) 2039 hsotg->flags.b.port_l1_change = 1; 2040 } 2041 2042 /** 2043 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner 2044 * 2045 * @hsotg: Pointer to struct dwc2_hsotg 2046 * 2047 * Must be called with interrupt disabled and spinlock held 2048 */ 2049 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg) 2050 { 2051 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n"); 2052 2053 /* 2054 * The root hub should be disconnected before this function is called. 2055 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) 2056 * and the QH lists (via ..._hcd_endpoint_disable). 2057 */ 2058 2059 /* Turn off all host-specific interrupts */ 2060 dwc2_disable_host_interrupts(hsotg); 2061 2062 /* Turn off the vbus power */ 2063 dev_dbg(hsotg->dev, "PortPower off\n"); 2064 dwc2_writel(hsotg, 0, HPRT0); 2065 } 2066 2067 /* Caller must hold driver lock */ 2068 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg, 2069 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh, 2070 struct dwc2_qtd *qtd) 2071 { 2072 u32 intr_mask; 2073 int retval; 2074 int dev_speed; 2075 2076 if (!hsotg->flags.b.port_connect_status) { 2077 /* No longer connected */ 2078 dev_err(hsotg->dev, "Not connected\n"); 2079 return -ENODEV; 2080 } 2081 2082 dev_speed = dwc2_host_get_speed(hsotg, urb->priv); 2083 2084 /* Some configurations cannot support LS traffic on a FS root port */ 2085 if ((dev_speed == USB_SPEED_LOW) && 2086 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) && 2087 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) { 2088 u32 hprt0 = dwc2_readl(hsotg, HPRT0); 2089 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 2090 2091 if (prtspd == HPRT0_SPD_FULL_SPEED) 2092 return -ENODEV; 2093 } 2094 2095 if (!qtd) 2096 return -EINVAL; 2097 2098 dwc2_hcd_qtd_init(qtd, urb); 2099 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh); 2100 if (retval) { 2101 dev_err(hsotg->dev, 2102 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n", 2103 retval); 2104 return retval; 2105 } 2106 2107 intr_mask = dwc2_readl(hsotg, GINTMSK); 2108 if (!(intr_mask & GINTSTS_SOF)) { 2109 enum dwc2_transaction_type tr_type; 2110 2111 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK && 2112 !(qtd->urb->flags & URB_GIVEBACK_ASAP)) 2113 /* 2114 * Do not schedule SG transactions until qtd has 2115 * URB_GIVEBACK_ASAP set 2116 */ 2117 return 0; 2118 2119 tr_type = dwc2_hcd_select_transactions(hsotg); 2120 if (tr_type != DWC2_TRANSACTION_NONE) 2121 dwc2_hcd_queue_transactions(hsotg, tr_type); 2122 } 2123 2124 return 0; 2125 } 2126 2127 /* Must be called with interrupt disabled and spinlock held */ 2128 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg, 2129 struct dwc2_hcd_urb *urb) 2130 { 2131 struct dwc2_qh *qh; 2132 struct dwc2_qtd *urb_qtd; 2133 2134 urb_qtd = urb->qtd; 2135 if (!urb_qtd) { 2136 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n"); 2137 return -EINVAL; 2138 } 2139 2140 qh = urb_qtd->qh; 2141 if (!qh) { 2142 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n"); 2143 return -EINVAL; 2144 } 2145 2146 urb->priv = NULL; 2147 2148 if (urb_qtd->in_process && qh->channel) { 2149 dwc2_dump_channel_info(hsotg, qh->channel); 2150 2151 /* The QTD is in process (it has been assigned to a channel) */ 2152 if (hsotg->flags.b.port_connect_status) 2153 /* 2154 * If still connected (i.e. in host mode), halt the 2155 * channel so it can be used for other transfers. If 2156 * no longer connected, the host registers can't be 2157 * written to halt the channel since the core is in 2158 * device mode. 2159 */ 2160 dwc2_hc_halt(hsotg, qh->channel, 2161 DWC2_HC_XFER_URB_DEQUEUE); 2162 } 2163 2164 /* 2165 * Free the QTD and clean up the associated QH. Leave the QH in the 2166 * schedule if it has any remaining QTDs. 2167 */ 2168 if (!hsotg->params.dma_desc_enable) { 2169 u8 in_process = urb_qtd->in_process; 2170 2171 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); 2172 if (in_process) { 2173 dwc2_hcd_qh_deactivate(hsotg, qh, 0); 2174 qh->channel = NULL; 2175 } else if (list_empty(&qh->qtd_list)) { 2176 dwc2_hcd_qh_unlink(hsotg, qh); 2177 } 2178 } else { 2179 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); 2180 } 2181 2182 return 0; 2183 } 2184 2185 /* Must NOT be called with interrupt disabled or spinlock held */ 2186 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg, 2187 struct usb_host_endpoint *ep, int retry) 2188 { 2189 struct dwc2_qtd *qtd, *qtd_tmp; 2190 struct dwc2_qh *qh; 2191 unsigned long flags; 2192 int rc; 2193 2194 spin_lock_irqsave(&hsotg->lock, flags); 2195 2196 qh = ep->hcpriv; 2197 if (!qh) { 2198 rc = -EINVAL; 2199 goto err; 2200 } 2201 2202 while (!list_empty(&qh->qtd_list) && retry--) { 2203 if (retry == 0) { 2204 dev_err(hsotg->dev, 2205 "## timeout in dwc2_hcd_endpoint_disable() ##\n"); 2206 rc = -EBUSY; 2207 goto err; 2208 } 2209 2210 spin_unlock_irqrestore(&hsotg->lock, flags); 2211 msleep(20); 2212 spin_lock_irqsave(&hsotg->lock, flags); 2213 qh = ep->hcpriv; 2214 if (!qh) { 2215 rc = -EINVAL; 2216 goto err; 2217 } 2218 } 2219 2220 dwc2_hcd_qh_unlink(hsotg, qh); 2221 2222 /* Free each QTD in the QH's QTD list */ 2223 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) 2224 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 2225 2226 ep->hcpriv = NULL; 2227 2228 if (qh->channel && qh->channel->qh == qh) 2229 qh->channel->qh = NULL; 2230 2231 spin_unlock_irqrestore(&hsotg->lock, flags); 2232 2233 dwc2_hcd_qh_free(hsotg, qh); 2234 2235 return 0; 2236 2237 err: 2238 ep->hcpriv = NULL; 2239 spin_unlock_irqrestore(&hsotg->lock, flags); 2240 2241 return rc; 2242 } 2243 2244 /* Must be called with interrupt disabled and spinlock held */ 2245 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg, 2246 struct usb_host_endpoint *ep) 2247 { 2248 struct dwc2_qh *qh = ep->hcpriv; 2249 2250 if (!qh) 2251 return -EINVAL; 2252 2253 qh->data_toggle = DWC2_HC_PID_DATA0; 2254 2255 return 0; 2256 } 2257 2258 /** 2259 * dwc2_core_init() - Initializes the DWC_otg controller registers and 2260 * prepares the core for device mode or host mode operation 2261 * 2262 * @hsotg: Programming view of the DWC_otg controller 2263 * @initial_setup: If true then this is the first init for this instance. 2264 */ 2265 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup) 2266 { 2267 u32 usbcfg, otgctl; 2268 int retval; 2269 2270 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); 2271 2272 usbcfg = dwc2_readl(hsotg, GUSBCFG); 2273 2274 /* Set ULPI External VBUS bit if needed */ 2275 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV; 2276 if (hsotg->params.phy_ulpi_ext_vbus) 2277 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV; 2278 2279 /* Set external TS Dline pulsing bit if needed */ 2280 usbcfg &= ~GUSBCFG_TERMSELDLPULSE; 2281 if (hsotg->params.ts_dline) 2282 usbcfg |= GUSBCFG_TERMSELDLPULSE; 2283 2284 dwc2_writel(hsotg, usbcfg, GUSBCFG); 2285 2286 /* 2287 * Reset the Controller 2288 * 2289 * We only need to reset the controller if this is a re-init. 2290 * For the first init we know for sure that earlier code reset us (it 2291 * needed to in order to properly detect various parameters). 2292 */ 2293 if (!initial_setup) { 2294 retval = dwc2_core_reset(hsotg, false); 2295 if (retval) { 2296 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n", 2297 __func__); 2298 return retval; 2299 } 2300 } 2301 2302 /* 2303 * This needs to happen in FS mode before any other programming occurs 2304 */ 2305 retval = dwc2_phy_init(hsotg, initial_setup); 2306 if (retval) 2307 return retval; 2308 2309 /* Program the GAHBCFG Register */ 2310 retval = dwc2_gahbcfg_init(hsotg); 2311 if (retval) 2312 return retval; 2313 2314 /* Program the GUSBCFG register */ 2315 dwc2_gusbcfg_init(hsotg); 2316 2317 /* Program the GOTGCTL register */ 2318 otgctl = dwc2_readl(hsotg, GOTGCTL); 2319 otgctl &= ~GOTGCTL_OTGVER; 2320 dwc2_writel(hsotg, otgctl, GOTGCTL); 2321 2322 /* Clear the SRP success bit for FS-I2c */ 2323 hsotg->srp_success = 0; 2324 2325 /* Enable common interrupts */ 2326 dwc2_enable_common_interrupts(hsotg); 2327 2328 /* 2329 * Do device or host initialization based on mode during PCD and 2330 * HCD initialization 2331 */ 2332 if (dwc2_is_host_mode(hsotg)) { 2333 dev_dbg(hsotg->dev, "Host Mode\n"); 2334 hsotg->op_state = OTG_STATE_A_HOST; 2335 } else { 2336 dev_dbg(hsotg->dev, "Device Mode\n"); 2337 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 2338 } 2339 2340 return 0; 2341 } 2342 2343 /** 2344 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for 2345 * Host mode 2346 * 2347 * @hsotg: Programming view of DWC_otg controller 2348 * 2349 * This function flushes the Tx and Rx FIFOs and flushes any entries in the 2350 * request queues. Host channels are reset to ensure that they are ready for 2351 * performing transfers. 2352 */ 2353 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg) 2354 { 2355 u32 hcfg, hfir, otgctl, usbcfg; 2356 2357 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); 2358 2359 /* Set HS/FS Timeout Calibration to 7 (max available value). 2360 * The number of PHY clocks that the application programs in 2361 * this field is added to the high/full speed interpacket timeout 2362 * duration in the core to account for any additional delays 2363 * introduced by the PHY. This can be required, because the delay 2364 * introduced by the PHY in generating the linestate condition 2365 * can vary from one PHY to another. 2366 */ 2367 usbcfg = dwc2_readl(hsotg, GUSBCFG); 2368 usbcfg |= GUSBCFG_TOUTCAL(7); 2369 dwc2_writel(hsotg, usbcfg, GUSBCFG); 2370 2371 /* Restart the Phy Clock */ 2372 dwc2_writel(hsotg, 0, PCGCTL); 2373 2374 /* Initialize Host Configuration Register */ 2375 dwc2_init_fs_ls_pclk_sel(hsotg); 2376 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 2377 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) { 2378 hcfg = dwc2_readl(hsotg, HCFG); 2379 hcfg |= HCFG_FSLSSUPP; 2380 dwc2_writel(hsotg, hcfg, HCFG); 2381 } 2382 2383 /* 2384 * This bit allows dynamic reloading of the HFIR register during 2385 * runtime. This bit needs to be programmed during initial configuration 2386 * and its value must not be changed during runtime. 2387 */ 2388 if (hsotg->params.reload_ctl) { 2389 hfir = dwc2_readl(hsotg, HFIR); 2390 hfir |= HFIR_RLDCTRL; 2391 dwc2_writel(hsotg, hfir, HFIR); 2392 } 2393 2394 if (hsotg->params.dma_desc_enable) { 2395 u32 op_mode = hsotg->hw_params.op_mode; 2396 2397 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a || 2398 !hsotg->hw_params.dma_desc_enable || 2399 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE || 2400 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE || 2401 op_mode == GHWCFG2_OP_MODE_UNDEFINED) { 2402 dev_err(hsotg->dev, 2403 "Hardware does not support descriptor DMA mode -\n"); 2404 dev_err(hsotg->dev, 2405 "falling back to buffer DMA mode.\n"); 2406 hsotg->params.dma_desc_enable = false; 2407 } else { 2408 hcfg = dwc2_readl(hsotg, HCFG); 2409 hcfg |= HCFG_DESCDMA; 2410 dwc2_writel(hsotg, hcfg, HCFG); 2411 } 2412 } 2413 2414 /* Configure data FIFO sizes */ 2415 dwc2_config_fifos(hsotg); 2416 2417 /* TODO - check this */ 2418 /* Clear Host Set HNP Enable in the OTG Control Register */ 2419 otgctl = dwc2_readl(hsotg, GOTGCTL); 2420 otgctl &= ~GOTGCTL_HSTSETHNPEN; 2421 dwc2_writel(hsotg, otgctl, GOTGCTL); 2422 2423 /* Make sure the FIFOs are flushed */ 2424 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */); 2425 dwc2_flush_rx_fifo(hsotg); 2426 2427 /* Clear Host Set HNP Enable in the OTG Control Register */ 2428 otgctl = dwc2_readl(hsotg, GOTGCTL); 2429 otgctl &= ~GOTGCTL_HSTSETHNPEN; 2430 dwc2_writel(hsotg, otgctl, GOTGCTL); 2431 2432 if (!hsotg->params.dma_desc_enable) { 2433 int num_channels, i; 2434 u32 hcchar; 2435 2436 /* Flush out any leftover queued requests */ 2437 num_channels = hsotg->params.host_channels; 2438 for (i = 0; i < num_channels; i++) { 2439 hcchar = dwc2_readl(hsotg, HCCHAR(i)); 2440 hcchar &= ~HCCHAR_CHENA; 2441 hcchar |= HCCHAR_CHDIS; 2442 hcchar &= ~HCCHAR_EPDIR; 2443 dwc2_writel(hsotg, hcchar, HCCHAR(i)); 2444 } 2445 2446 /* Halt all channels to put them into a known state */ 2447 for (i = 0; i < num_channels; i++) { 2448 hcchar = dwc2_readl(hsotg, HCCHAR(i)); 2449 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS; 2450 hcchar &= ~HCCHAR_EPDIR; 2451 dwc2_writel(hsotg, hcchar, HCCHAR(i)); 2452 dev_dbg(hsotg->dev, "%s: Halt channel %d\n", 2453 __func__, i); 2454 2455 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i), 2456 HCCHAR_CHENA, 1000)) { 2457 dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n", 2458 i); 2459 } 2460 } 2461 } 2462 2463 /* Enable ACG feature in host mode, if supported */ 2464 dwc2_enable_acg(hsotg); 2465 2466 /* Turn on the vbus power */ 2467 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state); 2468 if (hsotg->op_state == OTG_STATE_A_HOST) { 2469 u32 hprt0 = dwc2_read_hprt0(hsotg); 2470 2471 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n", 2472 !!(hprt0 & HPRT0_PWR)); 2473 if (!(hprt0 & HPRT0_PWR)) { 2474 hprt0 |= HPRT0_PWR; 2475 dwc2_writel(hsotg, hprt0, HPRT0); 2476 } 2477 } 2478 2479 dwc2_enable_host_interrupts(hsotg); 2480 } 2481 2482 /* 2483 * Initializes dynamic portions of the DWC_otg HCD state 2484 * 2485 * Must be called with interrupt disabled and spinlock held 2486 */ 2487 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg) 2488 { 2489 struct dwc2_host_chan *chan, *chan_tmp; 2490 int num_channels; 2491 int i; 2492 2493 hsotg->flags.d32 = 0; 2494 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active; 2495 2496 if (hsotg->params.uframe_sched) { 2497 hsotg->available_host_channels = 2498 hsotg->params.host_channels; 2499 } else { 2500 hsotg->non_periodic_channels = 0; 2501 hsotg->periodic_channels = 0; 2502 } 2503 2504 /* 2505 * Put all channels in the free channel list and clean up channel 2506 * states 2507 */ 2508 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list, 2509 hc_list_entry) 2510 list_del_init(&chan->hc_list_entry); 2511 2512 num_channels = hsotg->params.host_channels; 2513 for (i = 0; i < num_channels; i++) { 2514 chan = hsotg->hc_ptr_array[i]; 2515 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list); 2516 dwc2_hc_cleanup(hsotg, chan); 2517 } 2518 2519 /* Initialize the DWC core for host mode operation */ 2520 dwc2_core_host_init(hsotg); 2521 } 2522 2523 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg, 2524 struct dwc2_host_chan *chan, 2525 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) 2526 { 2527 int hub_addr, hub_port; 2528 2529 chan->do_split = 1; 2530 chan->xact_pos = qtd->isoc_split_pos; 2531 chan->complete_split = qtd->complete_split; 2532 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port); 2533 chan->hub_addr = (u8)hub_addr; 2534 chan->hub_port = (u8)hub_port; 2535 } 2536 2537 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg, 2538 struct dwc2_host_chan *chan, 2539 struct dwc2_qtd *qtd) 2540 { 2541 struct dwc2_hcd_urb *urb = qtd->urb; 2542 struct dwc2_hcd_iso_packet_desc *frame_desc; 2543 2544 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) { 2545 case USB_ENDPOINT_XFER_CONTROL: 2546 chan->ep_type = USB_ENDPOINT_XFER_CONTROL; 2547 2548 switch (qtd->control_phase) { 2549 case DWC2_CONTROL_SETUP: 2550 dev_vdbg(hsotg->dev, " Control setup transaction\n"); 2551 chan->do_ping = 0; 2552 chan->ep_is_in = 0; 2553 chan->data_pid_start = DWC2_HC_PID_SETUP; 2554 if (hsotg->params.host_dma) 2555 chan->xfer_dma = urb->setup_dma; 2556 else 2557 chan->xfer_buf = urb->setup_packet; 2558 chan->xfer_len = 8; 2559 break; 2560 2561 case DWC2_CONTROL_DATA: 2562 dev_vdbg(hsotg->dev, " Control data transaction\n"); 2563 chan->data_pid_start = qtd->data_toggle; 2564 break; 2565 2566 case DWC2_CONTROL_STATUS: 2567 /* 2568 * Direction is opposite of data direction or IN if no 2569 * data 2570 */ 2571 dev_vdbg(hsotg->dev, " Control status transaction\n"); 2572 if (urb->length == 0) 2573 chan->ep_is_in = 1; 2574 else 2575 chan->ep_is_in = 2576 dwc2_hcd_is_pipe_out(&urb->pipe_info); 2577 if (chan->ep_is_in) 2578 chan->do_ping = 0; 2579 chan->data_pid_start = DWC2_HC_PID_DATA1; 2580 chan->xfer_len = 0; 2581 if (hsotg->params.host_dma) 2582 chan->xfer_dma = hsotg->status_buf_dma; 2583 else 2584 chan->xfer_buf = hsotg->status_buf; 2585 break; 2586 } 2587 break; 2588 2589 case USB_ENDPOINT_XFER_BULK: 2590 chan->ep_type = USB_ENDPOINT_XFER_BULK; 2591 break; 2592 2593 case USB_ENDPOINT_XFER_INT: 2594 chan->ep_type = USB_ENDPOINT_XFER_INT; 2595 break; 2596 2597 case USB_ENDPOINT_XFER_ISOC: 2598 chan->ep_type = USB_ENDPOINT_XFER_ISOC; 2599 if (hsotg->params.dma_desc_enable) 2600 break; 2601 2602 frame_desc = &urb->iso_descs[qtd->isoc_frame_index]; 2603 frame_desc->status = 0; 2604 2605 if (hsotg->params.host_dma) { 2606 chan->xfer_dma = urb->dma; 2607 chan->xfer_dma += frame_desc->offset + 2608 qtd->isoc_split_offset; 2609 } else { 2610 chan->xfer_buf = urb->buf; 2611 chan->xfer_buf += frame_desc->offset + 2612 qtd->isoc_split_offset; 2613 } 2614 2615 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset; 2616 2617 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) { 2618 if (chan->xfer_len <= 188) 2619 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL; 2620 else 2621 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN; 2622 } 2623 break; 2624 } 2625 } 2626 2627 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg, 2628 struct dwc2_qh *qh, 2629 struct dwc2_host_chan *chan) 2630 { 2631 if (!hsotg->unaligned_cache || 2632 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE) 2633 return -ENOMEM; 2634 2635 if (!qh->dw_align_buf) { 2636 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache, 2637 GFP_ATOMIC | GFP_DMA); 2638 if (!qh->dw_align_buf) 2639 return -ENOMEM; 2640 } 2641 2642 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf, 2643 DWC2_KMEM_UNALIGNED_BUF_SIZE, 2644 DMA_FROM_DEVICE); 2645 2646 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) { 2647 dev_err(hsotg->dev, "can't map align_buf\n"); 2648 chan->align_buf = 0; 2649 return -EINVAL; 2650 } 2651 2652 chan->align_buf = qh->dw_align_buf_dma; 2653 return 0; 2654 } 2655 2656 #define DWC2_USB_DMA_ALIGN 4 2657 2658 static void dwc2_free_dma_aligned_buffer(struct urb *urb) 2659 { 2660 void *stored_xfer_buffer; 2661 size_t length; 2662 2663 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER)) 2664 return; 2665 2666 /* Restore urb->transfer_buffer from the end of the allocated area */ 2667 memcpy(&stored_xfer_buffer, urb->transfer_buffer + 2668 urb->transfer_buffer_length, sizeof(urb->transfer_buffer)); 2669 2670 if (usb_urb_dir_in(urb)) { 2671 if (usb_pipeisoc(urb->pipe)) 2672 length = urb->transfer_buffer_length; 2673 else 2674 length = urb->actual_length; 2675 2676 memcpy(stored_xfer_buffer, urb->transfer_buffer, length); 2677 } 2678 kfree(urb->transfer_buffer); 2679 urb->transfer_buffer = stored_xfer_buffer; 2680 2681 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER; 2682 } 2683 2684 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags) 2685 { 2686 void *kmalloc_ptr; 2687 size_t kmalloc_size; 2688 2689 if (urb->num_sgs || urb->sg || 2690 urb->transfer_buffer_length == 0 || 2691 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1))) 2692 return 0; 2693 2694 /* 2695 * Allocate a buffer with enough padding for original transfer_buffer 2696 * pointer. This allocation is guaranteed to be aligned properly for 2697 * DMA 2698 */ 2699 kmalloc_size = urb->transfer_buffer_length + 2700 sizeof(urb->transfer_buffer); 2701 2702 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags); 2703 if (!kmalloc_ptr) 2704 return -ENOMEM; 2705 2706 /* 2707 * Position value of original urb->transfer_buffer pointer to the end 2708 * of allocation for later referencing 2709 */ 2710 memcpy(kmalloc_ptr + urb->transfer_buffer_length, 2711 &urb->transfer_buffer, sizeof(urb->transfer_buffer)); 2712 2713 if (usb_urb_dir_out(urb)) 2714 memcpy(kmalloc_ptr, urb->transfer_buffer, 2715 urb->transfer_buffer_length); 2716 urb->transfer_buffer = kmalloc_ptr; 2717 2718 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER; 2719 2720 return 0; 2721 } 2722 2723 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 2724 gfp_t mem_flags) 2725 { 2726 int ret; 2727 2728 /* We assume setup_dma is always aligned; warn if not */ 2729 WARN_ON_ONCE(urb->setup_dma && 2730 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1))); 2731 2732 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags); 2733 if (ret) 2734 return ret; 2735 2736 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 2737 if (ret) 2738 dwc2_free_dma_aligned_buffer(urb); 2739 2740 return ret; 2741 } 2742 2743 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 2744 { 2745 usb_hcd_unmap_urb_for_dma(hcd, urb); 2746 dwc2_free_dma_aligned_buffer(urb); 2747 } 2748 2749 /** 2750 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host 2751 * channel and initializes the host channel to perform the transactions. The 2752 * host channel is removed from the free list. 2753 * 2754 * @hsotg: The HCD state structure 2755 * @qh: Transactions from the first QTD for this QH are selected and assigned 2756 * to a free host channel 2757 */ 2758 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 2759 { 2760 struct dwc2_host_chan *chan; 2761 struct dwc2_hcd_urb *urb; 2762 struct dwc2_qtd *qtd; 2763 2764 if (dbg_qh(qh)) 2765 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh); 2766 2767 if (list_empty(&qh->qtd_list)) { 2768 dev_dbg(hsotg->dev, "No QTDs in QH list\n"); 2769 return -ENOMEM; 2770 } 2771 2772 if (list_empty(&hsotg->free_hc_list)) { 2773 dev_dbg(hsotg->dev, "No free channel to assign\n"); 2774 return -ENOMEM; 2775 } 2776 2777 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan, 2778 hc_list_entry); 2779 2780 /* Remove host channel from free list */ 2781 list_del_init(&chan->hc_list_entry); 2782 2783 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry); 2784 urb = qtd->urb; 2785 qh->channel = chan; 2786 qtd->in_process = 1; 2787 2788 /* 2789 * Use usb_pipedevice to determine device address. This address is 2790 * 0 before the SET_ADDRESS command and the correct address afterward. 2791 */ 2792 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info); 2793 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info); 2794 chan->speed = qh->dev_speed; 2795 chan->max_packet = dwc2_max_packet(qh->maxp); 2796 2797 chan->xfer_started = 0; 2798 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS; 2799 chan->error_state = (qtd->error_count > 0); 2800 chan->halt_on_queue = 0; 2801 chan->halt_pending = 0; 2802 chan->requests = 0; 2803 2804 /* 2805 * The following values may be modified in the transfer type section 2806 * below. The xfer_len value may be reduced when the transfer is 2807 * started to accommodate the max widths of the XferSize and PktCnt 2808 * fields in the HCTSIZn register. 2809 */ 2810 2811 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0); 2812 if (chan->ep_is_in) 2813 chan->do_ping = 0; 2814 else 2815 chan->do_ping = qh->ping_state; 2816 2817 chan->data_pid_start = qh->data_toggle; 2818 chan->multi_count = 1; 2819 2820 if (urb->actual_length > urb->length && 2821 !dwc2_hcd_is_pipe_in(&urb->pipe_info)) 2822 urb->actual_length = urb->length; 2823 2824 if (hsotg->params.host_dma) 2825 chan->xfer_dma = urb->dma + urb->actual_length; 2826 else 2827 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length; 2828 2829 chan->xfer_len = urb->length - urb->actual_length; 2830 chan->xfer_count = 0; 2831 2832 /* Set the split attributes if required */ 2833 if (qh->do_split) 2834 dwc2_hc_init_split(hsotg, chan, qtd, urb); 2835 else 2836 chan->do_split = 0; 2837 2838 /* Set the transfer attributes */ 2839 dwc2_hc_init_xfer(hsotg, chan, qtd); 2840 2841 /* For non-dword aligned buffers */ 2842 if (hsotg->params.host_dma && qh->do_split && 2843 chan->ep_is_in && (chan->xfer_dma & 0x3)) { 2844 dev_vdbg(hsotg->dev, "Non-aligned buffer\n"); 2845 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) { 2846 dev_err(hsotg->dev, 2847 "Failed to allocate memory to handle non-aligned buffer\n"); 2848 /* Add channel back to free list */ 2849 chan->align_buf = 0; 2850 chan->multi_count = 0; 2851 list_add_tail(&chan->hc_list_entry, 2852 &hsotg->free_hc_list); 2853 qtd->in_process = 0; 2854 qh->channel = NULL; 2855 return -ENOMEM; 2856 } 2857 } else { 2858 /* 2859 * We assume that DMA is always aligned in non-split 2860 * case or split out case. Warn if not. 2861 */ 2862 WARN_ON_ONCE(hsotg->params.host_dma && 2863 (chan->xfer_dma & 0x3)); 2864 chan->align_buf = 0; 2865 } 2866 2867 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 2868 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 2869 /* 2870 * This value may be modified when the transfer is started 2871 * to reflect the actual transfer length 2872 */ 2873 chan->multi_count = dwc2_hb_mult(qh->maxp); 2874 2875 if (hsotg->params.dma_desc_enable) { 2876 chan->desc_list_addr = qh->desc_list_dma; 2877 chan->desc_list_sz = qh->desc_list_sz; 2878 } 2879 2880 dwc2_hc_init(hsotg, chan); 2881 chan->qh = qh; 2882 2883 return 0; 2884 } 2885 2886 /** 2887 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer 2888 * schedule and assigns them to available host channels. Called from the HCD 2889 * interrupt handler functions. 2890 * 2891 * @hsotg: The HCD state structure 2892 * 2893 * Return: The types of new transactions that were assigned to host channels 2894 */ 2895 enum dwc2_transaction_type dwc2_hcd_select_transactions( 2896 struct dwc2_hsotg *hsotg) 2897 { 2898 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE; 2899 struct list_head *qh_ptr; 2900 struct dwc2_qh *qh; 2901 int num_channels; 2902 2903 #ifdef DWC2_DEBUG_SOF 2904 dev_vdbg(hsotg->dev, " Select Transactions\n"); 2905 #endif 2906 2907 /* Process entries in the periodic ready list */ 2908 qh_ptr = hsotg->periodic_sched_ready.next; 2909 while (qh_ptr != &hsotg->periodic_sched_ready) { 2910 if (list_empty(&hsotg->free_hc_list)) 2911 break; 2912 if (hsotg->params.uframe_sched) { 2913 if (hsotg->available_host_channels <= 1) 2914 break; 2915 hsotg->available_host_channels--; 2916 } 2917 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 2918 if (dwc2_assign_and_init_hc(hsotg, qh)) 2919 break; 2920 2921 /* 2922 * Move the QH from the periodic ready schedule to the 2923 * periodic assigned schedule 2924 */ 2925 qh_ptr = qh_ptr->next; 2926 list_move_tail(&qh->qh_list_entry, 2927 &hsotg->periodic_sched_assigned); 2928 ret_val = DWC2_TRANSACTION_PERIODIC; 2929 } 2930 2931 /* 2932 * Process entries in the inactive portion of the non-periodic 2933 * schedule. Some free host channels may not be used if they are 2934 * reserved for periodic transfers. 2935 */ 2936 num_channels = hsotg->params.host_channels; 2937 qh_ptr = hsotg->non_periodic_sched_inactive.next; 2938 while (qh_ptr != &hsotg->non_periodic_sched_inactive) { 2939 if (!hsotg->params.uframe_sched && 2940 hsotg->non_periodic_channels >= num_channels - 2941 hsotg->periodic_channels) 2942 break; 2943 if (list_empty(&hsotg->free_hc_list)) 2944 break; 2945 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 2946 if (hsotg->params.uframe_sched) { 2947 if (hsotg->available_host_channels < 1) 2948 break; 2949 hsotg->available_host_channels--; 2950 } 2951 2952 if (dwc2_assign_and_init_hc(hsotg, qh)) 2953 break; 2954 2955 /* 2956 * Move the QH from the non-periodic inactive schedule to the 2957 * non-periodic active schedule 2958 */ 2959 qh_ptr = qh_ptr->next; 2960 list_move_tail(&qh->qh_list_entry, 2961 &hsotg->non_periodic_sched_active); 2962 2963 if (ret_val == DWC2_TRANSACTION_NONE) 2964 ret_val = DWC2_TRANSACTION_NON_PERIODIC; 2965 else 2966 ret_val = DWC2_TRANSACTION_ALL; 2967 2968 if (!hsotg->params.uframe_sched) 2969 hsotg->non_periodic_channels++; 2970 } 2971 2972 return ret_val; 2973 } 2974 2975 /** 2976 * dwc2_queue_transaction() - Attempts to queue a single transaction request for 2977 * a host channel associated with either a periodic or non-periodic transfer 2978 * 2979 * @hsotg: The HCD state structure 2980 * @chan: Host channel descriptor associated with either a periodic or 2981 * non-periodic transfer 2982 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO 2983 * for periodic transfers or the non-periodic Tx FIFO 2984 * for non-periodic transfers 2985 * 2986 * Return: 1 if a request is queued and more requests may be needed to 2987 * complete the transfer, 0 if no more requests are required for this 2988 * transfer, -1 if there is insufficient space in the Tx FIFO 2989 * 2990 * This function assumes that there is space available in the appropriate 2991 * request queue. For an OUT transfer or SETUP transaction in Slave mode, 2992 * it checks whether space is available in the appropriate Tx FIFO. 2993 * 2994 * Must be called with interrupt disabled and spinlock held 2995 */ 2996 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg, 2997 struct dwc2_host_chan *chan, 2998 u16 fifo_dwords_avail) 2999 { 3000 int retval = 0; 3001 3002 if (chan->do_split) 3003 /* Put ourselves on the list to keep order straight */ 3004 list_move_tail(&chan->split_order_list_entry, 3005 &hsotg->split_order); 3006 3007 if (hsotg->params.host_dma) { 3008 if (hsotg->params.dma_desc_enable) { 3009 if (!chan->xfer_started || 3010 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 3011 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh); 3012 chan->qh->ping_state = 0; 3013 } 3014 } else if (!chan->xfer_started) { 3015 dwc2_hc_start_transfer(hsotg, chan); 3016 chan->qh->ping_state = 0; 3017 } 3018 } else if (chan->halt_pending) { 3019 /* Don't queue a request if the channel has been halted */ 3020 } else if (chan->halt_on_queue) { 3021 dwc2_hc_halt(hsotg, chan, chan->halt_status); 3022 } else if (chan->do_ping) { 3023 if (!chan->xfer_started) 3024 dwc2_hc_start_transfer(hsotg, chan); 3025 } else if (!chan->ep_is_in || 3026 chan->data_pid_start == DWC2_HC_PID_SETUP) { 3027 if ((fifo_dwords_avail * 4) >= chan->max_packet) { 3028 if (!chan->xfer_started) { 3029 dwc2_hc_start_transfer(hsotg, chan); 3030 retval = 1; 3031 } else { 3032 retval = dwc2_hc_continue_transfer(hsotg, chan); 3033 } 3034 } else { 3035 retval = -1; 3036 } 3037 } else { 3038 if (!chan->xfer_started) { 3039 dwc2_hc_start_transfer(hsotg, chan); 3040 retval = 1; 3041 } else { 3042 retval = dwc2_hc_continue_transfer(hsotg, chan); 3043 } 3044 } 3045 3046 return retval; 3047 } 3048 3049 /* 3050 * Processes periodic channels for the next frame and queues transactions for 3051 * these channels to the DWC_otg controller. After queueing transactions, the 3052 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions 3053 * to queue as Periodic Tx FIFO or request queue space becomes available. 3054 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. 3055 * 3056 * Must be called with interrupt disabled and spinlock held 3057 */ 3058 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg) 3059 { 3060 struct list_head *qh_ptr; 3061 struct dwc2_qh *qh; 3062 u32 tx_status; 3063 u32 fspcavail; 3064 u32 gintmsk; 3065 int status; 3066 bool no_queue_space = false; 3067 bool no_fifo_space = false; 3068 u32 qspcavail; 3069 3070 /* If empty list then just adjust interrupt enables */ 3071 if (list_empty(&hsotg->periodic_sched_assigned)) 3072 goto exit; 3073 3074 if (dbg_perio()) 3075 dev_vdbg(hsotg->dev, "Queue periodic transactions\n"); 3076 3077 tx_status = dwc2_readl(hsotg, HPTXSTS); 3078 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3079 TXSTS_QSPCAVAIL_SHIFT; 3080 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3081 TXSTS_FSPCAVAIL_SHIFT; 3082 3083 if (dbg_perio()) { 3084 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n", 3085 qspcavail); 3086 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n", 3087 fspcavail); 3088 } 3089 3090 qh_ptr = hsotg->periodic_sched_assigned.next; 3091 while (qh_ptr != &hsotg->periodic_sched_assigned) { 3092 tx_status = dwc2_readl(hsotg, HPTXSTS); 3093 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3094 TXSTS_QSPCAVAIL_SHIFT; 3095 if (qspcavail == 0) { 3096 no_queue_space = true; 3097 break; 3098 } 3099 3100 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 3101 if (!qh->channel) { 3102 qh_ptr = qh_ptr->next; 3103 continue; 3104 } 3105 3106 /* Make sure EP's TT buffer is clean before queueing qtds */ 3107 if (qh->tt_buffer_dirty) { 3108 qh_ptr = qh_ptr->next; 3109 continue; 3110 } 3111 3112 /* 3113 * Set a flag if we're queuing high-bandwidth in slave mode. 3114 * The flag prevents any halts to get into the request queue in 3115 * the middle of multiple high-bandwidth packets getting queued. 3116 */ 3117 if (!hsotg->params.host_dma && 3118 qh->channel->multi_count > 1) 3119 hsotg->queuing_high_bandwidth = 1; 3120 3121 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3122 TXSTS_FSPCAVAIL_SHIFT; 3123 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); 3124 if (status < 0) { 3125 no_fifo_space = true; 3126 break; 3127 } 3128 3129 /* 3130 * In Slave mode, stay on the current transfer until there is 3131 * nothing more to do or the high-bandwidth request count is 3132 * reached. In DMA mode, only need to queue one request. The 3133 * controller automatically handles multiple packets for 3134 * high-bandwidth transfers. 3135 */ 3136 if (hsotg->params.host_dma || status == 0 || 3137 qh->channel->requests == qh->channel->multi_count) { 3138 qh_ptr = qh_ptr->next; 3139 /* 3140 * Move the QH from the periodic assigned schedule to 3141 * the periodic queued schedule 3142 */ 3143 list_move_tail(&qh->qh_list_entry, 3144 &hsotg->periodic_sched_queued); 3145 3146 /* done queuing high bandwidth */ 3147 hsotg->queuing_high_bandwidth = 0; 3148 } 3149 } 3150 3151 exit: 3152 if (no_queue_space || no_fifo_space || 3153 (!hsotg->params.host_dma && 3154 !list_empty(&hsotg->periodic_sched_assigned))) { 3155 /* 3156 * May need to queue more transactions as the request 3157 * queue or Tx FIFO empties. Enable the periodic Tx 3158 * FIFO empty interrupt. (Always use the half-empty 3159 * level to ensure that new requests are loaded as 3160 * soon as possible.) 3161 */ 3162 gintmsk = dwc2_readl(hsotg, GINTMSK); 3163 if (!(gintmsk & GINTSTS_PTXFEMP)) { 3164 gintmsk |= GINTSTS_PTXFEMP; 3165 dwc2_writel(hsotg, gintmsk, GINTMSK); 3166 } 3167 } else { 3168 /* 3169 * Disable the Tx FIFO empty interrupt since there are 3170 * no more transactions that need to be queued right 3171 * now. This function is called from interrupt 3172 * handlers to queue more transactions as transfer 3173 * states change. 3174 */ 3175 gintmsk = dwc2_readl(hsotg, GINTMSK); 3176 if (gintmsk & GINTSTS_PTXFEMP) { 3177 gintmsk &= ~GINTSTS_PTXFEMP; 3178 dwc2_writel(hsotg, gintmsk, GINTMSK); 3179 } 3180 } 3181 } 3182 3183 /* 3184 * Processes active non-periodic channels and queues transactions for these 3185 * channels to the DWC_otg controller. After queueing transactions, the NP Tx 3186 * FIFO Empty interrupt is enabled if there are more transactions to queue as 3187 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx 3188 * FIFO Empty interrupt is disabled. 3189 * 3190 * Must be called with interrupt disabled and spinlock held 3191 */ 3192 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg) 3193 { 3194 struct list_head *orig_qh_ptr; 3195 struct dwc2_qh *qh; 3196 u32 tx_status; 3197 u32 qspcavail; 3198 u32 fspcavail; 3199 u32 gintmsk; 3200 int status; 3201 int no_queue_space = 0; 3202 int no_fifo_space = 0; 3203 int more_to_do = 0; 3204 3205 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n"); 3206 3207 tx_status = dwc2_readl(hsotg, GNPTXSTS); 3208 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3209 TXSTS_QSPCAVAIL_SHIFT; 3210 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3211 TXSTS_FSPCAVAIL_SHIFT; 3212 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n", 3213 qspcavail); 3214 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n", 3215 fspcavail); 3216 3217 /* 3218 * Keep track of the starting point. Skip over the start-of-list 3219 * entry. 3220 */ 3221 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active) 3222 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; 3223 orig_qh_ptr = hsotg->non_periodic_qh_ptr; 3224 3225 /* 3226 * Process once through the active list or until no more space is 3227 * available in the request queue or the Tx FIFO 3228 */ 3229 do { 3230 tx_status = dwc2_readl(hsotg, GNPTXSTS); 3231 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3232 TXSTS_QSPCAVAIL_SHIFT; 3233 if (!hsotg->params.host_dma && qspcavail == 0) { 3234 no_queue_space = 1; 3235 break; 3236 } 3237 3238 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh, 3239 qh_list_entry); 3240 if (!qh->channel) 3241 goto next; 3242 3243 /* Make sure EP's TT buffer is clean before queueing qtds */ 3244 if (qh->tt_buffer_dirty) 3245 goto next; 3246 3247 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3248 TXSTS_FSPCAVAIL_SHIFT; 3249 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); 3250 3251 if (status > 0) { 3252 more_to_do = 1; 3253 } else if (status < 0) { 3254 no_fifo_space = 1; 3255 break; 3256 } 3257 next: 3258 /* Advance to next QH, skipping start-of-list entry */ 3259 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; 3260 if (hsotg->non_periodic_qh_ptr == 3261 &hsotg->non_periodic_sched_active) 3262 hsotg->non_periodic_qh_ptr = 3263 hsotg->non_periodic_qh_ptr->next; 3264 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr); 3265 3266 if (!hsotg->params.host_dma) { 3267 tx_status = dwc2_readl(hsotg, GNPTXSTS); 3268 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3269 TXSTS_QSPCAVAIL_SHIFT; 3270 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3271 TXSTS_FSPCAVAIL_SHIFT; 3272 dev_vdbg(hsotg->dev, 3273 " NP Tx Req Queue Space Avail (after queue): %d\n", 3274 qspcavail); 3275 dev_vdbg(hsotg->dev, 3276 " NP Tx FIFO Space Avail (after queue): %d\n", 3277 fspcavail); 3278 3279 if (more_to_do || no_queue_space || no_fifo_space) { 3280 /* 3281 * May need to queue more transactions as the request 3282 * queue or Tx FIFO empties. Enable the non-periodic 3283 * Tx FIFO empty interrupt. (Always use the half-empty 3284 * level to ensure that new requests are loaded as 3285 * soon as possible.) 3286 */ 3287 gintmsk = dwc2_readl(hsotg, GINTMSK); 3288 gintmsk |= GINTSTS_NPTXFEMP; 3289 dwc2_writel(hsotg, gintmsk, GINTMSK); 3290 } else { 3291 /* 3292 * Disable the Tx FIFO empty interrupt since there are 3293 * no more transactions that need to be queued right 3294 * now. This function is called from interrupt 3295 * handlers to queue more transactions as transfer 3296 * states change. 3297 */ 3298 gintmsk = dwc2_readl(hsotg, GINTMSK); 3299 gintmsk &= ~GINTSTS_NPTXFEMP; 3300 dwc2_writel(hsotg, gintmsk, GINTMSK); 3301 } 3302 } 3303 } 3304 3305 /** 3306 * dwc2_hcd_queue_transactions() - Processes the currently active host channels 3307 * and queues transactions for these channels to the DWC_otg controller. Called 3308 * from the HCD interrupt handler functions. 3309 * 3310 * @hsotg: The HCD state structure 3311 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic, 3312 * or both) 3313 * 3314 * Must be called with interrupt disabled and spinlock held 3315 */ 3316 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, 3317 enum dwc2_transaction_type tr_type) 3318 { 3319 #ifdef DWC2_DEBUG_SOF 3320 dev_vdbg(hsotg->dev, "Queue Transactions\n"); 3321 #endif 3322 /* Process host channels associated with periodic transfers */ 3323 if (tr_type == DWC2_TRANSACTION_PERIODIC || 3324 tr_type == DWC2_TRANSACTION_ALL) 3325 dwc2_process_periodic_channels(hsotg); 3326 3327 /* Process host channels associated with non-periodic transfers */ 3328 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC || 3329 tr_type == DWC2_TRANSACTION_ALL) { 3330 if (!list_empty(&hsotg->non_periodic_sched_active)) { 3331 dwc2_process_non_periodic_channels(hsotg); 3332 } else { 3333 /* 3334 * Ensure NP Tx FIFO empty interrupt is disabled when 3335 * there are no non-periodic transfers to process 3336 */ 3337 u32 gintmsk = dwc2_readl(hsotg, GINTMSK); 3338 3339 gintmsk &= ~GINTSTS_NPTXFEMP; 3340 dwc2_writel(hsotg, gintmsk, GINTMSK); 3341 } 3342 } 3343 } 3344 3345 static void dwc2_conn_id_status_change(struct work_struct *work) 3346 { 3347 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 3348 wf_otg); 3349 u32 count = 0; 3350 u32 gotgctl; 3351 unsigned long flags; 3352 3353 dev_dbg(hsotg->dev, "%s()\n", __func__); 3354 3355 gotgctl = dwc2_readl(hsotg, GOTGCTL); 3356 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl); 3357 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n", 3358 !!(gotgctl & GOTGCTL_CONID_B)); 3359 3360 /* B-Device connector (Device Mode) */ 3361 if (gotgctl & GOTGCTL_CONID_B) { 3362 dwc2_vbus_supply_exit(hsotg); 3363 /* Wait for switch to device mode */ 3364 dev_dbg(hsotg->dev, "connId B\n"); 3365 if (hsotg->bus_suspended) { 3366 dev_info(hsotg->dev, 3367 "Do port resume before switching to device mode\n"); 3368 dwc2_port_resume(hsotg); 3369 } 3370 while (!dwc2_is_device_mode(hsotg)) { 3371 dev_info(hsotg->dev, 3372 "Waiting for Peripheral Mode, Mode=%s\n", 3373 dwc2_is_host_mode(hsotg) ? "Host" : 3374 "Peripheral"); 3375 msleep(20); 3376 /* 3377 * Sometimes the initial GOTGCTRL read is wrong, so 3378 * check it again and jump to host mode if that was 3379 * the case. 3380 */ 3381 gotgctl = dwc2_readl(hsotg, GOTGCTL); 3382 if (!(gotgctl & GOTGCTL_CONID_B)) 3383 goto host; 3384 if (++count > 250) 3385 break; 3386 } 3387 if (count > 250) 3388 dev_err(hsotg->dev, 3389 "Connection id status change timed out\n"); 3390 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 3391 dwc2_core_init(hsotg, false); 3392 dwc2_enable_global_interrupts(hsotg); 3393 spin_lock_irqsave(&hsotg->lock, flags); 3394 dwc2_hsotg_core_init_disconnected(hsotg, false); 3395 spin_unlock_irqrestore(&hsotg->lock, flags); 3396 /* Enable ACG feature in device mode,if supported */ 3397 dwc2_enable_acg(hsotg); 3398 dwc2_hsotg_core_connect(hsotg); 3399 } else { 3400 host: 3401 /* A-Device connector (Host Mode) */ 3402 dev_dbg(hsotg->dev, "connId A\n"); 3403 while (!dwc2_is_host_mode(hsotg)) { 3404 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n", 3405 dwc2_is_host_mode(hsotg) ? 3406 "Host" : "Peripheral"); 3407 msleep(20); 3408 if (++count > 250) 3409 break; 3410 } 3411 if (count > 250) 3412 dev_err(hsotg->dev, 3413 "Connection id status change timed out\n"); 3414 3415 spin_lock_irqsave(&hsotg->lock, flags); 3416 dwc2_hsotg_disconnect(hsotg); 3417 spin_unlock_irqrestore(&hsotg->lock, flags); 3418 3419 hsotg->op_state = OTG_STATE_A_HOST; 3420 /* Initialize the Core for Host mode */ 3421 dwc2_core_init(hsotg, false); 3422 dwc2_enable_global_interrupts(hsotg); 3423 dwc2_hcd_start(hsotg); 3424 } 3425 } 3426 3427 static void dwc2_wakeup_detected(struct timer_list *t) 3428 { 3429 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer); 3430 u32 hprt0; 3431 3432 dev_dbg(hsotg->dev, "%s()\n", __func__); 3433 3434 /* 3435 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms 3436 * so that OPT tests pass with all PHYs.) 3437 */ 3438 hprt0 = dwc2_read_hprt0(hsotg); 3439 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0); 3440 hprt0 &= ~HPRT0_RES; 3441 dwc2_writel(hsotg, hprt0, HPRT0); 3442 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n", 3443 dwc2_readl(hsotg, HPRT0)); 3444 3445 dwc2_hcd_rem_wakeup(hsotg); 3446 hsotg->bus_suspended = false; 3447 3448 /* Change to L0 state */ 3449 hsotg->lx_state = DWC2_L0; 3450 } 3451 3452 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg) 3453 { 3454 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 3455 3456 return hcd->self.b_hnp_enable; 3457 } 3458 3459 /* Must NOT be called with interrupt disabled or spinlock held */ 3460 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex) 3461 { 3462 unsigned long flags; 3463 u32 hprt0; 3464 u32 pcgctl; 3465 u32 gotgctl; 3466 3467 dev_dbg(hsotg->dev, "%s()\n", __func__); 3468 3469 spin_lock_irqsave(&hsotg->lock, flags); 3470 3471 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) { 3472 gotgctl = dwc2_readl(hsotg, GOTGCTL); 3473 gotgctl |= GOTGCTL_HSTSETHNPEN; 3474 dwc2_writel(hsotg, gotgctl, GOTGCTL); 3475 hsotg->op_state = OTG_STATE_A_SUSPEND; 3476 } 3477 3478 hprt0 = dwc2_read_hprt0(hsotg); 3479 hprt0 |= HPRT0_SUSP; 3480 dwc2_writel(hsotg, hprt0, HPRT0); 3481 3482 hsotg->bus_suspended = true; 3483 3484 /* 3485 * If power_down is supported, Phy clock will be suspended 3486 * after registers are backuped. 3487 */ 3488 if (!hsotg->params.power_down) { 3489 /* Suspend the Phy Clock */ 3490 pcgctl = dwc2_readl(hsotg, PCGCTL); 3491 pcgctl |= PCGCTL_STOPPCLK; 3492 dwc2_writel(hsotg, pcgctl, PCGCTL); 3493 udelay(10); 3494 } 3495 3496 /* For HNP the bus must be suspended for at least 200ms */ 3497 if (dwc2_host_is_b_hnp_enabled(hsotg)) { 3498 pcgctl = dwc2_readl(hsotg, PCGCTL); 3499 pcgctl &= ~PCGCTL_STOPPCLK; 3500 dwc2_writel(hsotg, pcgctl, PCGCTL); 3501 3502 spin_unlock_irqrestore(&hsotg->lock, flags); 3503 3504 msleep(200); 3505 } else { 3506 spin_unlock_irqrestore(&hsotg->lock, flags); 3507 } 3508 } 3509 3510 /* Must NOT be called with interrupt disabled or spinlock held */ 3511 static void dwc2_port_resume(struct dwc2_hsotg *hsotg) 3512 { 3513 unsigned long flags; 3514 u32 hprt0; 3515 u32 pcgctl; 3516 3517 spin_lock_irqsave(&hsotg->lock, flags); 3518 3519 /* 3520 * If power_down is supported, Phy clock is already resumed 3521 * after registers restore. 3522 */ 3523 if (!hsotg->params.power_down) { 3524 pcgctl = dwc2_readl(hsotg, PCGCTL); 3525 pcgctl &= ~PCGCTL_STOPPCLK; 3526 dwc2_writel(hsotg, pcgctl, PCGCTL); 3527 spin_unlock_irqrestore(&hsotg->lock, flags); 3528 msleep(20); 3529 spin_lock_irqsave(&hsotg->lock, flags); 3530 } 3531 3532 hprt0 = dwc2_read_hprt0(hsotg); 3533 hprt0 |= HPRT0_RES; 3534 hprt0 &= ~HPRT0_SUSP; 3535 dwc2_writel(hsotg, hprt0, HPRT0); 3536 spin_unlock_irqrestore(&hsotg->lock, flags); 3537 3538 msleep(USB_RESUME_TIMEOUT); 3539 3540 spin_lock_irqsave(&hsotg->lock, flags); 3541 hprt0 = dwc2_read_hprt0(hsotg); 3542 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP); 3543 dwc2_writel(hsotg, hprt0, HPRT0); 3544 hsotg->bus_suspended = false; 3545 spin_unlock_irqrestore(&hsotg->lock, flags); 3546 } 3547 3548 /* Handles hub class-specific requests */ 3549 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq, 3550 u16 wvalue, u16 windex, char *buf, u16 wlength) 3551 { 3552 struct usb_hub_descriptor *hub_desc; 3553 int retval = 0; 3554 u32 hprt0; 3555 u32 port_status; 3556 u32 speed; 3557 u32 pcgctl; 3558 u32 pwr; 3559 3560 switch (typereq) { 3561 case ClearHubFeature: 3562 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue); 3563 3564 switch (wvalue) { 3565 case C_HUB_LOCAL_POWER: 3566 case C_HUB_OVER_CURRENT: 3567 /* Nothing required here */ 3568 break; 3569 3570 default: 3571 retval = -EINVAL; 3572 dev_err(hsotg->dev, 3573 "ClearHubFeature request %1xh unknown\n", 3574 wvalue); 3575 } 3576 break; 3577 3578 case ClearPortFeature: 3579 if (wvalue != USB_PORT_FEAT_L1) 3580 if (!windex || windex > 1) 3581 goto error; 3582 switch (wvalue) { 3583 case USB_PORT_FEAT_ENABLE: 3584 dev_dbg(hsotg->dev, 3585 "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); 3586 hprt0 = dwc2_read_hprt0(hsotg); 3587 hprt0 |= HPRT0_ENA; 3588 dwc2_writel(hsotg, hprt0, HPRT0); 3589 break; 3590 3591 case USB_PORT_FEAT_SUSPEND: 3592 dev_dbg(hsotg->dev, 3593 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); 3594 3595 if (hsotg->bus_suspended) { 3596 if (hsotg->hibernated) 3597 dwc2_exit_hibernation(hsotg, 0, 0, 1); 3598 else 3599 dwc2_port_resume(hsotg); 3600 } 3601 break; 3602 3603 case USB_PORT_FEAT_POWER: 3604 dev_dbg(hsotg->dev, 3605 "ClearPortFeature USB_PORT_FEAT_POWER\n"); 3606 hprt0 = dwc2_read_hprt0(hsotg); 3607 pwr = hprt0 & HPRT0_PWR; 3608 hprt0 &= ~HPRT0_PWR; 3609 dwc2_writel(hsotg, hprt0, HPRT0); 3610 if (pwr) 3611 dwc2_vbus_supply_exit(hsotg); 3612 break; 3613 3614 case USB_PORT_FEAT_INDICATOR: 3615 dev_dbg(hsotg->dev, 3616 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); 3617 /* Port indicator not supported */ 3618 break; 3619 3620 case USB_PORT_FEAT_C_CONNECTION: 3621 /* 3622 * Clears driver's internal Connect Status Change flag 3623 */ 3624 dev_dbg(hsotg->dev, 3625 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); 3626 hsotg->flags.b.port_connect_status_change = 0; 3627 break; 3628 3629 case USB_PORT_FEAT_C_RESET: 3630 /* Clears driver's internal Port Reset Change flag */ 3631 dev_dbg(hsotg->dev, 3632 "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); 3633 hsotg->flags.b.port_reset_change = 0; 3634 break; 3635 3636 case USB_PORT_FEAT_C_ENABLE: 3637 /* 3638 * Clears the driver's internal Port Enable/Disable 3639 * Change flag 3640 */ 3641 dev_dbg(hsotg->dev, 3642 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); 3643 hsotg->flags.b.port_enable_change = 0; 3644 break; 3645 3646 case USB_PORT_FEAT_C_SUSPEND: 3647 /* 3648 * Clears the driver's internal Port Suspend Change 3649 * flag, which is set when resume signaling on the host 3650 * port is complete 3651 */ 3652 dev_dbg(hsotg->dev, 3653 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); 3654 hsotg->flags.b.port_suspend_change = 0; 3655 break; 3656 3657 case USB_PORT_FEAT_C_PORT_L1: 3658 dev_dbg(hsotg->dev, 3659 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n"); 3660 hsotg->flags.b.port_l1_change = 0; 3661 break; 3662 3663 case USB_PORT_FEAT_C_OVER_CURRENT: 3664 dev_dbg(hsotg->dev, 3665 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); 3666 hsotg->flags.b.port_over_current_change = 0; 3667 break; 3668 3669 default: 3670 retval = -EINVAL; 3671 dev_err(hsotg->dev, 3672 "ClearPortFeature request %1xh unknown or unsupported\n", 3673 wvalue); 3674 } 3675 break; 3676 3677 case GetHubDescriptor: 3678 dev_dbg(hsotg->dev, "GetHubDescriptor\n"); 3679 hub_desc = (struct usb_hub_descriptor *)buf; 3680 hub_desc->bDescLength = 9; 3681 hub_desc->bDescriptorType = USB_DT_HUB; 3682 hub_desc->bNbrPorts = 1; 3683 hub_desc->wHubCharacteristics = 3684 cpu_to_le16(HUB_CHAR_COMMON_LPSM | 3685 HUB_CHAR_INDV_PORT_OCPM); 3686 hub_desc->bPwrOn2PwrGood = 1; 3687 hub_desc->bHubContrCurrent = 0; 3688 hub_desc->u.hs.DeviceRemovable[0] = 0; 3689 hub_desc->u.hs.DeviceRemovable[1] = 0xff; 3690 break; 3691 3692 case GetHubStatus: 3693 dev_dbg(hsotg->dev, "GetHubStatus\n"); 3694 memset(buf, 0, 4); 3695 break; 3696 3697 case GetPortStatus: 3698 dev_vdbg(hsotg->dev, 3699 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex, 3700 hsotg->flags.d32); 3701 if (!windex || windex > 1) 3702 goto error; 3703 3704 port_status = 0; 3705 if (hsotg->flags.b.port_connect_status_change) 3706 port_status |= USB_PORT_STAT_C_CONNECTION << 16; 3707 if (hsotg->flags.b.port_enable_change) 3708 port_status |= USB_PORT_STAT_C_ENABLE << 16; 3709 if (hsotg->flags.b.port_suspend_change) 3710 port_status |= USB_PORT_STAT_C_SUSPEND << 16; 3711 if (hsotg->flags.b.port_l1_change) 3712 port_status |= USB_PORT_STAT_C_L1 << 16; 3713 if (hsotg->flags.b.port_reset_change) 3714 port_status |= USB_PORT_STAT_C_RESET << 16; 3715 if (hsotg->flags.b.port_over_current_change) { 3716 dev_warn(hsotg->dev, "Overcurrent change detected\n"); 3717 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3718 } 3719 3720 if (!hsotg->flags.b.port_connect_status) { 3721 /* 3722 * The port is disconnected, which means the core is 3723 * either in device mode or it soon will be. Just 3724 * return 0's for the remainder of the port status 3725 * since the port register can't be read if the core 3726 * is in device mode. 3727 */ 3728 *(__le32 *)buf = cpu_to_le32(port_status); 3729 break; 3730 } 3731 3732 hprt0 = dwc2_readl(hsotg, HPRT0); 3733 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0); 3734 3735 if (hprt0 & HPRT0_CONNSTS) 3736 port_status |= USB_PORT_STAT_CONNECTION; 3737 if (hprt0 & HPRT0_ENA) 3738 port_status |= USB_PORT_STAT_ENABLE; 3739 if (hprt0 & HPRT0_SUSP) 3740 port_status |= USB_PORT_STAT_SUSPEND; 3741 if (hprt0 & HPRT0_OVRCURRACT) 3742 port_status |= USB_PORT_STAT_OVERCURRENT; 3743 if (hprt0 & HPRT0_RST) 3744 port_status |= USB_PORT_STAT_RESET; 3745 if (hprt0 & HPRT0_PWR) 3746 port_status |= USB_PORT_STAT_POWER; 3747 3748 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 3749 if (speed == HPRT0_SPD_HIGH_SPEED) 3750 port_status |= USB_PORT_STAT_HIGH_SPEED; 3751 else if (speed == HPRT0_SPD_LOW_SPEED) 3752 port_status |= USB_PORT_STAT_LOW_SPEED; 3753 3754 if (hprt0 & HPRT0_TSTCTL_MASK) 3755 port_status |= USB_PORT_STAT_TEST; 3756 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ 3757 3758 if (hsotg->params.dma_desc_fs_enable) { 3759 /* 3760 * Enable descriptor DMA only if a full speed 3761 * device is connected. 3762 */ 3763 if (hsotg->new_connection && 3764 ((port_status & 3765 (USB_PORT_STAT_CONNECTION | 3766 USB_PORT_STAT_HIGH_SPEED | 3767 USB_PORT_STAT_LOW_SPEED)) == 3768 USB_PORT_STAT_CONNECTION)) { 3769 u32 hcfg; 3770 3771 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n"); 3772 hsotg->params.dma_desc_enable = true; 3773 hcfg = dwc2_readl(hsotg, HCFG); 3774 hcfg |= HCFG_DESCDMA; 3775 dwc2_writel(hsotg, hcfg, HCFG); 3776 hsotg->new_connection = false; 3777 } 3778 } 3779 3780 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status); 3781 *(__le32 *)buf = cpu_to_le32(port_status); 3782 break; 3783 3784 case SetHubFeature: 3785 dev_dbg(hsotg->dev, "SetHubFeature\n"); 3786 /* No HUB features supported */ 3787 break; 3788 3789 case SetPortFeature: 3790 dev_dbg(hsotg->dev, "SetPortFeature\n"); 3791 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1)) 3792 goto error; 3793 3794 if (!hsotg->flags.b.port_connect_status) { 3795 /* 3796 * The port is disconnected, which means the core is 3797 * either in device mode or it soon will be. Just 3798 * return without doing anything since the port 3799 * register can't be written if the core is in device 3800 * mode. 3801 */ 3802 break; 3803 } 3804 3805 switch (wvalue) { 3806 case USB_PORT_FEAT_SUSPEND: 3807 dev_dbg(hsotg->dev, 3808 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); 3809 if (windex != hsotg->otg_port) 3810 goto error; 3811 if (hsotg->params.power_down == 2) 3812 dwc2_enter_hibernation(hsotg, 1); 3813 else 3814 dwc2_port_suspend(hsotg, windex); 3815 break; 3816 3817 case USB_PORT_FEAT_POWER: 3818 dev_dbg(hsotg->dev, 3819 "SetPortFeature - USB_PORT_FEAT_POWER\n"); 3820 hprt0 = dwc2_read_hprt0(hsotg); 3821 pwr = hprt0 & HPRT0_PWR; 3822 hprt0 |= HPRT0_PWR; 3823 dwc2_writel(hsotg, hprt0, HPRT0); 3824 if (!pwr) 3825 dwc2_vbus_supply_init(hsotg); 3826 break; 3827 3828 case USB_PORT_FEAT_RESET: 3829 if (hsotg->params.power_down == 2 && 3830 hsotg->hibernated) 3831 dwc2_exit_hibernation(hsotg, 0, 1, 1); 3832 hprt0 = dwc2_read_hprt0(hsotg); 3833 dev_dbg(hsotg->dev, 3834 "SetPortFeature - USB_PORT_FEAT_RESET\n"); 3835 pcgctl = dwc2_readl(hsotg, PCGCTL); 3836 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK); 3837 dwc2_writel(hsotg, pcgctl, PCGCTL); 3838 /* ??? Original driver does this */ 3839 dwc2_writel(hsotg, 0, PCGCTL); 3840 3841 hprt0 = dwc2_read_hprt0(hsotg); 3842 pwr = hprt0 & HPRT0_PWR; 3843 /* Clear suspend bit if resetting from suspend state */ 3844 hprt0 &= ~HPRT0_SUSP; 3845 3846 /* 3847 * When B-Host the Port reset bit is set in the Start 3848 * HCD Callback function, so that the reset is started 3849 * within 1ms of the HNP success interrupt 3850 */ 3851 if (!dwc2_hcd_is_b_host(hsotg)) { 3852 hprt0 |= HPRT0_PWR | HPRT0_RST; 3853 dev_dbg(hsotg->dev, 3854 "In host mode, hprt0=%08x\n", hprt0); 3855 dwc2_writel(hsotg, hprt0, HPRT0); 3856 if (!pwr) 3857 dwc2_vbus_supply_init(hsotg); 3858 } 3859 3860 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ 3861 msleep(50); 3862 hprt0 &= ~HPRT0_RST; 3863 dwc2_writel(hsotg, hprt0, HPRT0); 3864 hsotg->lx_state = DWC2_L0; /* Now back to On state */ 3865 break; 3866 3867 case USB_PORT_FEAT_INDICATOR: 3868 dev_dbg(hsotg->dev, 3869 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); 3870 /* Not supported */ 3871 break; 3872 3873 case USB_PORT_FEAT_TEST: 3874 hprt0 = dwc2_read_hprt0(hsotg); 3875 dev_dbg(hsotg->dev, 3876 "SetPortFeature - USB_PORT_FEAT_TEST\n"); 3877 hprt0 &= ~HPRT0_TSTCTL_MASK; 3878 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT; 3879 dwc2_writel(hsotg, hprt0, HPRT0); 3880 break; 3881 3882 default: 3883 retval = -EINVAL; 3884 dev_err(hsotg->dev, 3885 "SetPortFeature %1xh unknown or unsupported\n", 3886 wvalue); 3887 break; 3888 } 3889 break; 3890 3891 default: 3892 error: 3893 retval = -EINVAL; 3894 dev_dbg(hsotg->dev, 3895 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n", 3896 typereq, windex, wvalue); 3897 break; 3898 } 3899 3900 return retval; 3901 } 3902 3903 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port) 3904 { 3905 int retval; 3906 3907 if (port != 1) 3908 return -EINVAL; 3909 3910 retval = (hsotg->flags.b.port_connect_status_change || 3911 hsotg->flags.b.port_reset_change || 3912 hsotg->flags.b.port_enable_change || 3913 hsotg->flags.b.port_suspend_change || 3914 hsotg->flags.b.port_over_current_change); 3915 3916 if (retval) { 3917 dev_dbg(hsotg->dev, 3918 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n"); 3919 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n", 3920 hsotg->flags.b.port_connect_status_change); 3921 dev_dbg(hsotg->dev, " port_reset_change: %d\n", 3922 hsotg->flags.b.port_reset_change); 3923 dev_dbg(hsotg->dev, " port_enable_change: %d\n", 3924 hsotg->flags.b.port_enable_change); 3925 dev_dbg(hsotg->dev, " port_suspend_change: %d\n", 3926 hsotg->flags.b.port_suspend_change); 3927 dev_dbg(hsotg->dev, " port_over_current_change: %d\n", 3928 hsotg->flags.b.port_over_current_change); 3929 } 3930 3931 return retval; 3932 } 3933 3934 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) 3935 { 3936 u32 hfnum = dwc2_readl(hsotg, HFNUM); 3937 3938 #ifdef DWC2_DEBUG_SOF 3939 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n", 3940 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT); 3941 #endif 3942 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; 3943 } 3944 3945 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us) 3946 { 3947 u32 hprt = dwc2_readl(hsotg, HPRT0); 3948 u32 hfir = dwc2_readl(hsotg, HFIR); 3949 u32 hfnum = dwc2_readl(hsotg, HFNUM); 3950 unsigned int us_per_frame; 3951 unsigned int frame_number; 3952 unsigned int remaining; 3953 unsigned int interval; 3954 unsigned int phy_clks; 3955 3956 /* High speed has 125 us per (micro) frame; others are 1 ms per */ 3957 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125; 3958 3959 /* Extract fields */ 3960 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; 3961 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT; 3962 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT; 3963 3964 /* 3965 * Number of phy clocks since the last tick of the frame number after 3966 * "us" has passed. 3967 */ 3968 phy_clks = (interval - remaining) + 3969 DIV_ROUND_UP(interval * us, us_per_frame); 3970 3971 return dwc2_frame_num_inc(frame_number, phy_clks / interval); 3972 } 3973 3974 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg) 3975 { 3976 return hsotg->op_state == OTG_STATE_B_HOST; 3977 } 3978 3979 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg, 3980 int iso_desc_count, 3981 gfp_t mem_flags) 3982 { 3983 struct dwc2_hcd_urb *urb; 3984 3985 urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags); 3986 if (urb) 3987 urb->packet_count = iso_desc_count; 3988 return urb; 3989 } 3990 3991 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg, 3992 struct dwc2_hcd_urb *urb, u8 dev_addr, 3993 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps) 3994 { 3995 if (dbg_perio() || 3996 ep_type == USB_ENDPOINT_XFER_BULK || 3997 ep_type == USB_ENDPOINT_XFER_CONTROL) 3998 dev_vdbg(hsotg->dev, 3999 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n", 4000 dev_addr, ep_num, ep_dir, ep_type, mps); 4001 urb->pipe_info.dev_addr = dev_addr; 4002 urb->pipe_info.ep_num = ep_num; 4003 urb->pipe_info.pipe_type = ep_type; 4004 urb->pipe_info.pipe_dir = ep_dir; 4005 urb->pipe_info.mps = mps; 4006 } 4007 4008 /* 4009 * NOTE: This function will be removed once the peripheral controller code 4010 * is integrated and the driver is stable 4011 */ 4012 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg) 4013 { 4014 #ifdef DEBUG 4015 struct dwc2_host_chan *chan; 4016 struct dwc2_hcd_urb *urb; 4017 struct dwc2_qtd *qtd; 4018 int num_channels; 4019 u32 np_tx_status; 4020 u32 p_tx_status; 4021 int i; 4022 4023 num_channels = hsotg->params.host_channels; 4024 dev_dbg(hsotg->dev, "\n"); 4025 dev_dbg(hsotg->dev, 4026 "************************************************************\n"); 4027 dev_dbg(hsotg->dev, "HCD State:\n"); 4028 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels); 4029 4030 for (i = 0; i < num_channels; i++) { 4031 chan = hsotg->hc_ptr_array[i]; 4032 dev_dbg(hsotg->dev, " Channel %d:\n", i); 4033 dev_dbg(hsotg->dev, 4034 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", 4035 chan->dev_addr, chan->ep_num, chan->ep_is_in); 4036 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed); 4037 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); 4038 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); 4039 dev_dbg(hsotg->dev, " data_pid_start: %d\n", 4040 chan->data_pid_start); 4041 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count); 4042 dev_dbg(hsotg->dev, " xfer_started: %d\n", 4043 chan->xfer_started); 4044 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); 4045 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", 4046 (unsigned long)chan->xfer_dma); 4047 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); 4048 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count); 4049 dev_dbg(hsotg->dev, " halt_on_queue: %d\n", 4050 chan->halt_on_queue); 4051 dev_dbg(hsotg->dev, " halt_pending: %d\n", 4052 chan->halt_pending); 4053 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); 4054 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split); 4055 dev_dbg(hsotg->dev, " complete_split: %d\n", 4056 chan->complete_split); 4057 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr); 4058 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port); 4059 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos); 4060 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests); 4061 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); 4062 4063 if (chan->xfer_started) { 4064 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk; 4065 4066 hfnum = dwc2_readl(hsotg, HFNUM); 4067 hcchar = dwc2_readl(hsotg, HCCHAR(i)); 4068 hctsiz = dwc2_readl(hsotg, HCTSIZ(i)); 4069 hcint = dwc2_readl(hsotg, HCINT(i)); 4070 hcintmsk = dwc2_readl(hsotg, HCINTMSK(i)); 4071 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum); 4072 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar); 4073 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz); 4074 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint); 4075 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk); 4076 } 4077 4078 if (!(chan->xfer_started && chan->qh)) 4079 continue; 4080 4081 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) { 4082 if (!qtd->in_process) 4083 break; 4084 urb = qtd->urb; 4085 dev_dbg(hsotg->dev, " URB Info:\n"); 4086 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n", 4087 qtd, urb); 4088 if (urb) { 4089 dev_dbg(hsotg->dev, 4090 " Dev: %d, EP: %d %s\n", 4091 dwc2_hcd_get_dev_addr(&urb->pipe_info), 4092 dwc2_hcd_get_ep_num(&urb->pipe_info), 4093 dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 4094 "IN" : "OUT"); 4095 dev_dbg(hsotg->dev, 4096 " Max packet size: %d\n", 4097 dwc2_hcd_get_mps(&urb->pipe_info)); 4098 dev_dbg(hsotg->dev, 4099 " transfer_buffer: %p\n", 4100 urb->buf); 4101 dev_dbg(hsotg->dev, 4102 " transfer_dma: %08lx\n", 4103 (unsigned long)urb->dma); 4104 dev_dbg(hsotg->dev, 4105 " transfer_buffer_length: %d\n", 4106 urb->length); 4107 dev_dbg(hsotg->dev, " actual_length: %d\n", 4108 urb->actual_length); 4109 } 4110 } 4111 } 4112 4113 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n", 4114 hsotg->non_periodic_channels); 4115 dev_dbg(hsotg->dev, " periodic_channels: %d\n", 4116 hsotg->periodic_channels); 4117 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs); 4118 np_tx_status = dwc2_readl(hsotg, GNPTXSTS); 4119 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n", 4120 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); 4121 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n", 4122 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); 4123 p_tx_status = dwc2_readl(hsotg, HPTXSTS); 4124 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n", 4125 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); 4126 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n", 4127 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); 4128 dwc2_dump_global_registers(hsotg); 4129 dwc2_dump_host_registers(hsotg); 4130 dev_dbg(hsotg->dev, 4131 "************************************************************\n"); 4132 dev_dbg(hsotg->dev, "\n"); 4133 #endif 4134 } 4135 4136 struct wrapper_priv_data { 4137 struct dwc2_hsotg *hsotg; 4138 }; 4139 4140 /* Gets the dwc2_hsotg from a usb_hcd */ 4141 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd) 4142 { 4143 struct wrapper_priv_data *p; 4144 4145 p = (struct wrapper_priv_data *)&hcd->hcd_priv; 4146 return p->hsotg; 4147 } 4148 4149 /** 4150 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context 4151 * 4152 * This will get the dwc2_tt structure (and ttport) associated with the given 4153 * context (which is really just a struct urb pointer). 4154 * 4155 * The first time this is called for a given TT we allocate memory for our 4156 * structure. When everyone is done and has called dwc2_host_put_tt_info() 4157 * then the refcount for the structure will go to 0 and we'll free it. 4158 * 4159 * @hsotg: The HCD state structure for the DWC OTG controller. 4160 * @context: The priv pointer from a struct dwc2_hcd_urb. 4161 * @mem_flags: Flags for allocating memory. 4162 * @ttport: We'll return this device's port number here. That's used to 4163 * reference into the bitmap if we're on a multi_tt hub. 4164 * 4165 * Return: a pointer to a struct dwc2_tt. Don't forget to call 4166 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure. 4167 */ 4168 4169 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context, 4170 gfp_t mem_flags, int *ttport) 4171 { 4172 struct urb *urb = context; 4173 struct dwc2_tt *dwc_tt = NULL; 4174 4175 if (urb->dev->tt) { 4176 *ttport = urb->dev->ttport; 4177 4178 dwc_tt = urb->dev->tt->hcpriv; 4179 if (!dwc_tt) { 4180 size_t bitmap_size; 4181 4182 /* 4183 * For single_tt we need one schedule. For multi_tt 4184 * we need one per port. 4185 */ 4186 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP * 4187 sizeof(dwc_tt->periodic_bitmaps[0]); 4188 if (urb->dev->tt->multi) 4189 bitmap_size *= urb->dev->tt->hub->maxchild; 4190 4191 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size, 4192 mem_flags); 4193 if (!dwc_tt) 4194 return NULL; 4195 4196 dwc_tt->usb_tt = urb->dev->tt; 4197 dwc_tt->usb_tt->hcpriv = dwc_tt; 4198 } 4199 4200 dwc_tt->refcount++; 4201 } 4202 4203 return dwc_tt; 4204 } 4205 4206 /** 4207 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info() 4208 * 4209 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders 4210 * of the structure are done. 4211 * 4212 * It's OK to call this with NULL. 4213 * 4214 * @hsotg: The HCD state structure for the DWC OTG controller. 4215 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info. 4216 */ 4217 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt) 4218 { 4219 /* Model kfree and make put of NULL a no-op */ 4220 if (!dwc_tt) 4221 return; 4222 4223 WARN_ON(dwc_tt->refcount < 1); 4224 4225 dwc_tt->refcount--; 4226 if (!dwc_tt->refcount) { 4227 dwc_tt->usb_tt->hcpriv = NULL; 4228 kfree(dwc_tt); 4229 } 4230 } 4231 4232 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context) 4233 { 4234 struct urb *urb = context; 4235 4236 return urb->dev->speed; 4237 } 4238 4239 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw, 4240 struct urb *urb) 4241 { 4242 struct usb_bus *bus = hcd_to_bus(hcd); 4243 4244 if (urb->interval) 4245 bus->bandwidth_allocated += bw / urb->interval; 4246 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 4247 bus->bandwidth_isoc_reqs++; 4248 else 4249 bus->bandwidth_int_reqs++; 4250 } 4251 4252 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw, 4253 struct urb *urb) 4254 { 4255 struct usb_bus *bus = hcd_to_bus(hcd); 4256 4257 if (urb->interval) 4258 bus->bandwidth_allocated -= bw / urb->interval; 4259 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 4260 bus->bandwidth_isoc_reqs--; 4261 else 4262 bus->bandwidth_int_reqs--; 4263 } 4264 4265 /* 4266 * Sets the final status of an URB and returns it to the upper layer. Any 4267 * required cleanup of the URB is performed. 4268 * 4269 * Must be called with interrupt disabled and spinlock held 4270 */ 4271 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 4272 int status) 4273 { 4274 struct urb *urb; 4275 int i; 4276 4277 if (!qtd) { 4278 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__); 4279 return; 4280 } 4281 4282 if (!qtd->urb) { 4283 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__); 4284 return; 4285 } 4286 4287 urb = qtd->urb->priv; 4288 if (!urb) { 4289 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__); 4290 return; 4291 } 4292 4293 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb); 4294 4295 if (dbg_urb(urb)) 4296 dev_vdbg(hsotg->dev, 4297 "%s: urb %p device %d ep %d-%s status %d actual %d\n", 4298 __func__, urb, usb_pipedevice(urb->pipe), 4299 usb_pipeendpoint(urb->pipe), 4300 usb_pipein(urb->pipe) ? "IN" : "OUT", status, 4301 urb->actual_length); 4302 4303 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 4304 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb); 4305 for (i = 0; i < urb->number_of_packets; ++i) { 4306 urb->iso_frame_desc[i].actual_length = 4307 dwc2_hcd_urb_get_iso_desc_actual_length( 4308 qtd->urb, i); 4309 urb->iso_frame_desc[i].status = 4310 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i); 4311 } 4312 } 4313 4314 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) { 4315 for (i = 0; i < urb->number_of_packets; i++) 4316 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n", 4317 i, urb->iso_frame_desc[i].status); 4318 } 4319 4320 urb->status = status; 4321 if (!status) { 4322 if ((urb->transfer_flags & URB_SHORT_NOT_OK) && 4323 urb->actual_length < urb->transfer_buffer_length) 4324 urb->status = -EREMOTEIO; 4325 } 4326 4327 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || 4328 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 4329 struct usb_host_endpoint *ep = urb->ep; 4330 4331 if (ep) 4332 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg), 4333 dwc2_hcd_get_ep_bandwidth(hsotg, ep), 4334 urb); 4335 } 4336 4337 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb); 4338 urb->hcpriv = NULL; 4339 kfree(qtd->urb); 4340 qtd->urb = NULL; 4341 4342 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status); 4343 } 4344 4345 /* 4346 * Work queue function for starting the HCD when A-Cable is connected 4347 */ 4348 static void dwc2_hcd_start_func(struct work_struct *work) 4349 { 4350 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 4351 start_work.work); 4352 4353 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg); 4354 dwc2_host_start(hsotg); 4355 } 4356 4357 /* 4358 * Reset work queue function 4359 */ 4360 static void dwc2_hcd_reset_func(struct work_struct *work) 4361 { 4362 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 4363 reset_work.work); 4364 unsigned long flags; 4365 u32 hprt0; 4366 4367 dev_dbg(hsotg->dev, "USB RESET function called\n"); 4368 4369 spin_lock_irqsave(&hsotg->lock, flags); 4370 4371 hprt0 = dwc2_read_hprt0(hsotg); 4372 hprt0 &= ~HPRT0_RST; 4373 dwc2_writel(hsotg, hprt0, HPRT0); 4374 hsotg->flags.b.port_reset_change = 1; 4375 4376 spin_unlock_irqrestore(&hsotg->lock, flags); 4377 } 4378 4379 /* 4380 * ========================================================================= 4381 * Linux HC Driver Functions 4382 * ========================================================================= 4383 */ 4384 4385 /* 4386 * Initializes the DWC_otg controller and its root hub and prepares it for host 4387 * mode operation. Activates the root port. Returns 0 on success and a negative 4388 * error code on failure. 4389 */ 4390 static int _dwc2_hcd_start(struct usb_hcd *hcd) 4391 { 4392 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4393 struct usb_bus *bus = hcd_to_bus(hcd); 4394 unsigned long flags; 4395 u32 hprt0; 4396 int ret; 4397 4398 dev_dbg(hsotg->dev, "DWC OTG HCD START\n"); 4399 4400 spin_lock_irqsave(&hsotg->lock, flags); 4401 hsotg->lx_state = DWC2_L0; 4402 hcd->state = HC_STATE_RUNNING; 4403 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4404 4405 if (dwc2_is_device_mode(hsotg)) { 4406 spin_unlock_irqrestore(&hsotg->lock, flags); 4407 return 0; /* why 0 ?? */ 4408 } 4409 4410 dwc2_hcd_reinit(hsotg); 4411 4412 hprt0 = dwc2_read_hprt0(hsotg); 4413 /* Has vbus power been turned on in dwc2_core_host_init ? */ 4414 if (hprt0 & HPRT0_PWR) { 4415 /* Enable external vbus supply before resuming root hub */ 4416 spin_unlock_irqrestore(&hsotg->lock, flags); 4417 ret = dwc2_vbus_supply_init(hsotg); 4418 if (ret) 4419 return ret; 4420 spin_lock_irqsave(&hsotg->lock, flags); 4421 } 4422 4423 /* Initialize and connect root hub if one is not already attached */ 4424 if (bus->root_hub) { 4425 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n"); 4426 /* Inform the HUB driver to resume */ 4427 usb_hcd_resume_root_hub(hcd); 4428 } 4429 4430 spin_unlock_irqrestore(&hsotg->lock, flags); 4431 4432 return 0; 4433 } 4434 4435 /* 4436 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are 4437 * stopped. 4438 */ 4439 static void _dwc2_hcd_stop(struct usb_hcd *hcd) 4440 { 4441 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4442 unsigned long flags; 4443 u32 hprt0; 4444 4445 /* Turn off all host-specific interrupts */ 4446 dwc2_disable_host_interrupts(hsotg); 4447 4448 /* Wait for interrupt processing to finish */ 4449 synchronize_irq(hcd->irq); 4450 4451 spin_lock_irqsave(&hsotg->lock, flags); 4452 hprt0 = dwc2_read_hprt0(hsotg); 4453 /* Ensure hcd is disconnected */ 4454 dwc2_hcd_disconnect(hsotg, true); 4455 dwc2_hcd_stop(hsotg); 4456 hsotg->lx_state = DWC2_L3; 4457 hcd->state = HC_STATE_HALT; 4458 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4459 spin_unlock_irqrestore(&hsotg->lock, flags); 4460 4461 /* keep balanced supply init/exit by checking HPRT0_PWR */ 4462 if (hprt0 & HPRT0_PWR) 4463 dwc2_vbus_supply_exit(hsotg); 4464 4465 usleep_range(1000, 3000); 4466 } 4467 4468 static int _dwc2_hcd_suspend(struct usb_hcd *hcd) 4469 { 4470 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4471 unsigned long flags; 4472 int ret = 0; 4473 u32 hprt0; 4474 u32 pcgctl; 4475 4476 spin_lock_irqsave(&hsotg->lock, flags); 4477 4478 if (dwc2_is_device_mode(hsotg)) 4479 goto unlock; 4480 4481 if (hsotg->lx_state != DWC2_L0) 4482 goto unlock; 4483 4484 if (!HCD_HW_ACCESSIBLE(hcd)) 4485 goto unlock; 4486 4487 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL) 4488 goto unlock; 4489 4490 if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) 4491 goto skip_power_saving; 4492 4493 /* 4494 * Drive USB suspend and disable port Power 4495 * if usb bus is not suspended. 4496 */ 4497 if (!hsotg->bus_suspended) { 4498 hprt0 = dwc2_read_hprt0(hsotg); 4499 if (hprt0 & HPRT0_CONNSTS) { 4500 hprt0 |= HPRT0_SUSP; 4501 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) 4502 hprt0 &= ~HPRT0_PWR; 4503 dwc2_writel(hsotg, hprt0, HPRT0); 4504 } 4505 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) { 4506 spin_unlock_irqrestore(&hsotg->lock, flags); 4507 dwc2_vbus_supply_exit(hsotg); 4508 spin_lock_irqsave(&hsotg->lock, flags); 4509 } else { 4510 pcgctl = readl(hsotg->regs + PCGCTL); 4511 pcgctl |= PCGCTL_STOPPCLK; 4512 writel(pcgctl, hsotg->regs + PCGCTL); 4513 } 4514 } 4515 4516 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) { 4517 /* Enter partial_power_down */ 4518 ret = dwc2_enter_partial_power_down(hsotg); 4519 if (ret) { 4520 if (ret != -ENOTSUPP) 4521 dev_err(hsotg->dev, 4522 "enter partial_power_down failed\n"); 4523 goto skip_power_saving; 4524 } 4525 4526 /* After entering partial_power_down, hardware is no more accessible */ 4527 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4528 } 4529 4530 /* Ask phy to be suspended */ 4531 if (!IS_ERR_OR_NULL(hsotg->uphy)) { 4532 spin_unlock_irqrestore(&hsotg->lock, flags); 4533 usb_phy_set_suspend(hsotg->uphy, true); 4534 spin_lock_irqsave(&hsotg->lock, flags); 4535 } 4536 4537 skip_power_saving: 4538 hsotg->lx_state = DWC2_L2; 4539 unlock: 4540 spin_unlock_irqrestore(&hsotg->lock, flags); 4541 4542 return ret; 4543 } 4544 4545 static int _dwc2_hcd_resume(struct usb_hcd *hcd) 4546 { 4547 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4548 unsigned long flags; 4549 u32 pcgctl; 4550 int ret = 0; 4551 4552 spin_lock_irqsave(&hsotg->lock, flags); 4553 4554 if (dwc2_is_device_mode(hsotg)) 4555 goto unlock; 4556 4557 if (hsotg->lx_state != DWC2_L2) 4558 goto unlock; 4559 4560 if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) { 4561 hsotg->lx_state = DWC2_L0; 4562 goto unlock; 4563 } 4564 4565 /* 4566 * Enable power if not already done. 4567 * This must not be spinlocked since duration 4568 * of this call is unknown. 4569 */ 4570 if (!IS_ERR_OR_NULL(hsotg->uphy)) { 4571 spin_unlock_irqrestore(&hsotg->lock, flags); 4572 usb_phy_set_suspend(hsotg->uphy, false); 4573 spin_lock_irqsave(&hsotg->lock, flags); 4574 } 4575 4576 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) { 4577 /* 4578 * Set HW accessible bit before powering on the controller 4579 * since an interrupt may rise. 4580 */ 4581 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4582 4583 4584 /* Exit partial_power_down */ 4585 ret = dwc2_exit_partial_power_down(hsotg, true); 4586 if (ret && (ret != -ENOTSUPP)) 4587 dev_err(hsotg->dev, "exit partial_power_down failed\n"); 4588 } else { 4589 pcgctl = readl(hsotg->regs + PCGCTL); 4590 pcgctl &= ~PCGCTL_STOPPCLK; 4591 writel(pcgctl, hsotg->regs + PCGCTL); 4592 } 4593 4594 hsotg->lx_state = DWC2_L0; 4595 4596 spin_unlock_irqrestore(&hsotg->lock, flags); 4597 4598 if (hsotg->bus_suspended) { 4599 spin_lock_irqsave(&hsotg->lock, flags); 4600 hsotg->flags.b.port_suspend_change = 1; 4601 spin_unlock_irqrestore(&hsotg->lock, flags); 4602 dwc2_port_resume(hsotg); 4603 } else { 4604 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) { 4605 dwc2_vbus_supply_init(hsotg); 4606 4607 /* Wait for controller to correctly update D+/D- level */ 4608 usleep_range(3000, 5000); 4609 } 4610 4611 /* 4612 * Clear Port Enable and Port Status changes. 4613 * Enable Port Power. 4614 */ 4615 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET | 4616 HPRT0_ENACHG, HPRT0); 4617 /* Wait for controller to detect Port Connect */ 4618 usleep_range(5000, 7000); 4619 } 4620 4621 return ret; 4622 unlock: 4623 spin_unlock_irqrestore(&hsotg->lock, flags); 4624 4625 return ret; 4626 } 4627 4628 /* Returns the current frame number */ 4629 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd) 4630 { 4631 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4632 4633 return dwc2_hcd_get_frame_number(hsotg); 4634 } 4635 4636 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb, 4637 char *fn_name) 4638 { 4639 #ifdef VERBOSE_DEBUG 4640 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4641 char *pipetype = NULL; 4642 char *speed = NULL; 4643 4644 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb); 4645 dev_vdbg(hsotg->dev, " Device address: %d\n", 4646 usb_pipedevice(urb->pipe)); 4647 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n", 4648 usb_pipeendpoint(urb->pipe), 4649 usb_pipein(urb->pipe) ? "IN" : "OUT"); 4650 4651 switch (usb_pipetype(urb->pipe)) { 4652 case PIPE_CONTROL: 4653 pipetype = "CONTROL"; 4654 break; 4655 case PIPE_BULK: 4656 pipetype = "BULK"; 4657 break; 4658 case PIPE_INTERRUPT: 4659 pipetype = "INTERRUPT"; 4660 break; 4661 case PIPE_ISOCHRONOUS: 4662 pipetype = "ISOCHRONOUS"; 4663 break; 4664 } 4665 4666 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype, 4667 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ? 4668 "IN" : "OUT"); 4669 4670 switch (urb->dev->speed) { 4671 case USB_SPEED_HIGH: 4672 speed = "HIGH"; 4673 break; 4674 case USB_SPEED_FULL: 4675 speed = "FULL"; 4676 break; 4677 case USB_SPEED_LOW: 4678 speed = "LOW"; 4679 break; 4680 default: 4681 speed = "UNKNOWN"; 4682 break; 4683 } 4684 4685 dev_vdbg(hsotg->dev, " Speed: %s\n", speed); 4686 dev_vdbg(hsotg->dev, " Max packet size: %d\n", 4687 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); 4688 dev_vdbg(hsotg->dev, " Data buffer length: %d\n", 4689 urb->transfer_buffer_length); 4690 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n", 4691 urb->transfer_buffer, (unsigned long)urb->transfer_dma); 4692 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n", 4693 urb->setup_packet, (unsigned long)urb->setup_dma); 4694 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval); 4695 4696 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 4697 int i; 4698 4699 for (i = 0; i < urb->number_of_packets; i++) { 4700 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i); 4701 dev_vdbg(hsotg->dev, " offset: %d, length %d\n", 4702 urb->iso_frame_desc[i].offset, 4703 urb->iso_frame_desc[i].length); 4704 } 4705 } 4706 #endif 4707 } 4708 4709 /* 4710 * Starts processing a USB transfer request specified by a USB Request Block 4711 * (URB). mem_flags indicates the type of memory allocation to use while 4712 * processing this URB. 4713 */ 4714 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 4715 gfp_t mem_flags) 4716 { 4717 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4718 struct usb_host_endpoint *ep = urb->ep; 4719 struct dwc2_hcd_urb *dwc2_urb; 4720 int i; 4721 int retval; 4722 int alloc_bandwidth = 0; 4723 u8 ep_type = 0; 4724 u32 tflags = 0; 4725 void *buf; 4726 unsigned long flags; 4727 struct dwc2_qh *qh; 4728 bool qh_allocated = false; 4729 struct dwc2_qtd *qtd; 4730 4731 if (dbg_urb(urb)) { 4732 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n"); 4733 dwc2_dump_urb_info(hcd, urb, "urb_enqueue"); 4734 } 4735 4736 if (!ep) 4737 return -EINVAL; 4738 4739 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || 4740 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 4741 spin_lock_irqsave(&hsotg->lock, flags); 4742 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep)) 4743 alloc_bandwidth = 1; 4744 spin_unlock_irqrestore(&hsotg->lock, flags); 4745 } 4746 4747 switch (usb_pipetype(urb->pipe)) { 4748 case PIPE_CONTROL: 4749 ep_type = USB_ENDPOINT_XFER_CONTROL; 4750 break; 4751 case PIPE_ISOCHRONOUS: 4752 ep_type = USB_ENDPOINT_XFER_ISOC; 4753 break; 4754 case PIPE_BULK: 4755 ep_type = USB_ENDPOINT_XFER_BULK; 4756 break; 4757 case PIPE_INTERRUPT: 4758 ep_type = USB_ENDPOINT_XFER_INT; 4759 break; 4760 } 4761 4762 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets, 4763 mem_flags); 4764 if (!dwc2_urb) 4765 return -ENOMEM; 4766 4767 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe), 4768 usb_pipeendpoint(urb->pipe), ep_type, 4769 usb_pipein(urb->pipe), 4770 usb_maxpacket(urb->dev, urb->pipe, 4771 !(usb_pipein(urb->pipe)))); 4772 4773 buf = urb->transfer_buffer; 4774 4775 if (hcd->self.uses_dma) { 4776 if (!buf && (urb->transfer_dma & 3)) { 4777 dev_err(hsotg->dev, 4778 "%s: unaligned transfer with no transfer_buffer", 4779 __func__); 4780 retval = -EINVAL; 4781 goto fail0; 4782 } 4783 } 4784 4785 if (!(urb->transfer_flags & URB_NO_INTERRUPT)) 4786 tflags |= URB_GIVEBACK_ASAP; 4787 if (urb->transfer_flags & URB_ZERO_PACKET) 4788 tflags |= URB_SEND_ZERO_PACKET; 4789 4790 dwc2_urb->priv = urb; 4791 dwc2_urb->buf = buf; 4792 dwc2_urb->dma = urb->transfer_dma; 4793 dwc2_urb->length = urb->transfer_buffer_length; 4794 dwc2_urb->setup_packet = urb->setup_packet; 4795 dwc2_urb->setup_dma = urb->setup_dma; 4796 dwc2_urb->flags = tflags; 4797 dwc2_urb->interval = urb->interval; 4798 dwc2_urb->status = -EINPROGRESS; 4799 4800 for (i = 0; i < urb->number_of_packets; ++i) 4801 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i, 4802 urb->iso_frame_desc[i].offset, 4803 urb->iso_frame_desc[i].length); 4804 4805 urb->hcpriv = dwc2_urb; 4806 qh = (struct dwc2_qh *)ep->hcpriv; 4807 /* Create QH for the endpoint if it doesn't exist */ 4808 if (!qh) { 4809 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags); 4810 if (!qh) { 4811 retval = -ENOMEM; 4812 goto fail0; 4813 } 4814 ep->hcpriv = qh; 4815 qh_allocated = true; 4816 } 4817 4818 qtd = kzalloc(sizeof(*qtd), mem_flags); 4819 if (!qtd) { 4820 retval = -ENOMEM; 4821 goto fail1; 4822 } 4823 4824 spin_lock_irqsave(&hsotg->lock, flags); 4825 retval = usb_hcd_link_urb_to_ep(hcd, urb); 4826 if (retval) 4827 goto fail2; 4828 4829 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd); 4830 if (retval) 4831 goto fail3; 4832 4833 if (alloc_bandwidth) { 4834 dwc2_allocate_bus_bandwidth(hcd, 4835 dwc2_hcd_get_ep_bandwidth(hsotg, ep), 4836 urb); 4837 } 4838 4839 spin_unlock_irqrestore(&hsotg->lock, flags); 4840 4841 return 0; 4842 4843 fail3: 4844 dwc2_urb->priv = NULL; 4845 usb_hcd_unlink_urb_from_ep(hcd, urb); 4846 if (qh_allocated && qh->channel && qh->channel->qh == qh) 4847 qh->channel->qh = NULL; 4848 fail2: 4849 spin_unlock_irqrestore(&hsotg->lock, flags); 4850 urb->hcpriv = NULL; 4851 kfree(qtd); 4852 qtd = NULL; 4853 fail1: 4854 if (qh_allocated) { 4855 struct dwc2_qtd *qtd2, *qtd2_tmp; 4856 4857 ep->hcpriv = NULL; 4858 dwc2_hcd_qh_unlink(hsotg, qh); 4859 /* Free each QTD in the QH's QTD list */ 4860 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list, 4861 qtd_list_entry) 4862 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh); 4863 dwc2_hcd_qh_free(hsotg, qh); 4864 } 4865 fail0: 4866 kfree(dwc2_urb); 4867 4868 return retval; 4869 } 4870 4871 /* 4872 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success. 4873 */ 4874 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, 4875 int status) 4876 { 4877 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4878 int rc; 4879 unsigned long flags; 4880 4881 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n"); 4882 dwc2_dump_urb_info(hcd, urb, "urb_dequeue"); 4883 4884 spin_lock_irqsave(&hsotg->lock, flags); 4885 4886 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 4887 if (rc) 4888 goto out; 4889 4890 if (!urb->hcpriv) { 4891 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n"); 4892 goto out; 4893 } 4894 4895 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv); 4896 4897 usb_hcd_unlink_urb_from_ep(hcd, urb); 4898 4899 kfree(urb->hcpriv); 4900 urb->hcpriv = NULL; 4901 4902 /* Higher layer software sets URB status */ 4903 spin_unlock(&hsotg->lock); 4904 usb_hcd_giveback_urb(hcd, urb, status); 4905 spin_lock(&hsotg->lock); 4906 4907 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n"); 4908 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status); 4909 out: 4910 spin_unlock_irqrestore(&hsotg->lock, flags); 4911 4912 return rc; 4913 } 4914 4915 /* 4916 * Frees resources in the DWC_otg controller related to a given endpoint. Also 4917 * clears state in the HCD related to the endpoint. Any URBs for the endpoint 4918 * must already be dequeued. 4919 */ 4920 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd, 4921 struct usb_host_endpoint *ep) 4922 { 4923 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4924 4925 dev_dbg(hsotg->dev, 4926 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n", 4927 ep->desc.bEndpointAddress, ep->hcpriv); 4928 dwc2_hcd_endpoint_disable(hsotg, ep, 250); 4929 } 4930 4931 /* 4932 * Resets endpoint specific parameter values, in current version used to reset 4933 * the data toggle (as a WA). This function can be called from usb_clear_halt 4934 * routine. 4935 */ 4936 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd, 4937 struct usb_host_endpoint *ep) 4938 { 4939 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4940 unsigned long flags; 4941 4942 dev_dbg(hsotg->dev, 4943 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n", 4944 ep->desc.bEndpointAddress); 4945 4946 spin_lock_irqsave(&hsotg->lock, flags); 4947 dwc2_hcd_endpoint_reset(hsotg, ep); 4948 spin_unlock_irqrestore(&hsotg->lock, flags); 4949 } 4950 4951 /* 4952 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if 4953 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid 4954 * interrupt. 4955 * 4956 * This function is called by the USB core when an interrupt occurs 4957 */ 4958 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd) 4959 { 4960 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4961 4962 return dwc2_handle_hcd_intr(hsotg); 4963 } 4964 4965 /* 4966 * Creates Status Change bitmap for the root hub and root port. The bitmap is 4967 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 4968 * is the status change indicator for the single root port. Returns 1 if either 4969 * change indicator is 1, otherwise returns 0. 4970 */ 4971 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf) 4972 { 4973 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4974 4975 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1; 4976 return buf[0] != 0; 4977 } 4978 4979 /* Handles hub class-specific requests */ 4980 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue, 4981 u16 windex, char *buf, u16 wlength) 4982 { 4983 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq, 4984 wvalue, windex, buf, wlength); 4985 return retval; 4986 } 4987 4988 /* Handles hub TT buffer clear completions */ 4989 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd, 4990 struct usb_host_endpoint *ep) 4991 { 4992 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4993 struct dwc2_qh *qh; 4994 unsigned long flags; 4995 4996 qh = ep->hcpriv; 4997 if (!qh) 4998 return; 4999 5000 spin_lock_irqsave(&hsotg->lock, flags); 5001 qh->tt_buffer_dirty = 0; 5002 5003 if (hsotg->flags.b.port_connect_status) 5004 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL); 5005 5006 spin_unlock_irqrestore(&hsotg->lock, flags); 5007 } 5008 5009 /* 5010 * HPRT0_SPD_HIGH_SPEED: high speed 5011 * HPRT0_SPD_FULL_SPEED: full speed 5012 */ 5013 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed) 5014 { 5015 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 5016 5017 if (hsotg->params.speed == speed) 5018 return; 5019 5020 hsotg->params.speed = speed; 5021 queue_work(hsotg->wq_otg, &hsotg->wf_otg); 5022 } 5023 5024 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 5025 { 5026 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 5027 5028 if (!hsotg->params.change_speed_quirk) 5029 return; 5030 5031 /* 5032 * On removal, set speed to default high-speed. 5033 */ 5034 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN && 5035 udev->parent->speed < USB_SPEED_HIGH) { 5036 dev_info(hsotg->dev, "Set speed to default high-speed\n"); 5037 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED); 5038 } 5039 } 5040 5041 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 5042 { 5043 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 5044 5045 if (!hsotg->params.change_speed_quirk) 5046 return 0; 5047 5048 if (udev->speed == USB_SPEED_HIGH) { 5049 dev_info(hsotg->dev, "Set speed to high-speed\n"); 5050 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED); 5051 } else if ((udev->speed == USB_SPEED_FULL || 5052 udev->speed == USB_SPEED_LOW)) { 5053 /* 5054 * Change speed setting to full-speed if there's 5055 * a full-speed or low-speed device plugged in. 5056 */ 5057 dev_info(hsotg->dev, "Set speed to full-speed\n"); 5058 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED); 5059 } 5060 5061 return 0; 5062 } 5063 5064 static struct hc_driver dwc2_hc_driver = { 5065 .description = "dwc2_hsotg", 5066 .product_desc = "DWC OTG Controller", 5067 .hcd_priv_size = sizeof(struct wrapper_priv_data), 5068 5069 .irq = _dwc2_hcd_irq, 5070 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH, 5071 5072 .start = _dwc2_hcd_start, 5073 .stop = _dwc2_hcd_stop, 5074 .urb_enqueue = _dwc2_hcd_urb_enqueue, 5075 .urb_dequeue = _dwc2_hcd_urb_dequeue, 5076 .endpoint_disable = _dwc2_hcd_endpoint_disable, 5077 .endpoint_reset = _dwc2_hcd_endpoint_reset, 5078 .get_frame_number = _dwc2_hcd_get_frame_number, 5079 5080 .hub_status_data = _dwc2_hcd_hub_status_data, 5081 .hub_control = _dwc2_hcd_hub_control, 5082 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete, 5083 5084 .bus_suspend = _dwc2_hcd_suspend, 5085 .bus_resume = _dwc2_hcd_resume, 5086 5087 .map_urb_for_dma = dwc2_map_urb_for_dma, 5088 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma, 5089 }; 5090 5091 /* 5092 * Frees secondary storage associated with the dwc2_hsotg structure contained 5093 * in the struct usb_hcd field 5094 */ 5095 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg) 5096 { 5097 u32 ahbcfg; 5098 u32 dctl; 5099 int i; 5100 5101 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n"); 5102 5103 /* Free memory for QH/QTD lists */ 5104 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive); 5105 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting); 5106 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active); 5107 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive); 5108 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready); 5109 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned); 5110 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued); 5111 5112 /* Free memory for the host channels */ 5113 for (i = 0; i < MAX_EPS_CHANNELS; i++) { 5114 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; 5115 5116 if (chan) { 5117 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n", 5118 i, chan); 5119 hsotg->hc_ptr_array[i] = NULL; 5120 kfree(chan); 5121 } 5122 } 5123 5124 if (hsotg->params.host_dma) { 5125 if (hsotg->status_buf) { 5126 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE, 5127 hsotg->status_buf, 5128 hsotg->status_buf_dma); 5129 hsotg->status_buf = NULL; 5130 } 5131 } else { 5132 kfree(hsotg->status_buf); 5133 hsotg->status_buf = NULL; 5134 } 5135 5136 ahbcfg = dwc2_readl(hsotg, GAHBCFG); 5137 5138 /* Disable all interrupts */ 5139 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN; 5140 dwc2_writel(hsotg, ahbcfg, GAHBCFG); 5141 dwc2_writel(hsotg, 0, GINTMSK); 5142 5143 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) { 5144 dctl = dwc2_readl(hsotg, DCTL); 5145 dctl |= DCTL_SFTDISCON; 5146 dwc2_writel(hsotg, dctl, DCTL); 5147 } 5148 5149 if (hsotg->wq_otg) { 5150 if (!cancel_work_sync(&hsotg->wf_otg)) 5151 flush_workqueue(hsotg->wq_otg); 5152 destroy_workqueue(hsotg->wq_otg); 5153 } 5154 5155 del_timer(&hsotg->wkp_timer); 5156 } 5157 5158 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg) 5159 { 5160 /* Turn off all host-specific interrupts */ 5161 dwc2_disable_host_interrupts(hsotg); 5162 5163 dwc2_hcd_free(hsotg); 5164 } 5165 5166 /* 5167 * Initializes the HCD. This function allocates memory for and initializes the 5168 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the 5169 * USB bus with the core and calls the hc_driver->start() function. It returns 5170 * a negative error on failure. 5171 */ 5172 int dwc2_hcd_init(struct dwc2_hsotg *hsotg) 5173 { 5174 struct platform_device *pdev = to_platform_device(hsotg->dev); 5175 struct resource *res; 5176 struct usb_hcd *hcd; 5177 struct dwc2_host_chan *channel; 5178 u32 hcfg; 5179 int i, num_channels; 5180 int retval; 5181 5182 if (usb_disabled()) 5183 return -ENODEV; 5184 5185 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n"); 5186 5187 retval = -ENOMEM; 5188 5189 hcfg = dwc2_readl(hsotg, HCFG); 5190 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg); 5191 5192 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5193 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE, 5194 sizeof(*hsotg->frame_num_array), 5195 GFP_KERNEL); 5196 if (!hsotg->frame_num_array) 5197 goto error1; 5198 hsotg->last_frame_num_array = 5199 kcalloc(FRAME_NUM_ARRAY_SIZE, 5200 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL); 5201 if (!hsotg->last_frame_num_array) 5202 goto error1; 5203 #endif 5204 hsotg->last_frame_num = HFNUM_MAX_FRNUM; 5205 5206 /* Check if the bus driver or platform code has setup a dma_mask */ 5207 if (hsotg->params.host_dma && 5208 !hsotg->dev->dma_mask) { 5209 dev_warn(hsotg->dev, 5210 "dma_mask not set, disabling DMA\n"); 5211 hsotg->params.host_dma = false; 5212 hsotg->params.dma_desc_enable = false; 5213 } 5214 5215 /* Set device flags indicating whether the HCD supports DMA */ 5216 if (hsotg->params.host_dma) { 5217 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) 5218 dev_warn(hsotg->dev, "can't set DMA mask\n"); 5219 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) 5220 dev_warn(hsotg->dev, "can't set coherent DMA mask\n"); 5221 } 5222 5223 if (hsotg->params.change_speed_quirk) { 5224 dwc2_hc_driver.free_dev = dwc2_free_dev; 5225 dwc2_hc_driver.reset_device = dwc2_reset_device; 5226 } 5227 5228 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev)); 5229 if (!hcd) 5230 goto error1; 5231 5232 if (!hsotg->params.host_dma) 5233 hcd->self.uses_dma = 0; 5234 5235 hcd->has_tt = 1; 5236 5237 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 5238 hcd->rsrc_start = res->start; 5239 hcd->rsrc_len = resource_size(res); 5240 5241 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg; 5242 hsotg->priv = hcd; 5243 5244 /* 5245 * Disable the global interrupt until all the interrupt handlers are 5246 * installed 5247 */ 5248 dwc2_disable_global_interrupts(hsotg); 5249 5250 /* Initialize the DWC_otg core, and select the Phy type */ 5251 retval = dwc2_core_init(hsotg, true); 5252 if (retval) 5253 goto error2; 5254 5255 /* Create new workqueue and init work */ 5256 retval = -ENOMEM; 5257 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0); 5258 if (!hsotg->wq_otg) { 5259 dev_err(hsotg->dev, "Failed to create workqueue\n"); 5260 goto error2; 5261 } 5262 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change); 5263 5264 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0); 5265 5266 /* Initialize the non-periodic schedule */ 5267 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive); 5268 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting); 5269 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active); 5270 5271 /* Initialize the periodic schedule */ 5272 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive); 5273 INIT_LIST_HEAD(&hsotg->periodic_sched_ready); 5274 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned); 5275 INIT_LIST_HEAD(&hsotg->periodic_sched_queued); 5276 5277 INIT_LIST_HEAD(&hsotg->split_order); 5278 5279 /* 5280 * Create a host channel descriptor for each host channel implemented 5281 * in the controller. Initialize the channel descriptor array. 5282 */ 5283 INIT_LIST_HEAD(&hsotg->free_hc_list); 5284 num_channels = hsotg->params.host_channels; 5285 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array)); 5286 5287 for (i = 0; i < num_channels; i++) { 5288 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 5289 if (!channel) 5290 goto error3; 5291 channel->hc_num = i; 5292 INIT_LIST_HEAD(&channel->split_order_list_entry); 5293 hsotg->hc_ptr_array[i] = channel; 5294 } 5295 5296 /* Initialize hsotg start work */ 5297 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func); 5298 5299 /* Initialize port reset work */ 5300 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func); 5301 5302 /* 5303 * Allocate space for storing data on status transactions. Normally no 5304 * data is sent, but this space acts as a bit bucket. This must be 5305 * done after usb_add_hcd since that function allocates the DMA buffer 5306 * pool. 5307 */ 5308 if (hsotg->params.host_dma) 5309 hsotg->status_buf = dma_alloc_coherent(hsotg->dev, 5310 DWC2_HCD_STATUS_BUF_SIZE, 5311 &hsotg->status_buf_dma, GFP_KERNEL); 5312 else 5313 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE, 5314 GFP_KERNEL); 5315 5316 if (!hsotg->status_buf) 5317 goto error3; 5318 5319 /* 5320 * Create kmem caches to handle descriptor buffers in descriptor 5321 * DMA mode. 5322 * Alignment must be set to 512 bytes. 5323 */ 5324 if (hsotg->params.dma_desc_enable || 5325 hsotg->params.dma_desc_fs_enable) { 5326 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc", 5327 sizeof(struct dwc2_dma_desc) * 5328 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA, 5329 NULL); 5330 if (!hsotg->desc_gen_cache) { 5331 dev_err(hsotg->dev, 5332 "unable to create dwc2 generic desc cache\n"); 5333 5334 /* 5335 * Disable descriptor dma mode since it will not be 5336 * usable. 5337 */ 5338 hsotg->params.dma_desc_enable = false; 5339 hsotg->params.dma_desc_fs_enable = false; 5340 } 5341 5342 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc", 5343 sizeof(struct dwc2_dma_desc) * 5344 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL); 5345 if (!hsotg->desc_hsisoc_cache) { 5346 dev_err(hsotg->dev, 5347 "unable to create dwc2 hs isoc desc cache\n"); 5348 5349 kmem_cache_destroy(hsotg->desc_gen_cache); 5350 5351 /* 5352 * Disable descriptor dma mode since it will not be 5353 * usable. 5354 */ 5355 hsotg->params.dma_desc_enable = false; 5356 hsotg->params.dma_desc_fs_enable = false; 5357 } 5358 } 5359 5360 if (hsotg->params.host_dma) { 5361 /* 5362 * Create kmem caches to handle non-aligned buffer 5363 * in Buffer DMA mode. 5364 */ 5365 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma", 5366 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4, 5367 SLAB_CACHE_DMA, NULL); 5368 if (!hsotg->unaligned_cache) 5369 dev_err(hsotg->dev, 5370 "unable to create dwc2 unaligned cache\n"); 5371 } 5372 5373 hsotg->otg_port = 1; 5374 hsotg->frame_list = NULL; 5375 hsotg->frame_list_dma = 0; 5376 hsotg->periodic_qh_count = 0; 5377 5378 /* Initiate lx_state to L3 disconnected state */ 5379 hsotg->lx_state = DWC2_L3; 5380 5381 hcd->self.otg_port = hsotg->otg_port; 5382 5383 /* Don't support SG list at this point */ 5384 hcd->self.sg_tablesize = 0; 5385 5386 if (!IS_ERR_OR_NULL(hsotg->uphy)) 5387 otg_set_host(hsotg->uphy->otg, &hcd->self); 5388 5389 /* 5390 * Finish generic HCD initialization and start the HCD. This function 5391 * allocates the DMA buffer pool, registers the USB bus, requests the 5392 * IRQ line, and calls hcd_start method. 5393 */ 5394 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED); 5395 if (retval < 0) 5396 goto error4; 5397 5398 device_wakeup_enable(hcd->self.controller); 5399 5400 dwc2_hcd_dump_state(hsotg); 5401 5402 dwc2_enable_global_interrupts(hsotg); 5403 5404 return 0; 5405 5406 error4: 5407 kmem_cache_destroy(hsotg->unaligned_cache); 5408 kmem_cache_destroy(hsotg->desc_hsisoc_cache); 5409 kmem_cache_destroy(hsotg->desc_gen_cache); 5410 error3: 5411 dwc2_hcd_release(hsotg); 5412 error2: 5413 usb_put_hcd(hcd); 5414 error1: 5415 5416 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5417 kfree(hsotg->last_frame_num_array); 5418 kfree(hsotg->frame_num_array); 5419 #endif 5420 5421 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval); 5422 return retval; 5423 } 5424 5425 /* 5426 * Removes the HCD. 5427 * Frees memory and resources associated with the HCD and deregisters the bus. 5428 */ 5429 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) 5430 { 5431 struct usb_hcd *hcd; 5432 5433 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n"); 5434 5435 hcd = dwc2_hsotg_to_hcd(hsotg); 5436 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd); 5437 5438 if (!hcd) { 5439 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n", 5440 __func__); 5441 return; 5442 } 5443 5444 if (!IS_ERR_OR_NULL(hsotg->uphy)) 5445 otg_set_host(hsotg->uphy->otg, NULL); 5446 5447 usb_remove_hcd(hcd); 5448 hsotg->priv = NULL; 5449 5450 kmem_cache_destroy(hsotg->unaligned_cache); 5451 kmem_cache_destroy(hsotg->desc_hsisoc_cache); 5452 kmem_cache_destroy(hsotg->desc_gen_cache); 5453 5454 dwc2_hcd_release(hsotg); 5455 usb_put_hcd(hcd); 5456 5457 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5458 kfree(hsotg->last_frame_num_array); 5459 kfree(hsotg->frame_num_array); 5460 #endif 5461 } 5462 5463 /** 5464 * dwc2_backup_host_registers() - Backup controller host registers. 5465 * When suspending usb bus, registers needs to be backuped 5466 * if controller power is disabled once suspended. 5467 * 5468 * @hsotg: Programming view of the DWC_otg controller 5469 */ 5470 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg) 5471 { 5472 struct dwc2_hregs_backup *hr; 5473 int i; 5474 5475 dev_dbg(hsotg->dev, "%s\n", __func__); 5476 5477 /* Backup Host regs */ 5478 hr = &hsotg->hr_backup; 5479 hr->hcfg = dwc2_readl(hsotg, HCFG); 5480 hr->haintmsk = dwc2_readl(hsotg, HAINTMSK); 5481 for (i = 0; i < hsotg->params.host_channels; ++i) 5482 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i)); 5483 5484 hr->hprt0 = dwc2_read_hprt0(hsotg); 5485 hr->hfir = dwc2_readl(hsotg, HFIR); 5486 hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ); 5487 hr->valid = true; 5488 5489 return 0; 5490 } 5491 5492 /** 5493 * dwc2_restore_host_registers() - Restore controller host registers. 5494 * When resuming usb bus, device registers needs to be restored 5495 * if controller power were disabled. 5496 * 5497 * @hsotg: Programming view of the DWC_otg controller 5498 */ 5499 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg) 5500 { 5501 struct dwc2_hregs_backup *hr; 5502 int i; 5503 5504 dev_dbg(hsotg->dev, "%s\n", __func__); 5505 5506 /* Restore host regs */ 5507 hr = &hsotg->hr_backup; 5508 if (!hr->valid) { 5509 dev_err(hsotg->dev, "%s: no host registers to restore\n", 5510 __func__); 5511 return -EINVAL; 5512 } 5513 hr->valid = false; 5514 5515 dwc2_writel(hsotg, hr->hcfg, HCFG); 5516 dwc2_writel(hsotg, hr->haintmsk, HAINTMSK); 5517 5518 for (i = 0; i < hsotg->params.host_channels; ++i) 5519 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i)); 5520 5521 dwc2_writel(hsotg, hr->hprt0, HPRT0); 5522 dwc2_writel(hsotg, hr->hfir, HFIR); 5523 dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ); 5524 hsotg->frame_number = 0; 5525 5526 return 0; 5527 } 5528 5529 /** 5530 * dwc2_host_enter_hibernation() - Put controller in Hibernation. 5531 * 5532 * @hsotg: Programming view of the DWC_otg controller 5533 */ 5534 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg) 5535 { 5536 unsigned long flags; 5537 int ret = 0; 5538 u32 hprt0; 5539 u32 pcgcctl; 5540 u32 gusbcfg; 5541 u32 gpwrdn; 5542 5543 dev_dbg(hsotg->dev, "Preparing host for hibernation\n"); 5544 ret = dwc2_backup_global_registers(hsotg); 5545 if (ret) { 5546 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5547 __func__); 5548 return ret; 5549 } 5550 ret = dwc2_backup_host_registers(hsotg); 5551 if (ret) { 5552 dev_err(hsotg->dev, "%s: failed to backup host registers\n", 5553 __func__); 5554 return ret; 5555 } 5556 5557 /* Enter USB Suspend Mode */ 5558 hprt0 = dwc2_readl(hsotg, HPRT0); 5559 hprt0 |= HPRT0_SUSP; 5560 hprt0 &= ~HPRT0_ENA; 5561 dwc2_writel(hsotg, hprt0, HPRT0); 5562 5563 /* Wait for the HPRT0.PrtSusp register field to be set */ 5564 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000)) 5565 dev_warn(hsotg->dev, "Suspend wasn't generated\n"); 5566 5567 /* 5568 * We need to disable interrupts to prevent servicing of any IRQ 5569 * during going to hibernation 5570 */ 5571 spin_lock_irqsave(&hsotg->lock, flags); 5572 hsotg->lx_state = DWC2_L2; 5573 5574 gusbcfg = dwc2_readl(hsotg, GUSBCFG); 5575 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) { 5576 /* ULPI interface */ 5577 /* Suspend the Phy Clock */ 5578 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5579 pcgcctl |= PCGCTL_STOPPCLK; 5580 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5581 udelay(10); 5582 5583 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5584 gpwrdn |= GPWRDN_PMUACTV; 5585 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5586 udelay(10); 5587 } else { 5588 /* UTMI+ Interface */ 5589 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5590 gpwrdn |= GPWRDN_PMUACTV; 5591 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5592 udelay(10); 5593 5594 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5595 pcgcctl |= PCGCTL_STOPPCLK; 5596 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5597 udelay(10); 5598 } 5599 5600 /* Enable interrupts from wake up logic */ 5601 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5602 gpwrdn |= GPWRDN_PMUINTSEL; 5603 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5604 udelay(10); 5605 5606 /* Unmask host mode interrupts in GPWRDN */ 5607 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5608 gpwrdn |= GPWRDN_DISCONN_DET_MSK; 5609 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5610 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5611 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5612 udelay(10); 5613 5614 /* Enable Power Down Clamp */ 5615 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5616 gpwrdn |= GPWRDN_PWRDNCLMP; 5617 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5618 udelay(10); 5619 5620 /* Switch off VDD */ 5621 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5622 gpwrdn |= GPWRDN_PWRDNSWTCH; 5623 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5624 5625 hsotg->hibernated = 1; 5626 hsotg->bus_suspended = 1; 5627 dev_dbg(hsotg->dev, "Host hibernation completed\n"); 5628 spin_unlock_irqrestore(&hsotg->lock, flags); 5629 return ret; 5630 } 5631 5632 /* 5633 * dwc2_host_exit_hibernation() 5634 * 5635 * @hsotg: Programming view of the DWC_otg controller 5636 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5637 * @param reset: indicates whether resume is initiated by Reset. 5638 * 5639 * Return: non-zero if failed to enter to hibernation. 5640 * 5641 * This function is for exiting from Host mode hibernation by 5642 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup. 5643 */ 5644 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup, 5645 int reset) 5646 { 5647 u32 gpwrdn; 5648 u32 hprt0; 5649 int ret = 0; 5650 struct dwc2_gregs_backup *gr; 5651 struct dwc2_hregs_backup *hr; 5652 5653 gr = &hsotg->gr_backup; 5654 hr = &hsotg->hr_backup; 5655 5656 dev_dbg(hsotg->dev, 5657 "%s: called with rem_wakeup = %d reset = %d\n", 5658 __func__, rem_wakeup, reset); 5659 5660 dwc2_hib_restore_common(hsotg, rem_wakeup, 1); 5661 hsotg->hibernated = 0; 5662 5663 /* 5664 * This step is not described in functional spec but if not wait for 5665 * this delay, mismatch interrupts occurred because just after restore 5666 * core is in Device mode(gintsts.curmode == 0) 5667 */ 5668 mdelay(100); 5669 5670 /* Clear all pending interupts */ 5671 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5672 5673 /* De-assert Restore */ 5674 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5675 gpwrdn &= ~GPWRDN_RESTORE; 5676 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5677 udelay(10); 5678 5679 /* Restore GUSBCFG, HCFG */ 5680 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5681 dwc2_writel(hsotg, hr->hcfg, HCFG); 5682 5683 /* De-assert Wakeup Logic */ 5684 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5685 gpwrdn &= ~GPWRDN_PMUACTV; 5686 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5687 udelay(10); 5688 5689 hprt0 = hr->hprt0; 5690 hprt0 |= HPRT0_PWR; 5691 hprt0 &= ~HPRT0_ENA; 5692 hprt0 &= ~HPRT0_SUSP; 5693 dwc2_writel(hsotg, hprt0, HPRT0); 5694 5695 hprt0 = hr->hprt0; 5696 hprt0 |= HPRT0_PWR; 5697 hprt0 &= ~HPRT0_ENA; 5698 hprt0 &= ~HPRT0_SUSP; 5699 5700 if (reset) { 5701 hprt0 |= HPRT0_RST; 5702 dwc2_writel(hsotg, hprt0, HPRT0); 5703 5704 /* Wait for Resume time and then program HPRT again */ 5705 mdelay(60); 5706 hprt0 &= ~HPRT0_RST; 5707 dwc2_writel(hsotg, hprt0, HPRT0); 5708 } else { 5709 hprt0 |= HPRT0_RES; 5710 dwc2_writel(hsotg, hprt0, HPRT0); 5711 5712 /* Wait for Resume time and then program HPRT again */ 5713 mdelay(100); 5714 hprt0 &= ~HPRT0_RES; 5715 dwc2_writel(hsotg, hprt0, HPRT0); 5716 } 5717 /* Clear all interrupt status */ 5718 hprt0 = dwc2_readl(hsotg, HPRT0); 5719 hprt0 |= HPRT0_CONNDET; 5720 hprt0 |= HPRT0_ENACHG; 5721 hprt0 &= ~HPRT0_ENA; 5722 dwc2_writel(hsotg, hprt0, HPRT0); 5723 5724 hprt0 = dwc2_readl(hsotg, HPRT0); 5725 5726 /* Clear all pending interupts */ 5727 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5728 5729 /* Restore global registers */ 5730 ret = dwc2_restore_global_registers(hsotg); 5731 if (ret) { 5732 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5733 __func__); 5734 return ret; 5735 } 5736 5737 /* Restore host registers */ 5738 ret = dwc2_restore_host_registers(hsotg); 5739 if (ret) { 5740 dev_err(hsotg->dev, "%s: failed to restore host registers\n", 5741 __func__); 5742 return ret; 5743 } 5744 5745 dwc2_hcd_rem_wakeup(hsotg); 5746 5747 hsotg->hibernated = 0; 5748 hsotg->bus_suspended = 0; 5749 hsotg->lx_state = DWC2_L0; 5750 dev_dbg(hsotg->dev, "Host hibernation restore complete\n"); 5751 return ret; 5752 } 5753