xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision 2d972b6a)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60 
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66 
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 	u32 intmsk;
76 
77 	/* Clear any pending OTG Interrupts */
78 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
79 
80 	/* Clear any pending interrupts */
81 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
82 
83 	/* Enable the interrupts in the GINTMSK */
84 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85 
86 	if (!hsotg->params.host_dma)
87 		intmsk |= GINTSTS_RXFLVL;
88 	if (!hsotg->params.external_id_pin_ctl)
89 		intmsk |= GINTSTS_CONIDSTSCHNG;
90 
91 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 		  GINTSTS_SESSREQINT;
93 
94 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 		intmsk |= GINTSTS_LPMTRANRCVD;
96 
97 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
98 }
99 
100 /*
101  * Initializes the FSLSPClkSel field of the HCFG register depending on the
102  * PHY type
103  */
104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
105 {
106 	u32 hcfg, val;
107 
108 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
109 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
110 	     hsotg->params.ulpi_fs_ls) ||
111 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
112 		/* Full speed PHY */
113 		val = HCFG_FSLSPCLKSEL_48_MHZ;
114 	} else {
115 		/* High speed PHY running at full speed or high speed */
116 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
117 	}
118 
119 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
120 	hcfg = dwc2_readl(hsotg->regs + HCFG);
121 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
122 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
123 	dwc2_writel(hcfg, hsotg->regs + HCFG);
124 }
125 
126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
127 {
128 	u32 usbcfg, ggpio, i2cctl;
129 	int retval = 0;
130 
131 	/*
132 	 * core_init() is now called on every switch so only call the
133 	 * following for the first time through
134 	 */
135 	if (select_phy) {
136 		dev_dbg(hsotg->dev, "FS PHY selected\n");
137 
138 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
139 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
140 			usbcfg |= GUSBCFG_PHYSEL;
141 			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
142 
143 			/* Reset after a PHY select */
144 			retval = dwc2_core_reset(hsotg, false);
145 
146 			if (retval) {
147 				dev_err(hsotg->dev,
148 					"%s: Reset failed, aborting", __func__);
149 				return retval;
150 			}
151 		}
152 
153 		if (hsotg->params.activate_stm_fs_transceiver) {
154 			ggpio = dwc2_readl(hsotg->regs + GGPIO);
155 			if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
156 				dev_dbg(hsotg->dev, "Activating transceiver\n");
157 				/*
158 				 * STM32F4x9 uses the GGPIO register as general
159 				 * core configuration register.
160 				 */
161 				ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
162 				dwc2_writel(ggpio, hsotg->regs + GGPIO);
163 			}
164 		}
165 	}
166 
167 	/*
168 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
169 	 * do this on HNP Dev/Host mode switches (done in dev_init and
170 	 * host_init).
171 	 */
172 	if (dwc2_is_host_mode(hsotg))
173 		dwc2_init_fs_ls_pclk_sel(hsotg);
174 
175 	if (hsotg->params.i2c_enable) {
176 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
177 
178 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
179 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
180 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
181 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
182 
183 		/* Program GI2CCTL.I2CEn */
184 		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
185 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
186 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
187 		i2cctl &= ~GI2CCTL_I2CEN;
188 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
189 		i2cctl |= GI2CCTL_I2CEN;
190 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
191 	}
192 
193 	return retval;
194 }
195 
196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
197 {
198 	u32 usbcfg, usbcfg_old;
199 	int retval = 0;
200 
201 	if (!select_phy)
202 		return 0;
203 
204 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
205 	usbcfg_old = usbcfg;
206 
207 	/*
208 	 * HS PHY parameters. These parameters are preserved during soft reset
209 	 * so only program the first time. Do a soft reset immediately after
210 	 * setting phyif.
211 	 */
212 	switch (hsotg->params.phy_type) {
213 	case DWC2_PHY_TYPE_PARAM_ULPI:
214 		/* ULPI interface */
215 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
216 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
217 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
218 		if (hsotg->params.phy_ulpi_ddr)
219 			usbcfg |= GUSBCFG_DDRSEL;
220 
221 		/* Set external VBUS indicator as needed. */
222 		if (hsotg->params.oc_disable)
223 			usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
224 				   GUSBCFG_INDICATORPASSTHROUGH);
225 		break;
226 	case DWC2_PHY_TYPE_PARAM_UTMI:
227 		/* UTMI+ interface */
228 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
229 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
230 		if (hsotg->params.phy_utmi_width == 16)
231 			usbcfg |= GUSBCFG_PHYIF16;
232 		break;
233 	default:
234 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
235 		break;
236 	}
237 
238 	if (usbcfg != usbcfg_old) {
239 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
240 
241 		/* Reset after setting the PHY parameters */
242 		retval = dwc2_core_reset(hsotg, false);
243 		if (retval) {
244 			dev_err(hsotg->dev,
245 				"%s: Reset failed, aborting", __func__);
246 			return retval;
247 		}
248 	}
249 
250 	return retval;
251 }
252 
253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
254 {
255 	u32 usbcfg;
256 	int retval = 0;
257 
258 	if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
259 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
260 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
261 		/* If FS/LS mode with FS/LS PHY */
262 		retval = dwc2_fs_phy_init(hsotg, select_phy);
263 		if (retval)
264 			return retval;
265 	} else {
266 		/* High speed PHY */
267 		retval = dwc2_hs_phy_init(hsotg, select_phy);
268 		if (retval)
269 			return retval;
270 	}
271 
272 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
273 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
274 	    hsotg->params.ulpi_fs_ls) {
275 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
276 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
277 		usbcfg |= GUSBCFG_ULPI_FS_LS;
278 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
279 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
280 	} else {
281 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
282 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
283 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
284 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
285 	}
286 
287 	return retval;
288 }
289 
290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
291 {
292 	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
293 
294 	switch (hsotg->hw_params.arch) {
295 	case GHWCFG2_EXT_DMA_ARCH:
296 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
297 		return -EINVAL;
298 
299 	case GHWCFG2_INT_DMA_ARCH:
300 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
301 		if (hsotg->params.ahbcfg != -1) {
302 			ahbcfg &= GAHBCFG_CTRL_MASK;
303 			ahbcfg |= hsotg->params.ahbcfg &
304 				  ~GAHBCFG_CTRL_MASK;
305 		}
306 		break;
307 
308 	case GHWCFG2_SLAVE_ONLY_ARCH:
309 	default:
310 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
311 		break;
312 	}
313 
314 	if (hsotg->params.host_dma)
315 		ahbcfg |= GAHBCFG_DMA_EN;
316 	else
317 		hsotg->params.dma_desc_enable = false;
318 
319 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
320 
321 	return 0;
322 }
323 
324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
325 {
326 	u32 usbcfg;
327 
328 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
329 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
330 
331 	switch (hsotg->hw_params.op_mode) {
332 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
333 		if (hsotg->params.otg_cap ==
334 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
335 			usbcfg |= GUSBCFG_HNPCAP;
336 		if (hsotg->params.otg_cap !=
337 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
338 			usbcfg |= GUSBCFG_SRPCAP;
339 		break;
340 
341 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
342 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
343 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
344 		if (hsotg->params.otg_cap !=
345 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
346 			usbcfg |= GUSBCFG_SRPCAP;
347 		break;
348 
349 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
350 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
351 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
352 	default:
353 		break;
354 	}
355 
356 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
357 }
358 
359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
360 {
361 	hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus");
362 	if (IS_ERR(hsotg->vbus_supply))
363 		return 0;
364 
365 	return regulator_enable(hsotg->vbus_supply);
366 }
367 
368 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
369 {
370 	if (hsotg->vbus_supply)
371 		return regulator_disable(hsotg->vbus_supply);
372 
373 	return 0;
374 }
375 
376 /**
377  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
378  *
379  * @hsotg: Programming view of DWC_otg controller
380  */
381 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
382 {
383 	u32 intmsk;
384 
385 	dev_dbg(hsotg->dev, "%s()\n", __func__);
386 
387 	/* Disable all interrupts */
388 	dwc2_writel(0, hsotg->regs + GINTMSK);
389 	dwc2_writel(0, hsotg->regs + HAINTMSK);
390 
391 	/* Enable the common interrupts */
392 	dwc2_enable_common_interrupts(hsotg);
393 
394 	/* Enable host mode interrupts without disturbing common interrupts */
395 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
396 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
397 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
398 }
399 
400 /**
401  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
402  *
403  * @hsotg: Programming view of DWC_otg controller
404  */
405 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
406 {
407 	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
408 
409 	/* Disable host mode interrupts without disturbing common interrupts */
410 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
411 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
412 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
413 }
414 
415 /*
416  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
417  * For system that have a total fifo depth that is smaller than the default
418  * RX + TX fifo size.
419  *
420  * @hsotg: Programming view of DWC_otg controller
421  */
422 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
423 {
424 	struct dwc2_core_params *params = &hsotg->params;
425 	struct dwc2_hw_params *hw = &hsotg->hw_params;
426 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
427 
428 	total_fifo_size = hw->total_fifo_size;
429 	rxfsiz = params->host_rx_fifo_size;
430 	nptxfsiz = params->host_nperio_tx_fifo_size;
431 	ptxfsiz = params->host_perio_tx_fifo_size;
432 
433 	/*
434 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
435 	 * allocation with support for high bandwidth endpoints. Synopsys
436 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
437 	 * non-periodic as 512.
438 	 */
439 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
440 		/*
441 		 * For Buffer DMA mode/Scatter Gather DMA mode
442 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
443 		 * with n = number of host channel.
444 		 * 2 * ((1024/4) + 2) = 516
445 		 */
446 		rxfsiz = 516 + hw->host_channels;
447 
448 		/*
449 		 * min non-periodic tx fifo depth
450 		 * 2 * (largest non-periodic USB packet used / 4)
451 		 * 2 * (512/4) = 256
452 		 */
453 		nptxfsiz = 256;
454 
455 		/*
456 		 * min periodic tx fifo depth
457 		 * (largest packet size*MC)/4
458 		 * (1024 * 3)/4 = 768
459 		 */
460 		ptxfsiz = 768;
461 
462 		params->host_rx_fifo_size = rxfsiz;
463 		params->host_nperio_tx_fifo_size = nptxfsiz;
464 		params->host_perio_tx_fifo_size = ptxfsiz;
465 	}
466 
467 	/*
468 	 * If the summation of RX, NPTX and PTX fifo sizes is still
469 	 * bigger than the total_fifo_size, then we have a problem.
470 	 *
471 	 * We won't be able to allocate as many endpoints. Right now,
472 	 * we're just printing an error message, but ideally this FIFO
473 	 * allocation algorithm would be improved in the future.
474 	 *
475 	 * FIXME improve this FIFO allocation algorithm.
476 	 */
477 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
478 		dev_err(hsotg->dev, "invalid fifo sizes\n");
479 }
480 
481 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
482 {
483 	struct dwc2_core_params *params = &hsotg->params;
484 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
485 
486 	if (!params->enable_dynamic_fifo)
487 		return;
488 
489 	dwc2_calculate_dynamic_fifo(hsotg);
490 
491 	/* Rx FIFO */
492 	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
493 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
494 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
495 	grxfsiz |= params->host_rx_fifo_size <<
496 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
497 	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
498 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
499 		dwc2_readl(hsotg->regs + GRXFSIZ));
500 
501 	/* Non-periodic Tx FIFO */
502 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
503 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
504 	nptxfsiz = params->host_nperio_tx_fifo_size <<
505 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
506 	nptxfsiz |= params->host_rx_fifo_size <<
507 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
508 	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
509 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
510 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
511 
512 	/* Periodic Tx FIFO */
513 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
514 		dwc2_readl(hsotg->regs + HPTXFSIZ));
515 	hptxfsiz = params->host_perio_tx_fifo_size <<
516 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
517 	hptxfsiz |= (params->host_rx_fifo_size +
518 		     params->host_nperio_tx_fifo_size) <<
519 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
520 	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
521 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
522 		dwc2_readl(hsotg->regs + HPTXFSIZ));
523 
524 	if (hsotg->params.en_multiple_tx_fifo &&
525 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
526 		/*
527 		 * This feature was implemented in 2.91a version
528 		 * Global DFIFOCFG calculation for Host mode -
529 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
530 		 */
531 		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
532 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
533 		dfifocfg |= (params->host_rx_fifo_size +
534 			     params->host_nperio_tx_fifo_size +
535 			     params->host_perio_tx_fifo_size) <<
536 			    GDFIFOCFG_EPINFOBASE_SHIFT &
537 			    GDFIFOCFG_EPINFOBASE_MASK;
538 		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
539 	}
540 }
541 
542 /**
543  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
544  * the HFIR register according to PHY type and speed
545  *
546  * @hsotg: Programming view of DWC_otg controller
547  *
548  * NOTE: The caller can modify the value of the HFIR register only after the
549  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
550  * has been set
551  */
552 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
553 {
554 	u32 usbcfg;
555 	u32 hprt0;
556 	int clock = 60;	/* default value */
557 
558 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
559 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
560 
561 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
562 	    !(usbcfg & GUSBCFG_PHYIF16))
563 		clock = 60;
564 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
565 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
566 		clock = 48;
567 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
568 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
569 		clock = 30;
570 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
571 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
572 		clock = 60;
573 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
574 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
575 		clock = 48;
576 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
577 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
578 		clock = 48;
579 	if ((usbcfg & GUSBCFG_PHYSEL) &&
580 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
581 		clock = 48;
582 
583 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
584 		/* High speed case */
585 		return 125 * clock - 1;
586 
587 	/* FS/LS case */
588 	return 1000 * clock - 1;
589 }
590 
591 /**
592  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
593  * buffer
594  *
595  * @core_if: Programming view of DWC_otg controller
596  * @dest:    Destination buffer for the packet
597  * @bytes:   Number of bytes to copy to the destination
598  */
599 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
600 {
601 	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
602 	u32 *data_buf = (u32 *)dest;
603 	int word_count = (bytes + 3) / 4;
604 	int i;
605 
606 	/*
607 	 * Todo: Account for the case where dest is not dword aligned. This
608 	 * requires reading data from the FIFO into a u32 temp buffer, then
609 	 * moving it into the data buffer.
610 	 */
611 
612 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
613 
614 	for (i = 0; i < word_count; i++, data_buf++)
615 		*data_buf = dwc2_readl(fifo);
616 }
617 
618 /**
619  * dwc2_dump_channel_info() - Prints the state of a host channel
620  *
621  * @hsotg: Programming view of DWC_otg controller
622  * @chan:  Pointer to the channel to dump
623  *
624  * Must be called with interrupt disabled and spinlock held
625  *
626  * NOTE: This function will be removed once the peripheral controller code
627  * is integrated and the driver is stable
628  */
629 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
630 				   struct dwc2_host_chan *chan)
631 {
632 #ifdef VERBOSE_DEBUG
633 	int num_channels = hsotg->params.host_channels;
634 	struct dwc2_qh *qh;
635 	u32 hcchar;
636 	u32 hcsplt;
637 	u32 hctsiz;
638 	u32 hc_dma;
639 	int i;
640 
641 	if (!chan)
642 		return;
643 
644 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
645 	hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
646 	hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
647 	hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
648 
649 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
650 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
651 		hcchar, hcsplt);
652 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
653 		hctsiz, hc_dma);
654 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
655 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
656 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
657 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
658 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
659 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
660 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
661 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
662 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
663 		(unsigned long)chan->xfer_dma);
664 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
665 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
666 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
667 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
668 			    qh_list_entry)
669 		dev_dbg(hsotg->dev, "    %p\n", qh);
670 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
671 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
672 			    qh_list_entry)
673 		dev_dbg(hsotg->dev, "    %p\n", qh);
674 	dev_dbg(hsotg->dev, "  NP active sched:\n");
675 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
676 			    qh_list_entry)
677 		dev_dbg(hsotg->dev, "    %p\n", qh);
678 	dev_dbg(hsotg->dev, "  Channels:\n");
679 	for (i = 0; i < num_channels; i++) {
680 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
681 
682 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
683 	}
684 #endif /* VERBOSE_DEBUG */
685 }
686 
687 static int _dwc2_hcd_start(struct usb_hcd *hcd);
688 
689 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
690 {
691 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
692 
693 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
694 	_dwc2_hcd_start(hcd);
695 }
696 
697 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
698 {
699 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
700 
701 	hcd->self.is_b_host = 0;
702 }
703 
704 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
705 			       int *hub_addr, int *hub_port)
706 {
707 	struct urb *urb = context;
708 
709 	if (urb->dev->tt)
710 		*hub_addr = urb->dev->tt->hub->devnum;
711 	else
712 		*hub_addr = 0;
713 	*hub_port = urb->dev->ttport;
714 }
715 
716 /*
717  * =========================================================================
718  *  Low Level Host Channel Access Functions
719  * =========================================================================
720  */
721 
722 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
723 				      struct dwc2_host_chan *chan)
724 {
725 	u32 hcintmsk = HCINTMSK_CHHLTD;
726 
727 	switch (chan->ep_type) {
728 	case USB_ENDPOINT_XFER_CONTROL:
729 	case USB_ENDPOINT_XFER_BULK:
730 		dev_vdbg(hsotg->dev, "control/bulk\n");
731 		hcintmsk |= HCINTMSK_XFERCOMPL;
732 		hcintmsk |= HCINTMSK_STALL;
733 		hcintmsk |= HCINTMSK_XACTERR;
734 		hcintmsk |= HCINTMSK_DATATGLERR;
735 		if (chan->ep_is_in) {
736 			hcintmsk |= HCINTMSK_BBLERR;
737 		} else {
738 			hcintmsk |= HCINTMSK_NAK;
739 			hcintmsk |= HCINTMSK_NYET;
740 			if (chan->do_ping)
741 				hcintmsk |= HCINTMSK_ACK;
742 		}
743 
744 		if (chan->do_split) {
745 			hcintmsk |= HCINTMSK_NAK;
746 			if (chan->complete_split)
747 				hcintmsk |= HCINTMSK_NYET;
748 			else
749 				hcintmsk |= HCINTMSK_ACK;
750 		}
751 
752 		if (chan->error_state)
753 			hcintmsk |= HCINTMSK_ACK;
754 		break;
755 
756 	case USB_ENDPOINT_XFER_INT:
757 		if (dbg_perio())
758 			dev_vdbg(hsotg->dev, "intr\n");
759 		hcintmsk |= HCINTMSK_XFERCOMPL;
760 		hcintmsk |= HCINTMSK_NAK;
761 		hcintmsk |= HCINTMSK_STALL;
762 		hcintmsk |= HCINTMSK_XACTERR;
763 		hcintmsk |= HCINTMSK_DATATGLERR;
764 		hcintmsk |= HCINTMSK_FRMOVRUN;
765 
766 		if (chan->ep_is_in)
767 			hcintmsk |= HCINTMSK_BBLERR;
768 		if (chan->error_state)
769 			hcintmsk |= HCINTMSK_ACK;
770 		if (chan->do_split) {
771 			if (chan->complete_split)
772 				hcintmsk |= HCINTMSK_NYET;
773 			else
774 				hcintmsk |= HCINTMSK_ACK;
775 		}
776 		break;
777 
778 	case USB_ENDPOINT_XFER_ISOC:
779 		if (dbg_perio())
780 			dev_vdbg(hsotg->dev, "isoc\n");
781 		hcintmsk |= HCINTMSK_XFERCOMPL;
782 		hcintmsk |= HCINTMSK_FRMOVRUN;
783 		hcintmsk |= HCINTMSK_ACK;
784 
785 		if (chan->ep_is_in) {
786 			hcintmsk |= HCINTMSK_XACTERR;
787 			hcintmsk |= HCINTMSK_BBLERR;
788 		}
789 		break;
790 	default:
791 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
792 		break;
793 	}
794 
795 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
796 	if (dbg_hc(chan))
797 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
798 }
799 
800 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
801 				    struct dwc2_host_chan *chan)
802 {
803 	u32 hcintmsk = HCINTMSK_CHHLTD;
804 
805 	/*
806 	 * For Descriptor DMA mode core halts the channel on AHB error.
807 	 * Interrupt is not required.
808 	 */
809 	if (!hsotg->params.dma_desc_enable) {
810 		if (dbg_hc(chan))
811 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
812 		hcintmsk |= HCINTMSK_AHBERR;
813 	} else {
814 		if (dbg_hc(chan))
815 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
816 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
817 			hcintmsk |= HCINTMSK_XFERCOMPL;
818 	}
819 
820 	if (chan->error_state && !chan->do_split &&
821 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
822 		if (dbg_hc(chan))
823 			dev_vdbg(hsotg->dev, "setting ACK\n");
824 		hcintmsk |= HCINTMSK_ACK;
825 		if (chan->ep_is_in) {
826 			hcintmsk |= HCINTMSK_DATATGLERR;
827 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
828 				hcintmsk |= HCINTMSK_NAK;
829 		}
830 	}
831 
832 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
833 	if (dbg_hc(chan))
834 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
835 }
836 
837 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
838 				struct dwc2_host_chan *chan)
839 {
840 	u32 intmsk;
841 
842 	if (hsotg->params.host_dma) {
843 		if (dbg_hc(chan))
844 			dev_vdbg(hsotg->dev, "DMA enabled\n");
845 		dwc2_hc_enable_dma_ints(hsotg, chan);
846 	} else {
847 		if (dbg_hc(chan))
848 			dev_vdbg(hsotg->dev, "DMA disabled\n");
849 		dwc2_hc_enable_slave_ints(hsotg, chan);
850 	}
851 
852 	/* Enable the top level host channel interrupt */
853 	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
854 	intmsk |= 1 << chan->hc_num;
855 	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
856 	if (dbg_hc(chan))
857 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
858 
859 	/* Make sure host channel interrupts are enabled */
860 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
861 	intmsk |= GINTSTS_HCHINT;
862 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
863 	if (dbg_hc(chan))
864 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
865 }
866 
867 /**
868  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
869  * a specific endpoint
870  *
871  * @hsotg: Programming view of DWC_otg controller
872  * @chan:  Information needed to initialize the host channel
873  *
874  * The HCCHARn register is set up with the characteristics specified in chan.
875  * Host channel interrupts that may need to be serviced while this transfer is
876  * in progress are enabled.
877  */
878 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
879 {
880 	u8 hc_num = chan->hc_num;
881 	u32 hcintmsk;
882 	u32 hcchar;
883 	u32 hcsplt = 0;
884 
885 	if (dbg_hc(chan))
886 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
887 
888 	/* Clear old interrupt conditions for this host channel */
889 	hcintmsk = 0xffffffff;
890 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
891 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
892 
893 	/* Enable channel interrupts required for this transfer */
894 	dwc2_hc_enable_ints(hsotg, chan);
895 
896 	/*
897 	 * Program the HCCHARn register with the endpoint characteristics for
898 	 * the current transfer
899 	 */
900 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
901 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
902 	if (chan->ep_is_in)
903 		hcchar |= HCCHAR_EPDIR;
904 	if (chan->speed == USB_SPEED_LOW)
905 		hcchar |= HCCHAR_LSPDDEV;
906 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
907 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
908 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
909 	if (dbg_hc(chan)) {
910 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
911 			 hc_num, hcchar);
912 
913 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
914 			 __func__, hc_num);
915 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
916 			 chan->dev_addr);
917 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
918 			 chan->ep_num);
919 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
920 			 chan->ep_is_in);
921 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
922 			 chan->speed == USB_SPEED_LOW);
923 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
924 			 chan->ep_type);
925 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
926 			 chan->max_packet);
927 	}
928 
929 	/* Program the HCSPLT register for SPLITs */
930 	if (chan->do_split) {
931 		if (dbg_hc(chan))
932 			dev_vdbg(hsotg->dev,
933 				 "Programming HC %d with split --> %s\n",
934 				 hc_num,
935 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
936 		if (chan->complete_split)
937 			hcsplt |= HCSPLT_COMPSPLT;
938 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
939 			  HCSPLT_XACTPOS_MASK;
940 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
941 			  HCSPLT_HUBADDR_MASK;
942 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
943 			  HCSPLT_PRTADDR_MASK;
944 		if (dbg_hc(chan)) {
945 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
946 				 chan->complete_split);
947 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
948 				 chan->xact_pos);
949 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
950 				 chan->hub_addr);
951 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
952 				 chan->hub_port);
953 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
954 				 chan->ep_is_in);
955 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
956 				 chan->max_packet);
957 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
958 				 chan->xfer_len);
959 		}
960 	}
961 
962 	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
963 }
964 
965 /**
966  * dwc2_hc_halt() - Attempts to halt a host channel
967  *
968  * @hsotg:       Controller register interface
969  * @chan:        Host channel to halt
970  * @halt_status: Reason for halting the channel
971  *
972  * This function should only be called in Slave mode or to abort a transfer in
973  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
974  * controller halts the channel when the transfer is complete or a condition
975  * occurs that requires application intervention.
976  *
977  * In slave mode, checks for a free request queue entry, then sets the Channel
978  * Enable and Channel Disable bits of the Host Channel Characteristics
979  * register of the specified channel to intiate the halt. If there is no free
980  * request queue entry, sets only the Channel Disable bit of the HCCHARn
981  * register to flush requests for this channel. In the latter case, sets a
982  * flag to indicate that the host channel needs to be halted when a request
983  * queue slot is open.
984  *
985  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
986  * HCCHARn register. The controller ensures there is space in the request
987  * queue before submitting the halt request.
988  *
989  * Some time may elapse before the core flushes any posted requests for this
990  * host channel and halts. The Channel Halted interrupt handler completes the
991  * deactivation of the host channel.
992  */
993 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
994 		  enum dwc2_halt_status halt_status)
995 {
996 	u32 nptxsts, hptxsts, hcchar;
997 
998 	if (dbg_hc(chan))
999 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1000 
1001 	/*
1002 	 * In buffer DMA or external DMA mode channel can't be halted
1003 	 * for non-split periodic channels. At the end of the next
1004 	 * uframe/frame (in the worst case), the core generates a channel
1005 	 * halted and disables the channel automatically.
1006 	 */
1007 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
1008 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
1009 		if (!chan->do_split &&
1010 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
1011 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
1012 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
1013 				__func__);
1014 			return;
1015 		}
1016 	}
1017 
1018 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1019 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1020 
1021 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1022 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
1023 		/*
1024 		 * Disable all channel interrupts except Ch Halted. The QTD
1025 		 * and QH state associated with this transfer has been cleared
1026 		 * (in the case of URB_DEQUEUE), so the channel needs to be
1027 		 * shut down carefully to prevent crashes.
1028 		 */
1029 		u32 hcintmsk = HCINTMSK_CHHLTD;
1030 
1031 		dev_vdbg(hsotg->dev, "dequeue/error\n");
1032 		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1033 
1034 		/*
1035 		 * Make sure no other interrupts besides halt are currently
1036 		 * pending. Handling another interrupt could cause a crash due
1037 		 * to the QTD and QH state.
1038 		 */
1039 		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1040 
1041 		/*
1042 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1043 		 * even if the channel was already halted for some other
1044 		 * reason
1045 		 */
1046 		chan->halt_status = halt_status;
1047 
1048 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1049 		if (!(hcchar & HCCHAR_CHENA)) {
1050 			/*
1051 			 * The channel is either already halted or it hasn't
1052 			 * started yet. In DMA mode, the transfer may halt if
1053 			 * it finishes normally or a condition occurs that
1054 			 * requires driver intervention. Don't want to halt
1055 			 * the channel again. In either Slave or DMA mode,
1056 			 * it's possible that the transfer has been assigned
1057 			 * to a channel, but not started yet when an URB is
1058 			 * dequeued. Don't want to halt a channel that hasn't
1059 			 * started yet.
1060 			 */
1061 			return;
1062 		}
1063 	}
1064 	if (chan->halt_pending) {
1065 		/*
1066 		 * A halt has already been issued for this channel. This might
1067 		 * happen when a transfer is aborted by a higher level in
1068 		 * the stack.
1069 		 */
1070 		dev_vdbg(hsotg->dev,
1071 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1072 			 __func__, chan->hc_num);
1073 		return;
1074 	}
1075 
1076 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1077 
1078 	/* No need to set the bit in DDMA for disabling the channel */
1079 	/* TODO check it everywhere channel is disabled */
1080 	if (!hsotg->params.dma_desc_enable) {
1081 		if (dbg_hc(chan))
1082 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1083 		hcchar |= HCCHAR_CHENA;
1084 	} else {
1085 		if (dbg_hc(chan))
1086 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1087 	}
1088 	hcchar |= HCCHAR_CHDIS;
1089 
1090 	if (!hsotg->params.host_dma) {
1091 		if (dbg_hc(chan))
1092 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1093 		hcchar |= HCCHAR_CHENA;
1094 
1095 		/* Check for space in the request queue to issue the halt */
1096 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1097 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1098 			dev_vdbg(hsotg->dev, "control/bulk\n");
1099 			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1100 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1101 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1102 				hcchar &= ~HCCHAR_CHENA;
1103 			}
1104 		} else {
1105 			if (dbg_perio())
1106 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1107 			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1108 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1109 			    hsotg->queuing_high_bandwidth) {
1110 				if (dbg_perio())
1111 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1112 				hcchar &= ~HCCHAR_CHENA;
1113 			}
1114 		}
1115 	} else {
1116 		if (dbg_hc(chan))
1117 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1118 	}
1119 
1120 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1121 	chan->halt_status = halt_status;
1122 
1123 	if (hcchar & HCCHAR_CHENA) {
1124 		if (dbg_hc(chan))
1125 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1126 		chan->halt_pending = 1;
1127 		chan->halt_on_queue = 0;
1128 	} else {
1129 		if (dbg_hc(chan))
1130 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1131 		chan->halt_on_queue = 1;
1132 	}
1133 
1134 	if (dbg_hc(chan)) {
1135 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1136 			 chan->hc_num);
1137 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1138 			 hcchar);
1139 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1140 			 chan->halt_pending);
1141 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1142 			 chan->halt_on_queue);
1143 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1144 			 chan->halt_status);
1145 	}
1146 }
1147 
1148 /**
1149  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1150  *
1151  * @hsotg: Programming view of DWC_otg controller
1152  * @chan:  Identifies the host channel to clean up
1153  *
1154  * This function is normally called after a transfer is done and the host
1155  * channel is being released
1156  */
1157 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1158 {
1159 	u32 hcintmsk;
1160 
1161 	chan->xfer_started = 0;
1162 
1163 	list_del_init(&chan->split_order_list_entry);
1164 
1165 	/*
1166 	 * Clear channel interrupt enables and any unhandled channel interrupt
1167 	 * conditions
1168 	 */
1169 	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1170 	hcintmsk = 0xffffffff;
1171 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1172 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1173 }
1174 
1175 /**
1176  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1177  * which frame a periodic transfer should occur
1178  *
1179  * @hsotg:  Programming view of DWC_otg controller
1180  * @chan:   Identifies the host channel to set up and its properties
1181  * @hcchar: Current value of the HCCHAR register for the specified host channel
1182  *
1183  * This function has no effect on non-periodic transfers
1184  */
1185 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1186 				       struct dwc2_host_chan *chan, u32 *hcchar)
1187 {
1188 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1189 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1190 		int host_speed;
1191 		int xfer_ns;
1192 		int xfer_us;
1193 		int bytes_in_fifo;
1194 		u16 fifo_space;
1195 		u16 frame_number;
1196 		u16 wire_frame;
1197 
1198 		/*
1199 		 * Try to figure out if we're an even or odd frame. If we set
1200 		 * even and the current frame number is even the the transfer
1201 		 * will happen immediately.  Similar if both are odd. If one is
1202 		 * even and the other is odd then the transfer will happen when
1203 		 * the frame number ticks.
1204 		 *
1205 		 * There's a bit of a balancing act to get this right.
1206 		 * Sometimes we may want to send data in the current frame (AK
1207 		 * right away).  We might want to do this if the frame number
1208 		 * _just_ ticked, but we might also want to do this in order
1209 		 * to continue a split transaction that happened late in a
1210 		 * microframe (so we didn't know to queue the next transfer
1211 		 * until the frame number had ticked).  The problem is that we
1212 		 * need a lot of knowledge to know if there's actually still
1213 		 * time to send things or if it would be better to wait until
1214 		 * the next frame.
1215 		 *
1216 		 * We can look at how much time is left in the current frame
1217 		 * and make a guess about whether we'll have time to transfer.
1218 		 * We'll do that.
1219 		 */
1220 
1221 		/* Get speed host is running at */
1222 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1223 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1224 
1225 		/* See how many bytes are in the periodic FIFO right now */
1226 		fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1227 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1228 		bytes_in_fifo = sizeof(u32) *
1229 				(hsotg->params.host_perio_tx_fifo_size -
1230 				 fifo_space);
1231 
1232 		/*
1233 		 * Roughly estimate bus time for everything in the periodic
1234 		 * queue + our new transfer.  This is "rough" because we're
1235 		 * using a function that makes takes into account IN/OUT
1236 		 * and INT/ISO and we're just slamming in one value for all
1237 		 * transfers.  This should be an over-estimate and that should
1238 		 * be OK, but we can probably tighten it.
1239 		 */
1240 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1241 					    chan->xfer_len + bytes_in_fifo);
1242 		xfer_us = NS_TO_US(xfer_ns);
1243 
1244 		/* See what frame number we'll be at by the time we finish */
1245 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1246 
1247 		/* This is when we were scheduled to be on the wire */
1248 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1249 
1250 		/*
1251 		 * If we'd finish _after_ the frame we're scheduled in then
1252 		 * it's hopeless.  Just schedule right away and hope for the
1253 		 * best.  Note that it _might_ be wise to call back into the
1254 		 * scheduler to pick a better frame, but this is better than
1255 		 * nothing.
1256 		 */
1257 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1258 			dwc2_sch_vdbg(hsotg,
1259 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1260 				      chan->qh, wire_frame, frame_number,
1261 				      dwc2_frame_num_dec(frame_number,
1262 							 wire_frame));
1263 			wire_frame = frame_number;
1264 
1265 			/*
1266 			 * We picked a different frame number; communicate this
1267 			 * back to the scheduler so it doesn't try to schedule
1268 			 * another in the same frame.
1269 			 *
1270 			 * Remember that next_active_frame is 1 before the wire
1271 			 * frame.
1272 			 */
1273 			chan->qh->next_active_frame =
1274 				dwc2_frame_num_dec(frame_number, 1);
1275 		}
1276 
1277 		if (wire_frame & 1)
1278 			*hcchar |= HCCHAR_ODDFRM;
1279 		else
1280 			*hcchar &= ~HCCHAR_ODDFRM;
1281 	}
1282 }
1283 
1284 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1285 {
1286 	/* Set up the initial PID for the transfer */
1287 	if (chan->speed == USB_SPEED_HIGH) {
1288 		if (chan->ep_is_in) {
1289 			if (chan->multi_count == 1)
1290 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1291 			else if (chan->multi_count == 2)
1292 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1293 			else
1294 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1295 		} else {
1296 			if (chan->multi_count == 1)
1297 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1298 			else
1299 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1300 		}
1301 	} else {
1302 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1303 	}
1304 }
1305 
1306 /**
1307  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1308  * the Host Channel
1309  *
1310  * @hsotg: Programming view of DWC_otg controller
1311  * @chan:  Information needed to initialize the host channel
1312  *
1313  * This function should only be called in Slave mode. For a channel associated
1314  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1315  * associated with a periodic EP, the periodic Tx FIFO is written.
1316  *
1317  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1318  * the number of bytes written to the Tx FIFO.
1319  */
1320 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1321 				 struct dwc2_host_chan *chan)
1322 {
1323 	u32 i;
1324 	u32 remaining_count;
1325 	u32 byte_count;
1326 	u32 dword_count;
1327 	u32 __iomem *data_fifo;
1328 	u32 *data_buf = (u32 *)chan->xfer_buf;
1329 
1330 	if (dbg_hc(chan))
1331 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1332 
1333 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1334 
1335 	remaining_count = chan->xfer_len - chan->xfer_count;
1336 	if (remaining_count > chan->max_packet)
1337 		byte_count = chan->max_packet;
1338 	else
1339 		byte_count = remaining_count;
1340 
1341 	dword_count = (byte_count + 3) / 4;
1342 
1343 	if (((unsigned long)data_buf & 0x3) == 0) {
1344 		/* xfer_buf is DWORD aligned */
1345 		for (i = 0; i < dword_count; i++, data_buf++)
1346 			dwc2_writel(*data_buf, data_fifo);
1347 	} else {
1348 		/* xfer_buf is not DWORD aligned */
1349 		for (i = 0; i < dword_count; i++, data_buf++) {
1350 			u32 data = data_buf[0] | data_buf[1] << 8 |
1351 				   data_buf[2] << 16 | data_buf[3] << 24;
1352 			dwc2_writel(data, data_fifo);
1353 		}
1354 	}
1355 
1356 	chan->xfer_count += byte_count;
1357 	chan->xfer_buf += byte_count;
1358 }
1359 
1360 /**
1361  * dwc2_hc_do_ping() - Starts a PING transfer
1362  *
1363  * @hsotg: Programming view of DWC_otg controller
1364  * @chan:  Information needed to initialize the host channel
1365  *
1366  * This function should only be called in Slave mode. The Do Ping bit is set in
1367  * the HCTSIZ register, then the channel is enabled.
1368  */
1369 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1370 			    struct dwc2_host_chan *chan)
1371 {
1372 	u32 hcchar;
1373 	u32 hctsiz;
1374 
1375 	if (dbg_hc(chan))
1376 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1377 			 chan->hc_num);
1378 
1379 	hctsiz = TSIZ_DOPNG;
1380 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1381 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1382 
1383 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1384 	hcchar |= HCCHAR_CHENA;
1385 	hcchar &= ~HCCHAR_CHDIS;
1386 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1387 }
1388 
1389 /**
1390  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1391  * channel and starts the transfer
1392  *
1393  * @hsotg: Programming view of DWC_otg controller
1394  * @chan:  Information needed to initialize the host channel. The xfer_len value
1395  *         may be reduced to accommodate the max widths of the XferSize and
1396  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1397  *         changed to reflect the final xfer_len value.
1398  *
1399  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1400  * the caller must ensure that there is sufficient space in the request queue
1401  * and Tx Data FIFO.
1402  *
1403  * For an OUT transfer in Slave mode, it loads a data packet into the
1404  * appropriate FIFO. If necessary, additional data packets are loaded in the
1405  * Host ISR.
1406  *
1407  * For an IN transfer in Slave mode, a data packet is requested. The data
1408  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1409  * additional data packets are requested in the Host ISR.
1410  *
1411  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1412  * register along with a packet count of 1 and the channel is enabled. This
1413  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1414  * simply set to 0 since no data transfer occurs in this case.
1415  *
1416  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1417  * all the information required to perform the subsequent data transfer. In
1418  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1419  * controller performs the entire PING protocol, then starts the data
1420  * transfer.
1421  */
1422 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1423 				   struct dwc2_host_chan *chan)
1424 {
1425 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1426 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1427 	u32 hcchar;
1428 	u32 hctsiz = 0;
1429 	u16 num_packets;
1430 	u32 ec_mc;
1431 
1432 	if (dbg_hc(chan))
1433 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1434 
1435 	if (chan->do_ping) {
1436 		if (!hsotg->params.host_dma) {
1437 			if (dbg_hc(chan))
1438 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1439 			dwc2_hc_do_ping(hsotg, chan);
1440 			chan->xfer_started = 1;
1441 			return;
1442 		}
1443 
1444 		if (dbg_hc(chan))
1445 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1446 
1447 		hctsiz |= TSIZ_DOPNG;
1448 	}
1449 
1450 	if (chan->do_split) {
1451 		if (dbg_hc(chan))
1452 			dev_vdbg(hsotg->dev, "split\n");
1453 		num_packets = 1;
1454 
1455 		if (chan->complete_split && !chan->ep_is_in)
1456 			/*
1457 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1458 			 * core doesn't expect any data written to the FIFO
1459 			 */
1460 			chan->xfer_len = 0;
1461 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1462 			chan->xfer_len = chan->max_packet;
1463 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1464 			chan->xfer_len = 188;
1465 
1466 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1467 			  TSIZ_XFERSIZE_MASK;
1468 
1469 		/* For split set ec_mc for immediate retries */
1470 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1471 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1472 			ec_mc = 3;
1473 		else
1474 			ec_mc = 1;
1475 	} else {
1476 		if (dbg_hc(chan))
1477 			dev_vdbg(hsotg->dev, "no split\n");
1478 		/*
1479 		 * Ensure that the transfer length and packet count will fit
1480 		 * in the widths allocated for them in the HCTSIZn register
1481 		 */
1482 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1483 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1484 			/*
1485 			 * Make sure the transfer size is no larger than one
1486 			 * (micro)frame's worth of data. (A check was done
1487 			 * when the periodic transfer was accepted to ensure
1488 			 * that a (micro)frame's worth of data can be
1489 			 * programmed into a channel.)
1490 			 */
1491 			u32 max_periodic_len =
1492 				chan->multi_count * chan->max_packet;
1493 
1494 			if (chan->xfer_len > max_periodic_len)
1495 				chan->xfer_len = max_periodic_len;
1496 		} else if (chan->xfer_len > max_hc_xfer_size) {
1497 			/*
1498 			 * Make sure that xfer_len is a multiple of max packet
1499 			 * size
1500 			 */
1501 			chan->xfer_len =
1502 				max_hc_xfer_size - chan->max_packet + 1;
1503 		}
1504 
1505 		if (chan->xfer_len > 0) {
1506 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1507 					chan->max_packet;
1508 			if (num_packets > max_hc_pkt_count) {
1509 				num_packets = max_hc_pkt_count;
1510 				chan->xfer_len = num_packets * chan->max_packet;
1511 			}
1512 		} else {
1513 			/* Need 1 packet for transfer length of 0 */
1514 			num_packets = 1;
1515 		}
1516 
1517 		if (chan->ep_is_in)
1518 			/*
1519 			 * Always program an integral # of max packets for IN
1520 			 * transfers
1521 			 */
1522 			chan->xfer_len = num_packets * chan->max_packet;
1523 
1524 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1525 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1526 			/*
1527 			 * Make sure that the multi_count field matches the
1528 			 * actual transfer length
1529 			 */
1530 			chan->multi_count = num_packets;
1531 
1532 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1533 			dwc2_set_pid_isoc(chan);
1534 
1535 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1536 			  TSIZ_XFERSIZE_MASK;
1537 
1538 		/* The ec_mc gets the multi_count for non-split */
1539 		ec_mc = chan->multi_count;
1540 	}
1541 
1542 	chan->start_pkt_count = num_packets;
1543 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1544 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1545 		  TSIZ_SC_MC_PID_MASK;
1546 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1547 	if (dbg_hc(chan)) {
1548 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1549 			 hctsiz, chan->hc_num);
1550 
1551 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1552 			 chan->hc_num);
1553 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1554 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1555 			 TSIZ_XFERSIZE_SHIFT);
1556 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1557 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1558 			 TSIZ_PKTCNT_SHIFT);
1559 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1560 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1561 			 TSIZ_SC_MC_PID_SHIFT);
1562 	}
1563 
1564 	if (hsotg->params.host_dma) {
1565 		dwc2_writel((u32)chan->xfer_dma,
1566 			    hsotg->regs + HCDMA(chan->hc_num));
1567 		if (dbg_hc(chan))
1568 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1569 				 (unsigned long)chan->xfer_dma, chan->hc_num);
1570 	}
1571 
1572 	/* Start the split */
1573 	if (chan->do_split) {
1574 		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1575 
1576 		hcsplt |= HCSPLT_SPLTENA;
1577 		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1578 	}
1579 
1580 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1581 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1582 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1583 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1584 
1585 	if (hcchar & HCCHAR_CHDIS)
1586 		dev_warn(hsotg->dev,
1587 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1588 			 __func__, chan->hc_num, hcchar);
1589 
1590 	/* Set host channel enable after all other setup is complete */
1591 	hcchar |= HCCHAR_CHENA;
1592 	hcchar &= ~HCCHAR_CHDIS;
1593 
1594 	if (dbg_hc(chan))
1595 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1596 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1597 			 HCCHAR_MULTICNT_SHIFT);
1598 
1599 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1600 	if (dbg_hc(chan))
1601 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1602 			 chan->hc_num);
1603 
1604 	chan->xfer_started = 1;
1605 	chan->requests++;
1606 
1607 	if (!hsotg->params.host_dma &&
1608 	    !chan->ep_is_in && chan->xfer_len > 0)
1609 		/* Load OUT packet into the appropriate Tx FIFO */
1610 		dwc2_hc_write_packet(hsotg, chan);
1611 }
1612 
1613 /**
1614  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1615  * host channel and starts the transfer in Descriptor DMA mode
1616  *
1617  * @hsotg: Programming view of DWC_otg controller
1618  * @chan:  Information needed to initialize the host channel
1619  *
1620  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1621  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1622  * with micro-frame bitmap.
1623  *
1624  * Initializes HCDMA register with descriptor list address and CTD value then
1625  * starts the transfer via enabling the channel.
1626  */
1627 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1628 				 struct dwc2_host_chan *chan)
1629 {
1630 	u32 hcchar;
1631 	u32 hctsiz = 0;
1632 
1633 	if (chan->do_ping)
1634 		hctsiz |= TSIZ_DOPNG;
1635 
1636 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1637 		dwc2_set_pid_isoc(chan);
1638 
1639 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1640 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1641 		  TSIZ_SC_MC_PID_MASK;
1642 
1643 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1644 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1645 
1646 	/* Non-zero only for high-speed interrupt endpoints */
1647 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1648 
1649 	if (dbg_hc(chan)) {
1650 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1651 			 chan->hc_num);
1652 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1653 			 chan->data_pid_start);
1654 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1655 	}
1656 
1657 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1658 
1659 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1660 				   chan->desc_list_sz, DMA_TO_DEVICE);
1661 
1662 	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1663 
1664 	if (dbg_hc(chan))
1665 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1666 			 &chan->desc_list_addr, chan->hc_num);
1667 
1668 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1669 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1670 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1671 		  HCCHAR_MULTICNT_MASK;
1672 
1673 	if (hcchar & HCCHAR_CHDIS)
1674 		dev_warn(hsotg->dev,
1675 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1676 			 __func__, chan->hc_num, hcchar);
1677 
1678 	/* Set host channel enable after all other setup is complete */
1679 	hcchar |= HCCHAR_CHENA;
1680 	hcchar &= ~HCCHAR_CHDIS;
1681 
1682 	if (dbg_hc(chan))
1683 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1684 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1685 			 HCCHAR_MULTICNT_SHIFT);
1686 
1687 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1688 	if (dbg_hc(chan))
1689 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1690 			 chan->hc_num);
1691 
1692 	chan->xfer_started = 1;
1693 	chan->requests++;
1694 }
1695 
1696 /**
1697  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1698  * a previous call to dwc2_hc_start_transfer()
1699  *
1700  * @hsotg: Programming view of DWC_otg controller
1701  * @chan:  Information needed to initialize the host channel
1702  *
1703  * The caller must ensure there is sufficient space in the request queue and Tx
1704  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1705  * the controller acts autonomously to complete transfers programmed to a host
1706  * channel.
1707  *
1708  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1709  * if there is any data remaining to be queued. For an IN transfer, another
1710  * data packet is always requested. For the SETUP phase of a control transfer,
1711  * this function does nothing.
1712  *
1713  * Return: 1 if a new request is queued, 0 if no more requests are required
1714  * for this transfer
1715  */
1716 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1717 				     struct dwc2_host_chan *chan)
1718 {
1719 	if (dbg_hc(chan))
1720 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1721 			 chan->hc_num);
1722 
1723 	if (chan->do_split)
1724 		/* SPLITs always queue just once per channel */
1725 		return 0;
1726 
1727 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1728 		/* SETUPs are queued only once since they can't be NAK'd */
1729 		return 0;
1730 
1731 	if (chan->ep_is_in) {
1732 		/*
1733 		 * Always queue another request for other IN transfers. If
1734 		 * back-to-back INs are issued and NAKs are received for both,
1735 		 * the driver may still be processing the first NAK when the
1736 		 * second NAK is received. When the interrupt handler clears
1737 		 * the NAK interrupt for the first NAK, the second NAK will
1738 		 * not be seen. So we can't depend on the NAK interrupt
1739 		 * handler to requeue a NAK'd request. Instead, IN requests
1740 		 * are issued each time this function is called. When the
1741 		 * transfer completes, the extra requests for the channel will
1742 		 * be flushed.
1743 		 */
1744 		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1745 
1746 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1747 		hcchar |= HCCHAR_CHENA;
1748 		hcchar &= ~HCCHAR_CHDIS;
1749 		if (dbg_hc(chan))
1750 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1751 				 hcchar);
1752 		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1753 		chan->requests++;
1754 		return 1;
1755 	}
1756 
1757 	/* OUT transfers */
1758 
1759 	if (chan->xfer_count < chan->xfer_len) {
1760 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1761 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1762 			u32 hcchar = dwc2_readl(hsotg->regs +
1763 						HCCHAR(chan->hc_num));
1764 
1765 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1766 						   &hcchar);
1767 		}
1768 
1769 		/* Load OUT packet into the appropriate Tx FIFO */
1770 		dwc2_hc_write_packet(hsotg, chan);
1771 		chan->requests++;
1772 		return 1;
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 /*
1779  * =========================================================================
1780  *  HCD
1781  * =========================================================================
1782  */
1783 
1784 /*
1785  * Processes all the URBs in a single list of QHs. Completes them with
1786  * -ETIMEDOUT and frees the QTD.
1787  *
1788  * Must be called with interrupt disabled and spinlock held
1789  */
1790 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1791 				      struct list_head *qh_list)
1792 {
1793 	struct dwc2_qh *qh, *qh_tmp;
1794 	struct dwc2_qtd *qtd, *qtd_tmp;
1795 
1796 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1797 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1798 					 qtd_list_entry) {
1799 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1800 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1801 		}
1802 	}
1803 }
1804 
1805 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1806 			      struct list_head *qh_list)
1807 {
1808 	struct dwc2_qtd *qtd, *qtd_tmp;
1809 	struct dwc2_qh *qh, *qh_tmp;
1810 	unsigned long flags;
1811 
1812 	if (!qh_list->next)
1813 		/* The list hasn't been initialized yet */
1814 		return;
1815 
1816 	spin_lock_irqsave(&hsotg->lock, flags);
1817 
1818 	/* Ensure there are no QTDs or URBs left */
1819 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1820 
1821 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1822 		dwc2_hcd_qh_unlink(hsotg, qh);
1823 
1824 		/* Free each QTD in the QH's QTD list */
1825 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1826 					 qtd_list_entry)
1827 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1828 
1829 		if (qh->channel && qh->channel->qh == qh)
1830 			qh->channel->qh = NULL;
1831 
1832 		spin_unlock_irqrestore(&hsotg->lock, flags);
1833 		dwc2_hcd_qh_free(hsotg, qh);
1834 		spin_lock_irqsave(&hsotg->lock, flags);
1835 	}
1836 
1837 	spin_unlock_irqrestore(&hsotg->lock, flags);
1838 }
1839 
1840 /*
1841  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1842  * and periodic schedules. The QTD associated with each URB is removed from
1843  * the schedule and freed. This function may be called when a disconnect is
1844  * detected or when the HCD is being stopped.
1845  *
1846  * Must be called with interrupt disabled and spinlock held
1847  */
1848 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1849 {
1850 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1851 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1852 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1853 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1854 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1855 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1856 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1857 }
1858 
1859 /**
1860  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1861  *
1862  * @hsotg: Pointer to struct dwc2_hsotg
1863  */
1864 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1865 {
1866 	u32 hprt0;
1867 
1868 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1869 		/*
1870 		 * Reset the port. During a HNP mode switch the reset
1871 		 * needs to occur within 1ms and have a duration of at
1872 		 * least 50ms.
1873 		 */
1874 		hprt0 = dwc2_read_hprt0(hsotg);
1875 		hprt0 |= HPRT0_RST;
1876 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
1877 	}
1878 
1879 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1880 			   msecs_to_jiffies(50));
1881 }
1882 
1883 /* Must be called with interrupt disabled and spinlock held */
1884 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1885 {
1886 	int num_channels = hsotg->params.host_channels;
1887 	struct dwc2_host_chan *channel;
1888 	u32 hcchar;
1889 	int i;
1890 
1891 	if (!hsotg->params.host_dma) {
1892 		/* Flush out any channel requests in slave mode */
1893 		for (i = 0; i < num_channels; i++) {
1894 			channel = hsotg->hc_ptr_array[i];
1895 			if (!list_empty(&channel->hc_list_entry))
1896 				continue;
1897 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1898 			if (hcchar & HCCHAR_CHENA) {
1899 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1900 				hcchar |= HCCHAR_CHDIS;
1901 				dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1902 			}
1903 		}
1904 	}
1905 
1906 	for (i = 0; i < num_channels; i++) {
1907 		channel = hsotg->hc_ptr_array[i];
1908 		if (!list_empty(&channel->hc_list_entry))
1909 			continue;
1910 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1911 		if (hcchar & HCCHAR_CHENA) {
1912 			/* Halt the channel */
1913 			hcchar |= HCCHAR_CHDIS;
1914 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1915 		}
1916 
1917 		dwc2_hc_cleanup(hsotg, channel);
1918 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1919 		/*
1920 		 * Added for Descriptor DMA to prevent channel double cleanup in
1921 		 * release_channel_ddma(), which is called from ep_disable when
1922 		 * device disconnects
1923 		 */
1924 		channel->qh = NULL;
1925 	}
1926 	/* All channels have been freed, mark them available */
1927 	if (hsotg->params.uframe_sched) {
1928 		hsotg->available_host_channels =
1929 			hsotg->params.host_channels;
1930 	} else {
1931 		hsotg->non_periodic_channels = 0;
1932 		hsotg->periodic_channels = 0;
1933 	}
1934 }
1935 
1936 /**
1937  * dwc2_hcd_connect() - Handles connect of the HCD
1938  *
1939  * @hsotg: Pointer to struct dwc2_hsotg
1940  *
1941  * Must be called with interrupt disabled and spinlock held
1942  */
1943 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1944 {
1945 	if (hsotg->lx_state != DWC2_L0)
1946 		usb_hcd_resume_root_hub(hsotg->priv);
1947 
1948 	hsotg->flags.b.port_connect_status_change = 1;
1949 	hsotg->flags.b.port_connect_status = 1;
1950 }
1951 
1952 /**
1953  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1954  *
1955  * @hsotg: Pointer to struct dwc2_hsotg
1956  * @force: If true, we won't try to reconnect even if we see device connected.
1957  *
1958  * Must be called with interrupt disabled and spinlock held
1959  */
1960 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1961 {
1962 	u32 intr;
1963 	u32 hprt0;
1964 
1965 	/* Set status flags for the hub driver */
1966 	hsotg->flags.b.port_connect_status_change = 1;
1967 	hsotg->flags.b.port_connect_status = 0;
1968 
1969 	/*
1970 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1971 	 * interrupt mask and status bits and disabling subsequent host
1972 	 * channel interrupts.
1973 	 */
1974 	intr = dwc2_readl(hsotg->regs + GINTMSK);
1975 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1976 	dwc2_writel(intr, hsotg->regs + GINTMSK);
1977 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1978 	dwc2_writel(intr, hsotg->regs + GINTSTS);
1979 
1980 	/*
1981 	 * Turn off the vbus power only if the core has transitioned to device
1982 	 * mode. If still in host mode, need to keep power on to detect a
1983 	 * reconnection.
1984 	 */
1985 	if (dwc2_is_device_mode(hsotg)) {
1986 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1987 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1988 			dwc2_writel(0, hsotg->regs + HPRT0);
1989 		}
1990 
1991 		dwc2_disable_host_interrupts(hsotg);
1992 	}
1993 
1994 	/* Respond with an error status to all URBs in the schedule */
1995 	dwc2_kill_all_urbs(hsotg);
1996 
1997 	if (dwc2_is_host_mode(hsotg))
1998 		/* Clean up any host channels that were in use */
1999 		dwc2_hcd_cleanup_channels(hsotg);
2000 
2001 	dwc2_host_disconnect(hsotg);
2002 
2003 	/*
2004 	 * Add an extra check here to see if we're actually connected but
2005 	 * we don't have a detection interrupt pending.  This can happen if:
2006 	 *   1. hardware sees connect
2007 	 *   2. hardware sees disconnect
2008 	 *   3. hardware sees connect
2009 	 *   4. dwc2_port_intr() - clears connect interrupt
2010 	 *   5. dwc2_handle_common_intr() - calls here
2011 	 *
2012 	 * Without the extra check here we will end calling disconnect
2013 	 * and won't get any future interrupts to handle the connect.
2014 	 */
2015 	if (!force) {
2016 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2017 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
2018 			dwc2_hcd_connect(hsotg);
2019 	}
2020 }
2021 
2022 /**
2023  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2024  *
2025  * @hsotg: Pointer to struct dwc2_hsotg
2026  */
2027 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2028 {
2029 	if (hsotg->bus_suspended) {
2030 		hsotg->flags.b.port_suspend_change = 1;
2031 		usb_hcd_resume_root_hub(hsotg->priv);
2032 	}
2033 
2034 	if (hsotg->lx_state == DWC2_L1)
2035 		hsotg->flags.b.port_l1_change = 1;
2036 }
2037 
2038 /**
2039  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2040  *
2041  * @hsotg: Pointer to struct dwc2_hsotg
2042  *
2043  * Must be called with interrupt disabled and spinlock held
2044  */
2045 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2046 {
2047 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2048 
2049 	/*
2050 	 * The root hub should be disconnected before this function is called.
2051 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2052 	 * and the QH lists (via ..._hcd_endpoint_disable).
2053 	 */
2054 
2055 	/* Turn off all host-specific interrupts */
2056 	dwc2_disable_host_interrupts(hsotg);
2057 
2058 	/* Turn off the vbus power */
2059 	dev_dbg(hsotg->dev, "PortPower off\n");
2060 	dwc2_writel(0, hsotg->regs + HPRT0);
2061 }
2062 
2063 /* Caller must hold driver lock */
2064 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2065 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2066 				struct dwc2_qtd *qtd)
2067 {
2068 	u32 intr_mask;
2069 	int retval;
2070 	int dev_speed;
2071 
2072 	if (!hsotg->flags.b.port_connect_status) {
2073 		/* No longer connected */
2074 		dev_err(hsotg->dev, "Not connected\n");
2075 		return -ENODEV;
2076 	}
2077 
2078 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2079 
2080 	/* Some configurations cannot support LS traffic on a FS root port */
2081 	if ((dev_speed == USB_SPEED_LOW) &&
2082 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2083 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2084 		u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2085 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2086 
2087 		if (prtspd == HPRT0_SPD_FULL_SPEED)
2088 			return -ENODEV;
2089 	}
2090 
2091 	if (!qtd)
2092 		return -EINVAL;
2093 
2094 	dwc2_hcd_qtd_init(qtd, urb);
2095 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2096 	if (retval) {
2097 		dev_err(hsotg->dev,
2098 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2099 			retval);
2100 		return retval;
2101 	}
2102 
2103 	intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2104 	if (!(intr_mask & GINTSTS_SOF)) {
2105 		enum dwc2_transaction_type tr_type;
2106 
2107 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2108 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2109 			/*
2110 			 * Do not schedule SG transactions until qtd has
2111 			 * URB_GIVEBACK_ASAP set
2112 			 */
2113 			return 0;
2114 
2115 		tr_type = dwc2_hcd_select_transactions(hsotg);
2116 		if (tr_type != DWC2_TRANSACTION_NONE)
2117 			dwc2_hcd_queue_transactions(hsotg, tr_type);
2118 	}
2119 
2120 	return 0;
2121 }
2122 
2123 /* Must be called with interrupt disabled and spinlock held */
2124 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2125 				struct dwc2_hcd_urb *urb)
2126 {
2127 	struct dwc2_qh *qh;
2128 	struct dwc2_qtd *urb_qtd;
2129 
2130 	urb_qtd = urb->qtd;
2131 	if (!urb_qtd) {
2132 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2133 		return -EINVAL;
2134 	}
2135 
2136 	qh = urb_qtd->qh;
2137 	if (!qh) {
2138 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2139 		return -EINVAL;
2140 	}
2141 
2142 	urb->priv = NULL;
2143 
2144 	if (urb_qtd->in_process && qh->channel) {
2145 		dwc2_dump_channel_info(hsotg, qh->channel);
2146 
2147 		/* The QTD is in process (it has been assigned to a channel) */
2148 		if (hsotg->flags.b.port_connect_status)
2149 			/*
2150 			 * If still connected (i.e. in host mode), halt the
2151 			 * channel so it can be used for other transfers. If
2152 			 * no longer connected, the host registers can't be
2153 			 * written to halt the channel since the core is in
2154 			 * device mode.
2155 			 */
2156 			dwc2_hc_halt(hsotg, qh->channel,
2157 				     DWC2_HC_XFER_URB_DEQUEUE);
2158 	}
2159 
2160 	/*
2161 	 * Free the QTD and clean up the associated QH. Leave the QH in the
2162 	 * schedule if it has any remaining QTDs.
2163 	 */
2164 	if (!hsotg->params.dma_desc_enable) {
2165 		u8 in_process = urb_qtd->in_process;
2166 
2167 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2168 		if (in_process) {
2169 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2170 			qh->channel = NULL;
2171 		} else if (list_empty(&qh->qtd_list)) {
2172 			dwc2_hcd_qh_unlink(hsotg, qh);
2173 		}
2174 	} else {
2175 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2176 	}
2177 
2178 	return 0;
2179 }
2180 
2181 /* Must NOT be called with interrupt disabled or spinlock held */
2182 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2183 				     struct usb_host_endpoint *ep, int retry)
2184 {
2185 	struct dwc2_qtd *qtd, *qtd_tmp;
2186 	struct dwc2_qh *qh;
2187 	unsigned long flags;
2188 	int rc;
2189 
2190 	spin_lock_irqsave(&hsotg->lock, flags);
2191 
2192 	qh = ep->hcpriv;
2193 	if (!qh) {
2194 		rc = -EINVAL;
2195 		goto err;
2196 	}
2197 
2198 	while (!list_empty(&qh->qtd_list) && retry--) {
2199 		if (retry == 0) {
2200 			dev_err(hsotg->dev,
2201 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2202 			rc = -EBUSY;
2203 			goto err;
2204 		}
2205 
2206 		spin_unlock_irqrestore(&hsotg->lock, flags);
2207 		msleep(20);
2208 		spin_lock_irqsave(&hsotg->lock, flags);
2209 		qh = ep->hcpriv;
2210 		if (!qh) {
2211 			rc = -EINVAL;
2212 			goto err;
2213 		}
2214 	}
2215 
2216 	dwc2_hcd_qh_unlink(hsotg, qh);
2217 
2218 	/* Free each QTD in the QH's QTD list */
2219 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2220 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2221 
2222 	ep->hcpriv = NULL;
2223 
2224 	if (qh->channel && qh->channel->qh == qh)
2225 		qh->channel->qh = NULL;
2226 
2227 	spin_unlock_irqrestore(&hsotg->lock, flags);
2228 
2229 	dwc2_hcd_qh_free(hsotg, qh);
2230 
2231 	return 0;
2232 
2233 err:
2234 	ep->hcpriv = NULL;
2235 	spin_unlock_irqrestore(&hsotg->lock, flags);
2236 
2237 	return rc;
2238 }
2239 
2240 /* Must be called with interrupt disabled and spinlock held */
2241 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2242 				   struct usb_host_endpoint *ep)
2243 {
2244 	struct dwc2_qh *qh = ep->hcpriv;
2245 
2246 	if (!qh)
2247 		return -EINVAL;
2248 
2249 	qh->data_toggle = DWC2_HC_PID_DATA0;
2250 
2251 	return 0;
2252 }
2253 
2254 /**
2255  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2256  * prepares the core for device mode or host mode operation
2257  *
2258  * @hsotg:         Programming view of the DWC_otg controller
2259  * @initial_setup: If true then this is the first init for this instance.
2260  */
2261 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2262 {
2263 	u32 usbcfg, otgctl;
2264 	int retval;
2265 
2266 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2267 
2268 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2269 
2270 	/* Set ULPI External VBUS bit if needed */
2271 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2272 	if (hsotg->params.phy_ulpi_ext_vbus)
2273 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2274 
2275 	/* Set external TS Dline pulsing bit if needed */
2276 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2277 	if (hsotg->params.ts_dline)
2278 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2279 
2280 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2281 
2282 	/*
2283 	 * Reset the Controller
2284 	 *
2285 	 * We only need to reset the controller if this is a re-init.
2286 	 * For the first init we know for sure that earlier code reset us (it
2287 	 * needed to in order to properly detect various parameters).
2288 	 */
2289 	if (!initial_setup) {
2290 		retval = dwc2_core_reset(hsotg, false);
2291 		if (retval) {
2292 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2293 				__func__);
2294 			return retval;
2295 		}
2296 	}
2297 
2298 	/*
2299 	 * This needs to happen in FS mode before any other programming occurs
2300 	 */
2301 	retval = dwc2_phy_init(hsotg, initial_setup);
2302 	if (retval)
2303 		return retval;
2304 
2305 	/* Program the GAHBCFG Register */
2306 	retval = dwc2_gahbcfg_init(hsotg);
2307 	if (retval)
2308 		return retval;
2309 
2310 	/* Program the GUSBCFG register */
2311 	dwc2_gusbcfg_init(hsotg);
2312 
2313 	/* Program the GOTGCTL register */
2314 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2315 	otgctl &= ~GOTGCTL_OTGVER;
2316 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2317 
2318 	/* Clear the SRP success bit for FS-I2c */
2319 	hsotg->srp_success = 0;
2320 
2321 	/* Enable common interrupts */
2322 	dwc2_enable_common_interrupts(hsotg);
2323 
2324 	/*
2325 	 * Do device or host initialization based on mode during PCD and
2326 	 * HCD initialization
2327 	 */
2328 	if (dwc2_is_host_mode(hsotg)) {
2329 		dev_dbg(hsotg->dev, "Host Mode\n");
2330 		hsotg->op_state = OTG_STATE_A_HOST;
2331 	} else {
2332 		dev_dbg(hsotg->dev, "Device Mode\n");
2333 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2334 	}
2335 
2336 	return 0;
2337 }
2338 
2339 /**
2340  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2341  * Host mode
2342  *
2343  * @hsotg: Programming view of DWC_otg controller
2344  *
2345  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2346  * request queues. Host channels are reset to ensure that they are ready for
2347  * performing transfers.
2348  */
2349 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2350 {
2351 	u32 hcfg, hfir, otgctl, usbcfg;
2352 
2353 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2354 
2355 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2356 	 * The number of PHY clocks that the application programs in
2357 	 * this field is added to the high/full speed interpacket timeout
2358 	 * duration in the core to account for any additional delays
2359 	 * introduced by the PHY. This can be required, because the delay
2360 	 * introduced by the PHY in generating the linestate condition
2361 	 * can vary from one PHY to another.
2362 	 */
2363 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2364 	usbcfg |= GUSBCFG_TOUTCAL(7);
2365 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2366 
2367 	/* Restart the Phy Clock */
2368 	dwc2_writel(0, hsotg->regs + PCGCTL);
2369 
2370 	/* Initialize Host Configuration Register */
2371 	dwc2_init_fs_ls_pclk_sel(hsotg);
2372 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2373 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2374 		hcfg = dwc2_readl(hsotg->regs + HCFG);
2375 		hcfg |= HCFG_FSLSSUPP;
2376 		dwc2_writel(hcfg, hsotg->regs + HCFG);
2377 	}
2378 
2379 	/*
2380 	 * This bit allows dynamic reloading of the HFIR register during
2381 	 * runtime. This bit needs to be programmed during initial configuration
2382 	 * and its value must not be changed during runtime.
2383 	 */
2384 	if (hsotg->params.reload_ctl) {
2385 		hfir = dwc2_readl(hsotg->regs + HFIR);
2386 		hfir |= HFIR_RLDCTRL;
2387 		dwc2_writel(hfir, hsotg->regs + HFIR);
2388 	}
2389 
2390 	if (hsotg->params.dma_desc_enable) {
2391 		u32 op_mode = hsotg->hw_params.op_mode;
2392 
2393 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2394 		    !hsotg->hw_params.dma_desc_enable ||
2395 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2396 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2397 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2398 			dev_err(hsotg->dev,
2399 				"Hardware does not support descriptor DMA mode -\n");
2400 			dev_err(hsotg->dev,
2401 				"falling back to buffer DMA mode.\n");
2402 			hsotg->params.dma_desc_enable = false;
2403 		} else {
2404 			hcfg = dwc2_readl(hsotg->regs + HCFG);
2405 			hcfg |= HCFG_DESCDMA;
2406 			dwc2_writel(hcfg, hsotg->regs + HCFG);
2407 		}
2408 	}
2409 
2410 	/* Configure data FIFO sizes */
2411 	dwc2_config_fifos(hsotg);
2412 
2413 	/* TODO - check this */
2414 	/* Clear Host Set HNP Enable in the OTG Control Register */
2415 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2416 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2417 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2418 
2419 	/* Make sure the FIFOs are flushed */
2420 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2421 	dwc2_flush_rx_fifo(hsotg);
2422 
2423 	/* Clear Host Set HNP Enable in the OTG Control Register */
2424 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2425 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2426 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2427 
2428 	if (!hsotg->params.dma_desc_enable) {
2429 		int num_channels, i;
2430 		u32 hcchar;
2431 
2432 		/* Flush out any leftover queued requests */
2433 		num_channels = hsotg->params.host_channels;
2434 		for (i = 0; i < num_channels; i++) {
2435 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2436 			hcchar &= ~HCCHAR_CHENA;
2437 			hcchar |= HCCHAR_CHDIS;
2438 			hcchar &= ~HCCHAR_EPDIR;
2439 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2440 		}
2441 
2442 		/* Halt all channels to put them into a known state */
2443 		for (i = 0; i < num_channels; i++) {
2444 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2445 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2446 			hcchar &= ~HCCHAR_EPDIR;
2447 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2448 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2449 				__func__, i);
2450 
2451 			if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2452 						      HCCHAR_CHENA, 1000)) {
2453 				dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n",
2454 					 i);
2455 			}
2456 		}
2457 	}
2458 
2459 	/* Enable ACG feature in host mode, if supported */
2460 	dwc2_enable_acg(hsotg);
2461 
2462 	/* Turn on the vbus power */
2463 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2464 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2465 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2466 
2467 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2468 			!!(hprt0 & HPRT0_PWR));
2469 		if (!(hprt0 & HPRT0_PWR)) {
2470 			hprt0 |= HPRT0_PWR;
2471 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
2472 		}
2473 	}
2474 
2475 	dwc2_enable_host_interrupts(hsotg);
2476 }
2477 
2478 /*
2479  * Initializes dynamic portions of the DWC_otg HCD state
2480  *
2481  * Must be called with interrupt disabled and spinlock held
2482  */
2483 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2484 {
2485 	struct dwc2_host_chan *chan, *chan_tmp;
2486 	int num_channels;
2487 	int i;
2488 
2489 	hsotg->flags.d32 = 0;
2490 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2491 
2492 	if (hsotg->params.uframe_sched) {
2493 		hsotg->available_host_channels =
2494 			hsotg->params.host_channels;
2495 	} else {
2496 		hsotg->non_periodic_channels = 0;
2497 		hsotg->periodic_channels = 0;
2498 	}
2499 
2500 	/*
2501 	 * Put all channels in the free channel list and clean up channel
2502 	 * states
2503 	 */
2504 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2505 				 hc_list_entry)
2506 		list_del_init(&chan->hc_list_entry);
2507 
2508 	num_channels = hsotg->params.host_channels;
2509 	for (i = 0; i < num_channels; i++) {
2510 		chan = hsotg->hc_ptr_array[i];
2511 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2512 		dwc2_hc_cleanup(hsotg, chan);
2513 	}
2514 
2515 	/* Initialize the DWC core for host mode operation */
2516 	dwc2_core_host_init(hsotg);
2517 }
2518 
2519 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2520 			       struct dwc2_host_chan *chan,
2521 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2522 {
2523 	int hub_addr, hub_port;
2524 
2525 	chan->do_split = 1;
2526 	chan->xact_pos = qtd->isoc_split_pos;
2527 	chan->complete_split = qtd->complete_split;
2528 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2529 	chan->hub_addr = (u8)hub_addr;
2530 	chan->hub_port = (u8)hub_port;
2531 }
2532 
2533 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2534 			      struct dwc2_host_chan *chan,
2535 			      struct dwc2_qtd *qtd)
2536 {
2537 	struct dwc2_hcd_urb *urb = qtd->urb;
2538 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2539 
2540 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2541 	case USB_ENDPOINT_XFER_CONTROL:
2542 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2543 
2544 		switch (qtd->control_phase) {
2545 		case DWC2_CONTROL_SETUP:
2546 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2547 			chan->do_ping = 0;
2548 			chan->ep_is_in = 0;
2549 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2550 			if (hsotg->params.host_dma)
2551 				chan->xfer_dma = urb->setup_dma;
2552 			else
2553 				chan->xfer_buf = urb->setup_packet;
2554 			chan->xfer_len = 8;
2555 			break;
2556 
2557 		case DWC2_CONTROL_DATA:
2558 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2559 			chan->data_pid_start = qtd->data_toggle;
2560 			break;
2561 
2562 		case DWC2_CONTROL_STATUS:
2563 			/*
2564 			 * Direction is opposite of data direction or IN if no
2565 			 * data
2566 			 */
2567 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2568 			if (urb->length == 0)
2569 				chan->ep_is_in = 1;
2570 			else
2571 				chan->ep_is_in =
2572 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2573 			if (chan->ep_is_in)
2574 				chan->do_ping = 0;
2575 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2576 			chan->xfer_len = 0;
2577 			if (hsotg->params.host_dma)
2578 				chan->xfer_dma = hsotg->status_buf_dma;
2579 			else
2580 				chan->xfer_buf = hsotg->status_buf;
2581 			break;
2582 		}
2583 		break;
2584 
2585 	case USB_ENDPOINT_XFER_BULK:
2586 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2587 		break;
2588 
2589 	case USB_ENDPOINT_XFER_INT:
2590 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2591 		break;
2592 
2593 	case USB_ENDPOINT_XFER_ISOC:
2594 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2595 		if (hsotg->params.dma_desc_enable)
2596 			break;
2597 
2598 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2599 		frame_desc->status = 0;
2600 
2601 		if (hsotg->params.host_dma) {
2602 			chan->xfer_dma = urb->dma;
2603 			chan->xfer_dma += frame_desc->offset +
2604 					qtd->isoc_split_offset;
2605 		} else {
2606 			chan->xfer_buf = urb->buf;
2607 			chan->xfer_buf += frame_desc->offset +
2608 					qtd->isoc_split_offset;
2609 		}
2610 
2611 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2612 
2613 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2614 			if (chan->xfer_len <= 188)
2615 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2616 			else
2617 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2618 		}
2619 		break;
2620 	}
2621 }
2622 
2623 #define DWC2_USB_DMA_ALIGN 4
2624 
2625 struct dma_aligned_buffer {
2626 	void *kmalloc_ptr;
2627 	void *old_xfer_buffer;
2628 	u8 data[0];
2629 };
2630 
2631 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2632 {
2633 	struct dma_aligned_buffer *temp;
2634 
2635 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2636 		return;
2637 
2638 	temp = container_of(urb->transfer_buffer,
2639 			    struct dma_aligned_buffer, data);
2640 
2641 	if (usb_urb_dir_in(urb))
2642 		memcpy(temp->old_xfer_buffer, temp->data,
2643 		       urb->transfer_buffer_length);
2644 	urb->transfer_buffer = temp->old_xfer_buffer;
2645 	kfree(temp->kmalloc_ptr);
2646 
2647 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2648 }
2649 
2650 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2651 {
2652 	struct dma_aligned_buffer *temp, *kmalloc_ptr;
2653 	size_t kmalloc_size;
2654 
2655 	if (urb->num_sgs || urb->sg ||
2656 	    urb->transfer_buffer_length == 0 ||
2657 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2658 		return 0;
2659 
2660 	/* Allocate a buffer with enough padding for alignment */
2661 	kmalloc_size = urb->transfer_buffer_length +
2662 		sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2663 
2664 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2665 	if (!kmalloc_ptr)
2666 		return -ENOMEM;
2667 
2668 	/* Position our struct dma_aligned_buffer such that data is aligned */
2669 	temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2670 	temp->kmalloc_ptr = kmalloc_ptr;
2671 	temp->old_xfer_buffer = urb->transfer_buffer;
2672 	if (usb_urb_dir_out(urb))
2673 		memcpy(temp->data, urb->transfer_buffer,
2674 		       urb->transfer_buffer_length);
2675 	urb->transfer_buffer = temp->data;
2676 
2677 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2678 
2679 	return 0;
2680 }
2681 
2682 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2683 				gfp_t mem_flags)
2684 {
2685 	int ret;
2686 
2687 	/* We assume setup_dma is always aligned; warn if not */
2688 	WARN_ON_ONCE(urb->setup_dma &&
2689 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2690 
2691 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2692 	if (ret)
2693 		return ret;
2694 
2695 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2696 	if (ret)
2697 		dwc2_free_dma_aligned_buffer(urb);
2698 
2699 	return ret;
2700 }
2701 
2702 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2703 {
2704 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2705 	dwc2_free_dma_aligned_buffer(urb);
2706 }
2707 
2708 /**
2709  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2710  * channel and initializes the host channel to perform the transactions. The
2711  * host channel is removed from the free list.
2712  *
2713  * @hsotg: The HCD state structure
2714  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2715  *         to a free host channel
2716  */
2717 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2718 {
2719 	struct dwc2_host_chan *chan;
2720 	struct dwc2_hcd_urb *urb;
2721 	struct dwc2_qtd *qtd;
2722 
2723 	if (dbg_qh(qh))
2724 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2725 
2726 	if (list_empty(&qh->qtd_list)) {
2727 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2728 		return -ENOMEM;
2729 	}
2730 
2731 	if (list_empty(&hsotg->free_hc_list)) {
2732 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2733 		return -ENOMEM;
2734 	}
2735 
2736 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2737 				hc_list_entry);
2738 
2739 	/* Remove host channel from free list */
2740 	list_del_init(&chan->hc_list_entry);
2741 
2742 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2743 	urb = qtd->urb;
2744 	qh->channel = chan;
2745 	qtd->in_process = 1;
2746 
2747 	/*
2748 	 * Use usb_pipedevice to determine device address. This address is
2749 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2750 	 */
2751 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2752 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2753 	chan->speed = qh->dev_speed;
2754 	chan->max_packet = dwc2_max_packet(qh->maxp);
2755 
2756 	chan->xfer_started = 0;
2757 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2758 	chan->error_state = (qtd->error_count > 0);
2759 	chan->halt_on_queue = 0;
2760 	chan->halt_pending = 0;
2761 	chan->requests = 0;
2762 
2763 	/*
2764 	 * The following values may be modified in the transfer type section
2765 	 * below. The xfer_len value may be reduced when the transfer is
2766 	 * started to accommodate the max widths of the XferSize and PktCnt
2767 	 * fields in the HCTSIZn register.
2768 	 */
2769 
2770 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2771 	if (chan->ep_is_in)
2772 		chan->do_ping = 0;
2773 	else
2774 		chan->do_ping = qh->ping_state;
2775 
2776 	chan->data_pid_start = qh->data_toggle;
2777 	chan->multi_count = 1;
2778 
2779 	if (urb->actual_length > urb->length &&
2780 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2781 		urb->actual_length = urb->length;
2782 
2783 	if (hsotg->params.host_dma)
2784 		chan->xfer_dma = urb->dma + urb->actual_length;
2785 	else
2786 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2787 
2788 	chan->xfer_len = urb->length - urb->actual_length;
2789 	chan->xfer_count = 0;
2790 
2791 	/* Set the split attributes if required */
2792 	if (qh->do_split)
2793 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2794 	else
2795 		chan->do_split = 0;
2796 
2797 	/* Set the transfer attributes */
2798 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2799 
2800 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2801 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2802 		/*
2803 		 * This value may be modified when the transfer is started
2804 		 * to reflect the actual transfer length
2805 		 */
2806 		chan->multi_count = dwc2_hb_mult(qh->maxp);
2807 
2808 	if (hsotg->params.dma_desc_enable) {
2809 		chan->desc_list_addr = qh->desc_list_dma;
2810 		chan->desc_list_sz = qh->desc_list_sz;
2811 	}
2812 
2813 	dwc2_hc_init(hsotg, chan);
2814 	chan->qh = qh;
2815 
2816 	return 0;
2817 }
2818 
2819 /**
2820  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2821  * schedule and assigns them to available host channels. Called from the HCD
2822  * interrupt handler functions.
2823  *
2824  * @hsotg: The HCD state structure
2825  *
2826  * Return: The types of new transactions that were assigned to host channels
2827  */
2828 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2829 		struct dwc2_hsotg *hsotg)
2830 {
2831 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2832 	struct list_head *qh_ptr;
2833 	struct dwc2_qh *qh;
2834 	int num_channels;
2835 
2836 #ifdef DWC2_DEBUG_SOF
2837 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2838 #endif
2839 
2840 	/* Process entries in the periodic ready list */
2841 	qh_ptr = hsotg->periodic_sched_ready.next;
2842 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2843 		if (list_empty(&hsotg->free_hc_list))
2844 			break;
2845 		if (hsotg->params.uframe_sched) {
2846 			if (hsotg->available_host_channels <= 1)
2847 				break;
2848 			hsotg->available_host_channels--;
2849 		}
2850 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2851 		if (dwc2_assign_and_init_hc(hsotg, qh))
2852 			break;
2853 
2854 		/*
2855 		 * Move the QH from the periodic ready schedule to the
2856 		 * periodic assigned schedule
2857 		 */
2858 		qh_ptr = qh_ptr->next;
2859 		list_move_tail(&qh->qh_list_entry,
2860 			       &hsotg->periodic_sched_assigned);
2861 		ret_val = DWC2_TRANSACTION_PERIODIC;
2862 	}
2863 
2864 	/*
2865 	 * Process entries in the inactive portion of the non-periodic
2866 	 * schedule. Some free host channels may not be used if they are
2867 	 * reserved for periodic transfers.
2868 	 */
2869 	num_channels = hsotg->params.host_channels;
2870 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2871 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2872 		if (!hsotg->params.uframe_sched &&
2873 		    hsotg->non_periodic_channels >= num_channels -
2874 						hsotg->periodic_channels)
2875 			break;
2876 		if (list_empty(&hsotg->free_hc_list))
2877 			break;
2878 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2879 		if (hsotg->params.uframe_sched) {
2880 			if (hsotg->available_host_channels < 1)
2881 				break;
2882 			hsotg->available_host_channels--;
2883 		}
2884 
2885 		if (dwc2_assign_and_init_hc(hsotg, qh))
2886 			break;
2887 
2888 		/*
2889 		 * Move the QH from the non-periodic inactive schedule to the
2890 		 * non-periodic active schedule
2891 		 */
2892 		qh_ptr = qh_ptr->next;
2893 		list_move_tail(&qh->qh_list_entry,
2894 			       &hsotg->non_periodic_sched_active);
2895 
2896 		if (ret_val == DWC2_TRANSACTION_NONE)
2897 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2898 		else
2899 			ret_val = DWC2_TRANSACTION_ALL;
2900 
2901 		if (!hsotg->params.uframe_sched)
2902 			hsotg->non_periodic_channels++;
2903 	}
2904 
2905 	return ret_val;
2906 }
2907 
2908 /**
2909  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2910  * a host channel associated with either a periodic or non-periodic transfer
2911  *
2912  * @hsotg: The HCD state structure
2913  * @chan:  Host channel descriptor associated with either a periodic or
2914  *         non-periodic transfer
2915  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2916  *                     for periodic transfers or the non-periodic Tx FIFO
2917  *                     for non-periodic transfers
2918  *
2919  * Return: 1 if a request is queued and more requests may be needed to
2920  * complete the transfer, 0 if no more requests are required for this
2921  * transfer, -1 if there is insufficient space in the Tx FIFO
2922  *
2923  * This function assumes that there is space available in the appropriate
2924  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2925  * it checks whether space is available in the appropriate Tx FIFO.
2926  *
2927  * Must be called with interrupt disabled and spinlock held
2928  */
2929 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2930 				  struct dwc2_host_chan *chan,
2931 				  u16 fifo_dwords_avail)
2932 {
2933 	int retval = 0;
2934 
2935 	if (chan->do_split)
2936 		/* Put ourselves on the list to keep order straight */
2937 		list_move_tail(&chan->split_order_list_entry,
2938 			       &hsotg->split_order);
2939 
2940 	if (hsotg->params.host_dma) {
2941 		if (hsotg->params.dma_desc_enable) {
2942 			if (!chan->xfer_started ||
2943 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2944 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2945 				chan->qh->ping_state = 0;
2946 			}
2947 		} else if (!chan->xfer_started) {
2948 			dwc2_hc_start_transfer(hsotg, chan);
2949 			chan->qh->ping_state = 0;
2950 		}
2951 	} else if (chan->halt_pending) {
2952 		/* Don't queue a request if the channel has been halted */
2953 	} else if (chan->halt_on_queue) {
2954 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2955 	} else if (chan->do_ping) {
2956 		if (!chan->xfer_started)
2957 			dwc2_hc_start_transfer(hsotg, chan);
2958 	} else if (!chan->ep_is_in ||
2959 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2960 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2961 			if (!chan->xfer_started) {
2962 				dwc2_hc_start_transfer(hsotg, chan);
2963 				retval = 1;
2964 			} else {
2965 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2966 			}
2967 		} else {
2968 			retval = -1;
2969 		}
2970 	} else {
2971 		if (!chan->xfer_started) {
2972 			dwc2_hc_start_transfer(hsotg, chan);
2973 			retval = 1;
2974 		} else {
2975 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2976 		}
2977 	}
2978 
2979 	return retval;
2980 }
2981 
2982 /*
2983  * Processes periodic channels for the next frame and queues transactions for
2984  * these channels to the DWC_otg controller. After queueing transactions, the
2985  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2986  * to queue as Periodic Tx FIFO or request queue space becomes available.
2987  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2988  *
2989  * Must be called with interrupt disabled and spinlock held
2990  */
2991 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2992 {
2993 	struct list_head *qh_ptr;
2994 	struct dwc2_qh *qh;
2995 	u32 tx_status;
2996 	u32 fspcavail;
2997 	u32 gintmsk;
2998 	int status;
2999 	bool no_queue_space = false;
3000 	bool no_fifo_space = false;
3001 	u32 qspcavail;
3002 
3003 	/* If empty list then just adjust interrupt enables */
3004 	if (list_empty(&hsotg->periodic_sched_assigned))
3005 		goto exit;
3006 
3007 	if (dbg_perio())
3008 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
3009 
3010 	tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3011 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3012 		    TXSTS_QSPCAVAIL_SHIFT;
3013 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3014 		    TXSTS_FSPCAVAIL_SHIFT;
3015 
3016 	if (dbg_perio()) {
3017 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
3018 			 qspcavail);
3019 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
3020 			 fspcavail);
3021 	}
3022 
3023 	qh_ptr = hsotg->periodic_sched_assigned.next;
3024 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
3025 		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3026 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3027 			    TXSTS_QSPCAVAIL_SHIFT;
3028 		if (qspcavail == 0) {
3029 			no_queue_space = true;
3030 			break;
3031 		}
3032 
3033 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
3034 		if (!qh->channel) {
3035 			qh_ptr = qh_ptr->next;
3036 			continue;
3037 		}
3038 
3039 		/* Make sure EP's TT buffer is clean before queueing qtds */
3040 		if (qh->tt_buffer_dirty) {
3041 			qh_ptr = qh_ptr->next;
3042 			continue;
3043 		}
3044 
3045 		/*
3046 		 * Set a flag if we're queuing high-bandwidth in slave mode.
3047 		 * The flag prevents any halts to get into the request queue in
3048 		 * the middle of multiple high-bandwidth packets getting queued.
3049 		 */
3050 		if (!hsotg->params.host_dma &&
3051 		    qh->channel->multi_count > 1)
3052 			hsotg->queuing_high_bandwidth = 1;
3053 
3054 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3055 			    TXSTS_FSPCAVAIL_SHIFT;
3056 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3057 		if (status < 0) {
3058 			no_fifo_space = true;
3059 			break;
3060 		}
3061 
3062 		/*
3063 		 * In Slave mode, stay on the current transfer until there is
3064 		 * nothing more to do or the high-bandwidth request count is
3065 		 * reached. In DMA mode, only need to queue one request. The
3066 		 * controller automatically handles multiple packets for
3067 		 * high-bandwidth transfers.
3068 		 */
3069 		if (hsotg->params.host_dma || status == 0 ||
3070 		    qh->channel->requests == qh->channel->multi_count) {
3071 			qh_ptr = qh_ptr->next;
3072 			/*
3073 			 * Move the QH from the periodic assigned schedule to
3074 			 * the periodic queued schedule
3075 			 */
3076 			list_move_tail(&qh->qh_list_entry,
3077 				       &hsotg->periodic_sched_queued);
3078 
3079 			/* done queuing high bandwidth */
3080 			hsotg->queuing_high_bandwidth = 0;
3081 		}
3082 	}
3083 
3084 exit:
3085 	if (no_queue_space || no_fifo_space ||
3086 	    (!hsotg->params.host_dma &&
3087 	     !list_empty(&hsotg->periodic_sched_assigned))) {
3088 		/*
3089 		 * May need to queue more transactions as the request
3090 		 * queue or Tx FIFO empties. Enable the periodic Tx
3091 		 * FIFO empty interrupt. (Always use the half-empty
3092 		 * level to ensure that new requests are loaded as
3093 		 * soon as possible.)
3094 		 */
3095 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3096 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3097 			gintmsk |= GINTSTS_PTXFEMP;
3098 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3099 		}
3100 	} else {
3101 		/*
3102 		 * Disable the Tx FIFO empty interrupt since there are
3103 		 * no more transactions that need to be queued right
3104 		 * now. This function is called from interrupt
3105 		 * handlers to queue more transactions as transfer
3106 		 * states change.
3107 		 */
3108 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3109 		if (gintmsk & GINTSTS_PTXFEMP) {
3110 			gintmsk &= ~GINTSTS_PTXFEMP;
3111 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3112 		}
3113 	}
3114 }
3115 
3116 /*
3117  * Processes active non-periodic channels and queues transactions for these
3118  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3119  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3120  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3121  * FIFO Empty interrupt is disabled.
3122  *
3123  * Must be called with interrupt disabled and spinlock held
3124  */
3125 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3126 {
3127 	struct list_head *orig_qh_ptr;
3128 	struct dwc2_qh *qh;
3129 	u32 tx_status;
3130 	u32 qspcavail;
3131 	u32 fspcavail;
3132 	u32 gintmsk;
3133 	int status;
3134 	int no_queue_space = 0;
3135 	int no_fifo_space = 0;
3136 	int more_to_do = 0;
3137 
3138 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3139 
3140 	tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3141 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3142 		    TXSTS_QSPCAVAIL_SHIFT;
3143 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3144 		    TXSTS_FSPCAVAIL_SHIFT;
3145 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3146 		 qspcavail);
3147 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3148 		 fspcavail);
3149 
3150 	/*
3151 	 * Keep track of the starting point. Skip over the start-of-list
3152 	 * entry.
3153 	 */
3154 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3155 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3156 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3157 
3158 	/*
3159 	 * Process once through the active list or until no more space is
3160 	 * available in the request queue or the Tx FIFO
3161 	 */
3162 	do {
3163 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3164 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3165 			    TXSTS_QSPCAVAIL_SHIFT;
3166 		if (!hsotg->params.host_dma && qspcavail == 0) {
3167 			no_queue_space = 1;
3168 			break;
3169 		}
3170 
3171 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3172 				qh_list_entry);
3173 		if (!qh->channel)
3174 			goto next;
3175 
3176 		/* Make sure EP's TT buffer is clean before queueing qtds */
3177 		if (qh->tt_buffer_dirty)
3178 			goto next;
3179 
3180 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3181 			    TXSTS_FSPCAVAIL_SHIFT;
3182 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3183 
3184 		if (status > 0) {
3185 			more_to_do = 1;
3186 		} else if (status < 0) {
3187 			no_fifo_space = 1;
3188 			break;
3189 		}
3190 next:
3191 		/* Advance to next QH, skipping start-of-list entry */
3192 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3193 		if (hsotg->non_periodic_qh_ptr ==
3194 				&hsotg->non_periodic_sched_active)
3195 			hsotg->non_periodic_qh_ptr =
3196 					hsotg->non_periodic_qh_ptr->next;
3197 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3198 
3199 	if (!hsotg->params.host_dma) {
3200 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3201 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3202 			    TXSTS_QSPCAVAIL_SHIFT;
3203 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3204 			    TXSTS_FSPCAVAIL_SHIFT;
3205 		dev_vdbg(hsotg->dev,
3206 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3207 			 qspcavail);
3208 		dev_vdbg(hsotg->dev,
3209 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3210 			 fspcavail);
3211 
3212 		if (more_to_do || no_queue_space || no_fifo_space) {
3213 			/*
3214 			 * May need to queue more transactions as the request
3215 			 * queue or Tx FIFO empties. Enable the non-periodic
3216 			 * Tx FIFO empty interrupt. (Always use the half-empty
3217 			 * level to ensure that new requests are loaded as
3218 			 * soon as possible.)
3219 			 */
3220 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3221 			gintmsk |= GINTSTS_NPTXFEMP;
3222 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3223 		} else {
3224 			/*
3225 			 * Disable the Tx FIFO empty interrupt since there are
3226 			 * no more transactions that need to be queued right
3227 			 * now. This function is called from interrupt
3228 			 * handlers to queue more transactions as transfer
3229 			 * states change.
3230 			 */
3231 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3232 			gintmsk &= ~GINTSTS_NPTXFEMP;
3233 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3234 		}
3235 	}
3236 }
3237 
3238 /**
3239  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3240  * and queues transactions for these channels to the DWC_otg controller. Called
3241  * from the HCD interrupt handler functions.
3242  *
3243  * @hsotg:   The HCD state structure
3244  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3245  *           or both)
3246  *
3247  * Must be called with interrupt disabled and spinlock held
3248  */
3249 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3250 				 enum dwc2_transaction_type tr_type)
3251 {
3252 #ifdef DWC2_DEBUG_SOF
3253 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3254 #endif
3255 	/* Process host channels associated with periodic transfers */
3256 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3257 	    tr_type == DWC2_TRANSACTION_ALL)
3258 		dwc2_process_periodic_channels(hsotg);
3259 
3260 	/* Process host channels associated with non-periodic transfers */
3261 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3262 	    tr_type == DWC2_TRANSACTION_ALL) {
3263 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3264 			dwc2_process_non_periodic_channels(hsotg);
3265 		} else {
3266 			/*
3267 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3268 			 * there are no non-periodic transfers to process
3269 			 */
3270 			u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3271 
3272 			gintmsk &= ~GINTSTS_NPTXFEMP;
3273 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3274 		}
3275 	}
3276 }
3277 
3278 static void dwc2_conn_id_status_change(struct work_struct *work)
3279 {
3280 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3281 						wf_otg);
3282 	u32 count = 0;
3283 	u32 gotgctl;
3284 	unsigned long flags;
3285 
3286 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3287 
3288 	gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3289 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3290 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3291 		!!(gotgctl & GOTGCTL_CONID_B));
3292 
3293 	/* B-Device connector (Device Mode) */
3294 	if (gotgctl & GOTGCTL_CONID_B) {
3295 		dwc2_vbus_supply_exit(hsotg);
3296 		/* Wait for switch to device mode */
3297 		dev_dbg(hsotg->dev, "connId B\n");
3298 		if (hsotg->bus_suspended) {
3299 			dev_info(hsotg->dev,
3300 				 "Do port resume before switching to device mode\n");
3301 			dwc2_port_resume(hsotg);
3302 		}
3303 		while (!dwc2_is_device_mode(hsotg)) {
3304 			dev_info(hsotg->dev,
3305 				 "Waiting for Peripheral Mode, Mode=%s\n",
3306 				 dwc2_is_host_mode(hsotg) ? "Host" :
3307 				 "Peripheral");
3308 			msleep(20);
3309 			/*
3310 			 * Sometimes the initial GOTGCTRL read is wrong, so
3311 			 * check it again and jump to host mode if that was
3312 			 * the case.
3313 			 */
3314 			gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3315 			if (!(gotgctl & GOTGCTL_CONID_B))
3316 				goto host;
3317 			if (++count > 250)
3318 				break;
3319 		}
3320 		if (count > 250)
3321 			dev_err(hsotg->dev,
3322 				"Connection id status change timed out\n");
3323 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3324 		dwc2_core_init(hsotg, false);
3325 		dwc2_enable_global_interrupts(hsotg);
3326 		spin_lock_irqsave(&hsotg->lock, flags);
3327 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3328 		spin_unlock_irqrestore(&hsotg->lock, flags);
3329 		/* Enable ACG feature in device mode,if supported */
3330 		dwc2_enable_acg(hsotg);
3331 		dwc2_hsotg_core_connect(hsotg);
3332 	} else {
3333 host:
3334 		/* A-Device connector (Host Mode) */
3335 		dev_dbg(hsotg->dev, "connId A\n");
3336 		while (!dwc2_is_host_mode(hsotg)) {
3337 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3338 				 dwc2_is_host_mode(hsotg) ?
3339 				 "Host" : "Peripheral");
3340 			msleep(20);
3341 			if (++count > 250)
3342 				break;
3343 		}
3344 		if (count > 250)
3345 			dev_err(hsotg->dev,
3346 				"Connection id status change timed out\n");
3347 
3348 		spin_lock_irqsave(&hsotg->lock, flags);
3349 		dwc2_hsotg_disconnect(hsotg);
3350 		spin_unlock_irqrestore(&hsotg->lock, flags);
3351 
3352 		hsotg->op_state = OTG_STATE_A_HOST;
3353 		/* Initialize the Core for Host mode */
3354 		dwc2_core_init(hsotg, false);
3355 		dwc2_enable_global_interrupts(hsotg);
3356 		dwc2_hcd_start(hsotg);
3357 	}
3358 }
3359 
3360 static void dwc2_wakeup_detected(struct timer_list *t)
3361 {
3362 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3363 	u32 hprt0;
3364 
3365 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3366 
3367 	/*
3368 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3369 	 * so that OPT tests pass with all PHYs.)
3370 	 */
3371 	hprt0 = dwc2_read_hprt0(hsotg);
3372 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3373 	hprt0 &= ~HPRT0_RES;
3374 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3375 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3376 		dwc2_readl(hsotg->regs + HPRT0));
3377 
3378 	dwc2_hcd_rem_wakeup(hsotg);
3379 	hsotg->bus_suspended = false;
3380 
3381 	/* Change to L0 state */
3382 	hsotg->lx_state = DWC2_L0;
3383 }
3384 
3385 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3386 {
3387 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3388 
3389 	return hcd->self.b_hnp_enable;
3390 }
3391 
3392 /* Must NOT be called with interrupt disabled or spinlock held */
3393 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3394 {
3395 	unsigned long flags;
3396 	u32 hprt0;
3397 	u32 pcgctl;
3398 	u32 gotgctl;
3399 
3400 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3401 
3402 	spin_lock_irqsave(&hsotg->lock, flags);
3403 
3404 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3405 		gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3406 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3407 		dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3408 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3409 	}
3410 
3411 	hprt0 = dwc2_read_hprt0(hsotg);
3412 	hprt0 |= HPRT0_SUSP;
3413 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3414 
3415 	hsotg->bus_suspended = true;
3416 
3417 	/*
3418 	 * If power_down is supported, Phy clock will be suspended
3419 	 * after registers are backuped.
3420 	 */
3421 	if (!hsotg->params.power_down) {
3422 		/* Suspend the Phy Clock */
3423 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3424 		pcgctl |= PCGCTL_STOPPCLK;
3425 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3426 		udelay(10);
3427 	}
3428 
3429 	/* For HNP the bus must be suspended for at least 200ms */
3430 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3431 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3432 		pcgctl &= ~PCGCTL_STOPPCLK;
3433 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3434 
3435 		spin_unlock_irqrestore(&hsotg->lock, flags);
3436 
3437 		msleep(200);
3438 	} else {
3439 		spin_unlock_irqrestore(&hsotg->lock, flags);
3440 	}
3441 }
3442 
3443 /* Must NOT be called with interrupt disabled or spinlock held */
3444 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3445 {
3446 	unsigned long flags;
3447 	u32 hprt0;
3448 	u32 pcgctl;
3449 
3450 	spin_lock_irqsave(&hsotg->lock, flags);
3451 
3452 	/*
3453 	 * If power_down is supported, Phy clock is already resumed
3454 	 * after registers restore.
3455 	 */
3456 	if (!hsotg->params.power_down) {
3457 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3458 		pcgctl &= ~PCGCTL_STOPPCLK;
3459 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3460 		spin_unlock_irqrestore(&hsotg->lock, flags);
3461 		msleep(20);
3462 		spin_lock_irqsave(&hsotg->lock, flags);
3463 	}
3464 
3465 	hprt0 = dwc2_read_hprt0(hsotg);
3466 	hprt0 |= HPRT0_RES;
3467 	hprt0 &= ~HPRT0_SUSP;
3468 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3469 	spin_unlock_irqrestore(&hsotg->lock, flags);
3470 
3471 	msleep(USB_RESUME_TIMEOUT);
3472 
3473 	spin_lock_irqsave(&hsotg->lock, flags);
3474 	hprt0 = dwc2_read_hprt0(hsotg);
3475 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3476 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3477 	hsotg->bus_suspended = false;
3478 	spin_unlock_irqrestore(&hsotg->lock, flags);
3479 }
3480 
3481 /* Handles hub class-specific requests */
3482 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3483 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3484 {
3485 	struct usb_hub_descriptor *hub_desc;
3486 	int retval = 0;
3487 	u32 hprt0;
3488 	u32 port_status;
3489 	u32 speed;
3490 	u32 pcgctl;
3491 
3492 	switch (typereq) {
3493 	case ClearHubFeature:
3494 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3495 
3496 		switch (wvalue) {
3497 		case C_HUB_LOCAL_POWER:
3498 		case C_HUB_OVER_CURRENT:
3499 			/* Nothing required here */
3500 			break;
3501 
3502 		default:
3503 			retval = -EINVAL;
3504 			dev_err(hsotg->dev,
3505 				"ClearHubFeature request %1xh unknown\n",
3506 				wvalue);
3507 		}
3508 		break;
3509 
3510 	case ClearPortFeature:
3511 		if (wvalue != USB_PORT_FEAT_L1)
3512 			if (!windex || windex > 1)
3513 				goto error;
3514 		switch (wvalue) {
3515 		case USB_PORT_FEAT_ENABLE:
3516 			dev_dbg(hsotg->dev,
3517 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3518 			hprt0 = dwc2_read_hprt0(hsotg);
3519 			hprt0 |= HPRT0_ENA;
3520 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3521 			break;
3522 
3523 		case USB_PORT_FEAT_SUSPEND:
3524 			dev_dbg(hsotg->dev,
3525 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3526 
3527 			if (hsotg->bus_suspended) {
3528 				if (hsotg->hibernated)
3529 					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3530 				else
3531 					dwc2_port_resume(hsotg);
3532 			}
3533 			break;
3534 
3535 		case USB_PORT_FEAT_POWER:
3536 			dev_dbg(hsotg->dev,
3537 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3538 			hprt0 = dwc2_read_hprt0(hsotg);
3539 			hprt0 &= ~HPRT0_PWR;
3540 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3541 			break;
3542 
3543 		case USB_PORT_FEAT_INDICATOR:
3544 			dev_dbg(hsotg->dev,
3545 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3546 			/* Port indicator not supported */
3547 			break;
3548 
3549 		case USB_PORT_FEAT_C_CONNECTION:
3550 			/*
3551 			 * Clears driver's internal Connect Status Change flag
3552 			 */
3553 			dev_dbg(hsotg->dev,
3554 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3555 			hsotg->flags.b.port_connect_status_change = 0;
3556 			break;
3557 
3558 		case USB_PORT_FEAT_C_RESET:
3559 			/* Clears driver's internal Port Reset Change flag */
3560 			dev_dbg(hsotg->dev,
3561 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3562 			hsotg->flags.b.port_reset_change = 0;
3563 			break;
3564 
3565 		case USB_PORT_FEAT_C_ENABLE:
3566 			/*
3567 			 * Clears the driver's internal Port Enable/Disable
3568 			 * Change flag
3569 			 */
3570 			dev_dbg(hsotg->dev,
3571 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3572 			hsotg->flags.b.port_enable_change = 0;
3573 			break;
3574 
3575 		case USB_PORT_FEAT_C_SUSPEND:
3576 			/*
3577 			 * Clears the driver's internal Port Suspend Change
3578 			 * flag, which is set when resume signaling on the host
3579 			 * port is complete
3580 			 */
3581 			dev_dbg(hsotg->dev,
3582 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3583 			hsotg->flags.b.port_suspend_change = 0;
3584 			break;
3585 
3586 		case USB_PORT_FEAT_C_PORT_L1:
3587 			dev_dbg(hsotg->dev,
3588 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3589 			hsotg->flags.b.port_l1_change = 0;
3590 			break;
3591 
3592 		case USB_PORT_FEAT_C_OVER_CURRENT:
3593 			dev_dbg(hsotg->dev,
3594 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3595 			hsotg->flags.b.port_over_current_change = 0;
3596 			break;
3597 
3598 		default:
3599 			retval = -EINVAL;
3600 			dev_err(hsotg->dev,
3601 				"ClearPortFeature request %1xh unknown or unsupported\n",
3602 				wvalue);
3603 		}
3604 		break;
3605 
3606 	case GetHubDescriptor:
3607 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3608 		hub_desc = (struct usb_hub_descriptor *)buf;
3609 		hub_desc->bDescLength = 9;
3610 		hub_desc->bDescriptorType = USB_DT_HUB;
3611 		hub_desc->bNbrPorts = 1;
3612 		hub_desc->wHubCharacteristics =
3613 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3614 				    HUB_CHAR_INDV_PORT_OCPM);
3615 		hub_desc->bPwrOn2PwrGood = 1;
3616 		hub_desc->bHubContrCurrent = 0;
3617 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3618 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3619 		break;
3620 
3621 	case GetHubStatus:
3622 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3623 		memset(buf, 0, 4);
3624 		break;
3625 
3626 	case GetPortStatus:
3627 		dev_vdbg(hsotg->dev,
3628 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3629 			 hsotg->flags.d32);
3630 		if (!windex || windex > 1)
3631 			goto error;
3632 
3633 		port_status = 0;
3634 		if (hsotg->flags.b.port_connect_status_change)
3635 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3636 		if (hsotg->flags.b.port_enable_change)
3637 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3638 		if (hsotg->flags.b.port_suspend_change)
3639 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3640 		if (hsotg->flags.b.port_l1_change)
3641 			port_status |= USB_PORT_STAT_C_L1 << 16;
3642 		if (hsotg->flags.b.port_reset_change)
3643 			port_status |= USB_PORT_STAT_C_RESET << 16;
3644 		if (hsotg->flags.b.port_over_current_change) {
3645 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3646 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3647 		}
3648 
3649 		if (!hsotg->flags.b.port_connect_status) {
3650 			/*
3651 			 * The port is disconnected, which means the core is
3652 			 * either in device mode or it soon will be. Just
3653 			 * return 0's for the remainder of the port status
3654 			 * since the port register can't be read if the core
3655 			 * is in device mode.
3656 			 */
3657 			*(__le32 *)buf = cpu_to_le32(port_status);
3658 			break;
3659 		}
3660 
3661 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3662 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3663 
3664 		if (hprt0 & HPRT0_CONNSTS)
3665 			port_status |= USB_PORT_STAT_CONNECTION;
3666 		if (hprt0 & HPRT0_ENA)
3667 			port_status |= USB_PORT_STAT_ENABLE;
3668 		if (hprt0 & HPRT0_SUSP)
3669 			port_status |= USB_PORT_STAT_SUSPEND;
3670 		if (hprt0 & HPRT0_OVRCURRACT)
3671 			port_status |= USB_PORT_STAT_OVERCURRENT;
3672 		if (hprt0 & HPRT0_RST)
3673 			port_status |= USB_PORT_STAT_RESET;
3674 		if (hprt0 & HPRT0_PWR)
3675 			port_status |= USB_PORT_STAT_POWER;
3676 
3677 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3678 		if (speed == HPRT0_SPD_HIGH_SPEED)
3679 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3680 		else if (speed == HPRT0_SPD_LOW_SPEED)
3681 			port_status |= USB_PORT_STAT_LOW_SPEED;
3682 
3683 		if (hprt0 & HPRT0_TSTCTL_MASK)
3684 			port_status |= USB_PORT_STAT_TEST;
3685 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3686 
3687 		if (hsotg->params.dma_desc_fs_enable) {
3688 			/*
3689 			 * Enable descriptor DMA only if a full speed
3690 			 * device is connected.
3691 			 */
3692 			if (hsotg->new_connection &&
3693 			    ((port_status &
3694 			      (USB_PORT_STAT_CONNECTION |
3695 			       USB_PORT_STAT_HIGH_SPEED |
3696 			       USB_PORT_STAT_LOW_SPEED)) ==
3697 			       USB_PORT_STAT_CONNECTION)) {
3698 				u32 hcfg;
3699 
3700 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3701 				hsotg->params.dma_desc_enable = true;
3702 				hcfg = dwc2_readl(hsotg->regs + HCFG);
3703 				hcfg |= HCFG_DESCDMA;
3704 				dwc2_writel(hcfg, hsotg->regs + HCFG);
3705 				hsotg->new_connection = false;
3706 			}
3707 		}
3708 
3709 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3710 		*(__le32 *)buf = cpu_to_le32(port_status);
3711 		break;
3712 
3713 	case SetHubFeature:
3714 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3715 		/* No HUB features supported */
3716 		break;
3717 
3718 	case SetPortFeature:
3719 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3720 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3721 			goto error;
3722 
3723 		if (!hsotg->flags.b.port_connect_status) {
3724 			/*
3725 			 * The port is disconnected, which means the core is
3726 			 * either in device mode or it soon will be. Just
3727 			 * return without doing anything since the port
3728 			 * register can't be written if the core is in device
3729 			 * mode.
3730 			 */
3731 			break;
3732 		}
3733 
3734 		switch (wvalue) {
3735 		case USB_PORT_FEAT_SUSPEND:
3736 			dev_dbg(hsotg->dev,
3737 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3738 			if (windex != hsotg->otg_port)
3739 				goto error;
3740 			if (hsotg->params.power_down == 2)
3741 				dwc2_enter_hibernation(hsotg, 1);
3742 			else
3743 				dwc2_port_suspend(hsotg, windex);
3744 			break;
3745 
3746 		case USB_PORT_FEAT_POWER:
3747 			dev_dbg(hsotg->dev,
3748 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3749 			hprt0 = dwc2_read_hprt0(hsotg);
3750 			hprt0 |= HPRT0_PWR;
3751 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3752 			break;
3753 
3754 		case USB_PORT_FEAT_RESET:
3755 			if (hsotg->params.power_down == 2 &&
3756 			    hsotg->hibernated)
3757 				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3758 			hprt0 = dwc2_read_hprt0(hsotg);
3759 			dev_dbg(hsotg->dev,
3760 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3761 			pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3762 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3763 			dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3764 			/* ??? Original driver does this */
3765 			dwc2_writel(0, hsotg->regs + PCGCTL);
3766 
3767 			hprt0 = dwc2_read_hprt0(hsotg);
3768 			/* Clear suspend bit if resetting from suspend state */
3769 			hprt0 &= ~HPRT0_SUSP;
3770 
3771 			/*
3772 			 * When B-Host the Port reset bit is set in the Start
3773 			 * HCD Callback function, so that the reset is started
3774 			 * within 1ms of the HNP success interrupt
3775 			 */
3776 			if (!dwc2_hcd_is_b_host(hsotg)) {
3777 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3778 				dev_dbg(hsotg->dev,
3779 					"In host mode, hprt0=%08x\n", hprt0);
3780 				dwc2_writel(hprt0, hsotg->regs + HPRT0);
3781 			}
3782 
3783 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3784 			msleep(50);
3785 			hprt0 &= ~HPRT0_RST;
3786 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3787 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3788 			break;
3789 
3790 		case USB_PORT_FEAT_INDICATOR:
3791 			dev_dbg(hsotg->dev,
3792 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3793 			/* Not supported */
3794 			break;
3795 
3796 		case USB_PORT_FEAT_TEST:
3797 			hprt0 = dwc2_read_hprt0(hsotg);
3798 			dev_dbg(hsotg->dev,
3799 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3800 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3801 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3802 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3803 			break;
3804 
3805 		default:
3806 			retval = -EINVAL;
3807 			dev_err(hsotg->dev,
3808 				"SetPortFeature %1xh unknown or unsupported\n",
3809 				wvalue);
3810 			break;
3811 		}
3812 		break;
3813 
3814 	default:
3815 error:
3816 		retval = -EINVAL;
3817 		dev_dbg(hsotg->dev,
3818 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3819 			typereq, windex, wvalue);
3820 		break;
3821 	}
3822 
3823 	return retval;
3824 }
3825 
3826 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3827 {
3828 	int retval;
3829 
3830 	if (port != 1)
3831 		return -EINVAL;
3832 
3833 	retval = (hsotg->flags.b.port_connect_status_change ||
3834 		  hsotg->flags.b.port_reset_change ||
3835 		  hsotg->flags.b.port_enable_change ||
3836 		  hsotg->flags.b.port_suspend_change ||
3837 		  hsotg->flags.b.port_over_current_change);
3838 
3839 	if (retval) {
3840 		dev_dbg(hsotg->dev,
3841 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3842 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3843 			hsotg->flags.b.port_connect_status_change);
3844 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3845 			hsotg->flags.b.port_reset_change);
3846 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3847 			hsotg->flags.b.port_enable_change);
3848 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3849 			hsotg->flags.b.port_suspend_change);
3850 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3851 			hsotg->flags.b.port_over_current_change);
3852 	}
3853 
3854 	return retval;
3855 }
3856 
3857 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3858 {
3859 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3860 
3861 #ifdef DWC2_DEBUG_SOF
3862 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3863 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3864 #endif
3865 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3866 }
3867 
3868 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3869 {
3870 	u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3871 	u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3872 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3873 	unsigned int us_per_frame;
3874 	unsigned int frame_number;
3875 	unsigned int remaining;
3876 	unsigned int interval;
3877 	unsigned int phy_clks;
3878 
3879 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3880 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3881 
3882 	/* Extract fields */
3883 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3884 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3885 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3886 
3887 	/*
3888 	 * Number of phy clocks since the last tick of the frame number after
3889 	 * "us" has passed.
3890 	 */
3891 	phy_clks = (interval - remaining) +
3892 		   DIV_ROUND_UP(interval * us, us_per_frame);
3893 
3894 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3895 }
3896 
3897 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3898 {
3899 	return hsotg->op_state == OTG_STATE_B_HOST;
3900 }
3901 
3902 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3903 					       int iso_desc_count,
3904 					       gfp_t mem_flags)
3905 {
3906 	struct dwc2_hcd_urb *urb;
3907 	u32 size = sizeof(*urb) + iso_desc_count *
3908 		   sizeof(struct dwc2_hcd_iso_packet_desc);
3909 
3910 	urb = kzalloc(size, mem_flags);
3911 	if (urb)
3912 		urb->packet_count = iso_desc_count;
3913 	return urb;
3914 }
3915 
3916 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3917 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3918 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3919 {
3920 	if (dbg_perio() ||
3921 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3922 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3923 		dev_vdbg(hsotg->dev,
3924 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3925 			 dev_addr, ep_num, ep_dir, ep_type, mps);
3926 	urb->pipe_info.dev_addr = dev_addr;
3927 	urb->pipe_info.ep_num = ep_num;
3928 	urb->pipe_info.pipe_type = ep_type;
3929 	urb->pipe_info.pipe_dir = ep_dir;
3930 	urb->pipe_info.mps = mps;
3931 }
3932 
3933 /*
3934  * NOTE: This function will be removed once the peripheral controller code
3935  * is integrated and the driver is stable
3936  */
3937 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3938 {
3939 #ifdef DEBUG
3940 	struct dwc2_host_chan *chan;
3941 	struct dwc2_hcd_urb *urb;
3942 	struct dwc2_qtd *qtd;
3943 	int num_channels;
3944 	u32 np_tx_status;
3945 	u32 p_tx_status;
3946 	int i;
3947 
3948 	num_channels = hsotg->params.host_channels;
3949 	dev_dbg(hsotg->dev, "\n");
3950 	dev_dbg(hsotg->dev,
3951 		"************************************************************\n");
3952 	dev_dbg(hsotg->dev, "HCD State:\n");
3953 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3954 
3955 	for (i = 0; i < num_channels; i++) {
3956 		chan = hsotg->hc_ptr_array[i];
3957 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3958 		dev_dbg(hsotg->dev,
3959 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3960 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3961 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3962 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3963 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3964 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3965 			chan->data_pid_start);
3966 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3967 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3968 			chan->xfer_started);
3969 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3970 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3971 			(unsigned long)chan->xfer_dma);
3972 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3973 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3974 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3975 			chan->halt_on_queue);
3976 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3977 			chan->halt_pending);
3978 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3979 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3980 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3981 			chan->complete_split);
3982 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3983 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3984 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3985 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3986 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3987 
3988 		if (chan->xfer_started) {
3989 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3990 
3991 			hfnum = dwc2_readl(hsotg->regs + HFNUM);
3992 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3993 			hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3994 			hcint = dwc2_readl(hsotg->regs + HCINT(i));
3995 			hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3996 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3997 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3998 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3999 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
4000 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
4001 		}
4002 
4003 		if (!(chan->xfer_started && chan->qh))
4004 			continue;
4005 
4006 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
4007 			if (!qtd->in_process)
4008 				break;
4009 			urb = qtd->urb;
4010 			dev_dbg(hsotg->dev, "    URB Info:\n");
4011 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
4012 				qtd, urb);
4013 			if (urb) {
4014 				dev_dbg(hsotg->dev,
4015 					"      Dev: %d, EP: %d %s\n",
4016 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
4017 					dwc2_hcd_get_ep_num(&urb->pipe_info),
4018 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
4019 					"IN" : "OUT");
4020 				dev_dbg(hsotg->dev,
4021 					"      Max packet size: %d\n",
4022 					dwc2_hcd_get_mps(&urb->pipe_info));
4023 				dev_dbg(hsotg->dev,
4024 					"      transfer_buffer: %p\n",
4025 					urb->buf);
4026 				dev_dbg(hsotg->dev,
4027 					"      transfer_dma: %08lx\n",
4028 					(unsigned long)urb->dma);
4029 				dev_dbg(hsotg->dev,
4030 					"      transfer_buffer_length: %d\n",
4031 					urb->length);
4032 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
4033 					urb->actual_length);
4034 			}
4035 		}
4036 	}
4037 
4038 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
4039 		hsotg->non_periodic_channels);
4040 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
4041 		hsotg->periodic_channels);
4042 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
4043 	np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
4044 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
4045 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4046 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
4047 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4048 	p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
4049 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4050 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4051 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4052 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4053 	dwc2_dump_global_registers(hsotg);
4054 	dwc2_dump_host_registers(hsotg);
4055 	dev_dbg(hsotg->dev,
4056 		"************************************************************\n");
4057 	dev_dbg(hsotg->dev, "\n");
4058 #endif
4059 }
4060 
4061 struct wrapper_priv_data {
4062 	struct dwc2_hsotg *hsotg;
4063 };
4064 
4065 /* Gets the dwc2_hsotg from a usb_hcd */
4066 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4067 {
4068 	struct wrapper_priv_data *p;
4069 
4070 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4071 	return p->hsotg;
4072 }
4073 
4074 /**
4075  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4076  *
4077  * This will get the dwc2_tt structure (and ttport) associated with the given
4078  * context (which is really just a struct urb pointer).
4079  *
4080  * The first time this is called for a given TT we allocate memory for our
4081  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4082  * then the refcount for the structure will go to 0 and we'll free it.
4083  *
4084  * @hsotg:     The HCD state structure for the DWC OTG controller.
4085  * @qh:        The QH structure.
4086  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4087  * @mem_flags: Flags for allocating memory.
4088  * @ttport:    We'll return this device's port number here.  That's used to
4089  *             reference into the bitmap if we're on a multi_tt hub.
4090  *
4091  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4092  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4093  */
4094 
4095 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4096 				      gfp_t mem_flags, int *ttport)
4097 {
4098 	struct urb *urb = context;
4099 	struct dwc2_tt *dwc_tt = NULL;
4100 
4101 	if (urb->dev->tt) {
4102 		*ttport = urb->dev->ttport;
4103 
4104 		dwc_tt = urb->dev->tt->hcpriv;
4105 		if (!dwc_tt) {
4106 			size_t bitmap_size;
4107 
4108 			/*
4109 			 * For single_tt we need one schedule.  For multi_tt
4110 			 * we need one per port.
4111 			 */
4112 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4113 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4114 			if (urb->dev->tt->multi)
4115 				bitmap_size *= urb->dev->tt->hub->maxchild;
4116 
4117 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4118 					 mem_flags);
4119 			if (!dwc_tt)
4120 				return NULL;
4121 
4122 			dwc_tt->usb_tt = urb->dev->tt;
4123 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4124 		}
4125 
4126 		dwc_tt->refcount++;
4127 	}
4128 
4129 	return dwc_tt;
4130 }
4131 
4132 /**
4133  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4134  *
4135  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4136  * of the structure are done.
4137  *
4138  * It's OK to call this with NULL.
4139  *
4140  * @hsotg:     The HCD state structure for the DWC OTG controller.
4141  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4142  */
4143 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4144 {
4145 	/* Model kfree and make put of NULL a no-op */
4146 	if (!dwc_tt)
4147 		return;
4148 
4149 	WARN_ON(dwc_tt->refcount < 1);
4150 
4151 	dwc_tt->refcount--;
4152 	if (!dwc_tt->refcount) {
4153 		dwc_tt->usb_tt->hcpriv = NULL;
4154 		kfree(dwc_tt);
4155 	}
4156 }
4157 
4158 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4159 {
4160 	struct urb *urb = context;
4161 
4162 	return urb->dev->speed;
4163 }
4164 
4165 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4166 					struct urb *urb)
4167 {
4168 	struct usb_bus *bus = hcd_to_bus(hcd);
4169 
4170 	if (urb->interval)
4171 		bus->bandwidth_allocated += bw / urb->interval;
4172 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4173 		bus->bandwidth_isoc_reqs++;
4174 	else
4175 		bus->bandwidth_int_reqs++;
4176 }
4177 
4178 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4179 				    struct urb *urb)
4180 {
4181 	struct usb_bus *bus = hcd_to_bus(hcd);
4182 
4183 	if (urb->interval)
4184 		bus->bandwidth_allocated -= bw / urb->interval;
4185 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4186 		bus->bandwidth_isoc_reqs--;
4187 	else
4188 		bus->bandwidth_int_reqs--;
4189 }
4190 
4191 /*
4192  * Sets the final status of an URB and returns it to the upper layer. Any
4193  * required cleanup of the URB is performed.
4194  *
4195  * Must be called with interrupt disabled and spinlock held
4196  */
4197 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4198 			int status)
4199 {
4200 	struct urb *urb;
4201 	int i;
4202 
4203 	if (!qtd) {
4204 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4205 		return;
4206 	}
4207 
4208 	if (!qtd->urb) {
4209 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4210 		return;
4211 	}
4212 
4213 	urb = qtd->urb->priv;
4214 	if (!urb) {
4215 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4216 		return;
4217 	}
4218 
4219 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4220 
4221 	if (dbg_urb(urb))
4222 		dev_vdbg(hsotg->dev,
4223 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4224 			 __func__, urb, usb_pipedevice(urb->pipe),
4225 			 usb_pipeendpoint(urb->pipe),
4226 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4227 			 urb->actual_length);
4228 
4229 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4230 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4231 		for (i = 0; i < urb->number_of_packets; ++i) {
4232 			urb->iso_frame_desc[i].actual_length =
4233 				dwc2_hcd_urb_get_iso_desc_actual_length(
4234 						qtd->urb, i);
4235 			urb->iso_frame_desc[i].status =
4236 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4237 		}
4238 	}
4239 
4240 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4241 		for (i = 0; i < urb->number_of_packets; i++)
4242 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4243 				 i, urb->iso_frame_desc[i].status);
4244 	}
4245 
4246 	urb->status = status;
4247 	if (!status) {
4248 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4249 		    urb->actual_length < urb->transfer_buffer_length)
4250 			urb->status = -EREMOTEIO;
4251 	}
4252 
4253 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4254 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4255 		struct usb_host_endpoint *ep = urb->ep;
4256 
4257 		if (ep)
4258 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4259 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4260 					urb);
4261 	}
4262 
4263 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4264 	urb->hcpriv = NULL;
4265 	kfree(qtd->urb);
4266 	qtd->urb = NULL;
4267 
4268 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4269 }
4270 
4271 /*
4272  * Work queue function for starting the HCD when A-Cable is connected
4273  */
4274 static void dwc2_hcd_start_func(struct work_struct *work)
4275 {
4276 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4277 						start_work.work);
4278 
4279 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4280 	dwc2_host_start(hsotg);
4281 }
4282 
4283 /*
4284  * Reset work queue function
4285  */
4286 static void dwc2_hcd_reset_func(struct work_struct *work)
4287 {
4288 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4289 						reset_work.work);
4290 	unsigned long flags;
4291 	u32 hprt0;
4292 
4293 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4294 
4295 	spin_lock_irqsave(&hsotg->lock, flags);
4296 
4297 	hprt0 = dwc2_read_hprt0(hsotg);
4298 	hprt0 &= ~HPRT0_RST;
4299 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
4300 	hsotg->flags.b.port_reset_change = 1;
4301 
4302 	spin_unlock_irqrestore(&hsotg->lock, flags);
4303 }
4304 
4305 /*
4306  * =========================================================================
4307  *  Linux HC Driver Functions
4308  * =========================================================================
4309  */
4310 
4311 /*
4312  * Initializes the DWC_otg controller and its root hub and prepares it for host
4313  * mode operation. Activates the root port. Returns 0 on success and a negative
4314  * error code on failure.
4315  */
4316 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4317 {
4318 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4319 	struct usb_bus *bus = hcd_to_bus(hcd);
4320 	unsigned long flags;
4321 
4322 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4323 
4324 	spin_lock_irqsave(&hsotg->lock, flags);
4325 	hsotg->lx_state = DWC2_L0;
4326 	hcd->state = HC_STATE_RUNNING;
4327 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4328 
4329 	if (dwc2_is_device_mode(hsotg)) {
4330 		spin_unlock_irqrestore(&hsotg->lock, flags);
4331 		return 0;	/* why 0 ?? */
4332 	}
4333 
4334 	dwc2_hcd_reinit(hsotg);
4335 
4336 	/* Initialize and connect root hub if one is not already attached */
4337 	if (bus->root_hub) {
4338 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4339 		/* Inform the HUB driver to resume */
4340 		usb_hcd_resume_root_hub(hcd);
4341 	}
4342 
4343 	spin_unlock_irqrestore(&hsotg->lock, flags);
4344 
4345 	dwc2_vbus_supply_init(hsotg);
4346 
4347 	return 0;
4348 }
4349 
4350 /*
4351  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4352  * stopped.
4353  */
4354 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4355 {
4356 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4357 	unsigned long flags;
4358 
4359 	/* Turn off all host-specific interrupts */
4360 	dwc2_disable_host_interrupts(hsotg);
4361 
4362 	/* Wait for interrupt processing to finish */
4363 	synchronize_irq(hcd->irq);
4364 
4365 	spin_lock_irqsave(&hsotg->lock, flags);
4366 	/* Ensure hcd is disconnected */
4367 	dwc2_hcd_disconnect(hsotg, true);
4368 	dwc2_hcd_stop(hsotg);
4369 	hsotg->lx_state = DWC2_L3;
4370 	hcd->state = HC_STATE_HALT;
4371 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4372 	spin_unlock_irqrestore(&hsotg->lock, flags);
4373 
4374 	dwc2_vbus_supply_exit(hsotg);
4375 
4376 	usleep_range(1000, 3000);
4377 }
4378 
4379 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4380 {
4381 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4382 	unsigned long flags;
4383 	int ret = 0;
4384 	u32 hprt0;
4385 
4386 	spin_lock_irqsave(&hsotg->lock, flags);
4387 
4388 	if (dwc2_is_device_mode(hsotg))
4389 		goto unlock;
4390 
4391 	if (hsotg->lx_state != DWC2_L0)
4392 		goto unlock;
4393 
4394 	if (!HCD_HW_ACCESSIBLE(hcd))
4395 		goto unlock;
4396 
4397 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4398 		goto unlock;
4399 
4400 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL)
4401 		goto skip_power_saving;
4402 
4403 	/*
4404 	 * Drive USB suspend and disable port Power
4405 	 * if usb bus is not suspended.
4406 	 */
4407 	if (!hsotg->bus_suspended) {
4408 		hprt0 = dwc2_read_hprt0(hsotg);
4409 		hprt0 |= HPRT0_SUSP;
4410 		hprt0 &= ~HPRT0_PWR;
4411 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
4412 		dwc2_vbus_supply_exit(hsotg);
4413 	}
4414 
4415 	/* Enter partial_power_down */
4416 	ret = dwc2_enter_partial_power_down(hsotg);
4417 	if (ret) {
4418 		if (ret != -ENOTSUPP)
4419 			dev_err(hsotg->dev,
4420 				"enter partial_power_down failed\n");
4421 		goto skip_power_saving;
4422 	}
4423 
4424 	/* Ask phy to be suspended */
4425 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4426 		spin_unlock_irqrestore(&hsotg->lock, flags);
4427 		usb_phy_set_suspend(hsotg->uphy, true);
4428 		spin_lock_irqsave(&hsotg->lock, flags);
4429 	}
4430 
4431 	/* After entering partial_power_down, hardware is no more accessible */
4432 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4433 
4434 skip_power_saving:
4435 	hsotg->lx_state = DWC2_L2;
4436 unlock:
4437 	spin_unlock_irqrestore(&hsotg->lock, flags);
4438 
4439 	return ret;
4440 }
4441 
4442 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4443 {
4444 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4445 	unsigned long flags;
4446 	int ret = 0;
4447 
4448 	spin_lock_irqsave(&hsotg->lock, flags);
4449 
4450 	if (dwc2_is_device_mode(hsotg))
4451 		goto unlock;
4452 
4453 	if (hsotg->lx_state != DWC2_L2)
4454 		goto unlock;
4455 
4456 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) {
4457 		hsotg->lx_state = DWC2_L0;
4458 		goto unlock;
4459 	}
4460 
4461 	/*
4462 	 * Set HW accessible bit before powering on the controller
4463 	 * since an interrupt may rise.
4464 	 */
4465 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4466 
4467 	/*
4468 	 * Enable power if not already done.
4469 	 * This must not be spinlocked since duration
4470 	 * of this call is unknown.
4471 	 */
4472 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4473 		spin_unlock_irqrestore(&hsotg->lock, flags);
4474 		usb_phy_set_suspend(hsotg->uphy, false);
4475 		spin_lock_irqsave(&hsotg->lock, flags);
4476 	}
4477 
4478 	/* Exit partial_power_down */
4479 	ret = dwc2_exit_partial_power_down(hsotg, true);
4480 	if (ret && (ret != -ENOTSUPP))
4481 		dev_err(hsotg->dev, "exit partial_power_down failed\n");
4482 
4483 	hsotg->lx_state = DWC2_L0;
4484 
4485 	spin_unlock_irqrestore(&hsotg->lock, flags);
4486 
4487 	if (hsotg->bus_suspended) {
4488 		spin_lock_irqsave(&hsotg->lock, flags);
4489 		hsotg->flags.b.port_suspend_change = 1;
4490 		spin_unlock_irqrestore(&hsotg->lock, flags);
4491 		dwc2_port_resume(hsotg);
4492 	} else {
4493 		dwc2_vbus_supply_init(hsotg);
4494 
4495 		/* Wait for controller to correctly update D+/D- level */
4496 		usleep_range(3000, 5000);
4497 
4498 		/*
4499 		 * Clear Port Enable and Port Status changes.
4500 		 * Enable Port Power.
4501 		 */
4502 		dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4503 				HPRT0_ENACHG, hsotg->regs + HPRT0);
4504 		/* Wait for controller to detect Port Connect */
4505 		usleep_range(5000, 7000);
4506 	}
4507 
4508 	return ret;
4509 unlock:
4510 	spin_unlock_irqrestore(&hsotg->lock, flags);
4511 
4512 	return ret;
4513 }
4514 
4515 /* Returns the current frame number */
4516 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4517 {
4518 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4519 
4520 	return dwc2_hcd_get_frame_number(hsotg);
4521 }
4522 
4523 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4524 			       char *fn_name)
4525 {
4526 #ifdef VERBOSE_DEBUG
4527 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4528 	char *pipetype = NULL;
4529 	char *speed = NULL;
4530 
4531 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4532 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4533 		 usb_pipedevice(urb->pipe));
4534 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4535 		 usb_pipeendpoint(urb->pipe),
4536 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4537 
4538 	switch (usb_pipetype(urb->pipe)) {
4539 	case PIPE_CONTROL:
4540 		pipetype = "CONTROL";
4541 		break;
4542 	case PIPE_BULK:
4543 		pipetype = "BULK";
4544 		break;
4545 	case PIPE_INTERRUPT:
4546 		pipetype = "INTERRUPT";
4547 		break;
4548 	case PIPE_ISOCHRONOUS:
4549 		pipetype = "ISOCHRONOUS";
4550 		break;
4551 	}
4552 
4553 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4554 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4555 		 "IN" : "OUT");
4556 
4557 	switch (urb->dev->speed) {
4558 	case USB_SPEED_HIGH:
4559 		speed = "HIGH";
4560 		break;
4561 	case USB_SPEED_FULL:
4562 		speed = "FULL";
4563 		break;
4564 	case USB_SPEED_LOW:
4565 		speed = "LOW";
4566 		break;
4567 	default:
4568 		speed = "UNKNOWN";
4569 		break;
4570 	}
4571 
4572 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4573 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4574 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4575 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4576 		 urb->transfer_buffer_length);
4577 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4578 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4579 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4580 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4581 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4582 
4583 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4584 		int i;
4585 
4586 		for (i = 0; i < urb->number_of_packets; i++) {
4587 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4588 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4589 				 urb->iso_frame_desc[i].offset,
4590 				 urb->iso_frame_desc[i].length);
4591 		}
4592 	}
4593 #endif
4594 }
4595 
4596 /*
4597  * Starts processing a USB transfer request specified by a USB Request Block
4598  * (URB). mem_flags indicates the type of memory allocation to use while
4599  * processing this URB.
4600  */
4601 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4602 				 gfp_t mem_flags)
4603 {
4604 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4605 	struct usb_host_endpoint *ep = urb->ep;
4606 	struct dwc2_hcd_urb *dwc2_urb;
4607 	int i;
4608 	int retval;
4609 	int alloc_bandwidth = 0;
4610 	u8 ep_type = 0;
4611 	u32 tflags = 0;
4612 	void *buf;
4613 	unsigned long flags;
4614 	struct dwc2_qh *qh;
4615 	bool qh_allocated = false;
4616 	struct dwc2_qtd *qtd;
4617 
4618 	if (dbg_urb(urb)) {
4619 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4620 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4621 	}
4622 
4623 	if (!ep)
4624 		return -EINVAL;
4625 
4626 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4627 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4628 		spin_lock_irqsave(&hsotg->lock, flags);
4629 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4630 			alloc_bandwidth = 1;
4631 		spin_unlock_irqrestore(&hsotg->lock, flags);
4632 	}
4633 
4634 	switch (usb_pipetype(urb->pipe)) {
4635 	case PIPE_CONTROL:
4636 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4637 		break;
4638 	case PIPE_ISOCHRONOUS:
4639 		ep_type = USB_ENDPOINT_XFER_ISOC;
4640 		break;
4641 	case PIPE_BULK:
4642 		ep_type = USB_ENDPOINT_XFER_BULK;
4643 		break;
4644 	case PIPE_INTERRUPT:
4645 		ep_type = USB_ENDPOINT_XFER_INT;
4646 		break;
4647 	}
4648 
4649 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4650 				      mem_flags);
4651 	if (!dwc2_urb)
4652 		return -ENOMEM;
4653 
4654 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4655 				  usb_pipeendpoint(urb->pipe), ep_type,
4656 				  usb_pipein(urb->pipe),
4657 				  usb_maxpacket(urb->dev, urb->pipe,
4658 						!(usb_pipein(urb->pipe))));
4659 
4660 	buf = urb->transfer_buffer;
4661 
4662 	if (hcd->self.uses_dma) {
4663 		if (!buf && (urb->transfer_dma & 3)) {
4664 			dev_err(hsotg->dev,
4665 				"%s: unaligned transfer with no transfer_buffer",
4666 				__func__);
4667 			retval = -EINVAL;
4668 			goto fail0;
4669 		}
4670 	}
4671 
4672 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4673 		tflags |= URB_GIVEBACK_ASAP;
4674 	if (urb->transfer_flags & URB_ZERO_PACKET)
4675 		tflags |= URB_SEND_ZERO_PACKET;
4676 
4677 	dwc2_urb->priv = urb;
4678 	dwc2_urb->buf = buf;
4679 	dwc2_urb->dma = urb->transfer_dma;
4680 	dwc2_urb->length = urb->transfer_buffer_length;
4681 	dwc2_urb->setup_packet = urb->setup_packet;
4682 	dwc2_urb->setup_dma = urb->setup_dma;
4683 	dwc2_urb->flags = tflags;
4684 	dwc2_urb->interval = urb->interval;
4685 	dwc2_urb->status = -EINPROGRESS;
4686 
4687 	for (i = 0; i < urb->number_of_packets; ++i)
4688 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4689 						 urb->iso_frame_desc[i].offset,
4690 						 urb->iso_frame_desc[i].length);
4691 
4692 	urb->hcpriv = dwc2_urb;
4693 	qh = (struct dwc2_qh *)ep->hcpriv;
4694 	/* Create QH for the endpoint if it doesn't exist */
4695 	if (!qh) {
4696 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4697 		if (!qh) {
4698 			retval = -ENOMEM;
4699 			goto fail0;
4700 		}
4701 		ep->hcpriv = qh;
4702 		qh_allocated = true;
4703 	}
4704 
4705 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4706 	if (!qtd) {
4707 		retval = -ENOMEM;
4708 		goto fail1;
4709 	}
4710 
4711 	spin_lock_irqsave(&hsotg->lock, flags);
4712 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4713 	if (retval)
4714 		goto fail2;
4715 
4716 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4717 	if (retval)
4718 		goto fail3;
4719 
4720 	if (alloc_bandwidth) {
4721 		dwc2_allocate_bus_bandwidth(hcd,
4722 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4723 				urb);
4724 	}
4725 
4726 	spin_unlock_irqrestore(&hsotg->lock, flags);
4727 
4728 	return 0;
4729 
4730 fail3:
4731 	dwc2_urb->priv = NULL;
4732 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4733 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4734 		qh->channel->qh = NULL;
4735 fail2:
4736 	spin_unlock_irqrestore(&hsotg->lock, flags);
4737 	urb->hcpriv = NULL;
4738 	kfree(qtd);
4739 	qtd = NULL;
4740 fail1:
4741 	if (qh_allocated) {
4742 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4743 
4744 		ep->hcpriv = NULL;
4745 		dwc2_hcd_qh_unlink(hsotg, qh);
4746 		/* Free each QTD in the QH's QTD list */
4747 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4748 					 qtd_list_entry)
4749 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4750 		dwc2_hcd_qh_free(hsotg, qh);
4751 	}
4752 fail0:
4753 	kfree(dwc2_urb);
4754 
4755 	return retval;
4756 }
4757 
4758 /*
4759  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4760  */
4761 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4762 				 int status)
4763 {
4764 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4765 	int rc;
4766 	unsigned long flags;
4767 
4768 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4769 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4770 
4771 	spin_lock_irqsave(&hsotg->lock, flags);
4772 
4773 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4774 	if (rc)
4775 		goto out;
4776 
4777 	if (!urb->hcpriv) {
4778 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4779 		goto out;
4780 	}
4781 
4782 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4783 
4784 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4785 
4786 	kfree(urb->hcpriv);
4787 	urb->hcpriv = NULL;
4788 
4789 	/* Higher layer software sets URB status */
4790 	spin_unlock(&hsotg->lock);
4791 	usb_hcd_giveback_urb(hcd, urb, status);
4792 	spin_lock(&hsotg->lock);
4793 
4794 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4795 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4796 out:
4797 	spin_unlock_irqrestore(&hsotg->lock, flags);
4798 
4799 	return rc;
4800 }
4801 
4802 /*
4803  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4804  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4805  * must already be dequeued.
4806  */
4807 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4808 				       struct usb_host_endpoint *ep)
4809 {
4810 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4811 
4812 	dev_dbg(hsotg->dev,
4813 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4814 		ep->desc.bEndpointAddress, ep->hcpriv);
4815 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4816 }
4817 
4818 /*
4819  * Resets endpoint specific parameter values, in current version used to reset
4820  * the data toggle (as a WA). This function can be called from usb_clear_halt
4821  * routine.
4822  */
4823 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4824 				     struct usb_host_endpoint *ep)
4825 {
4826 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4827 	unsigned long flags;
4828 
4829 	dev_dbg(hsotg->dev,
4830 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4831 		ep->desc.bEndpointAddress);
4832 
4833 	spin_lock_irqsave(&hsotg->lock, flags);
4834 	dwc2_hcd_endpoint_reset(hsotg, ep);
4835 	spin_unlock_irqrestore(&hsotg->lock, flags);
4836 }
4837 
4838 /*
4839  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4840  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4841  * interrupt.
4842  *
4843  * This function is called by the USB core when an interrupt occurs
4844  */
4845 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4846 {
4847 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4848 
4849 	return dwc2_handle_hcd_intr(hsotg);
4850 }
4851 
4852 /*
4853  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4854  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4855  * is the status change indicator for the single root port. Returns 1 if either
4856  * change indicator is 1, otherwise returns 0.
4857  */
4858 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4859 {
4860 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4861 
4862 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4863 	return buf[0] != 0;
4864 }
4865 
4866 /* Handles hub class-specific requests */
4867 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4868 				 u16 windex, char *buf, u16 wlength)
4869 {
4870 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4871 					  wvalue, windex, buf, wlength);
4872 	return retval;
4873 }
4874 
4875 /* Handles hub TT buffer clear completions */
4876 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4877 					       struct usb_host_endpoint *ep)
4878 {
4879 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4880 	struct dwc2_qh *qh;
4881 	unsigned long flags;
4882 
4883 	qh = ep->hcpriv;
4884 	if (!qh)
4885 		return;
4886 
4887 	spin_lock_irqsave(&hsotg->lock, flags);
4888 	qh->tt_buffer_dirty = 0;
4889 
4890 	if (hsotg->flags.b.port_connect_status)
4891 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4892 
4893 	spin_unlock_irqrestore(&hsotg->lock, flags);
4894 }
4895 
4896 /*
4897  * HPRT0_SPD_HIGH_SPEED: high speed
4898  * HPRT0_SPD_FULL_SPEED: full speed
4899  */
4900 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4901 {
4902 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4903 
4904 	if (hsotg->params.speed == speed)
4905 		return;
4906 
4907 	hsotg->params.speed = speed;
4908 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4909 }
4910 
4911 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4912 {
4913 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4914 
4915 	if (!hsotg->params.change_speed_quirk)
4916 		return;
4917 
4918 	/*
4919 	 * On removal, set speed to default high-speed.
4920 	 */
4921 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4922 	    udev->parent->speed < USB_SPEED_HIGH) {
4923 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4924 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4925 	}
4926 }
4927 
4928 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4929 {
4930 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4931 
4932 	if (!hsotg->params.change_speed_quirk)
4933 		return 0;
4934 
4935 	if (udev->speed == USB_SPEED_HIGH) {
4936 		dev_info(hsotg->dev, "Set speed to high-speed\n");
4937 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4938 	} else if ((udev->speed == USB_SPEED_FULL ||
4939 				udev->speed == USB_SPEED_LOW)) {
4940 		/*
4941 		 * Change speed setting to full-speed if there's
4942 		 * a full-speed or low-speed device plugged in.
4943 		 */
4944 		dev_info(hsotg->dev, "Set speed to full-speed\n");
4945 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4946 	}
4947 
4948 	return 0;
4949 }
4950 
4951 static struct hc_driver dwc2_hc_driver = {
4952 	.description = "dwc2_hsotg",
4953 	.product_desc = "DWC OTG Controller",
4954 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4955 
4956 	.irq = _dwc2_hcd_irq,
4957 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4958 
4959 	.start = _dwc2_hcd_start,
4960 	.stop = _dwc2_hcd_stop,
4961 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4962 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4963 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4964 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4965 	.get_frame_number = _dwc2_hcd_get_frame_number,
4966 
4967 	.hub_status_data = _dwc2_hcd_hub_status_data,
4968 	.hub_control = _dwc2_hcd_hub_control,
4969 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4970 
4971 	.bus_suspend = _dwc2_hcd_suspend,
4972 	.bus_resume = _dwc2_hcd_resume,
4973 
4974 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4975 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4976 };
4977 
4978 /*
4979  * Frees secondary storage associated with the dwc2_hsotg structure contained
4980  * in the struct usb_hcd field
4981  */
4982 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4983 {
4984 	u32 ahbcfg;
4985 	u32 dctl;
4986 	int i;
4987 
4988 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4989 
4990 	/* Free memory for QH/QTD lists */
4991 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4992 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4993 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4994 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4995 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4996 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4997 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4998 
4999 	/* Free memory for the host channels */
5000 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5001 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5002 
5003 		if (chan) {
5004 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5005 				i, chan);
5006 			hsotg->hc_ptr_array[i] = NULL;
5007 			kfree(chan);
5008 		}
5009 	}
5010 
5011 	if (hsotg->params.host_dma) {
5012 		if (hsotg->status_buf) {
5013 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5014 					  hsotg->status_buf,
5015 					  hsotg->status_buf_dma);
5016 			hsotg->status_buf = NULL;
5017 		}
5018 	} else {
5019 		kfree(hsotg->status_buf);
5020 		hsotg->status_buf = NULL;
5021 	}
5022 
5023 	ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
5024 
5025 	/* Disable all interrupts */
5026 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5027 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
5028 	dwc2_writel(0, hsotg->regs + GINTMSK);
5029 
5030 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5031 		dctl = dwc2_readl(hsotg->regs + DCTL);
5032 		dctl |= DCTL_SFTDISCON;
5033 		dwc2_writel(dctl, hsotg->regs + DCTL);
5034 	}
5035 
5036 	if (hsotg->wq_otg) {
5037 		if (!cancel_work_sync(&hsotg->wf_otg))
5038 			flush_workqueue(hsotg->wq_otg);
5039 		destroy_workqueue(hsotg->wq_otg);
5040 	}
5041 
5042 	del_timer(&hsotg->wkp_timer);
5043 }
5044 
5045 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5046 {
5047 	/* Turn off all host-specific interrupts */
5048 	dwc2_disable_host_interrupts(hsotg);
5049 
5050 	dwc2_hcd_free(hsotg);
5051 }
5052 
5053 /*
5054  * Initializes the HCD. This function allocates memory for and initializes the
5055  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5056  * USB bus with the core and calls the hc_driver->start() function. It returns
5057  * a negative error on failure.
5058  */
5059 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5060 {
5061 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5062 	struct resource *res;
5063 	struct usb_hcd *hcd;
5064 	struct dwc2_host_chan *channel;
5065 	u32 hcfg;
5066 	int i, num_channels;
5067 	int retval;
5068 
5069 	if (usb_disabled())
5070 		return -ENODEV;
5071 
5072 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5073 
5074 	retval = -ENOMEM;
5075 
5076 	hcfg = dwc2_readl(hsotg->regs + HCFG);
5077 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5078 
5079 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5080 	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
5081 					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
5082 	if (!hsotg->frame_num_array)
5083 		goto error1;
5084 	hsotg->last_frame_num_array = kzalloc(
5085 			sizeof(*hsotg->last_frame_num_array) *
5086 			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
5087 	if (!hsotg->last_frame_num_array)
5088 		goto error1;
5089 #endif
5090 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5091 
5092 	/* Check if the bus driver or platform code has setup a dma_mask */
5093 	if (hsotg->params.host_dma &&
5094 	    !hsotg->dev->dma_mask) {
5095 		dev_warn(hsotg->dev,
5096 			 "dma_mask not set, disabling DMA\n");
5097 		hsotg->params.host_dma = false;
5098 		hsotg->params.dma_desc_enable = false;
5099 	}
5100 
5101 	/* Set device flags indicating whether the HCD supports DMA */
5102 	if (hsotg->params.host_dma) {
5103 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5104 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5105 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5106 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5107 	}
5108 
5109 	if (hsotg->params.change_speed_quirk) {
5110 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5111 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5112 	}
5113 
5114 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5115 	if (!hcd)
5116 		goto error1;
5117 
5118 	if (!hsotg->params.host_dma)
5119 		hcd->self.uses_dma = 0;
5120 
5121 	hcd->has_tt = 1;
5122 
5123 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5124 	hcd->rsrc_start = res->start;
5125 	hcd->rsrc_len = resource_size(res);
5126 
5127 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5128 	hsotg->priv = hcd;
5129 
5130 	/*
5131 	 * Disable the global interrupt until all the interrupt handlers are
5132 	 * installed
5133 	 */
5134 	dwc2_disable_global_interrupts(hsotg);
5135 
5136 	/* Initialize the DWC_otg core, and select the Phy type */
5137 	retval = dwc2_core_init(hsotg, true);
5138 	if (retval)
5139 		goto error2;
5140 
5141 	/* Create new workqueue and init work */
5142 	retval = -ENOMEM;
5143 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5144 	if (!hsotg->wq_otg) {
5145 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5146 		goto error2;
5147 	}
5148 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5149 
5150 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5151 
5152 	/* Initialize the non-periodic schedule */
5153 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5154 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5155 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5156 
5157 	/* Initialize the periodic schedule */
5158 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5159 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5160 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5161 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5162 
5163 	INIT_LIST_HEAD(&hsotg->split_order);
5164 
5165 	/*
5166 	 * Create a host channel descriptor for each host channel implemented
5167 	 * in the controller. Initialize the channel descriptor array.
5168 	 */
5169 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5170 	num_channels = hsotg->params.host_channels;
5171 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5172 
5173 	for (i = 0; i < num_channels; i++) {
5174 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5175 		if (!channel)
5176 			goto error3;
5177 		channel->hc_num = i;
5178 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5179 		hsotg->hc_ptr_array[i] = channel;
5180 	}
5181 
5182 	/* Initialize hsotg start work */
5183 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5184 
5185 	/* Initialize port reset work */
5186 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5187 
5188 	/*
5189 	 * Allocate space for storing data on status transactions. Normally no
5190 	 * data is sent, but this space acts as a bit bucket. This must be
5191 	 * done after usb_add_hcd since that function allocates the DMA buffer
5192 	 * pool.
5193 	 */
5194 	if (hsotg->params.host_dma)
5195 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5196 					DWC2_HCD_STATUS_BUF_SIZE,
5197 					&hsotg->status_buf_dma, GFP_KERNEL);
5198 	else
5199 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5200 					  GFP_KERNEL);
5201 
5202 	if (!hsotg->status_buf)
5203 		goto error3;
5204 
5205 	/*
5206 	 * Create kmem caches to handle descriptor buffers in descriptor
5207 	 * DMA mode.
5208 	 * Alignment must be set to 512 bytes.
5209 	 */
5210 	if (hsotg->params.dma_desc_enable ||
5211 	    hsotg->params.dma_desc_fs_enable) {
5212 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5213 				sizeof(struct dwc2_dma_desc) *
5214 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5215 				NULL);
5216 		if (!hsotg->desc_gen_cache) {
5217 			dev_err(hsotg->dev,
5218 				"unable to create dwc2 generic desc cache\n");
5219 
5220 			/*
5221 			 * Disable descriptor dma mode since it will not be
5222 			 * usable.
5223 			 */
5224 			hsotg->params.dma_desc_enable = false;
5225 			hsotg->params.dma_desc_fs_enable = false;
5226 		}
5227 
5228 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5229 				sizeof(struct dwc2_dma_desc) *
5230 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5231 		if (!hsotg->desc_hsisoc_cache) {
5232 			dev_err(hsotg->dev,
5233 				"unable to create dwc2 hs isoc desc cache\n");
5234 
5235 			kmem_cache_destroy(hsotg->desc_gen_cache);
5236 
5237 			/*
5238 			 * Disable descriptor dma mode since it will not be
5239 			 * usable.
5240 			 */
5241 			hsotg->params.dma_desc_enable = false;
5242 			hsotg->params.dma_desc_fs_enable = false;
5243 		}
5244 	}
5245 
5246 	hsotg->otg_port = 1;
5247 	hsotg->frame_list = NULL;
5248 	hsotg->frame_list_dma = 0;
5249 	hsotg->periodic_qh_count = 0;
5250 
5251 	/* Initiate lx_state to L3 disconnected state */
5252 	hsotg->lx_state = DWC2_L3;
5253 
5254 	hcd->self.otg_port = hsotg->otg_port;
5255 
5256 	/* Don't support SG list at this point */
5257 	hcd->self.sg_tablesize = 0;
5258 
5259 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5260 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5261 
5262 	/*
5263 	 * Finish generic HCD initialization and start the HCD. This function
5264 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5265 	 * IRQ line, and calls hcd_start method.
5266 	 */
5267 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5268 	if (retval < 0)
5269 		goto error4;
5270 
5271 	device_wakeup_enable(hcd->self.controller);
5272 
5273 	dwc2_hcd_dump_state(hsotg);
5274 
5275 	dwc2_enable_global_interrupts(hsotg);
5276 
5277 	return 0;
5278 
5279 error4:
5280 	kmem_cache_destroy(hsotg->desc_gen_cache);
5281 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5282 error3:
5283 	dwc2_hcd_release(hsotg);
5284 error2:
5285 	usb_put_hcd(hcd);
5286 error1:
5287 
5288 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5289 	kfree(hsotg->last_frame_num_array);
5290 	kfree(hsotg->frame_num_array);
5291 #endif
5292 
5293 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5294 	return retval;
5295 }
5296 
5297 /*
5298  * Removes the HCD.
5299  * Frees memory and resources associated with the HCD and deregisters the bus.
5300  */
5301 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5302 {
5303 	struct usb_hcd *hcd;
5304 
5305 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5306 
5307 	hcd = dwc2_hsotg_to_hcd(hsotg);
5308 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5309 
5310 	if (!hcd) {
5311 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5312 			__func__);
5313 		return;
5314 	}
5315 
5316 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5317 		otg_set_host(hsotg->uphy->otg, NULL);
5318 
5319 	usb_remove_hcd(hcd);
5320 	hsotg->priv = NULL;
5321 
5322 	kmem_cache_destroy(hsotg->desc_gen_cache);
5323 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5324 
5325 	dwc2_hcd_release(hsotg);
5326 	usb_put_hcd(hcd);
5327 
5328 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5329 	kfree(hsotg->last_frame_num_array);
5330 	kfree(hsotg->frame_num_array);
5331 #endif
5332 }
5333 
5334 /**
5335  * dwc2_backup_host_registers() - Backup controller host registers.
5336  * When suspending usb bus, registers needs to be backuped
5337  * if controller power is disabled once suspended.
5338  *
5339  * @hsotg: Programming view of the DWC_otg controller
5340  */
5341 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5342 {
5343 	struct dwc2_hregs_backup *hr;
5344 	int i;
5345 
5346 	dev_dbg(hsotg->dev, "%s\n", __func__);
5347 
5348 	/* Backup Host regs */
5349 	hr = &hsotg->hr_backup;
5350 	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5351 	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5352 	for (i = 0; i < hsotg->params.host_channels; ++i)
5353 		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5354 
5355 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5356 	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5357 	hr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
5358 	hr->valid = true;
5359 
5360 	return 0;
5361 }
5362 
5363 /**
5364  * dwc2_restore_host_registers() - Restore controller host registers.
5365  * When resuming usb bus, device registers needs to be restored
5366  * if controller power were disabled.
5367  *
5368  * @hsotg: Programming view of the DWC_otg controller
5369  */
5370 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5371 {
5372 	struct dwc2_hregs_backup *hr;
5373 	int i;
5374 
5375 	dev_dbg(hsotg->dev, "%s\n", __func__);
5376 
5377 	/* Restore host regs */
5378 	hr = &hsotg->hr_backup;
5379 	if (!hr->valid) {
5380 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5381 			__func__);
5382 		return -EINVAL;
5383 	}
5384 	hr->valid = false;
5385 
5386 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5387 	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5388 
5389 	for (i = 0; i < hsotg->params.host_channels; ++i)
5390 		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5391 
5392 	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5393 	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5394 	dwc2_writel(hr->hptxfsiz, hsotg->regs + HPTXFSIZ);
5395 	hsotg->frame_number = 0;
5396 
5397 	return 0;
5398 }
5399 
5400 /**
5401  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5402  *
5403  * @hsotg: Programming view of the DWC_otg controller
5404  */
5405 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5406 {
5407 	unsigned long flags;
5408 	int ret = 0;
5409 	u32 hprt0;
5410 	u32 pcgcctl;
5411 	u32 gusbcfg;
5412 	u32 gpwrdn;
5413 
5414 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5415 	ret = dwc2_backup_global_registers(hsotg);
5416 	if (ret) {
5417 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5418 			__func__);
5419 		return ret;
5420 	}
5421 	ret = dwc2_backup_host_registers(hsotg);
5422 	if (ret) {
5423 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5424 			__func__);
5425 		return ret;
5426 	}
5427 
5428 	/* Enter USB Suspend Mode */
5429 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5430 	hprt0 |= HPRT0_SUSP;
5431 	hprt0 &= ~HPRT0_ENA;
5432 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
5433 
5434 	/* Wait for the HPRT0.PrtSusp register field to be set */
5435 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 300))
5436 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5437 
5438 	/*
5439 	 * We need to disable interrupts to prevent servicing of any IRQ
5440 	 * during going to hibernation
5441 	 */
5442 	spin_lock_irqsave(&hsotg->lock, flags);
5443 	hsotg->lx_state = DWC2_L2;
5444 
5445 	gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
5446 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5447 		/* ULPI interface */
5448 		/* Suspend the Phy Clock */
5449 		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5450 		pcgcctl |= PCGCTL_STOPPCLK;
5451 		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5452 		udelay(10);
5453 
5454 		gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5455 		gpwrdn |= GPWRDN_PMUACTV;
5456 		dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5457 		udelay(10);
5458 	} else {
5459 		/* UTMI+ Interface */
5460 		gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5461 		gpwrdn |= GPWRDN_PMUACTV;
5462 		dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5463 		udelay(10);
5464 
5465 		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5466 		pcgcctl |= PCGCTL_STOPPCLK;
5467 		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5468 		udelay(10);
5469 	}
5470 
5471 	/* Enable interrupts from wake up logic */
5472 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5473 	gpwrdn |= GPWRDN_PMUINTSEL;
5474 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5475 	udelay(10);
5476 
5477 	/* Unmask host mode interrupts in GPWRDN */
5478 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5479 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5480 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5481 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5482 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5483 	udelay(10);
5484 
5485 	/* Enable Power Down Clamp */
5486 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5487 	gpwrdn |= GPWRDN_PWRDNCLMP;
5488 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5489 	udelay(10);
5490 
5491 	/* Switch off VDD */
5492 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5493 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5494 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5495 
5496 	hsotg->hibernated = 1;
5497 	hsotg->bus_suspended = 1;
5498 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5499 	spin_unlock_irqrestore(&hsotg->lock, flags);
5500 	return ret;
5501 }
5502 
5503 /*
5504  * dwc2_host_exit_hibernation()
5505  *
5506  * @hsotg: Programming view of the DWC_otg controller
5507  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5508  * @param reset: indicates whether resume is initiated by Reset.
5509  *
5510  * Return: non-zero if failed to enter to hibernation.
5511  *
5512  * This function is for exiting from Host mode hibernation by
5513  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5514  */
5515 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5516 			       int reset)
5517 {
5518 	u32 gpwrdn;
5519 	u32 hprt0;
5520 	int ret = 0;
5521 	struct dwc2_gregs_backup *gr;
5522 	struct dwc2_hregs_backup *hr;
5523 
5524 	gr = &hsotg->gr_backup;
5525 	hr = &hsotg->hr_backup;
5526 
5527 	dev_dbg(hsotg->dev,
5528 		"%s: called with rem_wakeup = %d reset = %d\n",
5529 		__func__, rem_wakeup, reset);
5530 
5531 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5532 	hsotg->hibernated = 0;
5533 
5534 	/*
5535 	 * This step is not described in functional spec but if not wait for
5536 	 * this delay, mismatch interrupts occurred because just after restore
5537 	 * core is in Device mode(gintsts.curmode == 0)
5538 	 */
5539 	mdelay(100);
5540 
5541 	/* Clear all pending interupts */
5542 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5543 
5544 	/* De-assert Restore */
5545 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5546 	gpwrdn &= ~GPWRDN_RESTORE;
5547 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5548 	udelay(10);
5549 
5550 	/* Restore GUSBCFG, HCFG */
5551 	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5552 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5553 
5554 	/* De-assert Wakeup Logic */
5555 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5556 	gpwrdn &= ~GPWRDN_PMUACTV;
5557 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5558 	udelay(10);
5559 
5560 	hprt0 = hr->hprt0;
5561 	hprt0 |= HPRT0_PWR;
5562 	hprt0 &= ~HPRT0_ENA;
5563 	hprt0 &= ~HPRT0_SUSP;
5564 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
5565 
5566 	hprt0 = hr->hprt0;
5567 	hprt0 |= HPRT0_PWR;
5568 	hprt0 &= ~HPRT0_ENA;
5569 	hprt0 &= ~HPRT0_SUSP;
5570 
5571 	if (reset) {
5572 		hprt0 |= HPRT0_RST;
5573 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5574 
5575 		/* Wait for Resume time and then program HPRT again */
5576 		mdelay(60);
5577 		hprt0 &= ~HPRT0_RST;
5578 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5579 	} else {
5580 		hprt0 |= HPRT0_RES;
5581 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5582 
5583 		/* Wait for Resume time and then program HPRT again */
5584 		mdelay(100);
5585 		hprt0 &= ~HPRT0_RES;
5586 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5587 	}
5588 	/* Clear all interrupt status */
5589 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5590 	hprt0 |= HPRT0_CONNDET;
5591 	hprt0 |= HPRT0_ENACHG;
5592 	hprt0 &= ~HPRT0_ENA;
5593 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
5594 
5595 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5596 
5597 	/* Clear all pending interupts */
5598 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5599 
5600 	/* Restore global registers */
5601 	ret = dwc2_restore_global_registers(hsotg);
5602 	if (ret) {
5603 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5604 			__func__);
5605 		return ret;
5606 	}
5607 
5608 	/* Restore host registers */
5609 	ret = dwc2_restore_host_registers(hsotg);
5610 	if (ret) {
5611 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5612 			__func__);
5613 		return ret;
5614 	}
5615 
5616 	hsotg->hibernated = 0;
5617 	hsotg->bus_suspended = 0;
5618 	hsotg->lx_state = DWC2_L0;
5619 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5620 	return ret;
5621 }
5622