xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision 35267cea)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 /*
60  * =========================================================================
61  *  Host Core Layer Functions
62  * =========================================================================
63  */
64 
65 /**
66  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
67  * used in both device and host modes
68  *
69  * @hsotg: Programming view of the DWC_otg controller
70  */
71 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
72 {
73 	u32 intmsk;
74 
75 	/* Clear any pending OTG Interrupts */
76 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
77 
78 	/* Clear any pending interrupts */
79 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
80 
81 	/* Enable the interrupts in the GINTMSK */
82 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
83 
84 	if (!hsotg->params.host_dma)
85 		intmsk |= GINTSTS_RXFLVL;
86 	if (!hsotg->params.external_id_pin_ctl)
87 		intmsk |= GINTSTS_CONIDSTSCHNG;
88 
89 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
90 		  GINTSTS_SESSREQINT;
91 
92 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
93 		intmsk |= GINTSTS_LPMTRANRCVD;
94 
95 	dwc2_writel(hsotg, intmsk, GINTMSK);
96 }
97 
98 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
99 {
100 	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
101 
102 	switch (hsotg->hw_params.arch) {
103 	case GHWCFG2_EXT_DMA_ARCH:
104 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
105 		return -EINVAL;
106 
107 	case GHWCFG2_INT_DMA_ARCH:
108 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
109 		if (hsotg->params.ahbcfg != -1) {
110 			ahbcfg &= GAHBCFG_CTRL_MASK;
111 			ahbcfg |= hsotg->params.ahbcfg &
112 				  ~GAHBCFG_CTRL_MASK;
113 		}
114 		break;
115 
116 	case GHWCFG2_SLAVE_ONLY_ARCH:
117 	default:
118 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
119 		break;
120 	}
121 
122 	if (hsotg->params.host_dma)
123 		ahbcfg |= GAHBCFG_DMA_EN;
124 	else
125 		hsotg->params.dma_desc_enable = false;
126 
127 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
128 
129 	return 0;
130 }
131 
132 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
133 {
134 	u32 usbcfg;
135 
136 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
137 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
138 
139 	switch (hsotg->hw_params.op_mode) {
140 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
141 		if (hsotg->params.otg_cap ==
142 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
143 			usbcfg |= GUSBCFG_HNPCAP;
144 		if (hsotg->params.otg_cap !=
145 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
146 			usbcfg |= GUSBCFG_SRPCAP;
147 		break;
148 
149 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
150 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
151 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
152 		if (hsotg->params.otg_cap !=
153 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
154 			usbcfg |= GUSBCFG_SRPCAP;
155 		break;
156 
157 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
158 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
159 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
160 	default:
161 		break;
162 	}
163 
164 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
165 }
166 
167 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
168 {
169 	if (hsotg->vbus_supply)
170 		return regulator_enable(hsotg->vbus_supply);
171 
172 	return 0;
173 }
174 
175 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
176 {
177 	if (hsotg->vbus_supply)
178 		return regulator_disable(hsotg->vbus_supply);
179 
180 	return 0;
181 }
182 
183 /**
184  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
185  *
186  * @hsotg: Programming view of DWC_otg controller
187  */
188 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
189 {
190 	u32 intmsk;
191 
192 	dev_dbg(hsotg->dev, "%s()\n", __func__);
193 
194 	/* Disable all interrupts */
195 	dwc2_writel(hsotg, 0, GINTMSK);
196 	dwc2_writel(hsotg, 0, HAINTMSK);
197 
198 	/* Enable the common interrupts */
199 	dwc2_enable_common_interrupts(hsotg);
200 
201 	/* Enable host mode interrupts without disturbing common interrupts */
202 	intmsk = dwc2_readl(hsotg, GINTMSK);
203 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
204 	dwc2_writel(hsotg, intmsk, GINTMSK);
205 }
206 
207 /**
208  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
209  *
210  * @hsotg: Programming view of DWC_otg controller
211  */
212 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
213 {
214 	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
215 
216 	/* Disable host mode interrupts without disturbing common interrupts */
217 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
218 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
219 	dwc2_writel(hsotg, intmsk, GINTMSK);
220 }
221 
222 /*
223  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
224  * For system that have a total fifo depth that is smaller than the default
225  * RX + TX fifo size.
226  *
227  * @hsotg: Programming view of DWC_otg controller
228  */
229 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
230 {
231 	struct dwc2_core_params *params = &hsotg->params;
232 	struct dwc2_hw_params *hw = &hsotg->hw_params;
233 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
234 
235 	total_fifo_size = hw->total_fifo_size;
236 	rxfsiz = params->host_rx_fifo_size;
237 	nptxfsiz = params->host_nperio_tx_fifo_size;
238 	ptxfsiz = params->host_perio_tx_fifo_size;
239 
240 	/*
241 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
242 	 * allocation with support for high bandwidth endpoints. Synopsys
243 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
244 	 * non-periodic as 512.
245 	 */
246 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
247 		/*
248 		 * For Buffer DMA mode/Scatter Gather DMA mode
249 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
250 		 * with n = number of host channel.
251 		 * 2 * ((1024/4) + 2) = 516
252 		 */
253 		rxfsiz = 516 + hw->host_channels;
254 
255 		/*
256 		 * min non-periodic tx fifo depth
257 		 * 2 * (largest non-periodic USB packet used / 4)
258 		 * 2 * (512/4) = 256
259 		 */
260 		nptxfsiz = 256;
261 
262 		/*
263 		 * min periodic tx fifo depth
264 		 * (largest packet size*MC)/4
265 		 * (1024 * 3)/4 = 768
266 		 */
267 		ptxfsiz = 768;
268 
269 		params->host_rx_fifo_size = rxfsiz;
270 		params->host_nperio_tx_fifo_size = nptxfsiz;
271 		params->host_perio_tx_fifo_size = ptxfsiz;
272 	}
273 
274 	/*
275 	 * If the summation of RX, NPTX and PTX fifo sizes is still
276 	 * bigger than the total_fifo_size, then we have a problem.
277 	 *
278 	 * We won't be able to allocate as many endpoints. Right now,
279 	 * we're just printing an error message, but ideally this FIFO
280 	 * allocation algorithm would be improved in the future.
281 	 *
282 	 * FIXME improve this FIFO allocation algorithm.
283 	 */
284 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
285 		dev_err(hsotg->dev, "invalid fifo sizes\n");
286 }
287 
288 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
289 {
290 	struct dwc2_core_params *params = &hsotg->params;
291 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
292 
293 	if (!params->enable_dynamic_fifo)
294 		return;
295 
296 	dwc2_calculate_dynamic_fifo(hsotg);
297 
298 	/* Rx FIFO */
299 	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
300 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
301 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
302 	grxfsiz |= params->host_rx_fifo_size <<
303 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
304 	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
305 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
306 		dwc2_readl(hsotg, GRXFSIZ));
307 
308 	/* Non-periodic Tx FIFO */
309 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
310 		dwc2_readl(hsotg, GNPTXFSIZ));
311 	nptxfsiz = params->host_nperio_tx_fifo_size <<
312 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
313 	nptxfsiz |= params->host_rx_fifo_size <<
314 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
315 	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
316 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
317 		dwc2_readl(hsotg, GNPTXFSIZ));
318 
319 	/* Periodic Tx FIFO */
320 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
321 		dwc2_readl(hsotg, HPTXFSIZ));
322 	hptxfsiz = params->host_perio_tx_fifo_size <<
323 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
324 	hptxfsiz |= (params->host_rx_fifo_size +
325 		     params->host_nperio_tx_fifo_size) <<
326 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
327 	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
328 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
329 		dwc2_readl(hsotg, HPTXFSIZ));
330 
331 	if (hsotg->params.en_multiple_tx_fifo &&
332 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
333 		/*
334 		 * This feature was implemented in 2.91a version
335 		 * Global DFIFOCFG calculation for Host mode -
336 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
337 		 */
338 		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
339 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
340 		dfifocfg |= (params->host_rx_fifo_size +
341 			     params->host_nperio_tx_fifo_size +
342 			     params->host_perio_tx_fifo_size) <<
343 			    GDFIFOCFG_EPINFOBASE_SHIFT &
344 			    GDFIFOCFG_EPINFOBASE_MASK;
345 		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
346 	}
347 }
348 
349 /**
350  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
351  * the HFIR register according to PHY type and speed
352  *
353  * @hsotg: Programming view of DWC_otg controller
354  *
355  * NOTE: The caller can modify the value of the HFIR register only after the
356  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
357  * has been set
358  */
359 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
360 {
361 	u32 usbcfg;
362 	u32 hprt0;
363 	int clock = 60;	/* default value */
364 
365 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
366 	hprt0 = dwc2_readl(hsotg, HPRT0);
367 
368 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
369 	    !(usbcfg & GUSBCFG_PHYIF16))
370 		clock = 60;
371 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
372 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
373 		clock = 48;
374 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
375 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
376 		clock = 30;
377 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
378 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
379 		clock = 60;
380 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
381 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
382 		clock = 48;
383 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
384 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
385 		clock = 48;
386 	if ((usbcfg & GUSBCFG_PHYSEL) &&
387 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
388 		clock = 48;
389 
390 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
391 		/* High speed case */
392 		return 125 * clock - 1;
393 
394 	/* FS/LS case */
395 	return 1000 * clock - 1;
396 }
397 
398 /**
399  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
400  * buffer
401  *
402  * @hsotg: Programming view of DWC_otg controller
403  * @dest:    Destination buffer for the packet
404  * @bytes:   Number of bytes to copy to the destination
405  */
406 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
407 {
408 	u32 *data_buf = (u32 *)dest;
409 	int word_count = (bytes + 3) / 4;
410 	int i;
411 
412 	/*
413 	 * Todo: Account for the case where dest is not dword aligned. This
414 	 * requires reading data from the FIFO into a u32 temp buffer, then
415 	 * moving it into the data buffer.
416 	 */
417 
418 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
419 
420 	for (i = 0; i < word_count; i++, data_buf++)
421 		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
422 }
423 
424 /**
425  * dwc2_dump_channel_info() - Prints the state of a host channel
426  *
427  * @hsotg: Programming view of DWC_otg controller
428  * @chan:  Pointer to the channel to dump
429  *
430  * Must be called with interrupt disabled and spinlock held
431  *
432  * NOTE: This function will be removed once the peripheral controller code
433  * is integrated and the driver is stable
434  */
435 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
436 				   struct dwc2_host_chan *chan)
437 {
438 #ifdef VERBOSE_DEBUG
439 	int num_channels = hsotg->params.host_channels;
440 	struct dwc2_qh *qh;
441 	u32 hcchar;
442 	u32 hcsplt;
443 	u32 hctsiz;
444 	u32 hc_dma;
445 	int i;
446 
447 	if (!chan)
448 		return;
449 
450 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
451 	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
452 	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
453 	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
454 
455 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
456 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
457 		hcchar, hcsplt);
458 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
459 		hctsiz, hc_dma);
460 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
461 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
462 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
463 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
464 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
465 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
466 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
467 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
468 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
469 		(unsigned long)chan->xfer_dma);
470 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
471 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
472 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
473 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
474 			    qh_list_entry)
475 		dev_dbg(hsotg->dev, "    %p\n", qh);
476 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
477 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
478 			    qh_list_entry)
479 		dev_dbg(hsotg->dev, "    %p\n", qh);
480 	dev_dbg(hsotg->dev, "  NP active sched:\n");
481 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
482 			    qh_list_entry)
483 		dev_dbg(hsotg->dev, "    %p\n", qh);
484 	dev_dbg(hsotg->dev, "  Channels:\n");
485 	for (i = 0; i < num_channels; i++) {
486 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
487 
488 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
489 	}
490 #endif /* VERBOSE_DEBUG */
491 }
492 
493 static int _dwc2_hcd_start(struct usb_hcd *hcd);
494 
495 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
496 {
497 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
498 
499 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
500 	_dwc2_hcd_start(hcd);
501 }
502 
503 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
504 {
505 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
506 
507 	hcd->self.is_b_host = 0;
508 }
509 
510 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
511 			       int *hub_addr, int *hub_port)
512 {
513 	struct urb *urb = context;
514 
515 	if (urb->dev->tt)
516 		*hub_addr = urb->dev->tt->hub->devnum;
517 	else
518 		*hub_addr = 0;
519 	*hub_port = urb->dev->ttport;
520 }
521 
522 /*
523  * =========================================================================
524  *  Low Level Host Channel Access Functions
525  * =========================================================================
526  */
527 
528 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
529 				      struct dwc2_host_chan *chan)
530 {
531 	u32 hcintmsk = HCINTMSK_CHHLTD;
532 
533 	switch (chan->ep_type) {
534 	case USB_ENDPOINT_XFER_CONTROL:
535 	case USB_ENDPOINT_XFER_BULK:
536 		dev_vdbg(hsotg->dev, "control/bulk\n");
537 		hcintmsk |= HCINTMSK_XFERCOMPL;
538 		hcintmsk |= HCINTMSK_STALL;
539 		hcintmsk |= HCINTMSK_XACTERR;
540 		hcintmsk |= HCINTMSK_DATATGLERR;
541 		if (chan->ep_is_in) {
542 			hcintmsk |= HCINTMSK_BBLERR;
543 		} else {
544 			hcintmsk |= HCINTMSK_NAK;
545 			hcintmsk |= HCINTMSK_NYET;
546 			if (chan->do_ping)
547 				hcintmsk |= HCINTMSK_ACK;
548 		}
549 
550 		if (chan->do_split) {
551 			hcintmsk |= HCINTMSK_NAK;
552 			if (chan->complete_split)
553 				hcintmsk |= HCINTMSK_NYET;
554 			else
555 				hcintmsk |= HCINTMSK_ACK;
556 		}
557 
558 		if (chan->error_state)
559 			hcintmsk |= HCINTMSK_ACK;
560 		break;
561 
562 	case USB_ENDPOINT_XFER_INT:
563 		if (dbg_perio())
564 			dev_vdbg(hsotg->dev, "intr\n");
565 		hcintmsk |= HCINTMSK_XFERCOMPL;
566 		hcintmsk |= HCINTMSK_NAK;
567 		hcintmsk |= HCINTMSK_STALL;
568 		hcintmsk |= HCINTMSK_XACTERR;
569 		hcintmsk |= HCINTMSK_DATATGLERR;
570 		hcintmsk |= HCINTMSK_FRMOVRUN;
571 
572 		if (chan->ep_is_in)
573 			hcintmsk |= HCINTMSK_BBLERR;
574 		if (chan->error_state)
575 			hcintmsk |= HCINTMSK_ACK;
576 		if (chan->do_split) {
577 			if (chan->complete_split)
578 				hcintmsk |= HCINTMSK_NYET;
579 			else
580 				hcintmsk |= HCINTMSK_ACK;
581 		}
582 		break;
583 
584 	case USB_ENDPOINT_XFER_ISOC:
585 		if (dbg_perio())
586 			dev_vdbg(hsotg->dev, "isoc\n");
587 		hcintmsk |= HCINTMSK_XFERCOMPL;
588 		hcintmsk |= HCINTMSK_FRMOVRUN;
589 		hcintmsk |= HCINTMSK_ACK;
590 
591 		if (chan->ep_is_in) {
592 			hcintmsk |= HCINTMSK_XACTERR;
593 			hcintmsk |= HCINTMSK_BBLERR;
594 		}
595 		break;
596 	default:
597 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
598 		break;
599 	}
600 
601 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
602 	if (dbg_hc(chan))
603 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
604 }
605 
606 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
607 				    struct dwc2_host_chan *chan)
608 {
609 	u32 hcintmsk = HCINTMSK_CHHLTD;
610 
611 	/*
612 	 * For Descriptor DMA mode core halts the channel on AHB error.
613 	 * Interrupt is not required.
614 	 */
615 	if (!hsotg->params.dma_desc_enable) {
616 		if (dbg_hc(chan))
617 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
618 		hcintmsk |= HCINTMSK_AHBERR;
619 	} else {
620 		if (dbg_hc(chan))
621 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
622 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
623 			hcintmsk |= HCINTMSK_XFERCOMPL;
624 	}
625 
626 	if (chan->error_state && !chan->do_split &&
627 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
628 		if (dbg_hc(chan))
629 			dev_vdbg(hsotg->dev, "setting ACK\n");
630 		hcintmsk |= HCINTMSK_ACK;
631 		if (chan->ep_is_in) {
632 			hcintmsk |= HCINTMSK_DATATGLERR;
633 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
634 				hcintmsk |= HCINTMSK_NAK;
635 		}
636 	}
637 
638 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
639 	if (dbg_hc(chan))
640 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
641 }
642 
643 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
644 				struct dwc2_host_chan *chan)
645 {
646 	u32 intmsk;
647 
648 	if (hsotg->params.host_dma) {
649 		if (dbg_hc(chan))
650 			dev_vdbg(hsotg->dev, "DMA enabled\n");
651 		dwc2_hc_enable_dma_ints(hsotg, chan);
652 	} else {
653 		if (dbg_hc(chan))
654 			dev_vdbg(hsotg->dev, "DMA disabled\n");
655 		dwc2_hc_enable_slave_ints(hsotg, chan);
656 	}
657 
658 	/* Enable the top level host channel interrupt */
659 	intmsk = dwc2_readl(hsotg, HAINTMSK);
660 	intmsk |= 1 << chan->hc_num;
661 	dwc2_writel(hsotg, intmsk, HAINTMSK);
662 	if (dbg_hc(chan))
663 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
664 
665 	/* Make sure host channel interrupts are enabled */
666 	intmsk = dwc2_readl(hsotg, GINTMSK);
667 	intmsk |= GINTSTS_HCHINT;
668 	dwc2_writel(hsotg, intmsk, GINTMSK);
669 	if (dbg_hc(chan))
670 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
671 }
672 
673 /**
674  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
675  * a specific endpoint
676  *
677  * @hsotg: Programming view of DWC_otg controller
678  * @chan:  Information needed to initialize the host channel
679  *
680  * The HCCHARn register is set up with the characteristics specified in chan.
681  * Host channel interrupts that may need to be serviced while this transfer is
682  * in progress are enabled.
683  */
684 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
685 {
686 	u8 hc_num = chan->hc_num;
687 	u32 hcintmsk;
688 	u32 hcchar;
689 	u32 hcsplt = 0;
690 
691 	if (dbg_hc(chan))
692 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
693 
694 	/* Clear old interrupt conditions for this host channel */
695 	hcintmsk = 0xffffffff;
696 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
697 	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
698 
699 	/* Enable channel interrupts required for this transfer */
700 	dwc2_hc_enable_ints(hsotg, chan);
701 
702 	/*
703 	 * Program the HCCHARn register with the endpoint characteristics for
704 	 * the current transfer
705 	 */
706 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
707 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
708 	if (chan->ep_is_in)
709 		hcchar |= HCCHAR_EPDIR;
710 	if (chan->speed == USB_SPEED_LOW)
711 		hcchar |= HCCHAR_LSPDDEV;
712 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
713 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
714 	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
715 	if (dbg_hc(chan)) {
716 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
717 			 hc_num, hcchar);
718 
719 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
720 			 __func__, hc_num);
721 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
722 			 chan->dev_addr);
723 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
724 			 chan->ep_num);
725 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
726 			 chan->ep_is_in);
727 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
728 			 chan->speed == USB_SPEED_LOW);
729 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
730 			 chan->ep_type);
731 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
732 			 chan->max_packet);
733 	}
734 
735 	/* Program the HCSPLT register for SPLITs */
736 	if (chan->do_split) {
737 		if (dbg_hc(chan))
738 			dev_vdbg(hsotg->dev,
739 				 "Programming HC %d with split --> %s\n",
740 				 hc_num,
741 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
742 		if (chan->complete_split)
743 			hcsplt |= HCSPLT_COMPSPLT;
744 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
745 			  HCSPLT_XACTPOS_MASK;
746 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
747 			  HCSPLT_HUBADDR_MASK;
748 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
749 			  HCSPLT_PRTADDR_MASK;
750 		if (dbg_hc(chan)) {
751 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
752 				 chan->complete_split);
753 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
754 				 chan->xact_pos);
755 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
756 				 chan->hub_addr);
757 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
758 				 chan->hub_port);
759 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
760 				 chan->ep_is_in);
761 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
762 				 chan->max_packet);
763 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
764 				 chan->xfer_len);
765 		}
766 	}
767 
768 	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
769 }
770 
771 /**
772  * dwc2_hc_halt() - Attempts to halt a host channel
773  *
774  * @hsotg:       Controller register interface
775  * @chan:        Host channel to halt
776  * @halt_status: Reason for halting the channel
777  *
778  * This function should only be called in Slave mode or to abort a transfer in
779  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
780  * controller halts the channel when the transfer is complete or a condition
781  * occurs that requires application intervention.
782  *
783  * In slave mode, checks for a free request queue entry, then sets the Channel
784  * Enable and Channel Disable bits of the Host Channel Characteristics
785  * register of the specified channel to intiate the halt. If there is no free
786  * request queue entry, sets only the Channel Disable bit of the HCCHARn
787  * register to flush requests for this channel. In the latter case, sets a
788  * flag to indicate that the host channel needs to be halted when a request
789  * queue slot is open.
790  *
791  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
792  * HCCHARn register. The controller ensures there is space in the request
793  * queue before submitting the halt request.
794  *
795  * Some time may elapse before the core flushes any posted requests for this
796  * host channel and halts. The Channel Halted interrupt handler completes the
797  * deactivation of the host channel.
798  */
799 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
800 		  enum dwc2_halt_status halt_status)
801 {
802 	u32 nptxsts, hptxsts, hcchar;
803 
804 	if (dbg_hc(chan))
805 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
806 
807 	/*
808 	 * In buffer DMA or external DMA mode channel can't be halted
809 	 * for non-split periodic channels. At the end of the next
810 	 * uframe/frame (in the worst case), the core generates a channel
811 	 * halted and disables the channel automatically.
812 	 */
813 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
814 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
815 		if (!chan->do_split &&
816 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
817 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
818 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
819 				__func__);
820 			return;
821 		}
822 	}
823 
824 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
825 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
826 
827 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
828 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
829 		/*
830 		 * Disable all channel interrupts except Ch Halted. The QTD
831 		 * and QH state associated with this transfer has been cleared
832 		 * (in the case of URB_DEQUEUE), so the channel needs to be
833 		 * shut down carefully to prevent crashes.
834 		 */
835 		u32 hcintmsk = HCINTMSK_CHHLTD;
836 
837 		dev_vdbg(hsotg->dev, "dequeue/error\n");
838 		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
839 
840 		/*
841 		 * Make sure no other interrupts besides halt are currently
842 		 * pending. Handling another interrupt could cause a crash due
843 		 * to the QTD and QH state.
844 		 */
845 		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
846 
847 		/*
848 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
849 		 * even if the channel was already halted for some other
850 		 * reason
851 		 */
852 		chan->halt_status = halt_status;
853 
854 		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
855 		if (!(hcchar & HCCHAR_CHENA)) {
856 			/*
857 			 * The channel is either already halted or it hasn't
858 			 * started yet. In DMA mode, the transfer may halt if
859 			 * it finishes normally or a condition occurs that
860 			 * requires driver intervention. Don't want to halt
861 			 * the channel again. In either Slave or DMA mode,
862 			 * it's possible that the transfer has been assigned
863 			 * to a channel, but not started yet when an URB is
864 			 * dequeued. Don't want to halt a channel that hasn't
865 			 * started yet.
866 			 */
867 			return;
868 		}
869 	}
870 	if (chan->halt_pending) {
871 		/*
872 		 * A halt has already been issued for this channel. This might
873 		 * happen when a transfer is aborted by a higher level in
874 		 * the stack.
875 		 */
876 		dev_vdbg(hsotg->dev,
877 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
878 			 __func__, chan->hc_num);
879 		return;
880 	}
881 
882 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
883 
884 	/* No need to set the bit in DDMA for disabling the channel */
885 	/* TODO check it everywhere channel is disabled */
886 	if (!hsotg->params.dma_desc_enable) {
887 		if (dbg_hc(chan))
888 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
889 		hcchar |= HCCHAR_CHENA;
890 	} else {
891 		if (dbg_hc(chan))
892 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
893 	}
894 	hcchar |= HCCHAR_CHDIS;
895 
896 	if (!hsotg->params.host_dma) {
897 		if (dbg_hc(chan))
898 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
899 		hcchar |= HCCHAR_CHENA;
900 
901 		/* Check for space in the request queue to issue the halt */
902 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
903 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
904 			dev_vdbg(hsotg->dev, "control/bulk\n");
905 			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
906 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
907 				dev_vdbg(hsotg->dev, "Disabling channel\n");
908 				hcchar &= ~HCCHAR_CHENA;
909 			}
910 		} else {
911 			if (dbg_perio())
912 				dev_vdbg(hsotg->dev, "isoc/intr\n");
913 			hptxsts = dwc2_readl(hsotg, HPTXSTS);
914 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
915 			    hsotg->queuing_high_bandwidth) {
916 				if (dbg_perio())
917 					dev_vdbg(hsotg->dev, "Disabling channel\n");
918 				hcchar &= ~HCCHAR_CHENA;
919 			}
920 		}
921 	} else {
922 		if (dbg_hc(chan))
923 			dev_vdbg(hsotg->dev, "DMA enabled\n");
924 	}
925 
926 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
927 	chan->halt_status = halt_status;
928 
929 	if (hcchar & HCCHAR_CHENA) {
930 		if (dbg_hc(chan))
931 			dev_vdbg(hsotg->dev, "Channel enabled\n");
932 		chan->halt_pending = 1;
933 		chan->halt_on_queue = 0;
934 	} else {
935 		if (dbg_hc(chan))
936 			dev_vdbg(hsotg->dev, "Channel disabled\n");
937 		chan->halt_on_queue = 1;
938 	}
939 
940 	if (dbg_hc(chan)) {
941 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
942 			 chan->hc_num);
943 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
944 			 hcchar);
945 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
946 			 chan->halt_pending);
947 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
948 			 chan->halt_on_queue);
949 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
950 			 chan->halt_status);
951 	}
952 }
953 
954 /**
955  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
956  *
957  * @hsotg: Programming view of DWC_otg controller
958  * @chan:  Identifies the host channel to clean up
959  *
960  * This function is normally called after a transfer is done and the host
961  * channel is being released
962  */
963 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
964 {
965 	u32 hcintmsk;
966 
967 	chan->xfer_started = 0;
968 
969 	list_del_init(&chan->split_order_list_entry);
970 
971 	/*
972 	 * Clear channel interrupt enables and any unhandled channel interrupt
973 	 * conditions
974 	 */
975 	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
976 	hcintmsk = 0xffffffff;
977 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
978 	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
979 }
980 
981 /**
982  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
983  * which frame a periodic transfer should occur
984  *
985  * @hsotg:  Programming view of DWC_otg controller
986  * @chan:   Identifies the host channel to set up and its properties
987  * @hcchar: Current value of the HCCHAR register for the specified host channel
988  *
989  * This function has no effect on non-periodic transfers
990  */
991 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
992 				       struct dwc2_host_chan *chan, u32 *hcchar)
993 {
994 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
995 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
996 		int host_speed;
997 		int xfer_ns;
998 		int xfer_us;
999 		int bytes_in_fifo;
1000 		u16 fifo_space;
1001 		u16 frame_number;
1002 		u16 wire_frame;
1003 
1004 		/*
1005 		 * Try to figure out if we're an even or odd frame. If we set
1006 		 * even and the current frame number is even the the transfer
1007 		 * will happen immediately.  Similar if both are odd. If one is
1008 		 * even and the other is odd then the transfer will happen when
1009 		 * the frame number ticks.
1010 		 *
1011 		 * There's a bit of a balancing act to get this right.
1012 		 * Sometimes we may want to send data in the current frame (AK
1013 		 * right away).  We might want to do this if the frame number
1014 		 * _just_ ticked, but we might also want to do this in order
1015 		 * to continue a split transaction that happened late in a
1016 		 * microframe (so we didn't know to queue the next transfer
1017 		 * until the frame number had ticked).  The problem is that we
1018 		 * need a lot of knowledge to know if there's actually still
1019 		 * time to send things or if it would be better to wait until
1020 		 * the next frame.
1021 		 *
1022 		 * We can look at how much time is left in the current frame
1023 		 * and make a guess about whether we'll have time to transfer.
1024 		 * We'll do that.
1025 		 */
1026 
1027 		/* Get speed host is running at */
1028 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1029 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1030 
1031 		/* See how many bytes are in the periodic FIFO right now */
1032 		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1033 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1034 		bytes_in_fifo = sizeof(u32) *
1035 				(hsotg->params.host_perio_tx_fifo_size -
1036 				 fifo_space);
1037 
1038 		/*
1039 		 * Roughly estimate bus time for everything in the periodic
1040 		 * queue + our new transfer.  This is "rough" because we're
1041 		 * using a function that makes takes into account IN/OUT
1042 		 * and INT/ISO and we're just slamming in one value for all
1043 		 * transfers.  This should be an over-estimate and that should
1044 		 * be OK, but we can probably tighten it.
1045 		 */
1046 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1047 					    chan->xfer_len + bytes_in_fifo);
1048 		xfer_us = NS_TO_US(xfer_ns);
1049 
1050 		/* See what frame number we'll be at by the time we finish */
1051 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1052 
1053 		/* This is when we were scheduled to be on the wire */
1054 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1055 
1056 		/*
1057 		 * If we'd finish _after_ the frame we're scheduled in then
1058 		 * it's hopeless.  Just schedule right away and hope for the
1059 		 * best.  Note that it _might_ be wise to call back into the
1060 		 * scheduler to pick a better frame, but this is better than
1061 		 * nothing.
1062 		 */
1063 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1064 			dwc2_sch_vdbg(hsotg,
1065 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1066 				      chan->qh, wire_frame, frame_number,
1067 				      dwc2_frame_num_dec(frame_number,
1068 							 wire_frame));
1069 			wire_frame = frame_number;
1070 
1071 			/*
1072 			 * We picked a different frame number; communicate this
1073 			 * back to the scheduler so it doesn't try to schedule
1074 			 * another in the same frame.
1075 			 *
1076 			 * Remember that next_active_frame is 1 before the wire
1077 			 * frame.
1078 			 */
1079 			chan->qh->next_active_frame =
1080 				dwc2_frame_num_dec(frame_number, 1);
1081 		}
1082 
1083 		if (wire_frame & 1)
1084 			*hcchar |= HCCHAR_ODDFRM;
1085 		else
1086 			*hcchar &= ~HCCHAR_ODDFRM;
1087 	}
1088 }
1089 
1090 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1091 {
1092 	/* Set up the initial PID for the transfer */
1093 	if (chan->speed == USB_SPEED_HIGH) {
1094 		if (chan->ep_is_in) {
1095 			if (chan->multi_count == 1)
1096 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1097 			else if (chan->multi_count == 2)
1098 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1099 			else
1100 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1101 		} else {
1102 			if (chan->multi_count == 1)
1103 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1104 			else
1105 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1106 		}
1107 	} else {
1108 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1109 	}
1110 }
1111 
1112 /**
1113  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1114  * the Host Channel
1115  *
1116  * @hsotg: Programming view of DWC_otg controller
1117  * @chan:  Information needed to initialize the host channel
1118  *
1119  * This function should only be called in Slave mode. For a channel associated
1120  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1121  * associated with a periodic EP, the periodic Tx FIFO is written.
1122  *
1123  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1124  * the number of bytes written to the Tx FIFO.
1125  */
1126 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1127 				 struct dwc2_host_chan *chan)
1128 {
1129 	u32 i;
1130 	u32 remaining_count;
1131 	u32 byte_count;
1132 	u32 dword_count;
1133 	u32 *data_buf = (u32 *)chan->xfer_buf;
1134 
1135 	if (dbg_hc(chan))
1136 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1137 
1138 	remaining_count = chan->xfer_len - chan->xfer_count;
1139 	if (remaining_count > chan->max_packet)
1140 		byte_count = chan->max_packet;
1141 	else
1142 		byte_count = remaining_count;
1143 
1144 	dword_count = (byte_count + 3) / 4;
1145 
1146 	if (((unsigned long)data_buf & 0x3) == 0) {
1147 		/* xfer_buf is DWORD aligned */
1148 		for (i = 0; i < dword_count; i++, data_buf++)
1149 			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1150 	} else {
1151 		/* xfer_buf is not DWORD aligned */
1152 		for (i = 0; i < dword_count; i++, data_buf++) {
1153 			u32 data = data_buf[0] | data_buf[1] << 8 |
1154 				   data_buf[2] << 16 | data_buf[3] << 24;
1155 			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1156 		}
1157 	}
1158 
1159 	chan->xfer_count += byte_count;
1160 	chan->xfer_buf += byte_count;
1161 }
1162 
1163 /**
1164  * dwc2_hc_do_ping() - Starts a PING transfer
1165  *
1166  * @hsotg: Programming view of DWC_otg controller
1167  * @chan:  Information needed to initialize the host channel
1168  *
1169  * This function should only be called in Slave mode. The Do Ping bit is set in
1170  * the HCTSIZ register, then the channel is enabled.
1171  */
1172 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1173 			    struct dwc2_host_chan *chan)
1174 {
1175 	u32 hcchar;
1176 	u32 hctsiz;
1177 
1178 	if (dbg_hc(chan))
1179 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1180 			 chan->hc_num);
1181 
1182 	hctsiz = TSIZ_DOPNG;
1183 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1184 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1185 
1186 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1187 	hcchar |= HCCHAR_CHENA;
1188 	hcchar &= ~HCCHAR_CHDIS;
1189 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1190 }
1191 
1192 /**
1193  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1194  * channel and starts the transfer
1195  *
1196  * @hsotg: Programming view of DWC_otg controller
1197  * @chan:  Information needed to initialize the host channel. The xfer_len value
1198  *         may be reduced to accommodate the max widths of the XferSize and
1199  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1200  *         changed to reflect the final xfer_len value.
1201  *
1202  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1203  * the caller must ensure that there is sufficient space in the request queue
1204  * and Tx Data FIFO.
1205  *
1206  * For an OUT transfer in Slave mode, it loads a data packet into the
1207  * appropriate FIFO. If necessary, additional data packets are loaded in the
1208  * Host ISR.
1209  *
1210  * For an IN transfer in Slave mode, a data packet is requested. The data
1211  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1212  * additional data packets are requested in the Host ISR.
1213  *
1214  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1215  * register along with a packet count of 1 and the channel is enabled. This
1216  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1217  * simply set to 0 since no data transfer occurs in this case.
1218  *
1219  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1220  * all the information required to perform the subsequent data transfer. In
1221  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1222  * controller performs the entire PING protocol, then starts the data
1223  * transfer.
1224  */
1225 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1226 				   struct dwc2_host_chan *chan)
1227 {
1228 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1229 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1230 	u32 hcchar;
1231 	u32 hctsiz = 0;
1232 	u16 num_packets;
1233 	u32 ec_mc;
1234 
1235 	if (dbg_hc(chan))
1236 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1237 
1238 	if (chan->do_ping) {
1239 		if (!hsotg->params.host_dma) {
1240 			if (dbg_hc(chan))
1241 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1242 			dwc2_hc_do_ping(hsotg, chan);
1243 			chan->xfer_started = 1;
1244 			return;
1245 		}
1246 
1247 		if (dbg_hc(chan))
1248 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1249 
1250 		hctsiz |= TSIZ_DOPNG;
1251 	}
1252 
1253 	if (chan->do_split) {
1254 		if (dbg_hc(chan))
1255 			dev_vdbg(hsotg->dev, "split\n");
1256 		num_packets = 1;
1257 
1258 		if (chan->complete_split && !chan->ep_is_in)
1259 			/*
1260 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1261 			 * core doesn't expect any data written to the FIFO
1262 			 */
1263 			chan->xfer_len = 0;
1264 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1265 			chan->xfer_len = chan->max_packet;
1266 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1267 			chan->xfer_len = 188;
1268 
1269 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1270 			  TSIZ_XFERSIZE_MASK;
1271 
1272 		/* For split set ec_mc for immediate retries */
1273 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1274 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1275 			ec_mc = 3;
1276 		else
1277 			ec_mc = 1;
1278 	} else {
1279 		if (dbg_hc(chan))
1280 			dev_vdbg(hsotg->dev, "no split\n");
1281 		/*
1282 		 * Ensure that the transfer length and packet count will fit
1283 		 * in the widths allocated for them in the HCTSIZn register
1284 		 */
1285 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1286 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1287 			/*
1288 			 * Make sure the transfer size is no larger than one
1289 			 * (micro)frame's worth of data. (A check was done
1290 			 * when the periodic transfer was accepted to ensure
1291 			 * that a (micro)frame's worth of data can be
1292 			 * programmed into a channel.)
1293 			 */
1294 			u32 max_periodic_len =
1295 				chan->multi_count * chan->max_packet;
1296 
1297 			if (chan->xfer_len > max_periodic_len)
1298 				chan->xfer_len = max_periodic_len;
1299 		} else if (chan->xfer_len > max_hc_xfer_size) {
1300 			/*
1301 			 * Make sure that xfer_len is a multiple of max packet
1302 			 * size
1303 			 */
1304 			chan->xfer_len =
1305 				max_hc_xfer_size - chan->max_packet + 1;
1306 		}
1307 
1308 		if (chan->xfer_len > 0) {
1309 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1310 					chan->max_packet;
1311 			if (num_packets > max_hc_pkt_count) {
1312 				num_packets = max_hc_pkt_count;
1313 				chan->xfer_len = num_packets * chan->max_packet;
1314 			} else if (chan->ep_is_in) {
1315 				/*
1316 				 * Always program an integral # of max packets
1317 				 * for IN transfers.
1318 				 * Note: This assumes that the input buffer is
1319 				 * aligned and sized accordingly.
1320 				 */
1321 				chan->xfer_len = num_packets * chan->max_packet;
1322 			}
1323 		} else {
1324 			/* Need 1 packet for transfer length of 0 */
1325 			num_packets = 1;
1326 		}
1327 
1328 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1329 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1330 			/*
1331 			 * Make sure that the multi_count field matches the
1332 			 * actual transfer length
1333 			 */
1334 			chan->multi_count = num_packets;
1335 
1336 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1337 			dwc2_set_pid_isoc(chan);
1338 
1339 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1340 			  TSIZ_XFERSIZE_MASK;
1341 
1342 		/* The ec_mc gets the multi_count for non-split */
1343 		ec_mc = chan->multi_count;
1344 	}
1345 
1346 	chan->start_pkt_count = num_packets;
1347 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1348 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1349 		  TSIZ_SC_MC_PID_MASK;
1350 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1351 	if (dbg_hc(chan)) {
1352 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1353 			 hctsiz, chan->hc_num);
1354 
1355 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1356 			 chan->hc_num);
1357 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1358 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1359 			 TSIZ_XFERSIZE_SHIFT);
1360 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1361 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1362 			 TSIZ_PKTCNT_SHIFT);
1363 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1364 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1365 			 TSIZ_SC_MC_PID_SHIFT);
1366 	}
1367 
1368 	if (hsotg->params.host_dma) {
1369 		dma_addr_t dma_addr;
1370 
1371 		if (chan->align_buf) {
1372 			if (dbg_hc(chan))
1373 				dev_vdbg(hsotg->dev, "align_buf\n");
1374 			dma_addr = chan->align_buf;
1375 		} else {
1376 			dma_addr = chan->xfer_dma;
1377 		}
1378 		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1379 
1380 		if (dbg_hc(chan))
1381 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1382 				 (unsigned long)dma_addr, chan->hc_num);
1383 	}
1384 
1385 	/* Start the split */
1386 	if (chan->do_split) {
1387 		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1388 
1389 		hcsplt |= HCSPLT_SPLTENA;
1390 		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1391 	}
1392 
1393 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1394 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1395 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1396 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1397 
1398 	if (hcchar & HCCHAR_CHDIS)
1399 		dev_warn(hsotg->dev,
1400 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1401 			 __func__, chan->hc_num, hcchar);
1402 
1403 	/* Set host channel enable after all other setup is complete */
1404 	hcchar |= HCCHAR_CHENA;
1405 	hcchar &= ~HCCHAR_CHDIS;
1406 
1407 	if (dbg_hc(chan))
1408 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1409 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1410 			 HCCHAR_MULTICNT_SHIFT);
1411 
1412 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1413 	if (dbg_hc(chan))
1414 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1415 			 chan->hc_num);
1416 
1417 	chan->xfer_started = 1;
1418 	chan->requests++;
1419 
1420 	if (!hsotg->params.host_dma &&
1421 	    !chan->ep_is_in && chan->xfer_len > 0)
1422 		/* Load OUT packet into the appropriate Tx FIFO */
1423 		dwc2_hc_write_packet(hsotg, chan);
1424 }
1425 
1426 /**
1427  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1428  * host channel and starts the transfer in Descriptor DMA mode
1429  *
1430  * @hsotg: Programming view of DWC_otg controller
1431  * @chan:  Information needed to initialize the host channel
1432  *
1433  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1434  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1435  * with micro-frame bitmap.
1436  *
1437  * Initializes HCDMA register with descriptor list address and CTD value then
1438  * starts the transfer via enabling the channel.
1439  */
1440 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1441 				 struct dwc2_host_chan *chan)
1442 {
1443 	u32 hcchar;
1444 	u32 hctsiz = 0;
1445 
1446 	if (chan->do_ping)
1447 		hctsiz |= TSIZ_DOPNG;
1448 
1449 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1450 		dwc2_set_pid_isoc(chan);
1451 
1452 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1453 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1454 		  TSIZ_SC_MC_PID_MASK;
1455 
1456 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1457 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1458 
1459 	/* Non-zero only for high-speed interrupt endpoints */
1460 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1461 
1462 	if (dbg_hc(chan)) {
1463 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1464 			 chan->hc_num);
1465 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1466 			 chan->data_pid_start);
1467 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1468 	}
1469 
1470 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1471 
1472 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1473 				   chan->desc_list_sz, DMA_TO_DEVICE);
1474 
1475 	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1476 
1477 	if (dbg_hc(chan))
1478 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1479 			 &chan->desc_list_addr, chan->hc_num);
1480 
1481 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1482 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1483 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1484 		  HCCHAR_MULTICNT_MASK;
1485 
1486 	if (hcchar & HCCHAR_CHDIS)
1487 		dev_warn(hsotg->dev,
1488 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1489 			 __func__, chan->hc_num, hcchar);
1490 
1491 	/* Set host channel enable after all other setup is complete */
1492 	hcchar |= HCCHAR_CHENA;
1493 	hcchar &= ~HCCHAR_CHDIS;
1494 
1495 	if (dbg_hc(chan))
1496 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1497 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1498 			 HCCHAR_MULTICNT_SHIFT);
1499 
1500 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1501 	if (dbg_hc(chan))
1502 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1503 			 chan->hc_num);
1504 
1505 	chan->xfer_started = 1;
1506 	chan->requests++;
1507 }
1508 
1509 /**
1510  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1511  * a previous call to dwc2_hc_start_transfer()
1512  *
1513  * @hsotg: Programming view of DWC_otg controller
1514  * @chan:  Information needed to initialize the host channel
1515  *
1516  * The caller must ensure there is sufficient space in the request queue and Tx
1517  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1518  * the controller acts autonomously to complete transfers programmed to a host
1519  * channel.
1520  *
1521  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1522  * if there is any data remaining to be queued. For an IN transfer, another
1523  * data packet is always requested. For the SETUP phase of a control transfer,
1524  * this function does nothing.
1525  *
1526  * Return: 1 if a new request is queued, 0 if no more requests are required
1527  * for this transfer
1528  */
1529 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1530 				     struct dwc2_host_chan *chan)
1531 {
1532 	if (dbg_hc(chan))
1533 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1534 			 chan->hc_num);
1535 
1536 	if (chan->do_split)
1537 		/* SPLITs always queue just once per channel */
1538 		return 0;
1539 
1540 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1541 		/* SETUPs are queued only once since they can't be NAK'd */
1542 		return 0;
1543 
1544 	if (chan->ep_is_in) {
1545 		/*
1546 		 * Always queue another request for other IN transfers. If
1547 		 * back-to-back INs are issued and NAKs are received for both,
1548 		 * the driver may still be processing the first NAK when the
1549 		 * second NAK is received. When the interrupt handler clears
1550 		 * the NAK interrupt for the first NAK, the second NAK will
1551 		 * not be seen. So we can't depend on the NAK interrupt
1552 		 * handler to requeue a NAK'd request. Instead, IN requests
1553 		 * are issued each time this function is called. When the
1554 		 * transfer completes, the extra requests for the channel will
1555 		 * be flushed.
1556 		 */
1557 		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1558 
1559 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1560 		hcchar |= HCCHAR_CHENA;
1561 		hcchar &= ~HCCHAR_CHDIS;
1562 		if (dbg_hc(chan))
1563 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1564 				 hcchar);
1565 		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1566 		chan->requests++;
1567 		return 1;
1568 	}
1569 
1570 	/* OUT transfers */
1571 
1572 	if (chan->xfer_count < chan->xfer_len) {
1573 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1574 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1575 			u32 hcchar = dwc2_readl(hsotg,
1576 						HCCHAR(chan->hc_num));
1577 
1578 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1579 						   &hcchar);
1580 		}
1581 
1582 		/* Load OUT packet into the appropriate Tx FIFO */
1583 		dwc2_hc_write_packet(hsotg, chan);
1584 		chan->requests++;
1585 		return 1;
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 /*
1592  * =========================================================================
1593  *  HCD
1594  * =========================================================================
1595  */
1596 
1597 /*
1598  * Processes all the URBs in a single list of QHs. Completes them with
1599  * -ETIMEDOUT and frees the QTD.
1600  *
1601  * Must be called with interrupt disabled and spinlock held
1602  */
1603 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1604 				      struct list_head *qh_list)
1605 {
1606 	struct dwc2_qh *qh, *qh_tmp;
1607 	struct dwc2_qtd *qtd, *qtd_tmp;
1608 
1609 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1610 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1611 					 qtd_list_entry) {
1612 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1613 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1614 		}
1615 	}
1616 }
1617 
1618 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1619 			      struct list_head *qh_list)
1620 {
1621 	struct dwc2_qtd *qtd, *qtd_tmp;
1622 	struct dwc2_qh *qh, *qh_tmp;
1623 	unsigned long flags;
1624 
1625 	if (!qh_list->next)
1626 		/* The list hasn't been initialized yet */
1627 		return;
1628 
1629 	spin_lock_irqsave(&hsotg->lock, flags);
1630 
1631 	/* Ensure there are no QTDs or URBs left */
1632 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1633 
1634 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1635 		dwc2_hcd_qh_unlink(hsotg, qh);
1636 
1637 		/* Free each QTD in the QH's QTD list */
1638 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1639 					 qtd_list_entry)
1640 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1641 
1642 		if (qh->channel && qh->channel->qh == qh)
1643 			qh->channel->qh = NULL;
1644 
1645 		spin_unlock_irqrestore(&hsotg->lock, flags);
1646 		dwc2_hcd_qh_free(hsotg, qh);
1647 		spin_lock_irqsave(&hsotg->lock, flags);
1648 	}
1649 
1650 	spin_unlock_irqrestore(&hsotg->lock, flags);
1651 }
1652 
1653 /*
1654  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1655  * and periodic schedules. The QTD associated with each URB is removed from
1656  * the schedule and freed. This function may be called when a disconnect is
1657  * detected or when the HCD is being stopped.
1658  *
1659  * Must be called with interrupt disabled and spinlock held
1660  */
1661 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1662 {
1663 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1664 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1665 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1666 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1667 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1668 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1669 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1670 }
1671 
1672 /**
1673  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1674  *
1675  * @hsotg: Pointer to struct dwc2_hsotg
1676  */
1677 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1678 {
1679 	u32 hprt0;
1680 
1681 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1682 		/*
1683 		 * Reset the port. During a HNP mode switch the reset
1684 		 * needs to occur within 1ms and have a duration of at
1685 		 * least 50ms.
1686 		 */
1687 		hprt0 = dwc2_read_hprt0(hsotg);
1688 		hprt0 |= HPRT0_RST;
1689 		dwc2_writel(hsotg, hprt0, HPRT0);
1690 	}
1691 
1692 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1693 			   msecs_to_jiffies(50));
1694 }
1695 
1696 /* Must be called with interrupt disabled and spinlock held */
1697 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1698 {
1699 	int num_channels = hsotg->params.host_channels;
1700 	struct dwc2_host_chan *channel;
1701 	u32 hcchar;
1702 	int i;
1703 
1704 	if (!hsotg->params.host_dma) {
1705 		/* Flush out any channel requests in slave mode */
1706 		for (i = 0; i < num_channels; i++) {
1707 			channel = hsotg->hc_ptr_array[i];
1708 			if (!list_empty(&channel->hc_list_entry))
1709 				continue;
1710 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1711 			if (hcchar & HCCHAR_CHENA) {
1712 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1713 				hcchar |= HCCHAR_CHDIS;
1714 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1715 			}
1716 		}
1717 	}
1718 
1719 	for (i = 0; i < num_channels; i++) {
1720 		channel = hsotg->hc_ptr_array[i];
1721 		if (!list_empty(&channel->hc_list_entry))
1722 			continue;
1723 		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1724 		if (hcchar & HCCHAR_CHENA) {
1725 			/* Halt the channel */
1726 			hcchar |= HCCHAR_CHDIS;
1727 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1728 		}
1729 
1730 		dwc2_hc_cleanup(hsotg, channel);
1731 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1732 		/*
1733 		 * Added for Descriptor DMA to prevent channel double cleanup in
1734 		 * release_channel_ddma(), which is called from ep_disable when
1735 		 * device disconnects
1736 		 */
1737 		channel->qh = NULL;
1738 	}
1739 	/* All channels have been freed, mark them available */
1740 	if (hsotg->params.uframe_sched) {
1741 		hsotg->available_host_channels =
1742 			hsotg->params.host_channels;
1743 	} else {
1744 		hsotg->non_periodic_channels = 0;
1745 		hsotg->periodic_channels = 0;
1746 	}
1747 }
1748 
1749 /**
1750  * dwc2_hcd_connect() - Handles connect of the HCD
1751  *
1752  * @hsotg: Pointer to struct dwc2_hsotg
1753  *
1754  * Must be called with interrupt disabled and spinlock held
1755  */
1756 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1757 {
1758 	if (hsotg->lx_state != DWC2_L0)
1759 		usb_hcd_resume_root_hub(hsotg->priv);
1760 
1761 	hsotg->flags.b.port_connect_status_change = 1;
1762 	hsotg->flags.b.port_connect_status = 1;
1763 }
1764 
1765 /**
1766  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1767  *
1768  * @hsotg: Pointer to struct dwc2_hsotg
1769  * @force: If true, we won't try to reconnect even if we see device connected.
1770  *
1771  * Must be called with interrupt disabled and spinlock held
1772  */
1773 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1774 {
1775 	u32 intr;
1776 	u32 hprt0;
1777 
1778 	/* Set status flags for the hub driver */
1779 	hsotg->flags.b.port_connect_status_change = 1;
1780 	hsotg->flags.b.port_connect_status = 0;
1781 
1782 	/*
1783 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1784 	 * interrupt mask and status bits and disabling subsequent host
1785 	 * channel interrupts.
1786 	 */
1787 	intr = dwc2_readl(hsotg, GINTMSK);
1788 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1789 	dwc2_writel(hsotg, intr, GINTMSK);
1790 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1791 	dwc2_writel(hsotg, intr, GINTSTS);
1792 
1793 	/*
1794 	 * Turn off the vbus power only if the core has transitioned to device
1795 	 * mode. If still in host mode, need to keep power on to detect a
1796 	 * reconnection.
1797 	 */
1798 	if (dwc2_is_device_mode(hsotg)) {
1799 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1800 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1801 			dwc2_writel(hsotg, 0, HPRT0);
1802 		}
1803 
1804 		dwc2_disable_host_interrupts(hsotg);
1805 	}
1806 
1807 	/* Respond with an error status to all URBs in the schedule */
1808 	dwc2_kill_all_urbs(hsotg);
1809 
1810 	if (dwc2_is_host_mode(hsotg))
1811 		/* Clean up any host channels that were in use */
1812 		dwc2_hcd_cleanup_channels(hsotg);
1813 
1814 	dwc2_host_disconnect(hsotg);
1815 
1816 	/*
1817 	 * Add an extra check here to see if we're actually connected but
1818 	 * we don't have a detection interrupt pending.  This can happen if:
1819 	 *   1. hardware sees connect
1820 	 *   2. hardware sees disconnect
1821 	 *   3. hardware sees connect
1822 	 *   4. dwc2_port_intr() - clears connect interrupt
1823 	 *   5. dwc2_handle_common_intr() - calls here
1824 	 *
1825 	 * Without the extra check here we will end calling disconnect
1826 	 * and won't get any future interrupts to handle the connect.
1827 	 */
1828 	if (!force) {
1829 		hprt0 = dwc2_readl(hsotg, HPRT0);
1830 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1831 			dwc2_hcd_connect(hsotg);
1832 	}
1833 }
1834 
1835 /**
1836  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1837  *
1838  * @hsotg: Pointer to struct dwc2_hsotg
1839  */
1840 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1841 {
1842 	if (hsotg->bus_suspended) {
1843 		hsotg->flags.b.port_suspend_change = 1;
1844 		usb_hcd_resume_root_hub(hsotg->priv);
1845 	}
1846 
1847 	if (hsotg->lx_state == DWC2_L1)
1848 		hsotg->flags.b.port_l1_change = 1;
1849 }
1850 
1851 /**
1852  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1853  *
1854  * @hsotg: Pointer to struct dwc2_hsotg
1855  *
1856  * Must be called with interrupt disabled and spinlock held
1857  */
1858 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1859 {
1860 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1861 
1862 	/*
1863 	 * The root hub should be disconnected before this function is called.
1864 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1865 	 * and the QH lists (via ..._hcd_endpoint_disable).
1866 	 */
1867 
1868 	/* Turn off all host-specific interrupts */
1869 	dwc2_disable_host_interrupts(hsotg);
1870 
1871 	/* Turn off the vbus power */
1872 	dev_dbg(hsotg->dev, "PortPower off\n");
1873 	dwc2_writel(hsotg, 0, HPRT0);
1874 }
1875 
1876 /* Caller must hold driver lock */
1877 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1878 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1879 				struct dwc2_qtd *qtd)
1880 {
1881 	u32 intr_mask;
1882 	int retval;
1883 	int dev_speed;
1884 
1885 	if (!hsotg->flags.b.port_connect_status) {
1886 		/* No longer connected */
1887 		dev_err(hsotg->dev, "Not connected\n");
1888 		return -ENODEV;
1889 	}
1890 
1891 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1892 
1893 	/* Some configurations cannot support LS traffic on a FS root port */
1894 	if ((dev_speed == USB_SPEED_LOW) &&
1895 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1896 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1897 		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1898 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1899 
1900 		if (prtspd == HPRT0_SPD_FULL_SPEED)
1901 			return -ENODEV;
1902 	}
1903 
1904 	if (!qtd)
1905 		return -EINVAL;
1906 
1907 	dwc2_hcd_qtd_init(qtd, urb);
1908 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1909 	if (retval) {
1910 		dev_err(hsotg->dev,
1911 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1912 			retval);
1913 		return retval;
1914 	}
1915 
1916 	intr_mask = dwc2_readl(hsotg, GINTMSK);
1917 	if (!(intr_mask & GINTSTS_SOF)) {
1918 		enum dwc2_transaction_type tr_type;
1919 
1920 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1921 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1922 			/*
1923 			 * Do not schedule SG transactions until qtd has
1924 			 * URB_GIVEBACK_ASAP set
1925 			 */
1926 			return 0;
1927 
1928 		tr_type = dwc2_hcd_select_transactions(hsotg);
1929 		if (tr_type != DWC2_TRANSACTION_NONE)
1930 			dwc2_hcd_queue_transactions(hsotg, tr_type);
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 /* Must be called with interrupt disabled and spinlock held */
1937 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1938 				struct dwc2_hcd_urb *urb)
1939 {
1940 	struct dwc2_qh *qh;
1941 	struct dwc2_qtd *urb_qtd;
1942 
1943 	urb_qtd = urb->qtd;
1944 	if (!urb_qtd) {
1945 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1946 		return -EINVAL;
1947 	}
1948 
1949 	qh = urb_qtd->qh;
1950 	if (!qh) {
1951 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1952 		return -EINVAL;
1953 	}
1954 
1955 	urb->priv = NULL;
1956 
1957 	if (urb_qtd->in_process && qh->channel) {
1958 		dwc2_dump_channel_info(hsotg, qh->channel);
1959 
1960 		/* The QTD is in process (it has been assigned to a channel) */
1961 		if (hsotg->flags.b.port_connect_status)
1962 			/*
1963 			 * If still connected (i.e. in host mode), halt the
1964 			 * channel so it can be used for other transfers. If
1965 			 * no longer connected, the host registers can't be
1966 			 * written to halt the channel since the core is in
1967 			 * device mode.
1968 			 */
1969 			dwc2_hc_halt(hsotg, qh->channel,
1970 				     DWC2_HC_XFER_URB_DEQUEUE);
1971 	}
1972 
1973 	/*
1974 	 * Free the QTD and clean up the associated QH. Leave the QH in the
1975 	 * schedule if it has any remaining QTDs.
1976 	 */
1977 	if (!hsotg->params.dma_desc_enable) {
1978 		u8 in_process = urb_qtd->in_process;
1979 
1980 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1981 		if (in_process) {
1982 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1983 			qh->channel = NULL;
1984 		} else if (list_empty(&qh->qtd_list)) {
1985 			dwc2_hcd_qh_unlink(hsotg, qh);
1986 		}
1987 	} else {
1988 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 /* Must NOT be called with interrupt disabled or spinlock held */
1995 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1996 				     struct usb_host_endpoint *ep, int retry)
1997 {
1998 	struct dwc2_qtd *qtd, *qtd_tmp;
1999 	struct dwc2_qh *qh;
2000 	unsigned long flags;
2001 	int rc;
2002 
2003 	spin_lock_irqsave(&hsotg->lock, flags);
2004 
2005 	qh = ep->hcpriv;
2006 	if (!qh) {
2007 		rc = -EINVAL;
2008 		goto err;
2009 	}
2010 
2011 	while (!list_empty(&qh->qtd_list) && retry--) {
2012 		if (retry == 0) {
2013 			dev_err(hsotg->dev,
2014 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2015 			rc = -EBUSY;
2016 			goto err;
2017 		}
2018 
2019 		spin_unlock_irqrestore(&hsotg->lock, flags);
2020 		msleep(20);
2021 		spin_lock_irqsave(&hsotg->lock, flags);
2022 		qh = ep->hcpriv;
2023 		if (!qh) {
2024 			rc = -EINVAL;
2025 			goto err;
2026 		}
2027 	}
2028 
2029 	dwc2_hcd_qh_unlink(hsotg, qh);
2030 
2031 	/* Free each QTD in the QH's QTD list */
2032 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2033 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2034 
2035 	ep->hcpriv = NULL;
2036 
2037 	if (qh->channel && qh->channel->qh == qh)
2038 		qh->channel->qh = NULL;
2039 
2040 	spin_unlock_irqrestore(&hsotg->lock, flags);
2041 
2042 	dwc2_hcd_qh_free(hsotg, qh);
2043 
2044 	return 0;
2045 
2046 err:
2047 	ep->hcpriv = NULL;
2048 	spin_unlock_irqrestore(&hsotg->lock, flags);
2049 
2050 	return rc;
2051 }
2052 
2053 /* Must be called with interrupt disabled and spinlock held */
2054 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2055 				   struct usb_host_endpoint *ep)
2056 {
2057 	struct dwc2_qh *qh = ep->hcpriv;
2058 
2059 	if (!qh)
2060 		return -EINVAL;
2061 
2062 	qh->data_toggle = DWC2_HC_PID_DATA0;
2063 
2064 	return 0;
2065 }
2066 
2067 /**
2068  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2069  * prepares the core for device mode or host mode operation
2070  *
2071  * @hsotg:         Programming view of the DWC_otg controller
2072  * @initial_setup: If true then this is the first init for this instance.
2073  */
2074 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2075 {
2076 	u32 usbcfg, otgctl;
2077 	int retval;
2078 
2079 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2080 
2081 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2082 
2083 	/* Set ULPI External VBUS bit if needed */
2084 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2085 	if (hsotg->params.phy_ulpi_ext_vbus)
2086 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2087 
2088 	/* Set external TS Dline pulsing bit if needed */
2089 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2090 	if (hsotg->params.ts_dline)
2091 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2092 
2093 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2094 
2095 	/*
2096 	 * Reset the Controller
2097 	 *
2098 	 * We only need to reset the controller if this is a re-init.
2099 	 * For the first init we know for sure that earlier code reset us (it
2100 	 * needed to in order to properly detect various parameters).
2101 	 */
2102 	if (!initial_setup) {
2103 		retval = dwc2_core_reset(hsotg, false);
2104 		if (retval) {
2105 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2106 				__func__);
2107 			return retval;
2108 		}
2109 	}
2110 
2111 	/*
2112 	 * This needs to happen in FS mode before any other programming occurs
2113 	 */
2114 	retval = dwc2_phy_init(hsotg, initial_setup);
2115 	if (retval)
2116 		return retval;
2117 
2118 	/* Program the GAHBCFG Register */
2119 	retval = dwc2_gahbcfg_init(hsotg);
2120 	if (retval)
2121 		return retval;
2122 
2123 	/* Program the GUSBCFG register */
2124 	dwc2_gusbcfg_init(hsotg);
2125 
2126 	/* Program the GOTGCTL register */
2127 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2128 	otgctl &= ~GOTGCTL_OTGVER;
2129 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2130 
2131 	/* Clear the SRP success bit for FS-I2c */
2132 	hsotg->srp_success = 0;
2133 
2134 	/* Enable common interrupts */
2135 	dwc2_enable_common_interrupts(hsotg);
2136 
2137 	/*
2138 	 * Do device or host initialization based on mode during PCD and
2139 	 * HCD initialization
2140 	 */
2141 	if (dwc2_is_host_mode(hsotg)) {
2142 		dev_dbg(hsotg->dev, "Host Mode\n");
2143 		hsotg->op_state = OTG_STATE_A_HOST;
2144 	} else {
2145 		dev_dbg(hsotg->dev, "Device Mode\n");
2146 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2147 	}
2148 
2149 	return 0;
2150 }
2151 
2152 /**
2153  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2154  * Host mode
2155  *
2156  * @hsotg: Programming view of DWC_otg controller
2157  *
2158  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2159  * request queues. Host channels are reset to ensure that they are ready for
2160  * performing transfers.
2161  */
2162 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2163 {
2164 	u32 hcfg, hfir, otgctl, usbcfg;
2165 
2166 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2167 
2168 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2169 	 * The number of PHY clocks that the application programs in
2170 	 * this field is added to the high/full speed interpacket timeout
2171 	 * duration in the core to account for any additional delays
2172 	 * introduced by the PHY. This can be required, because the delay
2173 	 * introduced by the PHY in generating the linestate condition
2174 	 * can vary from one PHY to another.
2175 	 */
2176 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2177 	usbcfg |= GUSBCFG_TOUTCAL(7);
2178 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2179 
2180 	/* Restart the Phy Clock */
2181 	dwc2_writel(hsotg, 0, PCGCTL);
2182 
2183 	/* Initialize Host Configuration Register */
2184 	dwc2_init_fs_ls_pclk_sel(hsotg);
2185 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2186 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2187 		hcfg = dwc2_readl(hsotg, HCFG);
2188 		hcfg |= HCFG_FSLSSUPP;
2189 		dwc2_writel(hsotg, hcfg, HCFG);
2190 	}
2191 
2192 	/*
2193 	 * This bit allows dynamic reloading of the HFIR register during
2194 	 * runtime. This bit needs to be programmed during initial configuration
2195 	 * and its value must not be changed during runtime.
2196 	 */
2197 	if (hsotg->params.reload_ctl) {
2198 		hfir = dwc2_readl(hsotg, HFIR);
2199 		hfir |= HFIR_RLDCTRL;
2200 		dwc2_writel(hsotg, hfir, HFIR);
2201 	}
2202 
2203 	if (hsotg->params.dma_desc_enable) {
2204 		u32 op_mode = hsotg->hw_params.op_mode;
2205 
2206 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2207 		    !hsotg->hw_params.dma_desc_enable ||
2208 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2209 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2210 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2211 			dev_err(hsotg->dev,
2212 				"Hardware does not support descriptor DMA mode -\n");
2213 			dev_err(hsotg->dev,
2214 				"falling back to buffer DMA mode.\n");
2215 			hsotg->params.dma_desc_enable = false;
2216 		} else {
2217 			hcfg = dwc2_readl(hsotg, HCFG);
2218 			hcfg |= HCFG_DESCDMA;
2219 			dwc2_writel(hsotg, hcfg, HCFG);
2220 		}
2221 	}
2222 
2223 	/* Configure data FIFO sizes */
2224 	dwc2_config_fifos(hsotg);
2225 
2226 	/* TODO - check this */
2227 	/* Clear Host Set HNP Enable in the OTG Control Register */
2228 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2229 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2230 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2231 
2232 	/* Make sure the FIFOs are flushed */
2233 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2234 	dwc2_flush_rx_fifo(hsotg);
2235 
2236 	/* Clear Host Set HNP Enable in the OTG Control Register */
2237 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2238 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2239 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2240 
2241 	if (!hsotg->params.dma_desc_enable) {
2242 		int num_channels, i;
2243 		u32 hcchar;
2244 
2245 		/* Flush out any leftover queued requests */
2246 		num_channels = hsotg->params.host_channels;
2247 		for (i = 0; i < num_channels; i++) {
2248 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2249 			if (hcchar & HCCHAR_CHENA) {
2250 				hcchar &= ~HCCHAR_CHENA;
2251 				hcchar |= HCCHAR_CHDIS;
2252 				hcchar &= ~HCCHAR_EPDIR;
2253 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2254 			}
2255 		}
2256 
2257 		/* Halt all channels to put them into a known state */
2258 		for (i = 0; i < num_channels; i++) {
2259 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2260 			if (hcchar & HCCHAR_CHENA) {
2261 				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2262 				hcchar &= ~HCCHAR_EPDIR;
2263 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2264 				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2265 					__func__, i);
2266 
2267 				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2268 							      HCCHAR_CHENA,
2269 							      1000)) {
2270 					dev_warn(hsotg->dev,
2271 						 "Unable to clear enable on channel %d\n",
2272 						 i);
2273 				}
2274 			}
2275 		}
2276 	}
2277 
2278 	/* Enable ACG feature in host mode, if supported */
2279 	dwc2_enable_acg(hsotg);
2280 
2281 	/* Turn on the vbus power */
2282 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2283 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2284 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2285 
2286 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2287 			!!(hprt0 & HPRT0_PWR));
2288 		if (!(hprt0 & HPRT0_PWR)) {
2289 			hprt0 |= HPRT0_PWR;
2290 			dwc2_writel(hsotg, hprt0, HPRT0);
2291 		}
2292 	}
2293 
2294 	dwc2_enable_host_interrupts(hsotg);
2295 }
2296 
2297 /*
2298  * Initializes dynamic portions of the DWC_otg HCD state
2299  *
2300  * Must be called with interrupt disabled and spinlock held
2301  */
2302 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2303 {
2304 	struct dwc2_host_chan *chan, *chan_tmp;
2305 	int num_channels;
2306 	int i;
2307 
2308 	hsotg->flags.d32 = 0;
2309 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2310 
2311 	if (hsotg->params.uframe_sched) {
2312 		hsotg->available_host_channels =
2313 			hsotg->params.host_channels;
2314 	} else {
2315 		hsotg->non_periodic_channels = 0;
2316 		hsotg->periodic_channels = 0;
2317 	}
2318 
2319 	/*
2320 	 * Put all channels in the free channel list and clean up channel
2321 	 * states
2322 	 */
2323 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2324 				 hc_list_entry)
2325 		list_del_init(&chan->hc_list_entry);
2326 
2327 	num_channels = hsotg->params.host_channels;
2328 	for (i = 0; i < num_channels; i++) {
2329 		chan = hsotg->hc_ptr_array[i];
2330 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2331 		dwc2_hc_cleanup(hsotg, chan);
2332 	}
2333 
2334 	/* Initialize the DWC core for host mode operation */
2335 	dwc2_core_host_init(hsotg);
2336 }
2337 
2338 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2339 			       struct dwc2_host_chan *chan,
2340 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2341 {
2342 	int hub_addr, hub_port;
2343 
2344 	chan->do_split = 1;
2345 	chan->xact_pos = qtd->isoc_split_pos;
2346 	chan->complete_split = qtd->complete_split;
2347 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2348 	chan->hub_addr = (u8)hub_addr;
2349 	chan->hub_port = (u8)hub_port;
2350 }
2351 
2352 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2353 			      struct dwc2_host_chan *chan,
2354 			      struct dwc2_qtd *qtd)
2355 {
2356 	struct dwc2_hcd_urb *urb = qtd->urb;
2357 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2358 
2359 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2360 	case USB_ENDPOINT_XFER_CONTROL:
2361 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2362 
2363 		switch (qtd->control_phase) {
2364 		case DWC2_CONTROL_SETUP:
2365 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2366 			chan->do_ping = 0;
2367 			chan->ep_is_in = 0;
2368 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2369 			if (hsotg->params.host_dma)
2370 				chan->xfer_dma = urb->setup_dma;
2371 			else
2372 				chan->xfer_buf = urb->setup_packet;
2373 			chan->xfer_len = 8;
2374 			break;
2375 
2376 		case DWC2_CONTROL_DATA:
2377 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2378 			chan->data_pid_start = qtd->data_toggle;
2379 			break;
2380 
2381 		case DWC2_CONTROL_STATUS:
2382 			/*
2383 			 * Direction is opposite of data direction or IN if no
2384 			 * data
2385 			 */
2386 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2387 			if (urb->length == 0)
2388 				chan->ep_is_in = 1;
2389 			else
2390 				chan->ep_is_in =
2391 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2392 			if (chan->ep_is_in)
2393 				chan->do_ping = 0;
2394 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2395 			chan->xfer_len = 0;
2396 			if (hsotg->params.host_dma)
2397 				chan->xfer_dma = hsotg->status_buf_dma;
2398 			else
2399 				chan->xfer_buf = hsotg->status_buf;
2400 			break;
2401 		}
2402 		break;
2403 
2404 	case USB_ENDPOINT_XFER_BULK:
2405 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2406 		break;
2407 
2408 	case USB_ENDPOINT_XFER_INT:
2409 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2410 		break;
2411 
2412 	case USB_ENDPOINT_XFER_ISOC:
2413 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2414 		if (hsotg->params.dma_desc_enable)
2415 			break;
2416 
2417 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2418 		frame_desc->status = 0;
2419 
2420 		if (hsotg->params.host_dma) {
2421 			chan->xfer_dma = urb->dma;
2422 			chan->xfer_dma += frame_desc->offset +
2423 					qtd->isoc_split_offset;
2424 		} else {
2425 			chan->xfer_buf = urb->buf;
2426 			chan->xfer_buf += frame_desc->offset +
2427 					qtd->isoc_split_offset;
2428 		}
2429 
2430 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2431 
2432 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2433 			if (chan->xfer_len <= 188)
2434 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2435 			else
2436 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2437 		}
2438 		break;
2439 	}
2440 }
2441 
2442 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2443 					    struct dwc2_qh *qh,
2444 					    struct dwc2_host_chan *chan)
2445 {
2446 	if (!hsotg->unaligned_cache ||
2447 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2448 		return -ENOMEM;
2449 
2450 	if (!qh->dw_align_buf) {
2451 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2452 						    GFP_ATOMIC | GFP_DMA);
2453 		if (!qh->dw_align_buf)
2454 			return -ENOMEM;
2455 	}
2456 
2457 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2458 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2459 					      DMA_FROM_DEVICE);
2460 
2461 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2462 		dev_err(hsotg->dev, "can't map align_buf\n");
2463 		chan->align_buf = 0;
2464 		return -EINVAL;
2465 	}
2466 
2467 	chan->align_buf = qh->dw_align_buf_dma;
2468 	return 0;
2469 }
2470 
2471 #define DWC2_USB_DMA_ALIGN 4
2472 
2473 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2474 {
2475 	void *stored_xfer_buffer;
2476 	size_t length;
2477 
2478 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2479 		return;
2480 
2481 	/* Restore urb->transfer_buffer from the end of the allocated area */
2482 	memcpy(&stored_xfer_buffer,
2483 	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2484 			 dma_get_cache_alignment()),
2485 	       sizeof(urb->transfer_buffer));
2486 
2487 	if (usb_urb_dir_in(urb)) {
2488 		if (usb_pipeisoc(urb->pipe))
2489 			length = urb->transfer_buffer_length;
2490 		else
2491 			length = urb->actual_length;
2492 
2493 		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2494 	}
2495 	kfree(urb->transfer_buffer);
2496 	urb->transfer_buffer = stored_xfer_buffer;
2497 
2498 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2499 }
2500 
2501 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2502 {
2503 	void *kmalloc_ptr;
2504 	size_t kmalloc_size;
2505 
2506 	if (urb->num_sgs || urb->sg ||
2507 	    urb->transfer_buffer_length == 0 ||
2508 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2509 		return 0;
2510 
2511 	/*
2512 	 * Allocate a buffer with enough padding for original transfer_buffer
2513 	 * pointer. This allocation is guaranteed to be aligned properly for
2514 	 * DMA
2515 	 */
2516 	kmalloc_size = urb->transfer_buffer_length +
2517 		(dma_get_cache_alignment() - 1) +
2518 		sizeof(urb->transfer_buffer);
2519 
2520 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2521 	if (!kmalloc_ptr)
2522 		return -ENOMEM;
2523 
2524 	/*
2525 	 * Position value of original urb->transfer_buffer pointer to the end
2526 	 * of allocation for later referencing
2527 	 */
2528 	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2529 			 dma_get_cache_alignment()),
2530 	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2531 
2532 	if (usb_urb_dir_out(urb))
2533 		memcpy(kmalloc_ptr, urb->transfer_buffer,
2534 		       urb->transfer_buffer_length);
2535 	urb->transfer_buffer = kmalloc_ptr;
2536 
2537 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2538 
2539 	return 0;
2540 }
2541 
2542 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2543 				gfp_t mem_flags)
2544 {
2545 	int ret;
2546 
2547 	/* We assume setup_dma is always aligned; warn if not */
2548 	WARN_ON_ONCE(urb->setup_dma &&
2549 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2550 
2551 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2552 	if (ret)
2553 		return ret;
2554 
2555 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2556 	if (ret)
2557 		dwc2_free_dma_aligned_buffer(urb);
2558 
2559 	return ret;
2560 }
2561 
2562 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2563 {
2564 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2565 	dwc2_free_dma_aligned_buffer(urb);
2566 }
2567 
2568 /**
2569  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2570  * channel and initializes the host channel to perform the transactions. The
2571  * host channel is removed from the free list.
2572  *
2573  * @hsotg: The HCD state structure
2574  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2575  *         to a free host channel
2576  */
2577 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2578 {
2579 	struct dwc2_host_chan *chan;
2580 	struct dwc2_hcd_urb *urb;
2581 	struct dwc2_qtd *qtd;
2582 
2583 	if (dbg_qh(qh))
2584 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2585 
2586 	if (list_empty(&qh->qtd_list)) {
2587 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2588 		return -ENOMEM;
2589 	}
2590 
2591 	if (list_empty(&hsotg->free_hc_list)) {
2592 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2593 		return -ENOMEM;
2594 	}
2595 
2596 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2597 				hc_list_entry);
2598 
2599 	/* Remove host channel from free list */
2600 	list_del_init(&chan->hc_list_entry);
2601 
2602 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2603 	urb = qtd->urb;
2604 	qh->channel = chan;
2605 	qtd->in_process = 1;
2606 
2607 	/*
2608 	 * Use usb_pipedevice to determine device address. This address is
2609 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2610 	 */
2611 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2612 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2613 	chan->speed = qh->dev_speed;
2614 	chan->max_packet = qh->maxp;
2615 
2616 	chan->xfer_started = 0;
2617 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2618 	chan->error_state = (qtd->error_count > 0);
2619 	chan->halt_on_queue = 0;
2620 	chan->halt_pending = 0;
2621 	chan->requests = 0;
2622 
2623 	/*
2624 	 * The following values may be modified in the transfer type section
2625 	 * below. The xfer_len value may be reduced when the transfer is
2626 	 * started to accommodate the max widths of the XferSize and PktCnt
2627 	 * fields in the HCTSIZn register.
2628 	 */
2629 
2630 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2631 	if (chan->ep_is_in)
2632 		chan->do_ping = 0;
2633 	else
2634 		chan->do_ping = qh->ping_state;
2635 
2636 	chan->data_pid_start = qh->data_toggle;
2637 	chan->multi_count = 1;
2638 
2639 	if (urb->actual_length > urb->length &&
2640 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2641 		urb->actual_length = urb->length;
2642 
2643 	if (hsotg->params.host_dma)
2644 		chan->xfer_dma = urb->dma + urb->actual_length;
2645 	else
2646 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2647 
2648 	chan->xfer_len = urb->length - urb->actual_length;
2649 	chan->xfer_count = 0;
2650 
2651 	/* Set the split attributes if required */
2652 	if (qh->do_split)
2653 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2654 	else
2655 		chan->do_split = 0;
2656 
2657 	/* Set the transfer attributes */
2658 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2659 
2660 	/* For non-dword aligned buffers */
2661 	if (hsotg->params.host_dma && qh->do_split &&
2662 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2663 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2664 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2665 			dev_err(hsotg->dev,
2666 				"Failed to allocate memory to handle non-aligned buffer\n");
2667 			/* Add channel back to free list */
2668 			chan->align_buf = 0;
2669 			chan->multi_count = 0;
2670 			list_add_tail(&chan->hc_list_entry,
2671 				      &hsotg->free_hc_list);
2672 			qtd->in_process = 0;
2673 			qh->channel = NULL;
2674 			return -ENOMEM;
2675 		}
2676 	} else {
2677 		/*
2678 		 * We assume that DMA is always aligned in non-split
2679 		 * case or split out case. Warn if not.
2680 		 */
2681 		WARN_ON_ONCE(hsotg->params.host_dma &&
2682 			     (chan->xfer_dma & 0x3));
2683 		chan->align_buf = 0;
2684 	}
2685 
2686 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2687 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2688 		/*
2689 		 * This value may be modified when the transfer is started
2690 		 * to reflect the actual transfer length
2691 		 */
2692 		chan->multi_count = qh->maxp_mult;
2693 
2694 	if (hsotg->params.dma_desc_enable) {
2695 		chan->desc_list_addr = qh->desc_list_dma;
2696 		chan->desc_list_sz = qh->desc_list_sz;
2697 	}
2698 
2699 	dwc2_hc_init(hsotg, chan);
2700 	chan->qh = qh;
2701 
2702 	return 0;
2703 }
2704 
2705 /**
2706  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2707  * schedule and assigns them to available host channels. Called from the HCD
2708  * interrupt handler functions.
2709  *
2710  * @hsotg: The HCD state structure
2711  *
2712  * Return: The types of new transactions that were assigned to host channels
2713  */
2714 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2715 		struct dwc2_hsotg *hsotg)
2716 {
2717 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2718 	struct list_head *qh_ptr;
2719 	struct dwc2_qh *qh;
2720 	int num_channels;
2721 
2722 #ifdef DWC2_DEBUG_SOF
2723 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2724 #endif
2725 
2726 	/* Process entries in the periodic ready list */
2727 	qh_ptr = hsotg->periodic_sched_ready.next;
2728 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2729 		if (list_empty(&hsotg->free_hc_list))
2730 			break;
2731 		if (hsotg->params.uframe_sched) {
2732 			if (hsotg->available_host_channels <= 1)
2733 				break;
2734 			hsotg->available_host_channels--;
2735 		}
2736 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2737 		if (dwc2_assign_and_init_hc(hsotg, qh))
2738 			break;
2739 
2740 		/*
2741 		 * Move the QH from the periodic ready schedule to the
2742 		 * periodic assigned schedule
2743 		 */
2744 		qh_ptr = qh_ptr->next;
2745 		list_move_tail(&qh->qh_list_entry,
2746 			       &hsotg->periodic_sched_assigned);
2747 		ret_val = DWC2_TRANSACTION_PERIODIC;
2748 	}
2749 
2750 	/*
2751 	 * Process entries in the inactive portion of the non-periodic
2752 	 * schedule. Some free host channels may not be used if they are
2753 	 * reserved for periodic transfers.
2754 	 */
2755 	num_channels = hsotg->params.host_channels;
2756 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2757 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2758 		if (!hsotg->params.uframe_sched &&
2759 		    hsotg->non_periodic_channels >= num_channels -
2760 						hsotg->periodic_channels)
2761 			break;
2762 		if (list_empty(&hsotg->free_hc_list))
2763 			break;
2764 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2765 		if (hsotg->params.uframe_sched) {
2766 			if (hsotg->available_host_channels < 1)
2767 				break;
2768 			hsotg->available_host_channels--;
2769 		}
2770 
2771 		if (dwc2_assign_and_init_hc(hsotg, qh))
2772 			break;
2773 
2774 		/*
2775 		 * Move the QH from the non-periodic inactive schedule to the
2776 		 * non-periodic active schedule
2777 		 */
2778 		qh_ptr = qh_ptr->next;
2779 		list_move_tail(&qh->qh_list_entry,
2780 			       &hsotg->non_periodic_sched_active);
2781 
2782 		if (ret_val == DWC2_TRANSACTION_NONE)
2783 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2784 		else
2785 			ret_val = DWC2_TRANSACTION_ALL;
2786 
2787 		if (!hsotg->params.uframe_sched)
2788 			hsotg->non_periodic_channels++;
2789 	}
2790 
2791 	return ret_val;
2792 }
2793 
2794 /**
2795  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2796  * a host channel associated with either a periodic or non-periodic transfer
2797  *
2798  * @hsotg: The HCD state structure
2799  * @chan:  Host channel descriptor associated with either a periodic or
2800  *         non-periodic transfer
2801  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2802  *                     for periodic transfers or the non-periodic Tx FIFO
2803  *                     for non-periodic transfers
2804  *
2805  * Return: 1 if a request is queued and more requests may be needed to
2806  * complete the transfer, 0 if no more requests are required for this
2807  * transfer, -1 if there is insufficient space in the Tx FIFO
2808  *
2809  * This function assumes that there is space available in the appropriate
2810  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2811  * it checks whether space is available in the appropriate Tx FIFO.
2812  *
2813  * Must be called with interrupt disabled and spinlock held
2814  */
2815 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2816 				  struct dwc2_host_chan *chan,
2817 				  u16 fifo_dwords_avail)
2818 {
2819 	int retval = 0;
2820 
2821 	if (chan->do_split)
2822 		/* Put ourselves on the list to keep order straight */
2823 		list_move_tail(&chan->split_order_list_entry,
2824 			       &hsotg->split_order);
2825 
2826 	if (hsotg->params.host_dma && chan->qh) {
2827 		if (hsotg->params.dma_desc_enable) {
2828 			if (!chan->xfer_started ||
2829 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2830 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2831 				chan->qh->ping_state = 0;
2832 			}
2833 		} else if (!chan->xfer_started) {
2834 			dwc2_hc_start_transfer(hsotg, chan);
2835 			chan->qh->ping_state = 0;
2836 		}
2837 	} else if (chan->halt_pending) {
2838 		/* Don't queue a request if the channel has been halted */
2839 	} else if (chan->halt_on_queue) {
2840 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2841 	} else if (chan->do_ping) {
2842 		if (!chan->xfer_started)
2843 			dwc2_hc_start_transfer(hsotg, chan);
2844 	} else if (!chan->ep_is_in ||
2845 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2846 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2847 			if (!chan->xfer_started) {
2848 				dwc2_hc_start_transfer(hsotg, chan);
2849 				retval = 1;
2850 			} else {
2851 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2852 			}
2853 		} else {
2854 			retval = -1;
2855 		}
2856 	} else {
2857 		if (!chan->xfer_started) {
2858 			dwc2_hc_start_transfer(hsotg, chan);
2859 			retval = 1;
2860 		} else {
2861 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2862 		}
2863 	}
2864 
2865 	return retval;
2866 }
2867 
2868 /*
2869  * Processes periodic channels for the next frame and queues transactions for
2870  * these channels to the DWC_otg controller. After queueing transactions, the
2871  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2872  * to queue as Periodic Tx FIFO or request queue space becomes available.
2873  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2874  *
2875  * Must be called with interrupt disabled and spinlock held
2876  */
2877 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2878 {
2879 	struct list_head *qh_ptr;
2880 	struct dwc2_qh *qh;
2881 	u32 tx_status;
2882 	u32 fspcavail;
2883 	u32 gintmsk;
2884 	int status;
2885 	bool no_queue_space = false;
2886 	bool no_fifo_space = false;
2887 	u32 qspcavail;
2888 
2889 	/* If empty list then just adjust interrupt enables */
2890 	if (list_empty(&hsotg->periodic_sched_assigned))
2891 		goto exit;
2892 
2893 	if (dbg_perio())
2894 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2895 
2896 	tx_status = dwc2_readl(hsotg, HPTXSTS);
2897 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2898 		    TXSTS_QSPCAVAIL_SHIFT;
2899 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2900 		    TXSTS_FSPCAVAIL_SHIFT;
2901 
2902 	if (dbg_perio()) {
2903 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2904 			 qspcavail);
2905 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2906 			 fspcavail);
2907 	}
2908 
2909 	qh_ptr = hsotg->periodic_sched_assigned.next;
2910 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2911 		tx_status = dwc2_readl(hsotg, HPTXSTS);
2912 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2913 			    TXSTS_QSPCAVAIL_SHIFT;
2914 		if (qspcavail == 0) {
2915 			no_queue_space = true;
2916 			break;
2917 		}
2918 
2919 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2920 		if (!qh->channel) {
2921 			qh_ptr = qh_ptr->next;
2922 			continue;
2923 		}
2924 
2925 		/* Make sure EP's TT buffer is clean before queueing qtds */
2926 		if (qh->tt_buffer_dirty) {
2927 			qh_ptr = qh_ptr->next;
2928 			continue;
2929 		}
2930 
2931 		/*
2932 		 * Set a flag if we're queuing high-bandwidth in slave mode.
2933 		 * The flag prevents any halts to get into the request queue in
2934 		 * the middle of multiple high-bandwidth packets getting queued.
2935 		 */
2936 		if (!hsotg->params.host_dma &&
2937 		    qh->channel->multi_count > 1)
2938 			hsotg->queuing_high_bandwidth = 1;
2939 
2940 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2941 			    TXSTS_FSPCAVAIL_SHIFT;
2942 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2943 		if (status < 0) {
2944 			no_fifo_space = true;
2945 			break;
2946 		}
2947 
2948 		/*
2949 		 * In Slave mode, stay on the current transfer until there is
2950 		 * nothing more to do or the high-bandwidth request count is
2951 		 * reached. In DMA mode, only need to queue one request. The
2952 		 * controller automatically handles multiple packets for
2953 		 * high-bandwidth transfers.
2954 		 */
2955 		if (hsotg->params.host_dma || status == 0 ||
2956 		    qh->channel->requests == qh->channel->multi_count) {
2957 			qh_ptr = qh_ptr->next;
2958 			/*
2959 			 * Move the QH from the periodic assigned schedule to
2960 			 * the periodic queued schedule
2961 			 */
2962 			list_move_tail(&qh->qh_list_entry,
2963 				       &hsotg->periodic_sched_queued);
2964 
2965 			/* done queuing high bandwidth */
2966 			hsotg->queuing_high_bandwidth = 0;
2967 		}
2968 	}
2969 
2970 exit:
2971 	if (no_queue_space || no_fifo_space ||
2972 	    (!hsotg->params.host_dma &&
2973 	     !list_empty(&hsotg->periodic_sched_assigned))) {
2974 		/*
2975 		 * May need to queue more transactions as the request
2976 		 * queue or Tx FIFO empties. Enable the periodic Tx
2977 		 * FIFO empty interrupt. (Always use the half-empty
2978 		 * level to ensure that new requests are loaded as
2979 		 * soon as possible.)
2980 		 */
2981 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2982 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2983 			gintmsk |= GINTSTS_PTXFEMP;
2984 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2985 		}
2986 	} else {
2987 		/*
2988 		 * Disable the Tx FIFO empty interrupt since there are
2989 		 * no more transactions that need to be queued right
2990 		 * now. This function is called from interrupt
2991 		 * handlers to queue more transactions as transfer
2992 		 * states change.
2993 		 */
2994 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2995 		if (gintmsk & GINTSTS_PTXFEMP) {
2996 			gintmsk &= ~GINTSTS_PTXFEMP;
2997 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2998 		}
2999 	}
3000 }
3001 
3002 /*
3003  * Processes active non-periodic channels and queues transactions for these
3004  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3005  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3006  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3007  * FIFO Empty interrupt is disabled.
3008  *
3009  * Must be called with interrupt disabled and spinlock held
3010  */
3011 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3012 {
3013 	struct list_head *orig_qh_ptr;
3014 	struct dwc2_qh *qh;
3015 	u32 tx_status;
3016 	u32 qspcavail;
3017 	u32 fspcavail;
3018 	u32 gintmsk;
3019 	int status;
3020 	int no_queue_space = 0;
3021 	int no_fifo_space = 0;
3022 	int more_to_do = 0;
3023 
3024 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3025 
3026 	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3027 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3028 		    TXSTS_QSPCAVAIL_SHIFT;
3029 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3030 		    TXSTS_FSPCAVAIL_SHIFT;
3031 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3032 		 qspcavail);
3033 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3034 		 fspcavail);
3035 
3036 	/*
3037 	 * Keep track of the starting point. Skip over the start-of-list
3038 	 * entry.
3039 	 */
3040 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3041 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3042 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3043 
3044 	/*
3045 	 * Process once through the active list or until no more space is
3046 	 * available in the request queue or the Tx FIFO
3047 	 */
3048 	do {
3049 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3050 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3051 			    TXSTS_QSPCAVAIL_SHIFT;
3052 		if (!hsotg->params.host_dma && qspcavail == 0) {
3053 			no_queue_space = 1;
3054 			break;
3055 		}
3056 
3057 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3058 				qh_list_entry);
3059 		if (!qh->channel)
3060 			goto next;
3061 
3062 		/* Make sure EP's TT buffer is clean before queueing qtds */
3063 		if (qh->tt_buffer_dirty)
3064 			goto next;
3065 
3066 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3067 			    TXSTS_FSPCAVAIL_SHIFT;
3068 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3069 
3070 		if (status > 0) {
3071 			more_to_do = 1;
3072 		} else if (status < 0) {
3073 			no_fifo_space = 1;
3074 			break;
3075 		}
3076 next:
3077 		/* Advance to next QH, skipping start-of-list entry */
3078 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3079 		if (hsotg->non_periodic_qh_ptr ==
3080 				&hsotg->non_periodic_sched_active)
3081 			hsotg->non_periodic_qh_ptr =
3082 					hsotg->non_periodic_qh_ptr->next;
3083 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3084 
3085 	if (!hsotg->params.host_dma) {
3086 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3087 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3088 			    TXSTS_QSPCAVAIL_SHIFT;
3089 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3090 			    TXSTS_FSPCAVAIL_SHIFT;
3091 		dev_vdbg(hsotg->dev,
3092 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3093 			 qspcavail);
3094 		dev_vdbg(hsotg->dev,
3095 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3096 			 fspcavail);
3097 
3098 		if (more_to_do || no_queue_space || no_fifo_space) {
3099 			/*
3100 			 * May need to queue more transactions as the request
3101 			 * queue or Tx FIFO empties. Enable the non-periodic
3102 			 * Tx FIFO empty interrupt. (Always use the half-empty
3103 			 * level to ensure that new requests are loaded as
3104 			 * soon as possible.)
3105 			 */
3106 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3107 			gintmsk |= GINTSTS_NPTXFEMP;
3108 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3109 		} else {
3110 			/*
3111 			 * Disable the Tx FIFO empty interrupt since there are
3112 			 * no more transactions that need to be queued right
3113 			 * now. This function is called from interrupt
3114 			 * handlers to queue more transactions as transfer
3115 			 * states change.
3116 			 */
3117 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3118 			gintmsk &= ~GINTSTS_NPTXFEMP;
3119 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3120 		}
3121 	}
3122 }
3123 
3124 /**
3125  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3126  * and queues transactions for these channels to the DWC_otg controller. Called
3127  * from the HCD interrupt handler functions.
3128  *
3129  * @hsotg:   The HCD state structure
3130  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3131  *           or both)
3132  *
3133  * Must be called with interrupt disabled and spinlock held
3134  */
3135 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3136 				 enum dwc2_transaction_type tr_type)
3137 {
3138 #ifdef DWC2_DEBUG_SOF
3139 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3140 #endif
3141 	/* Process host channels associated with periodic transfers */
3142 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3143 	    tr_type == DWC2_TRANSACTION_ALL)
3144 		dwc2_process_periodic_channels(hsotg);
3145 
3146 	/* Process host channels associated with non-periodic transfers */
3147 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3148 	    tr_type == DWC2_TRANSACTION_ALL) {
3149 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3150 			dwc2_process_non_periodic_channels(hsotg);
3151 		} else {
3152 			/*
3153 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3154 			 * there are no non-periodic transfers to process
3155 			 */
3156 			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3157 
3158 			gintmsk &= ~GINTSTS_NPTXFEMP;
3159 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3160 		}
3161 	}
3162 }
3163 
3164 static void dwc2_conn_id_status_change(struct work_struct *work)
3165 {
3166 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3167 						wf_otg);
3168 	u32 count = 0;
3169 	u32 gotgctl;
3170 	unsigned long flags;
3171 
3172 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3173 
3174 	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3175 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3176 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3177 		!!(gotgctl & GOTGCTL_CONID_B));
3178 
3179 	/* B-Device connector (Device Mode) */
3180 	if (gotgctl & GOTGCTL_CONID_B) {
3181 		dwc2_vbus_supply_exit(hsotg);
3182 		/* Wait for switch to device mode */
3183 		dev_dbg(hsotg->dev, "connId B\n");
3184 		if (hsotg->bus_suspended) {
3185 			dev_info(hsotg->dev,
3186 				 "Do port resume before switching to device mode\n");
3187 			dwc2_port_resume(hsotg);
3188 		}
3189 		while (!dwc2_is_device_mode(hsotg)) {
3190 			dev_info(hsotg->dev,
3191 				 "Waiting for Peripheral Mode, Mode=%s\n",
3192 				 dwc2_is_host_mode(hsotg) ? "Host" :
3193 				 "Peripheral");
3194 			msleep(20);
3195 			/*
3196 			 * Sometimes the initial GOTGCTRL read is wrong, so
3197 			 * check it again and jump to host mode if that was
3198 			 * the case.
3199 			 */
3200 			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3201 			if (!(gotgctl & GOTGCTL_CONID_B))
3202 				goto host;
3203 			if (++count > 250)
3204 				break;
3205 		}
3206 		if (count > 250)
3207 			dev_err(hsotg->dev,
3208 				"Connection id status change timed out\n");
3209 
3210 		/*
3211 		 * Exit Partial Power Down without restoring registers.
3212 		 * No need to check the return value as registers
3213 		 * are not being restored.
3214 		 */
3215 		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3216 			dwc2_exit_partial_power_down(hsotg, 0, false);
3217 
3218 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3219 		dwc2_core_init(hsotg, false);
3220 		dwc2_enable_global_interrupts(hsotg);
3221 		spin_lock_irqsave(&hsotg->lock, flags);
3222 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3223 		spin_unlock_irqrestore(&hsotg->lock, flags);
3224 		/* Enable ACG feature in device mode,if supported */
3225 		dwc2_enable_acg(hsotg);
3226 		dwc2_hsotg_core_connect(hsotg);
3227 	} else {
3228 host:
3229 		/* A-Device connector (Host Mode) */
3230 		dev_dbg(hsotg->dev, "connId A\n");
3231 		while (!dwc2_is_host_mode(hsotg)) {
3232 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3233 				 dwc2_is_host_mode(hsotg) ?
3234 				 "Host" : "Peripheral");
3235 			msleep(20);
3236 			if (++count > 250)
3237 				break;
3238 		}
3239 		if (count > 250)
3240 			dev_err(hsotg->dev,
3241 				"Connection id status change timed out\n");
3242 
3243 		spin_lock_irqsave(&hsotg->lock, flags);
3244 		dwc2_hsotg_disconnect(hsotg);
3245 		spin_unlock_irqrestore(&hsotg->lock, flags);
3246 
3247 		hsotg->op_state = OTG_STATE_A_HOST;
3248 		/* Initialize the Core for Host mode */
3249 		dwc2_core_init(hsotg, false);
3250 		dwc2_enable_global_interrupts(hsotg);
3251 		dwc2_hcd_start(hsotg);
3252 	}
3253 }
3254 
3255 static void dwc2_wakeup_detected(struct timer_list *t)
3256 {
3257 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3258 	u32 hprt0;
3259 
3260 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3261 
3262 	/*
3263 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3264 	 * so that OPT tests pass with all PHYs.)
3265 	 */
3266 	hprt0 = dwc2_read_hprt0(hsotg);
3267 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3268 	hprt0 &= ~HPRT0_RES;
3269 	dwc2_writel(hsotg, hprt0, HPRT0);
3270 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3271 		dwc2_readl(hsotg, HPRT0));
3272 
3273 	dwc2_hcd_rem_wakeup(hsotg);
3274 	hsotg->bus_suspended = false;
3275 
3276 	/* Change to L0 state */
3277 	hsotg->lx_state = DWC2_L0;
3278 }
3279 
3280 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3281 {
3282 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3283 
3284 	return hcd->self.b_hnp_enable;
3285 }
3286 
3287 /**
3288  * dwc2_port_suspend() - Put controller in suspend mode for host.
3289  *
3290  * @hsotg: Programming view of the DWC_otg controller
3291  * @windex: The control request wIndex field
3292  *
3293  * Return: non-zero if failed to enter suspend mode for host.
3294  *
3295  * This function is for entering Host mode suspend.
3296  * Must NOT be called with interrupt disabled or spinlock held.
3297  */
3298 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3299 {
3300 	unsigned long flags;
3301 	u32 pcgctl;
3302 	u32 gotgctl;
3303 	int ret = 0;
3304 
3305 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3306 
3307 	spin_lock_irqsave(&hsotg->lock, flags);
3308 
3309 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3310 		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3311 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3312 		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3313 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3314 	}
3315 
3316 	switch (hsotg->params.power_down) {
3317 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3318 		ret = dwc2_enter_partial_power_down(hsotg);
3319 		if (ret)
3320 			dev_err(hsotg->dev,
3321 				"enter partial_power_down failed.\n");
3322 		break;
3323 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3324 		/*
3325 		 * Perform spin unlock and lock because in
3326 		 * "dwc2_host_enter_hibernation()" function there is a spinlock
3327 		 * logic which prevents servicing of any IRQ during entering
3328 		 * hibernation.
3329 		 */
3330 		spin_unlock_irqrestore(&hsotg->lock, flags);
3331 		ret = dwc2_enter_hibernation(hsotg, 1);
3332 		if (ret)
3333 			dev_err(hsotg->dev, "enter hibernation failed.\n");
3334 		spin_lock_irqsave(&hsotg->lock, flags);
3335 		break;
3336 	case DWC2_POWER_DOWN_PARAM_NONE:
3337 		/*
3338 		 * If not hibernation nor partial power down are supported,
3339 		 * clock gating is used to save power.
3340 		 */
3341 		if (!hsotg->params.no_clock_gating)
3342 			dwc2_host_enter_clock_gating(hsotg);
3343 		break;
3344 	}
3345 
3346 	/* For HNP the bus must be suspended for at least 200ms */
3347 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3348 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3349 		pcgctl &= ~PCGCTL_STOPPCLK;
3350 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3351 
3352 		spin_unlock_irqrestore(&hsotg->lock, flags);
3353 
3354 		msleep(200);
3355 	} else {
3356 		spin_unlock_irqrestore(&hsotg->lock, flags);
3357 	}
3358 
3359 	return ret;
3360 }
3361 
3362 /**
3363  * dwc2_port_resume() - Exit controller from suspend mode for host.
3364  *
3365  * @hsotg: Programming view of the DWC_otg controller
3366  *
3367  * Return: non-zero if failed to exit suspend mode for host.
3368  *
3369  * This function is for exiting Host mode suspend.
3370  * Must NOT be called with interrupt disabled or spinlock held.
3371  */
3372 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3373 {
3374 	unsigned long flags;
3375 	int ret = 0;
3376 
3377 	spin_lock_irqsave(&hsotg->lock, flags);
3378 
3379 	switch (hsotg->params.power_down) {
3380 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3381 		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3382 		if (ret)
3383 			dev_err(hsotg->dev,
3384 				"exit partial_power_down failed.\n");
3385 		break;
3386 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3387 		/* Exit host hibernation. */
3388 		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3389 		if (ret)
3390 			dev_err(hsotg->dev, "exit hibernation failed.\n");
3391 		break;
3392 	case DWC2_POWER_DOWN_PARAM_NONE:
3393 		/*
3394 		 * If not hibernation nor partial power down are supported,
3395 		 * port resume is done using the clock gating programming flow.
3396 		 */
3397 		spin_unlock_irqrestore(&hsotg->lock, flags);
3398 		dwc2_host_exit_clock_gating(hsotg, 0);
3399 		spin_lock_irqsave(&hsotg->lock, flags);
3400 		break;
3401 	}
3402 
3403 	spin_unlock_irqrestore(&hsotg->lock, flags);
3404 
3405 	return ret;
3406 }
3407 
3408 /* Handles hub class-specific requests */
3409 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3410 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3411 {
3412 	struct usb_hub_descriptor *hub_desc;
3413 	int retval = 0;
3414 	u32 hprt0;
3415 	u32 port_status;
3416 	u32 speed;
3417 	u32 pcgctl;
3418 	u32 pwr;
3419 
3420 	switch (typereq) {
3421 	case ClearHubFeature:
3422 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3423 
3424 		switch (wvalue) {
3425 		case C_HUB_LOCAL_POWER:
3426 		case C_HUB_OVER_CURRENT:
3427 			/* Nothing required here */
3428 			break;
3429 
3430 		default:
3431 			retval = -EINVAL;
3432 			dev_err(hsotg->dev,
3433 				"ClearHubFeature request %1xh unknown\n",
3434 				wvalue);
3435 		}
3436 		break;
3437 
3438 	case ClearPortFeature:
3439 		if (wvalue != USB_PORT_FEAT_L1)
3440 			if (!windex || windex > 1)
3441 				goto error;
3442 		switch (wvalue) {
3443 		case USB_PORT_FEAT_ENABLE:
3444 			dev_dbg(hsotg->dev,
3445 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3446 			hprt0 = dwc2_read_hprt0(hsotg);
3447 			hprt0 |= HPRT0_ENA;
3448 			dwc2_writel(hsotg, hprt0, HPRT0);
3449 			break;
3450 
3451 		case USB_PORT_FEAT_SUSPEND:
3452 			dev_dbg(hsotg->dev,
3453 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3454 
3455 			if (hsotg->bus_suspended)
3456 				retval = dwc2_port_resume(hsotg);
3457 			break;
3458 
3459 		case USB_PORT_FEAT_POWER:
3460 			dev_dbg(hsotg->dev,
3461 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3462 			hprt0 = dwc2_read_hprt0(hsotg);
3463 			pwr = hprt0 & HPRT0_PWR;
3464 			hprt0 &= ~HPRT0_PWR;
3465 			dwc2_writel(hsotg, hprt0, HPRT0);
3466 			if (pwr)
3467 				dwc2_vbus_supply_exit(hsotg);
3468 			break;
3469 
3470 		case USB_PORT_FEAT_INDICATOR:
3471 			dev_dbg(hsotg->dev,
3472 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3473 			/* Port indicator not supported */
3474 			break;
3475 
3476 		case USB_PORT_FEAT_C_CONNECTION:
3477 			/*
3478 			 * Clears driver's internal Connect Status Change flag
3479 			 */
3480 			dev_dbg(hsotg->dev,
3481 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3482 			hsotg->flags.b.port_connect_status_change = 0;
3483 			break;
3484 
3485 		case USB_PORT_FEAT_C_RESET:
3486 			/* Clears driver's internal Port Reset Change flag */
3487 			dev_dbg(hsotg->dev,
3488 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3489 			hsotg->flags.b.port_reset_change = 0;
3490 			break;
3491 
3492 		case USB_PORT_FEAT_C_ENABLE:
3493 			/*
3494 			 * Clears the driver's internal Port Enable/Disable
3495 			 * Change flag
3496 			 */
3497 			dev_dbg(hsotg->dev,
3498 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3499 			hsotg->flags.b.port_enable_change = 0;
3500 			break;
3501 
3502 		case USB_PORT_FEAT_C_SUSPEND:
3503 			/*
3504 			 * Clears the driver's internal Port Suspend Change
3505 			 * flag, which is set when resume signaling on the host
3506 			 * port is complete
3507 			 */
3508 			dev_dbg(hsotg->dev,
3509 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3510 			hsotg->flags.b.port_suspend_change = 0;
3511 			break;
3512 
3513 		case USB_PORT_FEAT_C_PORT_L1:
3514 			dev_dbg(hsotg->dev,
3515 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3516 			hsotg->flags.b.port_l1_change = 0;
3517 			break;
3518 
3519 		case USB_PORT_FEAT_C_OVER_CURRENT:
3520 			dev_dbg(hsotg->dev,
3521 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3522 			hsotg->flags.b.port_over_current_change = 0;
3523 			break;
3524 
3525 		default:
3526 			retval = -EINVAL;
3527 			dev_err(hsotg->dev,
3528 				"ClearPortFeature request %1xh unknown or unsupported\n",
3529 				wvalue);
3530 		}
3531 		break;
3532 
3533 	case GetHubDescriptor:
3534 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3535 		hub_desc = (struct usb_hub_descriptor *)buf;
3536 		hub_desc->bDescLength = 9;
3537 		hub_desc->bDescriptorType = USB_DT_HUB;
3538 		hub_desc->bNbrPorts = 1;
3539 		hub_desc->wHubCharacteristics =
3540 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3541 				    HUB_CHAR_INDV_PORT_OCPM);
3542 		hub_desc->bPwrOn2PwrGood = 1;
3543 		hub_desc->bHubContrCurrent = 0;
3544 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3545 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3546 		break;
3547 
3548 	case GetHubStatus:
3549 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3550 		memset(buf, 0, 4);
3551 		break;
3552 
3553 	case GetPortStatus:
3554 		dev_vdbg(hsotg->dev,
3555 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3556 			 hsotg->flags.d32);
3557 		if (!windex || windex > 1)
3558 			goto error;
3559 
3560 		port_status = 0;
3561 		if (hsotg->flags.b.port_connect_status_change)
3562 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3563 		if (hsotg->flags.b.port_enable_change)
3564 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3565 		if (hsotg->flags.b.port_suspend_change)
3566 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3567 		if (hsotg->flags.b.port_l1_change)
3568 			port_status |= USB_PORT_STAT_C_L1 << 16;
3569 		if (hsotg->flags.b.port_reset_change)
3570 			port_status |= USB_PORT_STAT_C_RESET << 16;
3571 		if (hsotg->flags.b.port_over_current_change) {
3572 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3573 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3574 		}
3575 
3576 		if (!hsotg->flags.b.port_connect_status) {
3577 			/*
3578 			 * The port is disconnected, which means the core is
3579 			 * either in device mode or it soon will be. Just
3580 			 * return 0's for the remainder of the port status
3581 			 * since the port register can't be read if the core
3582 			 * is in device mode.
3583 			 */
3584 			*(__le32 *)buf = cpu_to_le32(port_status);
3585 			break;
3586 		}
3587 
3588 		hprt0 = dwc2_readl(hsotg, HPRT0);
3589 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3590 
3591 		if (hprt0 & HPRT0_CONNSTS)
3592 			port_status |= USB_PORT_STAT_CONNECTION;
3593 		if (hprt0 & HPRT0_ENA)
3594 			port_status |= USB_PORT_STAT_ENABLE;
3595 		if (hprt0 & HPRT0_SUSP)
3596 			port_status |= USB_PORT_STAT_SUSPEND;
3597 		if (hprt0 & HPRT0_OVRCURRACT)
3598 			port_status |= USB_PORT_STAT_OVERCURRENT;
3599 		if (hprt0 & HPRT0_RST)
3600 			port_status |= USB_PORT_STAT_RESET;
3601 		if (hprt0 & HPRT0_PWR)
3602 			port_status |= USB_PORT_STAT_POWER;
3603 
3604 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3605 		if (speed == HPRT0_SPD_HIGH_SPEED)
3606 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3607 		else if (speed == HPRT0_SPD_LOW_SPEED)
3608 			port_status |= USB_PORT_STAT_LOW_SPEED;
3609 
3610 		if (hprt0 & HPRT0_TSTCTL_MASK)
3611 			port_status |= USB_PORT_STAT_TEST;
3612 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3613 
3614 		if (hsotg->params.dma_desc_fs_enable) {
3615 			/*
3616 			 * Enable descriptor DMA only if a full speed
3617 			 * device is connected.
3618 			 */
3619 			if (hsotg->new_connection &&
3620 			    ((port_status &
3621 			      (USB_PORT_STAT_CONNECTION |
3622 			       USB_PORT_STAT_HIGH_SPEED |
3623 			       USB_PORT_STAT_LOW_SPEED)) ==
3624 			       USB_PORT_STAT_CONNECTION)) {
3625 				u32 hcfg;
3626 
3627 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3628 				hsotg->params.dma_desc_enable = true;
3629 				hcfg = dwc2_readl(hsotg, HCFG);
3630 				hcfg |= HCFG_DESCDMA;
3631 				dwc2_writel(hsotg, hcfg, HCFG);
3632 				hsotg->new_connection = false;
3633 			}
3634 		}
3635 
3636 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3637 		*(__le32 *)buf = cpu_to_le32(port_status);
3638 		break;
3639 
3640 	case SetHubFeature:
3641 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3642 		/* No HUB features supported */
3643 		break;
3644 
3645 	case SetPortFeature:
3646 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3647 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3648 			goto error;
3649 
3650 		if (!hsotg->flags.b.port_connect_status) {
3651 			/*
3652 			 * The port is disconnected, which means the core is
3653 			 * either in device mode or it soon will be. Just
3654 			 * return without doing anything since the port
3655 			 * register can't be written if the core is in device
3656 			 * mode.
3657 			 */
3658 			break;
3659 		}
3660 
3661 		switch (wvalue) {
3662 		case USB_PORT_FEAT_SUSPEND:
3663 			dev_dbg(hsotg->dev,
3664 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3665 			if (windex != hsotg->otg_port)
3666 				goto error;
3667 			if (!hsotg->bus_suspended)
3668 				retval = dwc2_port_suspend(hsotg, windex);
3669 			break;
3670 
3671 		case USB_PORT_FEAT_POWER:
3672 			dev_dbg(hsotg->dev,
3673 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3674 			hprt0 = dwc2_read_hprt0(hsotg);
3675 			pwr = hprt0 & HPRT0_PWR;
3676 			hprt0 |= HPRT0_PWR;
3677 			dwc2_writel(hsotg, hprt0, HPRT0);
3678 			if (!pwr)
3679 				dwc2_vbus_supply_init(hsotg);
3680 			break;
3681 
3682 		case USB_PORT_FEAT_RESET:
3683 			dev_dbg(hsotg->dev,
3684 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3685 
3686 			hprt0 = dwc2_read_hprt0(hsotg);
3687 
3688 			if (hsotg->hibernated) {
3689 				retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3690 				if (retval)
3691 					dev_err(hsotg->dev,
3692 						"exit hibernation failed\n");
3693 			}
3694 
3695 			if (hsotg->in_ppd) {
3696 				retval = dwc2_exit_partial_power_down(hsotg, 1,
3697 								      true);
3698 				if (retval)
3699 					dev_err(hsotg->dev,
3700 						"exit partial_power_down failed\n");
3701 			}
3702 
3703 			if (hsotg->params.power_down ==
3704 			    DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3705 				dwc2_host_exit_clock_gating(hsotg, 0);
3706 
3707 			pcgctl = dwc2_readl(hsotg, PCGCTL);
3708 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3709 			dwc2_writel(hsotg, pcgctl, PCGCTL);
3710 			/* ??? Original driver does this */
3711 			dwc2_writel(hsotg, 0, PCGCTL);
3712 
3713 			hprt0 = dwc2_read_hprt0(hsotg);
3714 			pwr = hprt0 & HPRT0_PWR;
3715 			/* Clear suspend bit if resetting from suspend state */
3716 			hprt0 &= ~HPRT0_SUSP;
3717 
3718 			/*
3719 			 * When B-Host the Port reset bit is set in the Start
3720 			 * HCD Callback function, so that the reset is started
3721 			 * within 1ms of the HNP success interrupt
3722 			 */
3723 			if (!dwc2_hcd_is_b_host(hsotg)) {
3724 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3725 				dev_dbg(hsotg->dev,
3726 					"In host mode, hprt0=%08x\n", hprt0);
3727 				dwc2_writel(hsotg, hprt0, HPRT0);
3728 				if (!pwr)
3729 					dwc2_vbus_supply_init(hsotg);
3730 			}
3731 
3732 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3733 			msleep(50);
3734 			hprt0 &= ~HPRT0_RST;
3735 			dwc2_writel(hsotg, hprt0, HPRT0);
3736 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3737 			break;
3738 
3739 		case USB_PORT_FEAT_INDICATOR:
3740 			dev_dbg(hsotg->dev,
3741 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3742 			/* Not supported */
3743 			break;
3744 
3745 		case USB_PORT_FEAT_TEST:
3746 			hprt0 = dwc2_read_hprt0(hsotg);
3747 			dev_dbg(hsotg->dev,
3748 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3749 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3750 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3751 			dwc2_writel(hsotg, hprt0, HPRT0);
3752 			break;
3753 
3754 		default:
3755 			retval = -EINVAL;
3756 			dev_err(hsotg->dev,
3757 				"SetPortFeature %1xh unknown or unsupported\n",
3758 				wvalue);
3759 			break;
3760 		}
3761 		break;
3762 
3763 	default:
3764 error:
3765 		retval = -EINVAL;
3766 		dev_dbg(hsotg->dev,
3767 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3768 			typereq, windex, wvalue);
3769 		break;
3770 	}
3771 
3772 	return retval;
3773 }
3774 
3775 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3776 {
3777 	int retval;
3778 
3779 	if (port != 1)
3780 		return -EINVAL;
3781 
3782 	retval = (hsotg->flags.b.port_connect_status_change ||
3783 		  hsotg->flags.b.port_reset_change ||
3784 		  hsotg->flags.b.port_enable_change ||
3785 		  hsotg->flags.b.port_suspend_change ||
3786 		  hsotg->flags.b.port_over_current_change);
3787 
3788 	if (retval) {
3789 		dev_dbg(hsotg->dev,
3790 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3791 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3792 			hsotg->flags.b.port_connect_status_change);
3793 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3794 			hsotg->flags.b.port_reset_change);
3795 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3796 			hsotg->flags.b.port_enable_change);
3797 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3798 			hsotg->flags.b.port_suspend_change);
3799 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3800 			hsotg->flags.b.port_over_current_change);
3801 	}
3802 
3803 	return retval;
3804 }
3805 
3806 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3807 {
3808 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3809 
3810 #ifdef DWC2_DEBUG_SOF
3811 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3812 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3813 #endif
3814 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3815 }
3816 
3817 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3818 {
3819 	u32 hprt = dwc2_readl(hsotg, HPRT0);
3820 	u32 hfir = dwc2_readl(hsotg, HFIR);
3821 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3822 	unsigned int us_per_frame;
3823 	unsigned int frame_number;
3824 	unsigned int remaining;
3825 	unsigned int interval;
3826 	unsigned int phy_clks;
3827 
3828 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3829 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3830 
3831 	/* Extract fields */
3832 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3833 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3834 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3835 
3836 	/*
3837 	 * Number of phy clocks since the last tick of the frame number after
3838 	 * "us" has passed.
3839 	 */
3840 	phy_clks = (interval - remaining) +
3841 		   DIV_ROUND_UP(interval * us, us_per_frame);
3842 
3843 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3844 }
3845 
3846 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3847 {
3848 	return hsotg->op_state == OTG_STATE_B_HOST;
3849 }
3850 
3851 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3852 					       int iso_desc_count,
3853 					       gfp_t mem_flags)
3854 {
3855 	struct dwc2_hcd_urb *urb;
3856 
3857 	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3858 	if (urb)
3859 		urb->packet_count = iso_desc_count;
3860 	return urb;
3861 }
3862 
3863 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3864 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3865 				      u8 ep_num, u8 ep_type, u8 ep_dir,
3866 				      u16 maxp, u16 maxp_mult)
3867 {
3868 	if (dbg_perio() ||
3869 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3870 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3871 		dev_vdbg(hsotg->dev,
3872 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3873 			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3874 	urb->pipe_info.dev_addr = dev_addr;
3875 	urb->pipe_info.ep_num = ep_num;
3876 	urb->pipe_info.pipe_type = ep_type;
3877 	urb->pipe_info.pipe_dir = ep_dir;
3878 	urb->pipe_info.maxp = maxp;
3879 	urb->pipe_info.maxp_mult = maxp_mult;
3880 }
3881 
3882 /*
3883  * NOTE: This function will be removed once the peripheral controller code
3884  * is integrated and the driver is stable
3885  */
3886 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3887 {
3888 #ifdef DEBUG
3889 	struct dwc2_host_chan *chan;
3890 	struct dwc2_hcd_urb *urb;
3891 	struct dwc2_qtd *qtd;
3892 	int num_channels;
3893 	u32 np_tx_status;
3894 	u32 p_tx_status;
3895 	int i;
3896 
3897 	num_channels = hsotg->params.host_channels;
3898 	dev_dbg(hsotg->dev, "\n");
3899 	dev_dbg(hsotg->dev,
3900 		"************************************************************\n");
3901 	dev_dbg(hsotg->dev, "HCD State:\n");
3902 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3903 
3904 	for (i = 0; i < num_channels; i++) {
3905 		chan = hsotg->hc_ptr_array[i];
3906 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3907 		dev_dbg(hsotg->dev,
3908 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3909 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3910 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3911 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3912 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3913 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3914 			chan->data_pid_start);
3915 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3916 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3917 			chan->xfer_started);
3918 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3919 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3920 			(unsigned long)chan->xfer_dma);
3921 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3922 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3923 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3924 			chan->halt_on_queue);
3925 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3926 			chan->halt_pending);
3927 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3928 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3929 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3930 			chan->complete_split);
3931 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3932 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3933 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3934 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3935 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3936 
3937 		if (chan->xfer_started) {
3938 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3939 
3940 			hfnum = dwc2_readl(hsotg, HFNUM);
3941 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3942 			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3943 			hcint = dwc2_readl(hsotg, HCINT(i));
3944 			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3945 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3946 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3947 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3948 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3949 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3950 		}
3951 
3952 		if (!(chan->xfer_started && chan->qh))
3953 			continue;
3954 
3955 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3956 			if (!qtd->in_process)
3957 				break;
3958 			urb = qtd->urb;
3959 			dev_dbg(hsotg->dev, "    URB Info:\n");
3960 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3961 				qtd, urb);
3962 			if (urb) {
3963 				dev_dbg(hsotg->dev,
3964 					"      Dev: %d, EP: %d %s\n",
3965 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3966 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3967 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3968 					"IN" : "OUT");
3969 				dev_dbg(hsotg->dev,
3970 					"      Max packet size: %d (%d mult)\n",
3971 					dwc2_hcd_get_maxp(&urb->pipe_info),
3972 					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3973 				dev_dbg(hsotg->dev,
3974 					"      transfer_buffer: %p\n",
3975 					urb->buf);
3976 				dev_dbg(hsotg->dev,
3977 					"      transfer_dma: %08lx\n",
3978 					(unsigned long)urb->dma);
3979 				dev_dbg(hsotg->dev,
3980 					"      transfer_buffer_length: %d\n",
3981 					urb->length);
3982 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3983 					urb->actual_length);
3984 			}
3985 		}
3986 	}
3987 
3988 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3989 		hsotg->non_periodic_channels);
3990 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3991 		hsotg->periodic_channels);
3992 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3993 	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3994 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3995 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3996 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3997 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3998 	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3999 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4000 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4001 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4002 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4003 	dwc2_dump_global_registers(hsotg);
4004 	dwc2_dump_host_registers(hsotg);
4005 	dev_dbg(hsotg->dev,
4006 		"************************************************************\n");
4007 	dev_dbg(hsotg->dev, "\n");
4008 #endif
4009 }
4010 
4011 struct wrapper_priv_data {
4012 	struct dwc2_hsotg *hsotg;
4013 };
4014 
4015 /* Gets the dwc2_hsotg from a usb_hcd */
4016 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4017 {
4018 	struct wrapper_priv_data *p;
4019 
4020 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4021 	return p->hsotg;
4022 }
4023 
4024 /**
4025  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4026  *
4027  * This will get the dwc2_tt structure (and ttport) associated with the given
4028  * context (which is really just a struct urb pointer).
4029  *
4030  * The first time this is called for a given TT we allocate memory for our
4031  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4032  * then the refcount for the structure will go to 0 and we'll free it.
4033  *
4034  * @hsotg:     The HCD state structure for the DWC OTG controller.
4035  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4036  * @mem_flags: Flags for allocating memory.
4037  * @ttport:    We'll return this device's port number here.  That's used to
4038  *             reference into the bitmap if we're on a multi_tt hub.
4039  *
4040  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4041  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4042  */
4043 
4044 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4045 				      gfp_t mem_flags, int *ttport)
4046 {
4047 	struct urb *urb = context;
4048 	struct dwc2_tt *dwc_tt = NULL;
4049 
4050 	if (urb->dev->tt) {
4051 		*ttport = urb->dev->ttport;
4052 
4053 		dwc_tt = urb->dev->tt->hcpriv;
4054 		if (!dwc_tt) {
4055 			size_t bitmap_size;
4056 
4057 			/*
4058 			 * For single_tt we need one schedule.  For multi_tt
4059 			 * we need one per port.
4060 			 */
4061 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4062 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4063 			if (urb->dev->tt->multi)
4064 				bitmap_size *= urb->dev->tt->hub->maxchild;
4065 
4066 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4067 					 mem_flags);
4068 			if (!dwc_tt)
4069 				return NULL;
4070 
4071 			dwc_tt->usb_tt = urb->dev->tt;
4072 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4073 		}
4074 
4075 		dwc_tt->refcount++;
4076 	}
4077 
4078 	return dwc_tt;
4079 }
4080 
4081 /**
4082  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4083  *
4084  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4085  * of the structure are done.
4086  *
4087  * It's OK to call this with NULL.
4088  *
4089  * @hsotg:     The HCD state structure for the DWC OTG controller.
4090  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4091  */
4092 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4093 {
4094 	/* Model kfree and make put of NULL a no-op */
4095 	if (!dwc_tt)
4096 		return;
4097 
4098 	WARN_ON(dwc_tt->refcount < 1);
4099 
4100 	dwc_tt->refcount--;
4101 	if (!dwc_tt->refcount) {
4102 		dwc_tt->usb_tt->hcpriv = NULL;
4103 		kfree(dwc_tt);
4104 	}
4105 }
4106 
4107 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4108 {
4109 	struct urb *urb = context;
4110 
4111 	return urb->dev->speed;
4112 }
4113 
4114 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4115 					struct urb *urb)
4116 {
4117 	struct usb_bus *bus = hcd_to_bus(hcd);
4118 
4119 	if (urb->interval)
4120 		bus->bandwidth_allocated += bw / urb->interval;
4121 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4122 		bus->bandwidth_isoc_reqs++;
4123 	else
4124 		bus->bandwidth_int_reqs++;
4125 }
4126 
4127 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4128 				    struct urb *urb)
4129 {
4130 	struct usb_bus *bus = hcd_to_bus(hcd);
4131 
4132 	if (urb->interval)
4133 		bus->bandwidth_allocated -= bw / urb->interval;
4134 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4135 		bus->bandwidth_isoc_reqs--;
4136 	else
4137 		bus->bandwidth_int_reqs--;
4138 }
4139 
4140 /*
4141  * Sets the final status of an URB and returns it to the upper layer. Any
4142  * required cleanup of the URB is performed.
4143  *
4144  * Must be called with interrupt disabled and spinlock held
4145  */
4146 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4147 			int status)
4148 {
4149 	struct urb *urb;
4150 	int i;
4151 
4152 	if (!qtd) {
4153 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4154 		return;
4155 	}
4156 
4157 	if (!qtd->urb) {
4158 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4159 		return;
4160 	}
4161 
4162 	urb = qtd->urb->priv;
4163 	if (!urb) {
4164 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4165 		return;
4166 	}
4167 
4168 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4169 
4170 	if (dbg_urb(urb))
4171 		dev_vdbg(hsotg->dev,
4172 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4173 			 __func__, urb, usb_pipedevice(urb->pipe),
4174 			 usb_pipeendpoint(urb->pipe),
4175 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4176 			 urb->actual_length);
4177 
4178 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4179 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4180 		for (i = 0; i < urb->number_of_packets; ++i) {
4181 			urb->iso_frame_desc[i].actual_length =
4182 				dwc2_hcd_urb_get_iso_desc_actual_length(
4183 						qtd->urb, i);
4184 			urb->iso_frame_desc[i].status =
4185 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4186 		}
4187 	}
4188 
4189 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4190 		for (i = 0; i < urb->number_of_packets; i++)
4191 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4192 				 i, urb->iso_frame_desc[i].status);
4193 	}
4194 
4195 	urb->status = status;
4196 	if (!status) {
4197 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4198 		    urb->actual_length < urb->transfer_buffer_length)
4199 			urb->status = -EREMOTEIO;
4200 	}
4201 
4202 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4203 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4204 		struct usb_host_endpoint *ep = urb->ep;
4205 
4206 		if (ep)
4207 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4208 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4209 					urb);
4210 	}
4211 
4212 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4213 	urb->hcpriv = NULL;
4214 	kfree(qtd->urb);
4215 	qtd->urb = NULL;
4216 
4217 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4218 }
4219 
4220 /*
4221  * Work queue function for starting the HCD when A-Cable is connected
4222  */
4223 static void dwc2_hcd_start_func(struct work_struct *work)
4224 {
4225 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4226 						start_work.work);
4227 
4228 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4229 	dwc2_host_start(hsotg);
4230 }
4231 
4232 /*
4233  * Reset work queue function
4234  */
4235 static void dwc2_hcd_reset_func(struct work_struct *work)
4236 {
4237 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4238 						reset_work.work);
4239 	unsigned long flags;
4240 	u32 hprt0;
4241 
4242 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4243 
4244 	spin_lock_irqsave(&hsotg->lock, flags);
4245 
4246 	hprt0 = dwc2_read_hprt0(hsotg);
4247 	hprt0 &= ~HPRT0_RST;
4248 	dwc2_writel(hsotg, hprt0, HPRT0);
4249 	hsotg->flags.b.port_reset_change = 1;
4250 
4251 	spin_unlock_irqrestore(&hsotg->lock, flags);
4252 }
4253 
4254 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4255 {
4256 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4257 						phy_reset_work);
4258 	int ret;
4259 
4260 	ret = phy_reset(hsotg->phy);
4261 	if (ret)
4262 		dev_warn(hsotg->dev, "PHY reset failed\n");
4263 }
4264 
4265 /*
4266  * =========================================================================
4267  *  Linux HC Driver Functions
4268  * =========================================================================
4269  */
4270 
4271 /*
4272  * Initializes the DWC_otg controller and its root hub and prepares it for host
4273  * mode operation. Activates the root port. Returns 0 on success and a negative
4274  * error code on failure.
4275  */
4276 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4277 {
4278 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4279 	struct usb_bus *bus = hcd_to_bus(hcd);
4280 	unsigned long flags;
4281 	u32 hprt0;
4282 	int ret;
4283 
4284 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4285 
4286 	spin_lock_irqsave(&hsotg->lock, flags);
4287 	hsotg->lx_state = DWC2_L0;
4288 	hcd->state = HC_STATE_RUNNING;
4289 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4290 
4291 	if (dwc2_is_device_mode(hsotg)) {
4292 		spin_unlock_irqrestore(&hsotg->lock, flags);
4293 		return 0;	/* why 0 ?? */
4294 	}
4295 
4296 	dwc2_hcd_reinit(hsotg);
4297 
4298 	hprt0 = dwc2_read_hprt0(hsotg);
4299 	/* Has vbus power been turned on in dwc2_core_host_init ? */
4300 	if (hprt0 & HPRT0_PWR) {
4301 		/* Enable external vbus supply before resuming root hub */
4302 		spin_unlock_irqrestore(&hsotg->lock, flags);
4303 		ret = dwc2_vbus_supply_init(hsotg);
4304 		if (ret)
4305 			return ret;
4306 		spin_lock_irqsave(&hsotg->lock, flags);
4307 	}
4308 
4309 	/* Initialize and connect root hub if one is not already attached */
4310 	if (bus->root_hub) {
4311 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4312 		/* Inform the HUB driver to resume */
4313 		usb_hcd_resume_root_hub(hcd);
4314 	}
4315 
4316 	spin_unlock_irqrestore(&hsotg->lock, flags);
4317 
4318 	return 0;
4319 }
4320 
4321 /*
4322  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4323  * stopped.
4324  */
4325 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4326 {
4327 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4328 	unsigned long flags;
4329 	u32 hprt0;
4330 
4331 	/* Turn off all host-specific interrupts */
4332 	dwc2_disable_host_interrupts(hsotg);
4333 
4334 	/* Wait for interrupt processing to finish */
4335 	synchronize_irq(hcd->irq);
4336 
4337 	spin_lock_irqsave(&hsotg->lock, flags);
4338 	hprt0 = dwc2_read_hprt0(hsotg);
4339 	/* Ensure hcd is disconnected */
4340 	dwc2_hcd_disconnect(hsotg, true);
4341 	dwc2_hcd_stop(hsotg);
4342 	hsotg->lx_state = DWC2_L3;
4343 	hcd->state = HC_STATE_HALT;
4344 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4345 	spin_unlock_irqrestore(&hsotg->lock, flags);
4346 
4347 	/* keep balanced supply init/exit by checking HPRT0_PWR */
4348 	if (hprt0 & HPRT0_PWR)
4349 		dwc2_vbus_supply_exit(hsotg);
4350 
4351 	usleep_range(1000, 3000);
4352 }
4353 
4354 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4355 {
4356 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4357 	unsigned long flags;
4358 	int ret = 0;
4359 
4360 	spin_lock_irqsave(&hsotg->lock, flags);
4361 
4362 	if (dwc2_is_device_mode(hsotg))
4363 		goto unlock;
4364 
4365 	if (hsotg->lx_state != DWC2_L0)
4366 		goto unlock;
4367 
4368 	if (!HCD_HW_ACCESSIBLE(hcd))
4369 		goto unlock;
4370 
4371 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4372 		goto unlock;
4373 
4374 	if (hsotg->bus_suspended)
4375 		goto skip_power_saving;
4376 
4377 	if (hsotg->flags.b.port_connect_status == 0)
4378 		goto skip_power_saving;
4379 
4380 	switch (hsotg->params.power_down) {
4381 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4382 		/* Enter partial_power_down */
4383 		ret = dwc2_enter_partial_power_down(hsotg);
4384 		if (ret)
4385 			dev_err(hsotg->dev,
4386 				"enter partial_power_down failed\n");
4387 		/* After entering suspend, hardware is not accessible */
4388 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4389 		break;
4390 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4391 		/* Enter hibernation */
4392 		spin_unlock_irqrestore(&hsotg->lock, flags);
4393 		ret = dwc2_enter_hibernation(hsotg, 1);
4394 		if (ret)
4395 			dev_err(hsotg->dev, "enter hibernation failed\n");
4396 		spin_lock_irqsave(&hsotg->lock, flags);
4397 
4398 		/* After entering suspend, hardware is not accessible */
4399 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4400 		break;
4401 	case DWC2_POWER_DOWN_PARAM_NONE:
4402 		/*
4403 		 * If not hibernation nor partial power down are supported,
4404 		 * clock gating is used to save power.
4405 		 */
4406 		if (!hsotg->params.no_clock_gating)
4407 			dwc2_host_enter_clock_gating(hsotg);
4408 
4409 		/* After entering suspend, hardware is not accessible */
4410 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4411 		break;
4412 	default:
4413 		goto skip_power_saving;
4414 	}
4415 
4416 	spin_unlock_irqrestore(&hsotg->lock, flags);
4417 	dwc2_vbus_supply_exit(hsotg);
4418 	spin_lock_irqsave(&hsotg->lock, flags);
4419 
4420 	/* Ask phy to be suspended */
4421 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4422 		spin_unlock_irqrestore(&hsotg->lock, flags);
4423 		usb_phy_set_suspend(hsotg->uphy, true);
4424 		spin_lock_irqsave(&hsotg->lock, flags);
4425 	}
4426 
4427 skip_power_saving:
4428 	hsotg->lx_state = DWC2_L2;
4429 unlock:
4430 	spin_unlock_irqrestore(&hsotg->lock, flags);
4431 
4432 	return ret;
4433 }
4434 
4435 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4436 {
4437 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4438 	unsigned long flags;
4439 	u32 hprt0;
4440 	int ret = 0;
4441 
4442 	spin_lock_irqsave(&hsotg->lock, flags);
4443 
4444 	if (dwc2_is_device_mode(hsotg))
4445 		goto unlock;
4446 
4447 	if (hsotg->lx_state != DWC2_L2)
4448 		goto unlock;
4449 
4450 	hprt0 = dwc2_read_hprt0(hsotg);
4451 
4452 	/*
4453 	 * Added port connection status checking which prevents exiting from
4454 	 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4455 	 * Power Down mode.
4456 	 */
4457 	if (hprt0 & HPRT0_CONNSTS) {
4458 		hsotg->lx_state = DWC2_L0;
4459 		goto unlock;
4460 	}
4461 
4462 	switch (hsotg->params.power_down) {
4463 	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4464 		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4465 		if (ret)
4466 			dev_err(hsotg->dev,
4467 				"exit partial_power_down failed\n");
4468 		/*
4469 		 * Set HW accessible bit before powering on the controller
4470 		 * since an interrupt may rise.
4471 		 */
4472 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4473 		break;
4474 	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4475 		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4476 		if (ret)
4477 			dev_err(hsotg->dev, "exit hibernation failed.\n");
4478 
4479 		/*
4480 		 * Set HW accessible bit before powering on the controller
4481 		 * since an interrupt may rise.
4482 		 */
4483 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4484 		break;
4485 	case DWC2_POWER_DOWN_PARAM_NONE:
4486 		/*
4487 		 * If not hibernation nor partial power down are supported,
4488 		 * port resume is done using the clock gating programming flow.
4489 		 */
4490 		spin_unlock_irqrestore(&hsotg->lock, flags);
4491 		dwc2_host_exit_clock_gating(hsotg, 0);
4492 
4493 		/*
4494 		 * Initialize the Core for Host mode, as after system resume
4495 		 * the global interrupts are disabled.
4496 		 */
4497 		dwc2_core_init(hsotg, false);
4498 		dwc2_enable_global_interrupts(hsotg);
4499 		dwc2_hcd_reinit(hsotg);
4500 		spin_lock_irqsave(&hsotg->lock, flags);
4501 
4502 		/*
4503 		 * Set HW accessible bit before powering on the controller
4504 		 * since an interrupt may rise.
4505 		 */
4506 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4507 		break;
4508 	default:
4509 		hsotg->lx_state = DWC2_L0;
4510 		goto unlock;
4511 	}
4512 
4513 	/* Change Root port status, as port status change occurred after resume.*/
4514 	hsotg->flags.b.port_suspend_change = 1;
4515 
4516 	/*
4517 	 * Enable power if not already done.
4518 	 * This must not be spinlocked since duration
4519 	 * of this call is unknown.
4520 	 */
4521 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4522 		spin_unlock_irqrestore(&hsotg->lock, flags);
4523 		usb_phy_set_suspend(hsotg->uphy, false);
4524 		spin_lock_irqsave(&hsotg->lock, flags);
4525 	}
4526 
4527 	/* Enable external vbus supply after resuming the port. */
4528 	spin_unlock_irqrestore(&hsotg->lock, flags);
4529 	dwc2_vbus_supply_init(hsotg);
4530 
4531 	/* Wait for controller to correctly update D+/D- level */
4532 	usleep_range(3000, 5000);
4533 	spin_lock_irqsave(&hsotg->lock, flags);
4534 
4535 	/*
4536 	 * Clear Port Enable and Port Status changes.
4537 	 * Enable Port Power.
4538 	 */
4539 	dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4540 			HPRT0_ENACHG, HPRT0);
4541 
4542 	/* Wait for controller to detect Port Connect */
4543 	spin_unlock_irqrestore(&hsotg->lock, flags);
4544 	usleep_range(5000, 7000);
4545 	spin_lock_irqsave(&hsotg->lock, flags);
4546 unlock:
4547 	spin_unlock_irqrestore(&hsotg->lock, flags);
4548 
4549 	return ret;
4550 }
4551 
4552 /* Returns the current frame number */
4553 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4554 {
4555 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4556 
4557 	return dwc2_hcd_get_frame_number(hsotg);
4558 }
4559 
4560 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4561 			       char *fn_name)
4562 {
4563 #ifdef VERBOSE_DEBUG
4564 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4565 	char *pipetype = NULL;
4566 	char *speed = NULL;
4567 
4568 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4569 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4570 		 usb_pipedevice(urb->pipe));
4571 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4572 		 usb_pipeendpoint(urb->pipe),
4573 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4574 
4575 	switch (usb_pipetype(urb->pipe)) {
4576 	case PIPE_CONTROL:
4577 		pipetype = "CONTROL";
4578 		break;
4579 	case PIPE_BULK:
4580 		pipetype = "BULK";
4581 		break;
4582 	case PIPE_INTERRUPT:
4583 		pipetype = "INTERRUPT";
4584 		break;
4585 	case PIPE_ISOCHRONOUS:
4586 		pipetype = "ISOCHRONOUS";
4587 		break;
4588 	}
4589 
4590 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4591 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4592 		 "IN" : "OUT");
4593 
4594 	switch (urb->dev->speed) {
4595 	case USB_SPEED_HIGH:
4596 		speed = "HIGH";
4597 		break;
4598 	case USB_SPEED_FULL:
4599 		speed = "FULL";
4600 		break;
4601 	case USB_SPEED_LOW:
4602 		speed = "LOW";
4603 		break;
4604 	default:
4605 		speed = "UNKNOWN";
4606 		break;
4607 	}
4608 
4609 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4610 	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4611 		 usb_endpoint_maxp(&urb->ep->desc),
4612 		 usb_endpoint_maxp_mult(&urb->ep->desc));
4613 
4614 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4615 		 urb->transfer_buffer_length);
4616 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4617 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4618 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4619 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4620 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4621 
4622 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4623 		int i;
4624 
4625 		for (i = 0; i < urb->number_of_packets; i++) {
4626 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4627 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4628 				 urb->iso_frame_desc[i].offset,
4629 				 urb->iso_frame_desc[i].length);
4630 		}
4631 	}
4632 #endif
4633 }
4634 
4635 /*
4636  * Starts processing a USB transfer request specified by a USB Request Block
4637  * (URB). mem_flags indicates the type of memory allocation to use while
4638  * processing this URB.
4639  */
4640 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4641 				 gfp_t mem_flags)
4642 {
4643 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4644 	struct usb_host_endpoint *ep = urb->ep;
4645 	struct dwc2_hcd_urb *dwc2_urb;
4646 	int i;
4647 	int retval;
4648 	int alloc_bandwidth = 0;
4649 	u8 ep_type = 0;
4650 	u32 tflags = 0;
4651 	void *buf;
4652 	unsigned long flags;
4653 	struct dwc2_qh *qh;
4654 	bool qh_allocated = false;
4655 	struct dwc2_qtd *qtd;
4656 	struct dwc2_gregs_backup *gr;
4657 
4658 	gr = &hsotg->gr_backup;
4659 
4660 	if (dbg_urb(urb)) {
4661 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4662 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4663 	}
4664 
4665 	if (hsotg->hibernated) {
4666 		if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4667 			retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4668 		else
4669 			retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4670 
4671 		if (retval)
4672 			dev_err(hsotg->dev,
4673 				"exit hibernation failed.\n");
4674 	}
4675 
4676 	if (hsotg->in_ppd) {
4677 		retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4678 		if (retval)
4679 			dev_err(hsotg->dev,
4680 				"exit partial_power_down failed\n");
4681 	}
4682 
4683 	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4684 	    hsotg->bus_suspended) {
4685 		if (dwc2_is_device_mode(hsotg))
4686 			dwc2_gadget_exit_clock_gating(hsotg, 0);
4687 		else
4688 			dwc2_host_exit_clock_gating(hsotg, 0);
4689 	}
4690 
4691 	if (!ep)
4692 		return -EINVAL;
4693 
4694 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4695 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4696 		spin_lock_irqsave(&hsotg->lock, flags);
4697 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4698 			alloc_bandwidth = 1;
4699 		spin_unlock_irqrestore(&hsotg->lock, flags);
4700 	}
4701 
4702 	switch (usb_pipetype(urb->pipe)) {
4703 	case PIPE_CONTROL:
4704 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4705 		break;
4706 	case PIPE_ISOCHRONOUS:
4707 		ep_type = USB_ENDPOINT_XFER_ISOC;
4708 		break;
4709 	case PIPE_BULK:
4710 		ep_type = USB_ENDPOINT_XFER_BULK;
4711 		break;
4712 	case PIPE_INTERRUPT:
4713 		ep_type = USB_ENDPOINT_XFER_INT;
4714 		break;
4715 	}
4716 
4717 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4718 				      mem_flags);
4719 	if (!dwc2_urb)
4720 		return -ENOMEM;
4721 
4722 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4723 				  usb_pipeendpoint(urb->pipe), ep_type,
4724 				  usb_pipein(urb->pipe),
4725 				  usb_endpoint_maxp(&ep->desc),
4726 				  usb_endpoint_maxp_mult(&ep->desc));
4727 
4728 	buf = urb->transfer_buffer;
4729 
4730 	if (hcd_uses_dma(hcd)) {
4731 		if (!buf && (urb->transfer_dma & 3)) {
4732 			dev_err(hsotg->dev,
4733 				"%s: unaligned transfer with no transfer_buffer",
4734 				__func__);
4735 			retval = -EINVAL;
4736 			goto fail0;
4737 		}
4738 	}
4739 
4740 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4741 		tflags |= URB_GIVEBACK_ASAP;
4742 	if (urb->transfer_flags & URB_ZERO_PACKET)
4743 		tflags |= URB_SEND_ZERO_PACKET;
4744 
4745 	dwc2_urb->priv = urb;
4746 	dwc2_urb->buf = buf;
4747 	dwc2_urb->dma = urb->transfer_dma;
4748 	dwc2_urb->length = urb->transfer_buffer_length;
4749 	dwc2_urb->setup_packet = urb->setup_packet;
4750 	dwc2_urb->setup_dma = urb->setup_dma;
4751 	dwc2_urb->flags = tflags;
4752 	dwc2_urb->interval = urb->interval;
4753 	dwc2_urb->status = -EINPROGRESS;
4754 
4755 	for (i = 0; i < urb->number_of_packets; ++i)
4756 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4757 						 urb->iso_frame_desc[i].offset,
4758 						 urb->iso_frame_desc[i].length);
4759 
4760 	urb->hcpriv = dwc2_urb;
4761 	qh = (struct dwc2_qh *)ep->hcpriv;
4762 	/* Create QH for the endpoint if it doesn't exist */
4763 	if (!qh) {
4764 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4765 		if (!qh) {
4766 			retval = -ENOMEM;
4767 			goto fail0;
4768 		}
4769 		ep->hcpriv = qh;
4770 		qh_allocated = true;
4771 	}
4772 
4773 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4774 	if (!qtd) {
4775 		retval = -ENOMEM;
4776 		goto fail1;
4777 	}
4778 
4779 	spin_lock_irqsave(&hsotg->lock, flags);
4780 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4781 	if (retval)
4782 		goto fail2;
4783 
4784 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4785 	if (retval)
4786 		goto fail3;
4787 
4788 	if (alloc_bandwidth) {
4789 		dwc2_allocate_bus_bandwidth(hcd,
4790 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4791 				urb);
4792 	}
4793 
4794 	spin_unlock_irqrestore(&hsotg->lock, flags);
4795 
4796 	return 0;
4797 
4798 fail3:
4799 	dwc2_urb->priv = NULL;
4800 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4801 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4802 		qh->channel->qh = NULL;
4803 fail2:
4804 	spin_unlock_irqrestore(&hsotg->lock, flags);
4805 	urb->hcpriv = NULL;
4806 	kfree(qtd);
4807 fail1:
4808 	if (qh_allocated) {
4809 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4810 
4811 		ep->hcpriv = NULL;
4812 		dwc2_hcd_qh_unlink(hsotg, qh);
4813 		/* Free each QTD in the QH's QTD list */
4814 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4815 					 qtd_list_entry)
4816 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4817 		dwc2_hcd_qh_free(hsotg, qh);
4818 	}
4819 fail0:
4820 	kfree(dwc2_urb);
4821 
4822 	return retval;
4823 }
4824 
4825 /*
4826  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4827  */
4828 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4829 				 int status)
4830 {
4831 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4832 	int rc;
4833 	unsigned long flags;
4834 
4835 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4836 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4837 
4838 	spin_lock_irqsave(&hsotg->lock, flags);
4839 
4840 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4841 	if (rc)
4842 		goto out;
4843 
4844 	if (!urb->hcpriv) {
4845 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4846 		goto out;
4847 	}
4848 
4849 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4850 
4851 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4852 
4853 	kfree(urb->hcpriv);
4854 	urb->hcpriv = NULL;
4855 
4856 	/* Higher layer software sets URB status */
4857 	spin_unlock(&hsotg->lock);
4858 	usb_hcd_giveback_urb(hcd, urb, status);
4859 	spin_lock(&hsotg->lock);
4860 
4861 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4862 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4863 out:
4864 	spin_unlock_irqrestore(&hsotg->lock, flags);
4865 
4866 	return rc;
4867 }
4868 
4869 /*
4870  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4871  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4872  * must already be dequeued.
4873  */
4874 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4875 				       struct usb_host_endpoint *ep)
4876 {
4877 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4878 
4879 	dev_dbg(hsotg->dev,
4880 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4881 		ep->desc.bEndpointAddress, ep->hcpriv);
4882 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4883 }
4884 
4885 /*
4886  * Resets endpoint specific parameter values, in current version used to reset
4887  * the data toggle (as a WA). This function can be called from usb_clear_halt
4888  * routine.
4889  */
4890 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4891 				     struct usb_host_endpoint *ep)
4892 {
4893 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4894 	unsigned long flags;
4895 
4896 	dev_dbg(hsotg->dev,
4897 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4898 		ep->desc.bEndpointAddress);
4899 
4900 	spin_lock_irqsave(&hsotg->lock, flags);
4901 	dwc2_hcd_endpoint_reset(hsotg, ep);
4902 	spin_unlock_irqrestore(&hsotg->lock, flags);
4903 }
4904 
4905 /*
4906  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4907  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4908  * interrupt.
4909  *
4910  * This function is called by the USB core when an interrupt occurs
4911  */
4912 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4913 {
4914 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4915 
4916 	return dwc2_handle_hcd_intr(hsotg);
4917 }
4918 
4919 /*
4920  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4921  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4922  * is the status change indicator for the single root port. Returns 1 if either
4923  * change indicator is 1, otherwise returns 0.
4924  */
4925 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4926 {
4927 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4928 
4929 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4930 	return buf[0] != 0;
4931 }
4932 
4933 /* Handles hub class-specific requests */
4934 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4935 				 u16 windex, char *buf, u16 wlength)
4936 {
4937 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4938 					  wvalue, windex, buf, wlength);
4939 	return retval;
4940 }
4941 
4942 /* Handles hub TT buffer clear completions */
4943 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4944 					       struct usb_host_endpoint *ep)
4945 {
4946 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4947 	struct dwc2_qh *qh;
4948 	unsigned long flags;
4949 
4950 	qh = ep->hcpriv;
4951 	if (!qh)
4952 		return;
4953 
4954 	spin_lock_irqsave(&hsotg->lock, flags);
4955 	qh->tt_buffer_dirty = 0;
4956 
4957 	if (hsotg->flags.b.port_connect_status)
4958 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4959 
4960 	spin_unlock_irqrestore(&hsotg->lock, flags);
4961 }
4962 
4963 /*
4964  * HPRT0_SPD_HIGH_SPEED: high speed
4965  * HPRT0_SPD_FULL_SPEED: full speed
4966  */
4967 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4968 {
4969 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4970 
4971 	if (hsotg->params.speed == speed)
4972 		return;
4973 
4974 	hsotg->params.speed = speed;
4975 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4976 }
4977 
4978 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4979 {
4980 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4981 
4982 	if (!hsotg->params.change_speed_quirk)
4983 		return;
4984 
4985 	/*
4986 	 * On removal, set speed to default high-speed.
4987 	 */
4988 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4989 	    udev->parent->speed < USB_SPEED_HIGH) {
4990 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4991 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4992 	}
4993 }
4994 
4995 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4996 {
4997 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4998 
4999 	if (!hsotg->params.change_speed_quirk)
5000 		return 0;
5001 
5002 	if (udev->speed == USB_SPEED_HIGH) {
5003 		dev_info(hsotg->dev, "Set speed to high-speed\n");
5004 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5005 	} else if ((udev->speed == USB_SPEED_FULL ||
5006 				udev->speed == USB_SPEED_LOW)) {
5007 		/*
5008 		 * Change speed setting to full-speed if there's
5009 		 * a full-speed or low-speed device plugged in.
5010 		 */
5011 		dev_info(hsotg->dev, "Set speed to full-speed\n");
5012 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5013 	}
5014 
5015 	return 0;
5016 }
5017 
5018 static struct hc_driver dwc2_hc_driver = {
5019 	.description = "dwc2_hsotg",
5020 	.product_desc = "DWC OTG Controller",
5021 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
5022 
5023 	.irq = _dwc2_hcd_irq,
5024 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5025 
5026 	.start = _dwc2_hcd_start,
5027 	.stop = _dwc2_hcd_stop,
5028 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
5029 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
5030 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
5031 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
5032 	.get_frame_number = _dwc2_hcd_get_frame_number,
5033 
5034 	.hub_status_data = _dwc2_hcd_hub_status_data,
5035 	.hub_control = _dwc2_hcd_hub_control,
5036 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5037 
5038 	.bus_suspend = _dwc2_hcd_suspend,
5039 	.bus_resume = _dwc2_hcd_resume,
5040 
5041 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
5042 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
5043 };
5044 
5045 /*
5046  * Frees secondary storage associated with the dwc2_hsotg structure contained
5047  * in the struct usb_hcd field
5048  */
5049 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5050 {
5051 	u32 ahbcfg;
5052 	u32 dctl;
5053 	int i;
5054 
5055 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5056 
5057 	/* Free memory for QH/QTD lists */
5058 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5059 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5060 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5061 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5062 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5063 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5064 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5065 
5066 	/* Free memory for the host channels */
5067 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5068 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5069 
5070 		if (chan) {
5071 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5072 				i, chan);
5073 			hsotg->hc_ptr_array[i] = NULL;
5074 			kfree(chan);
5075 		}
5076 	}
5077 
5078 	if (hsotg->params.host_dma) {
5079 		if (hsotg->status_buf) {
5080 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5081 					  hsotg->status_buf,
5082 					  hsotg->status_buf_dma);
5083 			hsotg->status_buf = NULL;
5084 		}
5085 	} else {
5086 		kfree(hsotg->status_buf);
5087 		hsotg->status_buf = NULL;
5088 	}
5089 
5090 	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5091 
5092 	/* Disable all interrupts */
5093 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5094 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5095 	dwc2_writel(hsotg, 0, GINTMSK);
5096 
5097 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5098 		dctl = dwc2_readl(hsotg, DCTL);
5099 		dctl |= DCTL_SFTDISCON;
5100 		dwc2_writel(hsotg, dctl, DCTL);
5101 	}
5102 
5103 	if (hsotg->wq_otg) {
5104 		if (!cancel_work_sync(&hsotg->wf_otg))
5105 			flush_workqueue(hsotg->wq_otg);
5106 		destroy_workqueue(hsotg->wq_otg);
5107 	}
5108 
5109 	cancel_work_sync(&hsotg->phy_reset_work);
5110 
5111 	del_timer(&hsotg->wkp_timer);
5112 }
5113 
5114 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5115 {
5116 	/* Turn off all host-specific interrupts */
5117 	dwc2_disable_host_interrupts(hsotg);
5118 
5119 	dwc2_hcd_free(hsotg);
5120 }
5121 
5122 /*
5123  * Initializes the HCD. This function allocates memory for and initializes the
5124  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5125  * USB bus with the core and calls the hc_driver->start() function. It returns
5126  * a negative error on failure.
5127  */
5128 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5129 {
5130 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5131 	struct resource *res;
5132 	struct usb_hcd *hcd;
5133 	struct dwc2_host_chan *channel;
5134 	u32 hcfg;
5135 	int i, num_channels;
5136 	int retval;
5137 
5138 	if (usb_disabled())
5139 		return -ENODEV;
5140 
5141 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5142 
5143 	retval = -ENOMEM;
5144 
5145 	hcfg = dwc2_readl(hsotg, HCFG);
5146 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5147 
5148 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5149 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5150 					 sizeof(*hsotg->frame_num_array),
5151 					 GFP_KERNEL);
5152 	if (!hsotg->frame_num_array)
5153 		goto error1;
5154 	hsotg->last_frame_num_array =
5155 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5156 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5157 	if (!hsotg->last_frame_num_array)
5158 		goto error1;
5159 #endif
5160 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5161 
5162 	/* Check if the bus driver or platform code has setup a dma_mask */
5163 	if (hsotg->params.host_dma &&
5164 	    !hsotg->dev->dma_mask) {
5165 		dev_warn(hsotg->dev,
5166 			 "dma_mask not set, disabling DMA\n");
5167 		hsotg->params.host_dma = false;
5168 		hsotg->params.dma_desc_enable = false;
5169 	}
5170 
5171 	/* Set device flags indicating whether the HCD supports DMA */
5172 	if (hsotg->params.host_dma) {
5173 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5174 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5175 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5176 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5177 	}
5178 
5179 	if (hsotg->params.change_speed_quirk) {
5180 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5181 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5182 	}
5183 
5184 	if (hsotg->params.host_dma)
5185 		dwc2_hc_driver.flags |= HCD_DMA;
5186 
5187 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5188 	if (!hcd)
5189 		goto error1;
5190 
5191 	hcd->has_tt = 1;
5192 
5193 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5194 	hcd->rsrc_start = res->start;
5195 	hcd->rsrc_len = resource_size(res);
5196 
5197 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5198 	hsotg->priv = hcd;
5199 
5200 	/*
5201 	 * Disable the global interrupt until all the interrupt handlers are
5202 	 * installed
5203 	 */
5204 	dwc2_disable_global_interrupts(hsotg);
5205 
5206 	/* Initialize the DWC_otg core, and select the Phy type */
5207 	retval = dwc2_core_init(hsotg, true);
5208 	if (retval)
5209 		goto error2;
5210 
5211 	/* Create new workqueue and init work */
5212 	retval = -ENOMEM;
5213 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5214 	if (!hsotg->wq_otg) {
5215 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5216 		goto error2;
5217 	}
5218 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5219 
5220 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5221 
5222 	/* Initialize the non-periodic schedule */
5223 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5224 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5225 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5226 
5227 	/* Initialize the periodic schedule */
5228 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5229 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5230 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5231 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5232 
5233 	INIT_LIST_HEAD(&hsotg->split_order);
5234 
5235 	/*
5236 	 * Create a host channel descriptor for each host channel implemented
5237 	 * in the controller. Initialize the channel descriptor array.
5238 	 */
5239 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5240 	num_channels = hsotg->params.host_channels;
5241 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5242 
5243 	for (i = 0; i < num_channels; i++) {
5244 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5245 		if (!channel)
5246 			goto error3;
5247 		channel->hc_num = i;
5248 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5249 		hsotg->hc_ptr_array[i] = channel;
5250 	}
5251 
5252 	/* Initialize work */
5253 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5254 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5255 	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5256 
5257 	/*
5258 	 * Allocate space for storing data on status transactions. Normally no
5259 	 * data is sent, but this space acts as a bit bucket. This must be
5260 	 * done after usb_add_hcd since that function allocates the DMA buffer
5261 	 * pool.
5262 	 */
5263 	if (hsotg->params.host_dma)
5264 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5265 					DWC2_HCD_STATUS_BUF_SIZE,
5266 					&hsotg->status_buf_dma, GFP_KERNEL);
5267 	else
5268 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5269 					  GFP_KERNEL);
5270 
5271 	if (!hsotg->status_buf)
5272 		goto error3;
5273 
5274 	/*
5275 	 * Create kmem caches to handle descriptor buffers in descriptor
5276 	 * DMA mode.
5277 	 * Alignment must be set to 512 bytes.
5278 	 */
5279 	if (hsotg->params.dma_desc_enable ||
5280 	    hsotg->params.dma_desc_fs_enable) {
5281 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5282 				sizeof(struct dwc2_dma_desc) *
5283 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5284 				NULL);
5285 		if (!hsotg->desc_gen_cache) {
5286 			dev_err(hsotg->dev,
5287 				"unable to create dwc2 generic desc cache\n");
5288 
5289 			/*
5290 			 * Disable descriptor dma mode since it will not be
5291 			 * usable.
5292 			 */
5293 			hsotg->params.dma_desc_enable = false;
5294 			hsotg->params.dma_desc_fs_enable = false;
5295 		}
5296 
5297 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5298 				sizeof(struct dwc2_dma_desc) *
5299 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5300 		if (!hsotg->desc_hsisoc_cache) {
5301 			dev_err(hsotg->dev,
5302 				"unable to create dwc2 hs isoc desc cache\n");
5303 
5304 			kmem_cache_destroy(hsotg->desc_gen_cache);
5305 
5306 			/*
5307 			 * Disable descriptor dma mode since it will not be
5308 			 * usable.
5309 			 */
5310 			hsotg->params.dma_desc_enable = false;
5311 			hsotg->params.dma_desc_fs_enable = false;
5312 		}
5313 	}
5314 
5315 	if (hsotg->params.host_dma) {
5316 		/*
5317 		 * Create kmem caches to handle non-aligned buffer
5318 		 * in Buffer DMA mode.
5319 		 */
5320 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5321 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5322 						SLAB_CACHE_DMA, NULL);
5323 		if (!hsotg->unaligned_cache)
5324 			dev_err(hsotg->dev,
5325 				"unable to create dwc2 unaligned cache\n");
5326 	}
5327 
5328 	hsotg->otg_port = 1;
5329 	hsotg->frame_list = NULL;
5330 	hsotg->frame_list_dma = 0;
5331 	hsotg->periodic_qh_count = 0;
5332 
5333 	/* Initiate lx_state to L3 disconnected state */
5334 	hsotg->lx_state = DWC2_L3;
5335 
5336 	hcd->self.otg_port = hsotg->otg_port;
5337 
5338 	/* Don't support SG list at this point */
5339 	hcd->self.sg_tablesize = 0;
5340 
5341 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5342 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5343 
5344 	/*
5345 	 * Finish generic HCD initialization and start the HCD. This function
5346 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5347 	 * IRQ line, and calls hcd_start method.
5348 	 */
5349 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5350 	if (retval < 0)
5351 		goto error4;
5352 
5353 	device_wakeup_enable(hcd->self.controller);
5354 
5355 	dwc2_hcd_dump_state(hsotg);
5356 
5357 	dwc2_enable_global_interrupts(hsotg);
5358 
5359 	return 0;
5360 
5361 error4:
5362 	kmem_cache_destroy(hsotg->unaligned_cache);
5363 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5364 	kmem_cache_destroy(hsotg->desc_gen_cache);
5365 error3:
5366 	dwc2_hcd_release(hsotg);
5367 error2:
5368 	usb_put_hcd(hcd);
5369 error1:
5370 
5371 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5372 	kfree(hsotg->last_frame_num_array);
5373 	kfree(hsotg->frame_num_array);
5374 #endif
5375 
5376 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5377 	return retval;
5378 }
5379 
5380 /*
5381  * Removes the HCD.
5382  * Frees memory and resources associated with the HCD and deregisters the bus.
5383  */
5384 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5385 {
5386 	struct usb_hcd *hcd;
5387 
5388 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5389 
5390 	hcd = dwc2_hsotg_to_hcd(hsotg);
5391 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5392 
5393 	if (!hcd) {
5394 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5395 			__func__);
5396 		return;
5397 	}
5398 
5399 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5400 		otg_set_host(hsotg->uphy->otg, NULL);
5401 
5402 	usb_remove_hcd(hcd);
5403 	hsotg->priv = NULL;
5404 
5405 	kmem_cache_destroy(hsotg->unaligned_cache);
5406 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5407 	kmem_cache_destroy(hsotg->desc_gen_cache);
5408 
5409 	dwc2_hcd_release(hsotg);
5410 	usb_put_hcd(hcd);
5411 
5412 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5413 	kfree(hsotg->last_frame_num_array);
5414 	kfree(hsotg->frame_num_array);
5415 #endif
5416 }
5417 
5418 /**
5419  * dwc2_backup_host_registers() - Backup controller host registers.
5420  * When suspending usb bus, registers needs to be backuped
5421  * if controller power is disabled once suspended.
5422  *
5423  * @hsotg: Programming view of the DWC_otg controller
5424  */
5425 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5426 {
5427 	struct dwc2_hregs_backup *hr;
5428 	int i;
5429 
5430 	dev_dbg(hsotg->dev, "%s\n", __func__);
5431 
5432 	/* Backup Host regs */
5433 	hr = &hsotg->hr_backup;
5434 	hr->hcfg = dwc2_readl(hsotg, HCFG);
5435 	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5436 	for (i = 0; i < hsotg->params.host_channels; ++i)
5437 		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5438 
5439 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5440 	hr->hfir = dwc2_readl(hsotg, HFIR);
5441 	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5442 	hr->valid = true;
5443 
5444 	return 0;
5445 }
5446 
5447 /**
5448  * dwc2_restore_host_registers() - Restore controller host registers.
5449  * When resuming usb bus, device registers needs to be restored
5450  * if controller power were disabled.
5451  *
5452  * @hsotg: Programming view of the DWC_otg controller
5453  */
5454 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5455 {
5456 	struct dwc2_hregs_backup *hr;
5457 	int i;
5458 
5459 	dev_dbg(hsotg->dev, "%s\n", __func__);
5460 
5461 	/* Restore host regs */
5462 	hr = &hsotg->hr_backup;
5463 	if (!hr->valid) {
5464 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5465 			__func__);
5466 		return -EINVAL;
5467 	}
5468 	hr->valid = false;
5469 
5470 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5471 	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5472 
5473 	for (i = 0; i < hsotg->params.host_channels; ++i)
5474 		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5475 
5476 	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5477 	dwc2_writel(hsotg, hr->hfir, HFIR);
5478 	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5479 	hsotg->frame_number = 0;
5480 
5481 	return 0;
5482 }
5483 
5484 /**
5485  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5486  *
5487  * @hsotg: Programming view of the DWC_otg controller
5488  */
5489 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5490 {
5491 	unsigned long flags;
5492 	int ret = 0;
5493 	u32 hprt0;
5494 	u32 pcgcctl;
5495 	u32 gusbcfg;
5496 	u32 gpwrdn;
5497 
5498 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5499 	ret = dwc2_backup_global_registers(hsotg);
5500 	if (ret) {
5501 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5502 			__func__);
5503 		return ret;
5504 	}
5505 	ret = dwc2_backup_host_registers(hsotg);
5506 	if (ret) {
5507 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5508 			__func__);
5509 		return ret;
5510 	}
5511 
5512 	/* Enter USB Suspend Mode */
5513 	hprt0 = dwc2_readl(hsotg, HPRT0);
5514 	hprt0 |= HPRT0_SUSP;
5515 	hprt0 &= ~HPRT0_ENA;
5516 	dwc2_writel(hsotg, hprt0, HPRT0);
5517 
5518 	/* Wait for the HPRT0.PrtSusp register field to be set */
5519 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5520 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5521 
5522 	/*
5523 	 * We need to disable interrupts to prevent servicing of any IRQ
5524 	 * during going to hibernation
5525 	 */
5526 	spin_lock_irqsave(&hsotg->lock, flags);
5527 	hsotg->lx_state = DWC2_L2;
5528 
5529 	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5530 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5531 		/* ULPI interface */
5532 		/* Suspend the Phy Clock */
5533 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5534 		pcgcctl |= PCGCTL_STOPPCLK;
5535 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5536 		udelay(10);
5537 
5538 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5539 		gpwrdn |= GPWRDN_PMUACTV;
5540 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5541 		udelay(10);
5542 	} else {
5543 		/* UTMI+ Interface */
5544 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5545 		gpwrdn |= GPWRDN_PMUACTV;
5546 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5547 		udelay(10);
5548 
5549 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5550 		pcgcctl |= PCGCTL_STOPPCLK;
5551 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5552 		udelay(10);
5553 	}
5554 
5555 	/* Enable interrupts from wake up logic */
5556 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5557 	gpwrdn |= GPWRDN_PMUINTSEL;
5558 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5559 	udelay(10);
5560 
5561 	/* Unmask host mode interrupts in GPWRDN */
5562 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5563 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5564 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5565 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5566 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5567 	udelay(10);
5568 
5569 	/* Enable Power Down Clamp */
5570 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5571 	gpwrdn |= GPWRDN_PWRDNCLMP;
5572 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5573 	udelay(10);
5574 
5575 	/* Switch off VDD */
5576 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5577 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5578 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5579 
5580 	hsotg->hibernated = 1;
5581 	hsotg->bus_suspended = 1;
5582 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5583 	spin_unlock_irqrestore(&hsotg->lock, flags);
5584 	return ret;
5585 }
5586 
5587 /*
5588  * dwc2_host_exit_hibernation()
5589  *
5590  * @hsotg: Programming view of the DWC_otg controller
5591  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5592  * @param reset: indicates whether resume is initiated by Reset.
5593  *
5594  * Return: non-zero if failed to enter to hibernation.
5595  *
5596  * This function is for exiting from Host mode hibernation by
5597  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5598  */
5599 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5600 			       int reset)
5601 {
5602 	u32 gpwrdn;
5603 	u32 hprt0;
5604 	int ret = 0;
5605 	struct dwc2_gregs_backup *gr;
5606 	struct dwc2_hregs_backup *hr;
5607 
5608 	gr = &hsotg->gr_backup;
5609 	hr = &hsotg->hr_backup;
5610 
5611 	dev_dbg(hsotg->dev,
5612 		"%s: called with rem_wakeup = %d reset = %d\n",
5613 		__func__, rem_wakeup, reset);
5614 
5615 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5616 	hsotg->hibernated = 0;
5617 
5618 	/*
5619 	 * This step is not described in functional spec but if not wait for
5620 	 * this delay, mismatch interrupts occurred because just after restore
5621 	 * core is in Device mode(gintsts.curmode == 0)
5622 	 */
5623 	mdelay(100);
5624 
5625 	/* Clear all pending interupts */
5626 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5627 
5628 	/* De-assert Restore */
5629 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5630 	gpwrdn &= ~GPWRDN_RESTORE;
5631 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5632 	udelay(10);
5633 
5634 	/* Restore GUSBCFG, HCFG */
5635 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5636 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5637 
5638 	/* De-assert Wakeup Logic */
5639 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5640 	gpwrdn &= ~GPWRDN_PMUACTV;
5641 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5642 	udelay(10);
5643 
5644 	hprt0 = hr->hprt0;
5645 	hprt0 |= HPRT0_PWR;
5646 	hprt0 &= ~HPRT0_ENA;
5647 	hprt0 &= ~HPRT0_SUSP;
5648 	dwc2_writel(hsotg, hprt0, HPRT0);
5649 
5650 	hprt0 = hr->hprt0;
5651 	hprt0 |= HPRT0_PWR;
5652 	hprt0 &= ~HPRT0_ENA;
5653 	hprt0 &= ~HPRT0_SUSP;
5654 
5655 	if (reset) {
5656 		hprt0 |= HPRT0_RST;
5657 		dwc2_writel(hsotg, hprt0, HPRT0);
5658 
5659 		/* Wait for Resume time and then program HPRT again */
5660 		mdelay(60);
5661 		hprt0 &= ~HPRT0_RST;
5662 		dwc2_writel(hsotg, hprt0, HPRT0);
5663 	} else {
5664 		hprt0 |= HPRT0_RES;
5665 		dwc2_writel(hsotg, hprt0, HPRT0);
5666 
5667 		/* Wait for Resume time and then program HPRT again */
5668 		mdelay(100);
5669 		hprt0 &= ~HPRT0_RES;
5670 		dwc2_writel(hsotg, hprt0, HPRT0);
5671 	}
5672 	/* Clear all interrupt status */
5673 	hprt0 = dwc2_readl(hsotg, HPRT0);
5674 	hprt0 |= HPRT0_CONNDET;
5675 	hprt0 |= HPRT0_ENACHG;
5676 	hprt0 &= ~HPRT0_ENA;
5677 	dwc2_writel(hsotg, hprt0, HPRT0);
5678 
5679 	hprt0 = dwc2_readl(hsotg, HPRT0);
5680 
5681 	/* Clear all pending interupts */
5682 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5683 
5684 	/* Restore global registers */
5685 	ret = dwc2_restore_global_registers(hsotg);
5686 	if (ret) {
5687 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5688 			__func__);
5689 		return ret;
5690 	}
5691 
5692 	/* Restore host registers */
5693 	ret = dwc2_restore_host_registers(hsotg);
5694 	if (ret) {
5695 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5696 			__func__);
5697 		return ret;
5698 	}
5699 
5700 	if (rem_wakeup) {
5701 		dwc2_hcd_rem_wakeup(hsotg);
5702 		/*
5703 		 * Change "port_connect_status_change" flag to re-enumerate,
5704 		 * because after exit from hibernation port connection status
5705 		 * is not detected.
5706 		 */
5707 		hsotg->flags.b.port_connect_status_change = 1;
5708 	}
5709 
5710 	hsotg->hibernated = 0;
5711 	hsotg->bus_suspended = 0;
5712 	hsotg->lx_state = DWC2_L0;
5713 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5714 	return ret;
5715 }
5716 
5717 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5718 {
5719 	struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5720 
5721 	/* If the controller isn't allowed to wakeup then we can power off. */
5722 	if (!device_may_wakeup(dwc2->dev))
5723 		return true;
5724 
5725 	/*
5726 	 * We don't want to power off the PHY if something under the
5727 	 * root hub has wakeup enabled.
5728 	 */
5729 	if (usb_wakeup_enabled_descendants(root_hub))
5730 		return false;
5731 
5732 	/* No reason to keep the PHY powered, so allow poweroff */
5733 	return true;
5734 }
5735 
5736 /**
5737  * dwc2_host_enter_partial_power_down() - Put controller in partial
5738  * power down.
5739  *
5740  * @hsotg: Programming view of the DWC_otg controller
5741  *
5742  * Return: non-zero if failed to enter host partial power down.
5743  *
5744  * This function is for entering Host mode partial power down.
5745  */
5746 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5747 {
5748 	u32 pcgcctl;
5749 	u32 hprt0;
5750 	int ret = 0;
5751 
5752 	dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5753 
5754 	/* Put this port in suspend mode. */
5755 	hprt0 = dwc2_read_hprt0(hsotg);
5756 	hprt0 |= HPRT0_SUSP;
5757 	dwc2_writel(hsotg, hprt0, HPRT0);
5758 	udelay(5);
5759 
5760 	/* Wait for the HPRT0.PrtSusp register field to be set */
5761 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5762 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5763 
5764 	/* Backup all registers */
5765 	ret = dwc2_backup_global_registers(hsotg);
5766 	if (ret) {
5767 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5768 			__func__);
5769 		return ret;
5770 	}
5771 
5772 	ret = dwc2_backup_host_registers(hsotg);
5773 	if (ret) {
5774 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5775 			__func__);
5776 		return ret;
5777 	}
5778 
5779 	/*
5780 	 * Clear any pending interrupts since dwc2 will not be able to
5781 	 * clear them after entering partial_power_down.
5782 	 */
5783 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5784 
5785 	/* Put the controller in low power state */
5786 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5787 
5788 	pcgcctl |= PCGCTL_PWRCLMP;
5789 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5790 	udelay(5);
5791 
5792 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5793 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5794 	udelay(5);
5795 
5796 	pcgcctl |= PCGCTL_STOPPCLK;
5797 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5798 
5799 	/* Set in_ppd flag to 1 as here core enters suspend. */
5800 	hsotg->in_ppd = 1;
5801 	hsotg->lx_state = DWC2_L2;
5802 	hsotg->bus_suspended = true;
5803 
5804 	dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5805 
5806 	return ret;
5807 }
5808 
5809 /*
5810  * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5811  * power down.
5812  *
5813  * @hsotg: Programming view of the DWC_otg controller
5814  * @rem_wakeup: indicates whether resume is initiated by Reset.
5815  * @restore: indicates whether need to restore the registers or not.
5816  *
5817  * Return: non-zero if failed to exit host partial power down.
5818  *
5819  * This function is for exiting from Host mode partial power down.
5820  */
5821 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5822 				      int rem_wakeup, bool restore)
5823 {
5824 	u32 pcgcctl;
5825 	int ret = 0;
5826 	u32 hprt0;
5827 
5828 	dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5829 
5830 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5831 	pcgcctl &= ~PCGCTL_STOPPCLK;
5832 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5833 	udelay(5);
5834 
5835 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5836 	pcgcctl &= ~PCGCTL_PWRCLMP;
5837 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5838 	udelay(5);
5839 
5840 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5841 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5842 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5843 
5844 	udelay(100);
5845 	if (restore) {
5846 		ret = dwc2_restore_global_registers(hsotg);
5847 		if (ret) {
5848 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5849 				__func__);
5850 			return ret;
5851 		}
5852 
5853 		ret = dwc2_restore_host_registers(hsotg);
5854 		if (ret) {
5855 			dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5856 				__func__);
5857 			return ret;
5858 		}
5859 	}
5860 
5861 	/* Drive resume signaling and exit suspend mode on the port. */
5862 	hprt0 = dwc2_read_hprt0(hsotg);
5863 	hprt0 |= HPRT0_RES;
5864 	hprt0 &= ~HPRT0_SUSP;
5865 	dwc2_writel(hsotg, hprt0, HPRT0);
5866 	udelay(5);
5867 
5868 	if (!rem_wakeup) {
5869 		/* Stop driveing resume signaling on the port. */
5870 		hprt0 = dwc2_read_hprt0(hsotg);
5871 		hprt0 &= ~HPRT0_RES;
5872 		dwc2_writel(hsotg, hprt0, HPRT0);
5873 
5874 		hsotg->bus_suspended = false;
5875 	} else {
5876 		/* Turn on the port power bit. */
5877 		hprt0 = dwc2_read_hprt0(hsotg);
5878 		hprt0 |= HPRT0_PWR;
5879 		dwc2_writel(hsotg, hprt0, HPRT0);
5880 
5881 		/* Connect hcd. */
5882 		dwc2_hcd_connect(hsotg);
5883 
5884 		mod_timer(&hsotg->wkp_timer,
5885 			  jiffies + msecs_to_jiffies(71));
5886 	}
5887 
5888 	/* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5889 	hsotg->in_ppd = 0;
5890 	hsotg->lx_state = DWC2_L0;
5891 
5892 	dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5893 	return ret;
5894 }
5895 
5896 /**
5897  * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5898  *
5899  * @hsotg: Programming view of the DWC_otg controller
5900  *
5901  * This function is for entering Host mode clock gating.
5902  */
5903 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5904 {
5905 	u32 hprt0;
5906 	u32 pcgctl;
5907 
5908 	dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5909 
5910 	/* Put this port in suspend mode. */
5911 	hprt0 = dwc2_read_hprt0(hsotg);
5912 	hprt0 |= HPRT0_SUSP;
5913 	dwc2_writel(hsotg, hprt0, HPRT0);
5914 
5915 	/* Set the Phy Clock bit as suspend is received. */
5916 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5917 	pcgctl |= PCGCTL_STOPPCLK;
5918 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5919 	udelay(5);
5920 
5921 	/* Set the Gate hclk as suspend is received. */
5922 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5923 	pcgctl |= PCGCTL_GATEHCLK;
5924 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5925 	udelay(5);
5926 
5927 	hsotg->bus_suspended = true;
5928 	hsotg->lx_state = DWC2_L2;
5929 }
5930 
5931 /**
5932  * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5933  *
5934  * @hsotg: Programming view of the DWC_otg controller
5935  * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5936  *
5937  * This function is for exiting Host mode clock gating.
5938  */
5939 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5940 {
5941 	u32 hprt0;
5942 	u32 pcgctl;
5943 
5944 	dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5945 
5946 	/* Clear the Gate hclk. */
5947 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5948 	pcgctl &= ~PCGCTL_GATEHCLK;
5949 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5950 	udelay(5);
5951 
5952 	/* Phy Clock bit. */
5953 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5954 	pcgctl &= ~PCGCTL_STOPPCLK;
5955 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5956 	udelay(5);
5957 
5958 	/* Drive resume signaling and exit suspend mode on the port. */
5959 	hprt0 = dwc2_read_hprt0(hsotg);
5960 	hprt0 |= HPRT0_RES;
5961 	hprt0 &= ~HPRT0_SUSP;
5962 	dwc2_writel(hsotg, hprt0, HPRT0);
5963 	udelay(5);
5964 
5965 	if (!rem_wakeup) {
5966 		/* In case of port resume need to wait for 40 ms */
5967 		msleep(USB_RESUME_TIMEOUT);
5968 
5969 		/* Stop driveing resume signaling on the port. */
5970 		hprt0 = dwc2_read_hprt0(hsotg);
5971 		hprt0 &= ~HPRT0_RES;
5972 		dwc2_writel(hsotg, hprt0, HPRT0);
5973 
5974 		hsotg->bus_suspended = false;
5975 		hsotg->lx_state = DWC2_L0;
5976 	} else {
5977 		mod_timer(&hsotg->wkp_timer,
5978 			  jiffies + msecs_to_jiffies(71));
5979 	}
5980 }
5981