xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision 4fe160d5)
1 /*
2  * hcd.c - DesignWare HS OTG Controller host-mode routines
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * This file contains the core HCD code, and implements the Linux hc_driver
39  * API
40  */
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/platform_device.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/delay.h>
48 #include <linux/io.h>
49 #include <linux/slab.h>
50 #include <linux/usb.h>
51 
52 #include <linux/usb/hcd.h>
53 #include <linux/usb/ch11.h>
54 
55 #include "core.h"
56 #include "hcd.h"
57 
58 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
59 
60 /*
61  * =========================================================================
62  *  Host Core Layer Functions
63  * =========================================================================
64  */
65 
66 /**
67  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
68  * used in both device and host modes
69  *
70  * @hsotg: Programming view of the DWC_otg controller
71  */
72 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
73 {
74 	u32 intmsk;
75 
76 	/* Clear any pending OTG Interrupts */
77 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
78 
79 	/* Clear any pending interrupts */
80 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
81 
82 	/* Enable the interrupts in the GINTMSK */
83 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
84 
85 	if (!hsotg->params.host_dma)
86 		intmsk |= GINTSTS_RXFLVL;
87 	if (!hsotg->params.external_id_pin_ctl)
88 		intmsk |= GINTSTS_CONIDSTSCHNG;
89 
90 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
91 		  GINTSTS_SESSREQINT;
92 
93 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
94 }
95 
96 /*
97  * Initializes the FSLSPClkSel field of the HCFG register depending on the
98  * PHY type
99  */
100 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
101 {
102 	u32 hcfg, val;
103 
104 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
105 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
106 	     hsotg->params.ulpi_fs_ls) ||
107 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
108 		/* Full speed PHY */
109 		val = HCFG_FSLSPCLKSEL_48_MHZ;
110 	} else {
111 		/* High speed PHY running at full speed or high speed */
112 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
113 	}
114 
115 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
116 	hcfg = dwc2_readl(hsotg->regs + HCFG);
117 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
118 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
119 	dwc2_writel(hcfg, hsotg->regs + HCFG);
120 }
121 
122 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
123 {
124 	u32 usbcfg, i2cctl;
125 	int retval = 0;
126 
127 	/*
128 	 * core_init() is now called on every switch so only call the
129 	 * following for the first time through
130 	 */
131 	if (select_phy) {
132 		dev_dbg(hsotg->dev, "FS PHY selected\n");
133 
134 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
135 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
136 			usbcfg |= GUSBCFG_PHYSEL;
137 			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
138 
139 			/* Reset after a PHY select */
140 			retval = dwc2_core_reset_and_force_dr_mode(hsotg);
141 
142 			if (retval) {
143 				dev_err(hsotg->dev,
144 					"%s: Reset failed, aborting", __func__);
145 				return retval;
146 			}
147 		}
148 	}
149 
150 	/*
151 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
152 	 * do this on HNP Dev/Host mode switches (done in dev_init and
153 	 * host_init).
154 	 */
155 	if (dwc2_is_host_mode(hsotg))
156 		dwc2_init_fs_ls_pclk_sel(hsotg);
157 
158 	if (hsotg->params.i2c_enable) {
159 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
160 
161 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
162 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
163 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
164 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
165 
166 		/* Program GI2CCTL.I2CEn */
167 		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
168 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
169 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
170 		i2cctl &= ~GI2CCTL_I2CEN;
171 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
172 		i2cctl |= GI2CCTL_I2CEN;
173 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
174 	}
175 
176 	return retval;
177 }
178 
179 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
180 {
181 	u32 usbcfg, usbcfg_old;
182 	int retval = 0;
183 
184 	if (!select_phy)
185 		return 0;
186 
187 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
188 	usbcfg_old = usbcfg;
189 
190 	/*
191 	 * HS PHY parameters. These parameters are preserved during soft reset
192 	 * so only program the first time. Do a soft reset immediately after
193 	 * setting phyif.
194 	 */
195 	switch (hsotg->params.phy_type) {
196 	case DWC2_PHY_TYPE_PARAM_ULPI:
197 		/* ULPI interface */
198 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
199 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
200 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
201 		if (hsotg->params.phy_ulpi_ddr)
202 			usbcfg |= GUSBCFG_DDRSEL;
203 		break;
204 	case DWC2_PHY_TYPE_PARAM_UTMI:
205 		/* UTMI+ interface */
206 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
207 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
208 		if (hsotg->params.phy_utmi_width == 16)
209 			usbcfg |= GUSBCFG_PHYIF16;
210 		break;
211 	default:
212 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
213 		break;
214 	}
215 
216 	if (usbcfg != usbcfg_old) {
217 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
218 
219 		/* Reset after setting the PHY parameters */
220 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
221 		if (retval) {
222 			dev_err(hsotg->dev,
223 				"%s: Reset failed, aborting", __func__);
224 			return retval;
225 		}
226 	}
227 
228 	return retval;
229 }
230 
231 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
232 {
233 	u32 usbcfg;
234 	int retval = 0;
235 
236 	if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
237 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
238 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
239 		/* If FS/LS mode with FS/LS PHY */
240 		retval = dwc2_fs_phy_init(hsotg, select_phy);
241 		if (retval)
242 			return retval;
243 	} else {
244 		/* High speed PHY */
245 		retval = dwc2_hs_phy_init(hsotg, select_phy);
246 		if (retval)
247 			return retval;
248 	}
249 
250 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
251 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
252 	    hsotg->params.ulpi_fs_ls) {
253 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
254 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
255 		usbcfg |= GUSBCFG_ULPI_FS_LS;
256 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
257 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
258 	} else {
259 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
260 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
261 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
262 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
263 	}
264 
265 	return retval;
266 }
267 
268 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
269 {
270 	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
271 
272 	switch (hsotg->hw_params.arch) {
273 	case GHWCFG2_EXT_DMA_ARCH:
274 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
275 		return -EINVAL;
276 
277 	case GHWCFG2_INT_DMA_ARCH:
278 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
279 		if (hsotg->params.ahbcfg != -1) {
280 			ahbcfg &= GAHBCFG_CTRL_MASK;
281 			ahbcfg |= hsotg->params.ahbcfg &
282 				  ~GAHBCFG_CTRL_MASK;
283 		}
284 		break;
285 
286 	case GHWCFG2_SLAVE_ONLY_ARCH:
287 	default:
288 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
289 		break;
290 	}
291 
292 	dev_dbg(hsotg->dev, "host_dma:%d dma_desc_enable:%d\n",
293 		hsotg->params.host_dma,
294 		hsotg->params.dma_desc_enable);
295 
296 	if (hsotg->params.host_dma) {
297 		if (hsotg->params.dma_desc_enable)
298 			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
299 		else
300 			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
301 	} else {
302 		dev_dbg(hsotg->dev, "Using Slave mode\n");
303 		hsotg->params.dma_desc_enable = false;
304 	}
305 
306 	if (hsotg->params.host_dma)
307 		ahbcfg |= GAHBCFG_DMA_EN;
308 
309 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
310 
311 	return 0;
312 }
313 
314 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
315 {
316 	u32 usbcfg;
317 
318 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
319 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
320 
321 	switch (hsotg->hw_params.op_mode) {
322 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
323 		if (hsotg->params.otg_cap ==
324 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
325 			usbcfg |= GUSBCFG_HNPCAP;
326 		if (hsotg->params.otg_cap !=
327 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
328 			usbcfg |= GUSBCFG_SRPCAP;
329 		break;
330 
331 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
332 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
333 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
334 		if (hsotg->params.otg_cap !=
335 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
336 			usbcfg |= GUSBCFG_SRPCAP;
337 		break;
338 
339 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
340 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
341 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
342 	default:
343 		break;
344 	}
345 
346 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
347 }
348 
349 /**
350  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
351  *
352  * @hsotg: Programming view of DWC_otg controller
353  */
354 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
355 {
356 	u32 intmsk;
357 
358 	dev_dbg(hsotg->dev, "%s()\n", __func__);
359 
360 	/* Disable all interrupts */
361 	dwc2_writel(0, hsotg->regs + GINTMSK);
362 	dwc2_writel(0, hsotg->regs + HAINTMSK);
363 
364 	/* Enable the common interrupts */
365 	dwc2_enable_common_interrupts(hsotg);
366 
367 	/* Enable host mode interrupts without disturbing common interrupts */
368 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
369 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
370 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
371 }
372 
373 /**
374  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
375  *
376  * @hsotg: Programming view of DWC_otg controller
377  */
378 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
379 {
380 	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
381 
382 	/* Disable host mode interrupts without disturbing common interrupts */
383 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
384 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
385 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
386 }
387 
388 /*
389  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
390  * For system that have a total fifo depth that is smaller than the default
391  * RX + TX fifo size.
392  *
393  * @hsotg: Programming view of DWC_otg controller
394  */
395 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
396 {
397 	struct dwc2_core_params *params = &hsotg->params;
398 	struct dwc2_hw_params *hw = &hsotg->hw_params;
399 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
400 
401 	total_fifo_size = hw->total_fifo_size;
402 	rxfsiz = params->host_rx_fifo_size;
403 	nptxfsiz = params->host_nperio_tx_fifo_size;
404 	ptxfsiz = params->host_perio_tx_fifo_size;
405 
406 	/*
407 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
408 	 * allocation with support for high bandwidth endpoints. Synopsys
409 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
410 	 * non-periodic as 512.
411 	 */
412 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
413 		/*
414 		 * For Buffer DMA mode/Scatter Gather DMA mode
415 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
416 		 * with n = number of host channel.
417 		 * 2 * ((1024/4) + 2) = 516
418 		 */
419 		rxfsiz = 516 + hw->host_channels;
420 
421 		/*
422 		 * min non-periodic tx fifo depth
423 		 * 2 * (largest non-periodic USB packet used / 4)
424 		 * 2 * (512/4) = 256
425 		 */
426 		nptxfsiz = 256;
427 
428 		/*
429 		 * min periodic tx fifo depth
430 		 * (largest packet size*MC)/4
431 		 * (1024 * 3)/4 = 768
432 		 */
433 		ptxfsiz = 768;
434 
435 		params->host_rx_fifo_size = rxfsiz;
436 		params->host_nperio_tx_fifo_size = nptxfsiz;
437 		params->host_perio_tx_fifo_size = ptxfsiz;
438 	}
439 
440 	/*
441 	 * If the summation of RX, NPTX and PTX fifo sizes is still
442 	 * bigger than the total_fifo_size, then we have a problem.
443 	 *
444 	 * We won't be able to allocate as many endpoints. Right now,
445 	 * we're just printing an error message, but ideally this FIFO
446 	 * allocation algorithm would be improved in the future.
447 	 *
448 	 * FIXME improve this FIFO allocation algorithm.
449 	 */
450 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
451 		dev_err(hsotg->dev, "invalid fifo sizes\n");
452 }
453 
454 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
455 {
456 	struct dwc2_core_params *params = &hsotg->params;
457 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
458 
459 	if (!params->enable_dynamic_fifo)
460 		return;
461 
462 	dwc2_calculate_dynamic_fifo(hsotg);
463 
464 	/* Rx FIFO */
465 	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
466 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
467 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
468 	grxfsiz |= params->host_rx_fifo_size <<
469 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
470 	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
471 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
472 		dwc2_readl(hsotg->regs + GRXFSIZ));
473 
474 	/* Non-periodic Tx FIFO */
475 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
476 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
477 	nptxfsiz = params->host_nperio_tx_fifo_size <<
478 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
479 	nptxfsiz |= params->host_rx_fifo_size <<
480 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
481 	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
482 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
483 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
484 
485 	/* Periodic Tx FIFO */
486 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
487 		dwc2_readl(hsotg->regs + HPTXFSIZ));
488 	hptxfsiz = params->host_perio_tx_fifo_size <<
489 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
490 	hptxfsiz |= (params->host_rx_fifo_size +
491 		     params->host_nperio_tx_fifo_size) <<
492 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
493 	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
494 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
495 		dwc2_readl(hsotg->regs + HPTXFSIZ));
496 
497 	if (hsotg->params.en_multiple_tx_fifo &&
498 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
499 		/*
500 		 * This feature was implemented in 2.91a version
501 		 * Global DFIFOCFG calculation for Host mode -
502 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
503 		 */
504 		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
505 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
506 		dfifocfg |= (params->host_rx_fifo_size +
507 			     params->host_nperio_tx_fifo_size +
508 			     params->host_perio_tx_fifo_size) <<
509 			    GDFIFOCFG_EPINFOBASE_SHIFT &
510 			    GDFIFOCFG_EPINFOBASE_MASK;
511 		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
512 	}
513 }
514 
515 /**
516  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
517  * the HFIR register according to PHY type and speed
518  *
519  * @hsotg: Programming view of DWC_otg controller
520  *
521  * NOTE: The caller can modify the value of the HFIR register only after the
522  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
523  * has been set
524  */
525 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
526 {
527 	u32 usbcfg;
528 	u32 hprt0;
529 	int clock = 60;	/* default value */
530 
531 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
532 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
533 
534 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
535 	    !(usbcfg & GUSBCFG_PHYIF16))
536 		clock = 60;
537 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
538 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
539 		clock = 48;
540 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
541 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
542 		clock = 30;
543 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
544 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
545 		clock = 60;
546 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
547 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
548 		clock = 48;
549 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
550 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
551 		clock = 48;
552 	if ((usbcfg & GUSBCFG_PHYSEL) &&
553 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
554 		clock = 48;
555 
556 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
557 		/* High speed case */
558 		return 125 * clock - 1;
559 
560 	/* FS/LS case */
561 	return 1000 * clock - 1;
562 }
563 
564 /**
565  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
566  * buffer
567  *
568  * @core_if: Programming view of DWC_otg controller
569  * @dest:    Destination buffer for the packet
570  * @bytes:   Number of bytes to copy to the destination
571  */
572 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
573 {
574 	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
575 	u32 *data_buf = (u32 *)dest;
576 	int word_count = (bytes + 3) / 4;
577 	int i;
578 
579 	/*
580 	 * Todo: Account for the case where dest is not dword aligned. This
581 	 * requires reading data from the FIFO into a u32 temp buffer, then
582 	 * moving it into the data buffer.
583 	 */
584 
585 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
586 
587 	for (i = 0; i < word_count; i++, data_buf++)
588 		*data_buf = dwc2_readl(fifo);
589 }
590 
591 /**
592  * dwc2_dump_channel_info() - Prints the state of a host channel
593  *
594  * @hsotg: Programming view of DWC_otg controller
595  * @chan:  Pointer to the channel to dump
596  *
597  * Must be called with interrupt disabled and spinlock held
598  *
599  * NOTE: This function will be removed once the peripheral controller code
600  * is integrated and the driver is stable
601  */
602 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
603 				   struct dwc2_host_chan *chan)
604 {
605 #ifdef VERBOSE_DEBUG
606 	int num_channels = hsotg->params.host_channels;
607 	struct dwc2_qh *qh;
608 	u32 hcchar;
609 	u32 hcsplt;
610 	u32 hctsiz;
611 	u32 hc_dma;
612 	int i;
613 
614 	if (!chan)
615 		return;
616 
617 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
618 	hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
619 	hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
620 	hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
621 
622 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
623 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
624 		hcchar, hcsplt);
625 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
626 		hctsiz, hc_dma);
627 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
628 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
629 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
630 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
631 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
632 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
633 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
634 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
635 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
636 		(unsigned long)chan->xfer_dma);
637 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
638 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
639 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
640 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
641 			    qh_list_entry)
642 		dev_dbg(hsotg->dev, "    %p\n", qh);
643 	dev_dbg(hsotg->dev, "  NP active sched:\n");
644 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
645 			    qh_list_entry)
646 		dev_dbg(hsotg->dev, "    %p\n", qh);
647 	dev_dbg(hsotg->dev, "  Channels:\n");
648 	for (i = 0; i < num_channels; i++) {
649 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
650 
651 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
652 	}
653 #endif /* VERBOSE_DEBUG */
654 }
655 
656 static int _dwc2_hcd_start(struct usb_hcd *hcd);
657 
658 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
659 {
660 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
661 
662 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
663 	_dwc2_hcd_start(hcd);
664 }
665 
666 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
667 {
668 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
669 
670 	hcd->self.is_b_host = 0;
671 }
672 
673 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
674 			       int *hub_addr, int *hub_port)
675 {
676 	struct urb *urb = context;
677 
678 	if (urb->dev->tt)
679 		*hub_addr = urb->dev->tt->hub->devnum;
680 	else
681 		*hub_addr = 0;
682 	*hub_port = urb->dev->ttport;
683 }
684 
685 /*
686  * =========================================================================
687  *  Low Level Host Channel Access Functions
688  * =========================================================================
689  */
690 
691 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
692 				      struct dwc2_host_chan *chan)
693 {
694 	u32 hcintmsk = HCINTMSK_CHHLTD;
695 
696 	switch (chan->ep_type) {
697 	case USB_ENDPOINT_XFER_CONTROL:
698 	case USB_ENDPOINT_XFER_BULK:
699 		dev_vdbg(hsotg->dev, "control/bulk\n");
700 		hcintmsk |= HCINTMSK_XFERCOMPL;
701 		hcintmsk |= HCINTMSK_STALL;
702 		hcintmsk |= HCINTMSK_XACTERR;
703 		hcintmsk |= HCINTMSK_DATATGLERR;
704 		if (chan->ep_is_in) {
705 			hcintmsk |= HCINTMSK_BBLERR;
706 		} else {
707 			hcintmsk |= HCINTMSK_NAK;
708 			hcintmsk |= HCINTMSK_NYET;
709 			if (chan->do_ping)
710 				hcintmsk |= HCINTMSK_ACK;
711 		}
712 
713 		if (chan->do_split) {
714 			hcintmsk |= HCINTMSK_NAK;
715 			if (chan->complete_split)
716 				hcintmsk |= HCINTMSK_NYET;
717 			else
718 				hcintmsk |= HCINTMSK_ACK;
719 		}
720 
721 		if (chan->error_state)
722 			hcintmsk |= HCINTMSK_ACK;
723 		break;
724 
725 	case USB_ENDPOINT_XFER_INT:
726 		if (dbg_perio())
727 			dev_vdbg(hsotg->dev, "intr\n");
728 		hcintmsk |= HCINTMSK_XFERCOMPL;
729 		hcintmsk |= HCINTMSK_NAK;
730 		hcintmsk |= HCINTMSK_STALL;
731 		hcintmsk |= HCINTMSK_XACTERR;
732 		hcintmsk |= HCINTMSK_DATATGLERR;
733 		hcintmsk |= HCINTMSK_FRMOVRUN;
734 
735 		if (chan->ep_is_in)
736 			hcintmsk |= HCINTMSK_BBLERR;
737 		if (chan->error_state)
738 			hcintmsk |= HCINTMSK_ACK;
739 		if (chan->do_split) {
740 			if (chan->complete_split)
741 				hcintmsk |= HCINTMSK_NYET;
742 			else
743 				hcintmsk |= HCINTMSK_ACK;
744 		}
745 		break;
746 
747 	case USB_ENDPOINT_XFER_ISOC:
748 		if (dbg_perio())
749 			dev_vdbg(hsotg->dev, "isoc\n");
750 		hcintmsk |= HCINTMSK_XFERCOMPL;
751 		hcintmsk |= HCINTMSK_FRMOVRUN;
752 		hcintmsk |= HCINTMSK_ACK;
753 
754 		if (chan->ep_is_in) {
755 			hcintmsk |= HCINTMSK_XACTERR;
756 			hcintmsk |= HCINTMSK_BBLERR;
757 		}
758 		break;
759 	default:
760 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
761 		break;
762 	}
763 
764 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
765 	if (dbg_hc(chan))
766 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
767 }
768 
769 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
770 				    struct dwc2_host_chan *chan)
771 {
772 	u32 hcintmsk = HCINTMSK_CHHLTD;
773 
774 	/*
775 	 * For Descriptor DMA mode core halts the channel on AHB error.
776 	 * Interrupt is not required.
777 	 */
778 	if (!hsotg->params.dma_desc_enable) {
779 		if (dbg_hc(chan))
780 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
781 		hcintmsk |= HCINTMSK_AHBERR;
782 	} else {
783 		if (dbg_hc(chan))
784 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
785 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
786 			hcintmsk |= HCINTMSK_XFERCOMPL;
787 	}
788 
789 	if (chan->error_state && !chan->do_split &&
790 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
791 		if (dbg_hc(chan))
792 			dev_vdbg(hsotg->dev, "setting ACK\n");
793 		hcintmsk |= HCINTMSK_ACK;
794 		if (chan->ep_is_in) {
795 			hcintmsk |= HCINTMSK_DATATGLERR;
796 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
797 				hcintmsk |= HCINTMSK_NAK;
798 		}
799 	}
800 
801 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
802 	if (dbg_hc(chan))
803 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
804 }
805 
806 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
807 				struct dwc2_host_chan *chan)
808 {
809 	u32 intmsk;
810 
811 	if (hsotg->params.host_dma) {
812 		if (dbg_hc(chan))
813 			dev_vdbg(hsotg->dev, "DMA enabled\n");
814 		dwc2_hc_enable_dma_ints(hsotg, chan);
815 	} else {
816 		if (dbg_hc(chan))
817 			dev_vdbg(hsotg->dev, "DMA disabled\n");
818 		dwc2_hc_enable_slave_ints(hsotg, chan);
819 	}
820 
821 	/* Enable the top level host channel interrupt */
822 	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
823 	intmsk |= 1 << chan->hc_num;
824 	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
825 	if (dbg_hc(chan))
826 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
827 
828 	/* Make sure host channel interrupts are enabled */
829 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
830 	intmsk |= GINTSTS_HCHINT;
831 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
832 	if (dbg_hc(chan))
833 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
834 }
835 
836 /**
837  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
838  * a specific endpoint
839  *
840  * @hsotg: Programming view of DWC_otg controller
841  * @chan:  Information needed to initialize the host channel
842  *
843  * The HCCHARn register is set up with the characteristics specified in chan.
844  * Host channel interrupts that may need to be serviced while this transfer is
845  * in progress are enabled.
846  */
847 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
848 {
849 	u8 hc_num = chan->hc_num;
850 	u32 hcintmsk;
851 	u32 hcchar;
852 	u32 hcsplt = 0;
853 
854 	if (dbg_hc(chan))
855 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
856 
857 	/* Clear old interrupt conditions for this host channel */
858 	hcintmsk = 0xffffffff;
859 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
860 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
861 
862 	/* Enable channel interrupts required for this transfer */
863 	dwc2_hc_enable_ints(hsotg, chan);
864 
865 	/*
866 	 * Program the HCCHARn register with the endpoint characteristics for
867 	 * the current transfer
868 	 */
869 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
870 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
871 	if (chan->ep_is_in)
872 		hcchar |= HCCHAR_EPDIR;
873 	if (chan->speed == USB_SPEED_LOW)
874 		hcchar |= HCCHAR_LSPDDEV;
875 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
876 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
877 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
878 	if (dbg_hc(chan)) {
879 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
880 			 hc_num, hcchar);
881 
882 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
883 			 __func__, hc_num);
884 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
885 			 chan->dev_addr);
886 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
887 			 chan->ep_num);
888 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
889 			 chan->ep_is_in);
890 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
891 			 chan->speed == USB_SPEED_LOW);
892 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
893 			 chan->ep_type);
894 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
895 			 chan->max_packet);
896 	}
897 
898 	/* Program the HCSPLT register for SPLITs */
899 	if (chan->do_split) {
900 		if (dbg_hc(chan))
901 			dev_vdbg(hsotg->dev,
902 				 "Programming HC %d with split --> %s\n",
903 				 hc_num,
904 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
905 		if (chan->complete_split)
906 			hcsplt |= HCSPLT_COMPSPLT;
907 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
908 			  HCSPLT_XACTPOS_MASK;
909 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
910 			  HCSPLT_HUBADDR_MASK;
911 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
912 			  HCSPLT_PRTADDR_MASK;
913 		if (dbg_hc(chan)) {
914 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
915 				 chan->complete_split);
916 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
917 				 chan->xact_pos);
918 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
919 				 chan->hub_addr);
920 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
921 				 chan->hub_port);
922 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
923 				 chan->ep_is_in);
924 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
925 				 chan->max_packet);
926 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
927 				 chan->xfer_len);
928 		}
929 	}
930 
931 	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
932 }
933 
934 /**
935  * dwc2_hc_halt() - Attempts to halt a host channel
936  *
937  * @hsotg:       Controller register interface
938  * @chan:        Host channel to halt
939  * @halt_status: Reason for halting the channel
940  *
941  * This function should only be called in Slave mode or to abort a transfer in
942  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
943  * controller halts the channel when the transfer is complete or a condition
944  * occurs that requires application intervention.
945  *
946  * In slave mode, checks for a free request queue entry, then sets the Channel
947  * Enable and Channel Disable bits of the Host Channel Characteristics
948  * register of the specified channel to intiate the halt. If there is no free
949  * request queue entry, sets only the Channel Disable bit of the HCCHARn
950  * register to flush requests for this channel. In the latter case, sets a
951  * flag to indicate that the host channel needs to be halted when a request
952  * queue slot is open.
953  *
954  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
955  * HCCHARn register. The controller ensures there is space in the request
956  * queue before submitting the halt request.
957  *
958  * Some time may elapse before the core flushes any posted requests for this
959  * host channel and halts. The Channel Halted interrupt handler completes the
960  * deactivation of the host channel.
961  */
962 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
963 		  enum dwc2_halt_status halt_status)
964 {
965 	u32 nptxsts, hptxsts, hcchar;
966 
967 	if (dbg_hc(chan))
968 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
969 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
970 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
971 
972 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
973 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
974 		/*
975 		 * Disable all channel interrupts except Ch Halted. The QTD
976 		 * and QH state associated with this transfer has been cleared
977 		 * (in the case of URB_DEQUEUE), so the channel needs to be
978 		 * shut down carefully to prevent crashes.
979 		 */
980 		u32 hcintmsk = HCINTMSK_CHHLTD;
981 
982 		dev_vdbg(hsotg->dev, "dequeue/error\n");
983 		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
984 
985 		/*
986 		 * Make sure no other interrupts besides halt are currently
987 		 * pending. Handling another interrupt could cause a crash due
988 		 * to the QTD and QH state.
989 		 */
990 		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
991 
992 		/*
993 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
994 		 * even if the channel was already halted for some other
995 		 * reason
996 		 */
997 		chan->halt_status = halt_status;
998 
999 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1000 		if (!(hcchar & HCCHAR_CHENA)) {
1001 			/*
1002 			 * The channel is either already halted or it hasn't
1003 			 * started yet. In DMA mode, the transfer may halt if
1004 			 * it finishes normally or a condition occurs that
1005 			 * requires driver intervention. Don't want to halt
1006 			 * the channel again. In either Slave or DMA mode,
1007 			 * it's possible that the transfer has been assigned
1008 			 * to a channel, but not started yet when an URB is
1009 			 * dequeued. Don't want to halt a channel that hasn't
1010 			 * started yet.
1011 			 */
1012 			return;
1013 		}
1014 	}
1015 	if (chan->halt_pending) {
1016 		/*
1017 		 * A halt has already been issued for this channel. This might
1018 		 * happen when a transfer is aborted by a higher level in
1019 		 * the stack.
1020 		 */
1021 		dev_vdbg(hsotg->dev,
1022 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1023 			 __func__, chan->hc_num);
1024 		return;
1025 	}
1026 
1027 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1028 
1029 	/* No need to set the bit in DDMA for disabling the channel */
1030 	/* TODO check it everywhere channel is disabled */
1031 	if (!hsotg->params.dma_desc_enable) {
1032 		if (dbg_hc(chan))
1033 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1034 		hcchar |= HCCHAR_CHENA;
1035 	} else {
1036 		if (dbg_hc(chan))
1037 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1038 	}
1039 	hcchar |= HCCHAR_CHDIS;
1040 
1041 	if (!hsotg->params.host_dma) {
1042 		if (dbg_hc(chan))
1043 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1044 		hcchar |= HCCHAR_CHENA;
1045 
1046 		/* Check for space in the request queue to issue the halt */
1047 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1048 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1049 			dev_vdbg(hsotg->dev, "control/bulk\n");
1050 			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1051 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1052 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1053 				hcchar &= ~HCCHAR_CHENA;
1054 			}
1055 		} else {
1056 			if (dbg_perio())
1057 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1058 			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1059 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1060 			    hsotg->queuing_high_bandwidth) {
1061 				if (dbg_perio())
1062 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1063 				hcchar &= ~HCCHAR_CHENA;
1064 			}
1065 		}
1066 	} else {
1067 		if (dbg_hc(chan))
1068 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1069 	}
1070 
1071 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1072 	chan->halt_status = halt_status;
1073 
1074 	if (hcchar & HCCHAR_CHENA) {
1075 		if (dbg_hc(chan))
1076 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1077 		chan->halt_pending = 1;
1078 		chan->halt_on_queue = 0;
1079 	} else {
1080 		if (dbg_hc(chan))
1081 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1082 		chan->halt_on_queue = 1;
1083 	}
1084 
1085 	if (dbg_hc(chan)) {
1086 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1087 			 chan->hc_num);
1088 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1089 			 hcchar);
1090 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1091 			 chan->halt_pending);
1092 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1093 			 chan->halt_on_queue);
1094 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1095 			 chan->halt_status);
1096 	}
1097 }
1098 
1099 /**
1100  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1101  *
1102  * @hsotg: Programming view of DWC_otg controller
1103  * @chan:  Identifies the host channel to clean up
1104  *
1105  * This function is normally called after a transfer is done and the host
1106  * channel is being released
1107  */
1108 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1109 {
1110 	u32 hcintmsk;
1111 
1112 	chan->xfer_started = 0;
1113 
1114 	list_del_init(&chan->split_order_list_entry);
1115 
1116 	/*
1117 	 * Clear channel interrupt enables and any unhandled channel interrupt
1118 	 * conditions
1119 	 */
1120 	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1121 	hcintmsk = 0xffffffff;
1122 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1123 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1124 }
1125 
1126 /**
1127  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1128  * which frame a periodic transfer should occur
1129  *
1130  * @hsotg:  Programming view of DWC_otg controller
1131  * @chan:   Identifies the host channel to set up and its properties
1132  * @hcchar: Current value of the HCCHAR register for the specified host channel
1133  *
1134  * This function has no effect on non-periodic transfers
1135  */
1136 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1137 				       struct dwc2_host_chan *chan, u32 *hcchar)
1138 {
1139 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1140 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1141 		int host_speed;
1142 		int xfer_ns;
1143 		int xfer_us;
1144 		int bytes_in_fifo;
1145 		u16 fifo_space;
1146 		u16 frame_number;
1147 		u16 wire_frame;
1148 
1149 		/*
1150 		 * Try to figure out if we're an even or odd frame. If we set
1151 		 * even and the current frame number is even the the transfer
1152 		 * will happen immediately.  Similar if both are odd. If one is
1153 		 * even and the other is odd then the transfer will happen when
1154 		 * the frame number ticks.
1155 		 *
1156 		 * There's a bit of a balancing act to get this right.
1157 		 * Sometimes we may want to send data in the current frame (AK
1158 		 * right away).  We might want to do this if the frame number
1159 		 * _just_ ticked, but we might also want to do this in order
1160 		 * to continue a split transaction that happened late in a
1161 		 * microframe (so we didn't know to queue the next transfer
1162 		 * until the frame number had ticked).  The problem is that we
1163 		 * need a lot of knowledge to know if there's actually still
1164 		 * time to send things or if it would be better to wait until
1165 		 * the next frame.
1166 		 *
1167 		 * We can look at how much time is left in the current frame
1168 		 * and make a guess about whether we'll have time to transfer.
1169 		 * We'll do that.
1170 		 */
1171 
1172 		/* Get speed host is running at */
1173 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1174 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1175 
1176 		/* See how many bytes are in the periodic FIFO right now */
1177 		fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1178 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1179 		bytes_in_fifo = sizeof(u32) *
1180 				(hsotg->params.host_perio_tx_fifo_size -
1181 				 fifo_space);
1182 
1183 		/*
1184 		 * Roughly estimate bus time for everything in the periodic
1185 		 * queue + our new transfer.  This is "rough" because we're
1186 		 * using a function that makes takes into account IN/OUT
1187 		 * and INT/ISO and we're just slamming in one value for all
1188 		 * transfers.  This should be an over-estimate and that should
1189 		 * be OK, but we can probably tighten it.
1190 		 */
1191 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1192 					    chan->xfer_len + bytes_in_fifo);
1193 		xfer_us = NS_TO_US(xfer_ns);
1194 
1195 		/* See what frame number we'll be at by the time we finish */
1196 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1197 
1198 		/* This is when we were scheduled to be on the wire */
1199 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1200 
1201 		/*
1202 		 * If we'd finish _after_ the frame we're scheduled in then
1203 		 * it's hopeless.  Just schedule right away and hope for the
1204 		 * best.  Note that it _might_ be wise to call back into the
1205 		 * scheduler to pick a better frame, but this is better than
1206 		 * nothing.
1207 		 */
1208 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1209 			dwc2_sch_vdbg(hsotg,
1210 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1211 				      chan->qh, wire_frame, frame_number,
1212 				      dwc2_frame_num_dec(frame_number,
1213 							 wire_frame));
1214 			wire_frame = frame_number;
1215 
1216 			/*
1217 			 * We picked a different frame number; communicate this
1218 			 * back to the scheduler so it doesn't try to schedule
1219 			 * another in the same frame.
1220 			 *
1221 			 * Remember that next_active_frame is 1 before the wire
1222 			 * frame.
1223 			 */
1224 			chan->qh->next_active_frame =
1225 				dwc2_frame_num_dec(frame_number, 1);
1226 		}
1227 
1228 		if (wire_frame & 1)
1229 			*hcchar |= HCCHAR_ODDFRM;
1230 		else
1231 			*hcchar &= ~HCCHAR_ODDFRM;
1232 	}
1233 }
1234 
1235 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1236 {
1237 	/* Set up the initial PID for the transfer */
1238 	if (chan->speed == USB_SPEED_HIGH) {
1239 		if (chan->ep_is_in) {
1240 			if (chan->multi_count == 1)
1241 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1242 			else if (chan->multi_count == 2)
1243 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1244 			else
1245 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1246 		} else {
1247 			if (chan->multi_count == 1)
1248 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1249 			else
1250 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1251 		}
1252 	} else {
1253 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1254 	}
1255 }
1256 
1257 /**
1258  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1259  * the Host Channel
1260  *
1261  * @hsotg: Programming view of DWC_otg controller
1262  * @chan:  Information needed to initialize the host channel
1263  *
1264  * This function should only be called in Slave mode. For a channel associated
1265  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1266  * associated with a periodic EP, the periodic Tx FIFO is written.
1267  *
1268  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1269  * the number of bytes written to the Tx FIFO.
1270  */
1271 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1272 				 struct dwc2_host_chan *chan)
1273 {
1274 	u32 i;
1275 	u32 remaining_count;
1276 	u32 byte_count;
1277 	u32 dword_count;
1278 	u32 __iomem *data_fifo;
1279 	u32 *data_buf = (u32 *)chan->xfer_buf;
1280 
1281 	if (dbg_hc(chan))
1282 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1283 
1284 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1285 
1286 	remaining_count = chan->xfer_len - chan->xfer_count;
1287 	if (remaining_count > chan->max_packet)
1288 		byte_count = chan->max_packet;
1289 	else
1290 		byte_count = remaining_count;
1291 
1292 	dword_count = (byte_count + 3) / 4;
1293 
1294 	if (((unsigned long)data_buf & 0x3) == 0) {
1295 		/* xfer_buf is DWORD aligned */
1296 		for (i = 0; i < dword_count; i++, data_buf++)
1297 			dwc2_writel(*data_buf, data_fifo);
1298 	} else {
1299 		/* xfer_buf is not DWORD aligned */
1300 		for (i = 0; i < dword_count; i++, data_buf++) {
1301 			u32 data = data_buf[0] | data_buf[1] << 8 |
1302 				   data_buf[2] << 16 | data_buf[3] << 24;
1303 			dwc2_writel(data, data_fifo);
1304 		}
1305 	}
1306 
1307 	chan->xfer_count += byte_count;
1308 	chan->xfer_buf += byte_count;
1309 }
1310 
1311 /**
1312  * dwc2_hc_do_ping() - Starts a PING transfer
1313  *
1314  * @hsotg: Programming view of DWC_otg controller
1315  * @chan:  Information needed to initialize the host channel
1316  *
1317  * This function should only be called in Slave mode. The Do Ping bit is set in
1318  * the HCTSIZ register, then the channel is enabled.
1319  */
1320 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1321 			    struct dwc2_host_chan *chan)
1322 {
1323 	u32 hcchar;
1324 	u32 hctsiz;
1325 
1326 	if (dbg_hc(chan))
1327 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1328 			 chan->hc_num);
1329 
1330 	hctsiz = TSIZ_DOPNG;
1331 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1332 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1333 
1334 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1335 	hcchar |= HCCHAR_CHENA;
1336 	hcchar &= ~HCCHAR_CHDIS;
1337 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1338 }
1339 
1340 /**
1341  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1342  * channel and starts the transfer
1343  *
1344  * @hsotg: Programming view of DWC_otg controller
1345  * @chan:  Information needed to initialize the host channel. The xfer_len value
1346  *         may be reduced to accommodate the max widths of the XferSize and
1347  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1348  *         changed to reflect the final xfer_len value.
1349  *
1350  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1351  * the caller must ensure that there is sufficient space in the request queue
1352  * and Tx Data FIFO.
1353  *
1354  * For an OUT transfer in Slave mode, it loads a data packet into the
1355  * appropriate FIFO. If necessary, additional data packets are loaded in the
1356  * Host ISR.
1357  *
1358  * For an IN transfer in Slave mode, a data packet is requested. The data
1359  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1360  * additional data packets are requested in the Host ISR.
1361  *
1362  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1363  * register along with a packet count of 1 and the channel is enabled. This
1364  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1365  * simply set to 0 since no data transfer occurs in this case.
1366  *
1367  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1368  * all the information required to perform the subsequent data transfer. In
1369  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1370  * controller performs the entire PING protocol, then starts the data
1371  * transfer.
1372  */
1373 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1374 				   struct dwc2_host_chan *chan)
1375 {
1376 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1377 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1378 	u32 hcchar;
1379 	u32 hctsiz = 0;
1380 	u16 num_packets;
1381 	u32 ec_mc;
1382 
1383 	if (dbg_hc(chan))
1384 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1385 
1386 	if (chan->do_ping) {
1387 		if (!hsotg->params.host_dma) {
1388 			if (dbg_hc(chan))
1389 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1390 			dwc2_hc_do_ping(hsotg, chan);
1391 			chan->xfer_started = 1;
1392 			return;
1393 		}
1394 
1395 		if (dbg_hc(chan))
1396 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1397 
1398 		hctsiz |= TSIZ_DOPNG;
1399 	}
1400 
1401 	if (chan->do_split) {
1402 		if (dbg_hc(chan))
1403 			dev_vdbg(hsotg->dev, "split\n");
1404 		num_packets = 1;
1405 
1406 		if (chan->complete_split && !chan->ep_is_in)
1407 			/*
1408 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1409 			 * core doesn't expect any data written to the FIFO
1410 			 */
1411 			chan->xfer_len = 0;
1412 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1413 			chan->xfer_len = chan->max_packet;
1414 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1415 			chan->xfer_len = 188;
1416 
1417 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1418 			  TSIZ_XFERSIZE_MASK;
1419 
1420 		/* For split set ec_mc for immediate retries */
1421 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1422 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1423 			ec_mc = 3;
1424 		else
1425 			ec_mc = 1;
1426 	} else {
1427 		if (dbg_hc(chan))
1428 			dev_vdbg(hsotg->dev, "no split\n");
1429 		/*
1430 		 * Ensure that the transfer length and packet count will fit
1431 		 * in the widths allocated for them in the HCTSIZn register
1432 		 */
1433 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1434 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1435 			/*
1436 			 * Make sure the transfer size is no larger than one
1437 			 * (micro)frame's worth of data. (A check was done
1438 			 * when the periodic transfer was accepted to ensure
1439 			 * that a (micro)frame's worth of data can be
1440 			 * programmed into a channel.)
1441 			 */
1442 			u32 max_periodic_len =
1443 				chan->multi_count * chan->max_packet;
1444 
1445 			if (chan->xfer_len > max_periodic_len)
1446 				chan->xfer_len = max_periodic_len;
1447 		} else if (chan->xfer_len > max_hc_xfer_size) {
1448 			/*
1449 			 * Make sure that xfer_len is a multiple of max packet
1450 			 * size
1451 			 */
1452 			chan->xfer_len =
1453 				max_hc_xfer_size - chan->max_packet + 1;
1454 		}
1455 
1456 		if (chan->xfer_len > 0) {
1457 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1458 					chan->max_packet;
1459 			if (num_packets > max_hc_pkt_count) {
1460 				num_packets = max_hc_pkt_count;
1461 				chan->xfer_len = num_packets * chan->max_packet;
1462 			}
1463 		} else {
1464 			/* Need 1 packet for transfer length of 0 */
1465 			num_packets = 1;
1466 		}
1467 
1468 		if (chan->ep_is_in)
1469 			/*
1470 			 * Always program an integral # of max packets for IN
1471 			 * transfers
1472 			 */
1473 			chan->xfer_len = num_packets * chan->max_packet;
1474 
1475 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1476 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1477 			/*
1478 			 * Make sure that the multi_count field matches the
1479 			 * actual transfer length
1480 			 */
1481 			chan->multi_count = num_packets;
1482 
1483 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1484 			dwc2_set_pid_isoc(chan);
1485 
1486 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1487 			  TSIZ_XFERSIZE_MASK;
1488 
1489 		/* The ec_mc gets the multi_count for non-split */
1490 		ec_mc = chan->multi_count;
1491 	}
1492 
1493 	chan->start_pkt_count = num_packets;
1494 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1495 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1496 		  TSIZ_SC_MC_PID_MASK;
1497 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1498 	if (dbg_hc(chan)) {
1499 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1500 			 hctsiz, chan->hc_num);
1501 
1502 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1503 			 chan->hc_num);
1504 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1505 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1506 			 TSIZ_XFERSIZE_SHIFT);
1507 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1508 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1509 			 TSIZ_PKTCNT_SHIFT);
1510 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1511 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1512 			 TSIZ_SC_MC_PID_SHIFT);
1513 	}
1514 
1515 	if (hsotg->params.host_dma) {
1516 		dwc2_writel((u32)chan->xfer_dma,
1517 			    hsotg->regs + HCDMA(chan->hc_num));
1518 		if (dbg_hc(chan))
1519 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1520 				 (unsigned long)chan->xfer_dma, chan->hc_num);
1521 	}
1522 
1523 	/* Start the split */
1524 	if (chan->do_split) {
1525 		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1526 
1527 		hcsplt |= HCSPLT_SPLTENA;
1528 		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1529 	}
1530 
1531 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1532 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1533 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1534 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1535 
1536 	if (hcchar & HCCHAR_CHDIS)
1537 		dev_warn(hsotg->dev,
1538 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1539 			 __func__, chan->hc_num, hcchar);
1540 
1541 	/* Set host channel enable after all other setup is complete */
1542 	hcchar |= HCCHAR_CHENA;
1543 	hcchar &= ~HCCHAR_CHDIS;
1544 
1545 	if (dbg_hc(chan))
1546 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1547 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1548 			 HCCHAR_MULTICNT_SHIFT);
1549 
1550 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1551 	if (dbg_hc(chan))
1552 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1553 			 chan->hc_num);
1554 
1555 	chan->xfer_started = 1;
1556 	chan->requests++;
1557 
1558 	if (!hsotg->params.host_dma &&
1559 	    !chan->ep_is_in && chan->xfer_len > 0)
1560 		/* Load OUT packet into the appropriate Tx FIFO */
1561 		dwc2_hc_write_packet(hsotg, chan);
1562 }
1563 
1564 /**
1565  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1566  * host channel and starts the transfer in Descriptor DMA mode
1567  *
1568  * @hsotg: Programming view of DWC_otg controller
1569  * @chan:  Information needed to initialize the host channel
1570  *
1571  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1572  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1573  * with micro-frame bitmap.
1574  *
1575  * Initializes HCDMA register with descriptor list address and CTD value then
1576  * starts the transfer via enabling the channel.
1577  */
1578 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1579 				 struct dwc2_host_chan *chan)
1580 {
1581 	u32 hcchar;
1582 	u32 hctsiz = 0;
1583 
1584 	if (chan->do_ping)
1585 		hctsiz |= TSIZ_DOPNG;
1586 
1587 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1588 		dwc2_set_pid_isoc(chan);
1589 
1590 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1591 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1592 		  TSIZ_SC_MC_PID_MASK;
1593 
1594 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1595 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1596 
1597 	/* Non-zero only for high-speed interrupt endpoints */
1598 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1599 
1600 	if (dbg_hc(chan)) {
1601 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1602 			 chan->hc_num);
1603 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1604 			 chan->data_pid_start);
1605 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1606 	}
1607 
1608 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1609 
1610 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1611 				   chan->desc_list_sz, DMA_TO_DEVICE);
1612 
1613 	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1614 
1615 	if (dbg_hc(chan))
1616 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1617 			 &chan->desc_list_addr, chan->hc_num);
1618 
1619 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1620 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1621 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1622 		  HCCHAR_MULTICNT_MASK;
1623 
1624 	if (hcchar & HCCHAR_CHDIS)
1625 		dev_warn(hsotg->dev,
1626 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1627 			 __func__, chan->hc_num, hcchar);
1628 
1629 	/* Set host channel enable after all other setup is complete */
1630 	hcchar |= HCCHAR_CHENA;
1631 	hcchar &= ~HCCHAR_CHDIS;
1632 
1633 	if (dbg_hc(chan))
1634 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1635 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1636 			 HCCHAR_MULTICNT_SHIFT);
1637 
1638 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1639 	if (dbg_hc(chan))
1640 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1641 			 chan->hc_num);
1642 
1643 	chan->xfer_started = 1;
1644 	chan->requests++;
1645 }
1646 
1647 /**
1648  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1649  * a previous call to dwc2_hc_start_transfer()
1650  *
1651  * @hsotg: Programming view of DWC_otg controller
1652  * @chan:  Information needed to initialize the host channel
1653  *
1654  * The caller must ensure there is sufficient space in the request queue and Tx
1655  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1656  * the controller acts autonomously to complete transfers programmed to a host
1657  * channel.
1658  *
1659  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1660  * if there is any data remaining to be queued. For an IN transfer, another
1661  * data packet is always requested. For the SETUP phase of a control transfer,
1662  * this function does nothing.
1663  *
1664  * Return: 1 if a new request is queued, 0 if no more requests are required
1665  * for this transfer
1666  */
1667 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1668 				     struct dwc2_host_chan *chan)
1669 {
1670 	if (dbg_hc(chan))
1671 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1672 			 chan->hc_num);
1673 
1674 	if (chan->do_split)
1675 		/* SPLITs always queue just once per channel */
1676 		return 0;
1677 
1678 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1679 		/* SETUPs are queued only once since they can't be NAK'd */
1680 		return 0;
1681 
1682 	if (chan->ep_is_in) {
1683 		/*
1684 		 * Always queue another request for other IN transfers. If
1685 		 * back-to-back INs are issued and NAKs are received for both,
1686 		 * the driver may still be processing the first NAK when the
1687 		 * second NAK is received. When the interrupt handler clears
1688 		 * the NAK interrupt for the first NAK, the second NAK will
1689 		 * not be seen. So we can't depend on the NAK interrupt
1690 		 * handler to requeue a NAK'd request. Instead, IN requests
1691 		 * are issued each time this function is called. When the
1692 		 * transfer completes, the extra requests for the channel will
1693 		 * be flushed.
1694 		 */
1695 		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1696 
1697 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1698 		hcchar |= HCCHAR_CHENA;
1699 		hcchar &= ~HCCHAR_CHDIS;
1700 		if (dbg_hc(chan))
1701 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1702 				 hcchar);
1703 		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1704 		chan->requests++;
1705 		return 1;
1706 	}
1707 
1708 	/* OUT transfers */
1709 
1710 	if (chan->xfer_count < chan->xfer_len) {
1711 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1712 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1713 			u32 hcchar = dwc2_readl(hsotg->regs +
1714 						HCCHAR(chan->hc_num));
1715 
1716 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1717 						   &hcchar);
1718 		}
1719 
1720 		/* Load OUT packet into the appropriate Tx FIFO */
1721 		dwc2_hc_write_packet(hsotg, chan);
1722 		chan->requests++;
1723 		return 1;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 /*
1730  * =========================================================================
1731  *  HCD
1732  * =========================================================================
1733  */
1734 
1735 /*
1736  * Processes all the URBs in a single list of QHs. Completes them with
1737  * -ETIMEDOUT and frees the QTD.
1738  *
1739  * Must be called with interrupt disabled and spinlock held
1740  */
1741 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1742 				      struct list_head *qh_list)
1743 {
1744 	struct dwc2_qh *qh, *qh_tmp;
1745 	struct dwc2_qtd *qtd, *qtd_tmp;
1746 
1747 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1748 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1749 					 qtd_list_entry) {
1750 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1751 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1752 		}
1753 	}
1754 }
1755 
1756 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1757 			      struct list_head *qh_list)
1758 {
1759 	struct dwc2_qtd *qtd, *qtd_tmp;
1760 	struct dwc2_qh *qh, *qh_tmp;
1761 	unsigned long flags;
1762 
1763 	if (!qh_list->next)
1764 		/* The list hasn't been initialized yet */
1765 		return;
1766 
1767 	spin_lock_irqsave(&hsotg->lock, flags);
1768 
1769 	/* Ensure there are no QTDs or URBs left */
1770 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1771 
1772 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1773 		dwc2_hcd_qh_unlink(hsotg, qh);
1774 
1775 		/* Free each QTD in the QH's QTD list */
1776 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1777 					 qtd_list_entry)
1778 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1779 
1780 		if (qh->channel && qh->channel->qh == qh)
1781 			qh->channel->qh = NULL;
1782 
1783 		spin_unlock_irqrestore(&hsotg->lock, flags);
1784 		dwc2_hcd_qh_free(hsotg, qh);
1785 		spin_lock_irqsave(&hsotg->lock, flags);
1786 	}
1787 
1788 	spin_unlock_irqrestore(&hsotg->lock, flags);
1789 }
1790 
1791 /*
1792  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1793  * and periodic schedules. The QTD associated with each URB is removed from
1794  * the schedule and freed. This function may be called when a disconnect is
1795  * detected or when the HCD is being stopped.
1796  *
1797  * Must be called with interrupt disabled and spinlock held
1798  */
1799 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1800 {
1801 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1802 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1803 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1804 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1805 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1806 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1807 }
1808 
1809 /**
1810  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1811  *
1812  * @hsotg: Pointer to struct dwc2_hsotg
1813  */
1814 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1815 {
1816 	u32 hprt0;
1817 
1818 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1819 		/*
1820 		 * Reset the port. During a HNP mode switch the reset
1821 		 * needs to occur within 1ms and have a duration of at
1822 		 * least 50ms.
1823 		 */
1824 		hprt0 = dwc2_read_hprt0(hsotg);
1825 		hprt0 |= HPRT0_RST;
1826 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
1827 	}
1828 
1829 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1830 			   msecs_to_jiffies(50));
1831 }
1832 
1833 /* Must be called with interrupt disabled and spinlock held */
1834 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1835 {
1836 	int num_channels = hsotg->params.host_channels;
1837 	struct dwc2_host_chan *channel;
1838 	u32 hcchar;
1839 	int i;
1840 
1841 	if (!hsotg->params.host_dma) {
1842 		/* Flush out any channel requests in slave mode */
1843 		for (i = 0; i < num_channels; i++) {
1844 			channel = hsotg->hc_ptr_array[i];
1845 			if (!list_empty(&channel->hc_list_entry))
1846 				continue;
1847 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1848 			if (hcchar & HCCHAR_CHENA) {
1849 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1850 				hcchar |= HCCHAR_CHDIS;
1851 				dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1852 			}
1853 		}
1854 	}
1855 
1856 	for (i = 0; i < num_channels; i++) {
1857 		channel = hsotg->hc_ptr_array[i];
1858 		if (!list_empty(&channel->hc_list_entry))
1859 			continue;
1860 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1861 		if (hcchar & HCCHAR_CHENA) {
1862 			/* Halt the channel */
1863 			hcchar |= HCCHAR_CHDIS;
1864 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1865 		}
1866 
1867 		dwc2_hc_cleanup(hsotg, channel);
1868 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1869 		/*
1870 		 * Added for Descriptor DMA to prevent channel double cleanup in
1871 		 * release_channel_ddma(), which is called from ep_disable when
1872 		 * device disconnects
1873 		 */
1874 		channel->qh = NULL;
1875 	}
1876 	/* All channels have been freed, mark them available */
1877 	if (hsotg->params.uframe_sched) {
1878 		hsotg->available_host_channels =
1879 			hsotg->params.host_channels;
1880 	} else {
1881 		hsotg->non_periodic_channels = 0;
1882 		hsotg->periodic_channels = 0;
1883 	}
1884 }
1885 
1886 /**
1887  * dwc2_hcd_connect() - Handles connect of the HCD
1888  *
1889  * @hsotg: Pointer to struct dwc2_hsotg
1890  *
1891  * Must be called with interrupt disabled and spinlock held
1892  */
1893 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1894 {
1895 	if (hsotg->lx_state != DWC2_L0)
1896 		usb_hcd_resume_root_hub(hsotg->priv);
1897 
1898 	hsotg->flags.b.port_connect_status_change = 1;
1899 	hsotg->flags.b.port_connect_status = 1;
1900 }
1901 
1902 /**
1903  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1904  *
1905  * @hsotg: Pointer to struct dwc2_hsotg
1906  * @force: If true, we won't try to reconnect even if we see device connected.
1907  *
1908  * Must be called with interrupt disabled and spinlock held
1909  */
1910 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1911 {
1912 	u32 intr;
1913 	u32 hprt0;
1914 
1915 	/* Set status flags for the hub driver */
1916 	hsotg->flags.b.port_connect_status_change = 1;
1917 	hsotg->flags.b.port_connect_status = 0;
1918 
1919 	/*
1920 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1921 	 * interrupt mask and status bits and disabling subsequent host
1922 	 * channel interrupts.
1923 	 */
1924 	intr = dwc2_readl(hsotg->regs + GINTMSK);
1925 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1926 	dwc2_writel(intr, hsotg->regs + GINTMSK);
1927 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1928 	dwc2_writel(intr, hsotg->regs + GINTSTS);
1929 
1930 	/*
1931 	 * Turn off the vbus power only if the core has transitioned to device
1932 	 * mode. If still in host mode, need to keep power on to detect a
1933 	 * reconnection.
1934 	 */
1935 	if (dwc2_is_device_mode(hsotg)) {
1936 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1937 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1938 			dwc2_writel(0, hsotg->regs + HPRT0);
1939 		}
1940 
1941 		dwc2_disable_host_interrupts(hsotg);
1942 	}
1943 
1944 	/* Respond with an error status to all URBs in the schedule */
1945 	dwc2_kill_all_urbs(hsotg);
1946 
1947 	if (dwc2_is_host_mode(hsotg))
1948 		/* Clean up any host channels that were in use */
1949 		dwc2_hcd_cleanup_channels(hsotg);
1950 
1951 	dwc2_host_disconnect(hsotg);
1952 
1953 	/*
1954 	 * Add an extra check here to see if we're actually connected but
1955 	 * we don't have a detection interrupt pending.  This can happen if:
1956 	 *   1. hardware sees connect
1957 	 *   2. hardware sees disconnect
1958 	 *   3. hardware sees connect
1959 	 *   4. dwc2_port_intr() - clears connect interrupt
1960 	 *   5. dwc2_handle_common_intr() - calls here
1961 	 *
1962 	 * Without the extra check here we will end calling disconnect
1963 	 * and won't get any future interrupts to handle the connect.
1964 	 */
1965 	if (!force) {
1966 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1967 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1968 			dwc2_hcd_connect(hsotg);
1969 	}
1970 }
1971 
1972 /**
1973  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1974  *
1975  * @hsotg: Pointer to struct dwc2_hsotg
1976  */
1977 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1978 {
1979 	if (hsotg->bus_suspended) {
1980 		hsotg->flags.b.port_suspend_change = 1;
1981 		usb_hcd_resume_root_hub(hsotg->priv);
1982 	}
1983 
1984 	if (hsotg->lx_state == DWC2_L1)
1985 		hsotg->flags.b.port_l1_change = 1;
1986 }
1987 
1988 /**
1989  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1990  *
1991  * @hsotg: Pointer to struct dwc2_hsotg
1992  *
1993  * Must be called with interrupt disabled and spinlock held
1994  */
1995 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1996 {
1997 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1998 
1999 	/*
2000 	 * The root hub should be disconnected before this function is called.
2001 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2002 	 * and the QH lists (via ..._hcd_endpoint_disable).
2003 	 */
2004 
2005 	/* Turn off all host-specific interrupts */
2006 	dwc2_disable_host_interrupts(hsotg);
2007 
2008 	/* Turn off the vbus power */
2009 	dev_dbg(hsotg->dev, "PortPower off\n");
2010 	dwc2_writel(0, hsotg->regs + HPRT0);
2011 }
2012 
2013 /* Caller must hold driver lock */
2014 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2015 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2016 				struct dwc2_qtd *qtd)
2017 {
2018 	u32 intr_mask;
2019 	int retval;
2020 	int dev_speed;
2021 
2022 	if (!hsotg->flags.b.port_connect_status) {
2023 		/* No longer connected */
2024 		dev_err(hsotg->dev, "Not connected\n");
2025 		return -ENODEV;
2026 	}
2027 
2028 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2029 
2030 	/* Some configurations cannot support LS traffic on a FS root port */
2031 	if ((dev_speed == USB_SPEED_LOW) &&
2032 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2033 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2034 		u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2035 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2036 
2037 		if (prtspd == HPRT0_SPD_FULL_SPEED)
2038 			return -ENODEV;
2039 	}
2040 
2041 	if (!qtd)
2042 		return -EINVAL;
2043 
2044 	dwc2_hcd_qtd_init(qtd, urb);
2045 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2046 	if (retval) {
2047 		dev_err(hsotg->dev,
2048 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2049 			retval);
2050 		return retval;
2051 	}
2052 
2053 	intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2054 	if (!(intr_mask & GINTSTS_SOF)) {
2055 		enum dwc2_transaction_type tr_type;
2056 
2057 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2058 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2059 			/*
2060 			 * Do not schedule SG transactions until qtd has
2061 			 * URB_GIVEBACK_ASAP set
2062 			 */
2063 			return 0;
2064 
2065 		tr_type = dwc2_hcd_select_transactions(hsotg);
2066 		if (tr_type != DWC2_TRANSACTION_NONE)
2067 			dwc2_hcd_queue_transactions(hsotg, tr_type);
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /* Must be called with interrupt disabled and spinlock held */
2074 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2075 				struct dwc2_hcd_urb *urb)
2076 {
2077 	struct dwc2_qh *qh;
2078 	struct dwc2_qtd *urb_qtd;
2079 
2080 	urb_qtd = urb->qtd;
2081 	if (!urb_qtd) {
2082 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2083 		return -EINVAL;
2084 	}
2085 
2086 	qh = urb_qtd->qh;
2087 	if (!qh) {
2088 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2089 		return -EINVAL;
2090 	}
2091 
2092 	urb->priv = NULL;
2093 
2094 	if (urb_qtd->in_process && qh->channel) {
2095 		dwc2_dump_channel_info(hsotg, qh->channel);
2096 
2097 		/* The QTD is in process (it has been assigned to a channel) */
2098 		if (hsotg->flags.b.port_connect_status)
2099 			/*
2100 			 * If still connected (i.e. in host mode), halt the
2101 			 * channel so it can be used for other transfers. If
2102 			 * no longer connected, the host registers can't be
2103 			 * written to halt the channel since the core is in
2104 			 * device mode.
2105 			 */
2106 			dwc2_hc_halt(hsotg, qh->channel,
2107 				     DWC2_HC_XFER_URB_DEQUEUE);
2108 	}
2109 
2110 	/*
2111 	 * Free the QTD and clean up the associated QH. Leave the QH in the
2112 	 * schedule if it has any remaining QTDs.
2113 	 */
2114 	if (!hsotg->params.dma_desc_enable) {
2115 		u8 in_process = urb_qtd->in_process;
2116 
2117 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2118 		if (in_process) {
2119 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2120 			qh->channel = NULL;
2121 		} else if (list_empty(&qh->qtd_list)) {
2122 			dwc2_hcd_qh_unlink(hsotg, qh);
2123 		}
2124 	} else {
2125 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 /* Must NOT be called with interrupt disabled or spinlock held */
2132 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2133 				     struct usb_host_endpoint *ep, int retry)
2134 {
2135 	struct dwc2_qtd *qtd, *qtd_tmp;
2136 	struct dwc2_qh *qh;
2137 	unsigned long flags;
2138 	int rc;
2139 
2140 	spin_lock_irqsave(&hsotg->lock, flags);
2141 
2142 	qh = ep->hcpriv;
2143 	if (!qh) {
2144 		rc = -EINVAL;
2145 		goto err;
2146 	}
2147 
2148 	while (!list_empty(&qh->qtd_list) && retry--) {
2149 		if (retry == 0) {
2150 			dev_err(hsotg->dev,
2151 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2152 			rc = -EBUSY;
2153 			goto err;
2154 		}
2155 
2156 		spin_unlock_irqrestore(&hsotg->lock, flags);
2157 		msleep(20);
2158 		spin_lock_irqsave(&hsotg->lock, flags);
2159 		qh = ep->hcpriv;
2160 		if (!qh) {
2161 			rc = -EINVAL;
2162 			goto err;
2163 		}
2164 	}
2165 
2166 	dwc2_hcd_qh_unlink(hsotg, qh);
2167 
2168 	/* Free each QTD in the QH's QTD list */
2169 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2170 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2171 
2172 	ep->hcpriv = NULL;
2173 
2174 	if (qh->channel && qh->channel->qh == qh)
2175 		qh->channel->qh = NULL;
2176 
2177 	spin_unlock_irqrestore(&hsotg->lock, flags);
2178 
2179 	dwc2_hcd_qh_free(hsotg, qh);
2180 
2181 	return 0;
2182 
2183 err:
2184 	ep->hcpriv = NULL;
2185 	spin_unlock_irqrestore(&hsotg->lock, flags);
2186 
2187 	return rc;
2188 }
2189 
2190 /* Must be called with interrupt disabled and spinlock held */
2191 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2192 				   struct usb_host_endpoint *ep)
2193 {
2194 	struct dwc2_qh *qh = ep->hcpriv;
2195 
2196 	if (!qh)
2197 		return -EINVAL;
2198 
2199 	qh->data_toggle = DWC2_HC_PID_DATA0;
2200 
2201 	return 0;
2202 }
2203 
2204 /**
2205  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2206  * prepares the core for device mode or host mode operation
2207  *
2208  * @hsotg:         Programming view of the DWC_otg controller
2209  * @initial_setup: If true then this is the first init for this instance.
2210  */
2211 static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2212 {
2213 	u32 usbcfg, otgctl;
2214 	int retval;
2215 
2216 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2217 
2218 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2219 
2220 	/* Set ULPI External VBUS bit if needed */
2221 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2222 	if (hsotg->params.phy_ulpi_ext_vbus)
2223 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2224 
2225 	/* Set external TS Dline pulsing bit if needed */
2226 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2227 	if (hsotg->params.ts_dline)
2228 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2229 
2230 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2231 
2232 	/*
2233 	 * Reset the Controller
2234 	 *
2235 	 * We only need to reset the controller if this is a re-init.
2236 	 * For the first init we know for sure that earlier code reset us (it
2237 	 * needed to in order to properly detect various parameters).
2238 	 */
2239 	if (!initial_setup) {
2240 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
2241 		if (retval) {
2242 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2243 				__func__);
2244 			return retval;
2245 		}
2246 	}
2247 
2248 	/*
2249 	 * This needs to happen in FS mode before any other programming occurs
2250 	 */
2251 	retval = dwc2_phy_init(hsotg, initial_setup);
2252 	if (retval)
2253 		return retval;
2254 
2255 	/* Program the GAHBCFG Register */
2256 	retval = dwc2_gahbcfg_init(hsotg);
2257 	if (retval)
2258 		return retval;
2259 
2260 	/* Program the GUSBCFG register */
2261 	dwc2_gusbcfg_init(hsotg);
2262 
2263 	/* Program the GOTGCTL register */
2264 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2265 	otgctl &= ~GOTGCTL_OTGVER;
2266 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2267 
2268 	/* Clear the SRP success bit for FS-I2c */
2269 	hsotg->srp_success = 0;
2270 
2271 	/* Enable common interrupts */
2272 	dwc2_enable_common_interrupts(hsotg);
2273 
2274 	/*
2275 	 * Do device or host initialization based on mode during PCD and
2276 	 * HCD initialization
2277 	 */
2278 	if (dwc2_is_host_mode(hsotg)) {
2279 		dev_dbg(hsotg->dev, "Host Mode\n");
2280 		hsotg->op_state = OTG_STATE_A_HOST;
2281 	} else {
2282 		dev_dbg(hsotg->dev, "Device Mode\n");
2283 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 /**
2290  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2291  * Host mode
2292  *
2293  * @hsotg: Programming view of DWC_otg controller
2294  *
2295  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2296  * request queues. Host channels are reset to ensure that they are ready for
2297  * performing transfers.
2298  */
2299 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2300 {
2301 	u32 hcfg, hfir, otgctl;
2302 
2303 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2304 
2305 	/* Restart the Phy Clock */
2306 	dwc2_writel(0, hsotg->regs + PCGCTL);
2307 
2308 	/* Initialize Host Configuration Register */
2309 	dwc2_init_fs_ls_pclk_sel(hsotg);
2310 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2311 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2312 		hcfg = dwc2_readl(hsotg->regs + HCFG);
2313 		hcfg |= HCFG_FSLSSUPP;
2314 		dwc2_writel(hcfg, hsotg->regs + HCFG);
2315 	}
2316 
2317 	/*
2318 	 * This bit allows dynamic reloading of the HFIR register during
2319 	 * runtime. This bit needs to be programmed during initial configuration
2320 	 * and its value must not be changed during runtime.
2321 	 */
2322 	if (hsotg->params.reload_ctl) {
2323 		hfir = dwc2_readl(hsotg->regs + HFIR);
2324 		hfir |= HFIR_RLDCTRL;
2325 		dwc2_writel(hfir, hsotg->regs + HFIR);
2326 	}
2327 
2328 	if (hsotg->params.dma_desc_enable) {
2329 		u32 op_mode = hsotg->hw_params.op_mode;
2330 
2331 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2332 		    !hsotg->hw_params.dma_desc_enable ||
2333 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2334 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2335 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2336 			dev_err(hsotg->dev,
2337 				"Hardware does not support descriptor DMA mode -\n");
2338 			dev_err(hsotg->dev,
2339 				"falling back to buffer DMA mode.\n");
2340 			hsotg->params.dma_desc_enable = false;
2341 		} else {
2342 			hcfg = dwc2_readl(hsotg->regs + HCFG);
2343 			hcfg |= HCFG_DESCDMA;
2344 			dwc2_writel(hcfg, hsotg->regs + HCFG);
2345 		}
2346 	}
2347 
2348 	/* Configure data FIFO sizes */
2349 	dwc2_config_fifos(hsotg);
2350 
2351 	/* TODO - check this */
2352 	/* Clear Host Set HNP Enable in the OTG Control Register */
2353 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2354 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2355 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2356 
2357 	/* Make sure the FIFOs are flushed */
2358 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2359 	dwc2_flush_rx_fifo(hsotg);
2360 
2361 	/* Clear Host Set HNP Enable in the OTG Control Register */
2362 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2363 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2364 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2365 
2366 	if (!hsotg->params.dma_desc_enable) {
2367 		int num_channels, i;
2368 		u32 hcchar;
2369 
2370 		/* Flush out any leftover queued requests */
2371 		num_channels = hsotg->params.host_channels;
2372 		for (i = 0; i < num_channels; i++) {
2373 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2374 			hcchar &= ~HCCHAR_CHENA;
2375 			hcchar |= HCCHAR_CHDIS;
2376 			hcchar &= ~HCCHAR_EPDIR;
2377 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2378 		}
2379 
2380 		/* Halt all channels to put them into a known state */
2381 		for (i = 0; i < num_channels; i++) {
2382 			int count = 0;
2383 
2384 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2385 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2386 			hcchar &= ~HCCHAR_EPDIR;
2387 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2388 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2389 				__func__, i);
2390 			do {
2391 				hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2392 				if (++count > 1000) {
2393 					dev_err(hsotg->dev,
2394 						"Unable to clear enable on channel %d\n",
2395 						i);
2396 					break;
2397 				}
2398 				udelay(1);
2399 			} while (hcchar & HCCHAR_CHENA);
2400 		}
2401 	}
2402 
2403 	/* Turn on the vbus power */
2404 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2405 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2406 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2407 
2408 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2409 			!!(hprt0 & HPRT0_PWR));
2410 		if (!(hprt0 & HPRT0_PWR)) {
2411 			hprt0 |= HPRT0_PWR;
2412 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
2413 		}
2414 	}
2415 
2416 	dwc2_enable_host_interrupts(hsotg);
2417 }
2418 
2419 /*
2420  * Initializes dynamic portions of the DWC_otg HCD state
2421  *
2422  * Must be called with interrupt disabled and spinlock held
2423  */
2424 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2425 {
2426 	struct dwc2_host_chan *chan, *chan_tmp;
2427 	int num_channels;
2428 	int i;
2429 
2430 	hsotg->flags.d32 = 0;
2431 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2432 
2433 	if (hsotg->params.uframe_sched) {
2434 		hsotg->available_host_channels =
2435 			hsotg->params.host_channels;
2436 	} else {
2437 		hsotg->non_periodic_channels = 0;
2438 		hsotg->periodic_channels = 0;
2439 	}
2440 
2441 	/*
2442 	 * Put all channels in the free channel list and clean up channel
2443 	 * states
2444 	 */
2445 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2446 				 hc_list_entry)
2447 		list_del_init(&chan->hc_list_entry);
2448 
2449 	num_channels = hsotg->params.host_channels;
2450 	for (i = 0; i < num_channels; i++) {
2451 		chan = hsotg->hc_ptr_array[i];
2452 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2453 		dwc2_hc_cleanup(hsotg, chan);
2454 	}
2455 
2456 	/* Initialize the DWC core for host mode operation */
2457 	dwc2_core_host_init(hsotg);
2458 }
2459 
2460 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2461 			       struct dwc2_host_chan *chan,
2462 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2463 {
2464 	int hub_addr, hub_port;
2465 
2466 	chan->do_split = 1;
2467 	chan->xact_pos = qtd->isoc_split_pos;
2468 	chan->complete_split = qtd->complete_split;
2469 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2470 	chan->hub_addr = (u8)hub_addr;
2471 	chan->hub_port = (u8)hub_port;
2472 }
2473 
2474 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2475 			      struct dwc2_host_chan *chan,
2476 			      struct dwc2_qtd *qtd)
2477 {
2478 	struct dwc2_hcd_urb *urb = qtd->urb;
2479 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2480 
2481 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2482 	case USB_ENDPOINT_XFER_CONTROL:
2483 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2484 
2485 		switch (qtd->control_phase) {
2486 		case DWC2_CONTROL_SETUP:
2487 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2488 			chan->do_ping = 0;
2489 			chan->ep_is_in = 0;
2490 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2491 			if (hsotg->params.host_dma)
2492 				chan->xfer_dma = urb->setup_dma;
2493 			else
2494 				chan->xfer_buf = urb->setup_packet;
2495 			chan->xfer_len = 8;
2496 			break;
2497 
2498 		case DWC2_CONTROL_DATA:
2499 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2500 			chan->data_pid_start = qtd->data_toggle;
2501 			break;
2502 
2503 		case DWC2_CONTROL_STATUS:
2504 			/*
2505 			 * Direction is opposite of data direction or IN if no
2506 			 * data
2507 			 */
2508 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2509 			if (urb->length == 0)
2510 				chan->ep_is_in = 1;
2511 			else
2512 				chan->ep_is_in =
2513 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2514 			if (chan->ep_is_in)
2515 				chan->do_ping = 0;
2516 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2517 			chan->xfer_len = 0;
2518 			if (hsotg->params.host_dma)
2519 				chan->xfer_dma = hsotg->status_buf_dma;
2520 			else
2521 				chan->xfer_buf = hsotg->status_buf;
2522 			break;
2523 		}
2524 		break;
2525 
2526 	case USB_ENDPOINT_XFER_BULK:
2527 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2528 		break;
2529 
2530 	case USB_ENDPOINT_XFER_INT:
2531 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2532 		break;
2533 
2534 	case USB_ENDPOINT_XFER_ISOC:
2535 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2536 		if (hsotg->params.dma_desc_enable)
2537 			break;
2538 
2539 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2540 		frame_desc->status = 0;
2541 
2542 		if (hsotg->params.host_dma) {
2543 			chan->xfer_dma = urb->dma;
2544 			chan->xfer_dma += frame_desc->offset +
2545 					qtd->isoc_split_offset;
2546 		} else {
2547 			chan->xfer_buf = urb->buf;
2548 			chan->xfer_buf += frame_desc->offset +
2549 					qtd->isoc_split_offset;
2550 		}
2551 
2552 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2553 
2554 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2555 			if (chan->xfer_len <= 188)
2556 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2557 			else
2558 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2559 		}
2560 		break;
2561 	}
2562 }
2563 
2564 #define DWC2_USB_DMA_ALIGN 4
2565 
2566 struct dma_aligned_buffer {
2567 	void *kmalloc_ptr;
2568 	void *old_xfer_buffer;
2569 	u8 data[0];
2570 };
2571 
2572 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2573 {
2574 	struct dma_aligned_buffer *temp;
2575 
2576 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2577 		return;
2578 
2579 	temp = container_of(urb->transfer_buffer,
2580 			    struct dma_aligned_buffer, data);
2581 
2582 	if (usb_urb_dir_in(urb))
2583 		memcpy(temp->old_xfer_buffer, temp->data,
2584 		       urb->transfer_buffer_length);
2585 	urb->transfer_buffer = temp->old_xfer_buffer;
2586 	kfree(temp->kmalloc_ptr);
2587 
2588 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2589 }
2590 
2591 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2592 {
2593 	struct dma_aligned_buffer *temp, *kmalloc_ptr;
2594 	size_t kmalloc_size;
2595 
2596 	if (urb->num_sgs || urb->sg ||
2597 	    urb->transfer_buffer_length == 0 ||
2598 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2599 		return 0;
2600 
2601 	/* Allocate a buffer with enough padding for alignment */
2602 	kmalloc_size = urb->transfer_buffer_length +
2603 		sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2604 
2605 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2606 	if (!kmalloc_ptr)
2607 		return -ENOMEM;
2608 
2609 	/* Position our struct dma_aligned_buffer such that data is aligned */
2610 	temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2611 	temp->kmalloc_ptr = kmalloc_ptr;
2612 	temp->old_xfer_buffer = urb->transfer_buffer;
2613 	if (usb_urb_dir_out(urb))
2614 		memcpy(temp->data, urb->transfer_buffer,
2615 		       urb->transfer_buffer_length);
2616 	urb->transfer_buffer = temp->data;
2617 
2618 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2619 
2620 	return 0;
2621 }
2622 
2623 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2624 				gfp_t mem_flags)
2625 {
2626 	int ret;
2627 
2628 	/* We assume setup_dma is always aligned; warn if not */
2629 	WARN_ON_ONCE(urb->setup_dma &&
2630 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2631 
2632 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2633 	if (ret)
2634 		return ret;
2635 
2636 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2637 	if (ret)
2638 		dwc2_free_dma_aligned_buffer(urb);
2639 
2640 	return ret;
2641 }
2642 
2643 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2644 {
2645 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2646 	dwc2_free_dma_aligned_buffer(urb);
2647 }
2648 
2649 /**
2650  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2651  * channel and initializes the host channel to perform the transactions. The
2652  * host channel is removed from the free list.
2653  *
2654  * @hsotg: The HCD state structure
2655  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2656  *         to a free host channel
2657  */
2658 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2659 {
2660 	struct dwc2_host_chan *chan;
2661 	struct dwc2_hcd_urb *urb;
2662 	struct dwc2_qtd *qtd;
2663 
2664 	if (dbg_qh(qh))
2665 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2666 
2667 	if (list_empty(&qh->qtd_list)) {
2668 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2669 		return -ENOMEM;
2670 	}
2671 
2672 	if (list_empty(&hsotg->free_hc_list)) {
2673 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2674 		return -ENOMEM;
2675 	}
2676 
2677 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2678 				hc_list_entry);
2679 
2680 	/* Remove host channel from free list */
2681 	list_del_init(&chan->hc_list_entry);
2682 
2683 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2684 	urb = qtd->urb;
2685 	qh->channel = chan;
2686 	qtd->in_process = 1;
2687 
2688 	/*
2689 	 * Use usb_pipedevice to determine device address. This address is
2690 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2691 	 */
2692 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2693 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2694 	chan->speed = qh->dev_speed;
2695 	chan->max_packet = dwc2_max_packet(qh->maxp);
2696 
2697 	chan->xfer_started = 0;
2698 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2699 	chan->error_state = (qtd->error_count > 0);
2700 	chan->halt_on_queue = 0;
2701 	chan->halt_pending = 0;
2702 	chan->requests = 0;
2703 
2704 	/*
2705 	 * The following values may be modified in the transfer type section
2706 	 * below. The xfer_len value may be reduced when the transfer is
2707 	 * started to accommodate the max widths of the XferSize and PktCnt
2708 	 * fields in the HCTSIZn register.
2709 	 */
2710 
2711 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2712 	if (chan->ep_is_in)
2713 		chan->do_ping = 0;
2714 	else
2715 		chan->do_ping = qh->ping_state;
2716 
2717 	chan->data_pid_start = qh->data_toggle;
2718 	chan->multi_count = 1;
2719 
2720 	if (urb->actual_length > urb->length &&
2721 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2722 		urb->actual_length = urb->length;
2723 
2724 	if (hsotg->params.host_dma)
2725 		chan->xfer_dma = urb->dma + urb->actual_length;
2726 	else
2727 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2728 
2729 	chan->xfer_len = urb->length - urb->actual_length;
2730 	chan->xfer_count = 0;
2731 
2732 	/* Set the split attributes if required */
2733 	if (qh->do_split)
2734 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2735 	else
2736 		chan->do_split = 0;
2737 
2738 	/* Set the transfer attributes */
2739 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2740 
2741 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2742 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2743 		/*
2744 		 * This value may be modified when the transfer is started
2745 		 * to reflect the actual transfer length
2746 		 */
2747 		chan->multi_count = dwc2_hb_mult(qh->maxp);
2748 
2749 	if (hsotg->params.dma_desc_enable) {
2750 		chan->desc_list_addr = qh->desc_list_dma;
2751 		chan->desc_list_sz = qh->desc_list_sz;
2752 	}
2753 
2754 	dwc2_hc_init(hsotg, chan);
2755 	chan->qh = qh;
2756 
2757 	return 0;
2758 }
2759 
2760 /**
2761  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2762  * schedule and assigns them to available host channels. Called from the HCD
2763  * interrupt handler functions.
2764  *
2765  * @hsotg: The HCD state structure
2766  *
2767  * Return: The types of new transactions that were assigned to host channels
2768  */
2769 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2770 		struct dwc2_hsotg *hsotg)
2771 {
2772 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2773 	struct list_head *qh_ptr;
2774 	struct dwc2_qh *qh;
2775 	int num_channels;
2776 
2777 #ifdef DWC2_DEBUG_SOF
2778 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2779 #endif
2780 
2781 	/* Process entries in the periodic ready list */
2782 	qh_ptr = hsotg->periodic_sched_ready.next;
2783 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2784 		if (list_empty(&hsotg->free_hc_list))
2785 			break;
2786 		if (hsotg->params.uframe_sched) {
2787 			if (hsotg->available_host_channels <= 1)
2788 				break;
2789 			hsotg->available_host_channels--;
2790 		}
2791 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2792 		if (dwc2_assign_and_init_hc(hsotg, qh))
2793 			break;
2794 
2795 		/*
2796 		 * Move the QH from the periodic ready schedule to the
2797 		 * periodic assigned schedule
2798 		 */
2799 		qh_ptr = qh_ptr->next;
2800 		list_move_tail(&qh->qh_list_entry,
2801 			       &hsotg->periodic_sched_assigned);
2802 		ret_val = DWC2_TRANSACTION_PERIODIC;
2803 	}
2804 
2805 	/*
2806 	 * Process entries in the inactive portion of the non-periodic
2807 	 * schedule. Some free host channels may not be used if they are
2808 	 * reserved for periodic transfers.
2809 	 */
2810 	num_channels = hsotg->params.host_channels;
2811 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2812 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2813 		if (!hsotg->params.uframe_sched &&
2814 		    hsotg->non_periodic_channels >= num_channels -
2815 						hsotg->periodic_channels)
2816 			break;
2817 		if (list_empty(&hsotg->free_hc_list))
2818 			break;
2819 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2820 		if (hsotg->params.uframe_sched) {
2821 			if (hsotg->available_host_channels < 1)
2822 				break;
2823 			hsotg->available_host_channels--;
2824 		}
2825 
2826 		if (dwc2_assign_and_init_hc(hsotg, qh))
2827 			break;
2828 
2829 		/*
2830 		 * Move the QH from the non-periodic inactive schedule to the
2831 		 * non-periodic active schedule
2832 		 */
2833 		qh_ptr = qh_ptr->next;
2834 		list_move_tail(&qh->qh_list_entry,
2835 			       &hsotg->non_periodic_sched_active);
2836 
2837 		if (ret_val == DWC2_TRANSACTION_NONE)
2838 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2839 		else
2840 			ret_val = DWC2_TRANSACTION_ALL;
2841 
2842 		if (!hsotg->params.uframe_sched)
2843 			hsotg->non_periodic_channels++;
2844 	}
2845 
2846 	return ret_val;
2847 }
2848 
2849 /**
2850  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2851  * a host channel associated with either a periodic or non-periodic transfer
2852  *
2853  * @hsotg: The HCD state structure
2854  * @chan:  Host channel descriptor associated with either a periodic or
2855  *         non-periodic transfer
2856  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2857  *                     for periodic transfers or the non-periodic Tx FIFO
2858  *                     for non-periodic transfers
2859  *
2860  * Return: 1 if a request is queued and more requests may be needed to
2861  * complete the transfer, 0 if no more requests are required for this
2862  * transfer, -1 if there is insufficient space in the Tx FIFO
2863  *
2864  * This function assumes that there is space available in the appropriate
2865  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2866  * it checks whether space is available in the appropriate Tx FIFO.
2867  *
2868  * Must be called with interrupt disabled and spinlock held
2869  */
2870 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2871 				  struct dwc2_host_chan *chan,
2872 				  u16 fifo_dwords_avail)
2873 {
2874 	int retval = 0;
2875 
2876 	if (chan->do_split)
2877 		/* Put ourselves on the list to keep order straight */
2878 		list_move_tail(&chan->split_order_list_entry,
2879 			       &hsotg->split_order);
2880 
2881 	if (hsotg->params.host_dma) {
2882 		if (hsotg->params.dma_desc_enable) {
2883 			if (!chan->xfer_started ||
2884 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2885 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2886 				chan->qh->ping_state = 0;
2887 			}
2888 		} else if (!chan->xfer_started) {
2889 			dwc2_hc_start_transfer(hsotg, chan);
2890 			chan->qh->ping_state = 0;
2891 		}
2892 	} else if (chan->halt_pending) {
2893 		/* Don't queue a request if the channel has been halted */
2894 	} else if (chan->halt_on_queue) {
2895 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2896 	} else if (chan->do_ping) {
2897 		if (!chan->xfer_started)
2898 			dwc2_hc_start_transfer(hsotg, chan);
2899 	} else if (!chan->ep_is_in ||
2900 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2901 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2902 			if (!chan->xfer_started) {
2903 				dwc2_hc_start_transfer(hsotg, chan);
2904 				retval = 1;
2905 			} else {
2906 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2907 			}
2908 		} else {
2909 			retval = -1;
2910 		}
2911 	} else {
2912 		if (!chan->xfer_started) {
2913 			dwc2_hc_start_transfer(hsotg, chan);
2914 			retval = 1;
2915 		} else {
2916 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2917 		}
2918 	}
2919 
2920 	return retval;
2921 }
2922 
2923 /*
2924  * Processes periodic channels for the next frame and queues transactions for
2925  * these channels to the DWC_otg controller. After queueing transactions, the
2926  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2927  * to queue as Periodic Tx FIFO or request queue space becomes available.
2928  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2929  *
2930  * Must be called with interrupt disabled and spinlock held
2931  */
2932 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2933 {
2934 	struct list_head *qh_ptr;
2935 	struct dwc2_qh *qh;
2936 	u32 tx_status;
2937 	u32 fspcavail;
2938 	u32 gintmsk;
2939 	int status;
2940 	bool no_queue_space = false;
2941 	bool no_fifo_space = false;
2942 	u32 qspcavail;
2943 
2944 	/* If empty list then just adjust interrupt enables */
2945 	if (list_empty(&hsotg->periodic_sched_assigned))
2946 		goto exit;
2947 
2948 	if (dbg_perio())
2949 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2950 
2951 	tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2952 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2953 		    TXSTS_QSPCAVAIL_SHIFT;
2954 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2955 		    TXSTS_FSPCAVAIL_SHIFT;
2956 
2957 	if (dbg_perio()) {
2958 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2959 			 qspcavail);
2960 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2961 			 fspcavail);
2962 	}
2963 
2964 	qh_ptr = hsotg->periodic_sched_assigned.next;
2965 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2966 		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2967 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2968 			    TXSTS_QSPCAVAIL_SHIFT;
2969 		if (qspcavail == 0) {
2970 			no_queue_space = true;
2971 			break;
2972 		}
2973 
2974 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2975 		if (!qh->channel) {
2976 			qh_ptr = qh_ptr->next;
2977 			continue;
2978 		}
2979 
2980 		/* Make sure EP's TT buffer is clean before queueing qtds */
2981 		if (qh->tt_buffer_dirty) {
2982 			qh_ptr = qh_ptr->next;
2983 			continue;
2984 		}
2985 
2986 		/*
2987 		 * Set a flag if we're queuing high-bandwidth in slave mode.
2988 		 * The flag prevents any halts to get into the request queue in
2989 		 * the middle of multiple high-bandwidth packets getting queued.
2990 		 */
2991 		if (!hsotg->params.host_dma &&
2992 		    qh->channel->multi_count > 1)
2993 			hsotg->queuing_high_bandwidth = 1;
2994 
2995 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2996 			    TXSTS_FSPCAVAIL_SHIFT;
2997 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2998 		if (status < 0) {
2999 			no_fifo_space = true;
3000 			break;
3001 		}
3002 
3003 		/*
3004 		 * In Slave mode, stay on the current transfer until there is
3005 		 * nothing more to do or the high-bandwidth request count is
3006 		 * reached. In DMA mode, only need to queue one request. The
3007 		 * controller automatically handles multiple packets for
3008 		 * high-bandwidth transfers.
3009 		 */
3010 		if (hsotg->params.host_dma || status == 0 ||
3011 		    qh->channel->requests == qh->channel->multi_count) {
3012 			qh_ptr = qh_ptr->next;
3013 			/*
3014 			 * Move the QH from the periodic assigned schedule to
3015 			 * the periodic queued schedule
3016 			 */
3017 			list_move_tail(&qh->qh_list_entry,
3018 				       &hsotg->periodic_sched_queued);
3019 
3020 			/* done queuing high bandwidth */
3021 			hsotg->queuing_high_bandwidth = 0;
3022 		}
3023 	}
3024 
3025 exit:
3026 	if (no_queue_space || no_fifo_space ||
3027 	    (!hsotg->params.host_dma &&
3028 	     !list_empty(&hsotg->periodic_sched_assigned))) {
3029 		/*
3030 		 * May need to queue more transactions as the request
3031 		 * queue or Tx FIFO empties. Enable the periodic Tx
3032 		 * FIFO empty interrupt. (Always use the half-empty
3033 		 * level to ensure that new requests are loaded as
3034 		 * soon as possible.)
3035 		 */
3036 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3037 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3038 			gintmsk |= GINTSTS_PTXFEMP;
3039 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3040 		}
3041 	} else {
3042 		/*
3043 		 * Disable the Tx FIFO empty interrupt since there are
3044 		 * no more transactions that need to be queued right
3045 		 * now. This function is called from interrupt
3046 		 * handlers to queue more transactions as transfer
3047 		 * states change.
3048 		 */
3049 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3050 		if (gintmsk & GINTSTS_PTXFEMP) {
3051 			gintmsk &= ~GINTSTS_PTXFEMP;
3052 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3053 		}
3054 	}
3055 }
3056 
3057 /*
3058  * Processes active non-periodic channels and queues transactions for these
3059  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3060  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3061  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3062  * FIFO Empty interrupt is disabled.
3063  *
3064  * Must be called with interrupt disabled and spinlock held
3065  */
3066 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3067 {
3068 	struct list_head *orig_qh_ptr;
3069 	struct dwc2_qh *qh;
3070 	u32 tx_status;
3071 	u32 qspcavail;
3072 	u32 fspcavail;
3073 	u32 gintmsk;
3074 	int status;
3075 	int no_queue_space = 0;
3076 	int no_fifo_space = 0;
3077 	int more_to_do = 0;
3078 
3079 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3080 
3081 	tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3082 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3083 		    TXSTS_QSPCAVAIL_SHIFT;
3084 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3085 		    TXSTS_FSPCAVAIL_SHIFT;
3086 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3087 		 qspcavail);
3088 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3089 		 fspcavail);
3090 
3091 	/*
3092 	 * Keep track of the starting point. Skip over the start-of-list
3093 	 * entry.
3094 	 */
3095 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3096 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3097 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3098 
3099 	/*
3100 	 * Process once through the active list or until no more space is
3101 	 * available in the request queue or the Tx FIFO
3102 	 */
3103 	do {
3104 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3105 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3106 			    TXSTS_QSPCAVAIL_SHIFT;
3107 		if (!hsotg->params.host_dma && qspcavail == 0) {
3108 			no_queue_space = 1;
3109 			break;
3110 		}
3111 
3112 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3113 				qh_list_entry);
3114 		if (!qh->channel)
3115 			goto next;
3116 
3117 		/* Make sure EP's TT buffer is clean before queueing qtds */
3118 		if (qh->tt_buffer_dirty)
3119 			goto next;
3120 
3121 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3122 			    TXSTS_FSPCAVAIL_SHIFT;
3123 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3124 
3125 		if (status > 0) {
3126 			more_to_do = 1;
3127 		} else if (status < 0) {
3128 			no_fifo_space = 1;
3129 			break;
3130 		}
3131 next:
3132 		/* Advance to next QH, skipping start-of-list entry */
3133 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3134 		if (hsotg->non_periodic_qh_ptr ==
3135 				&hsotg->non_periodic_sched_active)
3136 			hsotg->non_periodic_qh_ptr =
3137 					hsotg->non_periodic_qh_ptr->next;
3138 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3139 
3140 	if (!hsotg->params.host_dma) {
3141 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3142 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3143 			    TXSTS_QSPCAVAIL_SHIFT;
3144 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3145 			    TXSTS_FSPCAVAIL_SHIFT;
3146 		dev_vdbg(hsotg->dev,
3147 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3148 			 qspcavail);
3149 		dev_vdbg(hsotg->dev,
3150 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3151 			 fspcavail);
3152 
3153 		if (more_to_do || no_queue_space || no_fifo_space) {
3154 			/*
3155 			 * May need to queue more transactions as the request
3156 			 * queue or Tx FIFO empties. Enable the non-periodic
3157 			 * Tx FIFO empty interrupt. (Always use the half-empty
3158 			 * level to ensure that new requests are loaded as
3159 			 * soon as possible.)
3160 			 */
3161 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3162 			gintmsk |= GINTSTS_NPTXFEMP;
3163 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3164 		} else {
3165 			/*
3166 			 * Disable the Tx FIFO empty interrupt since there are
3167 			 * no more transactions that need to be queued right
3168 			 * now. This function is called from interrupt
3169 			 * handlers to queue more transactions as transfer
3170 			 * states change.
3171 			 */
3172 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3173 			gintmsk &= ~GINTSTS_NPTXFEMP;
3174 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3175 		}
3176 	}
3177 }
3178 
3179 /**
3180  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3181  * and queues transactions for these channels to the DWC_otg controller. Called
3182  * from the HCD interrupt handler functions.
3183  *
3184  * @hsotg:   The HCD state structure
3185  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3186  *           or both)
3187  *
3188  * Must be called with interrupt disabled and spinlock held
3189  */
3190 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3191 				 enum dwc2_transaction_type tr_type)
3192 {
3193 #ifdef DWC2_DEBUG_SOF
3194 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3195 #endif
3196 	/* Process host channels associated with periodic transfers */
3197 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3198 	    tr_type == DWC2_TRANSACTION_ALL)
3199 		dwc2_process_periodic_channels(hsotg);
3200 
3201 	/* Process host channels associated with non-periodic transfers */
3202 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3203 	    tr_type == DWC2_TRANSACTION_ALL) {
3204 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3205 			dwc2_process_non_periodic_channels(hsotg);
3206 		} else {
3207 			/*
3208 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3209 			 * there are no non-periodic transfers to process
3210 			 */
3211 			u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3212 
3213 			gintmsk &= ~GINTSTS_NPTXFEMP;
3214 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3215 		}
3216 	}
3217 }
3218 
3219 static void dwc2_conn_id_status_change(struct work_struct *work)
3220 {
3221 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3222 						wf_otg);
3223 	u32 count = 0;
3224 	u32 gotgctl;
3225 	unsigned long flags;
3226 
3227 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3228 
3229 	gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3230 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3231 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3232 		!!(gotgctl & GOTGCTL_CONID_B));
3233 
3234 	/* B-Device connector (Device Mode) */
3235 	if (gotgctl & GOTGCTL_CONID_B) {
3236 		/* Wait for switch to device mode */
3237 		dev_dbg(hsotg->dev, "connId B\n");
3238 		if (hsotg->bus_suspended) {
3239 			dev_info(hsotg->dev,
3240 				 "Do port resume before switching to device mode\n");
3241 			dwc2_port_resume(hsotg);
3242 		}
3243 		while (!dwc2_is_device_mode(hsotg)) {
3244 			dev_info(hsotg->dev,
3245 				 "Waiting for Peripheral Mode, Mode=%s\n",
3246 				 dwc2_is_host_mode(hsotg) ? "Host" :
3247 				 "Peripheral");
3248 			msleep(20);
3249 			/*
3250 			 * Sometimes the initial GOTGCTRL read is wrong, so
3251 			 * check it again and jump to host mode if that was
3252 			 * the case.
3253 			 */
3254 			gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3255 			if (!(gotgctl & GOTGCTL_CONID_B))
3256 				goto host;
3257 			if (++count > 250)
3258 				break;
3259 		}
3260 		if (count > 250)
3261 			dev_err(hsotg->dev,
3262 				"Connection id status change timed out\n");
3263 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3264 		dwc2_core_init(hsotg, false);
3265 		dwc2_enable_global_interrupts(hsotg);
3266 		spin_lock_irqsave(&hsotg->lock, flags);
3267 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3268 		spin_unlock_irqrestore(&hsotg->lock, flags);
3269 		dwc2_hsotg_core_connect(hsotg);
3270 	} else {
3271 host:
3272 		/* A-Device connector (Host Mode) */
3273 		dev_dbg(hsotg->dev, "connId A\n");
3274 		while (!dwc2_is_host_mode(hsotg)) {
3275 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3276 				 dwc2_is_host_mode(hsotg) ?
3277 				 "Host" : "Peripheral");
3278 			msleep(20);
3279 			if (++count > 250)
3280 				break;
3281 		}
3282 		if (count > 250)
3283 			dev_err(hsotg->dev,
3284 				"Connection id status change timed out\n");
3285 		hsotg->op_state = OTG_STATE_A_HOST;
3286 
3287 		/* Initialize the Core for Host mode */
3288 		dwc2_core_init(hsotg, false);
3289 		dwc2_enable_global_interrupts(hsotg);
3290 		dwc2_hcd_start(hsotg);
3291 	}
3292 }
3293 
3294 static void dwc2_wakeup_detected(unsigned long data)
3295 {
3296 	struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
3297 	u32 hprt0;
3298 
3299 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3300 
3301 	/*
3302 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3303 	 * so that OPT tests pass with all PHYs.)
3304 	 */
3305 	hprt0 = dwc2_read_hprt0(hsotg);
3306 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3307 	hprt0 &= ~HPRT0_RES;
3308 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3309 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3310 		dwc2_readl(hsotg->regs + HPRT0));
3311 
3312 	dwc2_hcd_rem_wakeup(hsotg);
3313 	hsotg->bus_suspended = false;
3314 
3315 	/* Change to L0 state */
3316 	hsotg->lx_state = DWC2_L0;
3317 }
3318 
3319 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3320 {
3321 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3322 
3323 	return hcd->self.b_hnp_enable;
3324 }
3325 
3326 /* Must NOT be called with interrupt disabled or spinlock held */
3327 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3328 {
3329 	unsigned long flags;
3330 	u32 hprt0;
3331 	u32 pcgctl;
3332 	u32 gotgctl;
3333 
3334 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3335 
3336 	spin_lock_irqsave(&hsotg->lock, flags);
3337 
3338 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3339 		gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3340 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3341 		dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3342 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3343 	}
3344 
3345 	hprt0 = dwc2_read_hprt0(hsotg);
3346 	hprt0 |= HPRT0_SUSP;
3347 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3348 
3349 	hsotg->bus_suspended = true;
3350 
3351 	/*
3352 	 * If hibernation is supported, Phy clock will be suspended
3353 	 * after registers are backuped.
3354 	 */
3355 	if (!hsotg->params.hibernation) {
3356 		/* Suspend the Phy Clock */
3357 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3358 		pcgctl |= PCGCTL_STOPPCLK;
3359 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3360 		udelay(10);
3361 	}
3362 
3363 	/* For HNP the bus must be suspended for at least 200ms */
3364 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3365 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3366 		pcgctl &= ~PCGCTL_STOPPCLK;
3367 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3368 
3369 		spin_unlock_irqrestore(&hsotg->lock, flags);
3370 
3371 		msleep(200);
3372 	} else {
3373 		spin_unlock_irqrestore(&hsotg->lock, flags);
3374 	}
3375 }
3376 
3377 /* Must NOT be called with interrupt disabled or spinlock held */
3378 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3379 {
3380 	unsigned long flags;
3381 	u32 hprt0;
3382 	u32 pcgctl;
3383 
3384 	spin_lock_irqsave(&hsotg->lock, flags);
3385 
3386 	/*
3387 	 * If hibernation is supported, Phy clock is already resumed
3388 	 * after registers restore.
3389 	 */
3390 	if (!hsotg->params.hibernation) {
3391 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3392 		pcgctl &= ~PCGCTL_STOPPCLK;
3393 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3394 		spin_unlock_irqrestore(&hsotg->lock, flags);
3395 		msleep(20);
3396 		spin_lock_irqsave(&hsotg->lock, flags);
3397 	}
3398 
3399 	hprt0 = dwc2_read_hprt0(hsotg);
3400 	hprt0 |= HPRT0_RES;
3401 	hprt0 &= ~HPRT0_SUSP;
3402 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3403 	spin_unlock_irqrestore(&hsotg->lock, flags);
3404 
3405 	msleep(USB_RESUME_TIMEOUT);
3406 
3407 	spin_lock_irqsave(&hsotg->lock, flags);
3408 	hprt0 = dwc2_read_hprt0(hsotg);
3409 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3410 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3411 	hsotg->bus_suspended = false;
3412 	spin_unlock_irqrestore(&hsotg->lock, flags);
3413 }
3414 
3415 /* Handles hub class-specific requests */
3416 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3417 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3418 {
3419 	struct usb_hub_descriptor *hub_desc;
3420 	int retval = 0;
3421 	u32 hprt0;
3422 	u32 port_status;
3423 	u32 speed;
3424 	u32 pcgctl;
3425 
3426 	switch (typereq) {
3427 	case ClearHubFeature:
3428 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3429 
3430 		switch (wvalue) {
3431 		case C_HUB_LOCAL_POWER:
3432 		case C_HUB_OVER_CURRENT:
3433 			/* Nothing required here */
3434 			break;
3435 
3436 		default:
3437 			retval = -EINVAL;
3438 			dev_err(hsotg->dev,
3439 				"ClearHubFeature request %1xh unknown\n",
3440 				wvalue);
3441 		}
3442 		break;
3443 
3444 	case ClearPortFeature:
3445 		if (wvalue != USB_PORT_FEAT_L1)
3446 			if (!windex || windex > 1)
3447 				goto error;
3448 		switch (wvalue) {
3449 		case USB_PORT_FEAT_ENABLE:
3450 			dev_dbg(hsotg->dev,
3451 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3452 			hprt0 = dwc2_read_hprt0(hsotg);
3453 			hprt0 |= HPRT0_ENA;
3454 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3455 			break;
3456 
3457 		case USB_PORT_FEAT_SUSPEND:
3458 			dev_dbg(hsotg->dev,
3459 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3460 
3461 			if (hsotg->bus_suspended)
3462 				dwc2_port_resume(hsotg);
3463 			break;
3464 
3465 		case USB_PORT_FEAT_POWER:
3466 			dev_dbg(hsotg->dev,
3467 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3468 			hprt0 = dwc2_read_hprt0(hsotg);
3469 			hprt0 &= ~HPRT0_PWR;
3470 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3471 			break;
3472 
3473 		case USB_PORT_FEAT_INDICATOR:
3474 			dev_dbg(hsotg->dev,
3475 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3476 			/* Port indicator not supported */
3477 			break;
3478 
3479 		case USB_PORT_FEAT_C_CONNECTION:
3480 			/*
3481 			 * Clears driver's internal Connect Status Change flag
3482 			 */
3483 			dev_dbg(hsotg->dev,
3484 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3485 			hsotg->flags.b.port_connect_status_change = 0;
3486 			break;
3487 
3488 		case USB_PORT_FEAT_C_RESET:
3489 			/* Clears driver's internal Port Reset Change flag */
3490 			dev_dbg(hsotg->dev,
3491 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3492 			hsotg->flags.b.port_reset_change = 0;
3493 			break;
3494 
3495 		case USB_PORT_FEAT_C_ENABLE:
3496 			/*
3497 			 * Clears the driver's internal Port Enable/Disable
3498 			 * Change flag
3499 			 */
3500 			dev_dbg(hsotg->dev,
3501 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3502 			hsotg->flags.b.port_enable_change = 0;
3503 			break;
3504 
3505 		case USB_PORT_FEAT_C_SUSPEND:
3506 			/*
3507 			 * Clears the driver's internal Port Suspend Change
3508 			 * flag, which is set when resume signaling on the host
3509 			 * port is complete
3510 			 */
3511 			dev_dbg(hsotg->dev,
3512 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3513 			hsotg->flags.b.port_suspend_change = 0;
3514 			break;
3515 
3516 		case USB_PORT_FEAT_C_PORT_L1:
3517 			dev_dbg(hsotg->dev,
3518 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3519 			hsotg->flags.b.port_l1_change = 0;
3520 			break;
3521 
3522 		case USB_PORT_FEAT_C_OVER_CURRENT:
3523 			dev_dbg(hsotg->dev,
3524 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3525 			hsotg->flags.b.port_over_current_change = 0;
3526 			break;
3527 
3528 		default:
3529 			retval = -EINVAL;
3530 			dev_err(hsotg->dev,
3531 				"ClearPortFeature request %1xh unknown or unsupported\n",
3532 				wvalue);
3533 		}
3534 		break;
3535 
3536 	case GetHubDescriptor:
3537 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3538 		hub_desc = (struct usb_hub_descriptor *)buf;
3539 		hub_desc->bDescLength = 9;
3540 		hub_desc->bDescriptorType = USB_DT_HUB;
3541 		hub_desc->bNbrPorts = 1;
3542 		hub_desc->wHubCharacteristics =
3543 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3544 				    HUB_CHAR_INDV_PORT_OCPM);
3545 		hub_desc->bPwrOn2PwrGood = 1;
3546 		hub_desc->bHubContrCurrent = 0;
3547 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3548 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3549 		break;
3550 
3551 	case GetHubStatus:
3552 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3553 		memset(buf, 0, 4);
3554 		break;
3555 
3556 	case GetPortStatus:
3557 		dev_vdbg(hsotg->dev,
3558 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3559 			 hsotg->flags.d32);
3560 		if (!windex || windex > 1)
3561 			goto error;
3562 
3563 		port_status = 0;
3564 		if (hsotg->flags.b.port_connect_status_change)
3565 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3566 		if (hsotg->flags.b.port_enable_change)
3567 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3568 		if (hsotg->flags.b.port_suspend_change)
3569 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3570 		if (hsotg->flags.b.port_l1_change)
3571 			port_status |= USB_PORT_STAT_C_L1 << 16;
3572 		if (hsotg->flags.b.port_reset_change)
3573 			port_status |= USB_PORT_STAT_C_RESET << 16;
3574 		if (hsotg->flags.b.port_over_current_change) {
3575 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3576 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3577 		}
3578 
3579 		if (!hsotg->flags.b.port_connect_status) {
3580 			/*
3581 			 * The port is disconnected, which means the core is
3582 			 * either in device mode or it soon will be. Just
3583 			 * return 0's for the remainder of the port status
3584 			 * since the port register can't be read if the core
3585 			 * is in device mode.
3586 			 */
3587 			*(__le32 *)buf = cpu_to_le32(port_status);
3588 			break;
3589 		}
3590 
3591 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3592 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3593 
3594 		if (hprt0 & HPRT0_CONNSTS)
3595 			port_status |= USB_PORT_STAT_CONNECTION;
3596 		if (hprt0 & HPRT0_ENA)
3597 			port_status |= USB_PORT_STAT_ENABLE;
3598 		if (hprt0 & HPRT0_SUSP)
3599 			port_status |= USB_PORT_STAT_SUSPEND;
3600 		if (hprt0 & HPRT0_OVRCURRACT)
3601 			port_status |= USB_PORT_STAT_OVERCURRENT;
3602 		if (hprt0 & HPRT0_RST)
3603 			port_status |= USB_PORT_STAT_RESET;
3604 		if (hprt0 & HPRT0_PWR)
3605 			port_status |= USB_PORT_STAT_POWER;
3606 
3607 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3608 		if (speed == HPRT0_SPD_HIGH_SPEED)
3609 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3610 		else if (speed == HPRT0_SPD_LOW_SPEED)
3611 			port_status |= USB_PORT_STAT_LOW_SPEED;
3612 
3613 		if (hprt0 & HPRT0_TSTCTL_MASK)
3614 			port_status |= USB_PORT_STAT_TEST;
3615 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3616 
3617 		if (hsotg->params.dma_desc_fs_enable) {
3618 			/*
3619 			 * Enable descriptor DMA only if a full speed
3620 			 * device is connected.
3621 			 */
3622 			if (hsotg->new_connection &&
3623 			    ((port_status &
3624 			      (USB_PORT_STAT_CONNECTION |
3625 			       USB_PORT_STAT_HIGH_SPEED |
3626 			       USB_PORT_STAT_LOW_SPEED)) ==
3627 			       USB_PORT_STAT_CONNECTION)) {
3628 				u32 hcfg;
3629 
3630 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3631 				hsotg->params.dma_desc_enable = true;
3632 				hcfg = dwc2_readl(hsotg->regs + HCFG);
3633 				hcfg |= HCFG_DESCDMA;
3634 				dwc2_writel(hcfg, hsotg->regs + HCFG);
3635 				hsotg->new_connection = false;
3636 			}
3637 		}
3638 
3639 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3640 		*(__le32 *)buf = cpu_to_le32(port_status);
3641 		break;
3642 
3643 	case SetHubFeature:
3644 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3645 		/* No HUB features supported */
3646 		break;
3647 
3648 	case SetPortFeature:
3649 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3650 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3651 			goto error;
3652 
3653 		if (!hsotg->flags.b.port_connect_status) {
3654 			/*
3655 			 * The port is disconnected, which means the core is
3656 			 * either in device mode or it soon will be. Just
3657 			 * return without doing anything since the port
3658 			 * register can't be written if the core is in device
3659 			 * mode.
3660 			 */
3661 			break;
3662 		}
3663 
3664 		switch (wvalue) {
3665 		case USB_PORT_FEAT_SUSPEND:
3666 			dev_dbg(hsotg->dev,
3667 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3668 			if (windex != hsotg->otg_port)
3669 				goto error;
3670 			dwc2_port_suspend(hsotg, windex);
3671 			break;
3672 
3673 		case USB_PORT_FEAT_POWER:
3674 			dev_dbg(hsotg->dev,
3675 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3676 			hprt0 = dwc2_read_hprt0(hsotg);
3677 			hprt0 |= HPRT0_PWR;
3678 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3679 			break;
3680 
3681 		case USB_PORT_FEAT_RESET:
3682 			hprt0 = dwc2_read_hprt0(hsotg);
3683 			dev_dbg(hsotg->dev,
3684 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3685 			pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3686 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3687 			dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3688 			/* ??? Original driver does this */
3689 			dwc2_writel(0, hsotg->regs + PCGCTL);
3690 
3691 			hprt0 = dwc2_read_hprt0(hsotg);
3692 			/* Clear suspend bit if resetting from suspend state */
3693 			hprt0 &= ~HPRT0_SUSP;
3694 
3695 			/*
3696 			 * When B-Host the Port reset bit is set in the Start
3697 			 * HCD Callback function, so that the reset is started
3698 			 * within 1ms of the HNP success interrupt
3699 			 */
3700 			if (!dwc2_hcd_is_b_host(hsotg)) {
3701 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3702 				dev_dbg(hsotg->dev,
3703 					"In host mode, hprt0=%08x\n", hprt0);
3704 				dwc2_writel(hprt0, hsotg->regs + HPRT0);
3705 			}
3706 
3707 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3708 			msleep(50);
3709 			hprt0 &= ~HPRT0_RST;
3710 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3711 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3712 			break;
3713 
3714 		case USB_PORT_FEAT_INDICATOR:
3715 			dev_dbg(hsotg->dev,
3716 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3717 			/* Not supported */
3718 			break;
3719 
3720 		case USB_PORT_FEAT_TEST:
3721 			hprt0 = dwc2_read_hprt0(hsotg);
3722 			dev_dbg(hsotg->dev,
3723 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3724 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3725 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3726 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3727 			break;
3728 
3729 		default:
3730 			retval = -EINVAL;
3731 			dev_err(hsotg->dev,
3732 				"SetPortFeature %1xh unknown or unsupported\n",
3733 				wvalue);
3734 			break;
3735 		}
3736 		break;
3737 
3738 	default:
3739 error:
3740 		retval = -EINVAL;
3741 		dev_dbg(hsotg->dev,
3742 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3743 			typereq, windex, wvalue);
3744 		break;
3745 	}
3746 
3747 	return retval;
3748 }
3749 
3750 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3751 {
3752 	int retval;
3753 
3754 	if (port != 1)
3755 		return -EINVAL;
3756 
3757 	retval = (hsotg->flags.b.port_connect_status_change ||
3758 		  hsotg->flags.b.port_reset_change ||
3759 		  hsotg->flags.b.port_enable_change ||
3760 		  hsotg->flags.b.port_suspend_change ||
3761 		  hsotg->flags.b.port_over_current_change);
3762 
3763 	if (retval) {
3764 		dev_dbg(hsotg->dev,
3765 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3766 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3767 			hsotg->flags.b.port_connect_status_change);
3768 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3769 			hsotg->flags.b.port_reset_change);
3770 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3771 			hsotg->flags.b.port_enable_change);
3772 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3773 			hsotg->flags.b.port_suspend_change);
3774 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3775 			hsotg->flags.b.port_over_current_change);
3776 	}
3777 
3778 	return retval;
3779 }
3780 
3781 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3782 {
3783 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3784 
3785 #ifdef DWC2_DEBUG_SOF
3786 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3787 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3788 #endif
3789 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3790 }
3791 
3792 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3793 {
3794 	u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3795 	u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3796 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3797 	unsigned int us_per_frame;
3798 	unsigned int frame_number;
3799 	unsigned int remaining;
3800 	unsigned int interval;
3801 	unsigned int phy_clks;
3802 
3803 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3804 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3805 
3806 	/* Extract fields */
3807 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3808 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3809 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3810 
3811 	/*
3812 	 * Number of phy clocks since the last tick of the frame number after
3813 	 * "us" has passed.
3814 	 */
3815 	phy_clks = (interval - remaining) +
3816 		   DIV_ROUND_UP(interval * us, us_per_frame);
3817 
3818 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3819 }
3820 
3821 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3822 {
3823 	return hsotg->op_state == OTG_STATE_B_HOST;
3824 }
3825 
3826 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3827 					       int iso_desc_count,
3828 					       gfp_t mem_flags)
3829 {
3830 	struct dwc2_hcd_urb *urb;
3831 	u32 size = sizeof(*urb) + iso_desc_count *
3832 		   sizeof(struct dwc2_hcd_iso_packet_desc);
3833 
3834 	urb = kzalloc(size, mem_flags);
3835 	if (urb)
3836 		urb->packet_count = iso_desc_count;
3837 	return urb;
3838 }
3839 
3840 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3841 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3842 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3843 {
3844 	if (dbg_perio() ||
3845 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3846 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3847 		dev_vdbg(hsotg->dev,
3848 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3849 			 dev_addr, ep_num, ep_dir, ep_type, mps);
3850 	urb->pipe_info.dev_addr = dev_addr;
3851 	urb->pipe_info.ep_num = ep_num;
3852 	urb->pipe_info.pipe_type = ep_type;
3853 	urb->pipe_info.pipe_dir = ep_dir;
3854 	urb->pipe_info.mps = mps;
3855 }
3856 
3857 /*
3858  * NOTE: This function will be removed once the peripheral controller code
3859  * is integrated and the driver is stable
3860  */
3861 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3862 {
3863 #ifdef DEBUG
3864 	struct dwc2_host_chan *chan;
3865 	struct dwc2_hcd_urb *urb;
3866 	struct dwc2_qtd *qtd;
3867 	int num_channels;
3868 	u32 np_tx_status;
3869 	u32 p_tx_status;
3870 	int i;
3871 
3872 	num_channels = hsotg->params.host_channels;
3873 	dev_dbg(hsotg->dev, "\n");
3874 	dev_dbg(hsotg->dev,
3875 		"************************************************************\n");
3876 	dev_dbg(hsotg->dev, "HCD State:\n");
3877 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3878 
3879 	for (i = 0; i < num_channels; i++) {
3880 		chan = hsotg->hc_ptr_array[i];
3881 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3882 		dev_dbg(hsotg->dev,
3883 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3884 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3885 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3886 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3887 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3888 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3889 			chan->data_pid_start);
3890 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3891 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3892 			chan->xfer_started);
3893 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3894 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3895 			(unsigned long)chan->xfer_dma);
3896 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3897 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3898 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3899 			chan->halt_on_queue);
3900 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3901 			chan->halt_pending);
3902 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3903 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3904 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3905 			chan->complete_split);
3906 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3907 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3908 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3909 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3910 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3911 
3912 		if (chan->xfer_started) {
3913 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3914 
3915 			hfnum = dwc2_readl(hsotg->regs + HFNUM);
3916 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3917 			hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3918 			hcint = dwc2_readl(hsotg->regs + HCINT(i));
3919 			hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3920 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3921 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3922 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3923 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3924 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3925 		}
3926 
3927 		if (!(chan->xfer_started && chan->qh))
3928 			continue;
3929 
3930 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3931 			if (!qtd->in_process)
3932 				break;
3933 			urb = qtd->urb;
3934 			dev_dbg(hsotg->dev, "    URB Info:\n");
3935 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3936 				qtd, urb);
3937 			if (urb) {
3938 				dev_dbg(hsotg->dev,
3939 					"      Dev: %d, EP: %d %s\n",
3940 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3941 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3942 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3943 					"IN" : "OUT");
3944 				dev_dbg(hsotg->dev,
3945 					"      Max packet size: %d\n",
3946 					dwc2_hcd_get_mps(&urb->pipe_info));
3947 				dev_dbg(hsotg->dev,
3948 					"      transfer_buffer: %p\n",
3949 					urb->buf);
3950 				dev_dbg(hsotg->dev,
3951 					"      transfer_dma: %08lx\n",
3952 					(unsigned long)urb->dma);
3953 				dev_dbg(hsotg->dev,
3954 					"      transfer_buffer_length: %d\n",
3955 					urb->length);
3956 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3957 					urb->actual_length);
3958 			}
3959 		}
3960 	}
3961 
3962 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3963 		hsotg->non_periodic_channels);
3964 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3965 		hsotg->periodic_channels);
3966 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3967 	np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3968 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3969 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3970 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3971 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3972 	p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3973 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3974 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3975 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3976 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3977 	dwc2_hcd_dump_frrem(hsotg);
3978 	dwc2_dump_global_registers(hsotg);
3979 	dwc2_dump_host_registers(hsotg);
3980 	dev_dbg(hsotg->dev,
3981 		"************************************************************\n");
3982 	dev_dbg(hsotg->dev, "\n");
3983 #endif
3984 }
3985 
3986 /*
3987  * NOTE: This function will be removed once the peripheral controller code
3988  * is integrated and the driver is stable
3989  */
3990 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
3991 {
3992 #ifdef DWC2_DUMP_FRREM
3993 	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
3994 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3995 		hsotg->frrem_samples, hsotg->frrem_accum,
3996 		hsotg->frrem_samples > 0 ?
3997 		hsotg->frrem_accum / hsotg->frrem_samples : 0);
3998 	dev_dbg(hsotg->dev, "\n");
3999 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
4000 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4001 		hsotg->hfnum_7_samples,
4002 		hsotg->hfnum_7_frrem_accum,
4003 		hsotg->hfnum_7_samples > 0 ?
4004 		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
4005 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
4006 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4007 		hsotg->hfnum_0_samples,
4008 		hsotg->hfnum_0_frrem_accum,
4009 		hsotg->hfnum_0_samples > 0 ?
4010 		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
4011 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
4012 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4013 		hsotg->hfnum_other_samples,
4014 		hsotg->hfnum_other_frrem_accum,
4015 		hsotg->hfnum_other_samples > 0 ?
4016 		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
4017 		0);
4018 	dev_dbg(hsotg->dev, "\n");
4019 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
4020 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4021 		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
4022 		hsotg->hfnum_7_samples_a > 0 ?
4023 		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
4024 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
4025 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4026 		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
4027 		hsotg->hfnum_0_samples_a > 0 ?
4028 		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
4029 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
4030 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4031 		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
4032 		hsotg->hfnum_other_samples_a > 0 ?
4033 		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
4034 		: 0);
4035 	dev_dbg(hsotg->dev, "\n");
4036 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
4037 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4038 		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
4039 		hsotg->hfnum_7_samples_b > 0 ?
4040 		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
4041 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
4042 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4043 		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
4044 		(hsotg->hfnum_0_samples_b > 0) ?
4045 		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
4046 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
4047 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4048 		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
4049 		(hsotg->hfnum_other_samples_b > 0) ?
4050 		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
4051 		: 0);
4052 #endif
4053 }
4054 
4055 struct wrapper_priv_data {
4056 	struct dwc2_hsotg *hsotg;
4057 };
4058 
4059 /* Gets the dwc2_hsotg from a usb_hcd */
4060 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4061 {
4062 	struct wrapper_priv_data *p;
4063 
4064 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4065 	return p->hsotg;
4066 }
4067 
4068 /**
4069  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4070  *
4071  * This will get the dwc2_tt structure (and ttport) associated with the given
4072  * context (which is really just a struct urb pointer).
4073  *
4074  * The first time this is called for a given TT we allocate memory for our
4075  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4076  * then the refcount for the structure will go to 0 and we'll free it.
4077  *
4078  * @hsotg:     The HCD state structure for the DWC OTG controller.
4079  * @qh:        The QH structure.
4080  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4081  * @mem_flags: Flags for allocating memory.
4082  * @ttport:    We'll return this device's port number here.  That's used to
4083  *             reference into the bitmap if we're on a multi_tt hub.
4084  *
4085  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4086  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4087  */
4088 
4089 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4090 				      gfp_t mem_flags, int *ttport)
4091 {
4092 	struct urb *urb = context;
4093 	struct dwc2_tt *dwc_tt = NULL;
4094 
4095 	if (urb->dev->tt) {
4096 		*ttport = urb->dev->ttport;
4097 
4098 		dwc_tt = urb->dev->tt->hcpriv;
4099 		if (!dwc_tt) {
4100 			size_t bitmap_size;
4101 
4102 			/*
4103 			 * For single_tt we need one schedule.  For multi_tt
4104 			 * we need one per port.
4105 			 */
4106 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4107 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4108 			if (urb->dev->tt->multi)
4109 				bitmap_size *= urb->dev->tt->hub->maxchild;
4110 
4111 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4112 					 mem_flags);
4113 			if (!dwc_tt)
4114 				return NULL;
4115 
4116 			dwc_tt->usb_tt = urb->dev->tt;
4117 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4118 		}
4119 
4120 		dwc_tt->refcount++;
4121 	}
4122 
4123 	return dwc_tt;
4124 }
4125 
4126 /**
4127  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4128  *
4129  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4130  * of the structure are done.
4131  *
4132  * It's OK to call this with NULL.
4133  *
4134  * @hsotg:     The HCD state structure for the DWC OTG controller.
4135  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4136  */
4137 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4138 {
4139 	/* Model kfree and make put of NULL a no-op */
4140 	if (!dwc_tt)
4141 		return;
4142 
4143 	WARN_ON(dwc_tt->refcount < 1);
4144 
4145 	dwc_tt->refcount--;
4146 	if (!dwc_tt->refcount) {
4147 		dwc_tt->usb_tt->hcpriv = NULL;
4148 		kfree(dwc_tt);
4149 	}
4150 }
4151 
4152 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4153 {
4154 	struct urb *urb = context;
4155 
4156 	return urb->dev->speed;
4157 }
4158 
4159 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4160 					struct urb *urb)
4161 {
4162 	struct usb_bus *bus = hcd_to_bus(hcd);
4163 
4164 	if (urb->interval)
4165 		bus->bandwidth_allocated += bw / urb->interval;
4166 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4167 		bus->bandwidth_isoc_reqs++;
4168 	else
4169 		bus->bandwidth_int_reqs++;
4170 }
4171 
4172 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4173 				    struct urb *urb)
4174 {
4175 	struct usb_bus *bus = hcd_to_bus(hcd);
4176 
4177 	if (urb->interval)
4178 		bus->bandwidth_allocated -= bw / urb->interval;
4179 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4180 		bus->bandwidth_isoc_reqs--;
4181 	else
4182 		bus->bandwidth_int_reqs--;
4183 }
4184 
4185 /*
4186  * Sets the final status of an URB and returns it to the upper layer. Any
4187  * required cleanup of the URB is performed.
4188  *
4189  * Must be called with interrupt disabled and spinlock held
4190  */
4191 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4192 			int status)
4193 {
4194 	struct urb *urb;
4195 	int i;
4196 
4197 	if (!qtd) {
4198 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4199 		return;
4200 	}
4201 
4202 	if (!qtd->urb) {
4203 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4204 		return;
4205 	}
4206 
4207 	urb = qtd->urb->priv;
4208 	if (!urb) {
4209 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4210 		return;
4211 	}
4212 
4213 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4214 
4215 	if (dbg_urb(urb))
4216 		dev_vdbg(hsotg->dev,
4217 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4218 			 __func__, urb, usb_pipedevice(urb->pipe),
4219 			 usb_pipeendpoint(urb->pipe),
4220 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4221 			 urb->actual_length);
4222 
4223 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4224 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4225 		for (i = 0; i < urb->number_of_packets; ++i) {
4226 			urb->iso_frame_desc[i].actual_length =
4227 				dwc2_hcd_urb_get_iso_desc_actual_length(
4228 						qtd->urb, i);
4229 			urb->iso_frame_desc[i].status =
4230 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4231 		}
4232 	}
4233 
4234 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4235 		for (i = 0; i < urb->number_of_packets; i++)
4236 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4237 				 i, urb->iso_frame_desc[i].status);
4238 	}
4239 
4240 	urb->status = status;
4241 	if (!status) {
4242 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4243 		    urb->actual_length < urb->transfer_buffer_length)
4244 			urb->status = -EREMOTEIO;
4245 	}
4246 
4247 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4248 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4249 		struct usb_host_endpoint *ep = urb->ep;
4250 
4251 		if (ep)
4252 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4253 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4254 					urb);
4255 	}
4256 
4257 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4258 	urb->hcpriv = NULL;
4259 	kfree(qtd->urb);
4260 	qtd->urb = NULL;
4261 
4262 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4263 }
4264 
4265 /*
4266  * Work queue function for starting the HCD when A-Cable is connected
4267  */
4268 static void dwc2_hcd_start_func(struct work_struct *work)
4269 {
4270 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4271 						start_work.work);
4272 
4273 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4274 	dwc2_host_start(hsotg);
4275 }
4276 
4277 /*
4278  * Reset work queue function
4279  */
4280 static void dwc2_hcd_reset_func(struct work_struct *work)
4281 {
4282 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4283 						reset_work.work);
4284 	unsigned long flags;
4285 	u32 hprt0;
4286 
4287 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4288 
4289 	spin_lock_irqsave(&hsotg->lock, flags);
4290 
4291 	hprt0 = dwc2_read_hprt0(hsotg);
4292 	hprt0 &= ~HPRT0_RST;
4293 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
4294 	hsotg->flags.b.port_reset_change = 1;
4295 
4296 	spin_unlock_irqrestore(&hsotg->lock, flags);
4297 }
4298 
4299 /*
4300  * =========================================================================
4301  *  Linux HC Driver Functions
4302  * =========================================================================
4303  */
4304 
4305 /*
4306  * Initializes the DWC_otg controller and its root hub and prepares it for host
4307  * mode operation. Activates the root port. Returns 0 on success and a negative
4308  * error code on failure.
4309  */
4310 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4311 {
4312 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4313 	struct usb_bus *bus = hcd_to_bus(hcd);
4314 	unsigned long flags;
4315 
4316 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4317 
4318 	spin_lock_irqsave(&hsotg->lock, flags);
4319 	hsotg->lx_state = DWC2_L0;
4320 	hcd->state = HC_STATE_RUNNING;
4321 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4322 
4323 	if (dwc2_is_device_mode(hsotg)) {
4324 		spin_unlock_irqrestore(&hsotg->lock, flags);
4325 		return 0;	/* why 0 ?? */
4326 	}
4327 
4328 	dwc2_hcd_reinit(hsotg);
4329 
4330 	/* Initialize and connect root hub if one is not already attached */
4331 	if (bus->root_hub) {
4332 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4333 		/* Inform the HUB driver to resume */
4334 		usb_hcd_resume_root_hub(hcd);
4335 	}
4336 
4337 	spin_unlock_irqrestore(&hsotg->lock, flags);
4338 	return 0;
4339 }
4340 
4341 /*
4342  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4343  * stopped.
4344  */
4345 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4346 {
4347 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4348 	unsigned long flags;
4349 
4350 	/* Turn off all host-specific interrupts */
4351 	dwc2_disable_host_interrupts(hsotg);
4352 
4353 	/* Wait for interrupt processing to finish */
4354 	synchronize_irq(hcd->irq);
4355 
4356 	spin_lock_irqsave(&hsotg->lock, flags);
4357 	/* Ensure hcd is disconnected */
4358 	dwc2_hcd_disconnect(hsotg, true);
4359 	dwc2_hcd_stop(hsotg);
4360 	hsotg->lx_state = DWC2_L3;
4361 	hcd->state = HC_STATE_HALT;
4362 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4363 	spin_unlock_irqrestore(&hsotg->lock, flags);
4364 
4365 	usleep_range(1000, 3000);
4366 }
4367 
4368 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4369 {
4370 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4371 	unsigned long flags;
4372 	int ret = 0;
4373 	u32 hprt0;
4374 
4375 	spin_lock_irqsave(&hsotg->lock, flags);
4376 
4377 	if (hsotg->lx_state != DWC2_L0)
4378 		goto unlock;
4379 
4380 	if (!HCD_HW_ACCESSIBLE(hcd))
4381 		goto unlock;
4382 
4383 	if (!hsotg->params.hibernation)
4384 		goto skip_power_saving;
4385 
4386 	/*
4387 	 * Drive USB suspend and disable port Power
4388 	 * if usb bus is not suspended.
4389 	 */
4390 	if (!hsotg->bus_suspended) {
4391 		hprt0 = dwc2_read_hprt0(hsotg);
4392 		hprt0 |= HPRT0_SUSP;
4393 		hprt0 &= ~HPRT0_PWR;
4394 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
4395 	}
4396 
4397 	/* Enter hibernation */
4398 	ret = dwc2_enter_hibernation(hsotg);
4399 	if (ret) {
4400 		if (ret != -ENOTSUPP)
4401 			dev_err(hsotg->dev,
4402 				"enter hibernation failed\n");
4403 		goto skip_power_saving;
4404 	}
4405 
4406 	/* Ask phy to be suspended */
4407 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4408 		spin_unlock_irqrestore(&hsotg->lock, flags);
4409 		usb_phy_set_suspend(hsotg->uphy, true);
4410 		spin_lock_irqsave(&hsotg->lock, flags);
4411 	}
4412 
4413 	/* After entering hibernation, hardware is no more accessible */
4414 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4415 
4416 skip_power_saving:
4417 	hsotg->lx_state = DWC2_L2;
4418 unlock:
4419 	spin_unlock_irqrestore(&hsotg->lock, flags);
4420 
4421 	return ret;
4422 }
4423 
4424 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4425 {
4426 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4427 	unsigned long flags;
4428 	int ret = 0;
4429 
4430 	spin_lock_irqsave(&hsotg->lock, flags);
4431 
4432 	if (hsotg->lx_state != DWC2_L2)
4433 		goto unlock;
4434 
4435 	if (!hsotg->params.hibernation) {
4436 		hsotg->lx_state = DWC2_L0;
4437 		goto unlock;
4438 	}
4439 
4440 	/*
4441 	 * Set HW accessible bit before powering on the controller
4442 	 * since an interrupt may rise.
4443 	 */
4444 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4445 
4446 	/*
4447 	 * Enable power if not already done.
4448 	 * This must not be spinlocked since duration
4449 	 * of this call is unknown.
4450 	 */
4451 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4452 		spin_unlock_irqrestore(&hsotg->lock, flags);
4453 		usb_phy_set_suspend(hsotg->uphy, false);
4454 		spin_lock_irqsave(&hsotg->lock, flags);
4455 	}
4456 
4457 	/* Exit hibernation */
4458 	ret = dwc2_exit_hibernation(hsotg, true);
4459 	if (ret && (ret != -ENOTSUPP))
4460 		dev_err(hsotg->dev, "exit hibernation failed\n");
4461 
4462 	hsotg->lx_state = DWC2_L0;
4463 
4464 	spin_unlock_irqrestore(&hsotg->lock, flags);
4465 
4466 	if (hsotg->bus_suspended) {
4467 		spin_lock_irqsave(&hsotg->lock, flags);
4468 		hsotg->flags.b.port_suspend_change = 1;
4469 		spin_unlock_irqrestore(&hsotg->lock, flags);
4470 		dwc2_port_resume(hsotg);
4471 	} else {
4472 		/* Wait for controller to correctly update D+/D- level */
4473 		usleep_range(3000, 5000);
4474 
4475 		/*
4476 		 * Clear Port Enable and Port Status changes.
4477 		 * Enable Port Power.
4478 		 */
4479 		dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4480 				HPRT0_ENACHG, hsotg->regs + HPRT0);
4481 		/* Wait for controller to detect Port Connect */
4482 		usleep_range(5000, 7000);
4483 	}
4484 
4485 	return ret;
4486 unlock:
4487 	spin_unlock_irqrestore(&hsotg->lock, flags);
4488 
4489 	return ret;
4490 }
4491 
4492 /* Returns the current frame number */
4493 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4494 {
4495 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4496 
4497 	return dwc2_hcd_get_frame_number(hsotg);
4498 }
4499 
4500 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4501 			       char *fn_name)
4502 {
4503 #ifdef VERBOSE_DEBUG
4504 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4505 	char *pipetype;
4506 	char *speed;
4507 
4508 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4509 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4510 		 usb_pipedevice(urb->pipe));
4511 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4512 		 usb_pipeendpoint(urb->pipe),
4513 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4514 
4515 	switch (usb_pipetype(urb->pipe)) {
4516 	case PIPE_CONTROL:
4517 		pipetype = "CONTROL";
4518 		break;
4519 	case PIPE_BULK:
4520 		pipetype = "BULK";
4521 		break;
4522 	case PIPE_INTERRUPT:
4523 		pipetype = "INTERRUPT";
4524 		break;
4525 	case PIPE_ISOCHRONOUS:
4526 		pipetype = "ISOCHRONOUS";
4527 		break;
4528 	}
4529 
4530 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4531 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4532 		 "IN" : "OUT");
4533 
4534 	switch (urb->dev->speed) {
4535 	case USB_SPEED_HIGH:
4536 		speed = "HIGH";
4537 		break;
4538 	case USB_SPEED_FULL:
4539 		speed = "FULL";
4540 		break;
4541 	case USB_SPEED_LOW:
4542 		speed = "LOW";
4543 		break;
4544 	default:
4545 		speed = "UNKNOWN";
4546 		break;
4547 	}
4548 
4549 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4550 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4551 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4552 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4553 		 urb->transfer_buffer_length);
4554 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4555 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4556 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4557 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4558 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4559 
4560 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4561 		int i;
4562 
4563 		for (i = 0; i < urb->number_of_packets; i++) {
4564 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4565 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4566 				 urb->iso_frame_desc[i].offset,
4567 				 urb->iso_frame_desc[i].length);
4568 		}
4569 	}
4570 #endif
4571 }
4572 
4573 /*
4574  * Starts processing a USB transfer request specified by a USB Request Block
4575  * (URB). mem_flags indicates the type of memory allocation to use while
4576  * processing this URB.
4577  */
4578 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4579 				 gfp_t mem_flags)
4580 {
4581 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4582 	struct usb_host_endpoint *ep = urb->ep;
4583 	struct dwc2_hcd_urb *dwc2_urb;
4584 	int i;
4585 	int retval;
4586 	int alloc_bandwidth = 0;
4587 	u8 ep_type = 0;
4588 	u32 tflags = 0;
4589 	void *buf;
4590 	unsigned long flags;
4591 	struct dwc2_qh *qh;
4592 	bool qh_allocated = false;
4593 	struct dwc2_qtd *qtd;
4594 
4595 	if (dbg_urb(urb)) {
4596 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4597 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4598 	}
4599 
4600 	if (!ep)
4601 		return -EINVAL;
4602 
4603 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4604 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4605 		spin_lock_irqsave(&hsotg->lock, flags);
4606 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4607 			alloc_bandwidth = 1;
4608 		spin_unlock_irqrestore(&hsotg->lock, flags);
4609 	}
4610 
4611 	switch (usb_pipetype(urb->pipe)) {
4612 	case PIPE_CONTROL:
4613 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4614 		break;
4615 	case PIPE_ISOCHRONOUS:
4616 		ep_type = USB_ENDPOINT_XFER_ISOC;
4617 		break;
4618 	case PIPE_BULK:
4619 		ep_type = USB_ENDPOINT_XFER_BULK;
4620 		break;
4621 	case PIPE_INTERRUPT:
4622 		ep_type = USB_ENDPOINT_XFER_INT;
4623 		break;
4624 	}
4625 
4626 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4627 				      mem_flags);
4628 	if (!dwc2_urb)
4629 		return -ENOMEM;
4630 
4631 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4632 				  usb_pipeendpoint(urb->pipe), ep_type,
4633 				  usb_pipein(urb->pipe),
4634 				  usb_maxpacket(urb->dev, urb->pipe,
4635 						!(usb_pipein(urb->pipe))));
4636 
4637 	buf = urb->transfer_buffer;
4638 
4639 	if (hcd->self.uses_dma) {
4640 		if (!buf && (urb->transfer_dma & 3)) {
4641 			dev_err(hsotg->dev,
4642 				"%s: unaligned transfer with no transfer_buffer",
4643 				__func__);
4644 			retval = -EINVAL;
4645 			goto fail0;
4646 		}
4647 	}
4648 
4649 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4650 		tflags |= URB_GIVEBACK_ASAP;
4651 	if (urb->transfer_flags & URB_ZERO_PACKET)
4652 		tflags |= URB_SEND_ZERO_PACKET;
4653 
4654 	dwc2_urb->priv = urb;
4655 	dwc2_urb->buf = buf;
4656 	dwc2_urb->dma = urb->transfer_dma;
4657 	dwc2_urb->length = urb->transfer_buffer_length;
4658 	dwc2_urb->setup_packet = urb->setup_packet;
4659 	dwc2_urb->setup_dma = urb->setup_dma;
4660 	dwc2_urb->flags = tflags;
4661 	dwc2_urb->interval = urb->interval;
4662 	dwc2_urb->status = -EINPROGRESS;
4663 
4664 	for (i = 0; i < urb->number_of_packets; ++i)
4665 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4666 						 urb->iso_frame_desc[i].offset,
4667 						 urb->iso_frame_desc[i].length);
4668 
4669 	urb->hcpriv = dwc2_urb;
4670 	qh = (struct dwc2_qh *)ep->hcpriv;
4671 	/* Create QH for the endpoint if it doesn't exist */
4672 	if (!qh) {
4673 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4674 		if (!qh) {
4675 			retval = -ENOMEM;
4676 			goto fail0;
4677 		}
4678 		ep->hcpriv = qh;
4679 		qh_allocated = true;
4680 	}
4681 
4682 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4683 	if (!qtd) {
4684 		retval = -ENOMEM;
4685 		goto fail1;
4686 	}
4687 
4688 	spin_lock_irqsave(&hsotg->lock, flags);
4689 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4690 	if (retval)
4691 		goto fail2;
4692 
4693 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4694 	if (retval)
4695 		goto fail3;
4696 
4697 	if (alloc_bandwidth) {
4698 		dwc2_allocate_bus_bandwidth(hcd,
4699 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4700 				urb);
4701 	}
4702 
4703 	spin_unlock_irqrestore(&hsotg->lock, flags);
4704 
4705 	return 0;
4706 
4707 fail3:
4708 	dwc2_urb->priv = NULL;
4709 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4710 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4711 		qh->channel->qh = NULL;
4712 fail2:
4713 	spin_unlock_irqrestore(&hsotg->lock, flags);
4714 	urb->hcpriv = NULL;
4715 	kfree(qtd);
4716 	qtd = NULL;
4717 fail1:
4718 	if (qh_allocated) {
4719 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4720 
4721 		ep->hcpriv = NULL;
4722 		dwc2_hcd_qh_unlink(hsotg, qh);
4723 		/* Free each QTD in the QH's QTD list */
4724 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4725 					 qtd_list_entry)
4726 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4727 		dwc2_hcd_qh_free(hsotg, qh);
4728 	}
4729 fail0:
4730 	kfree(dwc2_urb);
4731 
4732 	return retval;
4733 }
4734 
4735 /*
4736  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4737  */
4738 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4739 				 int status)
4740 {
4741 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4742 	int rc;
4743 	unsigned long flags;
4744 
4745 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4746 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4747 
4748 	spin_lock_irqsave(&hsotg->lock, flags);
4749 
4750 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4751 	if (rc)
4752 		goto out;
4753 
4754 	if (!urb->hcpriv) {
4755 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4756 		goto out;
4757 	}
4758 
4759 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4760 
4761 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4762 
4763 	kfree(urb->hcpriv);
4764 	urb->hcpriv = NULL;
4765 
4766 	/* Higher layer software sets URB status */
4767 	spin_unlock(&hsotg->lock);
4768 	usb_hcd_giveback_urb(hcd, urb, status);
4769 	spin_lock(&hsotg->lock);
4770 
4771 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4772 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4773 out:
4774 	spin_unlock_irqrestore(&hsotg->lock, flags);
4775 
4776 	return rc;
4777 }
4778 
4779 /*
4780  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4781  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4782  * must already be dequeued.
4783  */
4784 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4785 				       struct usb_host_endpoint *ep)
4786 {
4787 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4788 
4789 	dev_dbg(hsotg->dev,
4790 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4791 		ep->desc.bEndpointAddress, ep->hcpriv);
4792 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4793 }
4794 
4795 /*
4796  * Resets endpoint specific parameter values, in current version used to reset
4797  * the data toggle (as a WA). This function can be called from usb_clear_halt
4798  * routine.
4799  */
4800 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4801 				     struct usb_host_endpoint *ep)
4802 {
4803 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4804 	unsigned long flags;
4805 
4806 	dev_dbg(hsotg->dev,
4807 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4808 		ep->desc.bEndpointAddress);
4809 
4810 	spin_lock_irqsave(&hsotg->lock, flags);
4811 	dwc2_hcd_endpoint_reset(hsotg, ep);
4812 	spin_unlock_irqrestore(&hsotg->lock, flags);
4813 }
4814 
4815 /*
4816  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4817  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4818  * interrupt.
4819  *
4820  * This function is called by the USB core when an interrupt occurs
4821  */
4822 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4823 {
4824 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4825 
4826 	return dwc2_handle_hcd_intr(hsotg);
4827 }
4828 
4829 /*
4830  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4831  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4832  * is the status change indicator for the single root port. Returns 1 if either
4833  * change indicator is 1, otherwise returns 0.
4834  */
4835 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4836 {
4837 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4838 
4839 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4840 	return buf[0] != 0;
4841 }
4842 
4843 /* Handles hub class-specific requests */
4844 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4845 				 u16 windex, char *buf, u16 wlength)
4846 {
4847 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4848 					  wvalue, windex, buf, wlength);
4849 	return retval;
4850 }
4851 
4852 /* Handles hub TT buffer clear completions */
4853 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4854 					       struct usb_host_endpoint *ep)
4855 {
4856 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4857 	struct dwc2_qh *qh;
4858 	unsigned long flags;
4859 
4860 	qh = ep->hcpriv;
4861 	if (!qh)
4862 		return;
4863 
4864 	spin_lock_irqsave(&hsotg->lock, flags);
4865 	qh->tt_buffer_dirty = 0;
4866 
4867 	if (hsotg->flags.b.port_connect_status)
4868 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4869 
4870 	spin_unlock_irqrestore(&hsotg->lock, flags);
4871 }
4872 
4873 /*
4874  * HPRT0_SPD_HIGH_SPEED: high speed
4875  * HPRT0_SPD_FULL_SPEED: full speed
4876  */
4877 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4878 {
4879 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4880 
4881 	if (hsotg->params.speed == speed)
4882 		return;
4883 
4884 	hsotg->params.speed = speed;
4885 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4886 }
4887 
4888 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4889 {
4890 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4891 
4892 	if (!hsotg->params.change_speed_quirk)
4893 		return;
4894 
4895 	/*
4896 	 * On removal, set speed to default high-speed.
4897 	 */
4898 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4899 	    udev->parent->speed < USB_SPEED_HIGH) {
4900 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4901 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4902 	}
4903 }
4904 
4905 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4906 {
4907 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4908 
4909 	if (!hsotg->params.change_speed_quirk)
4910 		return 0;
4911 
4912 	if (udev->speed == USB_SPEED_HIGH) {
4913 		dev_info(hsotg->dev, "Set speed to high-speed\n");
4914 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4915 	} else if ((udev->speed == USB_SPEED_FULL ||
4916 				udev->speed == USB_SPEED_LOW)) {
4917 		/*
4918 		 * Change speed setting to full-speed if there's
4919 		 * a full-speed or low-speed device plugged in.
4920 		 */
4921 		dev_info(hsotg->dev, "Set speed to full-speed\n");
4922 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4923 	}
4924 
4925 	return 0;
4926 }
4927 
4928 static struct hc_driver dwc2_hc_driver = {
4929 	.description = "dwc2_hsotg",
4930 	.product_desc = "DWC OTG Controller",
4931 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4932 
4933 	.irq = _dwc2_hcd_irq,
4934 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4935 
4936 	.start = _dwc2_hcd_start,
4937 	.stop = _dwc2_hcd_stop,
4938 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4939 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4940 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4941 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4942 	.get_frame_number = _dwc2_hcd_get_frame_number,
4943 
4944 	.hub_status_data = _dwc2_hcd_hub_status_data,
4945 	.hub_control = _dwc2_hcd_hub_control,
4946 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4947 
4948 	.bus_suspend = _dwc2_hcd_suspend,
4949 	.bus_resume = _dwc2_hcd_resume,
4950 
4951 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4952 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4953 };
4954 
4955 /*
4956  * Frees secondary storage associated with the dwc2_hsotg structure contained
4957  * in the struct usb_hcd field
4958  */
4959 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4960 {
4961 	u32 ahbcfg;
4962 	u32 dctl;
4963 	int i;
4964 
4965 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4966 
4967 	/* Free memory for QH/QTD lists */
4968 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4969 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4970 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4971 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4972 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4973 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4974 
4975 	/* Free memory for the host channels */
4976 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4977 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4978 
4979 		if (chan) {
4980 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4981 				i, chan);
4982 			hsotg->hc_ptr_array[i] = NULL;
4983 			kfree(chan);
4984 		}
4985 	}
4986 
4987 	if (hsotg->params.host_dma) {
4988 		if (hsotg->status_buf) {
4989 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4990 					  hsotg->status_buf,
4991 					  hsotg->status_buf_dma);
4992 			hsotg->status_buf = NULL;
4993 		}
4994 	} else {
4995 		kfree(hsotg->status_buf);
4996 		hsotg->status_buf = NULL;
4997 	}
4998 
4999 	ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
5000 
5001 	/* Disable all interrupts */
5002 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5003 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
5004 	dwc2_writel(0, hsotg->regs + GINTMSK);
5005 
5006 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5007 		dctl = dwc2_readl(hsotg->regs + DCTL);
5008 		dctl |= DCTL_SFTDISCON;
5009 		dwc2_writel(dctl, hsotg->regs + DCTL);
5010 	}
5011 
5012 	if (hsotg->wq_otg) {
5013 		if (!cancel_work_sync(&hsotg->wf_otg))
5014 			flush_workqueue(hsotg->wq_otg);
5015 		destroy_workqueue(hsotg->wq_otg);
5016 	}
5017 
5018 	del_timer(&hsotg->wkp_timer);
5019 }
5020 
5021 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5022 {
5023 	/* Turn off all host-specific interrupts */
5024 	dwc2_disable_host_interrupts(hsotg);
5025 
5026 	dwc2_hcd_free(hsotg);
5027 }
5028 
5029 /*
5030  * Initializes the HCD. This function allocates memory for and initializes the
5031  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5032  * USB bus with the core and calls the hc_driver->start() function. It returns
5033  * a negative error on failure.
5034  */
5035 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5036 {
5037 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5038 	struct resource *res;
5039 	struct usb_hcd *hcd;
5040 	struct dwc2_host_chan *channel;
5041 	u32 hcfg;
5042 	int i, num_channels;
5043 	int retval;
5044 
5045 	if (usb_disabled())
5046 		return -ENODEV;
5047 
5048 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5049 
5050 	retval = -ENOMEM;
5051 
5052 	hcfg = dwc2_readl(hsotg->regs + HCFG);
5053 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5054 
5055 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5056 	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
5057 					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
5058 	if (!hsotg->frame_num_array)
5059 		goto error1;
5060 	hsotg->last_frame_num_array = kzalloc(
5061 			sizeof(*hsotg->last_frame_num_array) *
5062 			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
5063 	if (!hsotg->last_frame_num_array)
5064 		goto error1;
5065 #endif
5066 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5067 
5068 	/* Check if the bus driver or platform code has setup a dma_mask */
5069 	if (hsotg->params.host_dma &&
5070 	    !hsotg->dev->dma_mask) {
5071 		dev_warn(hsotg->dev,
5072 			 "dma_mask not set, disabling DMA\n");
5073 		hsotg->params.host_dma = false;
5074 		hsotg->params.dma_desc_enable = false;
5075 	}
5076 
5077 	/* Set device flags indicating whether the HCD supports DMA */
5078 	if (hsotg->params.host_dma) {
5079 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5080 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5081 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5082 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5083 	}
5084 
5085 	if (hsotg->params.change_speed_quirk) {
5086 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5087 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5088 	}
5089 
5090 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5091 	if (!hcd)
5092 		goto error1;
5093 
5094 	if (!hsotg->params.host_dma)
5095 		hcd->self.uses_dma = 0;
5096 
5097 	hcd->has_tt = 1;
5098 
5099 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5100 	hcd->rsrc_start = res->start;
5101 	hcd->rsrc_len = resource_size(res);
5102 
5103 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5104 	hsotg->priv = hcd;
5105 
5106 	/*
5107 	 * Disable the global interrupt until all the interrupt handlers are
5108 	 * installed
5109 	 */
5110 	dwc2_disable_global_interrupts(hsotg);
5111 
5112 	/* Initialize the DWC_otg core, and select the Phy type */
5113 	retval = dwc2_core_init(hsotg, true);
5114 	if (retval)
5115 		goto error2;
5116 
5117 	/* Create new workqueue and init work */
5118 	retval = -ENOMEM;
5119 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5120 	if (!hsotg->wq_otg) {
5121 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5122 		goto error2;
5123 	}
5124 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5125 
5126 	setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
5127 		    (unsigned long)hsotg);
5128 
5129 	/* Initialize the non-periodic schedule */
5130 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5131 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5132 
5133 	/* Initialize the periodic schedule */
5134 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5135 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5136 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5137 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5138 
5139 	INIT_LIST_HEAD(&hsotg->split_order);
5140 
5141 	/*
5142 	 * Create a host channel descriptor for each host channel implemented
5143 	 * in the controller. Initialize the channel descriptor array.
5144 	 */
5145 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5146 	num_channels = hsotg->params.host_channels;
5147 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5148 
5149 	for (i = 0; i < num_channels; i++) {
5150 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5151 		if (!channel)
5152 			goto error3;
5153 		channel->hc_num = i;
5154 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5155 		hsotg->hc_ptr_array[i] = channel;
5156 	}
5157 
5158 	/* Initialize hsotg start work */
5159 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5160 
5161 	/* Initialize port reset work */
5162 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5163 
5164 	/*
5165 	 * Allocate space for storing data on status transactions. Normally no
5166 	 * data is sent, but this space acts as a bit bucket. This must be
5167 	 * done after usb_add_hcd since that function allocates the DMA buffer
5168 	 * pool.
5169 	 */
5170 	if (hsotg->params.host_dma)
5171 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5172 					DWC2_HCD_STATUS_BUF_SIZE,
5173 					&hsotg->status_buf_dma, GFP_KERNEL);
5174 	else
5175 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5176 					  GFP_KERNEL);
5177 
5178 	if (!hsotg->status_buf)
5179 		goto error3;
5180 
5181 	/*
5182 	 * Create kmem caches to handle descriptor buffers in descriptor
5183 	 * DMA mode.
5184 	 * Alignment must be set to 512 bytes.
5185 	 */
5186 	if (hsotg->params.dma_desc_enable ||
5187 	    hsotg->params.dma_desc_fs_enable) {
5188 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5189 				sizeof(struct dwc2_dma_desc) *
5190 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5191 				NULL);
5192 		if (!hsotg->desc_gen_cache) {
5193 			dev_err(hsotg->dev,
5194 				"unable to create dwc2 generic desc cache\n");
5195 
5196 			/*
5197 			 * Disable descriptor dma mode since it will not be
5198 			 * usable.
5199 			 */
5200 			hsotg->params.dma_desc_enable = false;
5201 			hsotg->params.dma_desc_fs_enable = false;
5202 		}
5203 
5204 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5205 				sizeof(struct dwc2_dma_desc) *
5206 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5207 		if (!hsotg->desc_hsisoc_cache) {
5208 			dev_err(hsotg->dev,
5209 				"unable to create dwc2 hs isoc desc cache\n");
5210 
5211 			kmem_cache_destroy(hsotg->desc_gen_cache);
5212 
5213 			/*
5214 			 * Disable descriptor dma mode since it will not be
5215 			 * usable.
5216 			 */
5217 			hsotg->params.dma_desc_enable = false;
5218 			hsotg->params.dma_desc_fs_enable = false;
5219 		}
5220 	}
5221 
5222 	hsotg->otg_port = 1;
5223 	hsotg->frame_list = NULL;
5224 	hsotg->frame_list_dma = 0;
5225 	hsotg->periodic_qh_count = 0;
5226 
5227 	/* Initiate lx_state to L3 disconnected state */
5228 	hsotg->lx_state = DWC2_L3;
5229 
5230 	hcd->self.otg_port = hsotg->otg_port;
5231 
5232 	/* Don't support SG list at this point */
5233 	hcd->self.sg_tablesize = 0;
5234 
5235 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5236 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5237 
5238 	/*
5239 	 * Finish generic HCD initialization and start the HCD. This function
5240 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5241 	 * IRQ line, and calls hcd_start method.
5242 	 */
5243 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5244 	if (retval < 0)
5245 		goto error4;
5246 
5247 	device_wakeup_enable(hcd->self.controller);
5248 
5249 	dwc2_hcd_dump_state(hsotg);
5250 
5251 	dwc2_enable_global_interrupts(hsotg);
5252 
5253 	return 0;
5254 
5255 error4:
5256 	kmem_cache_destroy(hsotg->desc_gen_cache);
5257 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5258 error3:
5259 	dwc2_hcd_release(hsotg);
5260 error2:
5261 	usb_put_hcd(hcd);
5262 error1:
5263 
5264 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5265 	kfree(hsotg->last_frame_num_array);
5266 	kfree(hsotg->frame_num_array);
5267 #endif
5268 
5269 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5270 	return retval;
5271 }
5272 
5273 /*
5274  * Removes the HCD.
5275  * Frees memory and resources associated with the HCD and deregisters the bus.
5276  */
5277 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5278 {
5279 	struct usb_hcd *hcd;
5280 
5281 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5282 
5283 	hcd = dwc2_hsotg_to_hcd(hsotg);
5284 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5285 
5286 	if (!hcd) {
5287 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5288 			__func__);
5289 		return;
5290 	}
5291 
5292 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5293 		otg_set_host(hsotg->uphy->otg, NULL);
5294 
5295 	usb_remove_hcd(hcd);
5296 	hsotg->priv = NULL;
5297 
5298 	kmem_cache_destroy(hsotg->desc_gen_cache);
5299 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5300 
5301 	dwc2_hcd_release(hsotg);
5302 	usb_put_hcd(hcd);
5303 
5304 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5305 	kfree(hsotg->last_frame_num_array);
5306 	kfree(hsotg->frame_num_array);
5307 #endif
5308 }
5309 
5310 /**
5311  * dwc2_backup_host_registers() - Backup controller host registers.
5312  * When suspending usb bus, registers needs to be backuped
5313  * if controller power is disabled once suspended.
5314  *
5315  * @hsotg: Programming view of the DWC_otg controller
5316  */
5317 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5318 {
5319 	struct dwc2_hregs_backup *hr;
5320 	int i;
5321 
5322 	dev_dbg(hsotg->dev, "%s\n", __func__);
5323 
5324 	/* Backup Host regs */
5325 	hr = &hsotg->hr_backup;
5326 	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5327 	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5328 	for (i = 0; i < hsotg->params.host_channels; ++i)
5329 		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5330 
5331 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5332 	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5333 	hr->valid = true;
5334 
5335 	return 0;
5336 }
5337 
5338 /**
5339  * dwc2_restore_host_registers() - Restore controller host registers.
5340  * When resuming usb bus, device registers needs to be restored
5341  * if controller power were disabled.
5342  *
5343  * @hsotg: Programming view of the DWC_otg controller
5344  */
5345 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5346 {
5347 	struct dwc2_hregs_backup *hr;
5348 	int i;
5349 
5350 	dev_dbg(hsotg->dev, "%s\n", __func__);
5351 
5352 	/* Restore host regs */
5353 	hr = &hsotg->hr_backup;
5354 	if (!hr->valid) {
5355 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5356 			__func__);
5357 		return -EINVAL;
5358 	}
5359 	hr->valid = false;
5360 
5361 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5362 	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5363 
5364 	for (i = 0; i < hsotg->params.host_channels; ++i)
5365 		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5366 
5367 	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5368 	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5369 	hsotg->frame_number = 0;
5370 
5371 	return 0;
5372 }
5373