xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60 
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66 
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 	u32 intmsk;
76 
77 	/* Clear any pending OTG Interrupts */
78 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
79 
80 	/* Clear any pending interrupts */
81 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
82 
83 	/* Enable the interrupts in the GINTMSK */
84 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85 
86 	if (!hsotg->params.host_dma)
87 		intmsk |= GINTSTS_RXFLVL;
88 	if (!hsotg->params.external_id_pin_ctl)
89 		intmsk |= GINTSTS_CONIDSTSCHNG;
90 
91 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 		  GINTSTS_SESSREQINT;
93 
94 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 		intmsk |= GINTSTS_LPMTRANRCVD;
96 
97 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
98 }
99 
100 /*
101  * Initializes the FSLSPClkSel field of the HCFG register depending on the
102  * PHY type
103  */
104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
105 {
106 	u32 hcfg, val;
107 
108 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
109 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
110 	     hsotg->params.ulpi_fs_ls) ||
111 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
112 		/* Full speed PHY */
113 		val = HCFG_FSLSPCLKSEL_48_MHZ;
114 	} else {
115 		/* High speed PHY running at full speed or high speed */
116 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
117 	}
118 
119 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
120 	hcfg = dwc2_readl(hsotg->regs + HCFG);
121 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
122 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
123 	dwc2_writel(hcfg, hsotg->regs + HCFG);
124 }
125 
126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
127 {
128 	u32 usbcfg, ggpio, i2cctl;
129 	int retval = 0;
130 
131 	/*
132 	 * core_init() is now called on every switch so only call the
133 	 * following for the first time through
134 	 */
135 	if (select_phy) {
136 		dev_dbg(hsotg->dev, "FS PHY selected\n");
137 
138 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
139 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
140 			usbcfg |= GUSBCFG_PHYSEL;
141 			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
142 
143 			/* Reset after a PHY select */
144 			retval = dwc2_core_reset(hsotg, false);
145 
146 			if (retval) {
147 				dev_err(hsotg->dev,
148 					"%s: Reset failed, aborting", __func__);
149 				return retval;
150 			}
151 		}
152 
153 		if (hsotg->params.activate_stm_fs_transceiver) {
154 			ggpio = dwc2_readl(hsotg->regs + GGPIO);
155 			if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
156 				dev_dbg(hsotg->dev, "Activating transceiver\n");
157 				/*
158 				 * STM32F4x9 uses the GGPIO register as general
159 				 * core configuration register.
160 				 */
161 				ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
162 				dwc2_writel(ggpio, hsotg->regs + GGPIO);
163 			}
164 		}
165 	}
166 
167 	/*
168 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
169 	 * do this on HNP Dev/Host mode switches (done in dev_init and
170 	 * host_init).
171 	 */
172 	if (dwc2_is_host_mode(hsotg))
173 		dwc2_init_fs_ls_pclk_sel(hsotg);
174 
175 	if (hsotg->params.i2c_enable) {
176 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
177 
178 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
179 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
180 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
181 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
182 
183 		/* Program GI2CCTL.I2CEn */
184 		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
185 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
186 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
187 		i2cctl &= ~GI2CCTL_I2CEN;
188 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
189 		i2cctl |= GI2CCTL_I2CEN;
190 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
191 	}
192 
193 	return retval;
194 }
195 
196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
197 {
198 	u32 usbcfg, usbcfg_old;
199 	int retval = 0;
200 
201 	if (!select_phy)
202 		return 0;
203 
204 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
205 	usbcfg_old = usbcfg;
206 
207 	/*
208 	 * HS PHY parameters. These parameters are preserved during soft reset
209 	 * so only program the first time. Do a soft reset immediately after
210 	 * setting phyif.
211 	 */
212 	switch (hsotg->params.phy_type) {
213 	case DWC2_PHY_TYPE_PARAM_ULPI:
214 		/* ULPI interface */
215 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
216 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
217 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
218 		if (hsotg->params.phy_ulpi_ddr)
219 			usbcfg |= GUSBCFG_DDRSEL;
220 
221 		/* Set external VBUS indicator as needed. */
222 		if (hsotg->params.oc_disable)
223 			usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
224 				   GUSBCFG_INDICATORPASSTHROUGH);
225 		break;
226 	case DWC2_PHY_TYPE_PARAM_UTMI:
227 		/* UTMI+ interface */
228 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
229 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
230 		if (hsotg->params.phy_utmi_width == 16)
231 			usbcfg |= GUSBCFG_PHYIF16;
232 		break;
233 	default:
234 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
235 		break;
236 	}
237 
238 	if (usbcfg != usbcfg_old) {
239 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
240 
241 		/* Reset after setting the PHY parameters */
242 		retval = dwc2_core_reset(hsotg, false);
243 		if (retval) {
244 			dev_err(hsotg->dev,
245 				"%s: Reset failed, aborting", __func__);
246 			return retval;
247 		}
248 	}
249 
250 	return retval;
251 }
252 
253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
254 {
255 	u32 usbcfg;
256 	int retval = 0;
257 
258 	if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
259 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
260 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
261 		/* If FS/LS mode with FS/LS PHY */
262 		retval = dwc2_fs_phy_init(hsotg, select_phy);
263 		if (retval)
264 			return retval;
265 	} else {
266 		/* High speed PHY */
267 		retval = dwc2_hs_phy_init(hsotg, select_phy);
268 		if (retval)
269 			return retval;
270 	}
271 
272 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
273 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
274 	    hsotg->params.ulpi_fs_ls) {
275 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
276 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
277 		usbcfg |= GUSBCFG_ULPI_FS_LS;
278 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
279 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
280 	} else {
281 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
282 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
283 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
284 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
285 	}
286 
287 	return retval;
288 }
289 
290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
291 {
292 	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
293 
294 	switch (hsotg->hw_params.arch) {
295 	case GHWCFG2_EXT_DMA_ARCH:
296 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
297 		return -EINVAL;
298 
299 	case GHWCFG2_INT_DMA_ARCH:
300 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
301 		if (hsotg->params.ahbcfg != -1) {
302 			ahbcfg &= GAHBCFG_CTRL_MASK;
303 			ahbcfg |= hsotg->params.ahbcfg &
304 				  ~GAHBCFG_CTRL_MASK;
305 		}
306 		break;
307 
308 	case GHWCFG2_SLAVE_ONLY_ARCH:
309 	default:
310 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
311 		break;
312 	}
313 
314 	if (hsotg->params.host_dma)
315 		ahbcfg |= GAHBCFG_DMA_EN;
316 	else
317 		hsotg->params.dma_desc_enable = false;
318 
319 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
320 
321 	return 0;
322 }
323 
324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
325 {
326 	u32 usbcfg;
327 
328 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
329 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
330 
331 	switch (hsotg->hw_params.op_mode) {
332 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
333 		if (hsotg->params.otg_cap ==
334 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
335 			usbcfg |= GUSBCFG_HNPCAP;
336 		if (hsotg->params.otg_cap !=
337 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
338 			usbcfg |= GUSBCFG_SRPCAP;
339 		break;
340 
341 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
342 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
343 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
344 		if (hsotg->params.otg_cap !=
345 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
346 			usbcfg |= GUSBCFG_SRPCAP;
347 		break;
348 
349 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
350 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
351 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
352 	default:
353 		break;
354 	}
355 
356 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
357 }
358 
359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
360 {
361 	int ret;
362 
363 	hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus");
364 	if (IS_ERR(hsotg->vbus_supply)) {
365 		ret = PTR_ERR(hsotg->vbus_supply);
366 		hsotg->vbus_supply = NULL;
367 		return ret == -ENODEV ? 0 : ret;
368 	}
369 
370 	return regulator_enable(hsotg->vbus_supply);
371 }
372 
373 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
374 {
375 	if (hsotg->vbus_supply)
376 		return regulator_disable(hsotg->vbus_supply);
377 
378 	return 0;
379 }
380 
381 /**
382  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
383  *
384  * @hsotg: Programming view of DWC_otg controller
385  */
386 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
387 {
388 	u32 intmsk;
389 
390 	dev_dbg(hsotg->dev, "%s()\n", __func__);
391 
392 	/* Disable all interrupts */
393 	dwc2_writel(0, hsotg->regs + GINTMSK);
394 	dwc2_writel(0, hsotg->regs + HAINTMSK);
395 
396 	/* Enable the common interrupts */
397 	dwc2_enable_common_interrupts(hsotg);
398 
399 	/* Enable host mode interrupts without disturbing common interrupts */
400 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
401 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
402 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
403 }
404 
405 /**
406  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
407  *
408  * @hsotg: Programming view of DWC_otg controller
409  */
410 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
411 {
412 	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
413 
414 	/* Disable host mode interrupts without disturbing common interrupts */
415 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
416 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
417 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
418 }
419 
420 /*
421  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
422  * For system that have a total fifo depth that is smaller than the default
423  * RX + TX fifo size.
424  *
425  * @hsotg: Programming view of DWC_otg controller
426  */
427 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
428 {
429 	struct dwc2_core_params *params = &hsotg->params;
430 	struct dwc2_hw_params *hw = &hsotg->hw_params;
431 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
432 
433 	total_fifo_size = hw->total_fifo_size;
434 	rxfsiz = params->host_rx_fifo_size;
435 	nptxfsiz = params->host_nperio_tx_fifo_size;
436 	ptxfsiz = params->host_perio_tx_fifo_size;
437 
438 	/*
439 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
440 	 * allocation with support for high bandwidth endpoints. Synopsys
441 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
442 	 * non-periodic as 512.
443 	 */
444 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
445 		/*
446 		 * For Buffer DMA mode/Scatter Gather DMA mode
447 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
448 		 * with n = number of host channel.
449 		 * 2 * ((1024/4) + 2) = 516
450 		 */
451 		rxfsiz = 516 + hw->host_channels;
452 
453 		/*
454 		 * min non-periodic tx fifo depth
455 		 * 2 * (largest non-periodic USB packet used / 4)
456 		 * 2 * (512/4) = 256
457 		 */
458 		nptxfsiz = 256;
459 
460 		/*
461 		 * min periodic tx fifo depth
462 		 * (largest packet size*MC)/4
463 		 * (1024 * 3)/4 = 768
464 		 */
465 		ptxfsiz = 768;
466 
467 		params->host_rx_fifo_size = rxfsiz;
468 		params->host_nperio_tx_fifo_size = nptxfsiz;
469 		params->host_perio_tx_fifo_size = ptxfsiz;
470 	}
471 
472 	/*
473 	 * If the summation of RX, NPTX and PTX fifo sizes is still
474 	 * bigger than the total_fifo_size, then we have a problem.
475 	 *
476 	 * We won't be able to allocate as many endpoints. Right now,
477 	 * we're just printing an error message, but ideally this FIFO
478 	 * allocation algorithm would be improved in the future.
479 	 *
480 	 * FIXME improve this FIFO allocation algorithm.
481 	 */
482 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
483 		dev_err(hsotg->dev, "invalid fifo sizes\n");
484 }
485 
486 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
487 {
488 	struct dwc2_core_params *params = &hsotg->params;
489 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
490 
491 	if (!params->enable_dynamic_fifo)
492 		return;
493 
494 	dwc2_calculate_dynamic_fifo(hsotg);
495 
496 	/* Rx FIFO */
497 	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
498 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
499 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
500 	grxfsiz |= params->host_rx_fifo_size <<
501 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
502 	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
503 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
504 		dwc2_readl(hsotg->regs + GRXFSIZ));
505 
506 	/* Non-periodic Tx FIFO */
507 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
508 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
509 	nptxfsiz = params->host_nperio_tx_fifo_size <<
510 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
511 	nptxfsiz |= params->host_rx_fifo_size <<
512 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
513 	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
514 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
515 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
516 
517 	/* Periodic Tx FIFO */
518 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
519 		dwc2_readl(hsotg->regs + HPTXFSIZ));
520 	hptxfsiz = params->host_perio_tx_fifo_size <<
521 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
522 	hptxfsiz |= (params->host_rx_fifo_size +
523 		     params->host_nperio_tx_fifo_size) <<
524 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
525 	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
526 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
527 		dwc2_readl(hsotg->regs + HPTXFSIZ));
528 
529 	if (hsotg->params.en_multiple_tx_fifo &&
530 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
531 		/*
532 		 * This feature was implemented in 2.91a version
533 		 * Global DFIFOCFG calculation for Host mode -
534 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
535 		 */
536 		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
537 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
538 		dfifocfg |= (params->host_rx_fifo_size +
539 			     params->host_nperio_tx_fifo_size +
540 			     params->host_perio_tx_fifo_size) <<
541 			    GDFIFOCFG_EPINFOBASE_SHIFT &
542 			    GDFIFOCFG_EPINFOBASE_MASK;
543 		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
544 	}
545 }
546 
547 /**
548  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
549  * the HFIR register according to PHY type and speed
550  *
551  * @hsotg: Programming view of DWC_otg controller
552  *
553  * NOTE: The caller can modify the value of the HFIR register only after the
554  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
555  * has been set
556  */
557 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
558 {
559 	u32 usbcfg;
560 	u32 hprt0;
561 	int clock = 60;	/* default value */
562 
563 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
564 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
565 
566 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
567 	    !(usbcfg & GUSBCFG_PHYIF16))
568 		clock = 60;
569 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
570 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
571 		clock = 48;
572 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
573 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
574 		clock = 30;
575 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
576 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
577 		clock = 60;
578 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
579 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
580 		clock = 48;
581 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
582 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
583 		clock = 48;
584 	if ((usbcfg & GUSBCFG_PHYSEL) &&
585 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
586 		clock = 48;
587 
588 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
589 		/* High speed case */
590 		return 125 * clock - 1;
591 
592 	/* FS/LS case */
593 	return 1000 * clock - 1;
594 }
595 
596 /**
597  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
598  * buffer
599  *
600  * @hsotg: Programming view of DWC_otg controller
601  * @dest:    Destination buffer for the packet
602  * @bytes:   Number of bytes to copy to the destination
603  */
604 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
605 {
606 	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
607 	u32 *data_buf = (u32 *)dest;
608 	int word_count = (bytes + 3) / 4;
609 	int i;
610 
611 	/*
612 	 * Todo: Account for the case where dest is not dword aligned. This
613 	 * requires reading data from the FIFO into a u32 temp buffer, then
614 	 * moving it into the data buffer.
615 	 */
616 
617 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
618 
619 	for (i = 0; i < word_count; i++, data_buf++)
620 		*data_buf = dwc2_readl(fifo);
621 }
622 
623 /**
624  * dwc2_dump_channel_info() - Prints the state of a host channel
625  *
626  * @hsotg: Programming view of DWC_otg controller
627  * @chan:  Pointer to the channel to dump
628  *
629  * Must be called with interrupt disabled and spinlock held
630  *
631  * NOTE: This function will be removed once the peripheral controller code
632  * is integrated and the driver is stable
633  */
634 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
635 				   struct dwc2_host_chan *chan)
636 {
637 #ifdef VERBOSE_DEBUG
638 	int num_channels = hsotg->params.host_channels;
639 	struct dwc2_qh *qh;
640 	u32 hcchar;
641 	u32 hcsplt;
642 	u32 hctsiz;
643 	u32 hc_dma;
644 	int i;
645 
646 	if (!chan)
647 		return;
648 
649 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
650 	hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
651 	hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
652 	hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
653 
654 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
655 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
656 		hcchar, hcsplt);
657 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
658 		hctsiz, hc_dma);
659 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
660 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
661 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
662 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
663 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
664 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
665 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
666 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
667 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
668 		(unsigned long)chan->xfer_dma);
669 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
670 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
671 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
672 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
673 			    qh_list_entry)
674 		dev_dbg(hsotg->dev, "    %p\n", qh);
675 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
676 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
677 			    qh_list_entry)
678 		dev_dbg(hsotg->dev, "    %p\n", qh);
679 	dev_dbg(hsotg->dev, "  NP active sched:\n");
680 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
681 			    qh_list_entry)
682 		dev_dbg(hsotg->dev, "    %p\n", qh);
683 	dev_dbg(hsotg->dev, "  Channels:\n");
684 	for (i = 0; i < num_channels; i++) {
685 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
686 
687 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
688 	}
689 #endif /* VERBOSE_DEBUG */
690 }
691 
692 static int _dwc2_hcd_start(struct usb_hcd *hcd);
693 
694 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
695 {
696 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
697 
698 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
699 	_dwc2_hcd_start(hcd);
700 }
701 
702 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
703 {
704 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
705 
706 	hcd->self.is_b_host = 0;
707 }
708 
709 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
710 			       int *hub_addr, int *hub_port)
711 {
712 	struct urb *urb = context;
713 
714 	if (urb->dev->tt)
715 		*hub_addr = urb->dev->tt->hub->devnum;
716 	else
717 		*hub_addr = 0;
718 	*hub_port = urb->dev->ttport;
719 }
720 
721 /*
722  * =========================================================================
723  *  Low Level Host Channel Access Functions
724  * =========================================================================
725  */
726 
727 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
728 				      struct dwc2_host_chan *chan)
729 {
730 	u32 hcintmsk = HCINTMSK_CHHLTD;
731 
732 	switch (chan->ep_type) {
733 	case USB_ENDPOINT_XFER_CONTROL:
734 	case USB_ENDPOINT_XFER_BULK:
735 		dev_vdbg(hsotg->dev, "control/bulk\n");
736 		hcintmsk |= HCINTMSK_XFERCOMPL;
737 		hcintmsk |= HCINTMSK_STALL;
738 		hcintmsk |= HCINTMSK_XACTERR;
739 		hcintmsk |= HCINTMSK_DATATGLERR;
740 		if (chan->ep_is_in) {
741 			hcintmsk |= HCINTMSK_BBLERR;
742 		} else {
743 			hcintmsk |= HCINTMSK_NAK;
744 			hcintmsk |= HCINTMSK_NYET;
745 			if (chan->do_ping)
746 				hcintmsk |= HCINTMSK_ACK;
747 		}
748 
749 		if (chan->do_split) {
750 			hcintmsk |= HCINTMSK_NAK;
751 			if (chan->complete_split)
752 				hcintmsk |= HCINTMSK_NYET;
753 			else
754 				hcintmsk |= HCINTMSK_ACK;
755 		}
756 
757 		if (chan->error_state)
758 			hcintmsk |= HCINTMSK_ACK;
759 		break;
760 
761 	case USB_ENDPOINT_XFER_INT:
762 		if (dbg_perio())
763 			dev_vdbg(hsotg->dev, "intr\n");
764 		hcintmsk |= HCINTMSK_XFERCOMPL;
765 		hcintmsk |= HCINTMSK_NAK;
766 		hcintmsk |= HCINTMSK_STALL;
767 		hcintmsk |= HCINTMSK_XACTERR;
768 		hcintmsk |= HCINTMSK_DATATGLERR;
769 		hcintmsk |= HCINTMSK_FRMOVRUN;
770 
771 		if (chan->ep_is_in)
772 			hcintmsk |= HCINTMSK_BBLERR;
773 		if (chan->error_state)
774 			hcintmsk |= HCINTMSK_ACK;
775 		if (chan->do_split) {
776 			if (chan->complete_split)
777 				hcintmsk |= HCINTMSK_NYET;
778 			else
779 				hcintmsk |= HCINTMSK_ACK;
780 		}
781 		break;
782 
783 	case USB_ENDPOINT_XFER_ISOC:
784 		if (dbg_perio())
785 			dev_vdbg(hsotg->dev, "isoc\n");
786 		hcintmsk |= HCINTMSK_XFERCOMPL;
787 		hcintmsk |= HCINTMSK_FRMOVRUN;
788 		hcintmsk |= HCINTMSK_ACK;
789 
790 		if (chan->ep_is_in) {
791 			hcintmsk |= HCINTMSK_XACTERR;
792 			hcintmsk |= HCINTMSK_BBLERR;
793 		}
794 		break;
795 	default:
796 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
797 		break;
798 	}
799 
800 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
801 	if (dbg_hc(chan))
802 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
803 }
804 
805 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
806 				    struct dwc2_host_chan *chan)
807 {
808 	u32 hcintmsk = HCINTMSK_CHHLTD;
809 
810 	/*
811 	 * For Descriptor DMA mode core halts the channel on AHB error.
812 	 * Interrupt is not required.
813 	 */
814 	if (!hsotg->params.dma_desc_enable) {
815 		if (dbg_hc(chan))
816 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
817 		hcintmsk |= HCINTMSK_AHBERR;
818 	} else {
819 		if (dbg_hc(chan))
820 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
821 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
822 			hcintmsk |= HCINTMSK_XFERCOMPL;
823 	}
824 
825 	if (chan->error_state && !chan->do_split &&
826 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
827 		if (dbg_hc(chan))
828 			dev_vdbg(hsotg->dev, "setting ACK\n");
829 		hcintmsk |= HCINTMSK_ACK;
830 		if (chan->ep_is_in) {
831 			hcintmsk |= HCINTMSK_DATATGLERR;
832 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
833 				hcintmsk |= HCINTMSK_NAK;
834 		}
835 	}
836 
837 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
838 	if (dbg_hc(chan))
839 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
840 }
841 
842 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
843 				struct dwc2_host_chan *chan)
844 {
845 	u32 intmsk;
846 
847 	if (hsotg->params.host_dma) {
848 		if (dbg_hc(chan))
849 			dev_vdbg(hsotg->dev, "DMA enabled\n");
850 		dwc2_hc_enable_dma_ints(hsotg, chan);
851 	} else {
852 		if (dbg_hc(chan))
853 			dev_vdbg(hsotg->dev, "DMA disabled\n");
854 		dwc2_hc_enable_slave_ints(hsotg, chan);
855 	}
856 
857 	/* Enable the top level host channel interrupt */
858 	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
859 	intmsk |= 1 << chan->hc_num;
860 	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
861 	if (dbg_hc(chan))
862 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
863 
864 	/* Make sure host channel interrupts are enabled */
865 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
866 	intmsk |= GINTSTS_HCHINT;
867 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
868 	if (dbg_hc(chan))
869 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
870 }
871 
872 /**
873  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
874  * a specific endpoint
875  *
876  * @hsotg: Programming view of DWC_otg controller
877  * @chan:  Information needed to initialize the host channel
878  *
879  * The HCCHARn register is set up with the characteristics specified in chan.
880  * Host channel interrupts that may need to be serviced while this transfer is
881  * in progress are enabled.
882  */
883 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
884 {
885 	u8 hc_num = chan->hc_num;
886 	u32 hcintmsk;
887 	u32 hcchar;
888 	u32 hcsplt = 0;
889 
890 	if (dbg_hc(chan))
891 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
892 
893 	/* Clear old interrupt conditions for this host channel */
894 	hcintmsk = 0xffffffff;
895 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
896 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
897 
898 	/* Enable channel interrupts required for this transfer */
899 	dwc2_hc_enable_ints(hsotg, chan);
900 
901 	/*
902 	 * Program the HCCHARn register with the endpoint characteristics for
903 	 * the current transfer
904 	 */
905 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
906 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
907 	if (chan->ep_is_in)
908 		hcchar |= HCCHAR_EPDIR;
909 	if (chan->speed == USB_SPEED_LOW)
910 		hcchar |= HCCHAR_LSPDDEV;
911 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
912 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
913 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
914 	if (dbg_hc(chan)) {
915 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
916 			 hc_num, hcchar);
917 
918 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
919 			 __func__, hc_num);
920 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
921 			 chan->dev_addr);
922 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
923 			 chan->ep_num);
924 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
925 			 chan->ep_is_in);
926 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
927 			 chan->speed == USB_SPEED_LOW);
928 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
929 			 chan->ep_type);
930 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
931 			 chan->max_packet);
932 	}
933 
934 	/* Program the HCSPLT register for SPLITs */
935 	if (chan->do_split) {
936 		if (dbg_hc(chan))
937 			dev_vdbg(hsotg->dev,
938 				 "Programming HC %d with split --> %s\n",
939 				 hc_num,
940 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
941 		if (chan->complete_split)
942 			hcsplt |= HCSPLT_COMPSPLT;
943 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
944 			  HCSPLT_XACTPOS_MASK;
945 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
946 			  HCSPLT_HUBADDR_MASK;
947 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
948 			  HCSPLT_PRTADDR_MASK;
949 		if (dbg_hc(chan)) {
950 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
951 				 chan->complete_split);
952 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
953 				 chan->xact_pos);
954 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
955 				 chan->hub_addr);
956 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
957 				 chan->hub_port);
958 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
959 				 chan->ep_is_in);
960 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
961 				 chan->max_packet);
962 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
963 				 chan->xfer_len);
964 		}
965 	}
966 
967 	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
968 }
969 
970 /**
971  * dwc2_hc_halt() - Attempts to halt a host channel
972  *
973  * @hsotg:       Controller register interface
974  * @chan:        Host channel to halt
975  * @halt_status: Reason for halting the channel
976  *
977  * This function should only be called in Slave mode or to abort a transfer in
978  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
979  * controller halts the channel when the transfer is complete or a condition
980  * occurs that requires application intervention.
981  *
982  * In slave mode, checks for a free request queue entry, then sets the Channel
983  * Enable and Channel Disable bits of the Host Channel Characteristics
984  * register of the specified channel to intiate the halt. If there is no free
985  * request queue entry, sets only the Channel Disable bit of the HCCHARn
986  * register to flush requests for this channel. In the latter case, sets a
987  * flag to indicate that the host channel needs to be halted when a request
988  * queue slot is open.
989  *
990  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
991  * HCCHARn register. The controller ensures there is space in the request
992  * queue before submitting the halt request.
993  *
994  * Some time may elapse before the core flushes any posted requests for this
995  * host channel and halts. The Channel Halted interrupt handler completes the
996  * deactivation of the host channel.
997  */
998 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
999 		  enum dwc2_halt_status halt_status)
1000 {
1001 	u32 nptxsts, hptxsts, hcchar;
1002 
1003 	if (dbg_hc(chan))
1004 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1005 
1006 	/*
1007 	 * In buffer DMA or external DMA mode channel can't be halted
1008 	 * for non-split periodic channels. At the end of the next
1009 	 * uframe/frame (in the worst case), the core generates a channel
1010 	 * halted and disables the channel automatically.
1011 	 */
1012 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
1013 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
1014 		if (!chan->do_split &&
1015 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
1016 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
1017 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
1018 				__func__);
1019 			return;
1020 		}
1021 	}
1022 
1023 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1024 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1025 
1026 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1027 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
1028 		/*
1029 		 * Disable all channel interrupts except Ch Halted. The QTD
1030 		 * and QH state associated with this transfer has been cleared
1031 		 * (in the case of URB_DEQUEUE), so the channel needs to be
1032 		 * shut down carefully to prevent crashes.
1033 		 */
1034 		u32 hcintmsk = HCINTMSK_CHHLTD;
1035 
1036 		dev_vdbg(hsotg->dev, "dequeue/error\n");
1037 		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1038 
1039 		/*
1040 		 * Make sure no other interrupts besides halt are currently
1041 		 * pending. Handling another interrupt could cause a crash due
1042 		 * to the QTD and QH state.
1043 		 */
1044 		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1045 
1046 		/*
1047 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1048 		 * even if the channel was already halted for some other
1049 		 * reason
1050 		 */
1051 		chan->halt_status = halt_status;
1052 
1053 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1054 		if (!(hcchar & HCCHAR_CHENA)) {
1055 			/*
1056 			 * The channel is either already halted or it hasn't
1057 			 * started yet. In DMA mode, the transfer may halt if
1058 			 * it finishes normally or a condition occurs that
1059 			 * requires driver intervention. Don't want to halt
1060 			 * the channel again. In either Slave or DMA mode,
1061 			 * it's possible that the transfer has been assigned
1062 			 * to a channel, but not started yet when an URB is
1063 			 * dequeued. Don't want to halt a channel that hasn't
1064 			 * started yet.
1065 			 */
1066 			return;
1067 		}
1068 	}
1069 	if (chan->halt_pending) {
1070 		/*
1071 		 * A halt has already been issued for this channel. This might
1072 		 * happen when a transfer is aborted by a higher level in
1073 		 * the stack.
1074 		 */
1075 		dev_vdbg(hsotg->dev,
1076 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1077 			 __func__, chan->hc_num);
1078 		return;
1079 	}
1080 
1081 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1082 
1083 	/* No need to set the bit in DDMA for disabling the channel */
1084 	/* TODO check it everywhere channel is disabled */
1085 	if (!hsotg->params.dma_desc_enable) {
1086 		if (dbg_hc(chan))
1087 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1088 		hcchar |= HCCHAR_CHENA;
1089 	} else {
1090 		if (dbg_hc(chan))
1091 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1092 	}
1093 	hcchar |= HCCHAR_CHDIS;
1094 
1095 	if (!hsotg->params.host_dma) {
1096 		if (dbg_hc(chan))
1097 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1098 		hcchar |= HCCHAR_CHENA;
1099 
1100 		/* Check for space in the request queue to issue the halt */
1101 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1102 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1103 			dev_vdbg(hsotg->dev, "control/bulk\n");
1104 			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1105 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1106 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1107 				hcchar &= ~HCCHAR_CHENA;
1108 			}
1109 		} else {
1110 			if (dbg_perio())
1111 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1112 			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1113 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1114 			    hsotg->queuing_high_bandwidth) {
1115 				if (dbg_perio())
1116 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1117 				hcchar &= ~HCCHAR_CHENA;
1118 			}
1119 		}
1120 	} else {
1121 		if (dbg_hc(chan))
1122 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1123 	}
1124 
1125 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1126 	chan->halt_status = halt_status;
1127 
1128 	if (hcchar & HCCHAR_CHENA) {
1129 		if (dbg_hc(chan))
1130 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1131 		chan->halt_pending = 1;
1132 		chan->halt_on_queue = 0;
1133 	} else {
1134 		if (dbg_hc(chan))
1135 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1136 		chan->halt_on_queue = 1;
1137 	}
1138 
1139 	if (dbg_hc(chan)) {
1140 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1141 			 chan->hc_num);
1142 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1143 			 hcchar);
1144 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1145 			 chan->halt_pending);
1146 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1147 			 chan->halt_on_queue);
1148 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1149 			 chan->halt_status);
1150 	}
1151 }
1152 
1153 /**
1154  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1155  *
1156  * @hsotg: Programming view of DWC_otg controller
1157  * @chan:  Identifies the host channel to clean up
1158  *
1159  * This function is normally called after a transfer is done and the host
1160  * channel is being released
1161  */
1162 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1163 {
1164 	u32 hcintmsk;
1165 
1166 	chan->xfer_started = 0;
1167 
1168 	list_del_init(&chan->split_order_list_entry);
1169 
1170 	/*
1171 	 * Clear channel interrupt enables and any unhandled channel interrupt
1172 	 * conditions
1173 	 */
1174 	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1175 	hcintmsk = 0xffffffff;
1176 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1177 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1178 }
1179 
1180 /**
1181  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1182  * which frame a periodic transfer should occur
1183  *
1184  * @hsotg:  Programming view of DWC_otg controller
1185  * @chan:   Identifies the host channel to set up and its properties
1186  * @hcchar: Current value of the HCCHAR register for the specified host channel
1187  *
1188  * This function has no effect on non-periodic transfers
1189  */
1190 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1191 				       struct dwc2_host_chan *chan, u32 *hcchar)
1192 {
1193 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1194 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1195 		int host_speed;
1196 		int xfer_ns;
1197 		int xfer_us;
1198 		int bytes_in_fifo;
1199 		u16 fifo_space;
1200 		u16 frame_number;
1201 		u16 wire_frame;
1202 
1203 		/*
1204 		 * Try to figure out if we're an even or odd frame. If we set
1205 		 * even and the current frame number is even the the transfer
1206 		 * will happen immediately.  Similar if both are odd. If one is
1207 		 * even and the other is odd then the transfer will happen when
1208 		 * the frame number ticks.
1209 		 *
1210 		 * There's a bit of a balancing act to get this right.
1211 		 * Sometimes we may want to send data in the current frame (AK
1212 		 * right away).  We might want to do this if the frame number
1213 		 * _just_ ticked, but we might also want to do this in order
1214 		 * to continue a split transaction that happened late in a
1215 		 * microframe (so we didn't know to queue the next transfer
1216 		 * until the frame number had ticked).  The problem is that we
1217 		 * need a lot of knowledge to know if there's actually still
1218 		 * time to send things or if it would be better to wait until
1219 		 * the next frame.
1220 		 *
1221 		 * We can look at how much time is left in the current frame
1222 		 * and make a guess about whether we'll have time to transfer.
1223 		 * We'll do that.
1224 		 */
1225 
1226 		/* Get speed host is running at */
1227 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1228 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1229 
1230 		/* See how many bytes are in the periodic FIFO right now */
1231 		fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1232 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1233 		bytes_in_fifo = sizeof(u32) *
1234 				(hsotg->params.host_perio_tx_fifo_size -
1235 				 fifo_space);
1236 
1237 		/*
1238 		 * Roughly estimate bus time for everything in the periodic
1239 		 * queue + our new transfer.  This is "rough" because we're
1240 		 * using a function that makes takes into account IN/OUT
1241 		 * and INT/ISO and we're just slamming in one value for all
1242 		 * transfers.  This should be an over-estimate and that should
1243 		 * be OK, but we can probably tighten it.
1244 		 */
1245 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1246 					    chan->xfer_len + bytes_in_fifo);
1247 		xfer_us = NS_TO_US(xfer_ns);
1248 
1249 		/* See what frame number we'll be at by the time we finish */
1250 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1251 
1252 		/* This is when we were scheduled to be on the wire */
1253 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1254 
1255 		/*
1256 		 * If we'd finish _after_ the frame we're scheduled in then
1257 		 * it's hopeless.  Just schedule right away and hope for the
1258 		 * best.  Note that it _might_ be wise to call back into the
1259 		 * scheduler to pick a better frame, but this is better than
1260 		 * nothing.
1261 		 */
1262 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1263 			dwc2_sch_vdbg(hsotg,
1264 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1265 				      chan->qh, wire_frame, frame_number,
1266 				      dwc2_frame_num_dec(frame_number,
1267 							 wire_frame));
1268 			wire_frame = frame_number;
1269 
1270 			/*
1271 			 * We picked a different frame number; communicate this
1272 			 * back to the scheduler so it doesn't try to schedule
1273 			 * another in the same frame.
1274 			 *
1275 			 * Remember that next_active_frame is 1 before the wire
1276 			 * frame.
1277 			 */
1278 			chan->qh->next_active_frame =
1279 				dwc2_frame_num_dec(frame_number, 1);
1280 		}
1281 
1282 		if (wire_frame & 1)
1283 			*hcchar |= HCCHAR_ODDFRM;
1284 		else
1285 			*hcchar &= ~HCCHAR_ODDFRM;
1286 	}
1287 }
1288 
1289 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1290 {
1291 	/* Set up the initial PID for the transfer */
1292 	if (chan->speed == USB_SPEED_HIGH) {
1293 		if (chan->ep_is_in) {
1294 			if (chan->multi_count == 1)
1295 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1296 			else if (chan->multi_count == 2)
1297 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1298 			else
1299 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1300 		} else {
1301 			if (chan->multi_count == 1)
1302 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1303 			else
1304 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1305 		}
1306 	} else {
1307 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1308 	}
1309 }
1310 
1311 /**
1312  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1313  * the Host Channel
1314  *
1315  * @hsotg: Programming view of DWC_otg controller
1316  * @chan:  Information needed to initialize the host channel
1317  *
1318  * This function should only be called in Slave mode. For a channel associated
1319  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1320  * associated with a periodic EP, the periodic Tx FIFO is written.
1321  *
1322  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1323  * the number of bytes written to the Tx FIFO.
1324  */
1325 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1326 				 struct dwc2_host_chan *chan)
1327 {
1328 	u32 i;
1329 	u32 remaining_count;
1330 	u32 byte_count;
1331 	u32 dword_count;
1332 	u32 __iomem *data_fifo;
1333 	u32 *data_buf = (u32 *)chan->xfer_buf;
1334 
1335 	if (dbg_hc(chan))
1336 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1337 
1338 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1339 
1340 	remaining_count = chan->xfer_len - chan->xfer_count;
1341 	if (remaining_count > chan->max_packet)
1342 		byte_count = chan->max_packet;
1343 	else
1344 		byte_count = remaining_count;
1345 
1346 	dword_count = (byte_count + 3) / 4;
1347 
1348 	if (((unsigned long)data_buf & 0x3) == 0) {
1349 		/* xfer_buf is DWORD aligned */
1350 		for (i = 0; i < dword_count; i++, data_buf++)
1351 			dwc2_writel(*data_buf, data_fifo);
1352 	} else {
1353 		/* xfer_buf is not DWORD aligned */
1354 		for (i = 0; i < dword_count; i++, data_buf++) {
1355 			u32 data = data_buf[0] | data_buf[1] << 8 |
1356 				   data_buf[2] << 16 | data_buf[3] << 24;
1357 			dwc2_writel(data, data_fifo);
1358 		}
1359 	}
1360 
1361 	chan->xfer_count += byte_count;
1362 	chan->xfer_buf += byte_count;
1363 }
1364 
1365 /**
1366  * dwc2_hc_do_ping() - Starts a PING transfer
1367  *
1368  * @hsotg: Programming view of DWC_otg controller
1369  * @chan:  Information needed to initialize the host channel
1370  *
1371  * This function should only be called in Slave mode. The Do Ping bit is set in
1372  * the HCTSIZ register, then the channel is enabled.
1373  */
1374 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1375 			    struct dwc2_host_chan *chan)
1376 {
1377 	u32 hcchar;
1378 	u32 hctsiz;
1379 
1380 	if (dbg_hc(chan))
1381 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1382 			 chan->hc_num);
1383 
1384 	hctsiz = TSIZ_DOPNG;
1385 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1386 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1387 
1388 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1389 	hcchar |= HCCHAR_CHENA;
1390 	hcchar &= ~HCCHAR_CHDIS;
1391 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1392 }
1393 
1394 /**
1395  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1396  * channel and starts the transfer
1397  *
1398  * @hsotg: Programming view of DWC_otg controller
1399  * @chan:  Information needed to initialize the host channel. The xfer_len value
1400  *         may be reduced to accommodate the max widths of the XferSize and
1401  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1402  *         changed to reflect the final xfer_len value.
1403  *
1404  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1405  * the caller must ensure that there is sufficient space in the request queue
1406  * and Tx Data FIFO.
1407  *
1408  * For an OUT transfer in Slave mode, it loads a data packet into the
1409  * appropriate FIFO. If necessary, additional data packets are loaded in the
1410  * Host ISR.
1411  *
1412  * For an IN transfer in Slave mode, a data packet is requested. The data
1413  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1414  * additional data packets are requested in the Host ISR.
1415  *
1416  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1417  * register along with a packet count of 1 and the channel is enabled. This
1418  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1419  * simply set to 0 since no data transfer occurs in this case.
1420  *
1421  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1422  * all the information required to perform the subsequent data transfer. In
1423  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1424  * controller performs the entire PING protocol, then starts the data
1425  * transfer.
1426  */
1427 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1428 				   struct dwc2_host_chan *chan)
1429 {
1430 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1431 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1432 	u32 hcchar;
1433 	u32 hctsiz = 0;
1434 	u16 num_packets;
1435 	u32 ec_mc;
1436 
1437 	if (dbg_hc(chan))
1438 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1439 
1440 	if (chan->do_ping) {
1441 		if (!hsotg->params.host_dma) {
1442 			if (dbg_hc(chan))
1443 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1444 			dwc2_hc_do_ping(hsotg, chan);
1445 			chan->xfer_started = 1;
1446 			return;
1447 		}
1448 
1449 		if (dbg_hc(chan))
1450 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1451 
1452 		hctsiz |= TSIZ_DOPNG;
1453 	}
1454 
1455 	if (chan->do_split) {
1456 		if (dbg_hc(chan))
1457 			dev_vdbg(hsotg->dev, "split\n");
1458 		num_packets = 1;
1459 
1460 		if (chan->complete_split && !chan->ep_is_in)
1461 			/*
1462 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1463 			 * core doesn't expect any data written to the FIFO
1464 			 */
1465 			chan->xfer_len = 0;
1466 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1467 			chan->xfer_len = chan->max_packet;
1468 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1469 			chan->xfer_len = 188;
1470 
1471 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1472 			  TSIZ_XFERSIZE_MASK;
1473 
1474 		/* For split set ec_mc for immediate retries */
1475 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1476 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1477 			ec_mc = 3;
1478 		else
1479 			ec_mc = 1;
1480 	} else {
1481 		if (dbg_hc(chan))
1482 			dev_vdbg(hsotg->dev, "no split\n");
1483 		/*
1484 		 * Ensure that the transfer length and packet count will fit
1485 		 * in the widths allocated for them in the HCTSIZn register
1486 		 */
1487 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1488 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1489 			/*
1490 			 * Make sure the transfer size is no larger than one
1491 			 * (micro)frame's worth of data. (A check was done
1492 			 * when the periodic transfer was accepted to ensure
1493 			 * that a (micro)frame's worth of data can be
1494 			 * programmed into a channel.)
1495 			 */
1496 			u32 max_periodic_len =
1497 				chan->multi_count * chan->max_packet;
1498 
1499 			if (chan->xfer_len > max_periodic_len)
1500 				chan->xfer_len = max_periodic_len;
1501 		} else if (chan->xfer_len > max_hc_xfer_size) {
1502 			/*
1503 			 * Make sure that xfer_len is a multiple of max packet
1504 			 * size
1505 			 */
1506 			chan->xfer_len =
1507 				max_hc_xfer_size - chan->max_packet + 1;
1508 		}
1509 
1510 		if (chan->xfer_len > 0) {
1511 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1512 					chan->max_packet;
1513 			if (num_packets > max_hc_pkt_count) {
1514 				num_packets = max_hc_pkt_count;
1515 				chan->xfer_len = num_packets * chan->max_packet;
1516 			}
1517 		} else {
1518 			/* Need 1 packet for transfer length of 0 */
1519 			num_packets = 1;
1520 		}
1521 
1522 		if (chan->ep_is_in)
1523 			/*
1524 			 * Always program an integral # of max packets for IN
1525 			 * transfers
1526 			 */
1527 			chan->xfer_len = num_packets * chan->max_packet;
1528 
1529 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1530 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1531 			/*
1532 			 * Make sure that the multi_count field matches the
1533 			 * actual transfer length
1534 			 */
1535 			chan->multi_count = num_packets;
1536 
1537 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1538 			dwc2_set_pid_isoc(chan);
1539 
1540 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1541 			  TSIZ_XFERSIZE_MASK;
1542 
1543 		/* The ec_mc gets the multi_count for non-split */
1544 		ec_mc = chan->multi_count;
1545 	}
1546 
1547 	chan->start_pkt_count = num_packets;
1548 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1549 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1550 		  TSIZ_SC_MC_PID_MASK;
1551 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1552 	if (dbg_hc(chan)) {
1553 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1554 			 hctsiz, chan->hc_num);
1555 
1556 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1557 			 chan->hc_num);
1558 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1559 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1560 			 TSIZ_XFERSIZE_SHIFT);
1561 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1562 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1563 			 TSIZ_PKTCNT_SHIFT);
1564 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1565 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1566 			 TSIZ_SC_MC_PID_SHIFT);
1567 	}
1568 
1569 	if (hsotg->params.host_dma) {
1570 		dwc2_writel((u32)chan->xfer_dma,
1571 			    hsotg->regs + HCDMA(chan->hc_num));
1572 		if (dbg_hc(chan))
1573 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1574 				 (unsigned long)chan->xfer_dma, chan->hc_num);
1575 	}
1576 
1577 	/* Start the split */
1578 	if (chan->do_split) {
1579 		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1580 
1581 		hcsplt |= HCSPLT_SPLTENA;
1582 		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1583 	}
1584 
1585 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1586 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1587 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1588 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1589 
1590 	if (hcchar & HCCHAR_CHDIS)
1591 		dev_warn(hsotg->dev,
1592 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1593 			 __func__, chan->hc_num, hcchar);
1594 
1595 	/* Set host channel enable after all other setup is complete */
1596 	hcchar |= HCCHAR_CHENA;
1597 	hcchar &= ~HCCHAR_CHDIS;
1598 
1599 	if (dbg_hc(chan))
1600 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1601 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1602 			 HCCHAR_MULTICNT_SHIFT);
1603 
1604 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1605 	if (dbg_hc(chan))
1606 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1607 			 chan->hc_num);
1608 
1609 	chan->xfer_started = 1;
1610 	chan->requests++;
1611 
1612 	if (!hsotg->params.host_dma &&
1613 	    !chan->ep_is_in && chan->xfer_len > 0)
1614 		/* Load OUT packet into the appropriate Tx FIFO */
1615 		dwc2_hc_write_packet(hsotg, chan);
1616 }
1617 
1618 /**
1619  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1620  * host channel and starts the transfer in Descriptor DMA mode
1621  *
1622  * @hsotg: Programming view of DWC_otg controller
1623  * @chan:  Information needed to initialize the host channel
1624  *
1625  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1626  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1627  * with micro-frame bitmap.
1628  *
1629  * Initializes HCDMA register with descriptor list address and CTD value then
1630  * starts the transfer via enabling the channel.
1631  */
1632 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1633 				 struct dwc2_host_chan *chan)
1634 {
1635 	u32 hcchar;
1636 	u32 hctsiz = 0;
1637 
1638 	if (chan->do_ping)
1639 		hctsiz |= TSIZ_DOPNG;
1640 
1641 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1642 		dwc2_set_pid_isoc(chan);
1643 
1644 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1645 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1646 		  TSIZ_SC_MC_PID_MASK;
1647 
1648 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1649 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1650 
1651 	/* Non-zero only for high-speed interrupt endpoints */
1652 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1653 
1654 	if (dbg_hc(chan)) {
1655 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1656 			 chan->hc_num);
1657 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1658 			 chan->data_pid_start);
1659 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1660 	}
1661 
1662 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1663 
1664 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1665 				   chan->desc_list_sz, DMA_TO_DEVICE);
1666 
1667 	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1668 
1669 	if (dbg_hc(chan))
1670 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1671 			 &chan->desc_list_addr, chan->hc_num);
1672 
1673 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1674 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1675 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1676 		  HCCHAR_MULTICNT_MASK;
1677 
1678 	if (hcchar & HCCHAR_CHDIS)
1679 		dev_warn(hsotg->dev,
1680 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1681 			 __func__, chan->hc_num, hcchar);
1682 
1683 	/* Set host channel enable after all other setup is complete */
1684 	hcchar |= HCCHAR_CHENA;
1685 	hcchar &= ~HCCHAR_CHDIS;
1686 
1687 	if (dbg_hc(chan))
1688 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1689 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1690 			 HCCHAR_MULTICNT_SHIFT);
1691 
1692 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1693 	if (dbg_hc(chan))
1694 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1695 			 chan->hc_num);
1696 
1697 	chan->xfer_started = 1;
1698 	chan->requests++;
1699 }
1700 
1701 /**
1702  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1703  * a previous call to dwc2_hc_start_transfer()
1704  *
1705  * @hsotg: Programming view of DWC_otg controller
1706  * @chan:  Information needed to initialize the host channel
1707  *
1708  * The caller must ensure there is sufficient space in the request queue and Tx
1709  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1710  * the controller acts autonomously to complete transfers programmed to a host
1711  * channel.
1712  *
1713  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1714  * if there is any data remaining to be queued. For an IN transfer, another
1715  * data packet is always requested. For the SETUP phase of a control transfer,
1716  * this function does nothing.
1717  *
1718  * Return: 1 if a new request is queued, 0 if no more requests are required
1719  * for this transfer
1720  */
1721 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1722 				     struct dwc2_host_chan *chan)
1723 {
1724 	if (dbg_hc(chan))
1725 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1726 			 chan->hc_num);
1727 
1728 	if (chan->do_split)
1729 		/* SPLITs always queue just once per channel */
1730 		return 0;
1731 
1732 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1733 		/* SETUPs are queued only once since they can't be NAK'd */
1734 		return 0;
1735 
1736 	if (chan->ep_is_in) {
1737 		/*
1738 		 * Always queue another request for other IN transfers. If
1739 		 * back-to-back INs are issued and NAKs are received for both,
1740 		 * the driver may still be processing the first NAK when the
1741 		 * second NAK is received. When the interrupt handler clears
1742 		 * the NAK interrupt for the first NAK, the second NAK will
1743 		 * not be seen. So we can't depend on the NAK interrupt
1744 		 * handler to requeue a NAK'd request. Instead, IN requests
1745 		 * are issued each time this function is called. When the
1746 		 * transfer completes, the extra requests for the channel will
1747 		 * be flushed.
1748 		 */
1749 		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1750 
1751 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1752 		hcchar |= HCCHAR_CHENA;
1753 		hcchar &= ~HCCHAR_CHDIS;
1754 		if (dbg_hc(chan))
1755 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1756 				 hcchar);
1757 		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1758 		chan->requests++;
1759 		return 1;
1760 	}
1761 
1762 	/* OUT transfers */
1763 
1764 	if (chan->xfer_count < chan->xfer_len) {
1765 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1766 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1767 			u32 hcchar = dwc2_readl(hsotg->regs +
1768 						HCCHAR(chan->hc_num));
1769 
1770 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1771 						   &hcchar);
1772 		}
1773 
1774 		/* Load OUT packet into the appropriate Tx FIFO */
1775 		dwc2_hc_write_packet(hsotg, chan);
1776 		chan->requests++;
1777 		return 1;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 /*
1784  * =========================================================================
1785  *  HCD
1786  * =========================================================================
1787  */
1788 
1789 /*
1790  * Processes all the URBs in a single list of QHs. Completes them with
1791  * -ETIMEDOUT and frees the QTD.
1792  *
1793  * Must be called with interrupt disabled and spinlock held
1794  */
1795 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1796 				      struct list_head *qh_list)
1797 {
1798 	struct dwc2_qh *qh, *qh_tmp;
1799 	struct dwc2_qtd *qtd, *qtd_tmp;
1800 
1801 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1802 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1803 					 qtd_list_entry) {
1804 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1805 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1806 		}
1807 	}
1808 }
1809 
1810 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1811 			      struct list_head *qh_list)
1812 {
1813 	struct dwc2_qtd *qtd, *qtd_tmp;
1814 	struct dwc2_qh *qh, *qh_tmp;
1815 	unsigned long flags;
1816 
1817 	if (!qh_list->next)
1818 		/* The list hasn't been initialized yet */
1819 		return;
1820 
1821 	spin_lock_irqsave(&hsotg->lock, flags);
1822 
1823 	/* Ensure there are no QTDs or URBs left */
1824 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1825 
1826 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1827 		dwc2_hcd_qh_unlink(hsotg, qh);
1828 
1829 		/* Free each QTD in the QH's QTD list */
1830 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1831 					 qtd_list_entry)
1832 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1833 
1834 		if (qh->channel && qh->channel->qh == qh)
1835 			qh->channel->qh = NULL;
1836 
1837 		spin_unlock_irqrestore(&hsotg->lock, flags);
1838 		dwc2_hcd_qh_free(hsotg, qh);
1839 		spin_lock_irqsave(&hsotg->lock, flags);
1840 	}
1841 
1842 	spin_unlock_irqrestore(&hsotg->lock, flags);
1843 }
1844 
1845 /*
1846  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1847  * and periodic schedules. The QTD associated with each URB is removed from
1848  * the schedule and freed. This function may be called when a disconnect is
1849  * detected or when the HCD is being stopped.
1850  *
1851  * Must be called with interrupt disabled and spinlock held
1852  */
1853 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1854 {
1855 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1856 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1857 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1858 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1859 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1860 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1861 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1862 }
1863 
1864 /**
1865  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1866  *
1867  * @hsotg: Pointer to struct dwc2_hsotg
1868  */
1869 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1870 {
1871 	u32 hprt0;
1872 
1873 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1874 		/*
1875 		 * Reset the port. During a HNP mode switch the reset
1876 		 * needs to occur within 1ms and have a duration of at
1877 		 * least 50ms.
1878 		 */
1879 		hprt0 = dwc2_read_hprt0(hsotg);
1880 		hprt0 |= HPRT0_RST;
1881 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
1882 	}
1883 
1884 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1885 			   msecs_to_jiffies(50));
1886 }
1887 
1888 /* Must be called with interrupt disabled and spinlock held */
1889 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1890 {
1891 	int num_channels = hsotg->params.host_channels;
1892 	struct dwc2_host_chan *channel;
1893 	u32 hcchar;
1894 	int i;
1895 
1896 	if (!hsotg->params.host_dma) {
1897 		/* Flush out any channel requests in slave mode */
1898 		for (i = 0; i < num_channels; i++) {
1899 			channel = hsotg->hc_ptr_array[i];
1900 			if (!list_empty(&channel->hc_list_entry))
1901 				continue;
1902 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1903 			if (hcchar & HCCHAR_CHENA) {
1904 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1905 				hcchar |= HCCHAR_CHDIS;
1906 				dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1907 			}
1908 		}
1909 	}
1910 
1911 	for (i = 0; i < num_channels; i++) {
1912 		channel = hsotg->hc_ptr_array[i];
1913 		if (!list_empty(&channel->hc_list_entry))
1914 			continue;
1915 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1916 		if (hcchar & HCCHAR_CHENA) {
1917 			/* Halt the channel */
1918 			hcchar |= HCCHAR_CHDIS;
1919 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1920 		}
1921 
1922 		dwc2_hc_cleanup(hsotg, channel);
1923 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1924 		/*
1925 		 * Added for Descriptor DMA to prevent channel double cleanup in
1926 		 * release_channel_ddma(), which is called from ep_disable when
1927 		 * device disconnects
1928 		 */
1929 		channel->qh = NULL;
1930 	}
1931 	/* All channels have been freed, mark them available */
1932 	if (hsotg->params.uframe_sched) {
1933 		hsotg->available_host_channels =
1934 			hsotg->params.host_channels;
1935 	} else {
1936 		hsotg->non_periodic_channels = 0;
1937 		hsotg->periodic_channels = 0;
1938 	}
1939 }
1940 
1941 /**
1942  * dwc2_hcd_connect() - Handles connect of the HCD
1943  *
1944  * @hsotg: Pointer to struct dwc2_hsotg
1945  *
1946  * Must be called with interrupt disabled and spinlock held
1947  */
1948 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1949 {
1950 	if (hsotg->lx_state != DWC2_L0)
1951 		usb_hcd_resume_root_hub(hsotg->priv);
1952 
1953 	hsotg->flags.b.port_connect_status_change = 1;
1954 	hsotg->flags.b.port_connect_status = 1;
1955 }
1956 
1957 /**
1958  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1959  *
1960  * @hsotg: Pointer to struct dwc2_hsotg
1961  * @force: If true, we won't try to reconnect even if we see device connected.
1962  *
1963  * Must be called with interrupt disabled and spinlock held
1964  */
1965 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1966 {
1967 	u32 intr;
1968 	u32 hprt0;
1969 
1970 	/* Set status flags for the hub driver */
1971 	hsotg->flags.b.port_connect_status_change = 1;
1972 	hsotg->flags.b.port_connect_status = 0;
1973 
1974 	/*
1975 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1976 	 * interrupt mask and status bits and disabling subsequent host
1977 	 * channel interrupts.
1978 	 */
1979 	intr = dwc2_readl(hsotg->regs + GINTMSK);
1980 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1981 	dwc2_writel(intr, hsotg->regs + GINTMSK);
1982 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1983 	dwc2_writel(intr, hsotg->regs + GINTSTS);
1984 
1985 	/*
1986 	 * Turn off the vbus power only if the core has transitioned to device
1987 	 * mode. If still in host mode, need to keep power on to detect a
1988 	 * reconnection.
1989 	 */
1990 	if (dwc2_is_device_mode(hsotg)) {
1991 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1992 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1993 			dwc2_writel(0, hsotg->regs + HPRT0);
1994 		}
1995 
1996 		dwc2_disable_host_interrupts(hsotg);
1997 	}
1998 
1999 	/* Respond with an error status to all URBs in the schedule */
2000 	dwc2_kill_all_urbs(hsotg);
2001 
2002 	if (dwc2_is_host_mode(hsotg))
2003 		/* Clean up any host channels that were in use */
2004 		dwc2_hcd_cleanup_channels(hsotg);
2005 
2006 	dwc2_host_disconnect(hsotg);
2007 
2008 	/*
2009 	 * Add an extra check here to see if we're actually connected but
2010 	 * we don't have a detection interrupt pending.  This can happen if:
2011 	 *   1. hardware sees connect
2012 	 *   2. hardware sees disconnect
2013 	 *   3. hardware sees connect
2014 	 *   4. dwc2_port_intr() - clears connect interrupt
2015 	 *   5. dwc2_handle_common_intr() - calls here
2016 	 *
2017 	 * Without the extra check here we will end calling disconnect
2018 	 * and won't get any future interrupts to handle the connect.
2019 	 */
2020 	if (!force) {
2021 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2022 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
2023 			dwc2_hcd_connect(hsotg);
2024 	}
2025 }
2026 
2027 /**
2028  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2029  *
2030  * @hsotg: Pointer to struct dwc2_hsotg
2031  */
2032 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2033 {
2034 	if (hsotg->bus_suspended) {
2035 		hsotg->flags.b.port_suspend_change = 1;
2036 		usb_hcd_resume_root_hub(hsotg->priv);
2037 	}
2038 
2039 	if (hsotg->lx_state == DWC2_L1)
2040 		hsotg->flags.b.port_l1_change = 1;
2041 }
2042 
2043 /**
2044  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2045  *
2046  * @hsotg: Pointer to struct dwc2_hsotg
2047  *
2048  * Must be called with interrupt disabled and spinlock held
2049  */
2050 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2051 {
2052 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2053 
2054 	/*
2055 	 * The root hub should be disconnected before this function is called.
2056 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2057 	 * and the QH lists (via ..._hcd_endpoint_disable).
2058 	 */
2059 
2060 	/* Turn off all host-specific interrupts */
2061 	dwc2_disable_host_interrupts(hsotg);
2062 
2063 	/* Turn off the vbus power */
2064 	dev_dbg(hsotg->dev, "PortPower off\n");
2065 	dwc2_writel(0, hsotg->regs + HPRT0);
2066 }
2067 
2068 /* Caller must hold driver lock */
2069 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2070 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2071 				struct dwc2_qtd *qtd)
2072 {
2073 	u32 intr_mask;
2074 	int retval;
2075 	int dev_speed;
2076 
2077 	if (!hsotg->flags.b.port_connect_status) {
2078 		/* No longer connected */
2079 		dev_err(hsotg->dev, "Not connected\n");
2080 		return -ENODEV;
2081 	}
2082 
2083 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2084 
2085 	/* Some configurations cannot support LS traffic on a FS root port */
2086 	if ((dev_speed == USB_SPEED_LOW) &&
2087 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2088 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2089 		u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2090 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2091 
2092 		if (prtspd == HPRT0_SPD_FULL_SPEED)
2093 			return -ENODEV;
2094 	}
2095 
2096 	if (!qtd)
2097 		return -EINVAL;
2098 
2099 	dwc2_hcd_qtd_init(qtd, urb);
2100 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2101 	if (retval) {
2102 		dev_err(hsotg->dev,
2103 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2104 			retval);
2105 		return retval;
2106 	}
2107 
2108 	intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2109 	if (!(intr_mask & GINTSTS_SOF)) {
2110 		enum dwc2_transaction_type tr_type;
2111 
2112 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2113 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2114 			/*
2115 			 * Do not schedule SG transactions until qtd has
2116 			 * URB_GIVEBACK_ASAP set
2117 			 */
2118 			return 0;
2119 
2120 		tr_type = dwc2_hcd_select_transactions(hsotg);
2121 		if (tr_type != DWC2_TRANSACTION_NONE)
2122 			dwc2_hcd_queue_transactions(hsotg, tr_type);
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 /* Must be called with interrupt disabled and spinlock held */
2129 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2130 				struct dwc2_hcd_urb *urb)
2131 {
2132 	struct dwc2_qh *qh;
2133 	struct dwc2_qtd *urb_qtd;
2134 
2135 	urb_qtd = urb->qtd;
2136 	if (!urb_qtd) {
2137 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2138 		return -EINVAL;
2139 	}
2140 
2141 	qh = urb_qtd->qh;
2142 	if (!qh) {
2143 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2144 		return -EINVAL;
2145 	}
2146 
2147 	urb->priv = NULL;
2148 
2149 	if (urb_qtd->in_process && qh->channel) {
2150 		dwc2_dump_channel_info(hsotg, qh->channel);
2151 
2152 		/* The QTD is in process (it has been assigned to a channel) */
2153 		if (hsotg->flags.b.port_connect_status)
2154 			/*
2155 			 * If still connected (i.e. in host mode), halt the
2156 			 * channel so it can be used for other transfers. If
2157 			 * no longer connected, the host registers can't be
2158 			 * written to halt the channel since the core is in
2159 			 * device mode.
2160 			 */
2161 			dwc2_hc_halt(hsotg, qh->channel,
2162 				     DWC2_HC_XFER_URB_DEQUEUE);
2163 	}
2164 
2165 	/*
2166 	 * Free the QTD and clean up the associated QH. Leave the QH in the
2167 	 * schedule if it has any remaining QTDs.
2168 	 */
2169 	if (!hsotg->params.dma_desc_enable) {
2170 		u8 in_process = urb_qtd->in_process;
2171 
2172 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2173 		if (in_process) {
2174 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2175 			qh->channel = NULL;
2176 		} else if (list_empty(&qh->qtd_list)) {
2177 			dwc2_hcd_qh_unlink(hsotg, qh);
2178 		}
2179 	} else {
2180 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 /* Must NOT be called with interrupt disabled or spinlock held */
2187 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2188 				     struct usb_host_endpoint *ep, int retry)
2189 {
2190 	struct dwc2_qtd *qtd, *qtd_tmp;
2191 	struct dwc2_qh *qh;
2192 	unsigned long flags;
2193 	int rc;
2194 
2195 	spin_lock_irqsave(&hsotg->lock, flags);
2196 
2197 	qh = ep->hcpriv;
2198 	if (!qh) {
2199 		rc = -EINVAL;
2200 		goto err;
2201 	}
2202 
2203 	while (!list_empty(&qh->qtd_list) && retry--) {
2204 		if (retry == 0) {
2205 			dev_err(hsotg->dev,
2206 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2207 			rc = -EBUSY;
2208 			goto err;
2209 		}
2210 
2211 		spin_unlock_irqrestore(&hsotg->lock, flags);
2212 		msleep(20);
2213 		spin_lock_irqsave(&hsotg->lock, flags);
2214 		qh = ep->hcpriv;
2215 		if (!qh) {
2216 			rc = -EINVAL;
2217 			goto err;
2218 		}
2219 	}
2220 
2221 	dwc2_hcd_qh_unlink(hsotg, qh);
2222 
2223 	/* Free each QTD in the QH's QTD list */
2224 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2225 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2226 
2227 	ep->hcpriv = NULL;
2228 
2229 	if (qh->channel && qh->channel->qh == qh)
2230 		qh->channel->qh = NULL;
2231 
2232 	spin_unlock_irqrestore(&hsotg->lock, flags);
2233 
2234 	dwc2_hcd_qh_free(hsotg, qh);
2235 
2236 	return 0;
2237 
2238 err:
2239 	ep->hcpriv = NULL;
2240 	spin_unlock_irqrestore(&hsotg->lock, flags);
2241 
2242 	return rc;
2243 }
2244 
2245 /* Must be called with interrupt disabled and spinlock held */
2246 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2247 				   struct usb_host_endpoint *ep)
2248 {
2249 	struct dwc2_qh *qh = ep->hcpriv;
2250 
2251 	if (!qh)
2252 		return -EINVAL;
2253 
2254 	qh->data_toggle = DWC2_HC_PID_DATA0;
2255 
2256 	return 0;
2257 }
2258 
2259 /**
2260  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2261  * prepares the core for device mode or host mode operation
2262  *
2263  * @hsotg:         Programming view of the DWC_otg controller
2264  * @initial_setup: If true then this is the first init for this instance.
2265  */
2266 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2267 {
2268 	u32 usbcfg, otgctl;
2269 	int retval;
2270 
2271 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2272 
2273 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2274 
2275 	/* Set ULPI External VBUS bit if needed */
2276 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2277 	if (hsotg->params.phy_ulpi_ext_vbus)
2278 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2279 
2280 	/* Set external TS Dline pulsing bit if needed */
2281 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2282 	if (hsotg->params.ts_dline)
2283 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2284 
2285 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2286 
2287 	/*
2288 	 * Reset the Controller
2289 	 *
2290 	 * We only need to reset the controller if this is a re-init.
2291 	 * For the first init we know for sure that earlier code reset us (it
2292 	 * needed to in order to properly detect various parameters).
2293 	 */
2294 	if (!initial_setup) {
2295 		retval = dwc2_core_reset(hsotg, false);
2296 		if (retval) {
2297 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2298 				__func__);
2299 			return retval;
2300 		}
2301 	}
2302 
2303 	/*
2304 	 * This needs to happen in FS mode before any other programming occurs
2305 	 */
2306 	retval = dwc2_phy_init(hsotg, initial_setup);
2307 	if (retval)
2308 		return retval;
2309 
2310 	/* Program the GAHBCFG Register */
2311 	retval = dwc2_gahbcfg_init(hsotg);
2312 	if (retval)
2313 		return retval;
2314 
2315 	/* Program the GUSBCFG register */
2316 	dwc2_gusbcfg_init(hsotg);
2317 
2318 	/* Program the GOTGCTL register */
2319 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2320 	otgctl &= ~GOTGCTL_OTGVER;
2321 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2322 
2323 	/* Clear the SRP success bit for FS-I2c */
2324 	hsotg->srp_success = 0;
2325 
2326 	/* Enable common interrupts */
2327 	dwc2_enable_common_interrupts(hsotg);
2328 
2329 	/*
2330 	 * Do device or host initialization based on mode during PCD and
2331 	 * HCD initialization
2332 	 */
2333 	if (dwc2_is_host_mode(hsotg)) {
2334 		dev_dbg(hsotg->dev, "Host Mode\n");
2335 		hsotg->op_state = OTG_STATE_A_HOST;
2336 	} else {
2337 		dev_dbg(hsotg->dev, "Device Mode\n");
2338 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2339 	}
2340 
2341 	return 0;
2342 }
2343 
2344 /**
2345  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2346  * Host mode
2347  *
2348  * @hsotg: Programming view of DWC_otg controller
2349  *
2350  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2351  * request queues. Host channels are reset to ensure that they are ready for
2352  * performing transfers.
2353  */
2354 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2355 {
2356 	u32 hcfg, hfir, otgctl, usbcfg;
2357 
2358 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2359 
2360 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2361 	 * The number of PHY clocks that the application programs in
2362 	 * this field is added to the high/full speed interpacket timeout
2363 	 * duration in the core to account for any additional delays
2364 	 * introduced by the PHY. This can be required, because the delay
2365 	 * introduced by the PHY in generating the linestate condition
2366 	 * can vary from one PHY to another.
2367 	 */
2368 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2369 	usbcfg |= GUSBCFG_TOUTCAL(7);
2370 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2371 
2372 	/* Restart the Phy Clock */
2373 	dwc2_writel(0, hsotg->regs + PCGCTL);
2374 
2375 	/* Initialize Host Configuration Register */
2376 	dwc2_init_fs_ls_pclk_sel(hsotg);
2377 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2378 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2379 		hcfg = dwc2_readl(hsotg->regs + HCFG);
2380 		hcfg |= HCFG_FSLSSUPP;
2381 		dwc2_writel(hcfg, hsotg->regs + HCFG);
2382 	}
2383 
2384 	/*
2385 	 * This bit allows dynamic reloading of the HFIR register during
2386 	 * runtime. This bit needs to be programmed during initial configuration
2387 	 * and its value must not be changed during runtime.
2388 	 */
2389 	if (hsotg->params.reload_ctl) {
2390 		hfir = dwc2_readl(hsotg->regs + HFIR);
2391 		hfir |= HFIR_RLDCTRL;
2392 		dwc2_writel(hfir, hsotg->regs + HFIR);
2393 	}
2394 
2395 	if (hsotg->params.dma_desc_enable) {
2396 		u32 op_mode = hsotg->hw_params.op_mode;
2397 
2398 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2399 		    !hsotg->hw_params.dma_desc_enable ||
2400 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2401 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2402 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2403 			dev_err(hsotg->dev,
2404 				"Hardware does not support descriptor DMA mode -\n");
2405 			dev_err(hsotg->dev,
2406 				"falling back to buffer DMA mode.\n");
2407 			hsotg->params.dma_desc_enable = false;
2408 		} else {
2409 			hcfg = dwc2_readl(hsotg->regs + HCFG);
2410 			hcfg |= HCFG_DESCDMA;
2411 			dwc2_writel(hcfg, hsotg->regs + HCFG);
2412 		}
2413 	}
2414 
2415 	/* Configure data FIFO sizes */
2416 	dwc2_config_fifos(hsotg);
2417 
2418 	/* TODO - check this */
2419 	/* Clear Host Set HNP Enable in the OTG Control Register */
2420 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2421 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2422 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2423 
2424 	/* Make sure the FIFOs are flushed */
2425 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2426 	dwc2_flush_rx_fifo(hsotg);
2427 
2428 	/* Clear Host Set HNP Enable in the OTG Control Register */
2429 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2430 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2431 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2432 
2433 	if (!hsotg->params.dma_desc_enable) {
2434 		int num_channels, i;
2435 		u32 hcchar;
2436 
2437 		/* Flush out any leftover queued requests */
2438 		num_channels = hsotg->params.host_channels;
2439 		for (i = 0; i < num_channels; i++) {
2440 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2441 			hcchar &= ~HCCHAR_CHENA;
2442 			hcchar |= HCCHAR_CHDIS;
2443 			hcchar &= ~HCCHAR_EPDIR;
2444 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2445 		}
2446 
2447 		/* Halt all channels to put them into a known state */
2448 		for (i = 0; i < num_channels; i++) {
2449 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2450 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2451 			hcchar &= ~HCCHAR_EPDIR;
2452 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2453 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2454 				__func__, i);
2455 
2456 			if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2457 						      HCCHAR_CHENA, 1000)) {
2458 				dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n",
2459 					 i);
2460 			}
2461 		}
2462 	}
2463 
2464 	/* Enable ACG feature in host mode, if supported */
2465 	dwc2_enable_acg(hsotg);
2466 
2467 	/* Turn on the vbus power */
2468 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2469 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2470 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2471 
2472 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2473 			!!(hprt0 & HPRT0_PWR));
2474 		if (!(hprt0 & HPRT0_PWR)) {
2475 			hprt0 |= HPRT0_PWR;
2476 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
2477 		}
2478 	}
2479 
2480 	dwc2_enable_host_interrupts(hsotg);
2481 }
2482 
2483 /*
2484  * Initializes dynamic portions of the DWC_otg HCD state
2485  *
2486  * Must be called with interrupt disabled and spinlock held
2487  */
2488 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2489 {
2490 	struct dwc2_host_chan *chan, *chan_tmp;
2491 	int num_channels;
2492 	int i;
2493 
2494 	hsotg->flags.d32 = 0;
2495 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2496 
2497 	if (hsotg->params.uframe_sched) {
2498 		hsotg->available_host_channels =
2499 			hsotg->params.host_channels;
2500 	} else {
2501 		hsotg->non_periodic_channels = 0;
2502 		hsotg->periodic_channels = 0;
2503 	}
2504 
2505 	/*
2506 	 * Put all channels in the free channel list and clean up channel
2507 	 * states
2508 	 */
2509 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2510 				 hc_list_entry)
2511 		list_del_init(&chan->hc_list_entry);
2512 
2513 	num_channels = hsotg->params.host_channels;
2514 	for (i = 0; i < num_channels; i++) {
2515 		chan = hsotg->hc_ptr_array[i];
2516 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2517 		dwc2_hc_cleanup(hsotg, chan);
2518 	}
2519 
2520 	/* Initialize the DWC core for host mode operation */
2521 	dwc2_core_host_init(hsotg);
2522 }
2523 
2524 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2525 			       struct dwc2_host_chan *chan,
2526 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2527 {
2528 	int hub_addr, hub_port;
2529 
2530 	chan->do_split = 1;
2531 	chan->xact_pos = qtd->isoc_split_pos;
2532 	chan->complete_split = qtd->complete_split;
2533 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2534 	chan->hub_addr = (u8)hub_addr;
2535 	chan->hub_port = (u8)hub_port;
2536 }
2537 
2538 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2539 			      struct dwc2_host_chan *chan,
2540 			      struct dwc2_qtd *qtd)
2541 {
2542 	struct dwc2_hcd_urb *urb = qtd->urb;
2543 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2544 
2545 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2546 	case USB_ENDPOINT_XFER_CONTROL:
2547 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2548 
2549 		switch (qtd->control_phase) {
2550 		case DWC2_CONTROL_SETUP:
2551 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2552 			chan->do_ping = 0;
2553 			chan->ep_is_in = 0;
2554 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2555 			if (hsotg->params.host_dma)
2556 				chan->xfer_dma = urb->setup_dma;
2557 			else
2558 				chan->xfer_buf = urb->setup_packet;
2559 			chan->xfer_len = 8;
2560 			break;
2561 
2562 		case DWC2_CONTROL_DATA:
2563 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2564 			chan->data_pid_start = qtd->data_toggle;
2565 			break;
2566 
2567 		case DWC2_CONTROL_STATUS:
2568 			/*
2569 			 * Direction is opposite of data direction or IN if no
2570 			 * data
2571 			 */
2572 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2573 			if (urb->length == 0)
2574 				chan->ep_is_in = 1;
2575 			else
2576 				chan->ep_is_in =
2577 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2578 			if (chan->ep_is_in)
2579 				chan->do_ping = 0;
2580 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2581 			chan->xfer_len = 0;
2582 			if (hsotg->params.host_dma)
2583 				chan->xfer_dma = hsotg->status_buf_dma;
2584 			else
2585 				chan->xfer_buf = hsotg->status_buf;
2586 			break;
2587 		}
2588 		break;
2589 
2590 	case USB_ENDPOINT_XFER_BULK:
2591 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2592 		break;
2593 
2594 	case USB_ENDPOINT_XFER_INT:
2595 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2596 		break;
2597 
2598 	case USB_ENDPOINT_XFER_ISOC:
2599 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2600 		if (hsotg->params.dma_desc_enable)
2601 			break;
2602 
2603 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2604 		frame_desc->status = 0;
2605 
2606 		if (hsotg->params.host_dma) {
2607 			chan->xfer_dma = urb->dma;
2608 			chan->xfer_dma += frame_desc->offset +
2609 					qtd->isoc_split_offset;
2610 		} else {
2611 			chan->xfer_buf = urb->buf;
2612 			chan->xfer_buf += frame_desc->offset +
2613 					qtd->isoc_split_offset;
2614 		}
2615 
2616 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2617 
2618 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2619 			if (chan->xfer_len <= 188)
2620 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2621 			else
2622 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2623 		}
2624 		break;
2625 	}
2626 }
2627 
2628 #define DWC2_USB_DMA_ALIGN 4
2629 
2630 struct dma_aligned_buffer {
2631 	void *kmalloc_ptr;
2632 	void *old_xfer_buffer;
2633 	u8 data[0];
2634 };
2635 
2636 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2637 {
2638 	struct dma_aligned_buffer *temp;
2639 
2640 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2641 		return;
2642 
2643 	temp = container_of(urb->transfer_buffer,
2644 			    struct dma_aligned_buffer, data);
2645 
2646 	if (usb_urb_dir_in(urb))
2647 		memcpy(temp->old_xfer_buffer, temp->data,
2648 		       urb->transfer_buffer_length);
2649 	urb->transfer_buffer = temp->old_xfer_buffer;
2650 	kfree(temp->kmalloc_ptr);
2651 
2652 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2653 }
2654 
2655 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2656 {
2657 	struct dma_aligned_buffer *temp, *kmalloc_ptr;
2658 	size_t kmalloc_size;
2659 
2660 	if (urb->num_sgs || urb->sg ||
2661 	    urb->transfer_buffer_length == 0 ||
2662 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2663 		return 0;
2664 
2665 	/* Allocate a buffer with enough padding for alignment */
2666 	kmalloc_size = urb->transfer_buffer_length +
2667 		sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2668 
2669 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2670 	if (!kmalloc_ptr)
2671 		return -ENOMEM;
2672 
2673 	/* Position our struct dma_aligned_buffer such that data is aligned */
2674 	temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2675 	temp->kmalloc_ptr = kmalloc_ptr;
2676 	temp->old_xfer_buffer = urb->transfer_buffer;
2677 	if (usb_urb_dir_out(urb))
2678 		memcpy(temp->data, urb->transfer_buffer,
2679 		       urb->transfer_buffer_length);
2680 	urb->transfer_buffer = temp->data;
2681 
2682 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2683 
2684 	return 0;
2685 }
2686 
2687 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2688 				gfp_t mem_flags)
2689 {
2690 	int ret;
2691 
2692 	/* We assume setup_dma is always aligned; warn if not */
2693 	WARN_ON_ONCE(urb->setup_dma &&
2694 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2695 
2696 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2697 	if (ret)
2698 		return ret;
2699 
2700 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2701 	if (ret)
2702 		dwc2_free_dma_aligned_buffer(urb);
2703 
2704 	return ret;
2705 }
2706 
2707 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2708 {
2709 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2710 	dwc2_free_dma_aligned_buffer(urb);
2711 }
2712 
2713 /**
2714  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2715  * channel and initializes the host channel to perform the transactions. The
2716  * host channel is removed from the free list.
2717  *
2718  * @hsotg: The HCD state structure
2719  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2720  *         to a free host channel
2721  */
2722 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2723 {
2724 	struct dwc2_host_chan *chan;
2725 	struct dwc2_hcd_urb *urb;
2726 	struct dwc2_qtd *qtd;
2727 
2728 	if (dbg_qh(qh))
2729 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2730 
2731 	if (list_empty(&qh->qtd_list)) {
2732 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2733 		return -ENOMEM;
2734 	}
2735 
2736 	if (list_empty(&hsotg->free_hc_list)) {
2737 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2738 		return -ENOMEM;
2739 	}
2740 
2741 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2742 				hc_list_entry);
2743 
2744 	/* Remove host channel from free list */
2745 	list_del_init(&chan->hc_list_entry);
2746 
2747 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2748 	urb = qtd->urb;
2749 	qh->channel = chan;
2750 	qtd->in_process = 1;
2751 
2752 	/*
2753 	 * Use usb_pipedevice to determine device address. This address is
2754 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2755 	 */
2756 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2757 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2758 	chan->speed = qh->dev_speed;
2759 	chan->max_packet = dwc2_max_packet(qh->maxp);
2760 
2761 	chan->xfer_started = 0;
2762 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2763 	chan->error_state = (qtd->error_count > 0);
2764 	chan->halt_on_queue = 0;
2765 	chan->halt_pending = 0;
2766 	chan->requests = 0;
2767 
2768 	/*
2769 	 * The following values may be modified in the transfer type section
2770 	 * below. The xfer_len value may be reduced when the transfer is
2771 	 * started to accommodate the max widths of the XferSize and PktCnt
2772 	 * fields in the HCTSIZn register.
2773 	 */
2774 
2775 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2776 	if (chan->ep_is_in)
2777 		chan->do_ping = 0;
2778 	else
2779 		chan->do_ping = qh->ping_state;
2780 
2781 	chan->data_pid_start = qh->data_toggle;
2782 	chan->multi_count = 1;
2783 
2784 	if (urb->actual_length > urb->length &&
2785 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2786 		urb->actual_length = urb->length;
2787 
2788 	if (hsotg->params.host_dma)
2789 		chan->xfer_dma = urb->dma + urb->actual_length;
2790 	else
2791 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2792 
2793 	chan->xfer_len = urb->length - urb->actual_length;
2794 	chan->xfer_count = 0;
2795 
2796 	/* Set the split attributes if required */
2797 	if (qh->do_split)
2798 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2799 	else
2800 		chan->do_split = 0;
2801 
2802 	/* Set the transfer attributes */
2803 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2804 
2805 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2806 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2807 		/*
2808 		 * This value may be modified when the transfer is started
2809 		 * to reflect the actual transfer length
2810 		 */
2811 		chan->multi_count = dwc2_hb_mult(qh->maxp);
2812 
2813 	if (hsotg->params.dma_desc_enable) {
2814 		chan->desc_list_addr = qh->desc_list_dma;
2815 		chan->desc_list_sz = qh->desc_list_sz;
2816 	}
2817 
2818 	dwc2_hc_init(hsotg, chan);
2819 	chan->qh = qh;
2820 
2821 	return 0;
2822 }
2823 
2824 /**
2825  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2826  * schedule and assigns them to available host channels. Called from the HCD
2827  * interrupt handler functions.
2828  *
2829  * @hsotg: The HCD state structure
2830  *
2831  * Return: The types of new transactions that were assigned to host channels
2832  */
2833 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2834 		struct dwc2_hsotg *hsotg)
2835 {
2836 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2837 	struct list_head *qh_ptr;
2838 	struct dwc2_qh *qh;
2839 	int num_channels;
2840 
2841 #ifdef DWC2_DEBUG_SOF
2842 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2843 #endif
2844 
2845 	/* Process entries in the periodic ready list */
2846 	qh_ptr = hsotg->periodic_sched_ready.next;
2847 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2848 		if (list_empty(&hsotg->free_hc_list))
2849 			break;
2850 		if (hsotg->params.uframe_sched) {
2851 			if (hsotg->available_host_channels <= 1)
2852 				break;
2853 			hsotg->available_host_channels--;
2854 		}
2855 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2856 		if (dwc2_assign_and_init_hc(hsotg, qh))
2857 			break;
2858 
2859 		/*
2860 		 * Move the QH from the periodic ready schedule to the
2861 		 * periodic assigned schedule
2862 		 */
2863 		qh_ptr = qh_ptr->next;
2864 		list_move_tail(&qh->qh_list_entry,
2865 			       &hsotg->periodic_sched_assigned);
2866 		ret_val = DWC2_TRANSACTION_PERIODIC;
2867 	}
2868 
2869 	/*
2870 	 * Process entries in the inactive portion of the non-periodic
2871 	 * schedule. Some free host channels may not be used if they are
2872 	 * reserved for periodic transfers.
2873 	 */
2874 	num_channels = hsotg->params.host_channels;
2875 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2876 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2877 		if (!hsotg->params.uframe_sched &&
2878 		    hsotg->non_periodic_channels >= num_channels -
2879 						hsotg->periodic_channels)
2880 			break;
2881 		if (list_empty(&hsotg->free_hc_list))
2882 			break;
2883 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2884 		if (hsotg->params.uframe_sched) {
2885 			if (hsotg->available_host_channels < 1)
2886 				break;
2887 			hsotg->available_host_channels--;
2888 		}
2889 
2890 		if (dwc2_assign_and_init_hc(hsotg, qh))
2891 			break;
2892 
2893 		/*
2894 		 * Move the QH from the non-periodic inactive schedule to the
2895 		 * non-periodic active schedule
2896 		 */
2897 		qh_ptr = qh_ptr->next;
2898 		list_move_tail(&qh->qh_list_entry,
2899 			       &hsotg->non_periodic_sched_active);
2900 
2901 		if (ret_val == DWC2_TRANSACTION_NONE)
2902 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2903 		else
2904 			ret_val = DWC2_TRANSACTION_ALL;
2905 
2906 		if (!hsotg->params.uframe_sched)
2907 			hsotg->non_periodic_channels++;
2908 	}
2909 
2910 	return ret_val;
2911 }
2912 
2913 /**
2914  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2915  * a host channel associated with either a periodic or non-periodic transfer
2916  *
2917  * @hsotg: The HCD state structure
2918  * @chan:  Host channel descriptor associated with either a periodic or
2919  *         non-periodic transfer
2920  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2921  *                     for periodic transfers or the non-periodic Tx FIFO
2922  *                     for non-periodic transfers
2923  *
2924  * Return: 1 if a request is queued and more requests may be needed to
2925  * complete the transfer, 0 if no more requests are required for this
2926  * transfer, -1 if there is insufficient space in the Tx FIFO
2927  *
2928  * This function assumes that there is space available in the appropriate
2929  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2930  * it checks whether space is available in the appropriate Tx FIFO.
2931  *
2932  * Must be called with interrupt disabled and spinlock held
2933  */
2934 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2935 				  struct dwc2_host_chan *chan,
2936 				  u16 fifo_dwords_avail)
2937 {
2938 	int retval = 0;
2939 
2940 	if (chan->do_split)
2941 		/* Put ourselves on the list to keep order straight */
2942 		list_move_tail(&chan->split_order_list_entry,
2943 			       &hsotg->split_order);
2944 
2945 	if (hsotg->params.host_dma) {
2946 		if (hsotg->params.dma_desc_enable) {
2947 			if (!chan->xfer_started ||
2948 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2949 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2950 				chan->qh->ping_state = 0;
2951 			}
2952 		} else if (!chan->xfer_started) {
2953 			dwc2_hc_start_transfer(hsotg, chan);
2954 			chan->qh->ping_state = 0;
2955 		}
2956 	} else if (chan->halt_pending) {
2957 		/* Don't queue a request if the channel has been halted */
2958 	} else if (chan->halt_on_queue) {
2959 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2960 	} else if (chan->do_ping) {
2961 		if (!chan->xfer_started)
2962 			dwc2_hc_start_transfer(hsotg, chan);
2963 	} else if (!chan->ep_is_in ||
2964 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2965 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2966 			if (!chan->xfer_started) {
2967 				dwc2_hc_start_transfer(hsotg, chan);
2968 				retval = 1;
2969 			} else {
2970 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2971 			}
2972 		} else {
2973 			retval = -1;
2974 		}
2975 	} else {
2976 		if (!chan->xfer_started) {
2977 			dwc2_hc_start_transfer(hsotg, chan);
2978 			retval = 1;
2979 		} else {
2980 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2981 		}
2982 	}
2983 
2984 	return retval;
2985 }
2986 
2987 /*
2988  * Processes periodic channels for the next frame and queues transactions for
2989  * these channels to the DWC_otg controller. After queueing transactions, the
2990  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2991  * to queue as Periodic Tx FIFO or request queue space becomes available.
2992  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2993  *
2994  * Must be called with interrupt disabled and spinlock held
2995  */
2996 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2997 {
2998 	struct list_head *qh_ptr;
2999 	struct dwc2_qh *qh;
3000 	u32 tx_status;
3001 	u32 fspcavail;
3002 	u32 gintmsk;
3003 	int status;
3004 	bool no_queue_space = false;
3005 	bool no_fifo_space = false;
3006 	u32 qspcavail;
3007 
3008 	/* If empty list then just adjust interrupt enables */
3009 	if (list_empty(&hsotg->periodic_sched_assigned))
3010 		goto exit;
3011 
3012 	if (dbg_perio())
3013 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
3014 
3015 	tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3016 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3017 		    TXSTS_QSPCAVAIL_SHIFT;
3018 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3019 		    TXSTS_FSPCAVAIL_SHIFT;
3020 
3021 	if (dbg_perio()) {
3022 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
3023 			 qspcavail);
3024 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
3025 			 fspcavail);
3026 	}
3027 
3028 	qh_ptr = hsotg->periodic_sched_assigned.next;
3029 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
3030 		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3031 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3032 			    TXSTS_QSPCAVAIL_SHIFT;
3033 		if (qspcavail == 0) {
3034 			no_queue_space = true;
3035 			break;
3036 		}
3037 
3038 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
3039 		if (!qh->channel) {
3040 			qh_ptr = qh_ptr->next;
3041 			continue;
3042 		}
3043 
3044 		/* Make sure EP's TT buffer is clean before queueing qtds */
3045 		if (qh->tt_buffer_dirty) {
3046 			qh_ptr = qh_ptr->next;
3047 			continue;
3048 		}
3049 
3050 		/*
3051 		 * Set a flag if we're queuing high-bandwidth in slave mode.
3052 		 * The flag prevents any halts to get into the request queue in
3053 		 * the middle of multiple high-bandwidth packets getting queued.
3054 		 */
3055 		if (!hsotg->params.host_dma &&
3056 		    qh->channel->multi_count > 1)
3057 			hsotg->queuing_high_bandwidth = 1;
3058 
3059 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3060 			    TXSTS_FSPCAVAIL_SHIFT;
3061 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3062 		if (status < 0) {
3063 			no_fifo_space = true;
3064 			break;
3065 		}
3066 
3067 		/*
3068 		 * In Slave mode, stay on the current transfer until there is
3069 		 * nothing more to do or the high-bandwidth request count is
3070 		 * reached. In DMA mode, only need to queue one request. The
3071 		 * controller automatically handles multiple packets for
3072 		 * high-bandwidth transfers.
3073 		 */
3074 		if (hsotg->params.host_dma || status == 0 ||
3075 		    qh->channel->requests == qh->channel->multi_count) {
3076 			qh_ptr = qh_ptr->next;
3077 			/*
3078 			 * Move the QH from the periodic assigned schedule to
3079 			 * the periodic queued schedule
3080 			 */
3081 			list_move_tail(&qh->qh_list_entry,
3082 				       &hsotg->periodic_sched_queued);
3083 
3084 			/* done queuing high bandwidth */
3085 			hsotg->queuing_high_bandwidth = 0;
3086 		}
3087 	}
3088 
3089 exit:
3090 	if (no_queue_space || no_fifo_space ||
3091 	    (!hsotg->params.host_dma &&
3092 	     !list_empty(&hsotg->periodic_sched_assigned))) {
3093 		/*
3094 		 * May need to queue more transactions as the request
3095 		 * queue or Tx FIFO empties. Enable the periodic Tx
3096 		 * FIFO empty interrupt. (Always use the half-empty
3097 		 * level to ensure that new requests are loaded as
3098 		 * soon as possible.)
3099 		 */
3100 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3101 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3102 			gintmsk |= GINTSTS_PTXFEMP;
3103 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3104 		}
3105 	} else {
3106 		/*
3107 		 * Disable the Tx FIFO empty interrupt since there are
3108 		 * no more transactions that need to be queued right
3109 		 * now. This function is called from interrupt
3110 		 * handlers to queue more transactions as transfer
3111 		 * states change.
3112 		 */
3113 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3114 		if (gintmsk & GINTSTS_PTXFEMP) {
3115 			gintmsk &= ~GINTSTS_PTXFEMP;
3116 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3117 		}
3118 	}
3119 }
3120 
3121 /*
3122  * Processes active non-periodic channels and queues transactions for these
3123  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3124  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3125  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3126  * FIFO Empty interrupt is disabled.
3127  *
3128  * Must be called with interrupt disabled and spinlock held
3129  */
3130 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3131 {
3132 	struct list_head *orig_qh_ptr;
3133 	struct dwc2_qh *qh;
3134 	u32 tx_status;
3135 	u32 qspcavail;
3136 	u32 fspcavail;
3137 	u32 gintmsk;
3138 	int status;
3139 	int no_queue_space = 0;
3140 	int no_fifo_space = 0;
3141 	int more_to_do = 0;
3142 
3143 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3144 
3145 	tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3146 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3147 		    TXSTS_QSPCAVAIL_SHIFT;
3148 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3149 		    TXSTS_FSPCAVAIL_SHIFT;
3150 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3151 		 qspcavail);
3152 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3153 		 fspcavail);
3154 
3155 	/*
3156 	 * Keep track of the starting point. Skip over the start-of-list
3157 	 * entry.
3158 	 */
3159 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3160 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3161 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3162 
3163 	/*
3164 	 * Process once through the active list or until no more space is
3165 	 * available in the request queue or the Tx FIFO
3166 	 */
3167 	do {
3168 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3169 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3170 			    TXSTS_QSPCAVAIL_SHIFT;
3171 		if (!hsotg->params.host_dma && qspcavail == 0) {
3172 			no_queue_space = 1;
3173 			break;
3174 		}
3175 
3176 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3177 				qh_list_entry);
3178 		if (!qh->channel)
3179 			goto next;
3180 
3181 		/* Make sure EP's TT buffer is clean before queueing qtds */
3182 		if (qh->tt_buffer_dirty)
3183 			goto next;
3184 
3185 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3186 			    TXSTS_FSPCAVAIL_SHIFT;
3187 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3188 
3189 		if (status > 0) {
3190 			more_to_do = 1;
3191 		} else if (status < 0) {
3192 			no_fifo_space = 1;
3193 			break;
3194 		}
3195 next:
3196 		/* Advance to next QH, skipping start-of-list entry */
3197 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3198 		if (hsotg->non_periodic_qh_ptr ==
3199 				&hsotg->non_periodic_sched_active)
3200 			hsotg->non_periodic_qh_ptr =
3201 					hsotg->non_periodic_qh_ptr->next;
3202 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3203 
3204 	if (!hsotg->params.host_dma) {
3205 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3206 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3207 			    TXSTS_QSPCAVAIL_SHIFT;
3208 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3209 			    TXSTS_FSPCAVAIL_SHIFT;
3210 		dev_vdbg(hsotg->dev,
3211 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3212 			 qspcavail);
3213 		dev_vdbg(hsotg->dev,
3214 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3215 			 fspcavail);
3216 
3217 		if (more_to_do || no_queue_space || no_fifo_space) {
3218 			/*
3219 			 * May need to queue more transactions as the request
3220 			 * queue or Tx FIFO empties. Enable the non-periodic
3221 			 * Tx FIFO empty interrupt. (Always use the half-empty
3222 			 * level to ensure that new requests are loaded as
3223 			 * soon as possible.)
3224 			 */
3225 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3226 			gintmsk |= GINTSTS_NPTXFEMP;
3227 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3228 		} else {
3229 			/*
3230 			 * Disable the Tx FIFO empty interrupt since there are
3231 			 * no more transactions that need to be queued right
3232 			 * now. This function is called from interrupt
3233 			 * handlers to queue more transactions as transfer
3234 			 * states change.
3235 			 */
3236 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3237 			gintmsk &= ~GINTSTS_NPTXFEMP;
3238 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3239 		}
3240 	}
3241 }
3242 
3243 /**
3244  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3245  * and queues transactions for these channels to the DWC_otg controller. Called
3246  * from the HCD interrupt handler functions.
3247  *
3248  * @hsotg:   The HCD state structure
3249  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3250  *           or both)
3251  *
3252  * Must be called with interrupt disabled and spinlock held
3253  */
3254 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3255 				 enum dwc2_transaction_type tr_type)
3256 {
3257 #ifdef DWC2_DEBUG_SOF
3258 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3259 #endif
3260 	/* Process host channels associated with periodic transfers */
3261 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3262 	    tr_type == DWC2_TRANSACTION_ALL)
3263 		dwc2_process_periodic_channels(hsotg);
3264 
3265 	/* Process host channels associated with non-periodic transfers */
3266 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3267 	    tr_type == DWC2_TRANSACTION_ALL) {
3268 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3269 			dwc2_process_non_periodic_channels(hsotg);
3270 		} else {
3271 			/*
3272 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3273 			 * there are no non-periodic transfers to process
3274 			 */
3275 			u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3276 
3277 			gintmsk &= ~GINTSTS_NPTXFEMP;
3278 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3279 		}
3280 	}
3281 }
3282 
3283 static void dwc2_conn_id_status_change(struct work_struct *work)
3284 {
3285 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3286 						wf_otg);
3287 	u32 count = 0;
3288 	u32 gotgctl;
3289 	unsigned long flags;
3290 
3291 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3292 
3293 	gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3294 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3295 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3296 		!!(gotgctl & GOTGCTL_CONID_B));
3297 
3298 	/* B-Device connector (Device Mode) */
3299 	if (gotgctl & GOTGCTL_CONID_B) {
3300 		dwc2_vbus_supply_exit(hsotg);
3301 		/* Wait for switch to device mode */
3302 		dev_dbg(hsotg->dev, "connId B\n");
3303 		if (hsotg->bus_suspended) {
3304 			dev_info(hsotg->dev,
3305 				 "Do port resume before switching to device mode\n");
3306 			dwc2_port_resume(hsotg);
3307 		}
3308 		while (!dwc2_is_device_mode(hsotg)) {
3309 			dev_info(hsotg->dev,
3310 				 "Waiting for Peripheral Mode, Mode=%s\n",
3311 				 dwc2_is_host_mode(hsotg) ? "Host" :
3312 				 "Peripheral");
3313 			msleep(20);
3314 			/*
3315 			 * Sometimes the initial GOTGCTRL read is wrong, so
3316 			 * check it again and jump to host mode if that was
3317 			 * the case.
3318 			 */
3319 			gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3320 			if (!(gotgctl & GOTGCTL_CONID_B))
3321 				goto host;
3322 			if (++count > 250)
3323 				break;
3324 		}
3325 		if (count > 250)
3326 			dev_err(hsotg->dev,
3327 				"Connection id status change timed out\n");
3328 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3329 		dwc2_core_init(hsotg, false);
3330 		dwc2_enable_global_interrupts(hsotg);
3331 		spin_lock_irqsave(&hsotg->lock, flags);
3332 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3333 		spin_unlock_irqrestore(&hsotg->lock, flags);
3334 		/* Enable ACG feature in device mode,if supported */
3335 		dwc2_enable_acg(hsotg);
3336 		dwc2_hsotg_core_connect(hsotg);
3337 	} else {
3338 host:
3339 		/* A-Device connector (Host Mode) */
3340 		dev_dbg(hsotg->dev, "connId A\n");
3341 		while (!dwc2_is_host_mode(hsotg)) {
3342 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3343 				 dwc2_is_host_mode(hsotg) ?
3344 				 "Host" : "Peripheral");
3345 			msleep(20);
3346 			if (++count > 250)
3347 				break;
3348 		}
3349 		if (count > 250)
3350 			dev_err(hsotg->dev,
3351 				"Connection id status change timed out\n");
3352 
3353 		spin_lock_irqsave(&hsotg->lock, flags);
3354 		dwc2_hsotg_disconnect(hsotg);
3355 		spin_unlock_irqrestore(&hsotg->lock, flags);
3356 
3357 		hsotg->op_state = OTG_STATE_A_HOST;
3358 		/* Initialize the Core for Host mode */
3359 		dwc2_core_init(hsotg, false);
3360 		dwc2_enable_global_interrupts(hsotg);
3361 		dwc2_hcd_start(hsotg);
3362 	}
3363 }
3364 
3365 static void dwc2_wakeup_detected(struct timer_list *t)
3366 {
3367 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3368 	u32 hprt0;
3369 
3370 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3371 
3372 	/*
3373 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3374 	 * so that OPT tests pass with all PHYs.)
3375 	 */
3376 	hprt0 = dwc2_read_hprt0(hsotg);
3377 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3378 	hprt0 &= ~HPRT0_RES;
3379 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3380 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3381 		dwc2_readl(hsotg->regs + HPRT0));
3382 
3383 	dwc2_hcd_rem_wakeup(hsotg);
3384 	hsotg->bus_suspended = false;
3385 
3386 	/* Change to L0 state */
3387 	hsotg->lx_state = DWC2_L0;
3388 }
3389 
3390 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3391 {
3392 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3393 
3394 	return hcd->self.b_hnp_enable;
3395 }
3396 
3397 /* Must NOT be called with interrupt disabled or spinlock held */
3398 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3399 {
3400 	unsigned long flags;
3401 	u32 hprt0;
3402 	u32 pcgctl;
3403 	u32 gotgctl;
3404 
3405 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3406 
3407 	spin_lock_irqsave(&hsotg->lock, flags);
3408 
3409 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3410 		gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3411 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3412 		dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3413 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3414 	}
3415 
3416 	hprt0 = dwc2_read_hprt0(hsotg);
3417 	hprt0 |= HPRT0_SUSP;
3418 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3419 
3420 	hsotg->bus_suspended = true;
3421 
3422 	/*
3423 	 * If power_down is supported, Phy clock will be suspended
3424 	 * after registers are backuped.
3425 	 */
3426 	if (!hsotg->params.power_down) {
3427 		/* Suspend the Phy Clock */
3428 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3429 		pcgctl |= PCGCTL_STOPPCLK;
3430 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3431 		udelay(10);
3432 	}
3433 
3434 	/* For HNP the bus must be suspended for at least 200ms */
3435 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3436 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3437 		pcgctl &= ~PCGCTL_STOPPCLK;
3438 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3439 
3440 		spin_unlock_irqrestore(&hsotg->lock, flags);
3441 
3442 		msleep(200);
3443 	} else {
3444 		spin_unlock_irqrestore(&hsotg->lock, flags);
3445 	}
3446 }
3447 
3448 /* Must NOT be called with interrupt disabled or spinlock held */
3449 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3450 {
3451 	unsigned long flags;
3452 	u32 hprt0;
3453 	u32 pcgctl;
3454 
3455 	spin_lock_irqsave(&hsotg->lock, flags);
3456 
3457 	/*
3458 	 * If power_down is supported, Phy clock is already resumed
3459 	 * after registers restore.
3460 	 */
3461 	if (!hsotg->params.power_down) {
3462 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3463 		pcgctl &= ~PCGCTL_STOPPCLK;
3464 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3465 		spin_unlock_irqrestore(&hsotg->lock, flags);
3466 		msleep(20);
3467 		spin_lock_irqsave(&hsotg->lock, flags);
3468 	}
3469 
3470 	hprt0 = dwc2_read_hprt0(hsotg);
3471 	hprt0 |= HPRT0_RES;
3472 	hprt0 &= ~HPRT0_SUSP;
3473 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3474 	spin_unlock_irqrestore(&hsotg->lock, flags);
3475 
3476 	msleep(USB_RESUME_TIMEOUT);
3477 
3478 	spin_lock_irqsave(&hsotg->lock, flags);
3479 	hprt0 = dwc2_read_hprt0(hsotg);
3480 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3481 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3482 	hsotg->bus_suspended = false;
3483 	spin_unlock_irqrestore(&hsotg->lock, flags);
3484 }
3485 
3486 /* Handles hub class-specific requests */
3487 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3488 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3489 {
3490 	struct usb_hub_descriptor *hub_desc;
3491 	int retval = 0;
3492 	u32 hprt0;
3493 	u32 port_status;
3494 	u32 speed;
3495 	u32 pcgctl;
3496 
3497 	switch (typereq) {
3498 	case ClearHubFeature:
3499 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3500 
3501 		switch (wvalue) {
3502 		case C_HUB_LOCAL_POWER:
3503 		case C_HUB_OVER_CURRENT:
3504 			/* Nothing required here */
3505 			break;
3506 
3507 		default:
3508 			retval = -EINVAL;
3509 			dev_err(hsotg->dev,
3510 				"ClearHubFeature request %1xh unknown\n",
3511 				wvalue);
3512 		}
3513 		break;
3514 
3515 	case ClearPortFeature:
3516 		if (wvalue != USB_PORT_FEAT_L1)
3517 			if (!windex || windex > 1)
3518 				goto error;
3519 		switch (wvalue) {
3520 		case USB_PORT_FEAT_ENABLE:
3521 			dev_dbg(hsotg->dev,
3522 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3523 			hprt0 = dwc2_read_hprt0(hsotg);
3524 			hprt0 |= HPRT0_ENA;
3525 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3526 			break;
3527 
3528 		case USB_PORT_FEAT_SUSPEND:
3529 			dev_dbg(hsotg->dev,
3530 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3531 
3532 			if (hsotg->bus_suspended) {
3533 				if (hsotg->hibernated)
3534 					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3535 				else
3536 					dwc2_port_resume(hsotg);
3537 			}
3538 			break;
3539 
3540 		case USB_PORT_FEAT_POWER:
3541 			dev_dbg(hsotg->dev,
3542 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3543 			hprt0 = dwc2_read_hprt0(hsotg);
3544 			hprt0 &= ~HPRT0_PWR;
3545 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3546 			break;
3547 
3548 		case USB_PORT_FEAT_INDICATOR:
3549 			dev_dbg(hsotg->dev,
3550 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3551 			/* Port indicator not supported */
3552 			break;
3553 
3554 		case USB_PORT_FEAT_C_CONNECTION:
3555 			/*
3556 			 * Clears driver's internal Connect Status Change flag
3557 			 */
3558 			dev_dbg(hsotg->dev,
3559 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3560 			hsotg->flags.b.port_connect_status_change = 0;
3561 			break;
3562 
3563 		case USB_PORT_FEAT_C_RESET:
3564 			/* Clears driver's internal Port Reset Change flag */
3565 			dev_dbg(hsotg->dev,
3566 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3567 			hsotg->flags.b.port_reset_change = 0;
3568 			break;
3569 
3570 		case USB_PORT_FEAT_C_ENABLE:
3571 			/*
3572 			 * Clears the driver's internal Port Enable/Disable
3573 			 * Change flag
3574 			 */
3575 			dev_dbg(hsotg->dev,
3576 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3577 			hsotg->flags.b.port_enable_change = 0;
3578 			break;
3579 
3580 		case USB_PORT_FEAT_C_SUSPEND:
3581 			/*
3582 			 * Clears the driver's internal Port Suspend Change
3583 			 * flag, which is set when resume signaling on the host
3584 			 * port is complete
3585 			 */
3586 			dev_dbg(hsotg->dev,
3587 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3588 			hsotg->flags.b.port_suspend_change = 0;
3589 			break;
3590 
3591 		case USB_PORT_FEAT_C_PORT_L1:
3592 			dev_dbg(hsotg->dev,
3593 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3594 			hsotg->flags.b.port_l1_change = 0;
3595 			break;
3596 
3597 		case USB_PORT_FEAT_C_OVER_CURRENT:
3598 			dev_dbg(hsotg->dev,
3599 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3600 			hsotg->flags.b.port_over_current_change = 0;
3601 			break;
3602 
3603 		default:
3604 			retval = -EINVAL;
3605 			dev_err(hsotg->dev,
3606 				"ClearPortFeature request %1xh unknown or unsupported\n",
3607 				wvalue);
3608 		}
3609 		break;
3610 
3611 	case GetHubDescriptor:
3612 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3613 		hub_desc = (struct usb_hub_descriptor *)buf;
3614 		hub_desc->bDescLength = 9;
3615 		hub_desc->bDescriptorType = USB_DT_HUB;
3616 		hub_desc->bNbrPorts = 1;
3617 		hub_desc->wHubCharacteristics =
3618 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3619 				    HUB_CHAR_INDV_PORT_OCPM);
3620 		hub_desc->bPwrOn2PwrGood = 1;
3621 		hub_desc->bHubContrCurrent = 0;
3622 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3623 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3624 		break;
3625 
3626 	case GetHubStatus:
3627 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3628 		memset(buf, 0, 4);
3629 		break;
3630 
3631 	case GetPortStatus:
3632 		dev_vdbg(hsotg->dev,
3633 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3634 			 hsotg->flags.d32);
3635 		if (!windex || windex > 1)
3636 			goto error;
3637 
3638 		port_status = 0;
3639 		if (hsotg->flags.b.port_connect_status_change)
3640 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3641 		if (hsotg->flags.b.port_enable_change)
3642 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3643 		if (hsotg->flags.b.port_suspend_change)
3644 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3645 		if (hsotg->flags.b.port_l1_change)
3646 			port_status |= USB_PORT_STAT_C_L1 << 16;
3647 		if (hsotg->flags.b.port_reset_change)
3648 			port_status |= USB_PORT_STAT_C_RESET << 16;
3649 		if (hsotg->flags.b.port_over_current_change) {
3650 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3651 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3652 		}
3653 
3654 		if (!hsotg->flags.b.port_connect_status) {
3655 			/*
3656 			 * The port is disconnected, which means the core is
3657 			 * either in device mode or it soon will be. Just
3658 			 * return 0's for the remainder of the port status
3659 			 * since the port register can't be read if the core
3660 			 * is in device mode.
3661 			 */
3662 			*(__le32 *)buf = cpu_to_le32(port_status);
3663 			break;
3664 		}
3665 
3666 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3667 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3668 
3669 		if (hprt0 & HPRT0_CONNSTS)
3670 			port_status |= USB_PORT_STAT_CONNECTION;
3671 		if (hprt0 & HPRT0_ENA)
3672 			port_status |= USB_PORT_STAT_ENABLE;
3673 		if (hprt0 & HPRT0_SUSP)
3674 			port_status |= USB_PORT_STAT_SUSPEND;
3675 		if (hprt0 & HPRT0_OVRCURRACT)
3676 			port_status |= USB_PORT_STAT_OVERCURRENT;
3677 		if (hprt0 & HPRT0_RST)
3678 			port_status |= USB_PORT_STAT_RESET;
3679 		if (hprt0 & HPRT0_PWR)
3680 			port_status |= USB_PORT_STAT_POWER;
3681 
3682 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3683 		if (speed == HPRT0_SPD_HIGH_SPEED)
3684 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3685 		else if (speed == HPRT0_SPD_LOW_SPEED)
3686 			port_status |= USB_PORT_STAT_LOW_SPEED;
3687 
3688 		if (hprt0 & HPRT0_TSTCTL_MASK)
3689 			port_status |= USB_PORT_STAT_TEST;
3690 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3691 
3692 		if (hsotg->params.dma_desc_fs_enable) {
3693 			/*
3694 			 * Enable descriptor DMA only if a full speed
3695 			 * device is connected.
3696 			 */
3697 			if (hsotg->new_connection &&
3698 			    ((port_status &
3699 			      (USB_PORT_STAT_CONNECTION |
3700 			       USB_PORT_STAT_HIGH_SPEED |
3701 			       USB_PORT_STAT_LOW_SPEED)) ==
3702 			       USB_PORT_STAT_CONNECTION)) {
3703 				u32 hcfg;
3704 
3705 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3706 				hsotg->params.dma_desc_enable = true;
3707 				hcfg = dwc2_readl(hsotg->regs + HCFG);
3708 				hcfg |= HCFG_DESCDMA;
3709 				dwc2_writel(hcfg, hsotg->regs + HCFG);
3710 				hsotg->new_connection = false;
3711 			}
3712 		}
3713 
3714 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3715 		*(__le32 *)buf = cpu_to_le32(port_status);
3716 		break;
3717 
3718 	case SetHubFeature:
3719 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3720 		/* No HUB features supported */
3721 		break;
3722 
3723 	case SetPortFeature:
3724 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3725 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3726 			goto error;
3727 
3728 		if (!hsotg->flags.b.port_connect_status) {
3729 			/*
3730 			 * The port is disconnected, which means the core is
3731 			 * either in device mode or it soon will be. Just
3732 			 * return without doing anything since the port
3733 			 * register can't be written if the core is in device
3734 			 * mode.
3735 			 */
3736 			break;
3737 		}
3738 
3739 		switch (wvalue) {
3740 		case USB_PORT_FEAT_SUSPEND:
3741 			dev_dbg(hsotg->dev,
3742 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3743 			if (windex != hsotg->otg_port)
3744 				goto error;
3745 			if (hsotg->params.power_down == 2)
3746 				dwc2_enter_hibernation(hsotg, 1);
3747 			else
3748 				dwc2_port_suspend(hsotg, windex);
3749 			break;
3750 
3751 		case USB_PORT_FEAT_POWER:
3752 			dev_dbg(hsotg->dev,
3753 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3754 			hprt0 = dwc2_read_hprt0(hsotg);
3755 			hprt0 |= HPRT0_PWR;
3756 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3757 			break;
3758 
3759 		case USB_PORT_FEAT_RESET:
3760 			if (hsotg->params.power_down == 2 &&
3761 			    hsotg->hibernated)
3762 				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3763 			hprt0 = dwc2_read_hprt0(hsotg);
3764 			dev_dbg(hsotg->dev,
3765 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3766 			pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3767 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3768 			dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3769 			/* ??? Original driver does this */
3770 			dwc2_writel(0, hsotg->regs + PCGCTL);
3771 
3772 			hprt0 = dwc2_read_hprt0(hsotg);
3773 			/* Clear suspend bit if resetting from suspend state */
3774 			hprt0 &= ~HPRT0_SUSP;
3775 
3776 			/*
3777 			 * When B-Host the Port reset bit is set in the Start
3778 			 * HCD Callback function, so that the reset is started
3779 			 * within 1ms of the HNP success interrupt
3780 			 */
3781 			if (!dwc2_hcd_is_b_host(hsotg)) {
3782 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3783 				dev_dbg(hsotg->dev,
3784 					"In host mode, hprt0=%08x\n", hprt0);
3785 				dwc2_writel(hprt0, hsotg->regs + HPRT0);
3786 			}
3787 
3788 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3789 			msleep(50);
3790 			hprt0 &= ~HPRT0_RST;
3791 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3792 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3793 			break;
3794 
3795 		case USB_PORT_FEAT_INDICATOR:
3796 			dev_dbg(hsotg->dev,
3797 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3798 			/* Not supported */
3799 			break;
3800 
3801 		case USB_PORT_FEAT_TEST:
3802 			hprt0 = dwc2_read_hprt0(hsotg);
3803 			dev_dbg(hsotg->dev,
3804 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3805 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3806 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3807 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3808 			break;
3809 
3810 		default:
3811 			retval = -EINVAL;
3812 			dev_err(hsotg->dev,
3813 				"SetPortFeature %1xh unknown or unsupported\n",
3814 				wvalue);
3815 			break;
3816 		}
3817 		break;
3818 
3819 	default:
3820 error:
3821 		retval = -EINVAL;
3822 		dev_dbg(hsotg->dev,
3823 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3824 			typereq, windex, wvalue);
3825 		break;
3826 	}
3827 
3828 	return retval;
3829 }
3830 
3831 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3832 {
3833 	int retval;
3834 
3835 	if (port != 1)
3836 		return -EINVAL;
3837 
3838 	retval = (hsotg->flags.b.port_connect_status_change ||
3839 		  hsotg->flags.b.port_reset_change ||
3840 		  hsotg->flags.b.port_enable_change ||
3841 		  hsotg->flags.b.port_suspend_change ||
3842 		  hsotg->flags.b.port_over_current_change);
3843 
3844 	if (retval) {
3845 		dev_dbg(hsotg->dev,
3846 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3847 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3848 			hsotg->flags.b.port_connect_status_change);
3849 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3850 			hsotg->flags.b.port_reset_change);
3851 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3852 			hsotg->flags.b.port_enable_change);
3853 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3854 			hsotg->flags.b.port_suspend_change);
3855 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3856 			hsotg->flags.b.port_over_current_change);
3857 	}
3858 
3859 	return retval;
3860 }
3861 
3862 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3863 {
3864 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3865 
3866 #ifdef DWC2_DEBUG_SOF
3867 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3868 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3869 #endif
3870 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3871 }
3872 
3873 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3874 {
3875 	u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3876 	u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3877 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3878 	unsigned int us_per_frame;
3879 	unsigned int frame_number;
3880 	unsigned int remaining;
3881 	unsigned int interval;
3882 	unsigned int phy_clks;
3883 
3884 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3885 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3886 
3887 	/* Extract fields */
3888 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3889 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3890 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3891 
3892 	/*
3893 	 * Number of phy clocks since the last tick of the frame number after
3894 	 * "us" has passed.
3895 	 */
3896 	phy_clks = (interval - remaining) +
3897 		   DIV_ROUND_UP(interval * us, us_per_frame);
3898 
3899 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3900 }
3901 
3902 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3903 {
3904 	return hsotg->op_state == OTG_STATE_B_HOST;
3905 }
3906 
3907 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3908 					       int iso_desc_count,
3909 					       gfp_t mem_flags)
3910 {
3911 	struct dwc2_hcd_urb *urb;
3912 	u32 size = sizeof(*urb) + iso_desc_count *
3913 		   sizeof(struct dwc2_hcd_iso_packet_desc);
3914 
3915 	urb = kzalloc(size, mem_flags);
3916 	if (urb)
3917 		urb->packet_count = iso_desc_count;
3918 	return urb;
3919 }
3920 
3921 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3922 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3923 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3924 {
3925 	if (dbg_perio() ||
3926 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3927 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3928 		dev_vdbg(hsotg->dev,
3929 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3930 			 dev_addr, ep_num, ep_dir, ep_type, mps);
3931 	urb->pipe_info.dev_addr = dev_addr;
3932 	urb->pipe_info.ep_num = ep_num;
3933 	urb->pipe_info.pipe_type = ep_type;
3934 	urb->pipe_info.pipe_dir = ep_dir;
3935 	urb->pipe_info.mps = mps;
3936 }
3937 
3938 /*
3939  * NOTE: This function will be removed once the peripheral controller code
3940  * is integrated and the driver is stable
3941  */
3942 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3943 {
3944 #ifdef DEBUG
3945 	struct dwc2_host_chan *chan;
3946 	struct dwc2_hcd_urb *urb;
3947 	struct dwc2_qtd *qtd;
3948 	int num_channels;
3949 	u32 np_tx_status;
3950 	u32 p_tx_status;
3951 	int i;
3952 
3953 	num_channels = hsotg->params.host_channels;
3954 	dev_dbg(hsotg->dev, "\n");
3955 	dev_dbg(hsotg->dev,
3956 		"************************************************************\n");
3957 	dev_dbg(hsotg->dev, "HCD State:\n");
3958 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3959 
3960 	for (i = 0; i < num_channels; i++) {
3961 		chan = hsotg->hc_ptr_array[i];
3962 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3963 		dev_dbg(hsotg->dev,
3964 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3965 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3966 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3967 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3968 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3969 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3970 			chan->data_pid_start);
3971 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3972 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3973 			chan->xfer_started);
3974 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3975 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3976 			(unsigned long)chan->xfer_dma);
3977 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3978 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3979 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3980 			chan->halt_on_queue);
3981 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3982 			chan->halt_pending);
3983 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3984 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3985 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3986 			chan->complete_split);
3987 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3988 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3989 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3990 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3991 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3992 
3993 		if (chan->xfer_started) {
3994 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3995 
3996 			hfnum = dwc2_readl(hsotg->regs + HFNUM);
3997 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3998 			hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3999 			hcint = dwc2_readl(hsotg->regs + HCINT(i));
4000 			hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
4001 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
4002 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
4003 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
4004 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
4005 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
4006 		}
4007 
4008 		if (!(chan->xfer_started && chan->qh))
4009 			continue;
4010 
4011 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
4012 			if (!qtd->in_process)
4013 				break;
4014 			urb = qtd->urb;
4015 			dev_dbg(hsotg->dev, "    URB Info:\n");
4016 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
4017 				qtd, urb);
4018 			if (urb) {
4019 				dev_dbg(hsotg->dev,
4020 					"      Dev: %d, EP: %d %s\n",
4021 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
4022 					dwc2_hcd_get_ep_num(&urb->pipe_info),
4023 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
4024 					"IN" : "OUT");
4025 				dev_dbg(hsotg->dev,
4026 					"      Max packet size: %d\n",
4027 					dwc2_hcd_get_mps(&urb->pipe_info));
4028 				dev_dbg(hsotg->dev,
4029 					"      transfer_buffer: %p\n",
4030 					urb->buf);
4031 				dev_dbg(hsotg->dev,
4032 					"      transfer_dma: %08lx\n",
4033 					(unsigned long)urb->dma);
4034 				dev_dbg(hsotg->dev,
4035 					"      transfer_buffer_length: %d\n",
4036 					urb->length);
4037 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
4038 					urb->actual_length);
4039 			}
4040 		}
4041 	}
4042 
4043 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
4044 		hsotg->non_periodic_channels);
4045 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
4046 		hsotg->periodic_channels);
4047 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
4048 	np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
4049 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
4050 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4051 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
4052 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4053 	p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
4054 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4055 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4056 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4057 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4058 	dwc2_dump_global_registers(hsotg);
4059 	dwc2_dump_host_registers(hsotg);
4060 	dev_dbg(hsotg->dev,
4061 		"************************************************************\n");
4062 	dev_dbg(hsotg->dev, "\n");
4063 #endif
4064 }
4065 
4066 struct wrapper_priv_data {
4067 	struct dwc2_hsotg *hsotg;
4068 };
4069 
4070 /* Gets the dwc2_hsotg from a usb_hcd */
4071 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4072 {
4073 	struct wrapper_priv_data *p;
4074 
4075 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4076 	return p->hsotg;
4077 }
4078 
4079 /**
4080  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4081  *
4082  * This will get the dwc2_tt structure (and ttport) associated with the given
4083  * context (which is really just a struct urb pointer).
4084  *
4085  * The first time this is called for a given TT we allocate memory for our
4086  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4087  * then the refcount for the structure will go to 0 and we'll free it.
4088  *
4089  * @hsotg:     The HCD state structure for the DWC OTG controller.
4090  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4091  * @mem_flags: Flags for allocating memory.
4092  * @ttport:    We'll return this device's port number here.  That's used to
4093  *             reference into the bitmap if we're on a multi_tt hub.
4094  *
4095  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4096  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4097  */
4098 
4099 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4100 				      gfp_t mem_flags, int *ttport)
4101 {
4102 	struct urb *urb = context;
4103 	struct dwc2_tt *dwc_tt = NULL;
4104 
4105 	if (urb->dev->tt) {
4106 		*ttport = urb->dev->ttport;
4107 
4108 		dwc_tt = urb->dev->tt->hcpriv;
4109 		if (!dwc_tt) {
4110 			size_t bitmap_size;
4111 
4112 			/*
4113 			 * For single_tt we need one schedule.  For multi_tt
4114 			 * we need one per port.
4115 			 */
4116 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4117 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4118 			if (urb->dev->tt->multi)
4119 				bitmap_size *= urb->dev->tt->hub->maxchild;
4120 
4121 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4122 					 mem_flags);
4123 			if (!dwc_tt)
4124 				return NULL;
4125 
4126 			dwc_tt->usb_tt = urb->dev->tt;
4127 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4128 		}
4129 
4130 		dwc_tt->refcount++;
4131 	}
4132 
4133 	return dwc_tt;
4134 }
4135 
4136 /**
4137  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4138  *
4139  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4140  * of the structure are done.
4141  *
4142  * It's OK to call this with NULL.
4143  *
4144  * @hsotg:     The HCD state structure for the DWC OTG controller.
4145  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4146  */
4147 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4148 {
4149 	/* Model kfree and make put of NULL a no-op */
4150 	if (!dwc_tt)
4151 		return;
4152 
4153 	WARN_ON(dwc_tt->refcount < 1);
4154 
4155 	dwc_tt->refcount--;
4156 	if (!dwc_tt->refcount) {
4157 		dwc_tt->usb_tt->hcpriv = NULL;
4158 		kfree(dwc_tt);
4159 	}
4160 }
4161 
4162 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4163 {
4164 	struct urb *urb = context;
4165 
4166 	return urb->dev->speed;
4167 }
4168 
4169 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4170 					struct urb *urb)
4171 {
4172 	struct usb_bus *bus = hcd_to_bus(hcd);
4173 
4174 	if (urb->interval)
4175 		bus->bandwidth_allocated += bw / urb->interval;
4176 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4177 		bus->bandwidth_isoc_reqs++;
4178 	else
4179 		bus->bandwidth_int_reqs++;
4180 }
4181 
4182 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4183 				    struct urb *urb)
4184 {
4185 	struct usb_bus *bus = hcd_to_bus(hcd);
4186 
4187 	if (urb->interval)
4188 		bus->bandwidth_allocated -= bw / urb->interval;
4189 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4190 		bus->bandwidth_isoc_reqs--;
4191 	else
4192 		bus->bandwidth_int_reqs--;
4193 }
4194 
4195 /*
4196  * Sets the final status of an URB and returns it to the upper layer. Any
4197  * required cleanup of the URB is performed.
4198  *
4199  * Must be called with interrupt disabled and spinlock held
4200  */
4201 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4202 			int status)
4203 {
4204 	struct urb *urb;
4205 	int i;
4206 
4207 	if (!qtd) {
4208 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4209 		return;
4210 	}
4211 
4212 	if (!qtd->urb) {
4213 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4214 		return;
4215 	}
4216 
4217 	urb = qtd->urb->priv;
4218 	if (!urb) {
4219 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4220 		return;
4221 	}
4222 
4223 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4224 
4225 	if (dbg_urb(urb))
4226 		dev_vdbg(hsotg->dev,
4227 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4228 			 __func__, urb, usb_pipedevice(urb->pipe),
4229 			 usb_pipeendpoint(urb->pipe),
4230 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4231 			 urb->actual_length);
4232 
4233 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4234 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4235 		for (i = 0; i < urb->number_of_packets; ++i) {
4236 			urb->iso_frame_desc[i].actual_length =
4237 				dwc2_hcd_urb_get_iso_desc_actual_length(
4238 						qtd->urb, i);
4239 			urb->iso_frame_desc[i].status =
4240 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4241 		}
4242 	}
4243 
4244 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4245 		for (i = 0; i < urb->number_of_packets; i++)
4246 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4247 				 i, urb->iso_frame_desc[i].status);
4248 	}
4249 
4250 	urb->status = status;
4251 	if (!status) {
4252 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4253 		    urb->actual_length < urb->transfer_buffer_length)
4254 			urb->status = -EREMOTEIO;
4255 	}
4256 
4257 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4258 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4259 		struct usb_host_endpoint *ep = urb->ep;
4260 
4261 		if (ep)
4262 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4263 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4264 					urb);
4265 	}
4266 
4267 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4268 	urb->hcpriv = NULL;
4269 	kfree(qtd->urb);
4270 	qtd->urb = NULL;
4271 
4272 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4273 }
4274 
4275 /*
4276  * Work queue function for starting the HCD when A-Cable is connected
4277  */
4278 static void dwc2_hcd_start_func(struct work_struct *work)
4279 {
4280 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4281 						start_work.work);
4282 
4283 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4284 	dwc2_host_start(hsotg);
4285 }
4286 
4287 /*
4288  * Reset work queue function
4289  */
4290 static void dwc2_hcd_reset_func(struct work_struct *work)
4291 {
4292 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4293 						reset_work.work);
4294 	unsigned long flags;
4295 	u32 hprt0;
4296 
4297 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4298 
4299 	spin_lock_irqsave(&hsotg->lock, flags);
4300 
4301 	hprt0 = dwc2_read_hprt0(hsotg);
4302 	hprt0 &= ~HPRT0_RST;
4303 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
4304 	hsotg->flags.b.port_reset_change = 1;
4305 
4306 	spin_unlock_irqrestore(&hsotg->lock, flags);
4307 }
4308 
4309 /*
4310  * =========================================================================
4311  *  Linux HC Driver Functions
4312  * =========================================================================
4313  */
4314 
4315 /*
4316  * Initializes the DWC_otg controller and its root hub and prepares it for host
4317  * mode operation. Activates the root port. Returns 0 on success and a negative
4318  * error code on failure.
4319  */
4320 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4321 {
4322 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4323 	struct usb_bus *bus = hcd_to_bus(hcd);
4324 	unsigned long flags;
4325 
4326 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4327 
4328 	spin_lock_irqsave(&hsotg->lock, flags);
4329 	hsotg->lx_state = DWC2_L0;
4330 	hcd->state = HC_STATE_RUNNING;
4331 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4332 
4333 	if (dwc2_is_device_mode(hsotg)) {
4334 		spin_unlock_irqrestore(&hsotg->lock, flags);
4335 		return 0;	/* why 0 ?? */
4336 	}
4337 
4338 	dwc2_hcd_reinit(hsotg);
4339 
4340 	/* Initialize and connect root hub if one is not already attached */
4341 	if (bus->root_hub) {
4342 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4343 		/* Inform the HUB driver to resume */
4344 		usb_hcd_resume_root_hub(hcd);
4345 	}
4346 
4347 	spin_unlock_irqrestore(&hsotg->lock, flags);
4348 
4349 	return dwc2_vbus_supply_init(hsotg);
4350 }
4351 
4352 /*
4353  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4354  * stopped.
4355  */
4356 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4357 {
4358 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4359 	unsigned long flags;
4360 
4361 	/* Turn off all host-specific interrupts */
4362 	dwc2_disable_host_interrupts(hsotg);
4363 
4364 	/* Wait for interrupt processing to finish */
4365 	synchronize_irq(hcd->irq);
4366 
4367 	spin_lock_irqsave(&hsotg->lock, flags);
4368 	/* Ensure hcd is disconnected */
4369 	dwc2_hcd_disconnect(hsotg, true);
4370 	dwc2_hcd_stop(hsotg);
4371 	hsotg->lx_state = DWC2_L3;
4372 	hcd->state = HC_STATE_HALT;
4373 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4374 	spin_unlock_irqrestore(&hsotg->lock, flags);
4375 
4376 	dwc2_vbus_supply_exit(hsotg);
4377 
4378 	usleep_range(1000, 3000);
4379 }
4380 
4381 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4382 {
4383 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4384 	unsigned long flags;
4385 	int ret = 0;
4386 	u32 hprt0;
4387 
4388 	spin_lock_irqsave(&hsotg->lock, flags);
4389 
4390 	if (dwc2_is_device_mode(hsotg))
4391 		goto unlock;
4392 
4393 	if (hsotg->lx_state != DWC2_L0)
4394 		goto unlock;
4395 
4396 	if (!HCD_HW_ACCESSIBLE(hcd))
4397 		goto unlock;
4398 
4399 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4400 		goto unlock;
4401 
4402 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL)
4403 		goto skip_power_saving;
4404 
4405 	/*
4406 	 * Drive USB suspend and disable port Power
4407 	 * if usb bus is not suspended.
4408 	 */
4409 	if (!hsotg->bus_suspended) {
4410 		hprt0 = dwc2_read_hprt0(hsotg);
4411 		hprt0 |= HPRT0_SUSP;
4412 		hprt0 &= ~HPRT0_PWR;
4413 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
4414 		dwc2_vbus_supply_exit(hsotg);
4415 	}
4416 
4417 	/* Enter partial_power_down */
4418 	ret = dwc2_enter_partial_power_down(hsotg);
4419 	if (ret) {
4420 		if (ret != -ENOTSUPP)
4421 			dev_err(hsotg->dev,
4422 				"enter partial_power_down failed\n");
4423 		goto skip_power_saving;
4424 	}
4425 
4426 	/* Ask phy to be suspended */
4427 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4428 		spin_unlock_irqrestore(&hsotg->lock, flags);
4429 		usb_phy_set_suspend(hsotg->uphy, true);
4430 		spin_lock_irqsave(&hsotg->lock, flags);
4431 	}
4432 
4433 	/* After entering partial_power_down, hardware is no more accessible */
4434 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4435 
4436 skip_power_saving:
4437 	hsotg->lx_state = DWC2_L2;
4438 unlock:
4439 	spin_unlock_irqrestore(&hsotg->lock, flags);
4440 
4441 	return ret;
4442 }
4443 
4444 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4445 {
4446 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4447 	unsigned long flags;
4448 	int ret = 0;
4449 
4450 	spin_lock_irqsave(&hsotg->lock, flags);
4451 
4452 	if (dwc2_is_device_mode(hsotg))
4453 		goto unlock;
4454 
4455 	if (hsotg->lx_state != DWC2_L2)
4456 		goto unlock;
4457 
4458 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) {
4459 		hsotg->lx_state = DWC2_L0;
4460 		goto unlock;
4461 	}
4462 
4463 	/*
4464 	 * Set HW accessible bit before powering on the controller
4465 	 * since an interrupt may rise.
4466 	 */
4467 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4468 
4469 	/*
4470 	 * Enable power if not already done.
4471 	 * This must not be spinlocked since duration
4472 	 * of this call is unknown.
4473 	 */
4474 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4475 		spin_unlock_irqrestore(&hsotg->lock, flags);
4476 		usb_phy_set_suspend(hsotg->uphy, false);
4477 		spin_lock_irqsave(&hsotg->lock, flags);
4478 	}
4479 
4480 	/* Exit partial_power_down */
4481 	ret = dwc2_exit_partial_power_down(hsotg, true);
4482 	if (ret && (ret != -ENOTSUPP))
4483 		dev_err(hsotg->dev, "exit partial_power_down failed\n");
4484 
4485 	hsotg->lx_state = DWC2_L0;
4486 
4487 	spin_unlock_irqrestore(&hsotg->lock, flags);
4488 
4489 	if (hsotg->bus_suspended) {
4490 		spin_lock_irqsave(&hsotg->lock, flags);
4491 		hsotg->flags.b.port_suspend_change = 1;
4492 		spin_unlock_irqrestore(&hsotg->lock, flags);
4493 		dwc2_port_resume(hsotg);
4494 	} else {
4495 		dwc2_vbus_supply_init(hsotg);
4496 
4497 		/* Wait for controller to correctly update D+/D- level */
4498 		usleep_range(3000, 5000);
4499 
4500 		/*
4501 		 * Clear Port Enable and Port Status changes.
4502 		 * Enable Port Power.
4503 		 */
4504 		dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4505 				HPRT0_ENACHG, hsotg->regs + HPRT0);
4506 		/* Wait for controller to detect Port Connect */
4507 		usleep_range(5000, 7000);
4508 	}
4509 
4510 	return ret;
4511 unlock:
4512 	spin_unlock_irqrestore(&hsotg->lock, flags);
4513 
4514 	return ret;
4515 }
4516 
4517 /* Returns the current frame number */
4518 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4519 {
4520 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4521 
4522 	return dwc2_hcd_get_frame_number(hsotg);
4523 }
4524 
4525 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4526 			       char *fn_name)
4527 {
4528 #ifdef VERBOSE_DEBUG
4529 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4530 	char *pipetype = NULL;
4531 	char *speed = NULL;
4532 
4533 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4534 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4535 		 usb_pipedevice(urb->pipe));
4536 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4537 		 usb_pipeendpoint(urb->pipe),
4538 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4539 
4540 	switch (usb_pipetype(urb->pipe)) {
4541 	case PIPE_CONTROL:
4542 		pipetype = "CONTROL";
4543 		break;
4544 	case PIPE_BULK:
4545 		pipetype = "BULK";
4546 		break;
4547 	case PIPE_INTERRUPT:
4548 		pipetype = "INTERRUPT";
4549 		break;
4550 	case PIPE_ISOCHRONOUS:
4551 		pipetype = "ISOCHRONOUS";
4552 		break;
4553 	}
4554 
4555 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4556 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4557 		 "IN" : "OUT");
4558 
4559 	switch (urb->dev->speed) {
4560 	case USB_SPEED_HIGH:
4561 		speed = "HIGH";
4562 		break;
4563 	case USB_SPEED_FULL:
4564 		speed = "FULL";
4565 		break;
4566 	case USB_SPEED_LOW:
4567 		speed = "LOW";
4568 		break;
4569 	default:
4570 		speed = "UNKNOWN";
4571 		break;
4572 	}
4573 
4574 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4575 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4576 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4577 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4578 		 urb->transfer_buffer_length);
4579 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4580 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4581 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4582 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4583 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4584 
4585 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4586 		int i;
4587 
4588 		for (i = 0; i < urb->number_of_packets; i++) {
4589 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4590 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4591 				 urb->iso_frame_desc[i].offset,
4592 				 urb->iso_frame_desc[i].length);
4593 		}
4594 	}
4595 #endif
4596 }
4597 
4598 /*
4599  * Starts processing a USB transfer request specified by a USB Request Block
4600  * (URB). mem_flags indicates the type of memory allocation to use while
4601  * processing this URB.
4602  */
4603 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4604 				 gfp_t mem_flags)
4605 {
4606 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4607 	struct usb_host_endpoint *ep = urb->ep;
4608 	struct dwc2_hcd_urb *dwc2_urb;
4609 	int i;
4610 	int retval;
4611 	int alloc_bandwidth = 0;
4612 	u8 ep_type = 0;
4613 	u32 tflags = 0;
4614 	void *buf;
4615 	unsigned long flags;
4616 	struct dwc2_qh *qh;
4617 	bool qh_allocated = false;
4618 	struct dwc2_qtd *qtd;
4619 
4620 	if (dbg_urb(urb)) {
4621 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4622 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4623 	}
4624 
4625 	if (!ep)
4626 		return -EINVAL;
4627 
4628 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4629 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4630 		spin_lock_irqsave(&hsotg->lock, flags);
4631 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4632 			alloc_bandwidth = 1;
4633 		spin_unlock_irqrestore(&hsotg->lock, flags);
4634 	}
4635 
4636 	switch (usb_pipetype(urb->pipe)) {
4637 	case PIPE_CONTROL:
4638 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4639 		break;
4640 	case PIPE_ISOCHRONOUS:
4641 		ep_type = USB_ENDPOINT_XFER_ISOC;
4642 		break;
4643 	case PIPE_BULK:
4644 		ep_type = USB_ENDPOINT_XFER_BULK;
4645 		break;
4646 	case PIPE_INTERRUPT:
4647 		ep_type = USB_ENDPOINT_XFER_INT;
4648 		break;
4649 	}
4650 
4651 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4652 				      mem_flags);
4653 	if (!dwc2_urb)
4654 		return -ENOMEM;
4655 
4656 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4657 				  usb_pipeendpoint(urb->pipe), ep_type,
4658 				  usb_pipein(urb->pipe),
4659 				  usb_maxpacket(urb->dev, urb->pipe,
4660 						!(usb_pipein(urb->pipe))));
4661 
4662 	buf = urb->transfer_buffer;
4663 
4664 	if (hcd->self.uses_dma) {
4665 		if (!buf && (urb->transfer_dma & 3)) {
4666 			dev_err(hsotg->dev,
4667 				"%s: unaligned transfer with no transfer_buffer",
4668 				__func__);
4669 			retval = -EINVAL;
4670 			goto fail0;
4671 		}
4672 	}
4673 
4674 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4675 		tflags |= URB_GIVEBACK_ASAP;
4676 	if (urb->transfer_flags & URB_ZERO_PACKET)
4677 		tflags |= URB_SEND_ZERO_PACKET;
4678 
4679 	dwc2_urb->priv = urb;
4680 	dwc2_urb->buf = buf;
4681 	dwc2_urb->dma = urb->transfer_dma;
4682 	dwc2_urb->length = urb->transfer_buffer_length;
4683 	dwc2_urb->setup_packet = urb->setup_packet;
4684 	dwc2_urb->setup_dma = urb->setup_dma;
4685 	dwc2_urb->flags = tflags;
4686 	dwc2_urb->interval = urb->interval;
4687 	dwc2_urb->status = -EINPROGRESS;
4688 
4689 	for (i = 0; i < urb->number_of_packets; ++i)
4690 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4691 						 urb->iso_frame_desc[i].offset,
4692 						 urb->iso_frame_desc[i].length);
4693 
4694 	urb->hcpriv = dwc2_urb;
4695 	qh = (struct dwc2_qh *)ep->hcpriv;
4696 	/* Create QH for the endpoint if it doesn't exist */
4697 	if (!qh) {
4698 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4699 		if (!qh) {
4700 			retval = -ENOMEM;
4701 			goto fail0;
4702 		}
4703 		ep->hcpriv = qh;
4704 		qh_allocated = true;
4705 	}
4706 
4707 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4708 	if (!qtd) {
4709 		retval = -ENOMEM;
4710 		goto fail1;
4711 	}
4712 
4713 	spin_lock_irqsave(&hsotg->lock, flags);
4714 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4715 	if (retval)
4716 		goto fail2;
4717 
4718 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4719 	if (retval)
4720 		goto fail3;
4721 
4722 	if (alloc_bandwidth) {
4723 		dwc2_allocate_bus_bandwidth(hcd,
4724 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4725 				urb);
4726 	}
4727 
4728 	spin_unlock_irqrestore(&hsotg->lock, flags);
4729 
4730 	return 0;
4731 
4732 fail3:
4733 	dwc2_urb->priv = NULL;
4734 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4735 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4736 		qh->channel->qh = NULL;
4737 fail2:
4738 	spin_unlock_irqrestore(&hsotg->lock, flags);
4739 	urb->hcpriv = NULL;
4740 	kfree(qtd);
4741 	qtd = NULL;
4742 fail1:
4743 	if (qh_allocated) {
4744 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4745 
4746 		ep->hcpriv = NULL;
4747 		dwc2_hcd_qh_unlink(hsotg, qh);
4748 		/* Free each QTD in the QH's QTD list */
4749 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4750 					 qtd_list_entry)
4751 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4752 		dwc2_hcd_qh_free(hsotg, qh);
4753 	}
4754 fail0:
4755 	kfree(dwc2_urb);
4756 
4757 	return retval;
4758 }
4759 
4760 /*
4761  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4762  */
4763 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4764 				 int status)
4765 {
4766 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4767 	int rc;
4768 	unsigned long flags;
4769 
4770 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4771 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4772 
4773 	spin_lock_irqsave(&hsotg->lock, flags);
4774 
4775 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4776 	if (rc)
4777 		goto out;
4778 
4779 	if (!urb->hcpriv) {
4780 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4781 		goto out;
4782 	}
4783 
4784 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4785 
4786 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4787 
4788 	kfree(urb->hcpriv);
4789 	urb->hcpriv = NULL;
4790 
4791 	/* Higher layer software sets URB status */
4792 	spin_unlock(&hsotg->lock);
4793 	usb_hcd_giveback_urb(hcd, urb, status);
4794 	spin_lock(&hsotg->lock);
4795 
4796 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4797 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4798 out:
4799 	spin_unlock_irqrestore(&hsotg->lock, flags);
4800 
4801 	return rc;
4802 }
4803 
4804 /*
4805  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4806  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4807  * must already be dequeued.
4808  */
4809 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4810 				       struct usb_host_endpoint *ep)
4811 {
4812 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4813 
4814 	dev_dbg(hsotg->dev,
4815 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4816 		ep->desc.bEndpointAddress, ep->hcpriv);
4817 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4818 }
4819 
4820 /*
4821  * Resets endpoint specific parameter values, in current version used to reset
4822  * the data toggle (as a WA). This function can be called from usb_clear_halt
4823  * routine.
4824  */
4825 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4826 				     struct usb_host_endpoint *ep)
4827 {
4828 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4829 	unsigned long flags;
4830 
4831 	dev_dbg(hsotg->dev,
4832 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4833 		ep->desc.bEndpointAddress);
4834 
4835 	spin_lock_irqsave(&hsotg->lock, flags);
4836 	dwc2_hcd_endpoint_reset(hsotg, ep);
4837 	spin_unlock_irqrestore(&hsotg->lock, flags);
4838 }
4839 
4840 /*
4841  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4842  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4843  * interrupt.
4844  *
4845  * This function is called by the USB core when an interrupt occurs
4846  */
4847 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4848 {
4849 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4850 
4851 	return dwc2_handle_hcd_intr(hsotg);
4852 }
4853 
4854 /*
4855  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4856  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4857  * is the status change indicator for the single root port. Returns 1 if either
4858  * change indicator is 1, otherwise returns 0.
4859  */
4860 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4861 {
4862 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4863 
4864 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4865 	return buf[0] != 0;
4866 }
4867 
4868 /* Handles hub class-specific requests */
4869 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4870 				 u16 windex, char *buf, u16 wlength)
4871 {
4872 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4873 					  wvalue, windex, buf, wlength);
4874 	return retval;
4875 }
4876 
4877 /* Handles hub TT buffer clear completions */
4878 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4879 					       struct usb_host_endpoint *ep)
4880 {
4881 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4882 	struct dwc2_qh *qh;
4883 	unsigned long flags;
4884 
4885 	qh = ep->hcpriv;
4886 	if (!qh)
4887 		return;
4888 
4889 	spin_lock_irqsave(&hsotg->lock, flags);
4890 	qh->tt_buffer_dirty = 0;
4891 
4892 	if (hsotg->flags.b.port_connect_status)
4893 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4894 
4895 	spin_unlock_irqrestore(&hsotg->lock, flags);
4896 }
4897 
4898 /*
4899  * HPRT0_SPD_HIGH_SPEED: high speed
4900  * HPRT0_SPD_FULL_SPEED: full speed
4901  */
4902 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4903 {
4904 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4905 
4906 	if (hsotg->params.speed == speed)
4907 		return;
4908 
4909 	hsotg->params.speed = speed;
4910 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4911 }
4912 
4913 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4914 {
4915 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4916 
4917 	if (!hsotg->params.change_speed_quirk)
4918 		return;
4919 
4920 	/*
4921 	 * On removal, set speed to default high-speed.
4922 	 */
4923 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4924 	    udev->parent->speed < USB_SPEED_HIGH) {
4925 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4926 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4927 	}
4928 }
4929 
4930 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4931 {
4932 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4933 
4934 	if (!hsotg->params.change_speed_quirk)
4935 		return 0;
4936 
4937 	if (udev->speed == USB_SPEED_HIGH) {
4938 		dev_info(hsotg->dev, "Set speed to high-speed\n");
4939 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4940 	} else if ((udev->speed == USB_SPEED_FULL ||
4941 				udev->speed == USB_SPEED_LOW)) {
4942 		/*
4943 		 * Change speed setting to full-speed if there's
4944 		 * a full-speed or low-speed device plugged in.
4945 		 */
4946 		dev_info(hsotg->dev, "Set speed to full-speed\n");
4947 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4948 	}
4949 
4950 	return 0;
4951 }
4952 
4953 static struct hc_driver dwc2_hc_driver = {
4954 	.description = "dwc2_hsotg",
4955 	.product_desc = "DWC OTG Controller",
4956 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4957 
4958 	.irq = _dwc2_hcd_irq,
4959 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4960 
4961 	.start = _dwc2_hcd_start,
4962 	.stop = _dwc2_hcd_stop,
4963 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4964 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4965 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4966 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4967 	.get_frame_number = _dwc2_hcd_get_frame_number,
4968 
4969 	.hub_status_data = _dwc2_hcd_hub_status_data,
4970 	.hub_control = _dwc2_hcd_hub_control,
4971 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4972 
4973 	.bus_suspend = _dwc2_hcd_suspend,
4974 	.bus_resume = _dwc2_hcd_resume,
4975 
4976 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4977 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4978 };
4979 
4980 /*
4981  * Frees secondary storage associated with the dwc2_hsotg structure contained
4982  * in the struct usb_hcd field
4983  */
4984 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4985 {
4986 	u32 ahbcfg;
4987 	u32 dctl;
4988 	int i;
4989 
4990 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4991 
4992 	/* Free memory for QH/QTD lists */
4993 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4994 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4995 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4996 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4997 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4998 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4999 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5000 
5001 	/* Free memory for the host channels */
5002 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5003 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5004 
5005 		if (chan) {
5006 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5007 				i, chan);
5008 			hsotg->hc_ptr_array[i] = NULL;
5009 			kfree(chan);
5010 		}
5011 	}
5012 
5013 	if (hsotg->params.host_dma) {
5014 		if (hsotg->status_buf) {
5015 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5016 					  hsotg->status_buf,
5017 					  hsotg->status_buf_dma);
5018 			hsotg->status_buf = NULL;
5019 		}
5020 	} else {
5021 		kfree(hsotg->status_buf);
5022 		hsotg->status_buf = NULL;
5023 	}
5024 
5025 	ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
5026 
5027 	/* Disable all interrupts */
5028 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5029 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
5030 	dwc2_writel(0, hsotg->regs + GINTMSK);
5031 
5032 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5033 		dctl = dwc2_readl(hsotg->regs + DCTL);
5034 		dctl |= DCTL_SFTDISCON;
5035 		dwc2_writel(dctl, hsotg->regs + DCTL);
5036 	}
5037 
5038 	if (hsotg->wq_otg) {
5039 		if (!cancel_work_sync(&hsotg->wf_otg))
5040 			flush_workqueue(hsotg->wq_otg);
5041 		destroy_workqueue(hsotg->wq_otg);
5042 	}
5043 
5044 	del_timer(&hsotg->wkp_timer);
5045 }
5046 
5047 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5048 {
5049 	/* Turn off all host-specific interrupts */
5050 	dwc2_disable_host_interrupts(hsotg);
5051 
5052 	dwc2_hcd_free(hsotg);
5053 }
5054 
5055 /*
5056  * Initializes the HCD. This function allocates memory for and initializes the
5057  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5058  * USB bus with the core and calls the hc_driver->start() function. It returns
5059  * a negative error on failure.
5060  */
5061 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5062 {
5063 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5064 	struct resource *res;
5065 	struct usb_hcd *hcd;
5066 	struct dwc2_host_chan *channel;
5067 	u32 hcfg;
5068 	int i, num_channels;
5069 	int retval;
5070 
5071 	if (usb_disabled())
5072 		return -ENODEV;
5073 
5074 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5075 
5076 	retval = -ENOMEM;
5077 
5078 	hcfg = dwc2_readl(hsotg->regs + HCFG);
5079 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5080 
5081 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5082 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5083 					 sizeof(*hsotg->frame_num_array),
5084 					 GFP_KERNEL);
5085 	if (!hsotg->frame_num_array)
5086 		goto error1;
5087 	hsotg->last_frame_num_array =
5088 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5089 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5090 	if (!hsotg->last_frame_num_array)
5091 		goto error1;
5092 #endif
5093 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5094 
5095 	/* Check if the bus driver or platform code has setup a dma_mask */
5096 	if (hsotg->params.host_dma &&
5097 	    !hsotg->dev->dma_mask) {
5098 		dev_warn(hsotg->dev,
5099 			 "dma_mask not set, disabling DMA\n");
5100 		hsotg->params.host_dma = false;
5101 		hsotg->params.dma_desc_enable = false;
5102 	}
5103 
5104 	/* Set device flags indicating whether the HCD supports DMA */
5105 	if (hsotg->params.host_dma) {
5106 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5107 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5108 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5109 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5110 	}
5111 
5112 	if (hsotg->params.change_speed_quirk) {
5113 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5114 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5115 	}
5116 
5117 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5118 	if (!hcd)
5119 		goto error1;
5120 
5121 	if (!hsotg->params.host_dma)
5122 		hcd->self.uses_dma = 0;
5123 
5124 	hcd->has_tt = 1;
5125 
5126 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5127 	hcd->rsrc_start = res->start;
5128 	hcd->rsrc_len = resource_size(res);
5129 
5130 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5131 	hsotg->priv = hcd;
5132 
5133 	/*
5134 	 * Disable the global interrupt until all the interrupt handlers are
5135 	 * installed
5136 	 */
5137 	dwc2_disable_global_interrupts(hsotg);
5138 
5139 	/* Initialize the DWC_otg core, and select the Phy type */
5140 	retval = dwc2_core_init(hsotg, true);
5141 	if (retval)
5142 		goto error2;
5143 
5144 	/* Create new workqueue and init work */
5145 	retval = -ENOMEM;
5146 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5147 	if (!hsotg->wq_otg) {
5148 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5149 		goto error2;
5150 	}
5151 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5152 
5153 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5154 
5155 	/* Initialize the non-periodic schedule */
5156 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5157 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5158 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5159 
5160 	/* Initialize the periodic schedule */
5161 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5162 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5163 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5164 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5165 
5166 	INIT_LIST_HEAD(&hsotg->split_order);
5167 
5168 	/*
5169 	 * Create a host channel descriptor for each host channel implemented
5170 	 * in the controller. Initialize the channel descriptor array.
5171 	 */
5172 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5173 	num_channels = hsotg->params.host_channels;
5174 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5175 
5176 	for (i = 0; i < num_channels; i++) {
5177 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5178 		if (!channel)
5179 			goto error3;
5180 		channel->hc_num = i;
5181 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5182 		hsotg->hc_ptr_array[i] = channel;
5183 	}
5184 
5185 	/* Initialize hsotg start work */
5186 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5187 
5188 	/* Initialize port reset work */
5189 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5190 
5191 	/*
5192 	 * Allocate space for storing data on status transactions. Normally no
5193 	 * data is sent, but this space acts as a bit bucket. This must be
5194 	 * done after usb_add_hcd since that function allocates the DMA buffer
5195 	 * pool.
5196 	 */
5197 	if (hsotg->params.host_dma)
5198 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5199 					DWC2_HCD_STATUS_BUF_SIZE,
5200 					&hsotg->status_buf_dma, GFP_KERNEL);
5201 	else
5202 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5203 					  GFP_KERNEL);
5204 
5205 	if (!hsotg->status_buf)
5206 		goto error3;
5207 
5208 	/*
5209 	 * Create kmem caches to handle descriptor buffers in descriptor
5210 	 * DMA mode.
5211 	 * Alignment must be set to 512 bytes.
5212 	 */
5213 	if (hsotg->params.dma_desc_enable ||
5214 	    hsotg->params.dma_desc_fs_enable) {
5215 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5216 				sizeof(struct dwc2_dma_desc) *
5217 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5218 				NULL);
5219 		if (!hsotg->desc_gen_cache) {
5220 			dev_err(hsotg->dev,
5221 				"unable to create dwc2 generic desc cache\n");
5222 
5223 			/*
5224 			 * Disable descriptor dma mode since it will not be
5225 			 * usable.
5226 			 */
5227 			hsotg->params.dma_desc_enable = false;
5228 			hsotg->params.dma_desc_fs_enable = false;
5229 		}
5230 
5231 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5232 				sizeof(struct dwc2_dma_desc) *
5233 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5234 		if (!hsotg->desc_hsisoc_cache) {
5235 			dev_err(hsotg->dev,
5236 				"unable to create dwc2 hs isoc desc cache\n");
5237 
5238 			kmem_cache_destroy(hsotg->desc_gen_cache);
5239 
5240 			/*
5241 			 * Disable descriptor dma mode since it will not be
5242 			 * usable.
5243 			 */
5244 			hsotg->params.dma_desc_enable = false;
5245 			hsotg->params.dma_desc_fs_enable = false;
5246 		}
5247 	}
5248 
5249 	hsotg->otg_port = 1;
5250 	hsotg->frame_list = NULL;
5251 	hsotg->frame_list_dma = 0;
5252 	hsotg->periodic_qh_count = 0;
5253 
5254 	/* Initiate lx_state to L3 disconnected state */
5255 	hsotg->lx_state = DWC2_L3;
5256 
5257 	hcd->self.otg_port = hsotg->otg_port;
5258 
5259 	/* Don't support SG list at this point */
5260 	hcd->self.sg_tablesize = 0;
5261 
5262 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5263 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5264 
5265 	/*
5266 	 * Finish generic HCD initialization and start the HCD. This function
5267 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5268 	 * IRQ line, and calls hcd_start method.
5269 	 */
5270 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5271 	if (retval < 0)
5272 		goto error4;
5273 
5274 	device_wakeup_enable(hcd->self.controller);
5275 
5276 	dwc2_hcd_dump_state(hsotg);
5277 
5278 	dwc2_enable_global_interrupts(hsotg);
5279 
5280 	return 0;
5281 
5282 error4:
5283 	kmem_cache_destroy(hsotg->desc_gen_cache);
5284 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5285 error3:
5286 	dwc2_hcd_release(hsotg);
5287 error2:
5288 	usb_put_hcd(hcd);
5289 error1:
5290 
5291 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5292 	kfree(hsotg->last_frame_num_array);
5293 	kfree(hsotg->frame_num_array);
5294 #endif
5295 
5296 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5297 	return retval;
5298 }
5299 
5300 /*
5301  * Removes the HCD.
5302  * Frees memory and resources associated with the HCD and deregisters the bus.
5303  */
5304 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5305 {
5306 	struct usb_hcd *hcd;
5307 
5308 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5309 
5310 	hcd = dwc2_hsotg_to_hcd(hsotg);
5311 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5312 
5313 	if (!hcd) {
5314 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5315 			__func__);
5316 		return;
5317 	}
5318 
5319 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5320 		otg_set_host(hsotg->uphy->otg, NULL);
5321 
5322 	usb_remove_hcd(hcd);
5323 	hsotg->priv = NULL;
5324 
5325 	kmem_cache_destroy(hsotg->desc_gen_cache);
5326 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5327 
5328 	dwc2_hcd_release(hsotg);
5329 	usb_put_hcd(hcd);
5330 
5331 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5332 	kfree(hsotg->last_frame_num_array);
5333 	kfree(hsotg->frame_num_array);
5334 #endif
5335 }
5336 
5337 /**
5338  * dwc2_backup_host_registers() - Backup controller host registers.
5339  * When suspending usb bus, registers needs to be backuped
5340  * if controller power is disabled once suspended.
5341  *
5342  * @hsotg: Programming view of the DWC_otg controller
5343  */
5344 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5345 {
5346 	struct dwc2_hregs_backup *hr;
5347 	int i;
5348 
5349 	dev_dbg(hsotg->dev, "%s\n", __func__);
5350 
5351 	/* Backup Host regs */
5352 	hr = &hsotg->hr_backup;
5353 	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5354 	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5355 	for (i = 0; i < hsotg->params.host_channels; ++i)
5356 		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5357 
5358 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5359 	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5360 	hr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
5361 	hr->valid = true;
5362 
5363 	return 0;
5364 }
5365 
5366 /**
5367  * dwc2_restore_host_registers() - Restore controller host registers.
5368  * When resuming usb bus, device registers needs to be restored
5369  * if controller power were disabled.
5370  *
5371  * @hsotg: Programming view of the DWC_otg controller
5372  */
5373 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5374 {
5375 	struct dwc2_hregs_backup *hr;
5376 	int i;
5377 
5378 	dev_dbg(hsotg->dev, "%s\n", __func__);
5379 
5380 	/* Restore host regs */
5381 	hr = &hsotg->hr_backup;
5382 	if (!hr->valid) {
5383 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5384 			__func__);
5385 		return -EINVAL;
5386 	}
5387 	hr->valid = false;
5388 
5389 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5390 	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5391 
5392 	for (i = 0; i < hsotg->params.host_channels; ++i)
5393 		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5394 
5395 	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5396 	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5397 	dwc2_writel(hr->hptxfsiz, hsotg->regs + HPTXFSIZ);
5398 	hsotg->frame_number = 0;
5399 
5400 	return 0;
5401 }
5402 
5403 /**
5404  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5405  *
5406  * @hsotg: Programming view of the DWC_otg controller
5407  */
5408 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5409 {
5410 	unsigned long flags;
5411 	int ret = 0;
5412 	u32 hprt0;
5413 	u32 pcgcctl;
5414 	u32 gusbcfg;
5415 	u32 gpwrdn;
5416 
5417 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5418 	ret = dwc2_backup_global_registers(hsotg);
5419 	if (ret) {
5420 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5421 			__func__);
5422 		return ret;
5423 	}
5424 	ret = dwc2_backup_host_registers(hsotg);
5425 	if (ret) {
5426 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5427 			__func__);
5428 		return ret;
5429 	}
5430 
5431 	/* Enter USB Suspend Mode */
5432 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5433 	hprt0 |= HPRT0_SUSP;
5434 	hprt0 &= ~HPRT0_ENA;
5435 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
5436 
5437 	/* Wait for the HPRT0.PrtSusp register field to be set */
5438 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 300))
5439 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5440 
5441 	/*
5442 	 * We need to disable interrupts to prevent servicing of any IRQ
5443 	 * during going to hibernation
5444 	 */
5445 	spin_lock_irqsave(&hsotg->lock, flags);
5446 	hsotg->lx_state = DWC2_L2;
5447 
5448 	gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
5449 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5450 		/* ULPI interface */
5451 		/* Suspend the Phy Clock */
5452 		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5453 		pcgcctl |= PCGCTL_STOPPCLK;
5454 		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5455 		udelay(10);
5456 
5457 		gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5458 		gpwrdn |= GPWRDN_PMUACTV;
5459 		dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5460 		udelay(10);
5461 	} else {
5462 		/* UTMI+ Interface */
5463 		gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5464 		gpwrdn |= GPWRDN_PMUACTV;
5465 		dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5466 		udelay(10);
5467 
5468 		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5469 		pcgcctl |= PCGCTL_STOPPCLK;
5470 		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5471 		udelay(10);
5472 	}
5473 
5474 	/* Enable interrupts from wake up logic */
5475 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5476 	gpwrdn |= GPWRDN_PMUINTSEL;
5477 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5478 	udelay(10);
5479 
5480 	/* Unmask host mode interrupts in GPWRDN */
5481 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5482 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5483 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5484 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5485 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5486 	udelay(10);
5487 
5488 	/* Enable Power Down Clamp */
5489 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5490 	gpwrdn |= GPWRDN_PWRDNCLMP;
5491 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5492 	udelay(10);
5493 
5494 	/* Switch off VDD */
5495 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5496 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5497 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5498 
5499 	hsotg->hibernated = 1;
5500 	hsotg->bus_suspended = 1;
5501 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5502 	spin_unlock_irqrestore(&hsotg->lock, flags);
5503 	return ret;
5504 }
5505 
5506 /*
5507  * dwc2_host_exit_hibernation()
5508  *
5509  * @hsotg: Programming view of the DWC_otg controller
5510  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5511  * @param reset: indicates whether resume is initiated by Reset.
5512  *
5513  * Return: non-zero if failed to enter to hibernation.
5514  *
5515  * This function is for exiting from Host mode hibernation by
5516  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5517  */
5518 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5519 			       int reset)
5520 {
5521 	u32 gpwrdn;
5522 	u32 hprt0;
5523 	int ret = 0;
5524 	struct dwc2_gregs_backup *gr;
5525 	struct dwc2_hregs_backup *hr;
5526 
5527 	gr = &hsotg->gr_backup;
5528 	hr = &hsotg->hr_backup;
5529 
5530 	dev_dbg(hsotg->dev,
5531 		"%s: called with rem_wakeup = %d reset = %d\n",
5532 		__func__, rem_wakeup, reset);
5533 
5534 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5535 	hsotg->hibernated = 0;
5536 
5537 	/*
5538 	 * This step is not described in functional spec but if not wait for
5539 	 * this delay, mismatch interrupts occurred because just after restore
5540 	 * core is in Device mode(gintsts.curmode == 0)
5541 	 */
5542 	mdelay(100);
5543 
5544 	/* Clear all pending interupts */
5545 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5546 
5547 	/* De-assert Restore */
5548 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5549 	gpwrdn &= ~GPWRDN_RESTORE;
5550 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5551 	udelay(10);
5552 
5553 	/* Restore GUSBCFG, HCFG */
5554 	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5555 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5556 
5557 	/* De-assert Wakeup Logic */
5558 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5559 	gpwrdn &= ~GPWRDN_PMUACTV;
5560 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5561 	udelay(10);
5562 
5563 	hprt0 = hr->hprt0;
5564 	hprt0 |= HPRT0_PWR;
5565 	hprt0 &= ~HPRT0_ENA;
5566 	hprt0 &= ~HPRT0_SUSP;
5567 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
5568 
5569 	hprt0 = hr->hprt0;
5570 	hprt0 |= HPRT0_PWR;
5571 	hprt0 &= ~HPRT0_ENA;
5572 	hprt0 &= ~HPRT0_SUSP;
5573 
5574 	if (reset) {
5575 		hprt0 |= HPRT0_RST;
5576 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5577 
5578 		/* Wait for Resume time and then program HPRT again */
5579 		mdelay(60);
5580 		hprt0 &= ~HPRT0_RST;
5581 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5582 	} else {
5583 		hprt0 |= HPRT0_RES;
5584 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5585 
5586 		/* Wait for Resume time and then program HPRT again */
5587 		mdelay(100);
5588 		hprt0 &= ~HPRT0_RES;
5589 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5590 	}
5591 	/* Clear all interrupt status */
5592 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5593 	hprt0 |= HPRT0_CONNDET;
5594 	hprt0 |= HPRT0_ENACHG;
5595 	hprt0 &= ~HPRT0_ENA;
5596 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
5597 
5598 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5599 
5600 	/* Clear all pending interupts */
5601 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5602 
5603 	/* Restore global registers */
5604 	ret = dwc2_restore_global_registers(hsotg);
5605 	if (ret) {
5606 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5607 			__func__);
5608 		return ret;
5609 	}
5610 
5611 	/* Restore host registers */
5612 	ret = dwc2_restore_host_registers(hsotg);
5613 	if (ret) {
5614 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5615 			__func__);
5616 		return ret;
5617 	}
5618 
5619 	hsotg->hibernated = 0;
5620 	hsotg->bus_suspended = 0;
5621 	hsotg->lx_state = DWC2_L0;
5622 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5623 	return ret;
5624 }
5625