1 /* 2 * hcd.c - DesignWare HS OTG Controller host-mode routines 3 * 4 * Copyright (C) 2004-2013 Synopsys, Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The names of the above-listed copyright holders may not be used 16 * to endorse or promote products derived from this software without 17 * specific prior written permission. 18 * 19 * ALTERNATIVELY, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") as published by the Free Software 21 * Foundation; either version 2 of the License, or (at your option) any 22 * later version. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 /* 38 * This file contains the core HCD code, and implements the Linux hc_driver 39 * API 40 */ 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/spinlock.h> 44 #include <linux/interrupt.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/delay.h> 47 #include <linux/io.h> 48 #include <linux/slab.h> 49 #include <linux/usb.h> 50 51 #include <linux/usb/hcd.h> 52 #include <linux/usb/ch11.h> 53 54 #include "core.h" 55 #include "hcd.h" 56 57 /** 58 * dwc2_dump_channel_info() - Prints the state of a host channel 59 * 60 * @hsotg: Programming view of DWC_otg controller 61 * @chan: Pointer to the channel to dump 62 * 63 * Must be called with interrupt disabled and spinlock held 64 * 65 * NOTE: This function will be removed once the peripheral controller code 66 * is integrated and the driver is stable 67 */ 68 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg, 69 struct dwc2_host_chan *chan) 70 { 71 #ifdef VERBOSE_DEBUG 72 int num_channels = hsotg->core_params->host_channels; 73 struct dwc2_qh *qh; 74 u32 hcchar; 75 u32 hcsplt; 76 u32 hctsiz; 77 u32 hc_dma; 78 int i; 79 80 if (chan == NULL) 81 return; 82 83 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 84 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num)); 85 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num)); 86 hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num)); 87 88 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan); 89 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n", 90 hcchar, hcsplt); 91 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n", 92 hctsiz, hc_dma); 93 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", 94 chan->dev_addr, chan->ep_num, chan->ep_is_in); 95 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); 96 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); 97 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start); 98 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started); 99 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); 100 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); 101 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", 102 (unsigned long)chan->xfer_dma); 103 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); 104 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); 105 dev_dbg(hsotg->dev, " NP inactive sched:\n"); 106 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive, 107 qh_list_entry) 108 dev_dbg(hsotg->dev, " %p\n", qh); 109 dev_dbg(hsotg->dev, " NP active sched:\n"); 110 list_for_each_entry(qh, &hsotg->non_periodic_sched_active, 111 qh_list_entry) 112 dev_dbg(hsotg->dev, " %p\n", qh); 113 dev_dbg(hsotg->dev, " Channels:\n"); 114 for (i = 0; i < num_channels; i++) { 115 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; 116 117 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan); 118 } 119 #endif /* VERBOSE_DEBUG */ 120 } 121 122 /* 123 * Processes all the URBs in a single list of QHs. Completes them with 124 * -ETIMEDOUT and frees the QTD. 125 * 126 * Must be called with interrupt disabled and spinlock held 127 */ 128 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg, 129 struct list_head *qh_list) 130 { 131 struct dwc2_qh *qh, *qh_tmp; 132 struct dwc2_qtd *qtd, *qtd_tmp; 133 134 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { 135 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, 136 qtd_list_entry) { 137 dwc2_host_complete(hsotg, qtd, -ECONNRESET); 138 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 139 } 140 } 141 } 142 143 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg, 144 struct list_head *qh_list) 145 { 146 struct dwc2_qtd *qtd, *qtd_tmp; 147 struct dwc2_qh *qh, *qh_tmp; 148 unsigned long flags; 149 150 if (!qh_list->next) 151 /* The list hasn't been initialized yet */ 152 return; 153 154 spin_lock_irqsave(&hsotg->lock, flags); 155 156 /* Ensure there are no QTDs or URBs left */ 157 dwc2_kill_urbs_in_qh_list(hsotg, qh_list); 158 159 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { 160 dwc2_hcd_qh_unlink(hsotg, qh); 161 162 /* Free each QTD in the QH's QTD list */ 163 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, 164 qtd_list_entry) 165 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 166 167 spin_unlock_irqrestore(&hsotg->lock, flags); 168 dwc2_hcd_qh_free(hsotg, qh); 169 spin_lock_irqsave(&hsotg->lock, flags); 170 } 171 172 spin_unlock_irqrestore(&hsotg->lock, flags); 173 } 174 175 /* 176 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic 177 * and periodic schedules. The QTD associated with each URB is removed from 178 * the schedule and freed. This function may be called when a disconnect is 179 * detected or when the HCD is being stopped. 180 * 181 * Must be called with interrupt disabled and spinlock held 182 */ 183 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg) 184 { 185 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive); 186 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active); 187 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive); 188 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready); 189 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned); 190 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued); 191 } 192 193 /** 194 * dwc2_hcd_start() - Starts the HCD when switching to Host mode 195 * 196 * @hsotg: Pointer to struct dwc2_hsotg 197 */ 198 void dwc2_hcd_start(struct dwc2_hsotg *hsotg) 199 { 200 u32 hprt0; 201 202 if (hsotg->op_state == OTG_STATE_B_HOST) { 203 /* 204 * Reset the port. During a HNP mode switch the reset 205 * needs to occur within 1ms and have a duration of at 206 * least 50ms. 207 */ 208 hprt0 = dwc2_read_hprt0(hsotg); 209 hprt0 |= HPRT0_RST; 210 dwc2_writel(hprt0, hsotg->regs + HPRT0); 211 } 212 213 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work, 214 msecs_to_jiffies(50)); 215 } 216 217 /* Must be called with interrupt disabled and spinlock held */ 218 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg) 219 { 220 int num_channels = hsotg->core_params->host_channels; 221 struct dwc2_host_chan *channel; 222 u32 hcchar; 223 int i; 224 225 if (hsotg->core_params->dma_enable <= 0) { 226 /* Flush out any channel requests in slave mode */ 227 for (i = 0; i < num_channels; i++) { 228 channel = hsotg->hc_ptr_array[i]; 229 if (!list_empty(&channel->hc_list_entry)) 230 continue; 231 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 232 if (hcchar & HCCHAR_CHENA) { 233 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR); 234 hcchar |= HCCHAR_CHDIS; 235 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 236 } 237 } 238 } 239 240 for (i = 0; i < num_channels; i++) { 241 channel = hsotg->hc_ptr_array[i]; 242 if (!list_empty(&channel->hc_list_entry)) 243 continue; 244 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 245 if (hcchar & HCCHAR_CHENA) { 246 /* Halt the channel */ 247 hcchar |= HCCHAR_CHDIS; 248 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 249 } 250 251 dwc2_hc_cleanup(hsotg, channel); 252 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list); 253 /* 254 * Added for Descriptor DMA to prevent channel double cleanup in 255 * release_channel_ddma(), which is called from ep_disable when 256 * device disconnects 257 */ 258 channel->qh = NULL; 259 } 260 /* All channels have been freed, mark them available */ 261 if (hsotg->core_params->uframe_sched > 0) { 262 hsotg->available_host_channels = 263 hsotg->core_params->host_channels; 264 } else { 265 hsotg->non_periodic_channels = 0; 266 hsotg->periodic_channels = 0; 267 } 268 } 269 270 /** 271 * dwc2_hcd_connect() - Handles connect of the HCD 272 * 273 * @hsotg: Pointer to struct dwc2_hsotg 274 * 275 * Must be called with interrupt disabled and spinlock held 276 */ 277 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) 278 { 279 if (hsotg->lx_state != DWC2_L0) 280 usb_hcd_resume_root_hub(hsotg->priv); 281 282 hsotg->flags.b.port_connect_status_change = 1; 283 hsotg->flags.b.port_connect_status = 1; 284 } 285 286 /** 287 * dwc2_hcd_disconnect() - Handles disconnect of the HCD 288 * 289 * @hsotg: Pointer to struct dwc2_hsotg 290 * @force: If true, we won't try to reconnect even if we see device connected. 291 * 292 * Must be called with interrupt disabled and spinlock held 293 */ 294 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) 295 { 296 u32 intr; 297 u32 hprt0; 298 299 /* Set status flags for the hub driver */ 300 hsotg->flags.b.port_connect_status_change = 1; 301 hsotg->flags.b.port_connect_status = 0; 302 303 /* 304 * Shutdown any transfers in process by clearing the Tx FIFO Empty 305 * interrupt mask and status bits and disabling subsequent host 306 * channel interrupts. 307 */ 308 intr = dwc2_readl(hsotg->regs + GINTMSK); 309 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT); 310 dwc2_writel(intr, hsotg->regs + GINTMSK); 311 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT; 312 dwc2_writel(intr, hsotg->regs + GINTSTS); 313 314 /* 315 * Turn off the vbus power only if the core has transitioned to device 316 * mode. If still in host mode, need to keep power on to detect a 317 * reconnection. 318 */ 319 if (dwc2_is_device_mode(hsotg)) { 320 if (hsotg->op_state != OTG_STATE_A_SUSPEND) { 321 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n"); 322 dwc2_writel(0, hsotg->regs + HPRT0); 323 } 324 325 dwc2_disable_host_interrupts(hsotg); 326 } 327 328 /* Respond with an error status to all URBs in the schedule */ 329 dwc2_kill_all_urbs(hsotg); 330 331 if (dwc2_is_host_mode(hsotg)) 332 /* Clean up any host channels that were in use */ 333 dwc2_hcd_cleanup_channels(hsotg); 334 335 dwc2_host_disconnect(hsotg); 336 337 /* 338 * Add an extra check here to see if we're actually connected but 339 * we don't have a detection interrupt pending. This can happen if: 340 * 1. hardware sees connect 341 * 2. hardware sees disconnect 342 * 3. hardware sees connect 343 * 4. dwc2_port_intr() - clears connect interrupt 344 * 5. dwc2_handle_common_intr() - calls here 345 * 346 * Without the extra check here we will end calling disconnect 347 * and won't get any future interrupts to handle the connect. 348 */ 349 if (!force) { 350 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 351 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS)) 352 dwc2_hcd_connect(hsotg); 353 } 354 } 355 356 /** 357 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup 358 * 359 * @hsotg: Pointer to struct dwc2_hsotg 360 */ 361 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg) 362 { 363 if (hsotg->bus_suspended) { 364 hsotg->flags.b.port_suspend_change = 1; 365 usb_hcd_resume_root_hub(hsotg->priv); 366 } 367 368 if (hsotg->lx_state == DWC2_L1) 369 hsotg->flags.b.port_l1_change = 1; 370 } 371 372 /** 373 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner 374 * 375 * @hsotg: Pointer to struct dwc2_hsotg 376 * 377 * Must be called with interrupt disabled and spinlock held 378 */ 379 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg) 380 { 381 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n"); 382 383 /* 384 * The root hub should be disconnected before this function is called. 385 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) 386 * and the QH lists (via ..._hcd_endpoint_disable). 387 */ 388 389 /* Turn off all host-specific interrupts */ 390 dwc2_disable_host_interrupts(hsotg); 391 392 /* Turn off the vbus power */ 393 dev_dbg(hsotg->dev, "PortPower off\n"); 394 dwc2_writel(0, hsotg->regs + HPRT0); 395 } 396 397 /* Caller must hold driver lock */ 398 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg, 399 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh, 400 struct dwc2_qtd *qtd) 401 { 402 u32 intr_mask; 403 int retval; 404 int dev_speed; 405 406 if (!hsotg->flags.b.port_connect_status) { 407 /* No longer connected */ 408 dev_err(hsotg->dev, "Not connected\n"); 409 return -ENODEV; 410 } 411 412 dev_speed = dwc2_host_get_speed(hsotg, urb->priv); 413 414 /* Some configurations cannot support LS traffic on a FS root port */ 415 if ((dev_speed == USB_SPEED_LOW) && 416 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) && 417 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) { 418 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 419 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 420 421 if (prtspd == HPRT0_SPD_FULL_SPEED) 422 return -ENODEV; 423 } 424 425 if (!qtd) 426 return -EINVAL; 427 428 dwc2_hcd_qtd_init(qtd, urb); 429 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh); 430 if (retval) { 431 dev_err(hsotg->dev, 432 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n", 433 retval); 434 return retval; 435 } 436 437 intr_mask = dwc2_readl(hsotg->regs + GINTMSK); 438 if (!(intr_mask & GINTSTS_SOF)) { 439 enum dwc2_transaction_type tr_type; 440 441 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK && 442 !(qtd->urb->flags & URB_GIVEBACK_ASAP)) 443 /* 444 * Do not schedule SG transactions until qtd has 445 * URB_GIVEBACK_ASAP set 446 */ 447 return 0; 448 449 tr_type = dwc2_hcd_select_transactions(hsotg); 450 if (tr_type != DWC2_TRANSACTION_NONE) 451 dwc2_hcd_queue_transactions(hsotg, tr_type); 452 } 453 454 return 0; 455 } 456 457 /* Must be called with interrupt disabled and spinlock held */ 458 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg, 459 struct dwc2_hcd_urb *urb) 460 { 461 struct dwc2_qh *qh; 462 struct dwc2_qtd *urb_qtd; 463 464 urb_qtd = urb->qtd; 465 if (!urb_qtd) { 466 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n"); 467 return -EINVAL; 468 } 469 470 qh = urb_qtd->qh; 471 if (!qh) { 472 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n"); 473 return -EINVAL; 474 } 475 476 urb->priv = NULL; 477 478 if (urb_qtd->in_process && qh->channel) { 479 dwc2_dump_channel_info(hsotg, qh->channel); 480 481 /* The QTD is in process (it has been assigned to a channel) */ 482 if (hsotg->flags.b.port_connect_status) 483 /* 484 * If still connected (i.e. in host mode), halt the 485 * channel so it can be used for other transfers. If 486 * no longer connected, the host registers can't be 487 * written to halt the channel since the core is in 488 * device mode. 489 */ 490 dwc2_hc_halt(hsotg, qh->channel, 491 DWC2_HC_XFER_URB_DEQUEUE); 492 } 493 494 /* 495 * Free the QTD and clean up the associated QH. Leave the QH in the 496 * schedule if it has any remaining QTDs. 497 */ 498 if (hsotg->core_params->dma_desc_enable <= 0) { 499 u8 in_process = urb_qtd->in_process; 500 501 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); 502 if (in_process) { 503 dwc2_hcd_qh_deactivate(hsotg, qh, 0); 504 qh->channel = NULL; 505 } else if (list_empty(&qh->qtd_list)) { 506 dwc2_hcd_qh_unlink(hsotg, qh); 507 } 508 } else { 509 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); 510 } 511 512 return 0; 513 } 514 515 /* Must NOT be called with interrupt disabled or spinlock held */ 516 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg, 517 struct usb_host_endpoint *ep, int retry) 518 { 519 struct dwc2_qtd *qtd, *qtd_tmp; 520 struct dwc2_qh *qh; 521 unsigned long flags; 522 int rc; 523 524 spin_lock_irqsave(&hsotg->lock, flags); 525 526 qh = ep->hcpriv; 527 if (!qh) { 528 rc = -EINVAL; 529 goto err; 530 } 531 532 while (!list_empty(&qh->qtd_list) && retry--) { 533 if (retry == 0) { 534 dev_err(hsotg->dev, 535 "## timeout in dwc2_hcd_endpoint_disable() ##\n"); 536 rc = -EBUSY; 537 goto err; 538 } 539 540 spin_unlock_irqrestore(&hsotg->lock, flags); 541 usleep_range(20000, 40000); 542 spin_lock_irqsave(&hsotg->lock, flags); 543 qh = ep->hcpriv; 544 if (!qh) { 545 rc = -EINVAL; 546 goto err; 547 } 548 } 549 550 dwc2_hcd_qh_unlink(hsotg, qh); 551 552 /* Free each QTD in the QH's QTD list */ 553 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) 554 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 555 556 ep->hcpriv = NULL; 557 spin_unlock_irqrestore(&hsotg->lock, flags); 558 dwc2_hcd_qh_free(hsotg, qh); 559 560 return 0; 561 562 err: 563 ep->hcpriv = NULL; 564 spin_unlock_irqrestore(&hsotg->lock, flags); 565 566 return rc; 567 } 568 569 /* Must be called with interrupt disabled and spinlock held */ 570 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg, 571 struct usb_host_endpoint *ep) 572 { 573 struct dwc2_qh *qh = ep->hcpriv; 574 575 if (!qh) 576 return -EINVAL; 577 578 qh->data_toggle = DWC2_HC_PID_DATA0; 579 580 return 0; 581 } 582 583 /* 584 * Initializes dynamic portions of the DWC_otg HCD state 585 * 586 * Must be called with interrupt disabled and spinlock held 587 */ 588 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg) 589 { 590 struct dwc2_host_chan *chan, *chan_tmp; 591 int num_channels; 592 int i; 593 594 hsotg->flags.d32 = 0; 595 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active; 596 597 if (hsotg->core_params->uframe_sched > 0) { 598 hsotg->available_host_channels = 599 hsotg->core_params->host_channels; 600 } else { 601 hsotg->non_periodic_channels = 0; 602 hsotg->periodic_channels = 0; 603 } 604 605 /* 606 * Put all channels in the free channel list and clean up channel 607 * states 608 */ 609 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list, 610 hc_list_entry) 611 list_del_init(&chan->hc_list_entry); 612 613 num_channels = hsotg->core_params->host_channels; 614 for (i = 0; i < num_channels; i++) { 615 chan = hsotg->hc_ptr_array[i]; 616 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list); 617 dwc2_hc_cleanup(hsotg, chan); 618 } 619 620 /* Initialize the DWC core for host mode operation */ 621 dwc2_core_host_init(hsotg); 622 } 623 624 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg, 625 struct dwc2_host_chan *chan, 626 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) 627 { 628 int hub_addr, hub_port; 629 630 chan->do_split = 1; 631 chan->xact_pos = qtd->isoc_split_pos; 632 chan->complete_split = qtd->complete_split; 633 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port); 634 chan->hub_addr = (u8)hub_addr; 635 chan->hub_port = (u8)hub_port; 636 } 637 638 static void *dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg, 639 struct dwc2_host_chan *chan, 640 struct dwc2_qtd *qtd, void *bufptr) 641 { 642 struct dwc2_hcd_urb *urb = qtd->urb; 643 struct dwc2_hcd_iso_packet_desc *frame_desc; 644 645 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) { 646 case USB_ENDPOINT_XFER_CONTROL: 647 chan->ep_type = USB_ENDPOINT_XFER_CONTROL; 648 649 switch (qtd->control_phase) { 650 case DWC2_CONTROL_SETUP: 651 dev_vdbg(hsotg->dev, " Control setup transaction\n"); 652 chan->do_ping = 0; 653 chan->ep_is_in = 0; 654 chan->data_pid_start = DWC2_HC_PID_SETUP; 655 if (hsotg->core_params->dma_enable > 0) 656 chan->xfer_dma = urb->setup_dma; 657 else 658 chan->xfer_buf = urb->setup_packet; 659 chan->xfer_len = 8; 660 bufptr = NULL; 661 break; 662 663 case DWC2_CONTROL_DATA: 664 dev_vdbg(hsotg->dev, " Control data transaction\n"); 665 chan->data_pid_start = qtd->data_toggle; 666 break; 667 668 case DWC2_CONTROL_STATUS: 669 /* 670 * Direction is opposite of data direction or IN if no 671 * data 672 */ 673 dev_vdbg(hsotg->dev, " Control status transaction\n"); 674 if (urb->length == 0) 675 chan->ep_is_in = 1; 676 else 677 chan->ep_is_in = 678 dwc2_hcd_is_pipe_out(&urb->pipe_info); 679 if (chan->ep_is_in) 680 chan->do_ping = 0; 681 chan->data_pid_start = DWC2_HC_PID_DATA1; 682 chan->xfer_len = 0; 683 if (hsotg->core_params->dma_enable > 0) 684 chan->xfer_dma = hsotg->status_buf_dma; 685 else 686 chan->xfer_buf = hsotg->status_buf; 687 bufptr = NULL; 688 break; 689 } 690 break; 691 692 case USB_ENDPOINT_XFER_BULK: 693 chan->ep_type = USB_ENDPOINT_XFER_BULK; 694 break; 695 696 case USB_ENDPOINT_XFER_INT: 697 chan->ep_type = USB_ENDPOINT_XFER_INT; 698 break; 699 700 case USB_ENDPOINT_XFER_ISOC: 701 chan->ep_type = USB_ENDPOINT_XFER_ISOC; 702 if (hsotg->core_params->dma_desc_enable > 0) 703 break; 704 705 frame_desc = &urb->iso_descs[qtd->isoc_frame_index]; 706 frame_desc->status = 0; 707 708 if (hsotg->core_params->dma_enable > 0) { 709 chan->xfer_dma = urb->dma; 710 chan->xfer_dma += frame_desc->offset + 711 qtd->isoc_split_offset; 712 } else { 713 chan->xfer_buf = urb->buf; 714 chan->xfer_buf += frame_desc->offset + 715 qtd->isoc_split_offset; 716 } 717 718 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset; 719 720 /* For non-dword aligned buffers */ 721 if (hsotg->core_params->dma_enable > 0 && 722 (chan->xfer_dma & 0x3)) 723 bufptr = (u8 *)urb->buf + frame_desc->offset + 724 qtd->isoc_split_offset; 725 else 726 bufptr = NULL; 727 728 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) { 729 if (chan->xfer_len <= 188) 730 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL; 731 else 732 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN; 733 } 734 break; 735 } 736 737 return bufptr; 738 } 739 740 static int dwc2_hc_setup_align_buf(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 741 struct dwc2_host_chan *chan, 742 struct dwc2_hcd_urb *urb, void *bufptr) 743 { 744 u32 buf_size; 745 struct urb *usb_urb; 746 struct usb_hcd *hcd; 747 748 if (!qh->dw_align_buf) { 749 if (chan->ep_type != USB_ENDPOINT_XFER_ISOC) 750 buf_size = hsotg->core_params->max_transfer_size; 751 else 752 /* 3072 = 3 max-size Isoc packets */ 753 buf_size = 3072; 754 755 qh->dw_align_buf = kmalloc(buf_size, GFP_ATOMIC | GFP_DMA); 756 if (!qh->dw_align_buf) 757 return -ENOMEM; 758 qh->dw_align_buf_size = buf_size; 759 } 760 761 if (chan->xfer_len) { 762 dev_vdbg(hsotg->dev, "%s(): non-aligned buffer\n", __func__); 763 usb_urb = urb->priv; 764 765 if (usb_urb) { 766 if (usb_urb->transfer_flags & 767 (URB_SETUP_MAP_SINGLE | URB_DMA_MAP_SG | 768 URB_DMA_MAP_PAGE | URB_DMA_MAP_SINGLE)) { 769 hcd = dwc2_hsotg_to_hcd(hsotg); 770 usb_hcd_unmap_urb_for_dma(hcd, usb_urb); 771 } 772 if (!chan->ep_is_in) 773 memcpy(qh->dw_align_buf, bufptr, 774 chan->xfer_len); 775 } else { 776 dev_warn(hsotg->dev, "no URB in dwc2_urb\n"); 777 } 778 } 779 780 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, 781 qh->dw_align_buf, qh->dw_align_buf_size, 782 chan->ep_is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 783 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) { 784 dev_err(hsotg->dev, "can't map align_buf\n"); 785 chan->align_buf = 0; 786 return -EINVAL; 787 } 788 789 chan->align_buf = qh->dw_align_buf_dma; 790 return 0; 791 } 792 793 /** 794 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host 795 * channel and initializes the host channel to perform the transactions. The 796 * host channel is removed from the free list. 797 * 798 * @hsotg: The HCD state structure 799 * @qh: Transactions from the first QTD for this QH are selected and assigned 800 * to a free host channel 801 */ 802 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 803 { 804 struct dwc2_host_chan *chan; 805 struct dwc2_hcd_urb *urb; 806 struct dwc2_qtd *qtd; 807 void *bufptr = NULL; 808 809 if (dbg_qh(qh)) 810 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh); 811 812 if (list_empty(&qh->qtd_list)) { 813 dev_dbg(hsotg->dev, "No QTDs in QH list\n"); 814 return -ENOMEM; 815 } 816 817 if (list_empty(&hsotg->free_hc_list)) { 818 dev_dbg(hsotg->dev, "No free channel to assign\n"); 819 return -ENOMEM; 820 } 821 822 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan, 823 hc_list_entry); 824 825 /* Remove host channel from free list */ 826 list_del_init(&chan->hc_list_entry); 827 828 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry); 829 urb = qtd->urb; 830 qh->channel = chan; 831 qtd->in_process = 1; 832 833 /* 834 * Use usb_pipedevice to determine device address. This address is 835 * 0 before the SET_ADDRESS command and the correct address afterward. 836 */ 837 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info); 838 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info); 839 chan->speed = qh->dev_speed; 840 chan->max_packet = dwc2_max_packet(qh->maxp); 841 842 chan->xfer_started = 0; 843 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS; 844 chan->error_state = (qtd->error_count > 0); 845 chan->halt_on_queue = 0; 846 chan->halt_pending = 0; 847 chan->requests = 0; 848 849 /* 850 * The following values may be modified in the transfer type section 851 * below. The xfer_len value may be reduced when the transfer is 852 * started to accommodate the max widths of the XferSize and PktCnt 853 * fields in the HCTSIZn register. 854 */ 855 856 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0); 857 if (chan->ep_is_in) 858 chan->do_ping = 0; 859 else 860 chan->do_ping = qh->ping_state; 861 862 chan->data_pid_start = qh->data_toggle; 863 chan->multi_count = 1; 864 865 if (urb->actual_length > urb->length && 866 !dwc2_hcd_is_pipe_in(&urb->pipe_info)) 867 urb->actual_length = urb->length; 868 869 if (hsotg->core_params->dma_enable > 0) { 870 chan->xfer_dma = urb->dma + urb->actual_length; 871 872 /* For non-dword aligned case */ 873 if (hsotg->core_params->dma_desc_enable <= 0 && 874 (chan->xfer_dma & 0x3)) 875 bufptr = (u8 *)urb->buf + urb->actual_length; 876 } else { 877 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length; 878 } 879 880 chan->xfer_len = urb->length - urb->actual_length; 881 chan->xfer_count = 0; 882 883 /* Set the split attributes if required */ 884 if (qh->do_split) 885 dwc2_hc_init_split(hsotg, chan, qtd, urb); 886 else 887 chan->do_split = 0; 888 889 /* Set the transfer attributes */ 890 bufptr = dwc2_hc_init_xfer(hsotg, chan, qtd, bufptr); 891 892 /* Non DWORD-aligned buffer case */ 893 if (bufptr) { 894 dev_vdbg(hsotg->dev, "Non-aligned buffer\n"); 895 if (dwc2_hc_setup_align_buf(hsotg, qh, chan, urb, bufptr)) { 896 dev_err(hsotg->dev, 897 "%s: Failed to allocate memory to handle non-dword aligned buffer\n", 898 __func__); 899 /* Add channel back to free list */ 900 chan->align_buf = 0; 901 chan->multi_count = 0; 902 list_add_tail(&chan->hc_list_entry, 903 &hsotg->free_hc_list); 904 qtd->in_process = 0; 905 qh->channel = NULL; 906 return -ENOMEM; 907 } 908 } else { 909 chan->align_buf = 0; 910 } 911 912 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 913 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 914 /* 915 * This value may be modified when the transfer is started 916 * to reflect the actual transfer length 917 */ 918 chan->multi_count = dwc2_hb_mult(qh->maxp); 919 920 if (hsotg->core_params->dma_desc_enable > 0) { 921 chan->desc_list_addr = qh->desc_list_dma; 922 chan->desc_list_sz = qh->desc_list_sz; 923 } 924 925 dwc2_hc_init(hsotg, chan); 926 chan->qh = qh; 927 928 return 0; 929 } 930 931 /** 932 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer 933 * schedule and assigns them to available host channels. Called from the HCD 934 * interrupt handler functions. 935 * 936 * @hsotg: The HCD state structure 937 * 938 * Return: The types of new transactions that were assigned to host channels 939 */ 940 enum dwc2_transaction_type dwc2_hcd_select_transactions( 941 struct dwc2_hsotg *hsotg) 942 { 943 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE; 944 struct list_head *qh_ptr; 945 struct dwc2_qh *qh; 946 int num_channels; 947 948 #ifdef DWC2_DEBUG_SOF 949 dev_vdbg(hsotg->dev, " Select Transactions\n"); 950 #endif 951 952 /* Process entries in the periodic ready list */ 953 qh_ptr = hsotg->periodic_sched_ready.next; 954 while (qh_ptr != &hsotg->periodic_sched_ready) { 955 if (list_empty(&hsotg->free_hc_list)) 956 break; 957 if (hsotg->core_params->uframe_sched > 0) { 958 if (hsotg->available_host_channels <= 1) 959 break; 960 hsotg->available_host_channels--; 961 } 962 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 963 if (dwc2_assign_and_init_hc(hsotg, qh)) 964 break; 965 966 /* 967 * Move the QH from the periodic ready schedule to the 968 * periodic assigned schedule 969 */ 970 qh_ptr = qh_ptr->next; 971 list_move(&qh->qh_list_entry, &hsotg->periodic_sched_assigned); 972 ret_val = DWC2_TRANSACTION_PERIODIC; 973 } 974 975 /* 976 * Process entries in the inactive portion of the non-periodic 977 * schedule. Some free host channels may not be used if they are 978 * reserved for periodic transfers. 979 */ 980 num_channels = hsotg->core_params->host_channels; 981 qh_ptr = hsotg->non_periodic_sched_inactive.next; 982 while (qh_ptr != &hsotg->non_periodic_sched_inactive) { 983 if (hsotg->core_params->uframe_sched <= 0 && 984 hsotg->non_periodic_channels >= num_channels - 985 hsotg->periodic_channels) 986 break; 987 if (list_empty(&hsotg->free_hc_list)) 988 break; 989 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 990 if (hsotg->core_params->uframe_sched > 0) { 991 if (hsotg->available_host_channels < 1) 992 break; 993 hsotg->available_host_channels--; 994 } 995 996 if (dwc2_assign_and_init_hc(hsotg, qh)) 997 break; 998 999 /* 1000 * Move the QH from the non-periodic inactive schedule to the 1001 * non-periodic active schedule 1002 */ 1003 qh_ptr = qh_ptr->next; 1004 list_move(&qh->qh_list_entry, 1005 &hsotg->non_periodic_sched_active); 1006 1007 if (ret_val == DWC2_TRANSACTION_NONE) 1008 ret_val = DWC2_TRANSACTION_NON_PERIODIC; 1009 else 1010 ret_val = DWC2_TRANSACTION_ALL; 1011 1012 if (hsotg->core_params->uframe_sched <= 0) 1013 hsotg->non_periodic_channels++; 1014 } 1015 1016 return ret_val; 1017 } 1018 1019 /** 1020 * dwc2_queue_transaction() - Attempts to queue a single transaction request for 1021 * a host channel associated with either a periodic or non-periodic transfer 1022 * 1023 * @hsotg: The HCD state structure 1024 * @chan: Host channel descriptor associated with either a periodic or 1025 * non-periodic transfer 1026 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO 1027 * for periodic transfers or the non-periodic Tx FIFO 1028 * for non-periodic transfers 1029 * 1030 * Return: 1 if a request is queued and more requests may be needed to 1031 * complete the transfer, 0 if no more requests are required for this 1032 * transfer, -1 if there is insufficient space in the Tx FIFO 1033 * 1034 * This function assumes that there is space available in the appropriate 1035 * request queue. For an OUT transfer or SETUP transaction in Slave mode, 1036 * it checks whether space is available in the appropriate Tx FIFO. 1037 * 1038 * Must be called with interrupt disabled and spinlock held 1039 */ 1040 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg, 1041 struct dwc2_host_chan *chan, 1042 u16 fifo_dwords_avail) 1043 { 1044 int retval = 0; 1045 1046 if (hsotg->core_params->dma_enable > 0) { 1047 if (hsotg->core_params->dma_desc_enable > 0) { 1048 if (!chan->xfer_started || 1049 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1050 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh); 1051 chan->qh->ping_state = 0; 1052 } 1053 } else if (!chan->xfer_started) { 1054 dwc2_hc_start_transfer(hsotg, chan); 1055 chan->qh->ping_state = 0; 1056 } 1057 } else if (chan->halt_pending) { 1058 /* Don't queue a request if the channel has been halted */ 1059 } else if (chan->halt_on_queue) { 1060 dwc2_hc_halt(hsotg, chan, chan->halt_status); 1061 } else if (chan->do_ping) { 1062 if (!chan->xfer_started) 1063 dwc2_hc_start_transfer(hsotg, chan); 1064 } else if (!chan->ep_is_in || 1065 chan->data_pid_start == DWC2_HC_PID_SETUP) { 1066 if ((fifo_dwords_avail * 4) >= chan->max_packet) { 1067 if (!chan->xfer_started) { 1068 dwc2_hc_start_transfer(hsotg, chan); 1069 retval = 1; 1070 } else { 1071 retval = dwc2_hc_continue_transfer(hsotg, chan); 1072 } 1073 } else { 1074 retval = -1; 1075 } 1076 } else { 1077 if (!chan->xfer_started) { 1078 dwc2_hc_start_transfer(hsotg, chan); 1079 retval = 1; 1080 } else { 1081 retval = dwc2_hc_continue_transfer(hsotg, chan); 1082 } 1083 } 1084 1085 return retval; 1086 } 1087 1088 /* 1089 * Processes periodic channels for the next frame and queues transactions for 1090 * these channels to the DWC_otg controller. After queueing transactions, the 1091 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions 1092 * to queue as Periodic Tx FIFO or request queue space becomes available. 1093 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. 1094 * 1095 * Must be called with interrupt disabled and spinlock held 1096 */ 1097 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg) 1098 { 1099 struct list_head *qh_ptr; 1100 struct dwc2_qh *qh; 1101 u32 tx_status; 1102 u32 fspcavail; 1103 u32 gintmsk; 1104 int status; 1105 int no_queue_space = 0; 1106 int no_fifo_space = 0; 1107 u32 qspcavail; 1108 1109 if (dbg_perio()) 1110 dev_vdbg(hsotg->dev, "Queue periodic transactions\n"); 1111 1112 tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 1113 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 1114 TXSTS_QSPCAVAIL_SHIFT; 1115 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 1116 TXSTS_FSPCAVAIL_SHIFT; 1117 1118 if (dbg_perio()) { 1119 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n", 1120 qspcavail); 1121 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n", 1122 fspcavail); 1123 } 1124 1125 qh_ptr = hsotg->periodic_sched_assigned.next; 1126 while (qh_ptr != &hsotg->periodic_sched_assigned) { 1127 tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 1128 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 1129 TXSTS_QSPCAVAIL_SHIFT; 1130 if (qspcavail == 0) { 1131 no_queue_space = 1; 1132 break; 1133 } 1134 1135 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 1136 if (!qh->channel) { 1137 qh_ptr = qh_ptr->next; 1138 continue; 1139 } 1140 1141 /* Make sure EP's TT buffer is clean before queueing qtds */ 1142 if (qh->tt_buffer_dirty) { 1143 qh_ptr = qh_ptr->next; 1144 continue; 1145 } 1146 1147 /* 1148 * Set a flag if we're queuing high-bandwidth in slave mode. 1149 * The flag prevents any halts to get into the request queue in 1150 * the middle of multiple high-bandwidth packets getting queued. 1151 */ 1152 if (hsotg->core_params->dma_enable <= 0 && 1153 qh->channel->multi_count > 1) 1154 hsotg->queuing_high_bandwidth = 1; 1155 1156 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 1157 TXSTS_FSPCAVAIL_SHIFT; 1158 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); 1159 if (status < 0) { 1160 no_fifo_space = 1; 1161 break; 1162 } 1163 1164 /* 1165 * In Slave mode, stay on the current transfer until there is 1166 * nothing more to do or the high-bandwidth request count is 1167 * reached. In DMA mode, only need to queue one request. The 1168 * controller automatically handles multiple packets for 1169 * high-bandwidth transfers. 1170 */ 1171 if (hsotg->core_params->dma_enable > 0 || status == 0 || 1172 qh->channel->requests == qh->channel->multi_count) { 1173 qh_ptr = qh_ptr->next; 1174 /* 1175 * Move the QH from the periodic assigned schedule to 1176 * the periodic queued schedule 1177 */ 1178 list_move(&qh->qh_list_entry, 1179 &hsotg->periodic_sched_queued); 1180 1181 /* done queuing high bandwidth */ 1182 hsotg->queuing_high_bandwidth = 0; 1183 } 1184 } 1185 1186 if (hsotg->core_params->dma_enable <= 0) { 1187 tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 1188 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 1189 TXSTS_QSPCAVAIL_SHIFT; 1190 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 1191 TXSTS_FSPCAVAIL_SHIFT; 1192 if (dbg_perio()) { 1193 dev_vdbg(hsotg->dev, 1194 " P Tx Req Queue Space Avail (after queue): %d\n", 1195 qspcavail); 1196 dev_vdbg(hsotg->dev, 1197 " P Tx FIFO Space Avail (after queue): %d\n", 1198 fspcavail); 1199 } 1200 1201 if (!list_empty(&hsotg->periodic_sched_assigned) || 1202 no_queue_space || no_fifo_space) { 1203 /* 1204 * May need to queue more transactions as the request 1205 * queue or Tx FIFO empties. Enable the periodic Tx 1206 * FIFO empty interrupt. (Always use the half-empty 1207 * level to ensure that new requests are loaded as 1208 * soon as possible.) 1209 */ 1210 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 1211 gintmsk |= GINTSTS_PTXFEMP; 1212 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 1213 } else { 1214 /* 1215 * Disable the Tx FIFO empty interrupt since there are 1216 * no more transactions that need to be queued right 1217 * now. This function is called from interrupt 1218 * handlers to queue more transactions as transfer 1219 * states change. 1220 */ 1221 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 1222 gintmsk &= ~GINTSTS_PTXFEMP; 1223 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 1224 } 1225 } 1226 } 1227 1228 /* 1229 * Processes active non-periodic channels and queues transactions for these 1230 * channels to the DWC_otg controller. After queueing transactions, the NP Tx 1231 * FIFO Empty interrupt is enabled if there are more transactions to queue as 1232 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx 1233 * FIFO Empty interrupt is disabled. 1234 * 1235 * Must be called with interrupt disabled and spinlock held 1236 */ 1237 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg) 1238 { 1239 struct list_head *orig_qh_ptr; 1240 struct dwc2_qh *qh; 1241 u32 tx_status; 1242 u32 qspcavail; 1243 u32 fspcavail; 1244 u32 gintmsk; 1245 int status; 1246 int no_queue_space = 0; 1247 int no_fifo_space = 0; 1248 int more_to_do = 0; 1249 1250 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n"); 1251 1252 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 1253 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 1254 TXSTS_QSPCAVAIL_SHIFT; 1255 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 1256 TXSTS_FSPCAVAIL_SHIFT; 1257 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n", 1258 qspcavail); 1259 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n", 1260 fspcavail); 1261 1262 /* 1263 * Keep track of the starting point. Skip over the start-of-list 1264 * entry. 1265 */ 1266 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active) 1267 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; 1268 orig_qh_ptr = hsotg->non_periodic_qh_ptr; 1269 1270 /* 1271 * Process once through the active list or until no more space is 1272 * available in the request queue or the Tx FIFO 1273 */ 1274 do { 1275 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 1276 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 1277 TXSTS_QSPCAVAIL_SHIFT; 1278 if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) { 1279 no_queue_space = 1; 1280 break; 1281 } 1282 1283 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh, 1284 qh_list_entry); 1285 if (!qh->channel) 1286 goto next; 1287 1288 /* Make sure EP's TT buffer is clean before queueing qtds */ 1289 if (qh->tt_buffer_dirty) 1290 goto next; 1291 1292 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 1293 TXSTS_FSPCAVAIL_SHIFT; 1294 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); 1295 1296 if (status > 0) { 1297 more_to_do = 1; 1298 } else if (status < 0) { 1299 no_fifo_space = 1; 1300 break; 1301 } 1302 next: 1303 /* Advance to next QH, skipping start-of-list entry */ 1304 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; 1305 if (hsotg->non_periodic_qh_ptr == 1306 &hsotg->non_periodic_sched_active) 1307 hsotg->non_periodic_qh_ptr = 1308 hsotg->non_periodic_qh_ptr->next; 1309 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr); 1310 1311 if (hsotg->core_params->dma_enable <= 0) { 1312 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 1313 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 1314 TXSTS_QSPCAVAIL_SHIFT; 1315 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 1316 TXSTS_FSPCAVAIL_SHIFT; 1317 dev_vdbg(hsotg->dev, 1318 " NP Tx Req Queue Space Avail (after queue): %d\n", 1319 qspcavail); 1320 dev_vdbg(hsotg->dev, 1321 " NP Tx FIFO Space Avail (after queue): %d\n", 1322 fspcavail); 1323 1324 if (more_to_do || no_queue_space || no_fifo_space) { 1325 /* 1326 * May need to queue more transactions as the request 1327 * queue or Tx FIFO empties. Enable the non-periodic 1328 * Tx FIFO empty interrupt. (Always use the half-empty 1329 * level to ensure that new requests are loaded as 1330 * soon as possible.) 1331 */ 1332 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 1333 gintmsk |= GINTSTS_NPTXFEMP; 1334 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 1335 } else { 1336 /* 1337 * Disable the Tx FIFO empty interrupt since there are 1338 * no more transactions that need to be queued right 1339 * now. This function is called from interrupt 1340 * handlers to queue more transactions as transfer 1341 * states change. 1342 */ 1343 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 1344 gintmsk &= ~GINTSTS_NPTXFEMP; 1345 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 1346 } 1347 } 1348 } 1349 1350 /** 1351 * dwc2_hcd_queue_transactions() - Processes the currently active host channels 1352 * and queues transactions for these channels to the DWC_otg controller. Called 1353 * from the HCD interrupt handler functions. 1354 * 1355 * @hsotg: The HCD state structure 1356 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic, 1357 * or both) 1358 * 1359 * Must be called with interrupt disabled and spinlock held 1360 */ 1361 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, 1362 enum dwc2_transaction_type tr_type) 1363 { 1364 #ifdef DWC2_DEBUG_SOF 1365 dev_vdbg(hsotg->dev, "Queue Transactions\n"); 1366 #endif 1367 /* Process host channels associated with periodic transfers */ 1368 if ((tr_type == DWC2_TRANSACTION_PERIODIC || 1369 tr_type == DWC2_TRANSACTION_ALL) && 1370 !list_empty(&hsotg->periodic_sched_assigned)) 1371 dwc2_process_periodic_channels(hsotg); 1372 1373 /* Process host channels associated with non-periodic transfers */ 1374 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC || 1375 tr_type == DWC2_TRANSACTION_ALL) { 1376 if (!list_empty(&hsotg->non_periodic_sched_active)) { 1377 dwc2_process_non_periodic_channels(hsotg); 1378 } else { 1379 /* 1380 * Ensure NP Tx FIFO empty interrupt is disabled when 1381 * there are no non-periodic transfers to process 1382 */ 1383 u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 1384 1385 gintmsk &= ~GINTSTS_NPTXFEMP; 1386 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 1387 } 1388 } 1389 } 1390 1391 static void dwc2_conn_id_status_change(struct work_struct *work) 1392 { 1393 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 1394 wf_otg); 1395 u32 count = 0; 1396 u32 gotgctl; 1397 unsigned long flags; 1398 1399 dev_dbg(hsotg->dev, "%s()\n", __func__); 1400 1401 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 1402 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl); 1403 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n", 1404 !!(gotgctl & GOTGCTL_CONID_B)); 1405 1406 /* B-Device connector (Device Mode) */ 1407 if (gotgctl & GOTGCTL_CONID_B) { 1408 /* Wait for switch to device mode */ 1409 dev_dbg(hsotg->dev, "connId B\n"); 1410 while (!dwc2_is_device_mode(hsotg)) { 1411 dev_info(hsotg->dev, 1412 "Waiting for Peripheral Mode, Mode=%s\n", 1413 dwc2_is_host_mode(hsotg) ? "Host" : 1414 "Peripheral"); 1415 usleep_range(20000, 40000); 1416 if (++count > 250) 1417 break; 1418 } 1419 if (count > 250) 1420 dev_err(hsotg->dev, 1421 "Connection id status change timed out\n"); 1422 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 1423 dwc2_core_init(hsotg, false); 1424 dwc2_enable_global_interrupts(hsotg); 1425 spin_lock_irqsave(&hsotg->lock, flags); 1426 dwc2_hsotg_core_init_disconnected(hsotg, false); 1427 spin_unlock_irqrestore(&hsotg->lock, flags); 1428 dwc2_hsotg_core_connect(hsotg); 1429 } else { 1430 /* A-Device connector (Host Mode) */ 1431 dev_dbg(hsotg->dev, "connId A\n"); 1432 while (!dwc2_is_host_mode(hsotg)) { 1433 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n", 1434 dwc2_is_host_mode(hsotg) ? 1435 "Host" : "Peripheral"); 1436 usleep_range(20000, 40000); 1437 if (++count > 250) 1438 break; 1439 } 1440 if (count > 250) 1441 dev_err(hsotg->dev, 1442 "Connection id status change timed out\n"); 1443 hsotg->op_state = OTG_STATE_A_HOST; 1444 1445 /* Initialize the Core for Host mode */ 1446 dwc2_core_init(hsotg, false); 1447 dwc2_enable_global_interrupts(hsotg); 1448 dwc2_hcd_start(hsotg); 1449 } 1450 } 1451 1452 static void dwc2_wakeup_detected(unsigned long data) 1453 { 1454 struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data; 1455 u32 hprt0; 1456 1457 dev_dbg(hsotg->dev, "%s()\n", __func__); 1458 1459 /* 1460 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms 1461 * so that OPT tests pass with all PHYs.) 1462 */ 1463 hprt0 = dwc2_read_hprt0(hsotg); 1464 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0); 1465 hprt0 &= ~HPRT0_RES; 1466 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1467 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n", 1468 dwc2_readl(hsotg->regs + HPRT0)); 1469 1470 dwc2_hcd_rem_wakeup(hsotg); 1471 hsotg->bus_suspended = 0; 1472 1473 /* Change to L0 state */ 1474 hsotg->lx_state = DWC2_L0; 1475 } 1476 1477 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg) 1478 { 1479 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 1480 1481 return hcd->self.b_hnp_enable; 1482 } 1483 1484 /* Must NOT be called with interrupt disabled or spinlock held */ 1485 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex) 1486 { 1487 unsigned long flags; 1488 u32 hprt0; 1489 u32 pcgctl; 1490 u32 gotgctl; 1491 1492 dev_dbg(hsotg->dev, "%s()\n", __func__); 1493 1494 spin_lock_irqsave(&hsotg->lock, flags); 1495 1496 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) { 1497 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 1498 gotgctl |= GOTGCTL_HSTSETHNPEN; 1499 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL); 1500 hsotg->op_state = OTG_STATE_A_SUSPEND; 1501 } 1502 1503 hprt0 = dwc2_read_hprt0(hsotg); 1504 hprt0 |= HPRT0_SUSP; 1505 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1506 1507 hsotg->bus_suspended = 1; 1508 1509 /* 1510 * If hibernation is supported, Phy clock will be suspended 1511 * after registers are backuped. 1512 */ 1513 if (!hsotg->core_params->hibernation) { 1514 /* Suspend the Phy Clock */ 1515 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 1516 pcgctl |= PCGCTL_STOPPCLK; 1517 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 1518 udelay(10); 1519 } 1520 1521 /* For HNP the bus must be suspended for at least 200ms */ 1522 if (dwc2_host_is_b_hnp_enabled(hsotg)) { 1523 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 1524 pcgctl &= ~PCGCTL_STOPPCLK; 1525 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 1526 1527 spin_unlock_irqrestore(&hsotg->lock, flags); 1528 1529 usleep_range(200000, 250000); 1530 } else { 1531 spin_unlock_irqrestore(&hsotg->lock, flags); 1532 } 1533 } 1534 1535 /* Must NOT be called with interrupt disabled or spinlock held */ 1536 static void dwc2_port_resume(struct dwc2_hsotg *hsotg) 1537 { 1538 unsigned long flags; 1539 u32 hprt0; 1540 u32 pcgctl; 1541 1542 spin_lock_irqsave(&hsotg->lock, flags); 1543 1544 /* 1545 * If hibernation is supported, Phy clock is already resumed 1546 * after registers restore. 1547 */ 1548 if (!hsotg->core_params->hibernation) { 1549 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 1550 pcgctl &= ~PCGCTL_STOPPCLK; 1551 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 1552 spin_unlock_irqrestore(&hsotg->lock, flags); 1553 usleep_range(20000, 40000); 1554 spin_lock_irqsave(&hsotg->lock, flags); 1555 } 1556 1557 hprt0 = dwc2_read_hprt0(hsotg); 1558 hprt0 |= HPRT0_RES; 1559 hprt0 &= ~HPRT0_SUSP; 1560 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1561 spin_unlock_irqrestore(&hsotg->lock, flags); 1562 1563 msleep(USB_RESUME_TIMEOUT); 1564 1565 spin_lock_irqsave(&hsotg->lock, flags); 1566 hprt0 = dwc2_read_hprt0(hsotg); 1567 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP); 1568 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1569 hsotg->bus_suspended = 0; 1570 spin_unlock_irqrestore(&hsotg->lock, flags); 1571 } 1572 1573 /* Handles hub class-specific requests */ 1574 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq, 1575 u16 wvalue, u16 windex, char *buf, u16 wlength) 1576 { 1577 struct usb_hub_descriptor *hub_desc; 1578 int retval = 0; 1579 u32 hprt0; 1580 u32 port_status; 1581 u32 speed; 1582 u32 pcgctl; 1583 1584 switch (typereq) { 1585 case ClearHubFeature: 1586 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue); 1587 1588 switch (wvalue) { 1589 case C_HUB_LOCAL_POWER: 1590 case C_HUB_OVER_CURRENT: 1591 /* Nothing required here */ 1592 break; 1593 1594 default: 1595 retval = -EINVAL; 1596 dev_err(hsotg->dev, 1597 "ClearHubFeature request %1xh unknown\n", 1598 wvalue); 1599 } 1600 break; 1601 1602 case ClearPortFeature: 1603 if (wvalue != USB_PORT_FEAT_L1) 1604 if (!windex || windex > 1) 1605 goto error; 1606 switch (wvalue) { 1607 case USB_PORT_FEAT_ENABLE: 1608 dev_dbg(hsotg->dev, 1609 "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); 1610 hprt0 = dwc2_read_hprt0(hsotg); 1611 hprt0 |= HPRT0_ENA; 1612 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1613 break; 1614 1615 case USB_PORT_FEAT_SUSPEND: 1616 dev_dbg(hsotg->dev, 1617 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); 1618 1619 if (hsotg->bus_suspended) 1620 dwc2_port_resume(hsotg); 1621 break; 1622 1623 case USB_PORT_FEAT_POWER: 1624 dev_dbg(hsotg->dev, 1625 "ClearPortFeature USB_PORT_FEAT_POWER\n"); 1626 hprt0 = dwc2_read_hprt0(hsotg); 1627 hprt0 &= ~HPRT0_PWR; 1628 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1629 break; 1630 1631 case USB_PORT_FEAT_INDICATOR: 1632 dev_dbg(hsotg->dev, 1633 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); 1634 /* Port indicator not supported */ 1635 break; 1636 1637 case USB_PORT_FEAT_C_CONNECTION: 1638 /* 1639 * Clears driver's internal Connect Status Change flag 1640 */ 1641 dev_dbg(hsotg->dev, 1642 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); 1643 hsotg->flags.b.port_connect_status_change = 0; 1644 break; 1645 1646 case USB_PORT_FEAT_C_RESET: 1647 /* Clears driver's internal Port Reset Change flag */ 1648 dev_dbg(hsotg->dev, 1649 "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); 1650 hsotg->flags.b.port_reset_change = 0; 1651 break; 1652 1653 case USB_PORT_FEAT_C_ENABLE: 1654 /* 1655 * Clears the driver's internal Port Enable/Disable 1656 * Change flag 1657 */ 1658 dev_dbg(hsotg->dev, 1659 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); 1660 hsotg->flags.b.port_enable_change = 0; 1661 break; 1662 1663 case USB_PORT_FEAT_C_SUSPEND: 1664 /* 1665 * Clears the driver's internal Port Suspend Change 1666 * flag, which is set when resume signaling on the host 1667 * port is complete 1668 */ 1669 dev_dbg(hsotg->dev, 1670 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); 1671 hsotg->flags.b.port_suspend_change = 0; 1672 break; 1673 1674 case USB_PORT_FEAT_C_PORT_L1: 1675 dev_dbg(hsotg->dev, 1676 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n"); 1677 hsotg->flags.b.port_l1_change = 0; 1678 break; 1679 1680 case USB_PORT_FEAT_C_OVER_CURRENT: 1681 dev_dbg(hsotg->dev, 1682 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); 1683 hsotg->flags.b.port_over_current_change = 0; 1684 break; 1685 1686 default: 1687 retval = -EINVAL; 1688 dev_err(hsotg->dev, 1689 "ClearPortFeature request %1xh unknown or unsupported\n", 1690 wvalue); 1691 } 1692 break; 1693 1694 case GetHubDescriptor: 1695 dev_dbg(hsotg->dev, "GetHubDescriptor\n"); 1696 hub_desc = (struct usb_hub_descriptor *)buf; 1697 hub_desc->bDescLength = 9; 1698 hub_desc->bDescriptorType = USB_DT_HUB; 1699 hub_desc->bNbrPorts = 1; 1700 hub_desc->wHubCharacteristics = 1701 cpu_to_le16(HUB_CHAR_COMMON_LPSM | 1702 HUB_CHAR_INDV_PORT_OCPM); 1703 hub_desc->bPwrOn2PwrGood = 1; 1704 hub_desc->bHubContrCurrent = 0; 1705 hub_desc->u.hs.DeviceRemovable[0] = 0; 1706 hub_desc->u.hs.DeviceRemovable[1] = 0xff; 1707 break; 1708 1709 case GetHubStatus: 1710 dev_dbg(hsotg->dev, "GetHubStatus\n"); 1711 memset(buf, 0, 4); 1712 break; 1713 1714 case GetPortStatus: 1715 dev_vdbg(hsotg->dev, 1716 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex, 1717 hsotg->flags.d32); 1718 if (!windex || windex > 1) 1719 goto error; 1720 1721 port_status = 0; 1722 if (hsotg->flags.b.port_connect_status_change) 1723 port_status |= USB_PORT_STAT_C_CONNECTION << 16; 1724 if (hsotg->flags.b.port_enable_change) 1725 port_status |= USB_PORT_STAT_C_ENABLE << 16; 1726 if (hsotg->flags.b.port_suspend_change) 1727 port_status |= USB_PORT_STAT_C_SUSPEND << 16; 1728 if (hsotg->flags.b.port_l1_change) 1729 port_status |= USB_PORT_STAT_C_L1 << 16; 1730 if (hsotg->flags.b.port_reset_change) 1731 port_status |= USB_PORT_STAT_C_RESET << 16; 1732 if (hsotg->flags.b.port_over_current_change) { 1733 dev_warn(hsotg->dev, "Overcurrent change detected\n"); 1734 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16; 1735 } 1736 1737 if (!hsotg->flags.b.port_connect_status) { 1738 /* 1739 * The port is disconnected, which means the core is 1740 * either in device mode or it soon will be. Just 1741 * return 0's for the remainder of the port status 1742 * since the port register can't be read if the core 1743 * is in device mode. 1744 */ 1745 *(__le32 *)buf = cpu_to_le32(port_status); 1746 break; 1747 } 1748 1749 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 1750 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0); 1751 1752 if (hprt0 & HPRT0_CONNSTS) 1753 port_status |= USB_PORT_STAT_CONNECTION; 1754 if (hprt0 & HPRT0_ENA) 1755 port_status |= USB_PORT_STAT_ENABLE; 1756 if (hprt0 & HPRT0_SUSP) 1757 port_status |= USB_PORT_STAT_SUSPEND; 1758 if (hprt0 & HPRT0_OVRCURRACT) 1759 port_status |= USB_PORT_STAT_OVERCURRENT; 1760 if (hprt0 & HPRT0_RST) 1761 port_status |= USB_PORT_STAT_RESET; 1762 if (hprt0 & HPRT0_PWR) 1763 port_status |= USB_PORT_STAT_POWER; 1764 1765 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 1766 if (speed == HPRT0_SPD_HIGH_SPEED) 1767 port_status |= USB_PORT_STAT_HIGH_SPEED; 1768 else if (speed == HPRT0_SPD_LOW_SPEED) 1769 port_status |= USB_PORT_STAT_LOW_SPEED; 1770 1771 if (hprt0 & HPRT0_TSTCTL_MASK) 1772 port_status |= USB_PORT_STAT_TEST; 1773 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ 1774 1775 if (hsotg->core_params->dma_desc_fs_enable) { 1776 /* 1777 * Enable descriptor DMA only if a full speed 1778 * device is connected. 1779 */ 1780 if (hsotg->new_connection && 1781 ((port_status & 1782 (USB_PORT_STAT_CONNECTION | 1783 USB_PORT_STAT_HIGH_SPEED | 1784 USB_PORT_STAT_LOW_SPEED)) == 1785 USB_PORT_STAT_CONNECTION)) { 1786 u32 hcfg; 1787 1788 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n"); 1789 hsotg->core_params->dma_desc_enable = 1; 1790 hcfg = dwc2_readl(hsotg->regs + HCFG); 1791 hcfg |= HCFG_DESCDMA; 1792 dwc2_writel(hcfg, hsotg->regs + HCFG); 1793 hsotg->new_connection = false; 1794 } 1795 } 1796 1797 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status); 1798 *(__le32 *)buf = cpu_to_le32(port_status); 1799 break; 1800 1801 case SetHubFeature: 1802 dev_dbg(hsotg->dev, "SetHubFeature\n"); 1803 /* No HUB features supported */ 1804 break; 1805 1806 case SetPortFeature: 1807 dev_dbg(hsotg->dev, "SetPortFeature\n"); 1808 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1)) 1809 goto error; 1810 1811 if (!hsotg->flags.b.port_connect_status) { 1812 /* 1813 * The port is disconnected, which means the core is 1814 * either in device mode or it soon will be. Just 1815 * return without doing anything since the port 1816 * register can't be written if the core is in device 1817 * mode. 1818 */ 1819 break; 1820 } 1821 1822 switch (wvalue) { 1823 case USB_PORT_FEAT_SUSPEND: 1824 dev_dbg(hsotg->dev, 1825 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); 1826 if (windex != hsotg->otg_port) 1827 goto error; 1828 dwc2_port_suspend(hsotg, windex); 1829 break; 1830 1831 case USB_PORT_FEAT_POWER: 1832 dev_dbg(hsotg->dev, 1833 "SetPortFeature - USB_PORT_FEAT_POWER\n"); 1834 hprt0 = dwc2_read_hprt0(hsotg); 1835 hprt0 |= HPRT0_PWR; 1836 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1837 break; 1838 1839 case USB_PORT_FEAT_RESET: 1840 hprt0 = dwc2_read_hprt0(hsotg); 1841 dev_dbg(hsotg->dev, 1842 "SetPortFeature - USB_PORT_FEAT_RESET\n"); 1843 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 1844 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK); 1845 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 1846 /* ??? Original driver does this */ 1847 dwc2_writel(0, hsotg->regs + PCGCTL); 1848 1849 hprt0 = dwc2_read_hprt0(hsotg); 1850 /* Clear suspend bit if resetting from suspend state */ 1851 hprt0 &= ~HPRT0_SUSP; 1852 1853 /* 1854 * When B-Host the Port reset bit is set in the Start 1855 * HCD Callback function, so that the reset is started 1856 * within 1ms of the HNP success interrupt 1857 */ 1858 if (!dwc2_hcd_is_b_host(hsotg)) { 1859 hprt0 |= HPRT0_PWR | HPRT0_RST; 1860 dev_dbg(hsotg->dev, 1861 "In host mode, hprt0=%08x\n", hprt0); 1862 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1863 } 1864 1865 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ 1866 usleep_range(50000, 70000); 1867 hprt0 &= ~HPRT0_RST; 1868 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1869 hsotg->lx_state = DWC2_L0; /* Now back to On state */ 1870 break; 1871 1872 case USB_PORT_FEAT_INDICATOR: 1873 dev_dbg(hsotg->dev, 1874 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); 1875 /* Not supported */ 1876 break; 1877 1878 case USB_PORT_FEAT_TEST: 1879 hprt0 = dwc2_read_hprt0(hsotg); 1880 dev_dbg(hsotg->dev, 1881 "SetPortFeature - USB_PORT_FEAT_TEST\n"); 1882 hprt0 &= ~HPRT0_TSTCTL_MASK; 1883 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT; 1884 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1885 break; 1886 1887 default: 1888 retval = -EINVAL; 1889 dev_err(hsotg->dev, 1890 "SetPortFeature %1xh unknown or unsupported\n", 1891 wvalue); 1892 break; 1893 } 1894 break; 1895 1896 default: 1897 error: 1898 retval = -EINVAL; 1899 dev_dbg(hsotg->dev, 1900 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n", 1901 typereq, windex, wvalue); 1902 break; 1903 } 1904 1905 return retval; 1906 } 1907 1908 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port) 1909 { 1910 int retval; 1911 1912 if (port != 1) 1913 return -EINVAL; 1914 1915 retval = (hsotg->flags.b.port_connect_status_change || 1916 hsotg->flags.b.port_reset_change || 1917 hsotg->flags.b.port_enable_change || 1918 hsotg->flags.b.port_suspend_change || 1919 hsotg->flags.b.port_over_current_change); 1920 1921 if (retval) { 1922 dev_dbg(hsotg->dev, 1923 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n"); 1924 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n", 1925 hsotg->flags.b.port_connect_status_change); 1926 dev_dbg(hsotg->dev, " port_reset_change: %d\n", 1927 hsotg->flags.b.port_reset_change); 1928 dev_dbg(hsotg->dev, " port_enable_change: %d\n", 1929 hsotg->flags.b.port_enable_change); 1930 dev_dbg(hsotg->dev, " port_suspend_change: %d\n", 1931 hsotg->flags.b.port_suspend_change); 1932 dev_dbg(hsotg->dev, " port_over_current_change: %d\n", 1933 hsotg->flags.b.port_over_current_change); 1934 } 1935 1936 return retval; 1937 } 1938 1939 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) 1940 { 1941 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM); 1942 1943 #ifdef DWC2_DEBUG_SOF 1944 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n", 1945 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT); 1946 #endif 1947 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; 1948 } 1949 1950 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg) 1951 { 1952 return hsotg->op_state == OTG_STATE_B_HOST; 1953 } 1954 1955 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg, 1956 int iso_desc_count, 1957 gfp_t mem_flags) 1958 { 1959 struct dwc2_hcd_urb *urb; 1960 u32 size = sizeof(*urb) + iso_desc_count * 1961 sizeof(struct dwc2_hcd_iso_packet_desc); 1962 1963 urb = kzalloc(size, mem_flags); 1964 if (urb) 1965 urb->packet_count = iso_desc_count; 1966 return urb; 1967 } 1968 1969 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg, 1970 struct dwc2_hcd_urb *urb, u8 dev_addr, 1971 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps) 1972 { 1973 if (dbg_perio() || 1974 ep_type == USB_ENDPOINT_XFER_BULK || 1975 ep_type == USB_ENDPOINT_XFER_CONTROL) 1976 dev_vdbg(hsotg->dev, 1977 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n", 1978 dev_addr, ep_num, ep_dir, ep_type, mps); 1979 urb->pipe_info.dev_addr = dev_addr; 1980 urb->pipe_info.ep_num = ep_num; 1981 urb->pipe_info.pipe_type = ep_type; 1982 urb->pipe_info.pipe_dir = ep_dir; 1983 urb->pipe_info.mps = mps; 1984 } 1985 1986 /* 1987 * NOTE: This function will be removed once the peripheral controller code 1988 * is integrated and the driver is stable 1989 */ 1990 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg) 1991 { 1992 #ifdef DEBUG 1993 struct dwc2_host_chan *chan; 1994 struct dwc2_hcd_urb *urb; 1995 struct dwc2_qtd *qtd; 1996 int num_channels; 1997 u32 np_tx_status; 1998 u32 p_tx_status; 1999 int i; 2000 2001 num_channels = hsotg->core_params->host_channels; 2002 dev_dbg(hsotg->dev, "\n"); 2003 dev_dbg(hsotg->dev, 2004 "************************************************************\n"); 2005 dev_dbg(hsotg->dev, "HCD State:\n"); 2006 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels); 2007 2008 for (i = 0; i < num_channels; i++) { 2009 chan = hsotg->hc_ptr_array[i]; 2010 dev_dbg(hsotg->dev, " Channel %d:\n", i); 2011 dev_dbg(hsotg->dev, 2012 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", 2013 chan->dev_addr, chan->ep_num, chan->ep_is_in); 2014 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed); 2015 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); 2016 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); 2017 dev_dbg(hsotg->dev, " data_pid_start: %d\n", 2018 chan->data_pid_start); 2019 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count); 2020 dev_dbg(hsotg->dev, " xfer_started: %d\n", 2021 chan->xfer_started); 2022 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); 2023 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", 2024 (unsigned long)chan->xfer_dma); 2025 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); 2026 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count); 2027 dev_dbg(hsotg->dev, " halt_on_queue: %d\n", 2028 chan->halt_on_queue); 2029 dev_dbg(hsotg->dev, " halt_pending: %d\n", 2030 chan->halt_pending); 2031 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); 2032 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split); 2033 dev_dbg(hsotg->dev, " complete_split: %d\n", 2034 chan->complete_split); 2035 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr); 2036 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port); 2037 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos); 2038 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests); 2039 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); 2040 2041 if (chan->xfer_started) { 2042 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk; 2043 2044 hfnum = dwc2_readl(hsotg->regs + HFNUM); 2045 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 2046 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i)); 2047 hcint = dwc2_readl(hsotg->regs + HCINT(i)); 2048 hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i)); 2049 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum); 2050 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar); 2051 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz); 2052 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint); 2053 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk); 2054 } 2055 2056 if (!(chan->xfer_started && chan->qh)) 2057 continue; 2058 2059 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) { 2060 if (!qtd->in_process) 2061 break; 2062 urb = qtd->urb; 2063 dev_dbg(hsotg->dev, " URB Info:\n"); 2064 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n", 2065 qtd, urb); 2066 if (urb) { 2067 dev_dbg(hsotg->dev, 2068 " Dev: %d, EP: %d %s\n", 2069 dwc2_hcd_get_dev_addr(&urb->pipe_info), 2070 dwc2_hcd_get_ep_num(&urb->pipe_info), 2071 dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 2072 "IN" : "OUT"); 2073 dev_dbg(hsotg->dev, 2074 " Max packet size: %d\n", 2075 dwc2_hcd_get_mps(&urb->pipe_info)); 2076 dev_dbg(hsotg->dev, 2077 " transfer_buffer: %p\n", 2078 urb->buf); 2079 dev_dbg(hsotg->dev, 2080 " transfer_dma: %08lx\n", 2081 (unsigned long)urb->dma); 2082 dev_dbg(hsotg->dev, 2083 " transfer_buffer_length: %d\n", 2084 urb->length); 2085 dev_dbg(hsotg->dev, " actual_length: %d\n", 2086 urb->actual_length); 2087 } 2088 } 2089 } 2090 2091 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n", 2092 hsotg->non_periodic_channels); 2093 dev_dbg(hsotg->dev, " periodic_channels: %d\n", 2094 hsotg->periodic_channels); 2095 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs); 2096 np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 2097 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n", 2098 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); 2099 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n", 2100 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); 2101 p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 2102 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n", 2103 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); 2104 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n", 2105 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); 2106 dwc2_hcd_dump_frrem(hsotg); 2107 dwc2_dump_global_registers(hsotg); 2108 dwc2_dump_host_registers(hsotg); 2109 dev_dbg(hsotg->dev, 2110 "************************************************************\n"); 2111 dev_dbg(hsotg->dev, "\n"); 2112 #endif 2113 } 2114 2115 /* 2116 * NOTE: This function will be removed once the peripheral controller code 2117 * is integrated and the driver is stable 2118 */ 2119 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg) 2120 { 2121 #ifdef DWC2_DUMP_FRREM 2122 dev_dbg(hsotg->dev, "Frame remaining at SOF:\n"); 2123 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 2124 hsotg->frrem_samples, hsotg->frrem_accum, 2125 hsotg->frrem_samples > 0 ? 2126 hsotg->frrem_accum / hsotg->frrem_samples : 0); 2127 dev_dbg(hsotg->dev, "\n"); 2128 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n"); 2129 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 2130 hsotg->hfnum_7_samples, 2131 hsotg->hfnum_7_frrem_accum, 2132 hsotg->hfnum_7_samples > 0 ? 2133 hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0); 2134 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n"); 2135 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 2136 hsotg->hfnum_0_samples, 2137 hsotg->hfnum_0_frrem_accum, 2138 hsotg->hfnum_0_samples > 0 ? 2139 hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0); 2140 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n"); 2141 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 2142 hsotg->hfnum_other_samples, 2143 hsotg->hfnum_other_frrem_accum, 2144 hsotg->hfnum_other_samples > 0 ? 2145 hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples : 2146 0); 2147 dev_dbg(hsotg->dev, "\n"); 2148 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n"); 2149 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 2150 hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a, 2151 hsotg->hfnum_7_samples_a > 0 ? 2152 hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0); 2153 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n"); 2154 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 2155 hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a, 2156 hsotg->hfnum_0_samples_a > 0 ? 2157 hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0); 2158 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n"); 2159 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 2160 hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a, 2161 hsotg->hfnum_other_samples_a > 0 ? 2162 hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a 2163 : 0); 2164 dev_dbg(hsotg->dev, "\n"); 2165 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n"); 2166 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 2167 hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b, 2168 hsotg->hfnum_7_samples_b > 0 ? 2169 hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0); 2170 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n"); 2171 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 2172 hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b, 2173 (hsotg->hfnum_0_samples_b > 0) ? 2174 hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0); 2175 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n"); 2176 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 2177 hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b, 2178 (hsotg->hfnum_other_samples_b > 0) ? 2179 hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b 2180 : 0); 2181 #endif 2182 } 2183 2184 struct wrapper_priv_data { 2185 struct dwc2_hsotg *hsotg; 2186 }; 2187 2188 /* Gets the dwc2_hsotg from a usb_hcd */ 2189 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd) 2190 { 2191 struct wrapper_priv_data *p; 2192 2193 p = (struct wrapper_priv_data *) &hcd->hcd_priv; 2194 return p->hsotg; 2195 } 2196 2197 static int _dwc2_hcd_start(struct usb_hcd *hcd); 2198 2199 void dwc2_host_start(struct dwc2_hsotg *hsotg) 2200 { 2201 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 2202 2203 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg); 2204 _dwc2_hcd_start(hcd); 2205 } 2206 2207 void dwc2_host_disconnect(struct dwc2_hsotg *hsotg) 2208 { 2209 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 2210 2211 hcd->self.is_b_host = 0; 2212 } 2213 2214 void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr, 2215 int *hub_port) 2216 { 2217 struct urb *urb = context; 2218 2219 if (urb->dev->tt) 2220 *hub_addr = urb->dev->tt->hub->devnum; 2221 else 2222 *hub_addr = 0; 2223 *hub_port = urb->dev->ttport; 2224 } 2225 2226 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context) 2227 { 2228 struct urb *urb = context; 2229 2230 return urb->dev->speed; 2231 } 2232 2233 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw, 2234 struct urb *urb) 2235 { 2236 struct usb_bus *bus = hcd_to_bus(hcd); 2237 2238 if (urb->interval) 2239 bus->bandwidth_allocated += bw / urb->interval; 2240 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2241 bus->bandwidth_isoc_reqs++; 2242 else 2243 bus->bandwidth_int_reqs++; 2244 } 2245 2246 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw, 2247 struct urb *urb) 2248 { 2249 struct usb_bus *bus = hcd_to_bus(hcd); 2250 2251 if (urb->interval) 2252 bus->bandwidth_allocated -= bw / urb->interval; 2253 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2254 bus->bandwidth_isoc_reqs--; 2255 else 2256 bus->bandwidth_int_reqs--; 2257 } 2258 2259 /* 2260 * Sets the final status of an URB and returns it to the upper layer. Any 2261 * required cleanup of the URB is performed. 2262 * 2263 * Must be called with interrupt disabled and spinlock held 2264 */ 2265 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 2266 int status) 2267 { 2268 struct urb *urb; 2269 int i; 2270 2271 if (!qtd) { 2272 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__); 2273 return; 2274 } 2275 2276 if (!qtd->urb) { 2277 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__); 2278 return; 2279 } 2280 2281 urb = qtd->urb->priv; 2282 if (!urb) { 2283 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__); 2284 return; 2285 } 2286 2287 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb); 2288 2289 if (dbg_urb(urb)) 2290 dev_vdbg(hsotg->dev, 2291 "%s: urb %p device %d ep %d-%s status %d actual %d\n", 2292 __func__, urb, usb_pipedevice(urb->pipe), 2293 usb_pipeendpoint(urb->pipe), 2294 usb_pipein(urb->pipe) ? "IN" : "OUT", status, 2295 urb->actual_length); 2296 2297 2298 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 2299 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb); 2300 for (i = 0; i < urb->number_of_packets; ++i) { 2301 urb->iso_frame_desc[i].actual_length = 2302 dwc2_hcd_urb_get_iso_desc_actual_length( 2303 qtd->urb, i); 2304 urb->iso_frame_desc[i].status = 2305 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i); 2306 } 2307 } 2308 2309 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) { 2310 for (i = 0; i < urb->number_of_packets; i++) 2311 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n", 2312 i, urb->iso_frame_desc[i].status); 2313 } 2314 2315 urb->status = status; 2316 if (!status) { 2317 if ((urb->transfer_flags & URB_SHORT_NOT_OK) && 2318 urb->actual_length < urb->transfer_buffer_length) 2319 urb->status = -EREMOTEIO; 2320 } 2321 2322 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || 2323 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 2324 struct usb_host_endpoint *ep = urb->ep; 2325 2326 if (ep) 2327 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg), 2328 dwc2_hcd_get_ep_bandwidth(hsotg, ep), 2329 urb); 2330 } 2331 2332 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb); 2333 urb->hcpriv = NULL; 2334 kfree(qtd->urb); 2335 qtd->urb = NULL; 2336 2337 spin_unlock(&hsotg->lock); 2338 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status); 2339 spin_lock(&hsotg->lock); 2340 } 2341 2342 /* 2343 * Work queue function for starting the HCD when A-Cable is connected 2344 */ 2345 static void dwc2_hcd_start_func(struct work_struct *work) 2346 { 2347 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 2348 start_work.work); 2349 2350 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg); 2351 dwc2_host_start(hsotg); 2352 } 2353 2354 /* 2355 * Reset work queue function 2356 */ 2357 static void dwc2_hcd_reset_func(struct work_struct *work) 2358 { 2359 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 2360 reset_work.work); 2361 unsigned long flags; 2362 u32 hprt0; 2363 2364 dev_dbg(hsotg->dev, "USB RESET function called\n"); 2365 2366 spin_lock_irqsave(&hsotg->lock, flags); 2367 2368 hprt0 = dwc2_read_hprt0(hsotg); 2369 hprt0 &= ~HPRT0_RST; 2370 dwc2_writel(hprt0, hsotg->regs + HPRT0); 2371 hsotg->flags.b.port_reset_change = 1; 2372 2373 spin_unlock_irqrestore(&hsotg->lock, flags); 2374 } 2375 2376 /* 2377 * ========================================================================= 2378 * Linux HC Driver Functions 2379 * ========================================================================= 2380 */ 2381 2382 /* 2383 * Initializes the DWC_otg controller and its root hub and prepares it for host 2384 * mode operation. Activates the root port. Returns 0 on success and a negative 2385 * error code on failure. 2386 */ 2387 static int _dwc2_hcd_start(struct usb_hcd *hcd) 2388 { 2389 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2390 struct usb_bus *bus = hcd_to_bus(hcd); 2391 unsigned long flags; 2392 2393 dev_dbg(hsotg->dev, "DWC OTG HCD START\n"); 2394 2395 spin_lock_irqsave(&hsotg->lock, flags); 2396 hsotg->lx_state = DWC2_L0; 2397 hcd->state = HC_STATE_RUNNING; 2398 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2399 2400 if (dwc2_is_device_mode(hsotg)) { 2401 spin_unlock_irqrestore(&hsotg->lock, flags); 2402 return 0; /* why 0 ?? */ 2403 } 2404 2405 dwc2_hcd_reinit(hsotg); 2406 2407 /* Initialize and connect root hub if one is not already attached */ 2408 if (bus->root_hub) { 2409 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n"); 2410 /* Inform the HUB driver to resume */ 2411 usb_hcd_resume_root_hub(hcd); 2412 } 2413 2414 spin_unlock_irqrestore(&hsotg->lock, flags); 2415 return 0; 2416 } 2417 2418 /* 2419 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are 2420 * stopped. 2421 */ 2422 static void _dwc2_hcd_stop(struct usb_hcd *hcd) 2423 { 2424 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2425 unsigned long flags; 2426 2427 /* Turn off all host-specific interrupts */ 2428 dwc2_disable_host_interrupts(hsotg); 2429 2430 /* Wait for interrupt processing to finish */ 2431 synchronize_irq(hcd->irq); 2432 2433 spin_lock_irqsave(&hsotg->lock, flags); 2434 /* Ensure hcd is disconnected */ 2435 dwc2_hcd_disconnect(hsotg, true); 2436 dwc2_hcd_stop(hsotg); 2437 hsotg->lx_state = DWC2_L3; 2438 hcd->state = HC_STATE_HALT; 2439 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2440 spin_unlock_irqrestore(&hsotg->lock, flags); 2441 2442 usleep_range(1000, 3000); 2443 } 2444 2445 static int _dwc2_hcd_suspend(struct usb_hcd *hcd) 2446 { 2447 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2448 unsigned long flags; 2449 int ret = 0; 2450 u32 hprt0; 2451 2452 spin_lock_irqsave(&hsotg->lock, flags); 2453 2454 if (hsotg->lx_state != DWC2_L0) 2455 goto unlock; 2456 2457 if (!HCD_HW_ACCESSIBLE(hcd)) 2458 goto unlock; 2459 2460 if (!hsotg->core_params->hibernation) 2461 goto skip_power_saving; 2462 2463 /* 2464 * Drive USB suspend and disable port Power 2465 * if usb bus is not suspended. 2466 */ 2467 if (!hsotg->bus_suspended) { 2468 hprt0 = dwc2_read_hprt0(hsotg); 2469 hprt0 |= HPRT0_SUSP; 2470 hprt0 &= ~HPRT0_PWR; 2471 dwc2_writel(hprt0, hsotg->regs + HPRT0); 2472 } 2473 2474 /* Enter hibernation */ 2475 ret = dwc2_enter_hibernation(hsotg); 2476 if (ret) { 2477 if (ret != -ENOTSUPP) 2478 dev_err(hsotg->dev, 2479 "enter hibernation failed\n"); 2480 goto skip_power_saving; 2481 } 2482 2483 /* Ask phy to be suspended */ 2484 if (!IS_ERR_OR_NULL(hsotg->uphy)) { 2485 spin_unlock_irqrestore(&hsotg->lock, flags); 2486 usb_phy_set_suspend(hsotg->uphy, true); 2487 spin_lock_irqsave(&hsotg->lock, flags); 2488 } 2489 2490 /* After entering hibernation, hardware is no more accessible */ 2491 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2492 2493 skip_power_saving: 2494 hsotg->lx_state = DWC2_L2; 2495 unlock: 2496 spin_unlock_irqrestore(&hsotg->lock, flags); 2497 2498 return ret; 2499 } 2500 2501 static int _dwc2_hcd_resume(struct usb_hcd *hcd) 2502 { 2503 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2504 unsigned long flags; 2505 int ret = 0; 2506 2507 spin_lock_irqsave(&hsotg->lock, flags); 2508 2509 if (hsotg->lx_state != DWC2_L2) 2510 goto unlock; 2511 2512 if (!hsotg->core_params->hibernation) { 2513 hsotg->lx_state = DWC2_L0; 2514 goto unlock; 2515 } 2516 2517 /* 2518 * Set HW accessible bit before powering on the controller 2519 * since an interrupt may rise. 2520 */ 2521 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2522 2523 /* 2524 * Enable power if not already done. 2525 * This must not be spinlocked since duration 2526 * of this call is unknown. 2527 */ 2528 if (!IS_ERR_OR_NULL(hsotg->uphy)) { 2529 spin_unlock_irqrestore(&hsotg->lock, flags); 2530 usb_phy_set_suspend(hsotg->uphy, false); 2531 spin_lock_irqsave(&hsotg->lock, flags); 2532 } 2533 2534 /* Exit hibernation */ 2535 ret = dwc2_exit_hibernation(hsotg, true); 2536 if (ret && (ret != -ENOTSUPP)) 2537 dev_err(hsotg->dev, "exit hibernation failed\n"); 2538 2539 hsotg->lx_state = DWC2_L0; 2540 2541 spin_unlock_irqrestore(&hsotg->lock, flags); 2542 2543 if (hsotg->bus_suspended) { 2544 spin_lock_irqsave(&hsotg->lock, flags); 2545 hsotg->flags.b.port_suspend_change = 1; 2546 spin_unlock_irqrestore(&hsotg->lock, flags); 2547 dwc2_port_resume(hsotg); 2548 } else { 2549 /* Wait for controller to correctly update D+/D- level */ 2550 usleep_range(3000, 5000); 2551 2552 /* 2553 * Clear Port Enable and Port Status changes. 2554 * Enable Port Power. 2555 */ 2556 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET | 2557 HPRT0_ENACHG, hsotg->regs + HPRT0); 2558 /* Wait for controller to detect Port Connect */ 2559 usleep_range(5000, 7000); 2560 } 2561 2562 return ret; 2563 unlock: 2564 spin_unlock_irqrestore(&hsotg->lock, flags); 2565 2566 return ret; 2567 } 2568 2569 /* Returns the current frame number */ 2570 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd) 2571 { 2572 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2573 2574 return dwc2_hcd_get_frame_number(hsotg); 2575 } 2576 2577 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb, 2578 char *fn_name) 2579 { 2580 #ifdef VERBOSE_DEBUG 2581 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2582 char *pipetype; 2583 char *speed; 2584 2585 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb); 2586 dev_vdbg(hsotg->dev, " Device address: %d\n", 2587 usb_pipedevice(urb->pipe)); 2588 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n", 2589 usb_pipeendpoint(urb->pipe), 2590 usb_pipein(urb->pipe) ? "IN" : "OUT"); 2591 2592 switch (usb_pipetype(urb->pipe)) { 2593 case PIPE_CONTROL: 2594 pipetype = "CONTROL"; 2595 break; 2596 case PIPE_BULK: 2597 pipetype = "BULK"; 2598 break; 2599 case PIPE_INTERRUPT: 2600 pipetype = "INTERRUPT"; 2601 break; 2602 case PIPE_ISOCHRONOUS: 2603 pipetype = "ISOCHRONOUS"; 2604 break; 2605 default: 2606 pipetype = "UNKNOWN"; 2607 break; 2608 } 2609 2610 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype, 2611 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ? 2612 "IN" : "OUT"); 2613 2614 switch (urb->dev->speed) { 2615 case USB_SPEED_HIGH: 2616 speed = "HIGH"; 2617 break; 2618 case USB_SPEED_FULL: 2619 speed = "FULL"; 2620 break; 2621 case USB_SPEED_LOW: 2622 speed = "LOW"; 2623 break; 2624 default: 2625 speed = "UNKNOWN"; 2626 break; 2627 } 2628 2629 dev_vdbg(hsotg->dev, " Speed: %s\n", speed); 2630 dev_vdbg(hsotg->dev, " Max packet size: %d\n", 2631 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); 2632 dev_vdbg(hsotg->dev, " Data buffer length: %d\n", 2633 urb->transfer_buffer_length); 2634 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n", 2635 urb->transfer_buffer, (unsigned long)urb->transfer_dma); 2636 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n", 2637 urb->setup_packet, (unsigned long)urb->setup_dma); 2638 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval); 2639 2640 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 2641 int i; 2642 2643 for (i = 0; i < urb->number_of_packets; i++) { 2644 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i); 2645 dev_vdbg(hsotg->dev, " offset: %d, length %d\n", 2646 urb->iso_frame_desc[i].offset, 2647 urb->iso_frame_desc[i].length); 2648 } 2649 } 2650 #endif 2651 } 2652 2653 /* 2654 * Starts processing a USB transfer request specified by a USB Request Block 2655 * (URB). mem_flags indicates the type of memory allocation to use while 2656 * processing this URB. 2657 */ 2658 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2659 gfp_t mem_flags) 2660 { 2661 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2662 struct usb_host_endpoint *ep = urb->ep; 2663 struct dwc2_hcd_urb *dwc2_urb; 2664 int i; 2665 int retval; 2666 int alloc_bandwidth = 0; 2667 u8 ep_type = 0; 2668 u32 tflags = 0; 2669 void *buf; 2670 unsigned long flags; 2671 struct dwc2_qh *qh; 2672 bool qh_allocated = false; 2673 struct dwc2_qtd *qtd; 2674 2675 if (dbg_urb(urb)) { 2676 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n"); 2677 dwc2_dump_urb_info(hcd, urb, "urb_enqueue"); 2678 } 2679 2680 if (ep == NULL) 2681 return -EINVAL; 2682 2683 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || 2684 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 2685 spin_lock_irqsave(&hsotg->lock, flags); 2686 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep)) 2687 alloc_bandwidth = 1; 2688 spin_unlock_irqrestore(&hsotg->lock, flags); 2689 } 2690 2691 switch (usb_pipetype(urb->pipe)) { 2692 case PIPE_CONTROL: 2693 ep_type = USB_ENDPOINT_XFER_CONTROL; 2694 break; 2695 case PIPE_ISOCHRONOUS: 2696 ep_type = USB_ENDPOINT_XFER_ISOC; 2697 break; 2698 case PIPE_BULK: 2699 ep_type = USB_ENDPOINT_XFER_BULK; 2700 break; 2701 case PIPE_INTERRUPT: 2702 ep_type = USB_ENDPOINT_XFER_INT; 2703 break; 2704 default: 2705 dev_warn(hsotg->dev, "Wrong ep type\n"); 2706 } 2707 2708 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets, 2709 mem_flags); 2710 if (!dwc2_urb) 2711 return -ENOMEM; 2712 2713 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe), 2714 usb_pipeendpoint(urb->pipe), ep_type, 2715 usb_pipein(urb->pipe), 2716 usb_maxpacket(urb->dev, urb->pipe, 2717 !(usb_pipein(urb->pipe)))); 2718 2719 buf = urb->transfer_buffer; 2720 2721 if (hcd->self.uses_dma) { 2722 if (!buf && (urb->transfer_dma & 3)) { 2723 dev_err(hsotg->dev, 2724 "%s: unaligned transfer with no transfer_buffer", 2725 __func__); 2726 retval = -EINVAL; 2727 goto fail0; 2728 } 2729 } 2730 2731 if (!(urb->transfer_flags & URB_NO_INTERRUPT)) 2732 tflags |= URB_GIVEBACK_ASAP; 2733 if (urb->transfer_flags & URB_ZERO_PACKET) 2734 tflags |= URB_SEND_ZERO_PACKET; 2735 2736 dwc2_urb->priv = urb; 2737 dwc2_urb->buf = buf; 2738 dwc2_urb->dma = urb->transfer_dma; 2739 dwc2_urb->length = urb->transfer_buffer_length; 2740 dwc2_urb->setup_packet = urb->setup_packet; 2741 dwc2_urb->setup_dma = urb->setup_dma; 2742 dwc2_urb->flags = tflags; 2743 dwc2_urb->interval = urb->interval; 2744 dwc2_urb->status = -EINPROGRESS; 2745 2746 for (i = 0; i < urb->number_of_packets; ++i) 2747 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i, 2748 urb->iso_frame_desc[i].offset, 2749 urb->iso_frame_desc[i].length); 2750 2751 urb->hcpriv = dwc2_urb; 2752 qh = (struct dwc2_qh *) ep->hcpriv; 2753 /* Create QH for the endpoint if it doesn't exist */ 2754 if (!qh) { 2755 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags); 2756 if (!qh) { 2757 retval = -ENOMEM; 2758 goto fail0; 2759 } 2760 ep->hcpriv = qh; 2761 qh_allocated = true; 2762 } 2763 2764 qtd = kzalloc(sizeof(*qtd), mem_flags); 2765 if (!qtd) { 2766 retval = -ENOMEM; 2767 goto fail1; 2768 } 2769 2770 spin_lock_irqsave(&hsotg->lock, flags); 2771 retval = usb_hcd_link_urb_to_ep(hcd, urb); 2772 if (retval) 2773 goto fail2; 2774 2775 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd); 2776 if (retval) 2777 goto fail3; 2778 2779 if (alloc_bandwidth) { 2780 dwc2_allocate_bus_bandwidth(hcd, 2781 dwc2_hcd_get_ep_bandwidth(hsotg, ep), 2782 urb); 2783 } 2784 2785 spin_unlock_irqrestore(&hsotg->lock, flags); 2786 2787 return 0; 2788 2789 fail3: 2790 dwc2_urb->priv = NULL; 2791 usb_hcd_unlink_urb_from_ep(hcd, urb); 2792 fail2: 2793 spin_unlock_irqrestore(&hsotg->lock, flags); 2794 urb->hcpriv = NULL; 2795 kfree(qtd); 2796 fail1: 2797 if (qh_allocated) { 2798 struct dwc2_qtd *qtd2, *qtd2_tmp; 2799 2800 ep->hcpriv = NULL; 2801 dwc2_hcd_qh_unlink(hsotg, qh); 2802 /* Free each QTD in the QH's QTD list */ 2803 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list, 2804 qtd_list_entry) 2805 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh); 2806 dwc2_hcd_qh_free(hsotg, qh); 2807 } 2808 fail0: 2809 kfree(dwc2_urb); 2810 2811 return retval; 2812 } 2813 2814 /* 2815 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success. 2816 */ 2817 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, 2818 int status) 2819 { 2820 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2821 int rc; 2822 unsigned long flags; 2823 2824 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n"); 2825 dwc2_dump_urb_info(hcd, urb, "urb_dequeue"); 2826 2827 spin_lock_irqsave(&hsotg->lock, flags); 2828 2829 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 2830 if (rc) 2831 goto out; 2832 2833 if (!urb->hcpriv) { 2834 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n"); 2835 goto out; 2836 } 2837 2838 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv); 2839 2840 usb_hcd_unlink_urb_from_ep(hcd, urb); 2841 2842 kfree(urb->hcpriv); 2843 urb->hcpriv = NULL; 2844 2845 /* Higher layer software sets URB status */ 2846 spin_unlock(&hsotg->lock); 2847 usb_hcd_giveback_urb(hcd, urb, status); 2848 spin_lock(&hsotg->lock); 2849 2850 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n"); 2851 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status); 2852 out: 2853 spin_unlock_irqrestore(&hsotg->lock, flags); 2854 2855 return rc; 2856 } 2857 2858 /* 2859 * Frees resources in the DWC_otg controller related to a given endpoint. Also 2860 * clears state in the HCD related to the endpoint. Any URBs for the endpoint 2861 * must already be dequeued. 2862 */ 2863 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd, 2864 struct usb_host_endpoint *ep) 2865 { 2866 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2867 2868 dev_dbg(hsotg->dev, 2869 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n", 2870 ep->desc.bEndpointAddress, ep->hcpriv); 2871 dwc2_hcd_endpoint_disable(hsotg, ep, 250); 2872 } 2873 2874 /* 2875 * Resets endpoint specific parameter values, in current version used to reset 2876 * the data toggle (as a WA). This function can be called from usb_clear_halt 2877 * routine. 2878 */ 2879 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd, 2880 struct usb_host_endpoint *ep) 2881 { 2882 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2883 unsigned long flags; 2884 2885 dev_dbg(hsotg->dev, 2886 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n", 2887 ep->desc.bEndpointAddress); 2888 2889 spin_lock_irqsave(&hsotg->lock, flags); 2890 dwc2_hcd_endpoint_reset(hsotg, ep); 2891 spin_unlock_irqrestore(&hsotg->lock, flags); 2892 } 2893 2894 /* 2895 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if 2896 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid 2897 * interrupt. 2898 * 2899 * This function is called by the USB core when an interrupt occurs 2900 */ 2901 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd) 2902 { 2903 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2904 2905 return dwc2_handle_hcd_intr(hsotg); 2906 } 2907 2908 /* 2909 * Creates Status Change bitmap for the root hub and root port. The bitmap is 2910 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 2911 * is the status change indicator for the single root port. Returns 1 if either 2912 * change indicator is 1, otherwise returns 0. 2913 */ 2914 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf) 2915 { 2916 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2917 2918 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1; 2919 return buf[0] != 0; 2920 } 2921 2922 /* Handles hub class-specific requests */ 2923 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue, 2924 u16 windex, char *buf, u16 wlength) 2925 { 2926 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq, 2927 wvalue, windex, buf, wlength); 2928 return retval; 2929 } 2930 2931 /* Handles hub TT buffer clear completions */ 2932 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd, 2933 struct usb_host_endpoint *ep) 2934 { 2935 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 2936 struct dwc2_qh *qh; 2937 unsigned long flags; 2938 2939 qh = ep->hcpriv; 2940 if (!qh) 2941 return; 2942 2943 spin_lock_irqsave(&hsotg->lock, flags); 2944 qh->tt_buffer_dirty = 0; 2945 2946 if (hsotg->flags.b.port_connect_status) 2947 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL); 2948 2949 spin_unlock_irqrestore(&hsotg->lock, flags); 2950 } 2951 2952 static struct hc_driver dwc2_hc_driver = { 2953 .description = "dwc2_hsotg", 2954 .product_desc = "DWC OTG Controller", 2955 .hcd_priv_size = sizeof(struct wrapper_priv_data), 2956 2957 .irq = _dwc2_hcd_irq, 2958 .flags = HCD_MEMORY | HCD_USB2, 2959 2960 .start = _dwc2_hcd_start, 2961 .stop = _dwc2_hcd_stop, 2962 .urb_enqueue = _dwc2_hcd_urb_enqueue, 2963 .urb_dequeue = _dwc2_hcd_urb_dequeue, 2964 .endpoint_disable = _dwc2_hcd_endpoint_disable, 2965 .endpoint_reset = _dwc2_hcd_endpoint_reset, 2966 .get_frame_number = _dwc2_hcd_get_frame_number, 2967 2968 .hub_status_data = _dwc2_hcd_hub_status_data, 2969 .hub_control = _dwc2_hcd_hub_control, 2970 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete, 2971 2972 .bus_suspend = _dwc2_hcd_suspend, 2973 .bus_resume = _dwc2_hcd_resume, 2974 }; 2975 2976 /* 2977 * Frees secondary storage associated with the dwc2_hsotg structure contained 2978 * in the struct usb_hcd field 2979 */ 2980 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg) 2981 { 2982 u32 ahbcfg; 2983 u32 dctl; 2984 int i; 2985 2986 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n"); 2987 2988 /* Free memory for QH/QTD lists */ 2989 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive); 2990 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active); 2991 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive); 2992 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready); 2993 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned); 2994 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued); 2995 2996 /* Free memory for the host channels */ 2997 for (i = 0; i < MAX_EPS_CHANNELS; i++) { 2998 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; 2999 3000 if (chan != NULL) { 3001 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n", 3002 i, chan); 3003 hsotg->hc_ptr_array[i] = NULL; 3004 kfree(chan); 3005 } 3006 } 3007 3008 if (hsotg->core_params->dma_enable > 0) { 3009 if (hsotg->status_buf) { 3010 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE, 3011 hsotg->status_buf, 3012 hsotg->status_buf_dma); 3013 hsotg->status_buf = NULL; 3014 } 3015 } else { 3016 kfree(hsotg->status_buf); 3017 hsotg->status_buf = NULL; 3018 } 3019 3020 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG); 3021 3022 /* Disable all interrupts */ 3023 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN; 3024 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG); 3025 dwc2_writel(0, hsotg->regs + GINTMSK); 3026 3027 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) { 3028 dctl = dwc2_readl(hsotg->regs + DCTL); 3029 dctl |= DCTL_SFTDISCON; 3030 dwc2_writel(dctl, hsotg->regs + DCTL); 3031 } 3032 3033 if (hsotg->wq_otg) { 3034 if (!cancel_work_sync(&hsotg->wf_otg)) 3035 flush_workqueue(hsotg->wq_otg); 3036 destroy_workqueue(hsotg->wq_otg); 3037 } 3038 3039 del_timer(&hsotg->wkp_timer); 3040 } 3041 3042 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg) 3043 { 3044 /* Turn off all host-specific interrupts */ 3045 dwc2_disable_host_interrupts(hsotg); 3046 3047 dwc2_hcd_free(hsotg); 3048 } 3049 3050 /* 3051 * Initializes the HCD. This function allocates memory for and initializes the 3052 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the 3053 * USB bus with the core and calls the hc_driver->start() function. It returns 3054 * a negative error on failure. 3055 */ 3056 int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq) 3057 { 3058 struct usb_hcd *hcd; 3059 struct dwc2_host_chan *channel; 3060 u32 hcfg; 3061 int i, num_channels; 3062 int retval; 3063 3064 if (usb_disabled()) 3065 return -ENODEV; 3066 3067 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n"); 3068 3069 retval = -ENOMEM; 3070 3071 hcfg = dwc2_readl(hsotg->regs + HCFG); 3072 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg); 3073 3074 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 3075 hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) * 3076 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL); 3077 if (!hsotg->frame_num_array) 3078 goto error1; 3079 hsotg->last_frame_num_array = kzalloc( 3080 sizeof(*hsotg->last_frame_num_array) * 3081 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL); 3082 if (!hsotg->last_frame_num_array) 3083 goto error1; 3084 hsotg->last_frame_num = HFNUM_MAX_FRNUM; 3085 #endif 3086 3087 /* Check if the bus driver or platform code has setup a dma_mask */ 3088 if (hsotg->core_params->dma_enable > 0 && 3089 hsotg->dev->dma_mask == NULL) { 3090 dev_warn(hsotg->dev, 3091 "dma_mask not set, disabling DMA\n"); 3092 hsotg->core_params->dma_enable = 0; 3093 hsotg->core_params->dma_desc_enable = 0; 3094 } 3095 3096 /* Set device flags indicating whether the HCD supports DMA */ 3097 if (hsotg->core_params->dma_enable > 0) { 3098 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) 3099 dev_warn(hsotg->dev, "can't set DMA mask\n"); 3100 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) 3101 dev_warn(hsotg->dev, "can't set coherent DMA mask\n"); 3102 } 3103 3104 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev)); 3105 if (!hcd) 3106 goto error1; 3107 3108 if (hsotg->core_params->dma_enable <= 0) 3109 hcd->self.uses_dma = 0; 3110 3111 hcd->has_tt = 1; 3112 3113 ((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg; 3114 hsotg->priv = hcd; 3115 3116 /* 3117 * Disable the global interrupt until all the interrupt handlers are 3118 * installed 3119 */ 3120 dwc2_disable_global_interrupts(hsotg); 3121 3122 /* Initialize the DWC_otg core, and select the Phy type */ 3123 retval = dwc2_core_init(hsotg, true); 3124 if (retval) 3125 goto error2; 3126 3127 /* Create new workqueue and init work */ 3128 retval = -ENOMEM; 3129 hsotg->wq_otg = create_singlethread_workqueue("dwc2"); 3130 if (!hsotg->wq_otg) { 3131 dev_err(hsotg->dev, "Failed to create workqueue\n"); 3132 goto error2; 3133 } 3134 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change); 3135 3136 setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected, 3137 (unsigned long)hsotg); 3138 3139 /* Initialize the non-periodic schedule */ 3140 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive); 3141 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active); 3142 3143 /* Initialize the periodic schedule */ 3144 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive); 3145 INIT_LIST_HEAD(&hsotg->periodic_sched_ready); 3146 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned); 3147 INIT_LIST_HEAD(&hsotg->periodic_sched_queued); 3148 3149 /* 3150 * Create a host channel descriptor for each host channel implemented 3151 * in the controller. Initialize the channel descriptor array. 3152 */ 3153 INIT_LIST_HEAD(&hsotg->free_hc_list); 3154 num_channels = hsotg->core_params->host_channels; 3155 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array)); 3156 3157 for (i = 0; i < num_channels; i++) { 3158 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 3159 if (channel == NULL) 3160 goto error3; 3161 channel->hc_num = i; 3162 hsotg->hc_ptr_array[i] = channel; 3163 } 3164 3165 if (hsotg->core_params->uframe_sched > 0) 3166 dwc2_hcd_init_usecs(hsotg); 3167 3168 /* Initialize hsotg start work */ 3169 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func); 3170 3171 /* Initialize port reset work */ 3172 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func); 3173 3174 /* 3175 * Allocate space for storing data on status transactions. Normally no 3176 * data is sent, but this space acts as a bit bucket. This must be 3177 * done after usb_add_hcd since that function allocates the DMA buffer 3178 * pool. 3179 */ 3180 if (hsotg->core_params->dma_enable > 0) 3181 hsotg->status_buf = dma_alloc_coherent(hsotg->dev, 3182 DWC2_HCD_STATUS_BUF_SIZE, 3183 &hsotg->status_buf_dma, GFP_KERNEL); 3184 else 3185 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE, 3186 GFP_KERNEL); 3187 3188 if (!hsotg->status_buf) 3189 goto error3; 3190 3191 /* 3192 * Create kmem caches to handle descriptor buffers in descriptor 3193 * DMA mode. 3194 * Alignment must be set to 512 bytes. 3195 */ 3196 if (hsotg->core_params->dma_desc_enable || 3197 hsotg->core_params->dma_desc_fs_enable) { 3198 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc", 3199 sizeof(struct dwc2_hcd_dma_desc) * 3200 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA, 3201 NULL); 3202 if (!hsotg->desc_gen_cache) { 3203 dev_err(hsotg->dev, 3204 "unable to create dwc2 generic desc cache\n"); 3205 3206 /* 3207 * Disable descriptor dma mode since it will not be 3208 * usable. 3209 */ 3210 hsotg->core_params->dma_desc_enable = 0; 3211 hsotg->core_params->dma_desc_fs_enable = 0; 3212 } 3213 3214 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc", 3215 sizeof(struct dwc2_hcd_dma_desc) * 3216 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL); 3217 if (!hsotg->desc_hsisoc_cache) { 3218 dev_err(hsotg->dev, 3219 "unable to create dwc2 hs isoc desc cache\n"); 3220 3221 kmem_cache_destroy(hsotg->desc_gen_cache); 3222 3223 /* 3224 * Disable descriptor dma mode since it will not be 3225 * usable. 3226 */ 3227 hsotg->core_params->dma_desc_enable = 0; 3228 hsotg->core_params->dma_desc_fs_enable = 0; 3229 } 3230 } 3231 3232 hsotg->otg_port = 1; 3233 hsotg->frame_list = NULL; 3234 hsotg->frame_list_dma = 0; 3235 hsotg->periodic_qh_count = 0; 3236 3237 /* Initiate lx_state to L3 disconnected state */ 3238 hsotg->lx_state = DWC2_L3; 3239 3240 hcd->self.otg_port = hsotg->otg_port; 3241 3242 /* Don't support SG list at this point */ 3243 hcd->self.sg_tablesize = 0; 3244 3245 if (!IS_ERR_OR_NULL(hsotg->uphy)) 3246 otg_set_host(hsotg->uphy->otg, &hcd->self); 3247 3248 /* 3249 * Finish generic HCD initialization and start the HCD. This function 3250 * allocates the DMA buffer pool, registers the USB bus, requests the 3251 * IRQ line, and calls hcd_start method. 3252 */ 3253 retval = usb_add_hcd(hcd, irq, IRQF_SHARED); 3254 if (retval < 0) 3255 goto error4; 3256 3257 device_wakeup_enable(hcd->self.controller); 3258 3259 dwc2_hcd_dump_state(hsotg); 3260 3261 dwc2_enable_global_interrupts(hsotg); 3262 3263 return 0; 3264 3265 error4: 3266 kmem_cache_destroy(hsotg->desc_gen_cache); 3267 kmem_cache_destroy(hsotg->desc_hsisoc_cache); 3268 error3: 3269 dwc2_hcd_release(hsotg); 3270 error2: 3271 usb_put_hcd(hcd); 3272 error1: 3273 kfree(hsotg->core_params); 3274 3275 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 3276 kfree(hsotg->last_frame_num_array); 3277 kfree(hsotg->frame_num_array); 3278 #endif 3279 3280 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval); 3281 return retval; 3282 } 3283 3284 /* 3285 * Removes the HCD. 3286 * Frees memory and resources associated with the HCD and deregisters the bus. 3287 */ 3288 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) 3289 { 3290 struct usb_hcd *hcd; 3291 3292 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n"); 3293 3294 hcd = dwc2_hsotg_to_hcd(hsotg); 3295 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd); 3296 3297 if (!hcd) { 3298 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n", 3299 __func__); 3300 return; 3301 } 3302 3303 if (!IS_ERR_OR_NULL(hsotg->uphy)) 3304 otg_set_host(hsotg->uphy->otg, NULL); 3305 3306 usb_remove_hcd(hcd); 3307 hsotg->priv = NULL; 3308 3309 kmem_cache_destroy(hsotg->desc_gen_cache); 3310 kmem_cache_destroy(hsotg->desc_hsisoc_cache); 3311 3312 dwc2_hcd_release(hsotg); 3313 usb_put_hcd(hcd); 3314 3315 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 3316 kfree(hsotg->last_frame_num_array); 3317 kfree(hsotg->frame_num_array); 3318 #endif 3319 } 3320