xref: /openbmc/linux/drivers/usb/dwc2/hcd.c (revision 06d5d6b7f9948a89543e1160ef852d57892c750d)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60 
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66 
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 	u32 intmsk;
76 
77 	/* Clear any pending OTG Interrupts */
78 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
79 
80 	/* Clear any pending interrupts */
81 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
82 
83 	/* Enable the interrupts in the GINTMSK */
84 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85 
86 	if (!hsotg->params.host_dma)
87 		intmsk |= GINTSTS_RXFLVL;
88 	if (!hsotg->params.external_id_pin_ctl)
89 		intmsk |= GINTSTS_CONIDSTSCHNG;
90 
91 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 		  GINTSTS_SESSREQINT;
93 
94 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 		intmsk |= GINTSTS_LPMTRANRCVD;
96 
97 	dwc2_writel(hsotg, intmsk, GINTMSK);
98 }
99 
100 /*
101  * Initializes the FSLSPClkSel field of the HCFG register depending on the
102  * PHY type
103  */
104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
105 {
106 	u32 hcfg, val;
107 
108 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
109 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
110 	     hsotg->params.ulpi_fs_ls) ||
111 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
112 		/* Full speed PHY */
113 		val = HCFG_FSLSPCLKSEL_48_MHZ;
114 	} else {
115 		/* High speed PHY running at full speed or high speed */
116 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
117 	}
118 
119 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
120 	hcfg = dwc2_readl(hsotg, HCFG);
121 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
122 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
123 	dwc2_writel(hsotg, hcfg, HCFG);
124 }
125 
126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
127 {
128 	u32 usbcfg, ggpio, i2cctl;
129 	int retval = 0;
130 
131 	/*
132 	 * core_init() is now called on every switch so only call the
133 	 * following for the first time through
134 	 */
135 	if (select_phy) {
136 		dev_dbg(hsotg->dev, "FS PHY selected\n");
137 
138 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
139 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
140 			usbcfg |= GUSBCFG_PHYSEL;
141 			dwc2_writel(hsotg, usbcfg, GUSBCFG);
142 
143 			/* Reset after a PHY select */
144 			retval = dwc2_core_reset(hsotg, false);
145 
146 			if (retval) {
147 				dev_err(hsotg->dev,
148 					"%s: Reset failed, aborting", __func__);
149 				return retval;
150 			}
151 		}
152 
153 		if (hsotg->params.activate_stm_fs_transceiver) {
154 			ggpio = dwc2_readl(hsotg, GGPIO);
155 			if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
156 				dev_dbg(hsotg->dev, "Activating transceiver\n");
157 				/*
158 				 * STM32F4x9 uses the GGPIO register as general
159 				 * core configuration register.
160 				 */
161 				ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
162 				dwc2_writel(hsotg, ggpio, GGPIO);
163 			}
164 		}
165 	}
166 
167 	/*
168 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
169 	 * do this on HNP Dev/Host mode switches (done in dev_init and
170 	 * host_init).
171 	 */
172 	if (dwc2_is_host_mode(hsotg))
173 		dwc2_init_fs_ls_pclk_sel(hsotg);
174 
175 	if (hsotg->params.i2c_enable) {
176 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
177 
178 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
179 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
180 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
181 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
182 
183 		/* Program GI2CCTL.I2CEn */
184 		i2cctl = dwc2_readl(hsotg, GI2CCTL);
185 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
186 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
187 		i2cctl &= ~GI2CCTL_I2CEN;
188 		dwc2_writel(hsotg, i2cctl, GI2CCTL);
189 		i2cctl |= GI2CCTL_I2CEN;
190 		dwc2_writel(hsotg, i2cctl, GI2CCTL);
191 	}
192 
193 	return retval;
194 }
195 
196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
197 {
198 	u32 usbcfg, usbcfg_old;
199 	int retval = 0;
200 
201 	if (!select_phy)
202 		return 0;
203 
204 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
205 	usbcfg_old = usbcfg;
206 
207 	/*
208 	 * HS PHY parameters. These parameters are preserved during soft reset
209 	 * so only program the first time. Do a soft reset immediately after
210 	 * setting phyif.
211 	 */
212 	switch (hsotg->params.phy_type) {
213 	case DWC2_PHY_TYPE_PARAM_ULPI:
214 		/* ULPI interface */
215 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
216 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
217 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
218 		if (hsotg->params.phy_ulpi_ddr)
219 			usbcfg |= GUSBCFG_DDRSEL;
220 
221 		/* Set external VBUS indicator as needed. */
222 		if (hsotg->params.oc_disable)
223 			usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
224 				   GUSBCFG_INDICATORPASSTHROUGH);
225 		break;
226 	case DWC2_PHY_TYPE_PARAM_UTMI:
227 		/* UTMI+ interface */
228 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
229 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
230 		if (hsotg->params.phy_utmi_width == 16)
231 			usbcfg |= GUSBCFG_PHYIF16;
232 		break;
233 	default:
234 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
235 		break;
236 	}
237 
238 	if (usbcfg != usbcfg_old) {
239 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
240 
241 		/* Reset after setting the PHY parameters */
242 		retval = dwc2_core_reset(hsotg, false);
243 		if (retval) {
244 			dev_err(hsotg->dev,
245 				"%s: Reset failed, aborting", __func__);
246 			return retval;
247 		}
248 	}
249 
250 	return retval;
251 }
252 
253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
254 {
255 	u32 usbcfg;
256 	int retval = 0;
257 
258 	if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
259 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
260 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
261 		/* If FS/LS mode with FS/LS PHY */
262 		retval = dwc2_fs_phy_init(hsotg, select_phy);
263 		if (retval)
264 			return retval;
265 	} else {
266 		/* High speed PHY */
267 		retval = dwc2_hs_phy_init(hsotg, select_phy);
268 		if (retval)
269 			return retval;
270 	}
271 
272 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
273 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
274 	    hsotg->params.ulpi_fs_ls) {
275 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
276 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
277 		usbcfg |= GUSBCFG_ULPI_FS_LS;
278 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
279 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
280 	} else {
281 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
282 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
283 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
284 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
285 	}
286 
287 	return retval;
288 }
289 
290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
291 {
292 	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
293 
294 	switch (hsotg->hw_params.arch) {
295 	case GHWCFG2_EXT_DMA_ARCH:
296 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
297 		return -EINVAL;
298 
299 	case GHWCFG2_INT_DMA_ARCH:
300 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
301 		if (hsotg->params.ahbcfg != -1) {
302 			ahbcfg &= GAHBCFG_CTRL_MASK;
303 			ahbcfg |= hsotg->params.ahbcfg &
304 				  ~GAHBCFG_CTRL_MASK;
305 		}
306 		break;
307 
308 	case GHWCFG2_SLAVE_ONLY_ARCH:
309 	default:
310 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
311 		break;
312 	}
313 
314 	if (hsotg->params.host_dma)
315 		ahbcfg |= GAHBCFG_DMA_EN;
316 	else
317 		hsotg->params.dma_desc_enable = false;
318 
319 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
320 
321 	return 0;
322 }
323 
324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
325 {
326 	u32 usbcfg;
327 
328 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
329 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
330 
331 	switch (hsotg->hw_params.op_mode) {
332 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
333 		if (hsotg->params.otg_cap ==
334 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
335 			usbcfg |= GUSBCFG_HNPCAP;
336 		if (hsotg->params.otg_cap !=
337 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
338 			usbcfg |= GUSBCFG_SRPCAP;
339 		break;
340 
341 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
342 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
343 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
344 		if (hsotg->params.otg_cap !=
345 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
346 			usbcfg |= GUSBCFG_SRPCAP;
347 		break;
348 
349 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
350 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
351 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
352 	default:
353 		break;
354 	}
355 
356 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
357 }
358 
359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
360 {
361 	if (hsotg->vbus_supply)
362 		return regulator_enable(hsotg->vbus_supply);
363 
364 	return 0;
365 }
366 
367 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
368 {
369 	if (hsotg->vbus_supply)
370 		return regulator_disable(hsotg->vbus_supply);
371 
372 	return 0;
373 }
374 
375 /**
376  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
377  *
378  * @hsotg: Programming view of DWC_otg controller
379  */
380 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
381 {
382 	u32 intmsk;
383 
384 	dev_dbg(hsotg->dev, "%s()\n", __func__);
385 
386 	/* Disable all interrupts */
387 	dwc2_writel(hsotg, 0, GINTMSK);
388 	dwc2_writel(hsotg, 0, HAINTMSK);
389 
390 	/* Enable the common interrupts */
391 	dwc2_enable_common_interrupts(hsotg);
392 
393 	/* Enable host mode interrupts without disturbing common interrupts */
394 	intmsk = dwc2_readl(hsotg, GINTMSK);
395 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
396 	dwc2_writel(hsotg, intmsk, GINTMSK);
397 }
398 
399 /**
400  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
401  *
402  * @hsotg: Programming view of DWC_otg controller
403  */
404 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
405 {
406 	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
407 
408 	/* Disable host mode interrupts without disturbing common interrupts */
409 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
410 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
411 	dwc2_writel(hsotg, intmsk, GINTMSK);
412 }
413 
414 /*
415  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
416  * For system that have a total fifo depth that is smaller than the default
417  * RX + TX fifo size.
418  *
419  * @hsotg: Programming view of DWC_otg controller
420  */
421 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
422 {
423 	struct dwc2_core_params *params = &hsotg->params;
424 	struct dwc2_hw_params *hw = &hsotg->hw_params;
425 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
426 
427 	total_fifo_size = hw->total_fifo_size;
428 	rxfsiz = params->host_rx_fifo_size;
429 	nptxfsiz = params->host_nperio_tx_fifo_size;
430 	ptxfsiz = params->host_perio_tx_fifo_size;
431 
432 	/*
433 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
434 	 * allocation with support for high bandwidth endpoints. Synopsys
435 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
436 	 * non-periodic as 512.
437 	 */
438 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
439 		/*
440 		 * For Buffer DMA mode/Scatter Gather DMA mode
441 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
442 		 * with n = number of host channel.
443 		 * 2 * ((1024/4) + 2) = 516
444 		 */
445 		rxfsiz = 516 + hw->host_channels;
446 
447 		/*
448 		 * min non-periodic tx fifo depth
449 		 * 2 * (largest non-periodic USB packet used / 4)
450 		 * 2 * (512/4) = 256
451 		 */
452 		nptxfsiz = 256;
453 
454 		/*
455 		 * min periodic tx fifo depth
456 		 * (largest packet size*MC)/4
457 		 * (1024 * 3)/4 = 768
458 		 */
459 		ptxfsiz = 768;
460 
461 		params->host_rx_fifo_size = rxfsiz;
462 		params->host_nperio_tx_fifo_size = nptxfsiz;
463 		params->host_perio_tx_fifo_size = ptxfsiz;
464 	}
465 
466 	/*
467 	 * If the summation of RX, NPTX and PTX fifo sizes is still
468 	 * bigger than the total_fifo_size, then we have a problem.
469 	 *
470 	 * We won't be able to allocate as many endpoints. Right now,
471 	 * we're just printing an error message, but ideally this FIFO
472 	 * allocation algorithm would be improved in the future.
473 	 *
474 	 * FIXME improve this FIFO allocation algorithm.
475 	 */
476 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
477 		dev_err(hsotg->dev, "invalid fifo sizes\n");
478 }
479 
480 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
481 {
482 	struct dwc2_core_params *params = &hsotg->params;
483 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
484 
485 	if (!params->enable_dynamic_fifo)
486 		return;
487 
488 	dwc2_calculate_dynamic_fifo(hsotg);
489 
490 	/* Rx FIFO */
491 	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
492 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
493 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
494 	grxfsiz |= params->host_rx_fifo_size <<
495 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
496 	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
497 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
498 		dwc2_readl(hsotg, GRXFSIZ));
499 
500 	/* Non-periodic Tx FIFO */
501 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
502 		dwc2_readl(hsotg, GNPTXFSIZ));
503 	nptxfsiz = params->host_nperio_tx_fifo_size <<
504 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
505 	nptxfsiz |= params->host_rx_fifo_size <<
506 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
507 	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
508 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
509 		dwc2_readl(hsotg, GNPTXFSIZ));
510 
511 	/* Periodic Tx FIFO */
512 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
513 		dwc2_readl(hsotg, HPTXFSIZ));
514 	hptxfsiz = params->host_perio_tx_fifo_size <<
515 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
516 	hptxfsiz |= (params->host_rx_fifo_size +
517 		     params->host_nperio_tx_fifo_size) <<
518 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
519 	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
520 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
521 		dwc2_readl(hsotg, HPTXFSIZ));
522 
523 	if (hsotg->params.en_multiple_tx_fifo &&
524 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
525 		/*
526 		 * This feature was implemented in 2.91a version
527 		 * Global DFIFOCFG calculation for Host mode -
528 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
529 		 */
530 		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
531 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
532 		dfifocfg |= (params->host_rx_fifo_size +
533 			     params->host_nperio_tx_fifo_size +
534 			     params->host_perio_tx_fifo_size) <<
535 			    GDFIFOCFG_EPINFOBASE_SHIFT &
536 			    GDFIFOCFG_EPINFOBASE_MASK;
537 		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
538 	}
539 }
540 
541 /**
542  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
543  * the HFIR register according to PHY type and speed
544  *
545  * @hsotg: Programming view of DWC_otg controller
546  *
547  * NOTE: The caller can modify the value of the HFIR register only after the
548  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
549  * has been set
550  */
551 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
552 {
553 	u32 usbcfg;
554 	u32 hprt0;
555 	int clock = 60;	/* default value */
556 
557 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
558 	hprt0 = dwc2_readl(hsotg, HPRT0);
559 
560 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
561 	    !(usbcfg & GUSBCFG_PHYIF16))
562 		clock = 60;
563 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
564 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
565 		clock = 48;
566 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
567 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
568 		clock = 30;
569 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
570 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
571 		clock = 60;
572 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
573 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
574 		clock = 48;
575 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
576 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
577 		clock = 48;
578 	if ((usbcfg & GUSBCFG_PHYSEL) &&
579 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
580 		clock = 48;
581 
582 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
583 		/* High speed case */
584 		return 125 * clock - 1;
585 
586 	/* FS/LS case */
587 	return 1000 * clock - 1;
588 }
589 
590 /**
591  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
592  * buffer
593  *
594  * @hsotg: Programming view of DWC_otg controller
595  * @dest:    Destination buffer for the packet
596  * @bytes:   Number of bytes to copy to the destination
597  */
598 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
599 {
600 	u32 *data_buf = (u32 *)dest;
601 	int word_count = (bytes + 3) / 4;
602 	int i;
603 
604 	/*
605 	 * Todo: Account for the case where dest is not dword aligned. This
606 	 * requires reading data from the FIFO into a u32 temp buffer, then
607 	 * moving it into the data buffer.
608 	 */
609 
610 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
611 
612 	for (i = 0; i < word_count; i++, data_buf++)
613 		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
614 }
615 
616 /**
617  * dwc2_dump_channel_info() - Prints the state of a host channel
618  *
619  * @hsotg: Programming view of DWC_otg controller
620  * @chan:  Pointer to the channel to dump
621  *
622  * Must be called with interrupt disabled and spinlock held
623  *
624  * NOTE: This function will be removed once the peripheral controller code
625  * is integrated and the driver is stable
626  */
627 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
628 				   struct dwc2_host_chan *chan)
629 {
630 #ifdef VERBOSE_DEBUG
631 	int num_channels = hsotg->params.host_channels;
632 	struct dwc2_qh *qh;
633 	u32 hcchar;
634 	u32 hcsplt;
635 	u32 hctsiz;
636 	u32 hc_dma;
637 	int i;
638 
639 	if (!chan)
640 		return;
641 
642 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
643 	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
644 	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
645 	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
646 
647 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
648 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
649 		hcchar, hcsplt);
650 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
651 		hctsiz, hc_dma);
652 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
653 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
654 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
655 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
656 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
657 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
658 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
659 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
660 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
661 		(unsigned long)chan->xfer_dma);
662 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
663 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
664 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
665 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
666 			    qh_list_entry)
667 		dev_dbg(hsotg->dev, "    %p\n", qh);
668 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
669 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
670 			    qh_list_entry)
671 		dev_dbg(hsotg->dev, "    %p\n", qh);
672 	dev_dbg(hsotg->dev, "  NP active sched:\n");
673 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
674 			    qh_list_entry)
675 		dev_dbg(hsotg->dev, "    %p\n", qh);
676 	dev_dbg(hsotg->dev, "  Channels:\n");
677 	for (i = 0; i < num_channels; i++) {
678 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
679 
680 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
681 	}
682 #endif /* VERBOSE_DEBUG */
683 }
684 
685 static int _dwc2_hcd_start(struct usb_hcd *hcd);
686 
687 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
688 {
689 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
690 
691 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
692 	_dwc2_hcd_start(hcd);
693 }
694 
695 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
696 {
697 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
698 
699 	hcd->self.is_b_host = 0;
700 }
701 
702 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
703 			       int *hub_addr, int *hub_port)
704 {
705 	struct urb *urb = context;
706 
707 	if (urb->dev->tt)
708 		*hub_addr = urb->dev->tt->hub->devnum;
709 	else
710 		*hub_addr = 0;
711 	*hub_port = urb->dev->ttport;
712 }
713 
714 /*
715  * =========================================================================
716  *  Low Level Host Channel Access Functions
717  * =========================================================================
718  */
719 
720 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
721 				      struct dwc2_host_chan *chan)
722 {
723 	u32 hcintmsk = HCINTMSK_CHHLTD;
724 
725 	switch (chan->ep_type) {
726 	case USB_ENDPOINT_XFER_CONTROL:
727 	case USB_ENDPOINT_XFER_BULK:
728 		dev_vdbg(hsotg->dev, "control/bulk\n");
729 		hcintmsk |= HCINTMSK_XFERCOMPL;
730 		hcintmsk |= HCINTMSK_STALL;
731 		hcintmsk |= HCINTMSK_XACTERR;
732 		hcintmsk |= HCINTMSK_DATATGLERR;
733 		if (chan->ep_is_in) {
734 			hcintmsk |= HCINTMSK_BBLERR;
735 		} else {
736 			hcintmsk |= HCINTMSK_NAK;
737 			hcintmsk |= HCINTMSK_NYET;
738 			if (chan->do_ping)
739 				hcintmsk |= HCINTMSK_ACK;
740 		}
741 
742 		if (chan->do_split) {
743 			hcintmsk |= HCINTMSK_NAK;
744 			if (chan->complete_split)
745 				hcintmsk |= HCINTMSK_NYET;
746 			else
747 				hcintmsk |= HCINTMSK_ACK;
748 		}
749 
750 		if (chan->error_state)
751 			hcintmsk |= HCINTMSK_ACK;
752 		break;
753 
754 	case USB_ENDPOINT_XFER_INT:
755 		if (dbg_perio())
756 			dev_vdbg(hsotg->dev, "intr\n");
757 		hcintmsk |= HCINTMSK_XFERCOMPL;
758 		hcintmsk |= HCINTMSK_NAK;
759 		hcintmsk |= HCINTMSK_STALL;
760 		hcintmsk |= HCINTMSK_XACTERR;
761 		hcintmsk |= HCINTMSK_DATATGLERR;
762 		hcintmsk |= HCINTMSK_FRMOVRUN;
763 
764 		if (chan->ep_is_in)
765 			hcintmsk |= HCINTMSK_BBLERR;
766 		if (chan->error_state)
767 			hcintmsk |= HCINTMSK_ACK;
768 		if (chan->do_split) {
769 			if (chan->complete_split)
770 				hcintmsk |= HCINTMSK_NYET;
771 			else
772 				hcintmsk |= HCINTMSK_ACK;
773 		}
774 		break;
775 
776 	case USB_ENDPOINT_XFER_ISOC:
777 		if (dbg_perio())
778 			dev_vdbg(hsotg->dev, "isoc\n");
779 		hcintmsk |= HCINTMSK_XFERCOMPL;
780 		hcintmsk |= HCINTMSK_FRMOVRUN;
781 		hcintmsk |= HCINTMSK_ACK;
782 
783 		if (chan->ep_is_in) {
784 			hcintmsk |= HCINTMSK_XACTERR;
785 			hcintmsk |= HCINTMSK_BBLERR;
786 		}
787 		break;
788 	default:
789 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
790 		break;
791 	}
792 
793 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
794 	if (dbg_hc(chan))
795 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
796 }
797 
798 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
799 				    struct dwc2_host_chan *chan)
800 {
801 	u32 hcintmsk = HCINTMSK_CHHLTD;
802 
803 	/*
804 	 * For Descriptor DMA mode core halts the channel on AHB error.
805 	 * Interrupt is not required.
806 	 */
807 	if (!hsotg->params.dma_desc_enable) {
808 		if (dbg_hc(chan))
809 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
810 		hcintmsk |= HCINTMSK_AHBERR;
811 	} else {
812 		if (dbg_hc(chan))
813 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
814 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
815 			hcintmsk |= HCINTMSK_XFERCOMPL;
816 	}
817 
818 	if (chan->error_state && !chan->do_split &&
819 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
820 		if (dbg_hc(chan))
821 			dev_vdbg(hsotg->dev, "setting ACK\n");
822 		hcintmsk |= HCINTMSK_ACK;
823 		if (chan->ep_is_in) {
824 			hcintmsk |= HCINTMSK_DATATGLERR;
825 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
826 				hcintmsk |= HCINTMSK_NAK;
827 		}
828 	}
829 
830 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
831 	if (dbg_hc(chan))
832 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
833 }
834 
835 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
836 				struct dwc2_host_chan *chan)
837 {
838 	u32 intmsk;
839 
840 	if (hsotg->params.host_dma) {
841 		if (dbg_hc(chan))
842 			dev_vdbg(hsotg->dev, "DMA enabled\n");
843 		dwc2_hc_enable_dma_ints(hsotg, chan);
844 	} else {
845 		if (dbg_hc(chan))
846 			dev_vdbg(hsotg->dev, "DMA disabled\n");
847 		dwc2_hc_enable_slave_ints(hsotg, chan);
848 	}
849 
850 	/* Enable the top level host channel interrupt */
851 	intmsk = dwc2_readl(hsotg, HAINTMSK);
852 	intmsk |= 1 << chan->hc_num;
853 	dwc2_writel(hsotg, intmsk, HAINTMSK);
854 	if (dbg_hc(chan))
855 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
856 
857 	/* Make sure host channel interrupts are enabled */
858 	intmsk = dwc2_readl(hsotg, GINTMSK);
859 	intmsk |= GINTSTS_HCHINT;
860 	dwc2_writel(hsotg, intmsk, GINTMSK);
861 	if (dbg_hc(chan))
862 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
863 }
864 
865 /**
866  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
867  * a specific endpoint
868  *
869  * @hsotg: Programming view of DWC_otg controller
870  * @chan:  Information needed to initialize the host channel
871  *
872  * The HCCHARn register is set up with the characteristics specified in chan.
873  * Host channel interrupts that may need to be serviced while this transfer is
874  * in progress are enabled.
875  */
876 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
877 {
878 	u8 hc_num = chan->hc_num;
879 	u32 hcintmsk;
880 	u32 hcchar;
881 	u32 hcsplt = 0;
882 
883 	if (dbg_hc(chan))
884 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
885 
886 	/* Clear old interrupt conditions for this host channel */
887 	hcintmsk = 0xffffffff;
888 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
889 	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
890 
891 	/* Enable channel interrupts required for this transfer */
892 	dwc2_hc_enable_ints(hsotg, chan);
893 
894 	/*
895 	 * Program the HCCHARn register with the endpoint characteristics for
896 	 * the current transfer
897 	 */
898 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
899 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
900 	if (chan->ep_is_in)
901 		hcchar |= HCCHAR_EPDIR;
902 	if (chan->speed == USB_SPEED_LOW)
903 		hcchar |= HCCHAR_LSPDDEV;
904 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
905 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
906 	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
907 	if (dbg_hc(chan)) {
908 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
909 			 hc_num, hcchar);
910 
911 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
912 			 __func__, hc_num);
913 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
914 			 chan->dev_addr);
915 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
916 			 chan->ep_num);
917 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
918 			 chan->ep_is_in);
919 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
920 			 chan->speed == USB_SPEED_LOW);
921 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
922 			 chan->ep_type);
923 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
924 			 chan->max_packet);
925 	}
926 
927 	/* Program the HCSPLT register for SPLITs */
928 	if (chan->do_split) {
929 		if (dbg_hc(chan))
930 			dev_vdbg(hsotg->dev,
931 				 "Programming HC %d with split --> %s\n",
932 				 hc_num,
933 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
934 		if (chan->complete_split)
935 			hcsplt |= HCSPLT_COMPSPLT;
936 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
937 			  HCSPLT_XACTPOS_MASK;
938 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
939 			  HCSPLT_HUBADDR_MASK;
940 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
941 			  HCSPLT_PRTADDR_MASK;
942 		if (dbg_hc(chan)) {
943 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
944 				 chan->complete_split);
945 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
946 				 chan->xact_pos);
947 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
948 				 chan->hub_addr);
949 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
950 				 chan->hub_port);
951 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
952 				 chan->ep_is_in);
953 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
954 				 chan->max_packet);
955 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
956 				 chan->xfer_len);
957 		}
958 	}
959 
960 	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
961 }
962 
963 /**
964  * dwc2_hc_halt() - Attempts to halt a host channel
965  *
966  * @hsotg:       Controller register interface
967  * @chan:        Host channel to halt
968  * @halt_status: Reason for halting the channel
969  *
970  * This function should only be called in Slave mode or to abort a transfer in
971  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
972  * controller halts the channel when the transfer is complete or a condition
973  * occurs that requires application intervention.
974  *
975  * In slave mode, checks for a free request queue entry, then sets the Channel
976  * Enable and Channel Disable bits of the Host Channel Characteristics
977  * register of the specified channel to intiate the halt. If there is no free
978  * request queue entry, sets only the Channel Disable bit of the HCCHARn
979  * register to flush requests for this channel. In the latter case, sets a
980  * flag to indicate that the host channel needs to be halted when a request
981  * queue slot is open.
982  *
983  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
984  * HCCHARn register. The controller ensures there is space in the request
985  * queue before submitting the halt request.
986  *
987  * Some time may elapse before the core flushes any posted requests for this
988  * host channel and halts. The Channel Halted interrupt handler completes the
989  * deactivation of the host channel.
990  */
991 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
992 		  enum dwc2_halt_status halt_status)
993 {
994 	u32 nptxsts, hptxsts, hcchar;
995 
996 	if (dbg_hc(chan))
997 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
998 
999 	/*
1000 	 * In buffer DMA or external DMA mode channel can't be halted
1001 	 * for non-split periodic channels. At the end of the next
1002 	 * uframe/frame (in the worst case), the core generates a channel
1003 	 * halted and disables the channel automatically.
1004 	 */
1005 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
1006 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
1007 		if (!chan->do_split &&
1008 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
1009 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
1010 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
1011 				__func__);
1012 			return;
1013 		}
1014 	}
1015 
1016 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1017 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1018 
1019 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1020 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
1021 		/*
1022 		 * Disable all channel interrupts except Ch Halted. The QTD
1023 		 * and QH state associated with this transfer has been cleared
1024 		 * (in the case of URB_DEQUEUE), so the channel needs to be
1025 		 * shut down carefully to prevent crashes.
1026 		 */
1027 		u32 hcintmsk = HCINTMSK_CHHLTD;
1028 
1029 		dev_vdbg(hsotg->dev, "dequeue/error\n");
1030 		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
1031 
1032 		/*
1033 		 * Make sure no other interrupts besides halt are currently
1034 		 * pending. Handling another interrupt could cause a crash due
1035 		 * to the QTD and QH state.
1036 		 */
1037 		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
1038 
1039 		/*
1040 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1041 		 * even if the channel was already halted for some other
1042 		 * reason
1043 		 */
1044 		chan->halt_status = halt_status;
1045 
1046 		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1047 		if (!(hcchar & HCCHAR_CHENA)) {
1048 			/*
1049 			 * The channel is either already halted or it hasn't
1050 			 * started yet. In DMA mode, the transfer may halt if
1051 			 * it finishes normally or a condition occurs that
1052 			 * requires driver intervention. Don't want to halt
1053 			 * the channel again. In either Slave or DMA mode,
1054 			 * it's possible that the transfer has been assigned
1055 			 * to a channel, but not started yet when an URB is
1056 			 * dequeued. Don't want to halt a channel that hasn't
1057 			 * started yet.
1058 			 */
1059 			return;
1060 		}
1061 	}
1062 	if (chan->halt_pending) {
1063 		/*
1064 		 * A halt has already been issued for this channel. This might
1065 		 * happen when a transfer is aborted by a higher level in
1066 		 * the stack.
1067 		 */
1068 		dev_vdbg(hsotg->dev,
1069 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1070 			 __func__, chan->hc_num);
1071 		return;
1072 	}
1073 
1074 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1075 
1076 	/* No need to set the bit in DDMA for disabling the channel */
1077 	/* TODO check it everywhere channel is disabled */
1078 	if (!hsotg->params.dma_desc_enable) {
1079 		if (dbg_hc(chan))
1080 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1081 		hcchar |= HCCHAR_CHENA;
1082 	} else {
1083 		if (dbg_hc(chan))
1084 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1085 	}
1086 	hcchar |= HCCHAR_CHDIS;
1087 
1088 	if (!hsotg->params.host_dma) {
1089 		if (dbg_hc(chan))
1090 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1091 		hcchar |= HCCHAR_CHENA;
1092 
1093 		/* Check for space in the request queue to issue the halt */
1094 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1095 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1096 			dev_vdbg(hsotg->dev, "control/bulk\n");
1097 			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
1098 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1099 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1100 				hcchar &= ~HCCHAR_CHENA;
1101 			}
1102 		} else {
1103 			if (dbg_perio())
1104 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1105 			hptxsts = dwc2_readl(hsotg, HPTXSTS);
1106 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1107 			    hsotg->queuing_high_bandwidth) {
1108 				if (dbg_perio())
1109 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1110 				hcchar &= ~HCCHAR_CHENA;
1111 			}
1112 		}
1113 	} else {
1114 		if (dbg_hc(chan))
1115 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1116 	}
1117 
1118 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1119 	chan->halt_status = halt_status;
1120 
1121 	if (hcchar & HCCHAR_CHENA) {
1122 		if (dbg_hc(chan))
1123 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1124 		chan->halt_pending = 1;
1125 		chan->halt_on_queue = 0;
1126 	} else {
1127 		if (dbg_hc(chan))
1128 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1129 		chan->halt_on_queue = 1;
1130 	}
1131 
1132 	if (dbg_hc(chan)) {
1133 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1134 			 chan->hc_num);
1135 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1136 			 hcchar);
1137 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1138 			 chan->halt_pending);
1139 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1140 			 chan->halt_on_queue);
1141 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1142 			 chan->halt_status);
1143 	}
1144 }
1145 
1146 /**
1147  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1148  *
1149  * @hsotg: Programming view of DWC_otg controller
1150  * @chan:  Identifies the host channel to clean up
1151  *
1152  * This function is normally called after a transfer is done and the host
1153  * channel is being released
1154  */
1155 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1156 {
1157 	u32 hcintmsk;
1158 
1159 	chan->xfer_started = 0;
1160 
1161 	list_del_init(&chan->split_order_list_entry);
1162 
1163 	/*
1164 	 * Clear channel interrupt enables and any unhandled channel interrupt
1165 	 * conditions
1166 	 */
1167 	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
1168 	hcintmsk = 0xffffffff;
1169 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1170 	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
1171 }
1172 
1173 /**
1174  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1175  * which frame a periodic transfer should occur
1176  *
1177  * @hsotg:  Programming view of DWC_otg controller
1178  * @chan:   Identifies the host channel to set up and its properties
1179  * @hcchar: Current value of the HCCHAR register for the specified host channel
1180  *
1181  * This function has no effect on non-periodic transfers
1182  */
1183 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1184 				       struct dwc2_host_chan *chan, u32 *hcchar)
1185 {
1186 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1187 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1188 		int host_speed;
1189 		int xfer_ns;
1190 		int xfer_us;
1191 		int bytes_in_fifo;
1192 		u16 fifo_space;
1193 		u16 frame_number;
1194 		u16 wire_frame;
1195 
1196 		/*
1197 		 * Try to figure out if we're an even or odd frame. If we set
1198 		 * even and the current frame number is even the the transfer
1199 		 * will happen immediately.  Similar if both are odd. If one is
1200 		 * even and the other is odd then the transfer will happen when
1201 		 * the frame number ticks.
1202 		 *
1203 		 * There's a bit of a balancing act to get this right.
1204 		 * Sometimes we may want to send data in the current frame (AK
1205 		 * right away).  We might want to do this if the frame number
1206 		 * _just_ ticked, but we might also want to do this in order
1207 		 * to continue a split transaction that happened late in a
1208 		 * microframe (so we didn't know to queue the next transfer
1209 		 * until the frame number had ticked).  The problem is that we
1210 		 * need a lot of knowledge to know if there's actually still
1211 		 * time to send things or if it would be better to wait until
1212 		 * the next frame.
1213 		 *
1214 		 * We can look at how much time is left in the current frame
1215 		 * and make a guess about whether we'll have time to transfer.
1216 		 * We'll do that.
1217 		 */
1218 
1219 		/* Get speed host is running at */
1220 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1221 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1222 
1223 		/* See how many bytes are in the periodic FIFO right now */
1224 		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1225 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1226 		bytes_in_fifo = sizeof(u32) *
1227 				(hsotg->params.host_perio_tx_fifo_size -
1228 				 fifo_space);
1229 
1230 		/*
1231 		 * Roughly estimate bus time for everything in the periodic
1232 		 * queue + our new transfer.  This is "rough" because we're
1233 		 * using a function that makes takes into account IN/OUT
1234 		 * and INT/ISO and we're just slamming in one value for all
1235 		 * transfers.  This should be an over-estimate and that should
1236 		 * be OK, but we can probably tighten it.
1237 		 */
1238 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1239 					    chan->xfer_len + bytes_in_fifo);
1240 		xfer_us = NS_TO_US(xfer_ns);
1241 
1242 		/* See what frame number we'll be at by the time we finish */
1243 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1244 
1245 		/* This is when we were scheduled to be on the wire */
1246 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1247 
1248 		/*
1249 		 * If we'd finish _after_ the frame we're scheduled in then
1250 		 * it's hopeless.  Just schedule right away and hope for the
1251 		 * best.  Note that it _might_ be wise to call back into the
1252 		 * scheduler to pick a better frame, but this is better than
1253 		 * nothing.
1254 		 */
1255 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1256 			dwc2_sch_vdbg(hsotg,
1257 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1258 				      chan->qh, wire_frame, frame_number,
1259 				      dwc2_frame_num_dec(frame_number,
1260 							 wire_frame));
1261 			wire_frame = frame_number;
1262 
1263 			/*
1264 			 * We picked a different frame number; communicate this
1265 			 * back to the scheduler so it doesn't try to schedule
1266 			 * another in the same frame.
1267 			 *
1268 			 * Remember that next_active_frame is 1 before the wire
1269 			 * frame.
1270 			 */
1271 			chan->qh->next_active_frame =
1272 				dwc2_frame_num_dec(frame_number, 1);
1273 		}
1274 
1275 		if (wire_frame & 1)
1276 			*hcchar |= HCCHAR_ODDFRM;
1277 		else
1278 			*hcchar &= ~HCCHAR_ODDFRM;
1279 	}
1280 }
1281 
1282 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1283 {
1284 	/* Set up the initial PID for the transfer */
1285 	if (chan->speed == USB_SPEED_HIGH) {
1286 		if (chan->ep_is_in) {
1287 			if (chan->multi_count == 1)
1288 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1289 			else if (chan->multi_count == 2)
1290 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1291 			else
1292 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1293 		} else {
1294 			if (chan->multi_count == 1)
1295 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1296 			else
1297 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1298 		}
1299 	} else {
1300 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1301 	}
1302 }
1303 
1304 /**
1305  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1306  * the Host Channel
1307  *
1308  * @hsotg: Programming view of DWC_otg controller
1309  * @chan:  Information needed to initialize the host channel
1310  *
1311  * This function should only be called in Slave mode. For a channel associated
1312  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1313  * associated with a periodic EP, the periodic Tx FIFO is written.
1314  *
1315  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1316  * the number of bytes written to the Tx FIFO.
1317  */
1318 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1319 				 struct dwc2_host_chan *chan)
1320 {
1321 	u32 i;
1322 	u32 remaining_count;
1323 	u32 byte_count;
1324 	u32 dword_count;
1325 	u32 *data_buf = (u32 *)chan->xfer_buf;
1326 
1327 	if (dbg_hc(chan))
1328 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1329 
1330 	remaining_count = chan->xfer_len - chan->xfer_count;
1331 	if (remaining_count > chan->max_packet)
1332 		byte_count = chan->max_packet;
1333 	else
1334 		byte_count = remaining_count;
1335 
1336 	dword_count = (byte_count + 3) / 4;
1337 
1338 	if (((unsigned long)data_buf & 0x3) == 0) {
1339 		/* xfer_buf is DWORD aligned */
1340 		for (i = 0; i < dword_count; i++, data_buf++)
1341 			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1342 	} else {
1343 		/* xfer_buf is not DWORD aligned */
1344 		for (i = 0; i < dword_count; i++, data_buf++) {
1345 			u32 data = data_buf[0] | data_buf[1] << 8 |
1346 				   data_buf[2] << 16 | data_buf[3] << 24;
1347 			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1348 		}
1349 	}
1350 
1351 	chan->xfer_count += byte_count;
1352 	chan->xfer_buf += byte_count;
1353 }
1354 
1355 /**
1356  * dwc2_hc_do_ping() - Starts a PING transfer
1357  *
1358  * @hsotg: Programming view of DWC_otg controller
1359  * @chan:  Information needed to initialize the host channel
1360  *
1361  * This function should only be called in Slave mode. The Do Ping bit is set in
1362  * the HCTSIZ register, then the channel is enabled.
1363  */
1364 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1365 			    struct dwc2_host_chan *chan)
1366 {
1367 	u32 hcchar;
1368 	u32 hctsiz;
1369 
1370 	if (dbg_hc(chan))
1371 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1372 			 chan->hc_num);
1373 
1374 	hctsiz = TSIZ_DOPNG;
1375 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1376 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1377 
1378 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1379 	hcchar |= HCCHAR_CHENA;
1380 	hcchar &= ~HCCHAR_CHDIS;
1381 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1382 }
1383 
1384 /**
1385  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1386  * channel and starts the transfer
1387  *
1388  * @hsotg: Programming view of DWC_otg controller
1389  * @chan:  Information needed to initialize the host channel. The xfer_len value
1390  *         may be reduced to accommodate the max widths of the XferSize and
1391  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1392  *         changed to reflect the final xfer_len value.
1393  *
1394  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1395  * the caller must ensure that there is sufficient space in the request queue
1396  * and Tx Data FIFO.
1397  *
1398  * For an OUT transfer in Slave mode, it loads a data packet into the
1399  * appropriate FIFO. If necessary, additional data packets are loaded in the
1400  * Host ISR.
1401  *
1402  * For an IN transfer in Slave mode, a data packet is requested. The data
1403  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1404  * additional data packets are requested in the Host ISR.
1405  *
1406  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1407  * register along with a packet count of 1 and the channel is enabled. This
1408  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1409  * simply set to 0 since no data transfer occurs in this case.
1410  *
1411  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1412  * all the information required to perform the subsequent data transfer. In
1413  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1414  * controller performs the entire PING protocol, then starts the data
1415  * transfer.
1416  */
1417 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1418 				   struct dwc2_host_chan *chan)
1419 {
1420 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1421 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1422 	u32 hcchar;
1423 	u32 hctsiz = 0;
1424 	u16 num_packets;
1425 	u32 ec_mc;
1426 
1427 	if (dbg_hc(chan))
1428 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1429 
1430 	if (chan->do_ping) {
1431 		if (!hsotg->params.host_dma) {
1432 			if (dbg_hc(chan))
1433 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1434 			dwc2_hc_do_ping(hsotg, chan);
1435 			chan->xfer_started = 1;
1436 			return;
1437 		}
1438 
1439 		if (dbg_hc(chan))
1440 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1441 
1442 		hctsiz |= TSIZ_DOPNG;
1443 	}
1444 
1445 	if (chan->do_split) {
1446 		if (dbg_hc(chan))
1447 			dev_vdbg(hsotg->dev, "split\n");
1448 		num_packets = 1;
1449 
1450 		if (chan->complete_split && !chan->ep_is_in)
1451 			/*
1452 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1453 			 * core doesn't expect any data written to the FIFO
1454 			 */
1455 			chan->xfer_len = 0;
1456 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1457 			chan->xfer_len = chan->max_packet;
1458 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1459 			chan->xfer_len = 188;
1460 
1461 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1462 			  TSIZ_XFERSIZE_MASK;
1463 
1464 		/* For split set ec_mc for immediate retries */
1465 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1466 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1467 			ec_mc = 3;
1468 		else
1469 			ec_mc = 1;
1470 	} else {
1471 		if (dbg_hc(chan))
1472 			dev_vdbg(hsotg->dev, "no split\n");
1473 		/*
1474 		 * Ensure that the transfer length and packet count will fit
1475 		 * in the widths allocated for them in the HCTSIZn register
1476 		 */
1477 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1478 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1479 			/*
1480 			 * Make sure the transfer size is no larger than one
1481 			 * (micro)frame's worth of data. (A check was done
1482 			 * when the periodic transfer was accepted to ensure
1483 			 * that a (micro)frame's worth of data can be
1484 			 * programmed into a channel.)
1485 			 */
1486 			u32 max_periodic_len =
1487 				chan->multi_count * chan->max_packet;
1488 
1489 			if (chan->xfer_len > max_periodic_len)
1490 				chan->xfer_len = max_periodic_len;
1491 		} else if (chan->xfer_len > max_hc_xfer_size) {
1492 			/*
1493 			 * Make sure that xfer_len is a multiple of max packet
1494 			 * size
1495 			 */
1496 			chan->xfer_len =
1497 				max_hc_xfer_size - chan->max_packet + 1;
1498 		}
1499 
1500 		if (chan->xfer_len > 0) {
1501 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1502 					chan->max_packet;
1503 			if (num_packets > max_hc_pkt_count) {
1504 				num_packets = max_hc_pkt_count;
1505 				chan->xfer_len = num_packets * chan->max_packet;
1506 			}
1507 		} else {
1508 			/* Need 1 packet for transfer length of 0 */
1509 			num_packets = 1;
1510 		}
1511 
1512 		if (chan->ep_is_in)
1513 			/*
1514 			 * Always program an integral # of max packets for IN
1515 			 * transfers
1516 			 */
1517 			chan->xfer_len = num_packets * chan->max_packet;
1518 
1519 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1520 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1521 			/*
1522 			 * Make sure that the multi_count field matches the
1523 			 * actual transfer length
1524 			 */
1525 			chan->multi_count = num_packets;
1526 
1527 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1528 			dwc2_set_pid_isoc(chan);
1529 
1530 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1531 			  TSIZ_XFERSIZE_MASK;
1532 
1533 		/* The ec_mc gets the multi_count for non-split */
1534 		ec_mc = chan->multi_count;
1535 	}
1536 
1537 	chan->start_pkt_count = num_packets;
1538 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1539 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1540 		  TSIZ_SC_MC_PID_MASK;
1541 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1542 	if (dbg_hc(chan)) {
1543 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1544 			 hctsiz, chan->hc_num);
1545 
1546 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1547 			 chan->hc_num);
1548 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1549 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1550 			 TSIZ_XFERSIZE_SHIFT);
1551 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1552 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1553 			 TSIZ_PKTCNT_SHIFT);
1554 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1555 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1556 			 TSIZ_SC_MC_PID_SHIFT);
1557 	}
1558 
1559 	if (hsotg->params.host_dma) {
1560 		dma_addr_t dma_addr;
1561 
1562 		if (chan->align_buf) {
1563 			if (dbg_hc(chan))
1564 				dev_vdbg(hsotg->dev, "align_buf\n");
1565 			dma_addr = chan->align_buf;
1566 		} else {
1567 			dma_addr = chan->xfer_dma;
1568 		}
1569 		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1570 
1571 		if (dbg_hc(chan))
1572 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1573 				 (unsigned long)dma_addr, chan->hc_num);
1574 	}
1575 
1576 	/* Start the split */
1577 	if (chan->do_split) {
1578 		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1579 
1580 		hcsplt |= HCSPLT_SPLTENA;
1581 		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1582 	}
1583 
1584 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1585 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1586 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1587 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1588 
1589 	if (hcchar & HCCHAR_CHDIS)
1590 		dev_warn(hsotg->dev,
1591 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1592 			 __func__, chan->hc_num, hcchar);
1593 
1594 	/* Set host channel enable after all other setup is complete */
1595 	hcchar |= HCCHAR_CHENA;
1596 	hcchar &= ~HCCHAR_CHDIS;
1597 
1598 	if (dbg_hc(chan))
1599 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1600 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1601 			 HCCHAR_MULTICNT_SHIFT);
1602 
1603 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1604 	if (dbg_hc(chan))
1605 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1606 			 chan->hc_num);
1607 
1608 	chan->xfer_started = 1;
1609 	chan->requests++;
1610 
1611 	if (!hsotg->params.host_dma &&
1612 	    !chan->ep_is_in && chan->xfer_len > 0)
1613 		/* Load OUT packet into the appropriate Tx FIFO */
1614 		dwc2_hc_write_packet(hsotg, chan);
1615 }
1616 
1617 /**
1618  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1619  * host channel and starts the transfer in Descriptor DMA mode
1620  *
1621  * @hsotg: Programming view of DWC_otg controller
1622  * @chan:  Information needed to initialize the host channel
1623  *
1624  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1625  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1626  * with micro-frame bitmap.
1627  *
1628  * Initializes HCDMA register with descriptor list address and CTD value then
1629  * starts the transfer via enabling the channel.
1630  */
1631 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1632 				 struct dwc2_host_chan *chan)
1633 {
1634 	u32 hcchar;
1635 	u32 hctsiz = 0;
1636 
1637 	if (chan->do_ping)
1638 		hctsiz |= TSIZ_DOPNG;
1639 
1640 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1641 		dwc2_set_pid_isoc(chan);
1642 
1643 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1644 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1645 		  TSIZ_SC_MC_PID_MASK;
1646 
1647 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1648 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1649 
1650 	/* Non-zero only for high-speed interrupt endpoints */
1651 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1652 
1653 	if (dbg_hc(chan)) {
1654 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1655 			 chan->hc_num);
1656 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1657 			 chan->data_pid_start);
1658 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1659 	}
1660 
1661 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1662 
1663 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1664 				   chan->desc_list_sz, DMA_TO_DEVICE);
1665 
1666 	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1667 
1668 	if (dbg_hc(chan))
1669 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1670 			 &chan->desc_list_addr, chan->hc_num);
1671 
1672 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1673 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1674 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1675 		  HCCHAR_MULTICNT_MASK;
1676 
1677 	if (hcchar & HCCHAR_CHDIS)
1678 		dev_warn(hsotg->dev,
1679 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1680 			 __func__, chan->hc_num, hcchar);
1681 
1682 	/* Set host channel enable after all other setup is complete */
1683 	hcchar |= HCCHAR_CHENA;
1684 	hcchar &= ~HCCHAR_CHDIS;
1685 
1686 	if (dbg_hc(chan))
1687 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1688 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1689 			 HCCHAR_MULTICNT_SHIFT);
1690 
1691 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1692 	if (dbg_hc(chan))
1693 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1694 			 chan->hc_num);
1695 
1696 	chan->xfer_started = 1;
1697 	chan->requests++;
1698 }
1699 
1700 /**
1701  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1702  * a previous call to dwc2_hc_start_transfer()
1703  *
1704  * @hsotg: Programming view of DWC_otg controller
1705  * @chan:  Information needed to initialize the host channel
1706  *
1707  * The caller must ensure there is sufficient space in the request queue and Tx
1708  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1709  * the controller acts autonomously to complete transfers programmed to a host
1710  * channel.
1711  *
1712  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1713  * if there is any data remaining to be queued. For an IN transfer, another
1714  * data packet is always requested. For the SETUP phase of a control transfer,
1715  * this function does nothing.
1716  *
1717  * Return: 1 if a new request is queued, 0 if no more requests are required
1718  * for this transfer
1719  */
1720 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1721 				     struct dwc2_host_chan *chan)
1722 {
1723 	if (dbg_hc(chan))
1724 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1725 			 chan->hc_num);
1726 
1727 	if (chan->do_split)
1728 		/* SPLITs always queue just once per channel */
1729 		return 0;
1730 
1731 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1732 		/* SETUPs are queued only once since they can't be NAK'd */
1733 		return 0;
1734 
1735 	if (chan->ep_is_in) {
1736 		/*
1737 		 * Always queue another request for other IN transfers. If
1738 		 * back-to-back INs are issued and NAKs are received for both,
1739 		 * the driver may still be processing the first NAK when the
1740 		 * second NAK is received. When the interrupt handler clears
1741 		 * the NAK interrupt for the first NAK, the second NAK will
1742 		 * not be seen. So we can't depend on the NAK interrupt
1743 		 * handler to requeue a NAK'd request. Instead, IN requests
1744 		 * are issued each time this function is called. When the
1745 		 * transfer completes, the extra requests for the channel will
1746 		 * be flushed.
1747 		 */
1748 		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1749 
1750 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1751 		hcchar |= HCCHAR_CHENA;
1752 		hcchar &= ~HCCHAR_CHDIS;
1753 		if (dbg_hc(chan))
1754 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1755 				 hcchar);
1756 		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1757 		chan->requests++;
1758 		return 1;
1759 	}
1760 
1761 	/* OUT transfers */
1762 
1763 	if (chan->xfer_count < chan->xfer_len) {
1764 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1765 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1766 			u32 hcchar = dwc2_readl(hsotg,
1767 						HCCHAR(chan->hc_num));
1768 
1769 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1770 						   &hcchar);
1771 		}
1772 
1773 		/* Load OUT packet into the appropriate Tx FIFO */
1774 		dwc2_hc_write_packet(hsotg, chan);
1775 		chan->requests++;
1776 		return 1;
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 /*
1783  * =========================================================================
1784  *  HCD
1785  * =========================================================================
1786  */
1787 
1788 /*
1789  * Processes all the URBs in a single list of QHs. Completes them with
1790  * -ETIMEDOUT and frees the QTD.
1791  *
1792  * Must be called with interrupt disabled and spinlock held
1793  */
1794 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1795 				      struct list_head *qh_list)
1796 {
1797 	struct dwc2_qh *qh, *qh_tmp;
1798 	struct dwc2_qtd *qtd, *qtd_tmp;
1799 
1800 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1801 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1802 					 qtd_list_entry) {
1803 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1804 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1805 		}
1806 	}
1807 }
1808 
1809 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1810 			      struct list_head *qh_list)
1811 {
1812 	struct dwc2_qtd *qtd, *qtd_tmp;
1813 	struct dwc2_qh *qh, *qh_tmp;
1814 	unsigned long flags;
1815 
1816 	if (!qh_list->next)
1817 		/* The list hasn't been initialized yet */
1818 		return;
1819 
1820 	spin_lock_irqsave(&hsotg->lock, flags);
1821 
1822 	/* Ensure there are no QTDs or URBs left */
1823 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1824 
1825 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1826 		dwc2_hcd_qh_unlink(hsotg, qh);
1827 
1828 		/* Free each QTD in the QH's QTD list */
1829 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1830 					 qtd_list_entry)
1831 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1832 
1833 		if (qh->channel && qh->channel->qh == qh)
1834 			qh->channel->qh = NULL;
1835 
1836 		spin_unlock_irqrestore(&hsotg->lock, flags);
1837 		dwc2_hcd_qh_free(hsotg, qh);
1838 		spin_lock_irqsave(&hsotg->lock, flags);
1839 	}
1840 
1841 	spin_unlock_irqrestore(&hsotg->lock, flags);
1842 }
1843 
1844 /*
1845  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1846  * and periodic schedules. The QTD associated with each URB is removed from
1847  * the schedule and freed. This function may be called when a disconnect is
1848  * detected or when the HCD is being stopped.
1849  *
1850  * Must be called with interrupt disabled and spinlock held
1851  */
1852 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1853 {
1854 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1855 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1856 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1857 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1858 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1859 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1860 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1861 }
1862 
1863 /**
1864  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1865  *
1866  * @hsotg: Pointer to struct dwc2_hsotg
1867  */
1868 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1869 {
1870 	u32 hprt0;
1871 
1872 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1873 		/*
1874 		 * Reset the port. During a HNP mode switch the reset
1875 		 * needs to occur within 1ms and have a duration of at
1876 		 * least 50ms.
1877 		 */
1878 		hprt0 = dwc2_read_hprt0(hsotg);
1879 		hprt0 |= HPRT0_RST;
1880 		dwc2_writel(hsotg, hprt0, HPRT0);
1881 	}
1882 
1883 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1884 			   msecs_to_jiffies(50));
1885 }
1886 
1887 /* Must be called with interrupt disabled and spinlock held */
1888 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1889 {
1890 	int num_channels = hsotg->params.host_channels;
1891 	struct dwc2_host_chan *channel;
1892 	u32 hcchar;
1893 	int i;
1894 
1895 	if (!hsotg->params.host_dma) {
1896 		/* Flush out any channel requests in slave mode */
1897 		for (i = 0; i < num_channels; i++) {
1898 			channel = hsotg->hc_ptr_array[i];
1899 			if (!list_empty(&channel->hc_list_entry))
1900 				continue;
1901 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1902 			if (hcchar & HCCHAR_CHENA) {
1903 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1904 				hcchar |= HCCHAR_CHDIS;
1905 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1906 			}
1907 		}
1908 	}
1909 
1910 	for (i = 0; i < num_channels; i++) {
1911 		channel = hsotg->hc_ptr_array[i];
1912 		if (!list_empty(&channel->hc_list_entry))
1913 			continue;
1914 		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1915 		if (hcchar & HCCHAR_CHENA) {
1916 			/* Halt the channel */
1917 			hcchar |= HCCHAR_CHDIS;
1918 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1919 		}
1920 
1921 		dwc2_hc_cleanup(hsotg, channel);
1922 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1923 		/*
1924 		 * Added for Descriptor DMA to prevent channel double cleanup in
1925 		 * release_channel_ddma(), which is called from ep_disable when
1926 		 * device disconnects
1927 		 */
1928 		channel->qh = NULL;
1929 	}
1930 	/* All channels have been freed, mark them available */
1931 	if (hsotg->params.uframe_sched) {
1932 		hsotg->available_host_channels =
1933 			hsotg->params.host_channels;
1934 	} else {
1935 		hsotg->non_periodic_channels = 0;
1936 		hsotg->periodic_channels = 0;
1937 	}
1938 }
1939 
1940 /**
1941  * dwc2_hcd_connect() - Handles connect of the HCD
1942  *
1943  * @hsotg: Pointer to struct dwc2_hsotg
1944  *
1945  * Must be called with interrupt disabled and spinlock held
1946  */
1947 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1948 {
1949 	if (hsotg->lx_state != DWC2_L0)
1950 		usb_hcd_resume_root_hub(hsotg->priv);
1951 
1952 	hsotg->flags.b.port_connect_status_change = 1;
1953 	hsotg->flags.b.port_connect_status = 1;
1954 }
1955 
1956 /**
1957  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1958  *
1959  * @hsotg: Pointer to struct dwc2_hsotg
1960  * @force: If true, we won't try to reconnect even if we see device connected.
1961  *
1962  * Must be called with interrupt disabled and spinlock held
1963  */
1964 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1965 {
1966 	u32 intr;
1967 	u32 hprt0;
1968 
1969 	/* Set status flags for the hub driver */
1970 	hsotg->flags.b.port_connect_status_change = 1;
1971 	hsotg->flags.b.port_connect_status = 0;
1972 
1973 	/*
1974 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1975 	 * interrupt mask and status bits and disabling subsequent host
1976 	 * channel interrupts.
1977 	 */
1978 	intr = dwc2_readl(hsotg, GINTMSK);
1979 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1980 	dwc2_writel(hsotg, intr, GINTMSK);
1981 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1982 	dwc2_writel(hsotg, intr, GINTSTS);
1983 
1984 	/*
1985 	 * Turn off the vbus power only if the core has transitioned to device
1986 	 * mode. If still in host mode, need to keep power on to detect a
1987 	 * reconnection.
1988 	 */
1989 	if (dwc2_is_device_mode(hsotg)) {
1990 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1991 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1992 			dwc2_writel(hsotg, 0, HPRT0);
1993 		}
1994 
1995 		dwc2_disable_host_interrupts(hsotg);
1996 	}
1997 
1998 	/* Respond with an error status to all URBs in the schedule */
1999 	dwc2_kill_all_urbs(hsotg);
2000 
2001 	if (dwc2_is_host_mode(hsotg))
2002 		/* Clean up any host channels that were in use */
2003 		dwc2_hcd_cleanup_channels(hsotg);
2004 
2005 	dwc2_host_disconnect(hsotg);
2006 
2007 	/*
2008 	 * Add an extra check here to see if we're actually connected but
2009 	 * we don't have a detection interrupt pending.  This can happen if:
2010 	 *   1. hardware sees connect
2011 	 *   2. hardware sees disconnect
2012 	 *   3. hardware sees connect
2013 	 *   4. dwc2_port_intr() - clears connect interrupt
2014 	 *   5. dwc2_handle_common_intr() - calls here
2015 	 *
2016 	 * Without the extra check here we will end calling disconnect
2017 	 * and won't get any future interrupts to handle the connect.
2018 	 */
2019 	if (!force) {
2020 		hprt0 = dwc2_readl(hsotg, HPRT0);
2021 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
2022 			dwc2_hcd_connect(hsotg);
2023 	}
2024 }
2025 
2026 /**
2027  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2028  *
2029  * @hsotg: Pointer to struct dwc2_hsotg
2030  */
2031 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2032 {
2033 	if (hsotg->bus_suspended) {
2034 		hsotg->flags.b.port_suspend_change = 1;
2035 		usb_hcd_resume_root_hub(hsotg->priv);
2036 	}
2037 
2038 	if (hsotg->lx_state == DWC2_L1)
2039 		hsotg->flags.b.port_l1_change = 1;
2040 }
2041 
2042 /**
2043  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2044  *
2045  * @hsotg: Pointer to struct dwc2_hsotg
2046  *
2047  * Must be called with interrupt disabled and spinlock held
2048  */
2049 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2050 {
2051 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2052 
2053 	/*
2054 	 * The root hub should be disconnected before this function is called.
2055 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2056 	 * and the QH lists (via ..._hcd_endpoint_disable).
2057 	 */
2058 
2059 	/* Turn off all host-specific interrupts */
2060 	dwc2_disable_host_interrupts(hsotg);
2061 
2062 	/* Turn off the vbus power */
2063 	dev_dbg(hsotg->dev, "PortPower off\n");
2064 	dwc2_writel(hsotg, 0, HPRT0);
2065 }
2066 
2067 /* Caller must hold driver lock */
2068 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2069 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2070 				struct dwc2_qtd *qtd)
2071 {
2072 	u32 intr_mask;
2073 	int retval;
2074 	int dev_speed;
2075 
2076 	if (!hsotg->flags.b.port_connect_status) {
2077 		/* No longer connected */
2078 		dev_err(hsotg->dev, "Not connected\n");
2079 		return -ENODEV;
2080 	}
2081 
2082 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2083 
2084 	/* Some configurations cannot support LS traffic on a FS root port */
2085 	if ((dev_speed == USB_SPEED_LOW) &&
2086 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2087 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2088 		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
2089 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2090 
2091 		if (prtspd == HPRT0_SPD_FULL_SPEED)
2092 			return -ENODEV;
2093 	}
2094 
2095 	if (!qtd)
2096 		return -EINVAL;
2097 
2098 	dwc2_hcd_qtd_init(qtd, urb);
2099 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2100 	if (retval) {
2101 		dev_err(hsotg->dev,
2102 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2103 			retval);
2104 		return retval;
2105 	}
2106 
2107 	intr_mask = dwc2_readl(hsotg, GINTMSK);
2108 	if (!(intr_mask & GINTSTS_SOF)) {
2109 		enum dwc2_transaction_type tr_type;
2110 
2111 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2112 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2113 			/*
2114 			 * Do not schedule SG transactions until qtd has
2115 			 * URB_GIVEBACK_ASAP set
2116 			 */
2117 			return 0;
2118 
2119 		tr_type = dwc2_hcd_select_transactions(hsotg);
2120 		if (tr_type != DWC2_TRANSACTION_NONE)
2121 			dwc2_hcd_queue_transactions(hsotg, tr_type);
2122 	}
2123 
2124 	return 0;
2125 }
2126 
2127 /* Must be called with interrupt disabled and spinlock held */
2128 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2129 				struct dwc2_hcd_urb *urb)
2130 {
2131 	struct dwc2_qh *qh;
2132 	struct dwc2_qtd *urb_qtd;
2133 
2134 	urb_qtd = urb->qtd;
2135 	if (!urb_qtd) {
2136 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2137 		return -EINVAL;
2138 	}
2139 
2140 	qh = urb_qtd->qh;
2141 	if (!qh) {
2142 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2143 		return -EINVAL;
2144 	}
2145 
2146 	urb->priv = NULL;
2147 
2148 	if (urb_qtd->in_process && qh->channel) {
2149 		dwc2_dump_channel_info(hsotg, qh->channel);
2150 
2151 		/* The QTD is in process (it has been assigned to a channel) */
2152 		if (hsotg->flags.b.port_connect_status)
2153 			/*
2154 			 * If still connected (i.e. in host mode), halt the
2155 			 * channel so it can be used for other transfers. If
2156 			 * no longer connected, the host registers can't be
2157 			 * written to halt the channel since the core is in
2158 			 * device mode.
2159 			 */
2160 			dwc2_hc_halt(hsotg, qh->channel,
2161 				     DWC2_HC_XFER_URB_DEQUEUE);
2162 	}
2163 
2164 	/*
2165 	 * Free the QTD and clean up the associated QH. Leave the QH in the
2166 	 * schedule if it has any remaining QTDs.
2167 	 */
2168 	if (!hsotg->params.dma_desc_enable) {
2169 		u8 in_process = urb_qtd->in_process;
2170 
2171 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2172 		if (in_process) {
2173 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2174 			qh->channel = NULL;
2175 		} else if (list_empty(&qh->qtd_list)) {
2176 			dwc2_hcd_qh_unlink(hsotg, qh);
2177 		}
2178 	} else {
2179 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 /* Must NOT be called with interrupt disabled or spinlock held */
2186 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2187 				     struct usb_host_endpoint *ep, int retry)
2188 {
2189 	struct dwc2_qtd *qtd, *qtd_tmp;
2190 	struct dwc2_qh *qh;
2191 	unsigned long flags;
2192 	int rc;
2193 
2194 	spin_lock_irqsave(&hsotg->lock, flags);
2195 
2196 	qh = ep->hcpriv;
2197 	if (!qh) {
2198 		rc = -EINVAL;
2199 		goto err;
2200 	}
2201 
2202 	while (!list_empty(&qh->qtd_list) && retry--) {
2203 		if (retry == 0) {
2204 			dev_err(hsotg->dev,
2205 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2206 			rc = -EBUSY;
2207 			goto err;
2208 		}
2209 
2210 		spin_unlock_irqrestore(&hsotg->lock, flags);
2211 		msleep(20);
2212 		spin_lock_irqsave(&hsotg->lock, flags);
2213 		qh = ep->hcpriv;
2214 		if (!qh) {
2215 			rc = -EINVAL;
2216 			goto err;
2217 		}
2218 	}
2219 
2220 	dwc2_hcd_qh_unlink(hsotg, qh);
2221 
2222 	/* Free each QTD in the QH's QTD list */
2223 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2224 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2225 
2226 	ep->hcpriv = NULL;
2227 
2228 	if (qh->channel && qh->channel->qh == qh)
2229 		qh->channel->qh = NULL;
2230 
2231 	spin_unlock_irqrestore(&hsotg->lock, flags);
2232 
2233 	dwc2_hcd_qh_free(hsotg, qh);
2234 
2235 	return 0;
2236 
2237 err:
2238 	ep->hcpriv = NULL;
2239 	spin_unlock_irqrestore(&hsotg->lock, flags);
2240 
2241 	return rc;
2242 }
2243 
2244 /* Must be called with interrupt disabled and spinlock held */
2245 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2246 				   struct usb_host_endpoint *ep)
2247 {
2248 	struct dwc2_qh *qh = ep->hcpriv;
2249 
2250 	if (!qh)
2251 		return -EINVAL;
2252 
2253 	qh->data_toggle = DWC2_HC_PID_DATA0;
2254 
2255 	return 0;
2256 }
2257 
2258 /**
2259  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2260  * prepares the core for device mode or host mode operation
2261  *
2262  * @hsotg:         Programming view of the DWC_otg controller
2263  * @initial_setup: If true then this is the first init for this instance.
2264  */
2265 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2266 {
2267 	u32 usbcfg, otgctl;
2268 	int retval;
2269 
2270 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2271 
2272 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2273 
2274 	/* Set ULPI External VBUS bit if needed */
2275 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2276 	if (hsotg->params.phy_ulpi_ext_vbus)
2277 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2278 
2279 	/* Set external TS Dline pulsing bit if needed */
2280 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2281 	if (hsotg->params.ts_dline)
2282 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2283 
2284 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2285 
2286 	/*
2287 	 * Reset the Controller
2288 	 *
2289 	 * We only need to reset the controller if this is a re-init.
2290 	 * For the first init we know for sure that earlier code reset us (it
2291 	 * needed to in order to properly detect various parameters).
2292 	 */
2293 	if (!initial_setup) {
2294 		retval = dwc2_core_reset(hsotg, false);
2295 		if (retval) {
2296 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2297 				__func__);
2298 			return retval;
2299 		}
2300 	}
2301 
2302 	/*
2303 	 * This needs to happen in FS mode before any other programming occurs
2304 	 */
2305 	retval = dwc2_phy_init(hsotg, initial_setup);
2306 	if (retval)
2307 		return retval;
2308 
2309 	/* Program the GAHBCFG Register */
2310 	retval = dwc2_gahbcfg_init(hsotg);
2311 	if (retval)
2312 		return retval;
2313 
2314 	/* Program the GUSBCFG register */
2315 	dwc2_gusbcfg_init(hsotg);
2316 
2317 	/* Program the GOTGCTL register */
2318 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2319 	otgctl &= ~GOTGCTL_OTGVER;
2320 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2321 
2322 	/* Clear the SRP success bit for FS-I2c */
2323 	hsotg->srp_success = 0;
2324 
2325 	/* Enable common interrupts */
2326 	dwc2_enable_common_interrupts(hsotg);
2327 
2328 	/*
2329 	 * Do device or host initialization based on mode during PCD and
2330 	 * HCD initialization
2331 	 */
2332 	if (dwc2_is_host_mode(hsotg)) {
2333 		dev_dbg(hsotg->dev, "Host Mode\n");
2334 		hsotg->op_state = OTG_STATE_A_HOST;
2335 	} else {
2336 		dev_dbg(hsotg->dev, "Device Mode\n");
2337 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 /**
2344  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2345  * Host mode
2346  *
2347  * @hsotg: Programming view of DWC_otg controller
2348  *
2349  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2350  * request queues. Host channels are reset to ensure that they are ready for
2351  * performing transfers.
2352  */
2353 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2354 {
2355 	u32 hcfg, hfir, otgctl, usbcfg;
2356 
2357 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2358 
2359 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2360 	 * The number of PHY clocks that the application programs in
2361 	 * this field is added to the high/full speed interpacket timeout
2362 	 * duration in the core to account for any additional delays
2363 	 * introduced by the PHY. This can be required, because the delay
2364 	 * introduced by the PHY in generating the linestate condition
2365 	 * can vary from one PHY to another.
2366 	 */
2367 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2368 	usbcfg |= GUSBCFG_TOUTCAL(7);
2369 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2370 
2371 	/* Restart the Phy Clock */
2372 	dwc2_writel(hsotg, 0, PCGCTL);
2373 
2374 	/* Initialize Host Configuration Register */
2375 	dwc2_init_fs_ls_pclk_sel(hsotg);
2376 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2377 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2378 		hcfg = dwc2_readl(hsotg, HCFG);
2379 		hcfg |= HCFG_FSLSSUPP;
2380 		dwc2_writel(hsotg, hcfg, HCFG);
2381 	}
2382 
2383 	/*
2384 	 * This bit allows dynamic reloading of the HFIR register during
2385 	 * runtime. This bit needs to be programmed during initial configuration
2386 	 * and its value must not be changed during runtime.
2387 	 */
2388 	if (hsotg->params.reload_ctl) {
2389 		hfir = dwc2_readl(hsotg, HFIR);
2390 		hfir |= HFIR_RLDCTRL;
2391 		dwc2_writel(hsotg, hfir, HFIR);
2392 	}
2393 
2394 	if (hsotg->params.dma_desc_enable) {
2395 		u32 op_mode = hsotg->hw_params.op_mode;
2396 
2397 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2398 		    !hsotg->hw_params.dma_desc_enable ||
2399 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2400 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2401 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2402 			dev_err(hsotg->dev,
2403 				"Hardware does not support descriptor DMA mode -\n");
2404 			dev_err(hsotg->dev,
2405 				"falling back to buffer DMA mode.\n");
2406 			hsotg->params.dma_desc_enable = false;
2407 		} else {
2408 			hcfg = dwc2_readl(hsotg, HCFG);
2409 			hcfg |= HCFG_DESCDMA;
2410 			dwc2_writel(hsotg, hcfg, HCFG);
2411 		}
2412 	}
2413 
2414 	/* Configure data FIFO sizes */
2415 	dwc2_config_fifos(hsotg);
2416 
2417 	/* TODO - check this */
2418 	/* Clear Host Set HNP Enable in the OTG Control Register */
2419 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2420 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2421 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2422 
2423 	/* Make sure the FIFOs are flushed */
2424 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2425 	dwc2_flush_rx_fifo(hsotg);
2426 
2427 	/* Clear Host Set HNP Enable in the OTG Control Register */
2428 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2429 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2430 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2431 
2432 	if (!hsotg->params.dma_desc_enable) {
2433 		int num_channels, i;
2434 		u32 hcchar;
2435 
2436 		/* Flush out any leftover queued requests */
2437 		num_channels = hsotg->params.host_channels;
2438 		for (i = 0; i < num_channels; i++) {
2439 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2440 			hcchar &= ~HCCHAR_CHENA;
2441 			hcchar |= HCCHAR_CHDIS;
2442 			hcchar &= ~HCCHAR_EPDIR;
2443 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
2444 		}
2445 
2446 		/* Halt all channels to put them into a known state */
2447 		for (i = 0; i < num_channels; i++) {
2448 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2449 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2450 			hcchar &= ~HCCHAR_EPDIR;
2451 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
2452 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2453 				__func__, i);
2454 
2455 			if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2456 						      HCCHAR_CHENA, 1000)) {
2457 				dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n",
2458 					 i);
2459 			}
2460 		}
2461 	}
2462 
2463 	/* Enable ACG feature in host mode, if supported */
2464 	dwc2_enable_acg(hsotg);
2465 
2466 	/* Turn on the vbus power */
2467 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2468 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2469 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2470 
2471 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2472 			!!(hprt0 & HPRT0_PWR));
2473 		if (!(hprt0 & HPRT0_PWR)) {
2474 			hprt0 |= HPRT0_PWR;
2475 			dwc2_writel(hsotg, hprt0, HPRT0);
2476 		}
2477 	}
2478 
2479 	dwc2_enable_host_interrupts(hsotg);
2480 }
2481 
2482 /*
2483  * Initializes dynamic portions of the DWC_otg HCD state
2484  *
2485  * Must be called with interrupt disabled and spinlock held
2486  */
2487 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2488 {
2489 	struct dwc2_host_chan *chan, *chan_tmp;
2490 	int num_channels;
2491 	int i;
2492 
2493 	hsotg->flags.d32 = 0;
2494 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2495 
2496 	if (hsotg->params.uframe_sched) {
2497 		hsotg->available_host_channels =
2498 			hsotg->params.host_channels;
2499 	} else {
2500 		hsotg->non_periodic_channels = 0;
2501 		hsotg->periodic_channels = 0;
2502 	}
2503 
2504 	/*
2505 	 * Put all channels in the free channel list and clean up channel
2506 	 * states
2507 	 */
2508 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2509 				 hc_list_entry)
2510 		list_del_init(&chan->hc_list_entry);
2511 
2512 	num_channels = hsotg->params.host_channels;
2513 	for (i = 0; i < num_channels; i++) {
2514 		chan = hsotg->hc_ptr_array[i];
2515 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2516 		dwc2_hc_cleanup(hsotg, chan);
2517 	}
2518 
2519 	/* Initialize the DWC core for host mode operation */
2520 	dwc2_core_host_init(hsotg);
2521 }
2522 
2523 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2524 			       struct dwc2_host_chan *chan,
2525 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2526 {
2527 	int hub_addr, hub_port;
2528 
2529 	chan->do_split = 1;
2530 	chan->xact_pos = qtd->isoc_split_pos;
2531 	chan->complete_split = qtd->complete_split;
2532 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2533 	chan->hub_addr = (u8)hub_addr;
2534 	chan->hub_port = (u8)hub_port;
2535 }
2536 
2537 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2538 			      struct dwc2_host_chan *chan,
2539 			      struct dwc2_qtd *qtd)
2540 {
2541 	struct dwc2_hcd_urb *urb = qtd->urb;
2542 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2543 
2544 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2545 	case USB_ENDPOINT_XFER_CONTROL:
2546 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2547 
2548 		switch (qtd->control_phase) {
2549 		case DWC2_CONTROL_SETUP:
2550 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2551 			chan->do_ping = 0;
2552 			chan->ep_is_in = 0;
2553 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2554 			if (hsotg->params.host_dma)
2555 				chan->xfer_dma = urb->setup_dma;
2556 			else
2557 				chan->xfer_buf = urb->setup_packet;
2558 			chan->xfer_len = 8;
2559 			break;
2560 
2561 		case DWC2_CONTROL_DATA:
2562 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2563 			chan->data_pid_start = qtd->data_toggle;
2564 			break;
2565 
2566 		case DWC2_CONTROL_STATUS:
2567 			/*
2568 			 * Direction is opposite of data direction or IN if no
2569 			 * data
2570 			 */
2571 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2572 			if (urb->length == 0)
2573 				chan->ep_is_in = 1;
2574 			else
2575 				chan->ep_is_in =
2576 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2577 			if (chan->ep_is_in)
2578 				chan->do_ping = 0;
2579 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2580 			chan->xfer_len = 0;
2581 			if (hsotg->params.host_dma)
2582 				chan->xfer_dma = hsotg->status_buf_dma;
2583 			else
2584 				chan->xfer_buf = hsotg->status_buf;
2585 			break;
2586 		}
2587 		break;
2588 
2589 	case USB_ENDPOINT_XFER_BULK:
2590 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2591 		break;
2592 
2593 	case USB_ENDPOINT_XFER_INT:
2594 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2595 		break;
2596 
2597 	case USB_ENDPOINT_XFER_ISOC:
2598 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2599 		if (hsotg->params.dma_desc_enable)
2600 			break;
2601 
2602 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2603 		frame_desc->status = 0;
2604 
2605 		if (hsotg->params.host_dma) {
2606 			chan->xfer_dma = urb->dma;
2607 			chan->xfer_dma += frame_desc->offset +
2608 					qtd->isoc_split_offset;
2609 		} else {
2610 			chan->xfer_buf = urb->buf;
2611 			chan->xfer_buf += frame_desc->offset +
2612 					qtd->isoc_split_offset;
2613 		}
2614 
2615 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2616 
2617 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2618 			if (chan->xfer_len <= 188)
2619 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2620 			else
2621 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2622 		}
2623 		break;
2624 	}
2625 }
2626 
2627 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2628 					    struct dwc2_qh *qh,
2629 					    struct dwc2_host_chan *chan)
2630 {
2631 	if (!hsotg->unaligned_cache ||
2632 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2633 		return -ENOMEM;
2634 
2635 	if (!qh->dw_align_buf) {
2636 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2637 						    GFP_ATOMIC | GFP_DMA);
2638 		if (!qh->dw_align_buf)
2639 			return -ENOMEM;
2640 	}
2641 
2642 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2643 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2644 					      DMA_FROM_DEVICE);
2645 
2646 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2647 		dev_err(hsotg->dev, "can't map align_buf\n");
2648 		chan->align_buf = 0;
2649 		return -EINVAL;
2650 	}
2651 
2652 	chan->align_buf = qh->dw_align_buf_dma;
2653 	return 0;
2654 }
2655 
2656 #define DWC2_USB_DMA_ALIGN 4
2657 
2658 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2659 {
2660 	void *stored_xfer_buffer;
2661 	size_t length;
2662 
2663 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2664 		return;
2665 
2666 	/* Restore urb->transfer_buffer from the end of the allocated area */
2667 	memcpy(&stored_xfer_buffer, urb->transfer_buffer +
2668 	       urb->transfer_buffer_length, sizeof(urb->transfer_buffer));
2669 
2670 	if (usb_urb_dir_in(urb)) {
2671 		if (usb_pipeisoc(urb->pipe))
2672 			length = urb->transfer_buffer_length;
2673 		else
2674 			length = urb->actual_length;
2675 
2676 		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2677 	}
2678 	kfree(urb->transfer_buffer);
2679 	urb->transfer_buffer = stored_xfer_buffer;
2680 
2681 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2682 }
2683 
2684 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2685 {
2686 	void *kmalloc_ptr;
2687 	size_t kmalloc_size;
2688 
2689 	if (urb->num_sgs || urb->sg ||
2690 	    urb->transfer_buffer_length == 0 ||
2691 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2692 		return 0;
2693 
2694 	/*
2695 	 * Allocate a buffer with enough padding for original transfer_buffer
2696 	 * pointer. This allocation is guaranteed to be aligned properly for
2697 	 * DMA
2698 	 */
2699 	kmalloc_size = urb->transfer_buffer_length +
2700 		sizeof(urb->transfer_buffer);
2701 
2702 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2703 	if (!kmalloc_ptr)
2704 		return -ENOMEM;
2705 
2706 	/*
2707 	 * Position value of original urb->transfer_buffer pointer to the end
2708 	 * of allocation for later referencing
2709 	 */
2710 	memcpy(kmalloc_ptr + urb->transfer_buffer_length,
2711 	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2712 
2713 	if (usb_urb_dir_out(urb))
2714 		memcpy(kmalloc_ptr, urb->transfer_buffer,
2715 		       urb->transfer_buffer_length);
2716 	urb->transfer_buffer = kmalloc_ptr;
2717 
2718 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2719 
2720 	return 0;
2721 }
2722 
2723 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2724 				gfp_t mem_flags)
2725 {
2726 	int ret;
2727 
2728 	/* We assume setup_dma is always aligned; warn if not */
2729 	WARN_ON_ONCE(urb->setup_dma &&
2730 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2731 
2732 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2733 	if (ret)
2734 		return ret;
2735 
2736 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2737 	if (ret)
2738 		dwc2_free_dma_aligned_buffer(urb);
2739 
2740 	return ret;
2741 }
2742 
2743 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2744 {
2745 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2746 	dwc2_free_dma_aligned_buffer(urb);
2747 }
2748 
2749 /**
2750  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2751  * channel and initializes the host channel to perform the transactions. The
2752  * host channel is removed from the free list.
2753  *
2754  * @hsotg: The HCD state structure
2755  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2756  *         to a free host channel
2757  */
2758 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2759 {
2760 	struct dwc2_host_chan *chan;
2761 	struct dwc2_hcd_urb *urb;
2762 	struct dwc2_qtd *qtd;
2763 
2764 	if (dbg_qh(qh))
2765 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2766 
2767 	if (list_empty(&qh->qtd_list)) {
2768 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2769 		return -ENOMEM;
2770 	}
2771 
2772 	if (list_empty(&hsotg->free_hc_list)) {
2773 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2774 		return -ENOMEM;
2775 	}
2776 
2777 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2778 				hc_list_entry);
2779 
2780 	/* Remove host channel from free list */
2781 	list_del_init(&chan->hc_list_entry);
2782 
2783 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2784 	urb = qtd->urb;
2785 	qh->channel = chan;
2786 	qtd->in_process = 1;
2787 
2788 	/*
2789 	 * Use usb_pipedevice to determine device address. This address is
2790 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2791 	 */
2792 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2793 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2794 	chan->speed = qh->dev_speed;
2795 	chan->max_packet = dwc2_max_packet(qh->maxp);
2796 
2797 	chan->xfer_started = 0;
2798 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2799 	chan->error_state = (qtd->error_count > 0);
2800 	chan->halt_on_queue = 0;
2801 	chan->halt_pending = 0;
2802 	chan->requests = 0;
2803 
2804 	/*
2805 	 * The following values may be modified in the transfer type section
2806 	 * below. The xfer_len value may be reduced when the transfer is
2807 	 * started to accommodate the max widths of the XferSize and PktCnt
2808 	 * fields in the HCTSIZn register.
2809 	 */
2810 
2811 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2812 	if (chan->ep_is_in)
2813 		chan->do_ping = 0;
2814 	else
2815 		chan->do_ping = qh->ping_state;
2816 
2817 	chan->data_pid_start = qh->data_toggle;
2818 	chan->multi_count = 1;
2819 
2820 	if (urb->actual_length > urb->length &&
2821 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2822 		urb->actual_length = urb->length;
2823 
2824 	if (hsotg->params.host_dma)
2825 		chan->xfer_dma = urb->dma + urb->actual_length;
2826 	else
2827 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2828 
2829 	chan->xfer_len = urb->length - urb->actual_length;
2830 	chan->xfer_count = 0;
2831 
2832 	/* Set the split attributes if required */
2833 	if (qh->do_split)
2834 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2835 	else
2836 		chan->do_split = 0;
2837 
2838 	/* Set the transfer attributes */
2839 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2840 
2841 	/* For non-dword aligned buffers */
2842 	if (hsotg->params.host_dma && qh->do_split &&
2843 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2844 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2845 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2846 			dev_err(hsotg->dev,
2847 				"Failed to allocate memory to handle non-aligned buffer\n");
2848 			/* Add channel back to free list */
2849 			chan->align_buf = 0;
2850 			chan->multi_count = 0;
2851 			list_add_tail(&chan->hc_list_entry,
2852 				      &hsotg->free_hc_list);
2853 			qtd->in_process = 0;
2854 			qh->channel = NULL;
2855 			return -ENOMEM;
2856 		}
2857 	} else {
2858 		/*
2859 		 * We assume that DMA is always aligned in non-split
2860 		 * case or split out case. Warn if not.
2861 		 */
2862 		WARN_ON_ONCE(hsotg->params.host_dma &&
2863 			     (chan->xfer_dma & 0x3));
2864 		chan->align_buf = 0;
2865 	}
2866 
2867 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2868 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2869 		/*
2870 		 * This value may be modified when the transfer is started
2871 		 * to reflect the actual transfer length
2872 		 */
2873 		chan->multi_count = dwc2_hb_mult(qh->maxp);
2874 
2875 	if (hsotg->params.dma_desc_enable) {
2876 		chan->desc_list_addr = qh->desc_list_dma;
2877 		chan->desc_list_sz = qh->desc_list_sz;
2878 	}
2879 
2880 	dwc2_hc_init(hsotg, chan);
2881 	chan->qh = qh;
2882 
2883 	return 0;
2884 }
2885 
2886 /**
2887  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2888  * schedule and assigns them to available host channels. Called from the HCD
2889  * interrupt handler functions.
2890  *
2891  * @hsotg: The HCD state structure
2892  *
2893  * Return: The types of new transactions that were assigned to host channels
2894  */
2895 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2896 		struct dwc2_hsotg *hsotg)
2897 {
2898 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2899 	struct list_head *qh_ptr;
2900 	struct dwc2_qh *qh;
2901 	int num_channels;
2902 
2903 #ifdef DWC2_DEBUG_SOF
2904 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2905 #endif
2906 
2907 	/* Process entries in the periodic ready list */
2908 	qh_ptr = hsotg->periodic_sched_ready.next;
2909 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2910 		if (list_empty(&hsotg->free_hc_list))
2911 			break;
2912 		if (hsotg->params.uframe_sched) {
2913 			if (hsotg->available_host_channels <= 1)
2914 				break;
2915 			hsotg->available_host_channels--;
2916 		}
2917 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2918 		if (dwc2_assign_and_init_hc(hsotg, qh))
2919 			break;
2920 
2921 		/*
2922 		 * Move the QH from the periodic ready schedule to the
2923 		 * periodic assigned schedule
2924 		 */
2925 		qh_ptr = qh_ptr->next;
2926 		list_move_tail(&qh->qh_list_entry,
2927 			       &hsotg->periodic_sched_assigned);
2928 		ret_val = DWC2_TRANSACTION_PERIODIC;
2929 	}
2930 
2931 	/*
2932 	 * Process entries in the inactive portion of the non-periodic
2933 	 * schedule. Some free host channels may not be used if they are
2934 	 * reserved for periodic transfers.
2935 	 */
2936 	num_channels = hsotg->params.host_channels;
2937 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2938 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2939 		if (!hsotg->params.uframe_sched &&
2940 		    hsotg->non_periodic_channels >= num_channels -
2941 						hsotg->periodic_channels)
2942 			break;
2943 		if (list_empty(&hsotg->free_hc_list))
2944 			break;
2945 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2946 		if (hsotg->params.uframe_sched) {
2947 			if (hsotg->available_host_channels < 1)
2948 				break;
2949 			hsotg->available_host_channels--;
2950 		}
2951 
2952 		if (dwc2_assign_and_init_hc(hsotg, qh))
2953 			break;
2954 
2955 		/*
2956 		 * Move the QH from the non-periodic inactive schedule to the
2957 		 * non-periodic active schedule
2958 		 */
2959 		qh_ptr = qh_ptr->next;
2960 		list_move_tail(&qh->qh_list_entry,
2961 			       &hsotg->non_periodic_sched_active);
2962 
2963 		if (ret_val == DWC2_TRANSACTION_NONE)
2964 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2965 		else
2966 			ret_val = DWC2_TRANSACTION_ALL;
2967 
2968 		if (!hsotg->params.uframe_sched)
2969 			hsotg->non_periodic_channels++;
2970 	}
2971 
2972 	return ret_val;
2973 }
2974 
2975 /**
2976  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2977  * a host channel associated with either a periodic or non-periodic transfer
2978  *
2979  * @hsotg: The HCD state structure
2980  * @chan:  Host channel descriptor associated with either a periodic or
2981  *         non-periodic transfer
2982  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2983  *                     for periodic transfers or the non-periodic Tx FIFO
2984  *                     for non-periodic transfers
2985  *
2986  * Return: 1 if a request is queued and more requests may be needed to
2987  * complete the transfer, 0 if no more requests are required for this
2988  * transfer, -1 if there is insufficient space in the Tx FIFO
2989  *
2990  * This function assumes that there is space available in the appropriate
2991  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2992  * it checks whether space is available in the appropriate Tx FIFO.
2993  *
2994  * Must be called with interrupt disabled and spinlock held
2995  */
2996 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2997 				  struct dwc2_host_chan *chan,
2998 				  u16 fifo_dwords_avail)
2999 {
3000 	int retval = 0;
3001 
3002 	if (chan->do_split)
3003 		/* Put ourselves on the list to keep order straight */
3004 		list_move_tail(&chan->split_order_list_entry,
3005 			       &hsotg->split_order);
3006 
3007 	if (hsotg->params.host_dma) {
3008 		if (hsotg->params.dma_desc_enable) {
3009 			if (!chan->xfer_started ||
3010 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
3011 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
3012 				chan->qh->ping_state = 0;
3013 			}
3014 		} else if (!chan->xfer_started) {
3015 			dwc2_hc_start_transfer(hsotg, chan);
3016 			chan->qh->ping_state = 0;
3017 		}
3018 	} else if (chan->halt_pending) {
3019 		/* Don't queue a request if the channel has been halted */
3020 	} else if (chan->halt_on_queue) {
3021 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
3022 	} else if (chan->do_ping) {
3023 		if (!chan->xfer_started)
3024 			dwc2_hc_start_transfer(hsotg, chan);
3025 	} else if (!chan->ep_is_in ||
3026 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
3027 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
3028 			if (!chan->xfer_started) {
3029 				dwc2_hc_start_transfer(hsotg, chan);
3030 				retval = 1;
3031 			} else {
3032 				retval = dwc2_hc_continue_transfer(hsotg, chan);
3033 			}
3034 		} else {
3035 			retval = -1;
3036 		}
3037 	} else {
3038 		if (!chan->xfer_started) {
3039 			dwc2_hc_start_transfer(hsotg, chan);
3040 			retval = 1;
3041 		} else {
3042 			retval = dwc2_hc_continue_transfer(hsotg, chan);
3043 		}
3044 	}
3045 
3046 	return retval;
3047 }
3048 
3049 /*
3050  * Processes periodic channels for the next frame and queues transactions for
3051  * these channels to the DWC_otg controller. After queueing transactions, the
3052  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
3053  * to queue as Periodic Tx FIFO or request queue space becomes available.
3054  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
3055  *
3056  * Must be called with interrupt disabled and spinlock held
3057  */
3058 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
3059 {
3060 	struct list_head *qh_ptr;
3061 	struct dwc2_qh *qh;
3062 	u32 tx_status;
3063 	u32 fspcavail;
3064 	u32 gintmsk;
3065 	int status;
3066 	bool no_queue_space = false;
3067 	bool no_fifo_space = false;
3068 	u32 qspcavail;
3069 
3070 	/* If empty list then just adjust interrupt enables */
3071 	if (list_empty(&hsotg->periodic_sched_assigned))
3072 		goto exit;
3073 
3074 	if (dbg_perio())
3075 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
3076 
3077 	tx_status = dwc2_readl(hsotg, HPTXSTS);
3078 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3079 		    TXSTS_QSPCAVAIL_SHIFT;
3080 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3081 		    TXSTS_FSPCAVAIL_SHIFT;
3082 
3083 	if (dbg_perio()) {
3084 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
3085 			 qspcavail);
3086 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
3087 			 fspcavail);
3088 	}
3089 
3090 	qh_ptr = hsotg->periodic_sched_assigned.next;
3091 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
3092 		tx_status = dwc2_readl(hsotg, HPTXSTS);
3093 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3094 			    TXSTS_QSPCAVAIL_SHIFT;
3095 		if (qspcavail == 0) {
3096 			no_queue_space = true;
3097 			break;
3098 		}
3099 
3100 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
3101 		if (!qh->channel) {
3102 			qh_ptr = qh_ptr->next;
3103 			continue;
3104 		}
3105 
3106 		/* Make sure EP's TT buffer is clean before queueing qtds */
3107 		if (qh->tt_buffer_dirty) {
3108 			qh_ptr = qh_ptr->next;
3109 			continue;
3110 		}
3111 
3112 		/*
3113 		 * Set a flag if we're queuing high-bandwidth in slave mode.
3114 		 * The flag prevents any halts to get into the request queue in
3115 		 * the middle of multiple high-bandwidth packets getting queued.
3116 		 */
3117 		if (!hsotg->params.host_dma &&
3118 		    qh->channel->multi_count > 1)
3119 			hsotg->queuing_high_bandwidth = 1;
3120 
3121 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3122 			    TXSTS_FSPCAVAIL_SHIFT;
3123 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3124 		if (status < 0) {
3125 			no_fifo_space = true;
3126 			break;
3127 		}
3128 
3129 		/*
3130 		 * In Slave mode, stay on the current transfer until there is
3131 		 * nothing more to do or the high-bandwidth request count is
3132 		 * reached. In DMA mode, only need to queue one request. The
3133 		 * controller automatically handles multiple packets for
3134 		 * high-bandwidth transfers.
3135 		 */
3136 		if (hsotg->params.host_dma || status == 0 ||
3137 		    qh->channel->requests == qh->channel->multi_count) {
3138 			qh_ptr = qh_ptr->next;
3139 			/*
3140 			 * Move the QH from the periodic assigned schedule to
3141 			 * the periodic queued schedule
3142 			 */
3143 			list_move_tail(&qh->qh_list_entry,
3144 				       &hsotg->periodic_sched_queued);
3145 
3146 			/* done queuing high bandwidth */
3147 			hsotg->queuing_high_bandwidth = 0;
3148 		}
3149 	}
3150 
3151 exit:
3152 	if (no_queue_space || no_fifo_space ||
3153 	    (!hsotg->params.host_dma &&
3154 	     !list_empty(&hsotg->periodic_sched_assigned))) {
3155 		/*
3156 		 * May need to queue more transactions as the request
3157 		 * queue or Tx FIFO empties. Enable the periodic Tx
3158 		 * FIFO empty interrupt. (Always use the half-empty
3159 		 * level to ensure that new requests are loaded as
3160 		 * soon as possible.)
3161 		 */
3162 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3163 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3164 			gintmsk |= GINTSTS_PTXFEMP;
3165 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3166 		}
3167 	} else {
3168 		/*
3169 		 * Disable the Tx FIFO empty interrupt since there are
3170 		 * no more transactions that need to be queued right
3171 		 * now. This function is called from interrupt
3172 		 * handlers to queue more transactions as transfer
3173 		 * states change.
3174 		 */
3175 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3176 		if (gintmsk & GINTSTS_PTXFEMP) {
3177 			gintmsk &= ~GINTSTS_PTXFEMP;
3178 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3179 		}
3180 	}
3181 }
3182 
3183 /*
3184  * Processes active non-periodic channels and queues transactions for these
3185  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3186  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3187  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3188  * FIFO Empty interrupt is disabled.
3189  *
3190  * Must be called with interrupt disabled and spinlock held
3191  */
3192 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3193 {
3194 	struct list_head *orig_qh_ptr;
3195 	struct dwc2_qh *qh;
3196 	u32 tx_status;
3197 	u32 qspcavail;
3198 	u32 fspcavail;
3199 	u32 gintmsk;
3200 	int status;
3201 	int no_queue_space = 0;
3202 	int no_fifo_space = 0;
3203 	int more_to_do = 0;
3204 
3205 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3206 
3207 	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3208 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3209 		    TXSTS_QSPCAVAIL_SHIFT;
3210 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3211 		    TXSTS_FSPCAVAIL_SHIFT;
3212 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3213 		 qspcavail);
3214 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3215 		 fspcavail);
3216 
3217 	/*
3218 	 * Keep track of the starting point. Skip over the start-of-list
3219 	 * entry.
3220 	 */
3221 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3222 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3223 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3224 
3225 	/*
3226 	 * Process once through the active list or until no more space is
3227 	 * available in the request queue or the Tx FIFO
3228 	 */
3229 	do {
3230 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3231 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3232 			    TXSTS_QSPCAVAIL_SHIFT;
3233 		if (!hsotg->params.host_dma && qspcavail == 0) {
3234 			no_queue_space = 1;
3235 			break;
3236 		}
3237 
3238 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3239 				qh_list_entry);
3240 		if (!qh->channel)
3241 			goto next;
3242 
3243 		/* Make sure EP's TT buffer is clean before queueing qtds */
3244 		if (qh->tt_buffer_dirty)
3245 			goto next;
3246 
3247 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3248 			    TXSTS_FSPCAVAIL_SHIFT;
3249 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3250 
3251 		if (status > 0) {
3252 			more_to_do = 1;
3253 		} else if (status < 0) {
3254 			no_fifo_space = 1;
3255 			break;
3256 		}
3257 next:
3258 		/* Advance to next QH, skipping start-of-list entry */
3259 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3260 		if (hsotg->non_periodic_qh_ptr ==
3261 				&hsotg->non_periodic_sched_active)
3262 			hsotg->non_periodic_qh_ptr =
3263 					hsotg->non_periodic_qh_ptr->next;
3264 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3265 
3266 	if (!hsotg->params.host_dma) {
3267 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3268 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3269 			    TXSTS_QSPCAVAIL_SHIFT;
3270 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3271 			    TXSTS_FSPCAVAIL_SHIFT;
3272 		dev_vdbg(hsotg->dev,
3273 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3274 			 qspcavail);
3275 		dev_vdbg(hsotg->dev,
3276 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3277 			 fspcavail);
3278 
3279 		if (more_to_do || no_queue_space || no_fifo_space) {
3280 			/*
3281 			 * May need to queue more transactions as the request
3282 			 * queue or Tx FIFO empties. Enable the non-periodic
3283 			 * Tx FIFO empty interrupt. (Always use the half-empty
3284 			 * level to ensure that new requests are loaded as
3285 			 * soon as possible.)
3286 			 */
3287 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3288 			gintmsk |= GINTSTS_NPTXFEMP;
3289 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3290 		} else {
3291 			/*
3292 			 * Disable the Tx FIFO empty interrupt since there are
3293 			 * no more transactions that need to be queued right
3294 			 * now. This function is called from interrupt
3295 			 * handlers to queue more transactions as transfer
3296 			 * states change.
3297 			 */
3298 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3299 			gintmsk &= ~GINTSTS_NPTXFEMP;
3300 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3301 		}
3302 	}
3303 }
3304 
3305 /**
3306  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3307  * and queues transactions for these channels to the DWC_otg controller. Called
3308  * from the HCD interrupt handler functions.
3309  *
3310  * @hsotg:   The HCD state structure
3311  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3312  *           or both)
3313  *
3314  * Must be called with interrupt disabled and spinlock held
3315  */
3316 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3317 				 enum dwc2_transaction_type tr_type)
3318 {
3319 #ifdef DWC2_DEBUG_SOF
3320 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3321 #endif
3322 	/* Process host channels associated with periodic transfers */
3323 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3324 	    tr_type == DWC2_TRANSACTION_ALL)
3325 		dwc2_process_periodic_channels(hsotg);
3326 
3327 	/* Process host channels associated with non-periodic transfers */
3328 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3329 	    tr_type == DWC2_TRANSACTION_ALL) {
3330 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3331 			dwc2_process_non_periodic_channels(hsotg);
3332 		} else {
3333 			/*
3334 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3335 			 * there are no non-periodic transfers to process
3336 			 */
3337 			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3338 
3339 			gintmsk &= ~GINTSTS_NPTXFEMP;
3340 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3341 		}
3342 	}
3343 }
3344 
3345 static void dwc2_conn_id_status_change(struct work_struct *work)
3346 {
3347 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3348 						wf_otg);
3349 	u32 count = 0;
3350 	u32 gotgctl;
3351 	unsigned long flags;
3352 
3353 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3354 
3355 	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3356 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3357 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3358 		!!(gotgctl & GOTGCTL_CONID_B));
3359 
3360 	/* B-Device connector (Device Mode) */
3361 	if (gotgctl & GOTGCTL_CONID_B) {
3362 		dwc2_vbus_supply_exit(hsotg);
3363 		/* Wait for switch to device mode */
3364 		dev_dbg(hsotg->dev, "connId B\n");
3365 		if (hsotg->bus_suspended) {
3366 			dev_info(hsotg->dev,
3367 				 "Do port resume before switching to device mode\n");
3368 			dwc2_port_resume(hsotg);
3369 		}
3370 		while (!dwc2_is_device_mode(hsotg)) {
3371 			dev_info(hsotg->dev,
3372 				 "Waiting for Peripheral Mode, Mode=%s\n",
3373 				 dwc2_is_host_mode(hsotg) ? "Host" :
3374 				 "Peripheral");
3375 			msleep(20);
3376 			/*
3377 			 * Sometimes the initial GOTGCTRL read is wrong, so
3378 			 * check it again and jump to host mode if that was
3379 			 * the case.
3380 			 */
3381 			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3382 			if (!(gotgctl & GOTGCTL_CONID_B))
3383 				goto host;
3384 			if (++count > 250)
3385 				break;
3386 		}
3387 		if (count > 250)
3388 			dev_err(hsotg->dev,
3389 				"Connection id status change timed out\n");
3390 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3391 		dwc2_core_init(hsotg, false);
3392 		dwc2_enable_global_interrupts(hsotg);
3393 		spin_lock_irqsave(&hsotg->lock, flags);
3394 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3395 		spin_unlock_irqrestore(&hsotg->lock, flags);
3396 		/* Enable ACG feature in device mode,if supported */
3397 		dwc2_enable_acg(hsotg);
3398 		dwc2_hsotg_core_connect(hsotg);
3399 	} else {
3400 host:
3401 		/* A-Device connector (Host Mode) */
3402 		dev_dbg(hsotg->dev, "connId A\n");
3403 		while (!dwc2_is_host_mode(hsotg)) {
3404 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3405 				 dwc2_is_host_mode(hsotg) ?
3406 				 "Host" : "Peripheral");
3407 			msleep(20);
3408 			if (++count > 250)
3409 				break;
3410 		}
3411 		if (count > 250)
3412 			dev_err(hsotg->dev,
3413 				"Connection id status change timed out\n");
3414 
3415 		spin_lock_irqsave(&hsotg->lock, flags);
3416 		dwc2_hsotg_disconnect(hsotg);
3417 		spin_unlock_irqrestore(&hsotg->lock, flags);
3418 
3419 		hsotg->op_state = OTG_STATE_A_HOST;
3420 		/* Initialize the Core for Host mode */
3421 		dwc2_core_init(hsotg, false);
3422 		dwc2_enable_global_interrupts(hsotg);
3423 		dwc2_hcd_start(hsotg);
3424 	}
3425 }
3426 
3427 static void dwc2_wakeup_detected(struct timer_list *t)
3428 {
3429 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3430 	u32 hprt0;
3431 
3432 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3433 
3434 	/*
3435 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3436 	 * so that OPT tests pass with all PHYs.)
3437 	 */
3438 	hprt0 = dwc2_read_hprt0(hsotg);
3439 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3440 	hprt0 &= ~HPRT0_RES;
3441 	dwc2_writel(hsotg, hprt0, HPRT0);
3442 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3443 		dwc2_readl(hsotg, HPRT0));
3444 
3445 	dwc2_hcd_rem_wakeup(hsotg);
3446 	hsotg->bus_suspended = false;
3447 
3448 	/* Change to L0 state */
3449 	hsotg->lx_state = DWC2_L0;
3450 }
3451 
3452 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3453 {
3454 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3455 
3456 	return hcd->self.b_hnp_enable;
3457 }
3458 
3459 /* Must NOT be called with interrupt disabled or spinlock held */
3460 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3461 {
3462 	unsigned long flags;
3463 	u32 hprt0;
3464 	u32 pcgctl;
3465 	u32 gotgctl;
3466 
3467 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3468 
3469 	spin_lock_irqsave(&hsotg->lock, flags);
3470 
3471 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3472 		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3473 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3474 		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3475 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3476 	}
3477 
3478 	hprt0 = dwc2_read_hprt0(hsotg);
3479 	hprt0 |= HPRT0_SUSP;
3480 	dwc2_writel(hsotg, hprt0, HPRT0);
3481 
3482 	hsotg->bus_suspended = true;
3483 
3484 	/*
3485 	 * If power_down is supported, Phy clock will be suspended
3486 	 * after registers are backuped.
3487 	 */
3488 	if (!hsotg->params.power_down) {
3489 		/* Suspend the Phy Clock */
3490 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3491 		pcgctl |= PCGCTL_STOPPCLK;
3492 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3493 		udelay(10);
3494 	}
3495 
3496 	/* For HNP the bus must be suspended for at least 200ms */
3497 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3498 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3499 		pcgctl &= ~PCGCTL_STOPPCLK;
3500 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3501 
3502 		spin_unlock_irqrestore(&hsotg->lock, flags);
3503 
3504 		msleep(200);
3505 	} else {
3506 		spin_unlock_irqrestore(&hsotg->lock, flags);
3507 	}
3508 }
3509 
3510 /* Must NOT be called with interrupt disabled or spinlock held */
3511 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3512 {
3513 	unsigned long flags;
3514 	u32 hprt0;
3515 	u32 pcgctl;
3516 
3517 	spin_lock_irqsave(&hsotg->lock, flags);
3518 
3519 	/*
3520 	 * If power_down is supported, Phy clock is already resumed
3521 	 * after registers restore.
3522 	 */
3523 	if (!hsotg->params.power_down) {
3524 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3525 		pcgctl &= ~PCGCTL_STOPPCLK;
3526 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3527 		spin_unlock_irqrestore(&hsotg->lock, flags);
3528 		msleep(20);
3529 		spin_lock_irqsave(&hsotg->lock, flags);
3530 	}
3531 
3532 	hprt0 = dwc2_read_hprt0(hsotg);
3533 	hprt0 |= HPRT0_RES;
3534 	hprt0 &= ~HPRT0_SUSP;
3535 	dwc2_writel(hsotg, hprt0, HPRT0);
3536 	spin_unlock_irqrestore(&hsotg->lock, flags);
3537 
3538 	msleep(USB_RESUME_TIMEOUT);
3539 
3540 	spin_lock_irqsave(&hsotg->lock, flags);
3541 	hprt0 = dwc2_read_hprt0(hsotg);
3542 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3543 	dwc2_writel(hsotg, hprt0, HPRT0);
3544 	hsotg->bus_suspended = false;
3545 	spin_unlock_irqrestore(&hsotg->lock, flags);
3546 }
3547 
3548 /* Handles hub class-specific requests */
3549 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3550 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3551 {
3552 	struct usb_hub_descriptor *hub_desc;
3553 	int retval = 0;
3554 	u32 hprt0;
3555 	u32 port_status;
3556 	u32 speed;
3557 	u32 pcgctl;
3558 	u32 pwr;
3559 
3560 	switch (typereq) {
3561 	case ClearHubFeature:
3562 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3563 
3564 		switch (wvalue) {
3565 		case C_HUB_LOCAL_POWER:
3566 		case C_HUB_OVER_CURRENT:
3567 			/* Nothing required here */
3568 			break;
3569 
3570 		default:
3571 			retval = -EINVAL;
3572 			dev_err(hsotg->dev,
3573 				"ClearHubFeature request %1xh unknown\n",
3574 				wvalue);
3575 		}
3576 		break;
3577 
3578 	case ClearPortFeature:
3579 		if (wvalue != USB_PORT_FEAT_L1)
3580 			if (!windex || windex > 1)
3581 				goto error;
3582 		switch (wvalue) {
3583 		case USB_PORT_FEAT_ENABLE:
3584 			dev_dbg(hsotg->dev,
3585 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3586 			hprt0 = dwc2_read_hprt0(hsotg);
3587 			hprt0 |= HPRT0_ENA;
3588 			dwc2_writel(hsotg, hprt0, HPRT0);
3589 			break;
3590 
3591 		case USB_PORT_FEAT_SUSPEND:
3592 			dev_dbg(hsotg->dev,
3593 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3594 
3595 			if (hsotg->bus_suspended) {
3596 				if (hsotg->hibernated)
3597 					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3598 				else
3599 					dwc2_port_resume(hsotg);
3600 			}
3601 			break;
3602 
3603 		case USB_PORT_FEAT_POWER:
3604 			dev_dbg(hsotg->dev,
3605 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3606 			hprt0 = dwc2_read_hprt0(hsotg);
3607 			pwr = hprt0 & HPRT0_PWR;
3608 			hprt0 &= ~HPRT0_PWR;
3609 			dwc2_writel(hsotg, hprt0, HPRT0);
3610 			if (pwr)
3611 				dwc2_vbus_supply_exit(hsotg);
3612 			break;
3613 
3614 		case USB_PORT_FEAT_INDICATOR:
3615 			dev_dbg(hsotg->dev,
3616 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3617 			/* Port indicator not supported */
3618 			break;
3619 
3620 		case USB_PORT_FEAT_C_CONNECTION:
3621 			/*
3622 			 * Clears driver's internal Connect Status Change flag
3623 			 */
3624 			dev_dbg(hsotg->dev,
3625 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3626 			hsotg->flags.b.port_connect_status_change = 0;
3627 			break;
3628 
3629 		case USB_PORT_FEAT_C_RESET:
3630 			/* Clears driver's internal Port Reset Change flag */
3631 			dev_dbg(hsotg->dev,
3632 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3633 			hsotg->flags.b.port_reset_change = 0;
3634 			break;
3635 
3636 		case USB_PORT_FEAT_C_ENABLE:
3637 			/*
3638 			 * Clears the driver's internal Port Enable/Disable
3639 			 * Change flag
3640 			 */
3641 			dev_dbg(hsotg->dev,
3642 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3643 			hsotg->flags.b.port_enable_change = 0;
3644 			break;
3645 
3646 		case USB_PORT_FEAT_C_SUSPEND:
3647 			/*
3648 			 * Clears the driver's internal Port Suspend Change
3649 			 * flag, which is set when resume signaling on the host
3650 			 * port is complete
3651 			 */
3652 			dev_dbg(hsotg->dev,
3653 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3654 			hsotg->flags.b.port_suspend_change = 0;
3655 			break;
3656 
3657 		case USB_PORT_FEAT_C_PORT_L1:
3658 			dev_dbg(hsotg->dev,
3659 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3660 			hsotg->flags.b.port_l1_change = 0;
3661 			break;
3662 
3663 		case USB_PORT_FEAT_C_OVER_CURRENT:
3664 			dev_dbg(hsotg->dev,
3665 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3666 			hsotg->flags.b.port_over_current_change = 0;
3667 			break;
3668 
3669 		default:
3670 			retval = -EINVAL;
3671 			dev_err(hsotg->dev,
3672 				"ClearPortFeature request %1xh unknown or unsupported\n",
3673 				wvalue);
3674 		}
3675 		break;
3676 
3677 	case GetHubDescriptor:
3678 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3679 		hub_desc = (struct usb_hub_descriptor *)buf;
3680 		hub_desc->bDescLength = 9;
3681 		hub_desc->bDescriptorType = USB_DT_HUB;
3682 		hub_desc->bNbrPorts = 1;
3683 		hub_desc->wHubCharacteristics =
3684 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3685 				    HUB_CHAR_INDV_PORT_OCPM);
3686 		hub_desc->bPwrOn2PwrGood = 1;
3687 		hub_desc->bHubContrCurrent = 0;
3688 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3689 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3690 		break;
3691 
3692 	case GetHubStatus:
3693 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3694 		memset(buf, 0, 4);
3695 		break;
3696 
3697 	case GetPortStatus:
3698 		dev_vdbg(hsotg->dev,
3699 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3700 			 hsotg->flags.d32);
3701 		if (!windex || windex > 1)
3702 			goto error;
3703 
3704 		port_status = 0;
3705 		if (hsotg->flags.b.port_connect_status_change)
3706 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3707 		if (hsotg->flags.b.port_enable_change)
3708 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3709 		if (hsotg->flags.b.port_suspend_change)
3710 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3711 		if (hsotg->flags.b.port_l1_change)
3712 			port_status |= USB_PORT_STAT_C_L1 << 16;
3713 		if (hsotg->flags.b.port_reset_change)
3714 			port_status |= USB_PORT_STAT_C_RESET << 16;
3715 		if (hsotg->flags.b.port_over_current_change) {
3716 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3717 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3718 		}
3719 
3720 		if (!hsotg->flags.b.port_connect_status) {
3721 			/*
3722 			 * The port is disconnected, which means the core is
3723 			 * either in device mode or it soon will be. Just
3724 			 * return 0's for the remainder of the port status
3725 			 * since the port register can't be read if the core
3726 			 * is in device mode.
3727 			 */
3728 			*(__le32 *)buf = cpu_to_le32(port_status);
3729 			break;
3730 		}
3731 
3732 		hprt0 = dwc2_readl(hsotg, HPRT0);
3733 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3734 
3735 		if (hprt0 & HPRT0_CONNSTS)
3736 			port_status |= USB_PORT_STAT_CONNECTION;
3737 		if (hprt0 & HPRT0_ENA)
3738 			port_status |= USB_PORT_STAT_ENABLE;
3739 		if (hprt0 & HPRT0_SUSP)
3740 			port_status |= USB_PORT_STAT_SUSPEND;
3741 		if (hprt0 & HPRT0_OVRCURRACT)
3742 			port_status |= USB_PORT_STAT_OVERCURRENT;
3743 		if (hprt0 & HPRT0_RST)
3744 			port_status |= USB_PORT_STAT_RESET;
3745 		if (hprt0 & HPRT0_PWR)
3746 			port_status |= USB_PORT_STAT_POWER;
3747 
3748 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3749 		if (speed == HPRT0_SPD_HIGH_SPEED)
3750 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3751 		else if (speed == HPRT0_SPD_LOW_SPEED)
3752 			port_status |= USB_PORT_STAT_LOW_SPEED;
3753 
3754 		if (hprt0 & HPRT0_TSTCTL_MASK)
3755 			port_status |= USB_PORT_STAT_TEST;
3756 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3757 
3758 		if (hsotg->params.dma_desc_fs_enable) {
3759 			/*
3760 			 * Enable descriptor DMA only if a full speed
3761 			 * device is connected.
3762 			 */
3763 			if (hsotg->new_connection &&
3764 			    ((port_status &
3765 			      (USB_PORT_STAT_CONNECTION |
3766 			       USB_PORT_STAT_HIGH_SPEED |
3767 			       USB_PORT_STAT_LOW_SPEED)) ==
3768 			       USB_PORT_STAT_CONNECTION)) {
3769 				u32 hcfg;
3770 
3771 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3772 				hsotg->params.dma_desc_enable = true;
3773 				hcfg = dwc2_readl(hsotg, HCFG);
3774 				hcfg |= HCFG_DESCDMA;
3775 				dwc2_writel(hsotg, hcfg, HCFG);
3776 				hsotg->new_connection = false;
3777 			}
3778 		}
3779 
3780 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3781 		*(__le32 *)buf = cpu_to_le32(port_status);
3782 		break;
3783 
3784 	case SetHubFeature:
3785 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3786 		/* No HUB features supported */
3787 		break;
3788 
3789 	case SetPortFeature:
3790 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3791 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3792 			goto error;
3793 
3794 		if (!hsotg->flags.b.port_connect_status) {
3795 			/*
3796 			 * The port is disconnected, which means the core is
3797 			 * either in device mode or it soon will be. Just
3798 			 * return without doing anything since the port
3799 			 * register can't be written if the core is in device
3800 			 * mode.
3801 			 */
3802 			break;
3803 		}
3804 
3805 		switch (wvalue) {
3806 		case USB_PORT_FEAT_SUSPEND:
3807 			dev_dbg(hsotg->dev,
3808 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3809 			if (windex != hsotg->otg_port)
3810 				goto error;
3811 			if (hsotg->params.power_down == 2)
3812 				dwc2_enter_hibernation(hsotg, 1);
3813 			else
3814 				dwc2_port_suspend(hsotg, windex);
3815 			break;
3816 
3817 		case USB_PORT_FEAT_POWER:
3818 			dev_dbg(hsotg->dev,
3819 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3820 			hprt0 = dwc2_read_hprt0(hsotg);
3821 			pwr = hprt0 & HPRT0_PWR;
3822 			hprt0 |= HPRT0_PWR;
3823 			dwc2_writel(hsotg, hprt0, HPRT0);
3824 			if (!pwr)
3825 				dwc2_vbus_supply_init(hsotg);
3826 			break;
3827 
3828 		case USB_PORT_FEAT_RESET:
3829 			if (hsotg->params.power_down == 2 &&
3830 			    hsotg->hibernated)
3831 				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3832 			hprt0 = dwc2_read_hprt0(hsotg);
3833 			dev_dbg(hsotg->dev,
3834 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3835 			pcgctl = dwc2_readl(hsotg, PCGCTL);
3836 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3837 			dwc2_writel(hsotg, pcgctl, PCGCTL);
3838 			/* ??? Original driver does this */
3839 			dwc2_writel(hsotg, 0, PCGCTL);
3840 
3841 			hprt0 = dwc2_read_hprt0(hsotg);
3842 			pwr = hprt0 & HPRT0_PWR;
3843 			/* Clear suspend bit if resetting from suspend state */
3844 			hprt0 &= ~HPRT0_SUSP;
3845 
3846 			/*
3847 			 * When B-Host the Port reset bit is set in the Start
3848 			 * HCD Callback function, so that the reset is started
3849 			 * within 1ms of the HNP success interrupt
3850 			 */
3851 			if (!dwc2_hcd_is_b_host(hsotg)) {
3852 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3853 				dev_dbg(hsotg->dev,
3854 					"In host mode, hprt0=%08x\n", hprt0);
3855 				dwc2_writel(hsotg, hprt0, HPRT0);
3856 				if (!pwr)
3857 					dwc2_vbus_supply_init(hsotg);
3858 			}
3859 
3860 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3861 			msleep(50);
3862 			hprt0 &= ~HPRT0_RST;
3863 			dwc2_writel(hsotg, hprt0, HPRT0);
3864 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3865 			break;
3866 
3867 		case USB_PORT_FEAT_INDICATOR:
3868 			dev_dbg(hsotg->dev,
3869 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3870 			/* Not supported */
3871 			break;
3872 
3873 		case USB_PORT_FEAT_TEST:
3874 			hprt0 = dwc2_read_hprt0(hsotg);
3875 			dev_dbg(hsotg->dev,
3876 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3877 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3878 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3879 			dwc2_writel(hsotg, hprt0, HPRT0);
3880 			break;
3881 
3882 		default:
3883 			retval = -EINVAL;
3884 			dev_err(hsotg->dev,
3885 				"SetPortFeature %1xh unknown or unsupported\n",
3886 				wvalue);
3887 			break;
3888 		}
3889 		break;
3890 
3891 	default:
3892 error:
3893 		retval = -EINVAL;
3894 		dev_dbg(hsotg->dev,
3895 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3896 			typereq, windex, wvalue);
3897 		break;
3898 	}
3899 
3900 	return retval;
3901 }
3902 
3903 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3904 {
3905 	int retval;
3906 
3907 	if (port != 1)
3908 		return -EINVAL;
3909 
3910 	retval = (hsotg->flags.b.port_connect_status_change ||
3911 		  hsotg->flags.b.port_reset_change ||
3912 		  hsotg->flags.b.port_enable_change ||
3913 		  hsotg->flags.b.port_suspend_change ||
3914 		  hsotg->flags.b.port_over_current_change);
3915 
3916 	if (retval) {
3917 		dev_dbg(hsotg->dev,
3918 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3919 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3920 			hsotg->flags.b.port_connect_status_change);
3921 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3922 			hsotg->flags.b.port_reset_change);
3923 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3924 			hsotg->flags.b.port_enable_change);
3925 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3926 			hsotg->flags.b.port_suspend_change);
3927 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3928 			hsotg->flags.b.port_over_current_change);
3929 	}
3930 
3931 	return retval;
3932 }
3933 
3934 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3935 {
3936 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3937 
3938 #ifdef DWC2_DEBUG_SOF
3939 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3940 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3941 #endif
3942 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3943 }
3944 
3945 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3946 {
3947 	u32 hprt = dwc2_readl(hsotg, HPRT0);
3948 	u32 hfir = dwc2_readl(hsotg, HFIR);
3949 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3950 	unsigned int us_per_frame;
3951 	unsigned int frame_number;
3952 	unsigned int remaining;
3953 	unsigned int interval;
3954 	unsigned int phy_clks;
3955 
3956 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3957 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3958 
3959 	/* Extract fields */
3960 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3961 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3962 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3963 
3964 	/*
3965 	 * Number of phy clocks since the last tick of the frame number after
3966 	 * "us" has passed.
3967 	 */
3968 	phy_clks = (interval - remaining) +
3969 		   DIV_ROUND_UP(interval * us, us_per_frame);
3970 
3971 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3972 }
3973 
3974 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3975 {
3976 	return hsotg->op_state == OTG_STATE_B_HOST;
3977 }
3978 
3979 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3980 					       int iso_desc_count,
3981 					       gfp_t mem_flags)
3982 {
3983 	struct dwc2_hcd_urb *urb;
3984 
3985 	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3986 	if (urb)
3987 		urb->packet_count = iso_desc_count;
3988 	return urb;
3989 }
3990 
3991 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3992 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3993 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3994 {
3995 	if (dbg_perio() ||
3996 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3997 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3998 		dev_vdbg(hsotg->dev,
3999 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
4000 			 dev_addr, ep_num, ep_dir, ep_type, mps);
4001 	urb->pipe_info.dev_addr = dev_addr;
4002 	urb->pipe_info.ep_num = ep_num;
4003 	urb->pipe_info.pipe_type = ep_type;
4004 	urb->pipe_info.pipe_dir = ep_dir;
4005 	urb->pipe_info.mps = mps;
4006 }
4007 
4008 /*
4009  * NOTE: This function will be removed once the peripheral controller code
4010  * is integrated and the driver is stable
4011  */
4012 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
4013 {
4014 #ifdef DEBUG
4015 	struct dwc2_host_chan *chan;
4016 	struct dwc2_hcd_urb *urb;
4017 	struct dwc2_qtd *qtd;
4018 	int num_channels;
4019 	u32 np_tx_status;
4020 	u32 p_tx_status;
4021 	int i;
4022 
4023 	num_channels = hsotg->params.host_channels;
4024 	dev_dbg(hsotg->dev, "\n");
4025 	dev_dbg(hsotg->dev,
4026 		"************************************************************\n");
4027 	dev_dbg(hsotg->dev, "HCD State:\n");
4028 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
4029 
4030 	for (i = 0; i < num_channels; i++) {
4031 		chan = hsotg->hc_ptr_array[i];
4032 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
4033 		dev_dbg(hsotg->dev,
4034 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
4035 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
4036 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
4037 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
4038 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
4039 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
4040 			chan->data_pid_start);
4041 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
4042 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
4043 			chan->xfer_started);
4044 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
4045 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
4046 			(unsigned long)chan->xfer_dma);
4047 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
4048 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
4049 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
4050 			chan->halt_on_queue);
4051 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
4052 			chan->halt_pending);
4053 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
4054 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
4055 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
4056 			chan->complete_split);
4057 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
4058 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
4059 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
4060 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
4061 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
4062 
4063 		if (chan->xfer_started) {
4064 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
4065 
4066 			hfnum = dwc2_readl(hsotg, HFNUM);
4067 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
4068 			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
4069 			hcint = dwc2_readl(hsotg, HCINT(i));
4070 			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
4071 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
4072 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
4073 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
4074 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
4075 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
4076 		}
4077 
4078 		if (!(chan->xfer_started && chan->qh))
4079 			continue;
4080 
4081 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
4082 			if (!qtd->in_process)
4083 				break;
4084 			urb = qtd->urb;
4085 			dev_dbg(hsotg->dev, "    URB Info:\n");
4086 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
4087 				qtd, urb);
4088 			if (urb) {
4089 				dev_dbg(hsotg->dev,
4090 					"      Dev: %d, EP: %d %s\n",
4091 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
4092 					dwc2_hcd_get_ep_num(&urb->pipe_info),
4093 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
4094 					"IN" : "OUT");
4095 				dev_dbg(hsotg->dev,
4096 					"      Max packet size: %d\n",
4097 					dwc2_hcd_get_mps(&urb->pipe_info));
4098 				dev_dbg(hsotg->dev,
4099 					"      transfer_buffer: %p\n",
4100 					urb->buf);
4101 				dev_dbg(hsotg->dev,
4102 					"      transfer_dma: %08lx\n",
4103 					(unsigned long)urb->dma);
4104 				dev_dbg(hsotg->dev,
4105 					"      transfer_buffer_length: %d\n",
4106 					urb->length);
4107 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
4108 					urb->actual_length);
4109 			}
4110 		}
4111 	}
4112 
4113 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
4114 		hsotg->non_periodic_channels);
4115 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
4116 		hsotg->periodic_channels);
4117 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
4118 	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
4119 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
4120 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4121 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
4122 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4123 	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
4124 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4125 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4126 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4127 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4128 	dwc2_dump_global_registers(hsotg);
4129 	dwc2_dump_host_registers(hsotg);
4130 	dev_dbg(hsotg->dev,
4131 		"************************************************************\n");
4132 	dev_dbg(hsotg->dev, "\n");
4133 #endif
4134 }
4135 
4136 struct wrapper_priv_data {
4137 	struct dwc2_hsotg *hsotg;
4138 };
4139 
4140 /* Gets the dwc2_hsotg from a usb_hcd */
4141 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4142 {
4143 	struct wrapper_priv_data *p;
4144 
4145 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4146 	return p->hsotg;
4147 }
4148 
4149 /**
4150  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4151  *
4152  * This will get the dwc2_tt structure (and ttport) associated with the given
4153  * context (which is really just a struct urb pointer).
4154  *
4155  * The first time this is called for a given TT we allocate memory for our
4156  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4157  * then the refcount for the structure will go to 0 and we'll free it.
4158  *
4159  * @hsotg:     The HCD state structure for the DWC OTG controller.
4160  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4161  * @mem_flags: Flags for allocating memory.
4162  * @ttport:    We'll return this device's port number here.  That's used to
4163  *             reference into the bitmap if we're on a multi_tt hub.
4164  *
4165  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4166  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4167  */
4168 
4169 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4170 				      gfp_t mem_flags, int *ttport)
4171 {
4172 	struct urb *urb = context;
4173 	struct dwc2_tt *dwc_tt = NULL;
4174 
4175 	if (urb->dev->tt) {
4176 		*ttport = urb->dev->ttport;
4177 
4178 		dwc_tt = urb->dev->tt->hcpriv;
4179 		if (!dwc_tt) {
4180 			size_t bitmap_size;
4181 
4182 			/*
4183 			 * For single_tt we need one schedule.  For multi_tt
4184 			 * we need one per port.
4185 			 */
4186 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4187 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4188 			if (urb->dev->tt->multi)
4189 				bitmap_size *= urb->dev->tt->hub->maxchild;
4190 
4191 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4192 					 mem_flags);
4193 			if (!dwc_tt)
4194 				return NULL;
4195 
4196 			dwc_tt->usb_tt = urb->dev->tt;
4197 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4198 		}
4199 
4200 		dwc_tt->refcount++;
4201 	}
4202 
4203 	return dwc_tt;
4204 }
4205 
4206 /**
4207  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4208  *
4209  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4210  * of the structure are done.
4211  *
4212  * It's OK to call this with NULL.
4213  *
4214  * @hsotg:     The HCD state structure for the DWC OTG controller.
4215  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4216  */
4217 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4218 {
4219 	/* Model kfree and make put of NULL a no-op */
4220 	if (!dwc_tt)
4221 		return;
4222 
4223 	WARN_ON(dwc_tt->refcount < 1);
4224 
4225 	dwc_tt->refcount--;
4226 	if (!dwc_tt->refcount) {
4227 		dwc_tt->usb_tt->hcpriv = NULL;
4228 		kfree(dwc_tt);
4229 	}
4230 }
4231 
4232 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4233 {
4234 	struct urb *urb = context;
4235 
4236 	return urb->dev->speed;
4237 }
4238 
4239 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4240 					struct urb *urb)
4241 {
4242 	struct usb_bus *bus = hcd_to_bus(hcd);
4243 
4244 	if (urb->interval)
4245 		bus->bandwidth_allocated += bw / urb->interval;
4246 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4247 		bus->bandwidth_isoc_reqs++;
4248 	else
4249 		bus->bandwidth_int_reqs++;
4250 }
4251 
4252 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4253 				    struct urb *urb)
4254 {
4255 	struct usb_bus *bus = hcd_to_bus(hcd);
4256 
4257 	if (urb->interval)
4258 		bus->bandwidth_allocated -= bw / urb->interval;
4259 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4260 		bus->bandwidth_isoc_reqs--;
4261 	else
4262 		bus->bandwidth_int_reqs--;
4263 }
4264 
4265 /*
4266  * Sets the final status of an URB and returns it to the upper layer. Any
4267  * required cleanup of the URB is performed.
4268  *
4269  * Must be called with interrupt disabled and spinlock held
4270  */
4271 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4272 			int status)
4273 {
4274 	struct urb *urb;
4275 	int i;
4276 
4277 	if (!qtd) {
4278 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4279 		return;
4280 	}
4281 
4282 	if (!qtd->urb) {
4283 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4284 		return;
4285 	}
4286 
4287 	urb = qtd->urb->priv;
4288 	if (!urb) {
4289 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4290 		return;
4291 	}
4292 
4293 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4294 
4295 	if (dbg_urb(urb))
4296 		dev_vdbg(hsotg->dev,
4297 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4298 			 __func__, urb, usb_pipedevice(urb->pipe),
4299 			 usb_pipeendpoint(urb->pipe),
4300 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4301 			 urb->actual_length);
4302 
4303 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4304 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4305 		for (i = 0; i < urb->number_of_packets; ++i) {
4306 			urb->iso_frame_desc[i].actual_length =
4307 				dwc2_hcd_urb_get_iso_desc_actual_length(
4308 						qtd->urb, i);
4309 			urb->iso_frame_desc[i].status =
4310 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4311 		}
4312 	}
4313 
4314 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4315 		for (i = 0; i < urb->number_of_packets; i++)
4316 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4317 				 i, urb->iso_frame_desc[i].status);
4318 	}
4319 
4320 	urb->status = status;
4321 	if (!status) {
4322 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4323 		    urb->actual_length < urb->transfer_buffer_length)
4324 			urb->status = -EREMOTEIO;
4325 	}
4326 
4327 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4328 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4329 		struct usb_host_endpoint *ep = urb->ep;
4330 
4331 		if (ep)
4332 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4333 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4334 					urb);
4335 	}
4336 
4337 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4338 	urb->hcpriv = NULL;
4339 	kfree(qtd->urb);
4340 	qtd->urb = NULL;
4341 
4342 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4343 }
4344 
4345 /*
4346  * Work queue function for starting the HCD when A-Cable is connected
4347  */
4348 static void dwc2_hcd_start_func(struct work_struct *work)
4349 {
4350 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4351 						start_work.work);
4352 
4353 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4354 	dwc2_host_start(hsotg);
4355 }
4356 
4357 /*
4358  * Reset work queue function
4359  */
4360 static void dwc2_hcd_reset_func(struct work_struct *work)
4361 {
4362 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4363 						reset_work.work);
4364 	unsigned long flags;
4365 	u32 hprt0;
4366 
4367 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4368 
4369 	spin_lock_irqsave(&hsotg->lock, flags);
4370 
4371 	hprt0 = dwc2_read_hprt0(hsotg);
4372 	hprt0 &= ~HPRT0_RST;
4373 	dwc2_writel(hsotg, hprt0, HPRT0);
4374 	hsotg->flags.b.port_reset_change = 1;
4375 
4376 	spin_unlock_irqrestore(&hsotg->lock, flags);
4377 }
4378 
4379 /*
4380  * =========================================================================
4381  *  Linux HC Driver Functions
4382  * =========================================================================
4383  */
4384 
4385 /*
4386  * Initializes the DWC_otg controller and its root hub and prepares it for host
4387  * mode operation. Activates the root port. Returns 0 on success and a negative
4388  * error code on failure.
4389  */
4390 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4391 {
4392 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4393 	struct usb_bus *bus = hcd_to_bus(hcd);
4394 	unsigned long flags;
4395 	u32 hprt0;
4396 	int ret;
4397 
4398 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4399 
4400 	spin_lock_irqsave(&hsotg->lock, flags);
4401 	hsotg->lx_state = DWC2_L0;
4402 	hcd->state = HC_STATE_RUNNING;
4403 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4404 
4405 	if (dwc2_is_device_mode(hsotg)) {
4406 		spin_unlock_irqrestore(&hsotg->lock, flags);
4407 		return 0;	/* why 0 ?? */
4408 	}
4409 
4410 	dwc2_hcd_reinit(hsotg);
4411 
4412 	hprt0 = dwc2_read_hprt0(hsotg);
4413 	/* Has vbus power been turned on in dwc2_core_host_init ? */
4414 	if (hprt0 & HPRT0_PWR) {
4415 		/* Enable external vbus supply before resuming root hub */
4416 		spin_unlock_irqrestore(&hsotg->lock, flags);
4417 		ret = dwc2_vbus_supply_init(hsotg);
4418 		if (ret)
4419 			return ret;
4420 		spin_lock_irqsave(&hsotg->lock, flags);
4421 	}
4422 
4423 	/* Initialize and connect root hub if one is not already attached */
4424 	if (bus->root_hub) {
4425 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4426 		/* Inform the HUB driver to resume */
4427 		usb_hcd_resume_root_hub(hcd);
4428 	}
4429 
4430 	spin_unlock_irqrestore(&hsotg->lock, flags);
4431 
4432 	return 0;
4433 }
4434 
4435 /*
4436  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4437  * stopped.
4438  */
4439 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4440 {
4441 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4442 	unsigned long flags;
4443 	u32 hprt0;
4444 
4445 	/* Turn off all host-specific interrupts */
4446 	dwc2_disable_host_interrupts(hsotg);
4447 
4448 	/* Wait for interrupt processing to finish */
4449 	synchronize_irq(hcd->irq);
4450 
4451 	spin_lock_irqsave(&hsotg->lock, flags);
4452 	hprt0 = dwc2_read_hprt0(hsotg);
4453 	/* Ensure hcd is disconnected */
4454 	dwc2_hcd_disconnect(hsotg, true);
4455 	dwc2_hcd_stop(hsotg);
4456 	hsotg->lx_state = DWC2_L3;
4457 	hcd->state = HC_STATE_HALT;
4458 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4459 	spin_unlock_irqrestore(&hsotg->lock, flags);
4460 
4461 	/* keep balanced supply init/exit by checking HPRT0_PWR */
4462 	if (hprt0 & HPRT0_PWR)
4463 		dwc2_vbus_supply_exit(hsotg);
4464 
4465 	usleep_range(1000, 3000);
4466 }
4467 
4468 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4469 {
4470 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4471 	unsigned long flags;
4472 	int ret = 0;
4473 	u32 hprt0;
4474 
4475 	spin_lock_irqsave(&hsotg->lock, flags);
4476 
4477 	if (dwc2_is_device_mode(hsotg))
4478 		goto unlock;
4479 
4480 	if (hsotg->lx_state != DWC2_L0)
4481 		goto unlock;
4482 
4483 	if (!HCD_HW_ACCESSIBLE(hcd))
4484 		goto unlock;
4485 
4486 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4487 		goto unlock;
4488 
4489 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL)
4490 		goto skip_power_saving;
4491 
4492 	/*
4493 	 * Drive USB suspend and disable port Power
4494 	 * if usb bus is not suspended.
4495 	 */
4496 	if (!hsotg->bus_suspended) {
4497 		hprt0 = dwc2_read_hprt0(hsotg);
4498 		hprt0 |= HPRT0_SUSP;
4499 		hprt0 &= ~HPRT0_PWR;
4500 		dwc2_writel(hsotg, hprt0, HPRT0);
4501 		spin_unlock_irqrestore(&hsotg->lock, flags);
4502 		dwc2_vbus_supply_exit(hsotg);
4503 		spin_lock_irqsave(&hsotg->lock, flags);
4504 	}
4505 
4506 	/* Enter partial_power_down */
4507 	ret = dwc2_enter_partial_power_down(hsotg);
4508 	if (ret) {
4509 		if (ret != -ENOTSUPP)
4510 			dev_err(hsotg->dev,
4511 				"enter partial_power_down failed\n");
4512 		goto skip_power_saving;
4513 	}
4514 
4515 	/* Ask phy to be suspended */
4516 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4517 		spin_unlock_irqrestore(&hsotg->lock, flags);
4518 		usb_phy_set_suspend(hsotg->uphy, true);
4519 		spin_lock_irqsave(&hsotg->lock, flags);
4520 	}
4521 
4522 	/* After entering partial_power_down, hardware is no more accessible */
4523 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4524 
4525 skip_power_saving:
4526 	hsotg->lx_state = DWC2_L2;
4527 unlock:
4528 	spin_unlock_irqrestore(&hsotg->lock, flags);
4529 
4530 	return ret;
4531 }
4532 
4533 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4534 {
4535 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4536 	unsigned long flags;
4537 	int ret = 0;
4538 
4539 	spin_lock_irqsave(&hsotg->lock, flags);
4540 
4541 	if (dwc2_is_device_mode(hsotg))
4542 		goto unlock;
4543 
4544 	if (hsotg->lx_state != DWC2_L2)
4545 		goto unlock;
4546 
4547 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) {
4548 		hsotg->lx_state = DWC2_L0;
4549 		goto unlock;
4550 	}
4551 
4552 	/*
4553 	 * Set HW accessible bit before powering on the controller
4554 	 * since an interrupt may rise.
4555 	 */
4556 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4557 
4558 	/*
4559 	 * Enable power if not already done.
4560 	 * This must not be spinlocked since duration
4561 	 * of this call is unknown.
4562 	 */
4563 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4564 		spin_unlock_irqrestore(&hsotg->lock, flags);
4565 		usb_phy_set_suspend(hsotg->uphy, false);
4566 		spin_lock_irqsave(&hsotg->lock, flags);
4567 	}
4568 
4569 	/* Exit partial_power_down */
4570 	ret = dwc2_exit_partial_power_down(hsotg, true);
4571 	if (ret && (ret != -ENOTSUPP))
4572 		dev_err(hsotg->dev, "exit partial_power_down failed\n");
4573 
4574 	hsotg->lx_state = DWC2_L0;
4575 
4576 	spin_unlock_irqrestore(&hsotg->lock, flags);
4577 
4578 	if (hsotg->bus_suspended) {
4579 		spin_lock_irqsave(&hsotg->lock, flags);
4580 		hsotg->flags.b.port_suspend_change = 1;
4581 		spin_unlock_irqrestore(&hsotg->lock, flags);
4582 		dwc2_port_resume(hsotg);
4583 	} else {
4584 		dwc2_vbus_supply_init(hsotg);
4585 
4586 		/* Wait for controller to correctly update D+/D- level */
4587 		usleep_range(3000, 5000);
4588 
4589 		/*
4590 		 * Clear Port Enable and Port Status changes.
4591 		 * Enable Port Power.
4592 		 */
4593 		dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4594 				HPRT0_ENACHG, HPRT0);
4595 		/* Wait for controller to detect Port Connect */
4596 		usleep_range(5000, 7000);
4597 	}
4598 
4599 	return ret;
4600 unlock:
4601 	spin_unlock_irqrestore(&hsotg->lock, flags);
4602 
4603 	return ret;
4604 }
4605 
4606 /* Returns the current frame number */
4607 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4608 {
4609 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4610 
4611 	return dwc2_hcd_get_frame_number(hsotg);
4612 }
4613 
4614 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4615 			       char *fn_name)
4616 {
4617 #ifdef VERBOSE_DEBUG
4618 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4619 	char *pipetype = NULL;
4620 	char *speed = NULL;
4621 
4622 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4623 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4624 		 usb_pipedevice(urb->pipe));
4625 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4626 		 usb_pipeendpoint(urb->pipe),
4627 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4628 
4629 	switch (usb_pipetype(urb->pipe)) {
4630 	case PIPE_CONTROL:
4631 		pipetype = "CONTROL";
4632 		break;
4633 	case PIPE_BULK:
4634 		pipetype = "BULK";
4635 		break;
4636 	case PIPE_INTERRUPT:
4637 		pipetype = "INTERRUPT";
4638 		break;
4639 	case PIPE_ISOCHRONOUS:
4640 		pipetype = "ISOCHRONOUS";
4641 		break;
4642 	}
4643 
4644 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4645 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4646 		 "IN" : "OUT");
4647 
4648 	switch (urb->dev->speed) {
4649 	case USB_SPEED_HIGH:
4650 		speed = "HIGH";
4651 		break;
4652 	case USB_SPEED_FULL:
4653 		speed = "FULL";
4654 		break;
4655 	case USB_SPEED_LOW:
4656 		speed = "LOW";
4657 		break;
4658 	default:
4659 		speed = "UNKNOWN";
4660 		break;
4661 	}
4662 
4663 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4664 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4665 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4666 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4667 		 urb->transfer_buffer_length);
4668 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4669 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4670 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4671 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4672 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4673 
4674 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4675 		int i;
4676 
4677 		for (i = 0; i < urb->number_of_packets; i++) {
4678 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4679 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4680 				 urb->iso_frame_desc[i].offset,
4681 				 urb->iso_frame_desc[i].length);
4682 		}
4683 	}
4684 #endif
4685 }
4686 
4687 /*
4688  * Starts processing a USB transfer request specified by a USB Request Block
4689  * (URB). mem_flags indicates the type of memory allocation to use while
4690  * processing this URB.
4691  */
4692 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4693 				 gfp_t mem_flags)
4694 {
4695 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4696 	struct usb_host_endpoint *ep = urb->ep;
4697 	struct dwc2_hcd_urb *dwc2_urb;
4698 	int i;
4699 	int retval;
4700 	int alloc_bandwidth = 0;
4701 	u8 ep_type = 0;
4702 	u32 tflags = 0;
4703 	void *buf;
4704 	unsigned long flags;
4705 	struct dwc2_qh *qh;
4706 	bool qh_allocated = false;
4707 	struct dwc2_qtd *qtd;
4708 
4709 	if (dbg_urb(urb)) {
4710 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4711 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4712 	}
4713 
4714 	if (!ep)
4715 		return -EINVAL;
4716 
4717 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4718 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4719 		spin_lock_irqsave(&hsotg->lock, flags);
4720 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4721 			alloc_bandwidth = 1;
4722 		spin_unlock_irqrestore(&hsotg->lock, flags);
4723 	}
4724 
4725 	switch (usb_pipetype(urb->pipe)) {
4726 	case PIPE_CONTROL:
4727 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4728 		break;
4729 	case PIPE_ISOCHRONOUS:
4730 		ep_type = USB_ENDPOINT_XFER_ISOC;
4731 		break;
4732 	case PIPE_BULK:
4733 		ep_type = USB_ENDPOINT_XFER_BULK;
4734 		break;
4735 	case PIPE_INTERRUPT:
4736 		ep_type = USB_ENDPOINT_XFER_INT;
4737 		break;
4738 	}
4739 
4740 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4741 				      mem_flags);
4742 	if (!dwc2_urb)
4743 		return -ENOMEM;
4744 
4745 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4746 				  usb_pipeendpoint(urb->pipe), ep_type,
4747 				  usb_pipein(urb->pipe),
4748 				  usb_maxpacket(urb->dev, urb->pipe,
4749 						!(usb_pipein(urb->pipe))));
4750 
4751 	buf = urb->transfer_buffer;
4752 
4753 	if (hcd->self.uses_dma) {
4754 		if (!buf && (urb->transfer_dma & 3)) {
4755 			dev_err(hsotg->dev,
4756 				"%s: unaligned transfer with no transfer_buffer",
4757 				__func__);
4758 			retval = -EINVAL;
4759 			goto fail0;
4760 		}
4761 	}
4762 
4763 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4764 		tflags |= URB_GIVEBACK_ASAP;
4765 	if (urb->transfer_flags & URB_ZERO_PACKET)
4766 		tflags |= URB_SEND_ZERO_PACKET;
4767 
4768 	dwc2_urb->priv = urb;
4769 	dwc2_urb->buf = buf;
4770 	dwc2_urb->dma = urb->transfer_dma;
4771 	dwc2_urb->length = urb->transfer_buffer_length;
4772 	dwc2_urb->setup_packet = urb->setup_packet;
4773 	dwc2_urb->setup_dma = urb->setup_dma;
4774 	dwc2_urb->flags = tflags;
4775 	dwc2_urb->interval = urb->interval;
4776 	dwc2_urb->status = -EINPROGRESS;
4777 
4778 	for (i = 0; i < urb->number_of_packets; ++i)
4779 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4780 						 urb->iso_frame_desc[i].offset,
4781 						 urb->iso_frame_desc[i].length);
4782 
4783 	urb->hcpriv = dwc2_urb;
4784 	qh = (struct dwc2_qh *)ep->hcpriv;
4785 	/* Create QH for the endpoint if it doesn't exist */
4786 	if (!qh) {
4787 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4788 		if (!qh) {
4789 			retval = -ENOMEM;
4790 			goto fail0;
4791 		}
4792 		ep->hcpriv = qh;
4793 		qh_allocated = true;
4794 	}
4795 
4796 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4797 	if (!qtd) {
4798 		retval = -ENOMEM;
4799 		goto fail1;
4800 	}
4801 
4802 	spin_lock_irqsave(&hsotg->lock, flags);
4803 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4804 	if (retval)
4805 		goto fail2;
4806 
4807 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4808 	if (retval)
4809 		goto fail3;
4810 
4811 	if (alloc_bandwidth) {
4812 		dwc2_allocate_bus_bandwidth(hcd,
4813 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4814 				urb);
4815 	}
4816 
4817 	spin_unlock_irqrestore(&hsotg->lock, flags);
4818 
4819 	return 0;
4820 
4821 fail3:
4822 	dwc2_urb->priv = NULL;
4823 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4824 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4825 		qh->channel->qh = NULL;
4826 fail2:
4827 	spin_unlock_irqrestore(&hsotg->lock, flags);
4828 	urb->hcpriv = NULL;
4829 	kfree(qtd);
4830 	qtd = NULL;
4831 fail1:
4832 	if (qh_allocated) {
4833 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4834 
4835 		ep->hcpriv = NULL;
4836 		dwc2_hcd_qh_unlink(hsotg, qh);
4837 		/* Free each QTD in the QH's QTD list */
4838 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4839 					 qtd_list_entry)
4840 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4841 		dwc2_hcd_qh_free(hsotg, qh);
4842 	}
4843 fail0:
4844 	kfree(dwc2_urb);
4845 
4846 	return retval;
4847 }
4848 
4849 /*
4850  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4851  */
4852 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4853 				 int status)
4854 {
4855 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4856 	int rc;
4857 	unsigned long flags;
4858 
4859 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4860 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4861 
4862 	spin_lock_irqsave(&hsotg->lock, flags);
4863 
4864 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4865 	if (rc)
4866 		goto out;
4867 
4868 	if (!urb->hcpriv) {
4869 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4870 		goto out;
4871 	}
4872 
4873 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4874 
4875 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4876 
4877 	kfree(urb->hcpriv);
4878 	urb->hcpriv = NULL;
4879 
4880 	/* Higher layer software sets URB status */
4881 	spin_unlock(&hsotg->lock);
4882 	usb_hcd_giveback_urb(hcd, urb, status);
4883 	spin_lock(&hsotg->lock);
4884 
4885 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4886 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4887 out:
4888 	spin_unlock_irqrestore(&hsotg->lock, flags);
4889 
4890 	return rc;
4891 }
4892 
4893 /*
4894  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4895  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4896  * must already be dequeued.
4897  */
4898 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4899 				       struct usb_host_endpoint *ep)
4900 {
4901 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4902 
4903 	dev_dbg(hsotg->dev,
4904 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4905 		ep->desc.bEndpointAddress, ep->hcpriv);
4906 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4907 }
4908 
4909 /*
4910  * Resets endpoint specific parameter values, in current version used to reset
4911  * the data toggle (as a WA). This function can be called from usb_clear_halt
4912  * routine.
4913  */
4914 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4915 				     struct usb_host_endpoint *ep)
4916 {
4917 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4918 	unsigned long flags;
4919 
4920 	dev_dbg(hsotg->dev,
4921 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4922 		ep->desc.bEndpointAddress);
4923 
4924 	spin_lock_irqsave(&hsotg->lock, flags);
4925 	dwc2_hcd_endpoint_reset(hsotg, ep);
4926 	spin_unlock_irqrestore(&hsotg->lock, flags);
4927 }
4928 
4929 /*
4930  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4931  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4932  * interrupt.
4933  *
4934  * This function is called by the USB core when an interrupt occurs
4935  */
4936 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4937 {
4938 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4939 
4940 	return dwc2_handle_hcd_intr(hsotg);
4941 }
4942 
4943 /*
4944  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4945  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4946  * is the status change indicator for the single root port. Returns 1 if either
4947  * change indicator is 1, otherwise returns 0.
4948  */
4949 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4950 {
4951 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4952 
4953 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4954 	return buf[0] != 0;
4955 }
4956 
4957 /* Handles hub class-specific requests */
4958 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4959 				 u16 windex, char *buf, u16 wlength)
4960 {
4961 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4962 					  wvalue, windex, buf, wlength);
4963 	return retval;
4964 }
4965 
4966 /* Handles hub TT buffer clear completions */
4967 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4968 					       struct usb_host_endpoint *ep)
4969 {
4970 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4971 	struct dwc2_qh *qh;
4972 	unsigned long flags;
4973 
4974 	qh = ep->hcpriv;
4975 	if (!qh)
4976 		return;
4977 
4978 	spin_lock_irqsave(&hsotg->lock, flags);
4979 	qh->tt_buffer_dirty = 0;
4980 
4981 	if (hsotg->flags.b.port_connect_status)
4982 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4983 
4984 	spin_unlock_irqrestore(&hsotg->lock, flags);
4985 }
4986 
4987 /*
4988  * HPRT0_SPD_HIGH_SPEED: high speed
4989  * HPRT0_SPD_FULL_SPEED: full speed
4990  */
4991 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4992 {
4993 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4994 
4995 	if (hsotg->params.speed == speed)
4996 		return;
4997 
4998 	hsotg->params.speed = speed;
4999 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
5000 }
5001 
5002 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
5003 {
5004 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
5005 
5006 	if (!hsotg->params.change_speed_quirk)
5007 		return;
5008 
5009 	/*
5010 	 * On removal, set speed to default high-speed.
5011 	 */
5012 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
5013 	    udev->parent->speed < USB_SPEED_HIGH) {
5014 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
5015 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5016 	}
5017 }
5018 
5019 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
5020 {
5021 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
5022 
5023 	if (!hsotg->params.change_speed_quirk)
5024 		return 0;
5025 
5026 	if (udev->speed == USB_SPEED_HIGH) {
5027 		dev_info(hsotg->dev, "Set speed to high-speed\n");
5028 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5029 	} else if ((udev->speed == USB_SPEED_FULL ||
5030 				udev->speed == USB_SPEED_LOW)) {
5031 		/*
5032 		 * Change speed setting to full-speed if there's
5033 		 * a full-speed or low-speed device plugged in.
5034 		 */
5035 		dev_info(hsotg->dev, "Set speed to full-speed\n");
5036 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5037 	}
5038 
5039 	return 0;
5040 }
5041 
5042 static struct hc_driver dwc2_hc_driver = {
5043 	.description = "dwc2_hsotg",
5044 	.product_desc = "DWC OTG Controller",
5045 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
5046 
5047 	.irq = _dwc2_hcd_irq,
5048 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5049 
5050 	.start = _dwc2_hcd_start,
5051 	.stop = _dwc2_hcd_stop,
5052 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
5053 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
5054 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
5055 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
5056 	.get_frame_number = _dwc2_hcd_get_frame_number,
5057 
5058 	.hub_status_data = _dwc2_hcd_hub_status_data,
5059 	.hub_control = _dwc2_hcd_hub_control,
5060 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5061 
5062 	.bus_suspend = _dwc2_hcd_suspend,
5063 	.bus_resume = _dwc2_hcd_resume,
5064 
5065 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
5066 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
5067 };
5068 
5069 /*
5070  * Frees secondary storage associated with the dwc2_hsotg structure contained
5071  * in the struct usb_hcd field
5072  */
5073 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5074 {
5075 	u32 ahbcfg;
5076 	u32 dctl;
5077 	int i;
5078 
5079 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5080 
5081 	/* Free memory for QH/QTD lists */
5082 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5083 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5084 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5085 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5086 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5087 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5088 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5089 
5090 	/* Free memory for the host channels */
5091 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5092 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5093 
5094 		if (chan) {
5095 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5096 				i, chan);
5097 			hsotg->hc_ptr_array[i] = NULL;
5098 			kfree(chan);
5099 		}
5100 	}
5101 
5102 	if (hsotg->params.host_dma) {
5103 		if (hsotg->status_buf) {
5104 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5105 					  hsotg->status_buf,
5106 					  hsotg->status_buf_dma);
5107 			hsotg->status_buf = NULL;
5108 		}
5109 	} else {
5110 		kfree(hsotg->status_buf);
5111 		hsotg->status_buf = NULL;
5112 	}
5113 
5114 	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5115 
5116 	/* Disable all interrupts */
5117 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5118 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5119 	dwc2_writel(hsotg, 0, GINTMSK);
5120 
5121 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5122 		dctl = dwc2_readl(hsotg, DCTL);
5123 		dctl |= DCTL_SFTDISCON;
5124 		dwc2_writel(hsotg, dctl, DCTL);
5125 	}
5126 
5127 	if (hsotg->wq_otg) {
5128 		if (!cancel_work_sync(&hsotg->wf_otg))
5129 			flush_workqueue(hsotg->wq_otg);
5130 		destroy_workqueue(hsotg->wq_otg);
5131 	}
5132 
5133 	del_timer(&hsotg->wkp_timer);
5134 }
5135 
5136 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5137 {
5138 	/* Turn off all host-specific interrupts */
5139 	dwc2_disable_host_interrupts(hsotg);
5140 
5141 	dwc2_hcd_free(hsotg);
5142 }
5143 
5144 /*
5145  * Initializes the HCD. This function allocates memory for and initializes the
5146  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5147  * USB bus with the core and calls the hc_driver->start() function. It returns
5148  * a negative error on failure.
5149  */
5150 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5151 {
5152 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5153 	struct resource *res;
5154 	struct usb_hcd *hcd;
5155 	struct dwc2_host_chan *channel;
5156 	u32 hcfg;
5157 	int i, num_channels;
5158 	int retval;
5159 
5160 	if (usb_disabled())
5161 		return -ENODEV;
5162 
5163 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5164 
5165 	retval = -ENOMEM;
5166 
5167 	hcfg = dwc2_readl(hsotg, HCFG);
5168 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5169 
5170 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5171 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5172 					 sizeof(*hsotg->frame_num_array),
5173 					 GFP_KERNEL);
5174 	if (!hsotg->frame_num_array)
5175 		goto error1;
5176 	hsotg->last_frame_num_array =
5177 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5178 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5179 	if (!hsotg->last_frame_num_array)
5180 		goto error1;
5181 #endif
5182 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5183 
5184 	/* Check if the bus driver or platform code has setup a dma_mask */
5185 	if (hsotg->params.host_dma &&
5186 	    !hsotg->dev->dma_mask) {
5187 		dev_warn(hsotg->dev,
5188 			 "dma_mask not set, disabling DMA\n");
5189 		hsotg->params.host_dma = false;
5190 		hsotg->params.dma_desc_enable = false;
5191 	}
5192 
5193 	/* Set device flags indicating whether the HCD supports DMA */
5194 	if (hsotg->params.host_dma) {
5195 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5196 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5197 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5198 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5199 	}
5200 
5201 	if (hsotg->params.change_speed_quirk) {
5202 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5203 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5204 	}
5205 
5206 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5207 	if (!hcd)
5208 		goto error1;
5209 
5210 	if (!hsotg->params.host_dma)
5211 		hcd->self.uses_dma = 0;
5212 
5213 	hcd->has_tt = 1;
5214 
5215 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5216 	hcd->rsrc_start = res->start;
5217 	hcd->rsrc_len = resource_size(res);
5218 
5219 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5220 	hsotg->priv = hcd;
5221 
5222 	/*
5223 	 * Disable the global interrupt until all the interrupt handlers are
5224 	 * installed
5225 	 */
5226 	dwc2_disable_global_interrupts(hsotg);
5227 
5228 	/* Initialize the DWC_otg core, and select the Phy type */
5229 	retval = dwc2_core_init(hsotg, true);
5230 	if (retval)
5231 		goto error2;
5232 
5233 	/* Create new workqueue and init work */
5234 	retval = -ENOMEM;
5235 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5236 	if (!hsotg->wq_otg) {
5237 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5238 		goto error2;
5239 	}
5240 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5241 
5242 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5243 
5244 	/* Initialize the non-periodic schedule */
5245 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5246 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5247 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5248 
5249 	/* Initialize the periodic schedule */
5250 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5251 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5252 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5253 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5254 
5255 	INIT_LIST_HEAD(&hsotg->split_order);
5256 
5257 	/*
5258 	 * Create a host channel descriptor for each host channel implemented
5259 	 * in the controller. Initialize the channel descriptor array.
5260 	 */
5261 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5262 	num_channels = hsotg->params.host_channels;
5263 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5264 
5265 	for (i = 0; i < num_channels; i++) {
5266 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5267 		if (!channel)
5268 			goto error3;
5269 		channel->hc_num = i;
5270 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5271 		hsotg->hc_ptr_array[i] = channel;
5272 	}
5273 
5274 	/* Initialize hsotg start work */
5275 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5276 
5277 	/* Initialize port reset work */
5278 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5279 
5280 	/*
5281 	 * Allocate space for storing data on status transactions. Normally no
5282 	 * data is sent, but this space acts as a bit bucket. This must be
5283 	 * done after usb_add_hcd since that function allocates the DMA buffer
5284 	 * pool.
5285 	 */
5286 	if (hsotg->params.host_dma)
5287 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5288 					DWC2_HCD_STATUS_BUF_SIZE,
5289 					&hsotg->status_buf_dma, GFP_KERNEL);
5290 	else
5291 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5292 					  GFP_KERNEL);
5293 
5294 	if (!hsotg->status_buf)
5295 		goto error3;
5296 
5297 	/*
5298 	 * Create kmem caches to handle descriptor buffers in descriptor
5299 	 * DMA mode.
5300 	 * Alignment must be set to 512 bytes.
5301 	 */
5302 	if (hsotg->params.dma_desc_enable ||
5303 	    hsotg->params.dma_desc_fs_enable) {
5304 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5305 				sizeof(struct dwc2_dma_desc) *
5306 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5307 				NULL);
5308 		if (!hsotg->desc_gen_cache) {
5309 			dev_err(hsotg->dev,
5310 				"unable to create dwc2 generic desc cache\n");
5311 
5312 			/*
5313 			 * Disable descriptor dma mode since it will not be
5314 			 * usable.
5315 			 */
5316 			hsotg->params.dma_desc_enable = false;
5317 			hsotg->params.dma_desc_fs_enable = false;
5318 		}
5319 
5320 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5321 				sizeof(struct dwc2_dma_desc) *
5322 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5323 		if (!hsotg->desc_hsisoc_cache) {
5324 			dev_err(hsotg->dev,
5325 				"unable to create dwc2 hs isoc desc cache\n");
5326 
5327 			kmem_cache_destroy(hsotg->desc_gen_cache);
5328 
5329 			/*
5330 			 * Disable descriptor dma mode since it will not be
5331 			 * usable.
5332 			 */
5333 			hsotg->params.dma_desc_enable = false;
5334 			hsotg->params.dma_desc_fs_enable = false;
5335 		}
5336 	}
5337 
5338 	if (hsotg->params.host_dma) {
5339 		/*
5340 		 * Create kmem caches to handle non-aligned buffer
5341 		 * in Buffer DMA mode.
5342 		 */
5343 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5344 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5345 						SLAB_CACHE_DMA, NULL);
5346 		if (!hsotg->unaligned_cache)
5347 			dev_err(hsotg->dev,
5348 				"unable to create dwc2 unaligned cache\n");
5349 	}
5350 
5351 	hsotg->otg_port = 1;
5352 	hsotg->frame_list = NULL;
5353 	hsotg->frame_list_dma = 0;
5354 	hsotg->periodic_qh_count = 0;
5355 
5356 	/* Initiate lx_state to L3 disconnected state */
5357 	hsotg->lx_state = DWC2_L3;
5358 
5359 	hcd->self.otg_port = hsotg->otg_port;
5360 
5361 	/* Don't support SG list at this point */
5362 	hcd->self.sg_tablesize = 0;
5363 
5364 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5365 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5366 
5367 	/*
5368 	 * Finish generic HCD initialization and start the HCD. This function
5369 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5370 	 * IRQ line, and calls hcd_start method.
5371 	 */
5372 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5373 	if (retval < 0)
5374 		goto error4;
5375 
5376 	device_wakeup_enable(hcd->self.controller);
5377 
5378 	dwc2_hcd_dump_state(hsotg);
5379 
5380 	dwc2_enable_global_interrupts(hsotg);
5381 
5382 	return 0;
5383 
5384 error4:
5385 	kmem_cache_destroy(hsotg->unaligned_cache);
5386 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5387 	kmem_cache_destroy(hsotg->desc_gen_cache);
5388 error3:
5389 	dwc2_hcd_release(hsotg);
5390 error2:
5391 	usb_put_hcd(hcd);
5392 error1:
5393 
5394 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5395 	kfree(hsotg->last_frame_num_array);
5396 	kfree(hsotg->frame_num_array);
5397 #endif
5398 
5399 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5400 	return retval;
5401 }
5402 
5403 /*
5404  * Removes the HCD.
5405  * Frees memory and resources associated with the HCD and deregisters the bus.
5406  */
5407 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5408 {
5409 	struct usb_hcd *hcd;
5410 
5411 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5412 
5413 	hcd = dwc2_hsotg_to_hcd(hsotg);
5414 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5415 
5416 	if (!hcd) {
5417 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5418 			__func__);
5419 		return;
5420 	}
5421 
5422 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5423 		otg_set_host(hsotg->uphy->otg, NULL);
5424 
5425 	usb_remove_hcd(hcd);
5426 	hsotg->priv = NULL;
5427 
5428 	kmem_cache_destroy(hsotg->unaligned_cache);
5429 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5430 	kmem_cache_destroy(hsotg->desc_gen_cache);
5431 
5432 	dwc2_hcd_release(hsotg);
5433 	usb_put_hcd(hcd);
5434 
5435 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5436 	kfree(hsotg->last_frame_num_array);
5437 	kfree(hsotg->frame_num_array);
5438 #endif
5439 }
5440 
5441 /**
5442  * dwc2_backup_host_registers() - Backup controller host registers.
5443  * When suspending usb bus, registers needs to be backuped
5444  * if controller power is disabled once suspended.
5445  *
5446  * @hsotg: Programming view of the DWC_otg controller
5447  */
5448 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5449 {
5450 	struct dwc2_hregs_backup *hr;
5451 	int i;
5452 
5453 	dev_dbg(hsotg->dev, "%s\n", __func__);
5454 
5455 	/* Backup Host regs */
5456 	hr = &hsotg->hr_backup;
5457 	hr->hcfg = dwc2_readl(hsotg, HCFG);
5458 	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5459 	for (i = 0; i < hsotg->params.host_channels; ++i)
5460 		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5461 
5462 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5463 	hr->hfir = dwc2_readl(hsotg, HFIR);
5464 	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5465 	hr->valid = true;
5466 
5467 	return 0;
5468 }
5469 
5470 /**
5471  * dwc2_restore_host_registers() - Restore controller host registers.
5472  * When resuming usb bus, device registers needs to be restored
5473  * if controller power were disabled.
5474  *
5475  * @hsotg: Programming view of the DWC_otg controller
5476  */
5477 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5478 {
5479 	struct dwc2_hregs_backup *hr;
5480 	int i;
5481 
5482 	dev_dbg(hsotg->dev, "%s\n", __func__);
5483 
5484 	/* Restore host regs */
5485 	hr = &hsotg->hr_backup;
5486 	if (!hr->valid) {
5487 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5488 			__func__);
5489 		return -EINVAL;
5490 	}
5491 	hr->valid = false;
5492 
5493 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5494 	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5495 
5496 	for (i = 0; i < hsotg->params.host_channels; ++i)
5497 		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5498 
5499 	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5500 	dwc2_writel(hsotg, hr->hfir, HFIR);
5501 	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5502 	hsotg->frame_number = 0;
5503 
5504 	return 0;
5505 }
5506 
5507 /**
5508  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5509  *
5510  * @hsotg: Programming view of the DWC_otg controller
5511  */
5512 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5513 {
5514 	unsigned long flags;
5515 	int ret = 0;
5516 	u32 hprt0;
5517 	u32 pcgcctl;
5518 	u32 gusbcfg;
5519 	u32 gpwrdn;
5520 
5521 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5522 	ret = dwc2_backup_global_registers(hsotg);
5523 	if (ret) {
5524 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5525 			__func__);
5526 		return ret;
5527 	}
5528 	ret = dwc2_backup_host_registers(hsotg);
5529 	if (ret) {
5530 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5531 			__func__);
5532 		return ret;
5533 	}
5534 
5535 	/* Enter USB Suspend Mode */
5536 	hprt0 = dwc2_readl(hsotg, HPRT0);
5537 	hprt0 |= HPRT0_SUSP;
5538 	hprt0 &= ~HPRT0_ENA;
5539 	dwc2_writel(hsotg, hprt0, HPRT0);
5540 
5541 	/* Wait for the HPRT0.PrtSusp register field to be set */
5542 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5543 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5544 
5545 	/*
5546 	 * We need to disable interrupts to prevent servicing of any IRQ
5547 	 * during going to hibernation
5548 	 */
5549 	spin_lock_irqsave(&hsotg->lock, flags);
5550 	hsotg->lx_state = DWC2_L2;
5551 
5552 	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5553 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5554 		/* ULPI interface */
5555 		/* Suspend the Phy Clock */
5556 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5557 		pcgcctl |= PCGCTL_STOPPCLK;
5558 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5559 		udelay(10);
5560 
5561 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5562 		gpwrdn |= GPWRDN_PMUACTV;
5563 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5564 		udelay(10);
5565 	} else {
5566 		/* UTMI+ Interface */
5567 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5568 		gpwrdn |= GPWRDN_PMUACTV;
5569 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5570 		udelay(10);
5571 
5572 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5573 		pcgcctl |= PCGCTL_STOPPCLK;
5574 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5575 		udelay(10);
5576 	}
5577 
5578 	/* Enable interrupts from wake up logic */
5579 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5580 	gpwrdn |= GPWRDN_PMUINTSEL;
5581 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5582 	udelay(10);
5583 
5584 	/* Unmask host mode interrupts in GPWRDN */
5585 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5586 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5587 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5588 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5589 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5590 	udelay(10);
5591 
5592 	/* Enable Power Down Clamp */
5593 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5594 	gpwrdn |= GPWRDN_PWRDNCLMP;
5595 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5596 	udelay(10);
5597 
5598 	/* Switch off VDD */
5599 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5600 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5601 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5602 
5603 	hsotg->hibernated = 1;
5604 	hsotg->bus_suspended = 1;
5605 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5606 	spin_unlock_irqrestore(&hsotg->lock, flags);
5607 	return ret;
5608 }
5609 
5610 /*
5611  * dwc2_host_exit_hibernation()
5612  *
5613  * @hsotg: Programming view of the DWC_otg controller
5614  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5615  * @param reset: indicates whether resume is initiated by Reset.
5616  *
5617  * Return: non-zero if failed to enter to hibernation.
5618  *
5619  * This function is for exiting from Host mode hibernation by
5620  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5621  */
5622 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5623 			       int reset)
5624 {
5625 	u32 gpwrdn;
5626 	u32 hprt0;
5627 	int ret = 0;
5628 	struct dwc2_gregs_backup *gr;
5629 	struct dwc2_hregs_backup *hr;
5630 
5631 	gr = &hsotg->gr_backup;
5632 	hr = &hsotg->hr_backup;
5633 
5634 	dev_dbg(hsotg->dev,
5635 		"%s: called with rem_wakeup = %d reset = %d\n",
5636 		__func__, rem_wakeup, reset);
5637 
5638 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5639 	hsotg->hibernated = 0;
5640 
5641 	/*
5642 	 * This step is not described in functional spec but if not wait for
5643 	 * this delay, mismatch interrupts occurred because just after restore
5644 	 * core is in Device mode(gintsts.curmode == 0)
5645 	 */
5646 	mdelay(100);
5647 
5648 	/* Clear all pending interupts */
5649 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5650 
5651 	/* De-assert Restore */
5652 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5653 	gpwrdn &= ~GPWRDN_RESTORE;
5654 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5655 	udelay(10);
5656 
5657 	/* Restore GUSBCFG, HCFG */
5658 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5659 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5660 
5661 	/* De-assert Wakeup Logic */
5662 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5663 	gpwrdn &= ~GPWRDN_PMUACTV;
5664 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5665 	udelay(10);
5666 
5667 	hprt0 = hr->hprt0;
5668 	hprt0 |= HPRT0_PWR;
5669 	hprt0 &= ~HPRT0_ENA;
5670 	hprt0 &= ~HPRT0_SUSP;
5671 	dwc2_writel(hsotg, hprt0, HPRT0);
5672 
5673 	hprt0 = hr->hprt0;
5674 	hprt0 |= HPRT0_PWR;
5675 	hprt0 &= ~HPRT0_ENA;
5676 	hprt0 &= ~HPRT0_SUSP;
5677 
5678 	if (reset) {
5679 		hprt0 |= HPRT0_RST;
5680 		dwc2_writel(hsotg, hprt0, HPRT0);
5681 
5682 		/* Wait for Resume time and then program HPRT again */
5683 		mdelay(60);
5684 		hprt0 &= ~HPRT0_RST;
5685 		dwc2_writel(hsotg, hprt0, HPRT0);
5686 	} else {
5687 		hprt0 |= HPRT0_RES;
5688 		dwc2_writel(hsotg, hprt0, HPRT0);
5689 
5690 		/* Wait for Resume time and then program HPRT again */
5691 		mdelay(100);
5692 		hprt0 &= ~HPRT0_RES;
5693 		dwc2_writel(hsotg, hprt0, HPRT0);
5694 	}
5695 	/* Clear all interrupt status */
5696 	hprt0 = dwc2_readl(hsotg, HPRT0);
5697 	hprt0 |= HPRT0_CONNDET;
5698 	hprt0 |= HPRT0_ENACHG;
5699 	hprt0 &= ~HPRT0_ENA;
5700 	dwc2_writel(hsotg, hprt0, HPRT0);
5701 
5702 	hprt0 = dwc2_readl(hsotg, HPRT0);
5703 
5704 	/* Clear all pending interupts */
5705 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5706 
5707 	/* Restore global registers */
5708 	ret = dwc2_restore_global_registers(hsotg);
5709 	if (ret) {
5710 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5711 			__func__);
5712 		return ret;
5713 	}
5714 
5715 	/* Restore host registers */
5716 	ret = dwc2_restore_host_registers(hsotg);
5717 	if (ret) {
5718 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5719 			__func__);
5720 		return ret;
5721 	}
5722 
5723 	dwc2_hcd_rem_wakeup(hsotg);
5724 
5725 	hsotg->hibernated = 0;
5726 	hsotg->bus_suspended = 0;
5727 	hsotg->lx_state = DWC2_L0;
5728 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5729 	return ret;
5730 }
5731