xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision f17f06a0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	hs_ep->target_frame += hs_ep->interval;
119 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 		hs_ep->frame_overrun = true;
121 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 	} else {
123 		hs_ep->frame_overrun = false;
124 	}
125 }
126 
127 /**
128  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129  *                                    by one.
130  * @hs_ep: The endpoint.
131  *
132  * This function used in service interval based scheduling flow to calculate
133  * descriptor frame number filed value. For service interval mode frame
134  * number in descriptor should point to last (u)frame in the interval.
135  *
136  */
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
138 {
139 	if (hs_ep->target_frame)
140 		hs_ep->target_frame -= 1;
141 	else
142 		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
143 }
144 
145 /**
146  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147  * @hsotg: The device state
148  * @ints: A bitmask of the interrupts to enable
149  */
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 {
152 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 	u32 new_gsintmsk;
154 
155 	new_gsintmsk = gsintmsk | ints;
156 
157 	if (new_gsintmsk != gsintmsk) {
158 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
160 	}
161 }
162 
163 /**
164  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165  * @hsotg: The device state
166  * @ints: A bitmask of the interrupts to enable
167  */
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
169 {
170 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 	u32 new_gsintmsk;
172 
173 	new_gsintmsk = gsintmsk & ~ints;
174 
175 	if (new_gsintmsk != gsintmsk)
176 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
177 }
178 
179 /**
180  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181  * @hsotg: The device state
182  * @ep: The endpoint index
183  * @dir_in: True if direction is in.
184  * @en: The enable value, true to enable
185  *
186  * Set or clear the mask for an individual endpoint's interrupt
187  * request.
188  */
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 				  unsigned int ep, unsigned int dir_in,
191 				 unsigned int en)
192 {
193 	unsigned long flags;
194 	u32 bit = 1 << ep;
195 	u32 daint;
196 
197 	if (!dir_in)
198 		bit <<= 16;
199 
200 	local_irq_save(flags);
201 	daint = dwc2_readl(hsotg, DAINTMSK);
202 	if (en)
203 		daint |= bit;
204 	else
205 		daint &= ~bit;
206 	dwc2_writel(hsotg, daint, DAINTMSK);
207 	local_irq_restore(flags);
208 }
209 
210 /**
211  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
212  *
213  * @hsotg: Programming view of the DWC_otg controller
214  */
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
216 {
217 	if (hsotg->hw_params.en_multiple_tx_fifo)
218 		/* In dedicated FIFO mode we need count of IN EPs */
219 		return hsotg->hw_params.num_dev_in_eps;
220 	else
221 		/* In shared FIFO mode we need count of Periodic IN EPs */
222 		return hsotg->hw_params.num_dev_perio_in_ep;
223 }
224 
225 /**
226  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227  * device mode TX FIFOs
228  *
229  * @hsotg: Programming view of the DWC_otg controller
230  */
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int addr;
234 	int tx_addr_max;
235 	u32 np_tx_fifo_size;
236 
237 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 				hsotg->params.g_np_tx_fifo_size);
239 
240 	/* Get Endpoint Info Control block size in DWORDs. */
241 	tx_addr_max = hsotg->hw_params.total_fifo_size;
242 
243 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 	if (tx_addr_max <= addr)
245 		return 0;
246 
247 	return tx_addr_max - addr;
248 }
249 
250 /**
251  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
252  *
253  * @hsotg: Programming view of the DWC_otg controller
254  *
255  */
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
257 {
258 	u32 gintsts2;
259 	u32 gintmsk2;
260 
261 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
263 
264 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
265 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
266 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
267 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
268 	}
269 }
270 
271 /**
272  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
273  * TX FIFOs
274  *
275  * @hsotg: Programming view of the DWC_otg controller
276  */
277 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
278 {
279 	int tx_fifo_count;
280 	int tx_fifo_depth;
281 
282 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
283 
284 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
285 
286 	if (!tx_fifo_count)
287 		return tx_fifo_depth;
288 	else
289 		return tx_fifo_depth / tx_fifo_count;
290 }
291 
292 /**
293  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
294  * @hsotg: The device instance.
295  */
296 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
297 {
298 	unsigned int ep;
299 	unsigned int addr;
300 	int timeout;
301 
302 	u32 val;
303 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
304 
305 	/* Reset fifo map if not correctly cleared during previous session */
306 	WARN_ON(hsotg->fifo_map);
307 	hsotg->fifo_map = 0;
308 
309 	/* set RX/NPTX FIFO sizes */
310 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
311 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
312 		    FIFOSIZE_STARTADDR_SHIFT) |
313 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
314 		    GNPTXFSIZ);
315 
316 	/*
317 	 * arange all the rest of the TX FIFOs, as some versions of this
318 	 * block have overlapping default addresses. This also ensures
319 	 * that if the settings have been changed, then they are set to
320 	 * known values.
321 	 */
322 
323 	/* start at the end of the GNPTXFSIZ, rounded up */
324 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
325 
326 	/*
327 	 * Configure fifos sizes from provided configuration and assign
328 	 * them to endpoints dynamically according to maxpacket size value of
329 	 * given endpoint.
330 	 */
331 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
332 		if (!txfsz[ep])
333 			continue;
334 		val = addr;
335 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
336 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
337 			  "insufficient fifo memory");
338 		addr += txfsz[ep];
339 
340 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
341 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
342 	}
343 
344 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
345 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
346 		    GDFIFOCFG);
347 	/*
348 	 * according to p428 of the design guide, we need to ensure that
349 	 * all fifos are flushed before continuing
350 	 */
351 
352 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
353 	       GRSTCTL_RXFFLSH, GRSTCTL);
354 
355 	/* wait until the fifos are both flushed */
356 	timeout = 100;
357 	while (1) {
358 		val = dwc2_readl(hsotg, GRSTCTL);
359 
360 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
361 			break;
362 
363 		if (--timeout == 0) {
364 			dev_err(hsotg->dev,
365 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
366 				__func__, val);
367 			break;
368 		}
369 
370 		udelay(1);
371 	}
372 
373 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
374 }
375 
376 /**
377  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
378  * @ep: USB endpoint to allocate request for.
379  * @flags: Allocation flags
380  *
381  * Allocate a new USB request structure appropriate for the specified endpoint
382  */
383 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
384 						       gfp_t flags)
385 {
386 	struct dwc2_hsotg_req *req;
387 
388 	req = kzalloc(sizeof(*req), flags);
389 	if (!req)
390 		return NULL;
391 
392 	INIT_LIST_HEAD(&req->queue);
393 
394 	return &req->req;
395 }
396 
397 /**
398  * is_ep_periodic - return true if the endpoint is in periodic mode.
399  * @hs_ep: The endpoint to query.
400  *
401  * Returns true if the endpoint is in periodic mode, meaning it is being
402  * used for an Interrupt or ISO transfer.
403  */
404 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
405 {
406 	return hs_ep->periodic;
407 }
408 
409 /**
410  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
411  * @hsotg: The device state.
412  * @hs_ep: The endpoint for the request
413  * @hs_req: The request being processed.
414  *
415  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
416  * of a request to ensure the buffer is ready for access by the caller.
417  */
418 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
419 				 struct dwc2_hsotg_ep *hs_ep,
420 				struct dwc2_hsotg_req *hs_req)
421 {
422 	struct usb_request *req = &hs_req->req;
423 
424 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
425 }
426 
427 /*
428  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
429  * for Control endpoint
430  * @hsotg: The device state.
431  *
432  * This function will allocate 4 descriptor chains for EP 0: 2 for
433  * Setup stage, per one for IN and OUT data/status transactions.
434  */
435 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
436 {
437 	hsotg->setup_desc[0] =
438 		dmam_alloc_coherent(hsotg->dev,
439 				    sizeof(struct dwc2_dma_desc),
440 				    &hsotg->setup_desc_dma[0],
441 				    GFP_KERNEL);
442 	if (!hsotg->setup_desc[0])
443 		goto fail;
444 
445 	hsotg->setup_desc[1] =
446 		dmam_alloc_coherent(hsotg->dev,
447 				    sizeof(struct dwc2_dma_desc),
448 				    &hsotg->setup_desc_dma[1],
449 				    GFP_KERNEL);
450 	if (!hsotg->setup_desc[1])
451 		goto fail;
452 
453 	hsotg->ctrl_in_desc =
454 		dmam_alloc_coherent(hsotg->dev,
455 				    sizeof(struct dwc2_dma_desc),
456 				    &hsotg->ctrl_in_desc_dma,
457 				    GFP_KERNEL);
458 	if (!hsotg->ctrl_in_desc)
459 		goto fail;
460 
461 	hsotg->ctrl_out_desc =
462 		dmam_alloc_coherent(hsotg->dev,
463 				    sizeof(struct dwc2_dma_desc),
464 				    &hsotg->ctrl_out_desc_dma,
465 				    GFP_KERNEL);
466 	if (!hsotg->ctrl_out_desc)
467 		goto fail;
468 
469 	return 0;
470 
471 fail:
472 	return -ENOMEM;
473 }
474 
475 /**
476  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
477  * @hsotg: The controller state.
478  * @hs_ep: The endpoint we're going to write for.
479  * @hs_req: The request to write data for.
480  *
481  * This is called when the TxFIFO has some space in it to hold a new
482  * transmission and we have something to give it. The actual setup of
483  * the data size is done elsewhere, so all we have to do is to actually
484  * write the data.
485  *
486  * The return value is zero if there is more space (or nothing was done)
487  * otherwise -ENOSPC is returned if the FIFO space was used up.
488  *
489  * This routine is only needed for PIO
490  */
491 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
492 				 struct dwc2_hsotg_ep *hs_ep,
493 				struct dwc2_hsotg_req *hs_req)
494 {
495 	bool periodic = is_ep_periodic(hs_ep);
496 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
497 	int buf_pos = hs_req->req.actual;
498 	int to_write = hs_ep->size_loaded;
499 	void *data;
500 	int can_write;
501 	int pkt_round;
502 	int max_transfer;
503 
504 	to_write -= (buf_pos - hs_ep->last_load);
505 
506 	/* if there's nothing to write, get out early */
507 	if (to_write == 0)
508 		return 0;
509 
510 	if (periodic && !hsotg->dedicated_fifos) {
511 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
512 		int size_left;
513 		int size_done;
514 
515 		/*
516 		 * work out how much data was loaded so we can calculate
517 		 * how much data is left in the fifo.
518 		 */
519 
520 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
521 
522 		/*
523 		 * if shared fifo, we cannot write anything until the
524 		 * previous data has been completely sent.
525 		 */
526 		if (hs_ep->fifo_load != 0) {
527 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
528 			return -ENOSPC;
529 		}
530 
531 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
532 			__func__, size_left,
533 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
534 
535 		/* how much of the data has moved */
536 		size_done = hs_ep->size_loaded - size_left;
537 
538 		/* how much data is left in the fifo */
539 		can_write = hs_ep->fifo_load - size_done;
540 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
541 			__func__, can_write);
542 
543 		can_write = hs_ep->fifo_size - can_write;
544 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
545 			__func__, can_write);
546 
547 		if (can_write <= 0) {
548 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
549 			return -ENOSPC;
550 		}
551 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
552 		can_write = dwc2_readl(hsotg,
553 				       DTXFSTS(hs_ep->fifo_index));
554 
555 		can_write &= 0xffff;
556 		can_write *= 4;
557 	} else {
558 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
559 			dev_dbg(hsotg->dev,
560 				"%s: no queue slots available (0x%08x)\n",
561 				__func__, gnptxsts);
562 
563 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
564 			return -ENOSPC;
565 		}
566 
567 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
568 		can_write *= 4;	/* fifo size is in 32bit quantities. */
569 	}
570 
571 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
572 
573 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
574 		__func__, gnptxsts, can_write, to_write, max_transfer);
575 
576 	/*
577 	 * limit to 512 bytes of data, it seems at least on the non-periodic
578 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
579 	 * fragment of the end of the transfer in it.
580 	 */
581 	if (can_write > 512 && !periodic)
582 		can_write = 512;
583 
584 	/*
585 	 * limit the write to one max-packet size worth of data, but allow
586 	 * the transfer to return that it did not run out of fifo space
587 	 * doing it.
588 	 */
589 	if (to_write > max_transfer) {
590 		to_write = max_transfer;
591 
592 		/* it's needed only when we do not use dedicated fifos */
593 		if (!hsotg->dedicated_fifos)
594 			dwc2_hsotg_en_gsint(hsotg,
595 					    periodic ? GINTSTS_PTXFEMP :
596 					   GINTSTS_NPTXFEMP);
597 	}
598 
599 	/* see if we can write data */
600 
601 	if (to_write > can_write) {
602 		to_write = can_write;
603 		pkt_round = to_write % max_transfer;
604 
605 		/*
606 		 * Round the write down to an
607 		 * exact number of packets.
608 		 *
609 		 * Note, we do not currently check to see if we can ever
610 		 * write a full packet or not to the FIFO.
611 		 */
612 
613 		if (pkt_round)
614 			to_write -= pkt_round;
615 
616 		/*
617 		 * enable correct FIFO interrupt to alert us when there
618 		 * is more room left.
619 		 */
620 
621 		/* it's needed only when we do not use dedicated fifos */
622 		if (!hsotg->dedicated_fifos)
623 			dwc2_hsotg_en_gsint(hsotg,
624 					    periodic ? GINTSTS_PTXFEMP :
625 					   GINTSTS_NPTXFEMP);
626 	}
627 
628 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
629 		to_write, hs_req->req.length, can_write, buf_pos);
630 
631 	if (to_write <= 0)
632 		return -ENOSPC;
633 
634 	hs_req->req.actual = buf_pos + to_write;
635 	hs_ep->total_data += to_write;
636 
637 	if (periodic)
638 		hs_ep->fifo_load += to_write;
639 
640 	to_write = DIV_ROUND_UP(to_write, 4);
641 	data = hs_req->req.buf + buf_pos;
642 
643 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
644 
645 	return (to_write >= can_write) ? -ENOSPC : 0;
646 }
647 
648 /**
649  * get_ep_limit - get the maximum data legnth for this endpoint
650  * @hs_ep: The endpoint
651  *
652  * Return the maximum data that can be queued in one go on a given endpoint
653  * so that transfers that are too long can be split.
654  */
655 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
656 {
657 	int index = hs_ep->index;
658 	unsigned int maxsize;
659 	unsigned int maxpkt;
660 
661 	if (index != 0) {
662 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
663 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
664 	} else {
665 		maxsize = 64 + 64;
666 		if (hs_ep->dir_in)
667 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
668 		else
669 			maxpkt = 2;
670 	}
671 
672 	/* we made the constant loading easier above by using +1 */
673 	maxpkt--;
674 	maxsize--;
675 
676 	/*
677 	 * constrain by packet count if maxpkts*pktsize is greater
678 	 * than the length register size.
679 	 */
680 
681 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
682 		maxsize = maxpkt * hs_ep->ep.maxpacket;
683 
684 	return maxsize;
685 }
686 
687 /**
688  * dwc2_hsotg_read_frameno - read current frame number
689  * @hsotg: The device instance
690  *
691  * Return the current frame number
692  */
693 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
694 {
695 	u32 dsts;
696 
697 	dsts = dwc2_readl(hsotg, DSTS);
698 	dsts &= DSTS_SOFFN_MASK;
699 	dsts >>= DSTS_SOFFN_SHIFT;
700 
701 	return dsts;
702 }
703 
704 /**
705  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
706  * DMA descriptor chain prepared for specific endpoint
707  * @hs_ep: The endpoint
708  *
709  * Return the maximum data that can be queued in one go on a given endpoint
710  * depending on its descriptor chain capacity so that transfers that
711  * are too long can be split.
712  */
713 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
714 {
715 	int is_isoc = hs_ep->isochronous;
716 	unsigned int maxsize;
717 
718 	if (is_isoc)
719 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
720 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
721 					   MAX_DMA_DESC_NUM_HS_ISOC;
722 	else
723 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
724 
725 	return maxsize;
726 }
727 
728 /*
729  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
730  * @hs_ep: The endpoint
731  * @mask: RX/TX bytes mask to be defined
732  *
733  * Returns maximum data payload for one descriptor after analyzing endpoint
734  * characteristics.
735  * DMA descriptor transfer bytes limit depends on EP type:
736  * Control out - MPS,
737  * Isochronous - descriptor rx/tx bytes bitfield limit,
738  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
739  * have concatenations from various descriptors within one packet.
740  *
741  * Selects corresponding mask for RX/TX bytes as well.
742  */
743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
744 {
745 	u32 mps = hs_ep->ep.maxpacket;
746 	int dir_in = hs_ep->dir_in;
747 	u32 desc_size = 0;
748 
749 	if (!hs_ep->index && !dir_in) {
750 		desc_size = mps;
751 		*mask = DEV_DMA_NBYTES_MASK;
752 	} else if (hs_ep->isochronous) {
753 		if (dir_in) {
754 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
755 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
756 		} else {
757 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
758 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
759 		}
760 	} else {
761 		desc_size = DEV_DMA_NBYTES_LIMIT;
762 		*mask = DEV_DMA_NBYTES_MASK;
763 
764 		/* Round down desc_size to be mps multiple */
765 		desc_size -= desc_size % mps;
766 	}
767 
768 	return desc_size;
769 }
770 
771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
772 						 struct dwc2_dma_desc **desc,
773 						 dma_addr_t dma_buff,
774 						 unsigned int len,
775 						 bool true_last)
776 {
777 	int dir_in = hs_ep->dir_in;
778 	u32 mps = hs_ep->ep.maxpacket;
779 	u32 maxsize = 0;
780 	u32 offset = 0;
781 	u32 mask = 0;
782 	int i;
783 
784 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
785 
786 	hs_ep->desc_count = (len / maxsize) +
787 				((len % maxsize) ? 1 : 0);
788 	if (len == 0)
789 		hs_ep->desc_count = 1;
790 
791 	for (i = 0; i < hs_ep->desc_count; ++i) {
792 		(*desc)->status = 0;
793 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
794 				 << DEV_DMA_BUFF_STS_SHIFT);
795 
796 		if (len > maxsize) {
797 			if (!hs_ep->index && !dir_in)
798 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
799 
800 			(*desc)->status |=
801 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
802 			(*desc)->buf = dma_buff + offset;
803 
804 			len -= maxsize;
805 			offset += maxsize;
806 		} else {
807 			if (true_last)
808 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
809 
810 			if (dir_in)
811 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
812 					((hs_ep->send_zlp && true_last) ?
813 					DEV_DMA_SHORT : 0);
814 
815 			(*desc)->status |=
816 				len << DEV_DMA_NBYTES_SHIFT & mask;
817 			(*desc)->buf = dma_buff + offset;
818 		}
819 
820 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
821 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
822 				 << DEV_DMA_BUFF_STS_SHIFT);
823 		(*desc)++;
824 	}
825 }
826 
827 /*
828  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
829  * @hs_ep: The endpoint
830  * @ureq: Request to transfer
831  * @offset: offset in bytes
832  * @len: Length of the transfer
833  *
834  * This function will iterate over descriptor chain and fill its entries
835  * with corresponding information based on transfer data.
836  */
837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
838 						 dma_addr_t dma_buff,
839 						 unsigned int len)
840 {
841 	struct usb_request *ureq = NULL;
842 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
843 	struct scatterlist *sg;
844 	int i;
845 	u8 desc_count = 0;
846 
847 	if (hs_ep->req)
848 		ureq = &hs_ep->req->req;
849 
850 	/* non-DMA sg buffer */
851 	if (!ureq || !ureq->num_sgs) {
852 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
853 			dma_buff, len, true);
854 		return;
855 	}
856 
857 	/* DMA sg buffer */
858 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
859 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
860 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
861 			sg_is_last(sg));
862 		desc_count += hs_ep->desc_count;
863 	}
864 
865 	hs_ep->desc_count = desc_count;
866 }
867 
868 /*
869  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
870  * @hs_ep: The isochronous endpoint.
871  * @dma_buff: usb requests dma buffer.
872  * @len: usb request transfer length.
873  *
874  * Fills next free descriptor with the data of the arrived usb request,
875  * frame info, sets Last and IOC bits increments next_desc. If filled
876  * descriptor is not the first one, removes L bit from the previous descriptor
877  * status.
878  */
879 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
880 				      dma_addr_t dma_buff, unsigned int len)
881 {
882 	struct dwc2_dma_desc *desc;
883 	struct dwc2_hsotg *hsotg = hs_ep->parent;
884 	u32 index;
885 	u32 maxsize = 0;
886 	u32 mask = 0;
887 	u8 pid = 0;
888 
889 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
890 
891 	index = hs_ep->next_desc;
892 	desc = &hs_ep->desc_list[index];
893 
894 	/* Check if descriptor chain full */
895 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
896 	    DEV_DMA_BUFF_STS_HREADY) {
897 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
898 		return 1;
899 	}
900 
901 	/* Clear L bit of previous desc if more than one entries in the chain */
902 	if (hs_ep->next_desc)
903 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
904 
905 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
906 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
907 
908 	desc->status = 0;
909 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
910 
911 	desc->buf = dma_buff;
912 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
913 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
914 
915 	if (hs_ep->dir_in) {
916 		if (len)
917 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
918 		else
919 			pid = 1;
920 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
921 				 DEV_DMA_ISOC_PID_MASK) |
922 				((len % hs_ep->ep.maxpacket) ?
923 				 DEV_DMA_SHORT : 0) |
924 				((hs_ep->target_frame <<
925 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
926 				 DEV_DMA_ISOC_FRNUM_MASK);
927 	}
928 
929 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
930 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
931 
932 	/* Increment frame number by interval for IN */
933 	if (hs_ep->dir_in)
934 		dwc2_gadget_incr_frame_num(hs_ep);
935 
936 	/* Update index of last configured entry in the chain */
937 	hs_ep->next_desc++;
938 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
939 		hs_ep->next_desc = 0;
940 
941 	return 0;
942 }
943 
944 /*
945  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
946  * @hs_ep: The isochronous endpoint.
947  *
948  * Prepare descriptor chain for isochronous endpoints. Afterwards
949  * write DMA address to HW and enable the endpoint.
950  */
951 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
952 {
953 	struct dwc2_hsotg *hsotg = hs_ep->parent;
954 	struct dwc2_hsotg_req *hs_req, *treq;
955 	int index = hs_ep->index;
956 	int ret;
957 	int i;
958 	u32 dma_reg;
959 	u32 depctl;
960 	u32 ctrl;
961 	struct dwc2_dma_desc *desc;
962 
963 	if (list_empty(&hs_ep->queue)) {
964 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
965 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
966 		return;
967 	}
968 
969 	/* Initialize descriptor chain by Host Busy status */
970 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
971 		desc = &hs_ep->desc_list[i];
972 		desc->status = 0;
973 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
974 				    << DEV_DMA_BUFF_STS_SHIFT);
975 	}
976 
977 	hs_ep->next_desc = 0;
978 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
979 		dma_addr_t dma_addr = hs_req->req.dma;
980 
981 		if (hs_req->req.num_sgs) {
982 			WARN_ON(hs_req->req.num_sgs > 1);
983 			dma_addr = sg_dma_address(hs_req->req.sg);
984 		}
985 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
986 						 hs_req->req.length);
987 		if (ret)
988 			break;
989 	}
990 
991 	hs_ep->compl_desc = 0;
992 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
993 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
994 
995 	/* write descriptor chain address to control register */
996 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
997 
998 	ctrl = dwc2_readl(hsotg, depctl);
999 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1000 	dwc2_writel(hsotg, ctrl, depctl);
1001 }
1002 
1003 /**
1004  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1005  * @hsotg: The controller state.
1006  * @hs_ep: The endpoint to process a request for
1007  * @hs_req: The request to start.
1008  * @continuing: True if we are doing more for the current request.
1009  *
1010  * Start the given request running by setting the endpoint registers
1011  * appropriately, and writing any data to the FIFOs.
1012  */
1013 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1014 				 struct dwc2_hsotg_ep *hs_ep,
1015 				struct dwc2_hsotg_req *hs_req,
1016 				bool continuing)
1017 {
1018 	struct usb_request *ureq = &hs_req->req;
1019 	int index = hs_ep->index;
1020 	int dir_in = hs_ep->dir_in;
1021 	u32 epctrl_reg;
1022 	u32 epsize_reg;
1023 	u32 epsize;
1024 	u32 ctrl;
1025 	unsigned int length;
1026 	unsigned int packets;
1027 	unsigned int maxreq;
1028 	unsigned int dma_reg;
1029 
1030 	if (index != 0) {
1031 		if (hs_ep->req && !continuing) {
1032 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1033 			WARN_ON(1);
1034 			return;
1035 		} else if (hs_ep->req != hs_req && continuing) {
1036 			dev_err(hsotg->dev,
1037 				"%s: continue different req\n", __func__);
1038 			WARN_ON(1);
1039 			return;
1040 		}
1041 	}
1042 
1043 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1044 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1045 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1046 
1047 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1048 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1049 		hs_ep->dir_in ? "in" : "out");
1050 
1051 	/* If endpoint is stalled, we will restart request later */
1052 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1053 
1054 	if (index && ctrl & DXEPCTL_STALL) {
1055 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1056 		return;
1057 	}
1058 
1059 	length = ureq->length - ureq->actual;
1060 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1061 		ureq->length, ureq->actual);
1062 
1063 	if (!using_desc_dma(hsotg))
1064 		maxreq = get_ep_limit(hs_ep);
1065 	else
1066 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1067 
1068 	if (length > maxreq) {
1069 		int round = maxreq % hs_ep->ep.maxpacket;
1070 
1071 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1072 			__func__, length, maxreq, round);
1073 
1074 		/* round down to multiple of packets */
1075 		if (round)
1076 			maxreq -= round;
1077 
1078 		length = maxreq;
1079 	}
1080 
1081 	if (length)
1082 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1083 	else
1084 		packets = 1;	/* send one packet if length is zero. */
1085 
1086 	if (dir_in && index != 0)
1087 		if (hs_ep->isochronous)
1088 			epsize = DXEPTSIZ_MC(packets);
1089 		else
1090 			epsize = DXEPTSIZ_MC(1);
1091 	else
1092 		epsize = 0;
1093 
1094 	/*
1095 	 * zero length packet should be programmed on its own and should not
1096 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1097 	 */
1098 	if (dir_in && ureq->zero && !continuing) {
1099 		/* Test if zlp is actually required. */
1100 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1101 		    !(ureq->length % hs_ep->ep.maxpacket))
1102 			hs_ep->send_zlp = 1;
1103 	}
1104 
1105 	epsize |= DXEPTSIZ_PKTCNT(packets);
1106 	epsize |= DXEPTSIZ_XFERSIZE(length);
1107 
1108 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1109 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1110 
1111 	/* store the request as the current one we're doing */
1112 	hs_ep->req = hs_req;
1113 
1114 	if (using_desc_dma(hsotg)) {
1115 		u32 offset = 0;
1116 		u32 mps = hs_ep->ep.maxpacket;
1117 
1118 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1119 		if (!dir_in) {
1120 			if (!index)
1121 				length = mps;
1122 			else if (length % mps)
1123 				length += (mps - (length % mps));
1124 		}
1125 
1126 		/*
1127 		 * If more data to send, adjust DMA for EP0 out data stage.
1128 		 * ureq->dma stays unchanged, hence increment it by already
1129 		 * passed passed data count before starting new transaction.
1130 		 */
1131 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1132 		    continuing)
1133 			offset = ureq->actual;
1134 
1135 		/* Fill DDMA chain entries */
1136 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1137 						     length);
1138 
1139 		/* write descriptor chain address to control register */
1140 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1141 
1142 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1143 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1144 	} else {
1145 		/* write size / packets */
1146 		dwc2_writel(hsotg, epsize, epsize_reg);
1147 
1148 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1149 			/*
1150 			 * write DMA address to control register, buffer
1151 			 * already synced by dwc2_hsotg_ep_queue().
1152 			 */
1153 
1154 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1155 
1156 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1157 				__func__, &ureq->dma, dma_reg);
1158 		}
1159 	}
1160 
1161 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1162 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1163 		dwc2_gadget_incr_frame_num(hs_ep);
1164 
1165 		if (hs_ep->target_frame & 0x1)
1166 			ctrl |= DXEPCTL_SETODDFR;
1167 		else
1168 			ctrl |= DXEPCTL_SETEVENFR;
1169 	}
1170 
1171 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1172 
1173 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1174 
1175 	/* For Setup request do not clear NAK */
1176 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1177 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1178 
1179 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1180 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1181 
1182 	/*
1183 	 * set these, it seems that DMA support increments past the end
1184 	 * of the packet buffer so we need to calculate the length from
1185 	 * this information.
1186 	 */
1187 	hs_ep->size_loaded = length;
1188 	hs_ep->last_load = ureq->actual;
1189 
1190 	if (dir_in && !using_dma(hsotg)) {
1191 		/* set these anyway, we may need them for non-periodic in */
1192 		hs_ep->fifo_load = 0;
1193 
1194 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1195 	}
1196 
1197 	/*
1198 	 * Note, trying to clear the NAK here causes problems with transmit
1199 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1200 	 */
1201 
1202 	/* check ep is enabled */
1203 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1204 		dev_dbg(hsotg->dev,
1205 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1206 			 index, dwc2_readl(hsotg, epctrl_reg));
1207 
1208 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1209 		__func__, dwc2_readl(hsotg, epctrl_reg));
1210 
1211 	/* enable ep interrupts */
1212 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1213 }
1214 
1215 /**
1216  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1217  * @hsotg: The device state.
1218  * @hs_ep: The endpoint the request is on.
1219  * @req: The request being processed.
1220  *
1221  * We've been asked to queue a request, so ensure that the memory buffer
1222  * is correctly setup for DMA. If we've been passed an extant DMA address
1223  * then ensure the buffer has been synced to memory. If our buffer has no
1224  * DMA memory, then we map the memory and mark our request to allow us to
1225  * cleanup on completion.
1226  */
1227 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1228 			      struct dwc2_hsotg_ep *hs_ep,
1229 			     struct usb_request *req)
1230 {
1231 	int ret;
1232 
1233 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1234 	if (ret)
1235 		goto dma_error;
1236 
1237 	return 0;
1238 
1239 dma_error:
1240 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1241 		__func__, req->buf, req->length);
1242 
1243 	return -EIO;
1244 }
1245 
1246 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1247 						 struct dwc2_hsotg_ep *hs_ep,
1248 						 struct dwc2_hsotg_req *hs_req)
1249 {
1250 	void *req_buf = hs_req->req.buf;
1251 
1252 	/* If dma is not being used or buffer is aligned */
1253 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1254 		return 0;
1255 
1256 	WARN_ON(hs_req->saved_req_buf);
1257 
1258 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1259 		hs_ep->ep.name, req_buf, hs_req->req.length);
1260 
1261 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1262 	if (!hs_req->req.buf) {
1263 		hs_req->req.buf = req_buf;
1264 		dev_err(hsotg->dev,
1265 			"%s: unable to allocate memory for bounce buffer\n",
1266 			__func__);
1267 		return -ENOMEM;
1268 	}
1269 
1270 	/* Save actual buffer */
1271 	hs_req->saved_req_buf = req_buf;
1272 
1273 	if (hs_ep->dir_in)
1274 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1275 	return 0;
1276 }
1277 
1278 static void
1279 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1280 					 struct dwc2_hsotg_ep *hs_ep,
1281 					 struct dwc2_hsotg_req *hs_req)
1282 {
1283 	/* If dma is not being used or buffer was aligned */
1284 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1285 		return;
1286 
1287 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1288 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1289 
1290 	/* Copy data from bounce buffer on successful out transfer */
1291 	if (!hs_ep->dir_in && !hs_req->req.status)
1292 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1293 		       hs_req->req.actual);
1294 
1295 	/* Free bounce buffer */
1296 	kfree(hs_req->req.buf);
1297 
1298 	hs_req->req.buf = hs_req->saved_req_buf;
1299 	hs_req->saved_req_buf = NULL;
1300 }
1301 
1302 /**
1303  * dwc2_gadget_target_frame_elapsed - Checks target frame
1304  * @hs_ep: The driver endpoint to check
1305  *
1306  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1307  * corresponding transfer.
1308  */
1309 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1310 {
1311 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1312 	u32 target_frame = hs_ep->target_frame;
1313 	u32 current_frame = hsotg->frame_number;
1314 	bool frame_overrun = hs_ep->frame_overrun;
1315 
1316 	if (!frame_overrun && current_frame >= target_frame)
1317 		return true;
1318 
1319 	if (frame_overrun && current_frame >= target_frame &&
1320 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1321 		return true;
1322 
1323 	return false;
1324 }
1325 
1326 /*
1327  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1328  * @hsotg: The driver state
1329  * @hs_ep: the ep descriptor chain is for
1330  *
1331  * Called to update EP0 structure's pointers depend on stage of
1332  * control transfer.
1333  */
1334 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1335 					  struct dwc2_hsotg_ep *hs_ep)
1336 {
1337 	switch (hsotg->ep0_state) {
1338 	case DWC2_EP0_SETUP:
1339 	case DWC2_EP0_STATUS_OUT:
1340 		hs_ep->desc_list = hsotg->setup_desc[0];
1341 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1342 		break;
1343 	case DWC2_EP0_DATA_IN:
1344 	case DWC2_EP0_STATUS_IN:
1345 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1346 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1347 		break;
1348 	case DWC2_EP0_DATA_OUT:
1349 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1350 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1351 		break;
1352 	default:
1353 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1354 			hsotg->ep0_state);
1355 		return -EINVAL;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1362 			       gfp_t gfp_flags)
1363 {
1364 	struct dwc2_hsotg_req *hs_req = our_req(req);
1365 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1366 	struct dwc2_hsotg *hs = hs_ep->parent;
1367 	bool first;
1368 	int ret;
1369 	u32 maxsize = 0;
1370 	u32 mask = 0;
1371 
1372 
1373 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1374 		ep->name, req, req->length, req->buf, req->no_interrupt,
1375 		req->zero, req->short_not_ok);
1376 
1377 	/* Prevent new request submission when controller is suspended */
1378 	if (hs->lx_state != DWC2_L0) {
1379 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1380 			__func__);
1381 		return -EAGAIN;
1382 	}
1383 
1384 	/* initialise status of the request */
1385 	INIT_LIST_HEAD(&hs_req->queue);
1386 	req->actual = 0;
1387 	req->status = -EINPROGRESS;
1388 
1389 	/* Don't queue ISOC request if length greater than mps*mc */
1390 	if (hs_ep->isochronous &&
1391 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1392 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1393 		return -EINVAL;
1394 	}
1395 
1396 	/* In DDMA mode for ISOC's don't queue request if length greater
1397 	 * than descriptor limits.
1398 	 */
1399 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1400 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1401 		if (hs_ep->dir_in && req->length > maxsize) {
1402 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1403 				req->length, maxsize);
1404 			return -EINVAL;
1405 		}
1406 
1407 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1408 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1409 				req->length, hs_ep->ep.maxpacket);
1410 			return -EINVAL;
1411 		}
1412 	}
1413 
1414 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1415 	if (ret)
1416 		return ret;
1417 
1418 	/* if we're using DMA, sync the buffers as necessary */
1419 	if (using_dma(hs)) {
1420 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1421 		if (ret)
1422 			return ret;
1423 	}
1424 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1425 	if (using_desc_dma(hs) && !hs_ep->index) {
1426 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1427 		if (ret)
1428 			return ret;
1429 	}
1430 
1431 	first = list_empty(&hs_ep->queue);
1432 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1433 
1434 	/*
1435 	 * Handle DDMA isochronous transfers separately - just add new entry
1436 	 * to the descriptor chain.
1437 	 * Transfer will be started once SW gets either one of NAK or
1438 	 * OutTknEpDis interrupts.
1439 	 */
1440 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1441 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1442 			dma_addr_t dma_addr = hs_req->req.dma;
1443 
1444 			if (hs_req->req.num_sgs) {
1445 				WARN_ON(hs_req->req.num_sgs > 1);
1446 				dma_addr = sg_dma_address(hs_req->req.sg);
1447 			}
1448 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1449 						   hs_req->req.length);
1450 		}
1451 		return 0;
1452 	}
1453 
1454 	/* Change EP direction if status phase request is after data out */
1455 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1456 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1457 		hs_ep->dir_in = 1;
1458 
1459 	if (first) {
1460 		if (!hs_ep->isochronous) {
1461 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1462 			return 0;
1463 		}
1464 
1465 		/* Update current frame number value. */
1466 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1467 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1468 			dwc2_gadget_incr_frame_num(hs_ep);
1469 			/* Update current frame number value once more as it
1470 			 * changes here.
1471 			 */
1472 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1473 		}
1474 
1475 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1476 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1477 	}
1478 	return 0;
1479 }
1480 
1481 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1482 				    gfp_t gfp_flags)
1483 {
1484 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1485 	struct dwc2_hsotg *hs = hs_ep->parent;
1486 	unsigned long flags = 0;
1487 	int ret = 0;
1488 
1489 	spin_lock_irqsave(&hs->lock, flags);
1490 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1491 	spin_unlock_irqrestore(&hs->lock, flags);
1492 
1493 	return ret;
1494 }
1495 
1496 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1497 				       struct usb_request *req)
1498 {
1499 	struct dwc2_hsotg_req *hs_req = our_req(req);
1500 
1501 	kfree(hs_req);
1502 }
1503 
1504 /**
1505  * dwc2_hsotg_complete_oursetup - setup completion callback
1506  * @ep: The endpoint the request was on.
1507  * @req: The request completed.
1508  *
1509  * Called on completion of any requests the driver itself
1510  * submitted that need cleaning up.
1511  */
1512 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1513 					 struct usb_request *req)
1514 {
1515 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1516 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1517 
1518 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1519 
1520 	dwc2_hsotg_ep_free_request(ep, req);
1521 }
1522 
1523 /**
1524  * ep_from_windex - convert control wIndex value to endpoint
1525  * @hsotg: The driver state.
1526  * @windex: The control request wIndex field (in host order).
1527  *
1528  * Convert the given wIndex into a pointer to an driver endpoint
1529  * structure, or return NULL if it is not a valid endpoint.
1530  */
1531 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1532 					    u32 windex)
1533 {
1534 	struct dwc2_hsotg_ep *ep;
1535 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1536 	int idx = windex & 0x7F;
1537 
1538 	if (windex >= 0x100)
1539 		return NULL;
1540 
1541 	if (idx > hsotg->num_of_eps)
1542 		return NULL;
1543 
1544 	ep = index_to_ep(hsotg, idx, dir);
1545 
1546 	if (idx && ep->dir_in != dir)
1547 		return NULL;
1548 
1549 	return ep;
1550 }
1551 
1552 /**
1553  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1554  * @hsotg: The driver state.
1555  * @testmode: requested usb test mode
1556  * Enable usb Test Mode requested by the Host.
1557  */
1558 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1559 {
1560 	int dctl = dwc2_readl(hsotg, DCTL);
1561 
1562 	dctl &= ~DCTL_TSTCTL_MASK;
1563 	switch (testmode) {
1564 	case TEST_J:
1565 	case TEST_K:
1566 	case TEST_SE0_NAK:
1567 	case TEST_PACKET:
1568 	case TEST_FORCE_EN:
1569 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1570 		break;
1571 	default:
1572 		return -EINVAL;
1573 	}
1574 	dwc2_writel(hsotg, dctl, DCTL);
1575 	return 0;
1576 }
1577 
1578 /**
1579  * dwc2_hsotg_send_reply - send reply to control request
1580  * @hsotg: The device state
1581  * @ep: Endpoint 0
1582  * @buff: Buffer for request
1583  * @length: Length of reply.
1584  *
1585  * Create a request and queue it on the given endpoint. This is useful as
1586  * an internal method of sending replies to certain control requests, etc.
1587  */
1588 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1589 				 struct dwc2_hsotg_ep *ep,
1590 				void *buff,
1591 				int length)
1592 {
1593 	struct usb_request *req;
1594 	int ret;
1595 
1596 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1597 
1598 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1599 	hsotg->ep0_reply = req;
1600 	if (!req) {
1601 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1602 		return -ENOMEM;
1603 	}
1604 
1605 	req->buf = hsotg->ep0_buff;
1606 	req->length = length;
1607 	/*
1608 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1609 	 * STATUS stage.
1610 	 */
1611 	req->zero = 0;
1612 	req->complete = dwc2_hsotg_complete_oursetup;
1613 
1614 	if (length)
1615 		memcpy(req->buf, buff, length);
1616 
1617 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1618 	if (ret) {
1619 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1620 		return ret;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 /**
1627  * dwc2_hsotg_process_req_status - process request GET_STATUS
1628  * @hsotg: The device state
1629  * @ctrl: USB control request
1630  */
1631 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1632 					 struct usb_ctrlrequest *ctrl)
1633 {
1634 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1635 	struct dwc2_hsotg_ep *ep;
1636 	__le16 reply;
1637 	u16 status;
1638 	int ret;
1639 
1640 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1641 
1642 	if (!ep0->dir_in) {
1643 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1644 		return -EINVAL;
1645 	}
1646 
1647 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1648 	case USB_RECIP_DEVICE:
1649 		status = 1 << USB_DEVICE_SELF_POWERED;
1650 		status |= hsotg->remote_wakeup_allowed <<
1651 			  USB_DEVICE_REMOTE_WAKEUP;
1652 		reply = cpu_to_le16(status);
1653 		break;
1654 
1655 	case USB_RECIP_INTERFACE:
1656 		/* currently, the data result should be zero */
1657 		reply = cpu_to_le16(0);
1658 		break;
1659 
1660 	case USB_RECIP_ENDPOINT:
1661 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1662 		if (!ep)
1663 			return -ENOENT;
1664 
1665 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1666 		break;
1667 
1668 	default:
1669 		return 0;
1670 	}
1671 
1672 	if (le16_to_cpu(ctrl->wLength) != 2)
1673 		return -EINVAL;
1674 
1675 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1676 	if (ret) {
1677 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1678 		return ret;
1679 	}
1680 
1681 	return 1;
1682 }
1683 
1684 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1685 
1686 /**
1687  * get_ep_head - return the first request on the endpoint
1688  * @hs_ep: The controller endpoint to get
1689  *
1690  * Get the first request on the endpoint.
1691  */
1692 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1693 {
1694 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1695 					queue);
1696 }
1697 
1698 /**
1699  * dwc2_gadget_start_next_request - Starts next request from ep queue
1700  * @hs_ep: Endpoint structure
1701  *
1702  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1703  * in its handler. Hence we need to unmask it here to be able to do
1704  * resynchronization.
1705  */
1706 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1707 {
1708 	u32 mask;
1709 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1710 	int dir_in = hs_ep->dir_in;
1711 	struct dwc2_hsotg_req *hs_req;
1712 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1713 
1714 	if (!list_empty(&hs_ep->queue)) {
1715 		hs_req = get_ep_head(hs_ep);
1716 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1717 		return;
1718 	}
1719 	if (!hs_ep->isochronous)
1720 		return;
1721 
1722 	if (dir_in) {
1723 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1724 			__func__);
1725 	} else {
1726 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1727 			__func__);
1728 		mask = dwc2_readl(hsotg, epmsk_reg);
1729 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1730 		dwc2_writel(hsotg, mask, epmsk_reg);
1731 	}
1732 }
1733 
1734 /**
1735  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1736  * @hsotg: The device state
1737  * @ctrl: USB control request
1738  */
1739 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1740 					  struct usb_ctrlrequest *ctrl)
1741 {
1742 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1743 	struct dwc2_hsotg_req *hs_req;
1744 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1745 	struct dwc2_hsotg_ep *ep;
1746 	int ret;
1747 	bool halted;
1748 	u32 recip;
1749 	u32 wValue;
1750 	u32 wIndex;
1751 
1752 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1753 		__func__, set ? "SET" : "CLEAR");
1754 
1755 	wValue = le16_to_cpu(ctrl->wValue);
1756 	wIndex = le16_to_cpu(ctrl->wIndex);
1757 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1758 
1759 	switch (recip) {
1760 	case USB_RECIP_DEVICE:
1761 		switch (wValue) {
1762 		case USB_DEVICE_REMOTE_WAKEUP:
1763 			if (set)
1764 				hsotg->remote_wakeup_allowed = 1;
1765 			else
1766 				hsotg->remote_wakeup_allowed = 0;
1767 			break;
1768 
1769 		case USB_DEVICE_TEST_MODE:
1770 			if ((wIndex & 0xff) != 0)
1771 				return -EINVAL;
1772 			if (!set)
1773 				return -EINVAL;
1774 
1775 			hsotg->test_mode = wIndex >> 8;
1776 			break;
1777 		default:
1778 			return -ENOENT;
1779 		}
1780 
1781 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1782 		if (ret) {
1783 			dev_err(hsotg->dev,
1784 				"%s: failed to send reply\n", __func__);
1785 			return ret;
1786 		}
1787 		break;
1788 
1789 	case USB_RECIP_ENDPOINT:
1790 		ep = ep_from_windex(hsotg, wIndex);
1791 		if (!ep) {
1792 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1793 				__func__, wIndex);
1794 			return -ENOENT;
1795 		}
1796 
1797 		switch (wValue) {
1798 		case USB_ENDPOINT_HALT:
1799 			halted = ep->halted;
1800 
1801 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1802 
1803 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1804 			if (ret) {
1805 				dev_err(hsotg->dev,
1806 					"%s: failed to send reply\n", __func__);
1807 				return ret;
1808 			}
1809 
1810 			/*
1811 			 * we have to complete all requests for ep if it was
1812 			 * halted, and the halt was cleared by CLEAR_FEATURE
1813 			 */
1814 
1815 			if (!set && halted) {
1816 				/*
1817 				 * If we have request in progress,
1818 				 * then complete it
1819 				 */
1820 				if (ep->req) {
1821 					hs_req = ep->req;
1822 					ep->req = NULL;
1823 					list_del_init(&hs_req->queue);
1824 					if (hs_req->req.complete) {
1825 						spin_unlock(&hsotg->lock);
1826 						usb_gadget_giveback_request(
1827 							&ep->ep, &hs_req->req);
1828 						spin_lock(&hsotg->lock);
1829 					}
1830 				}
1831 
1832 				/* If we have pending request, then start it */
1833 				if (!ep->req)
1834 					dwc2_gadget_start_next_request(ep);
1835 			}
1836 
1837 			break;
1838 
1839 		default:
1840 			return -ENOENT;
1841 		}
1842 		break;
1843 	default:
1844 		return -ENOENT;
1845 	}
1846 	return 1;
1847 }
1848 
1849 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1850 
1851 /**
1852  * dwc2_hsotg_stall_ep0 - stall ep0
1853  * @hsotg: The device state
1854  *
1855  * Set stall for ep0 as response for setup request.
1856  */
1857 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1858 {
1859 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1860 	u32 reg;
1861 	u32 ctrl;
1862 
1863 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1864 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1865 
1866 	/*
1867 	 * DxEPCTL_Stall will be cleared by EP once it has
1868 	 * taken effect, so no need to clear later.
1869 	 */
1870 
1871 	ctrl = dwc2_readl(hsotg, reg);
1872 	ctrl |= DXEPCTL_STALL;
1873 	ctrl |= DXEPCTL_CNAK;
1874 	dwc2_writel(hsotg, ctrl, reg);
1875 
1876 	dev_dbg(hsotg->dev,
1877 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1878 		ctrl, reg, dwc2_readl(hsotg, reg));
1879 
1880 	 /*
1881 	  * complete won't be called, so we enqueue
1882 	  * setup request here
1883 	  */
1884 	 dwc2_hsotg_enqueue_setup(hsotg);
1885 }
1886 
1887 /**
1888  * dwc2_hsotg_process_control - process a control request
1889  * @hsotg: The device state
1890  * @ctrl: The control request received
1891  *
1892  * The controller has received the SETUP phase of a control request, and
1893  * needs to work out what to do next (and whether to pass it on to the
1894  * gadget driver).
1895  */
1896 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1897 				       struct usb_ctrlrequest *ctrl)
1898 {
1899 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1900 	int ret = 0;
1901 	u32 dcfg;
1902 
1903 	dev_dbg(hsotg->dev,
1904 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1905 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1906 		ctrl->wIndex, ctrl->wLength);
1907 
1908 	if (ctrl->wLength == 0) {
1909 		ep0->dir_in = 1;
1910 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1911 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1912 		ep0->dir_in = 1;
1913 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1914 	} else {
1915 		ep0->dir_in = 0;
1916 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1917 	}
1918 
1919 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1920 		switch (ctrl->bRequest) {
1921 		case USB_REQ_SET_ADDRESS:
1922 			hsotg->connected = 1;
1923 			dcfg = dwc2_readl(hsotg, DCFG);
1924 			dcfg &= ~DCFG_DEVADDR_MASK;
1925 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1926 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1927 			dwc2_writel(hsotg, dcfg, DCFG);
1928 
1929 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1930 
1931 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1932 			return;
1933 
1934 		case USB_REQ_GET_STATUS:
1935 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1936 			break;
1937 
1938 		case USB_REQ_CLEAR_FEATURE:
1939 		case USB_REQ_SET_FEATURE:
1940 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1941 			break;
1942 		}
1943 	}
1944 
1945 	/* as a fallback, try delivering it to the driver to deal with */
1946 
1947 	if (ret == 0 && hsotg->driver) {
1948 		spin_unlock(&hsotg->lock);
1949 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1950 		spin_lock(&hsotg->lock);
1951 		if (ret < 0)
1952 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1953 	}
1954 
1955 	hsotg->delayed_status = false;
1956 	if (ret == USB_GADGET_DELAYED_STATUS)
1957 		hsotg->delayed_status = true;
1958 
1959 	/*
1960 	 * the request is either unhandlable, or is not formatted correctly
1961 	 * so respond with a STALL for the status stage to indicate failure.
1962 	 */
1963 
1964 	if (ret < 0)
1965 		dwc2_hsotg_stall_ep0(hsotg);
1966 }
1967 
1968 /**
1969  * dwc2_hsotg_complete_setup - completion of a setup transfer
1970  * @ep: The endpoint the request was on.
1971  * @req: The request completed.
1972  *
1973  * Called on completion of any requests the driver itself submitted for
1974  * EP0 setup packets
1975  */
1976 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1977 				      struct usb_request *req)
1978 {
1979 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1980 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1981 
1982 	if (req->status < 0) {
1983 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1984 		return;
1985 	}
1986 
1987 	spin_lock(&hsotg->lock);
1988 	if (req->actual == 0)
1989 		dwc2_hsotg_enqueue_setup(hsotg);
1990 	else
1991 		dwc2_hsotg_process_control(hsotg, req->buf);
1992 	spin_unlock(&hsotg->lock);
1993 }
1994 
1995 /**
1996  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1997  * @hsotg: The device state.
1998  *
1999  * Enqueue a request on EP0 if necessary to received any SETUP packets
2000  * received from the host.
2001  */
2002 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2003 {
2004 	struct usb_request *req = hsotg->ctrl_req;
2005 	struct dwc2_hsotg_req *hs_req = our_req(req);
2006 	int ret;
2007 
2008 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2009 
2010 	req->zero = 0;
2011 	req->length = 8;
2012 	req->buf = hsotg->ctrl_buff;
2013 	req->complete = dwc2_hsotg_complete_setup;
2014 
2015 	if (!list_empty(&hs_req->queue)) {
2016 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2017 		return;
2018 	}
2019 
2020 	hsotg->eps_out[0]->dir_in = 0;
2021 	hsotg->eps_out[0]->send_zlp = 0;
2022 	hsotg->ep0_state = DWC2_EP0_SETUP;
2023 
2024 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2025 	if (ret < 0) {
2026 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2027 		/*
2028 		 * Don't think there's much we can do other than watch the
2029 		 * driver fail.
2030 		 */
2031 	}
2032 }
2033 
2034 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2035 				   struct dwc2_hsotg_ep *hs_ep)
2036 {
2037 	u32 ctrl;
2038 	u8 index = hs_ep->index;
2039 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2040 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2041 
2042 	if (hs_ep->dir_in)
2043 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2044 			index);
2045 	else
2046 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2047 			index);
2048 	if (using_desc_dma(hsotg)) {
2049 		/* Not specific buffer needed for ep0 ZLP */
2050 		dma_addr_t dma = hs_ep->desc_list_dma;
2051 
2052 		if (!index)
2053 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2054 
2055 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2056 	} else {
2057 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2058 			    DXEPTSIZ_XFERSIZE(0),
2059 			    epsiz_reg);
2060 	}
2061 
2062 	ctrl = dwc2_readl(hsotg, epctl_reg);
2063 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2064 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2065 	ctrl |= DXEPCTL_USBACTEP;
2066 	dwc2_writel(hsotg, ctrl, epctl_reg);
2067 }
2068 
2069 /**
2070  * dwc2_hsotg_complete_request - complete a request given to us
2071  * @hsotg: The device state.
2072  * @hs_ep: The endpoint the request was on.
2073  * @hs_req: The request to complete.
2074  * @result: The result code (0 => Ok, otherwise errno)
2075  *
2076  * The given request has finished, so call the necessary completion
2077  * if it has one and then look to see if we can start a new request
2078  * on the endpoint.
2079  *
2080  * Note, expects the ep to already be locked as appropriate.
2081  */
2082 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2083 					struct dwc2_hsotg_ep *hs_ep,
2084 				       struct dwc2_hsotg_req *hs_req,
2085 				       int result)
2086 {
2087 	if (!hs_req) {
2088 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2089 		return;
2090 	}
2091 
2092 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2093 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2094 
2095 	/*
2096 	 * only replace the status if we've not already set an error
2097 	 * from a previous transaction
2098 	 */
2099 
2100 	if (hs_req->req.status == -EINPROGRESS)
2101 		hs_req->req.status = result;
2102 
2103 	if (using_dma(hsotg))
2104 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2105 
2106 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2107 
2108 	hs_ep->req = NULL;
2109 	list_del_init(&hs_req->queue);
2110 
2111 	/*
2112 	 * call the complete request with the locks off, just in case the
2113 	 * request tries to queue more work for this endpoint.
2114 	 */
2115 
2116 	if (hs_req->req.complete) {
2117 		spin_unlock(&hsotg->lock);
2118 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2119 		spin_lock(&hsotg->lock);
2120 	}
2121 
2122 	/* In DDMA don't need to proceed to starting of next ISOC request */
2123 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2124 		return;
2125 
2126 	/*
2127 	 * Look to see if there is anything else to do. Note, the completion
2128 	 * of the previous request may have caused a new request to be started
2129 	 * so be careful when doing this.
2130 	 */
2131 
2132 	if (!hs_ep->req && result >= 0)
2133 		dwc2_gadget_start_next_request(hs_ep);
2134 }
2135 
2136 /*
2137  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2138  * @hs_ep: The endpoint the request was on.
2139  *
2140  * Get first request from the ep queue, determine descriptor on which complete
2141  * happened. SW discovers which descriptor currently in use by HW, adjusts
2142  * dma_address and calculates index of completed descriptor based on the value
2143  * of DEPDMA register. Update actual length of request, giveback to gadget.
2144  */
2145 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2146 {
2147 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2148 	struct dwc2_hsotg_req *hs_req;
2149 	struct usb_request *ureq;
2150 	u32 desc_sts;
2151 	u32 mask;
2152 
2153 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2154 
2155 	/* Process only descriptors with buffer status set to DMA done */
2156 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2157 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2158 
2159 		hs_req = get_ep_head(hs_ep);
2160 		if (!hs_req) {
2161 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2162 			return;
2163 		}
2164 		ureq = &hs_req->req;
2165 
2166 		/* Check completion status */
2167 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2168 			DEV_DMA_STS_SUCC) {
2169 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2170 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2171 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2172 				DEV_DMA_ISOC_NBYTES_SHIFT);
2173 
2174 			/* Adjust actual len for ISOC Out if len is
2175 			 * not align of 4
2176 			 */
2177 			if (!hs_ep->dir_in && ureq->length & 0x3)
2178 				ureq->actual += 4 - (ureq->length & 0x3);
2179 
2180 			/* Set actual frame number for completed transfers */
2181 			ureq->frame_number =
2182 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2183 				DEV_DMA_ISOC_FRNUM_SHIFT;
2184 		}
2185 
2186 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2187 
2188 		hs_ep->compl_desc++;
2189 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2190 			hs_ep->compl_desc = 0;
2191 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2192 	}
2193 }
2194 
2195 /*
2196  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2197  * @hs_ep: The isochronous endpoint.
2198  *
2199  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2200  * interrupt. Reset target frame and next_desc to allow to start
2201  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2202  * interrupt for OUT direction.
2203  */
2204 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2205 {
2206 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2207 
2208 	if (!hs_ep->dir_in)
2209 		dwc2_flush_rx_fifo(hsotg);
2210 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2211 
2212 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2213 	hs_ep->next_desc = 0;
2214 	hs_ep->compl_desc = 0;
2215 }
2216 
2217 /**
2218  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2219  * @hsotg: The device state.
2220  * @ep_idx: The endpoint index for the data
2221  * @size: The size of data in the fifo, in bytes
2222  *
2223  * The FIFO status shows there is data to read from the FIFO for a given
2224  * endpoint, so sort out whether we need to read the data into a request
2225  * that has been made for that endpoint.
2226  */
2227 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2228 {
2229 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2230 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2231 	int to_read;
2232 	int max_req;
2233 	int read_ptr;
2234 
2235 	if (!hs_req) {
2236 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2237 		int ptr;
2238 
2239 		dev_dbg(hsotg->dev,
2240 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2241 			 __func__, size, ep_idx, epctl);
2242 
2243 		/* dump the data from the FIFO, we've nothing we can do */
2244 		for (ptr = 0; ptr < size; ptr += 4)
2245 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2246 
2247 		return;
2248 	}
2249 
2250 	to_read = size;
2251 	read_ptr = hs_req->req.actual;
2252 	max_req = hs_req->req.length - read_ptr;
2253 
2254 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2255 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2256 
2257 	if (to_read > max_req) {
2258 		/*
2259 		 * more data appeared than we where willing
2260 		 * to deal with in this request.
2261 		 */
2262 
2263 		/* currently we don't deal this */
2264 		WARN_ON_ONCE(1);
2265 	}
2266 
2267 	hs_ep->total_data += to_read;
2268 	hs_req->req.actual += to_read;
2269 	to_read = DIV_ROUND_UP(to_read, 4);
2270 
2271 	/*
2272 	 * note, we might over-write the buffer end by 3 bytes depending on
2273 	 * alignment of the data.
2274 	 */
2275 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2276 		       hs_req->req.buf + read_ptr, to_read);
2277 }
2278 
2279 /**
2280  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2281  * @hsotg: The device instance
2282  * @dir_in: If IN zlp
2283  *
2284  * Generate a zero-length IN packet request for terminating a SETUP
2285  * transaction.
2286  *
2287  * Note, since we don't write any data to the TxFIFO, then it is
2288  * currently believed that we do not need to wait for any space in
2289  * the TxFIFO.
2290  */
2291 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2292 {
2293 	/* eps_out[0] is used in both directions */
2294 	hsotg->eps_out[0]->dir_in = dir_in;
2295 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2296 
2297 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2298 }
2299 
2300 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2301 					    u32 epctl_reg)
2302 {
2303 	u32 ctrl;
2304 
2305 	ctrl = dwc2_readl(hsotg, epctl_reg);
2306 	if (ctrl & DXEPCTL_EOFRNUM)
2307 		ctrl |= DXEPCTL_SETEVENFR;
2308 	else
2309 		ctrl |= DXEPCTL_SETODDFR;
2310 	dwc2_writel(hsotg, ctrl, epctl_reg);
2311 }
2312 
2313 /*
2314  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2315  * @hs_ep - The endpoint on which transfer went
2316  *
2317  * Iterate over endpoints descriptor chain and get info on bytes remained
2318  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2319  */
2320 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2321 {
2322 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2323 	unsigned int bytes_rem = 0;
2324 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2325 	int i;
2326 	u32 status;
2327 
2328 	if (!desc)
2329 		return -EINVAL;
2330 
2331 	for (i = 0; i < hs_ep->desc_count; ++i) {
2332 		status = desc->status;
2333 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2334 
2335 		if (status & DEV_DMA_STS_MASK)
2336 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2337 				i, status & DEV_DMA_STS_MASK);
2338 		desc++;
2339 	}
2340 
2341 	return bytes_rem;
2342 }
2343 
2344 /**
2345  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2346  * @hsotg: The device instance
2347  * @epnum: The endpoint received from
2348  *
2349  * The RXFIFO has delivered an OutDone event, which means that the data
2350  * transfer for an OUT endpoint has been completed, either by a short
2351  * packet or by the finish of a transfer.
2352  */
2353 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2354 {
2355 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2356 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2357 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2358 	struct usb_request *req = &hs_req->req;
2359 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2360 	int result = 0;
2361 
2362 	if (!hs_req) {
2363 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2364 		return;
2365 	}
2366 
2367 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2368 		dev_dbg(hsotg->dev, "zlp packet received\n");
2369 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2370 		dwc2_hsotg_enqueue_setup(hsotg);
2371 		return;
2372 	}
2373 
2374 	if (using_desc_dma(hsotg))
2375 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2376 
2377 	if (using_dma(hsotg)) {
2378 		unsigned int size_done;
2379 
2380 		/*
2381 		 * Calculate the size of the transfer by checking how much
2382 		 * is left in the endpoint size register and then working it
2383 		 * out from the amount we loaded for the transfer.
2384 		 *
2385 		 * We need to do this as DMA pointers are always 32bit aligned
2386 		 * so may overshoot/undershoot the transfer.
2387 		 */
2388 
2389 		size_done = hs_ep->size_loaded - size_left;
2390 		size_done += hs_ep->last_load;
2391 
2392 		req->actual = size_done;
2393 	}
2394 
2395 	/* if there is more request to do, schedule new transfer */
2396 	if (req->actual < req->length && size_left == 0) {
2397 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2398 		return;
2399 	}
2400 
2401 	if (req->actual < req->length && req->short_not_ok) {
2402 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2403 			__func__, req->actual, req->length);
2404 
2405 		/*
2406 		 * todo - what should we return here? there's no one else
2407 		 * even bothering to check the status.
2408 		 */
2409 	}
2410 
2411 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2412 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2413 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2414 		/* Move to STATUS IN */
2415 		if (!hsotg->delayed_status)
2416 			dwc2_hsotg_ep0_zlp(hsotg, true);
2417 	}
2418 
2419 	/*
2420 	 * Slave mode OUT transfers do not go through XferComplete so
2421 	 * adjust the ISOC parity here.
2422 	 */
2423 	if (!using_dma(hsotg)) {
2424 		if (hs_ep->isochronous && hs_ep->interval == 1)
2425 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2426 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2427 			dwc2_gadget_incr_frame_num(hs_ep);
2428 	}
2429 
2430 	/* Set actual frame number for completed transfers */
2431 	if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2432 		req->frame_number = hsotg->frame_number;
2433 
2434 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2435 }
2436 
2437 /**
2438  * dwc2_hsotg_handle_rx - RX FIFO has data
2439  * @hsotg: The device instance
2440  *
2441  * The IRQ handler has detected that the RX FIFO has some data in it
2442  * that requires processing, so find out what is in there and do the
2443  * appropriate read.
2444  *
2445  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2446  * chunks, so if you have x packets received on an endpoint you'll get x
2447  * FIFO events delivered, each with a packet's worth of data in it.
2448  *
2449  * When using DMA, we should not be processing events from the RXFIFO
2450  * as the actual data should be sent to the memory directly and we turn
2451  * on the completion interrupts to get notifications of transfer completion.
2452  */
2453 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2454 {
2455 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2456 	u32 epnum, status, size;
2457 
2458 	WARN_ON(using_dma(hsotg));
2459 
2460 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2461 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2462 
2463 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2464 	size >>= GRXSTS_BYTECNT_SHIFT;
2465 
2466 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2467 		__func__, grxstsr, size, epnum);
2468 
2469 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2470 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2471 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2472 		break;
2473 
2474 	case GRXSTS_PKTSTS_OUTDONE:
2475 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2476 			dwc2_hsotg_read_frameno(hsotg));
2477 
2478 		if (!using_dma(hsotg))
2479 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2480 		break;
2481 
2482 	case GRXSTS_PKTSTS_SETUPDONE:
2483 		dev_dbg(hsotg->dev,
2484 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2485 			dwc2_hsotg_read_frameno(hsotg),
2486 			dwc2_readl(hsotg, DOEPCTL(0)));
2487 		/*
2488 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2489 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2490 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2491 		 */
2492 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2493 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2494 		break;
2495 
2496 	case GRXSTS_PKTSTS_OUTRX:
2497 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2498 		break;
2499 
2500 	case GRXSTS_PKTSTS_SETUPRX:
2501 		dev_dbg(hsotg->dev,
2502 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2503 			dwc2_hsotg_read_frameno(hsotg),
2504 			dwc2_readl(hsotg, DOEPCTL(0)));
2505 
2506 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2507 
2508 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2509 		break;
2510 
2511 	default:
2512 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2513 			 __func__, grxstsr);
2514 
2515 		dwc2_hsotg_dump(hsotg);
2516 		break;
2517 	}
2518 }
2519 
2520 /**
2521  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2522  * @mps: The maximum packet size in bytes.
2523  */
2524 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2525 {
2526 	switch (mps) {
2527 	case 64:
2528 		return D0EPCTL_MPS_64;
2529 	case 32:
2530 		return D0EPCTL_MPS_32;
2531 	case 16:
2532 		return D0EPCTL_MPS_16;
2533 	case 8:
2534 		return D0EPCTL_MPS_8;
2535 	}
2536 
2537 	/* bad max packet size, warn and return invalid result */
2538 	WARN_ON(1);
2539 	return (u32)-1;
2540 }
2541 
2542 /**
2543  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2544  * @hsotg: The driver state.
2545  * @ep: The index number of the endpoint
2546  * @mps: The maximum packet size in bytes
2547  * @mc: The multicount value
2548  * @dir_in: True if direction is in.
2549  *
2550  * Configure the maximum packet size for the given endpoint, updating
2551  * the hardware control registers to reflect this.
2552  */
2553 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2554 					unsigned int ep, unsigned int mps,
2555 					unsigned int mc, unsigned int dir_in)
2556 {
2557 	struct dwc2_hsotg_ep *hs_ep;
2558 	u32 reg;
2559 
2560 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2561 	if (!hs_ep)
2562 		return;
2563 
2564 	if (ep == 0) {
2565 		u32 mps_bytes = mps;
2566 
2567 		/* EP0 is a special case */
2568 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2569 		if (mps > 3)
2570 			goto bad_mps;
2571 		hs_ep->ep.maxpacket = mps_bytes;
2572 		hs_ep->mc = 1;
2573 	} else {
2574 		if (mps > 1024)
2575 			goto bad_mps;
2576 		hs_ep->mc = mc;
2577 		if (mc > 3)
2578 			goto bad_mps;
2579 		hs_ep->ep.maxpacket = mps;
2580 	}
2581 
2582 	if (dir_in) {
2583 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2584 		reg &= ~DXEPCTL_MPS_MASK;
2585 		reg |= mps;
2586 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2587 	} else {
2588 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2589 		reg &= ~DXEPCTL_MPS_MASK;
2590 		reg |= mps;
2591 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2592 	}
2593 
2594 	return;
2595 
2596 bad_mps:
2597 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2598 }
2599 
2600 /**
2601  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2602  * @hsotg: The driver state
2603  * @idx: The index for the endpoint (0..15)
2604  */
2605 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2606 {
2607 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2608 		    GRSTCTL);
2609 
2610 	/* wait until the fifo is flushed */
2611 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2612 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2613 			 __func__);
2614 }
2615 
2616 /**
2617  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2618  * @hsotg: The driver state
2619  * @hs_ep: The driver endpoint to check.
2620  *
2621  * Check to see if there is a request that has data to send, and if so
2622  * make an attempt to write data into the FIFO.
2623  */
2624 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2625 			    struct dwc2_hsotg_ep *hs_ep)
2626 {
2627 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2628 
2629 	if (!hs_ep->dir_in || !hs_req) {
2630 		/**
2631 		 * if request is not enqueued, we disable interrupts
2632 		 * for endpoints, excepting ep0
2633 		 */
2634 		if (hs_ep->index != 0)
2635 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2636 					      hs_ep->dir_in, 0);
2637 		return 0;
2638 	}
2639 
2640 	if (hs_req->req.actual < hs_req->req.length) {
2641 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2642 			hs_ep->index);
2643 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2644 	}
2645 
2646 	return 0;
2647 }
2648 
2649 /**
2650  * dwc2_hsotg_complete_in - complete IN transfer
2651  * @hsotg: The device state.
2652  * @hs_ep: The endpoint that has just completed.
2653  *
2654  * An IN transfer has been completed, update the transfer's state and then
2655  * call the relevant completion routines.
2656  */
2657 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2658 				   struct dwc2_hsotg_ep *hs_ep)
2659 {
2660 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2661 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2662 	int size_left, size_done;
2663 
2664 	if (!hs_req) {
2665 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2666 		return;
2667 	}
2668 
2669 	/* Finish ZLP handling for IN EP0 transactions */
2670 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2671 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2672 
2673 		/*
2674 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2675 		 * changed to IN. Change back to complete OUT transfer request
2676 		 */
2677 		hs_ep->dir_in = 0;
2678 
2679 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2680 		if (hsotg->test_mode) {
2681 			int ret;
2682 
2683 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2684 			if (ret < 0) {
2685 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2686 					hsotg->test_mode);
2687 				dwc2_hsotg_stall_ep0(hsotg);
2688 				return;
2689 			}
2690 		}
2691 		dwc2_hsotg_enqueue_setup(hsotg);
2692 		return;
2693 	}
2694 
2695 	/*
2696 	 * Calculate the size of the transfer by checking how much is left
2697 	 * in the endpoint size register and then working it out from
2698 	 * the amount we loaded for the transfer.
2699 	 *
2700 	 * We do this even for DMA, as the transfer may have incremented
2701 	 * past the end of the buffer (DMA transfers are always 32bit
2702 	 * aligned).
2703 	 */
2704 	if (using_desc_dma(hsotg)) {
2705 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2706 		if (size_left < 0)
2707 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2708 				size_left);
2709 	} else {
2710 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2711 	}
2712 
2713 	size_done = hs_ep->size_loaded - size_left;
2714 	size_done += hs_ep->last_load;
2715 
2716 	if (hs_req->req.actual != size_done)
2717 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2718 			__func__, hs_req->req.actual, size_done);
2719 
2720 	hs_req->req.actual = size_done;
2721 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2722 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2723 
2724 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2725 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2726 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2727 		return;
2728 	}
2729 
2730 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2731 	if (hs_ep->send_zlp) {
2732 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2733 		hs_ep->send_zlp = 0;
2734 		/* transfer will be completed on next complete interrupt */
2735 		return;
2736 	}
2737 
2738 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2739 		/* Move to STATUS OUT */
2740 		dwc2_hsotg_ep0_zlp(hsotg, false);
2741 		return;
2742 	}
2743 
2744 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2745 }
2746 
2747 /**
2748  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2749  * @hsotg: The device state.
2750  * @idx: Index of ep.
2751  * @dir_in: Endpoint direction 1-in 0-out.
2752  *
2753  * Reads for endpoint with given index and direction, by masking
2754  * epint_reg with coresponding mask.
2755  */
2756 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2757 					  unsigned int idx, int dir_in)
2758 {
2759 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2760 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2761 	u32 ints;
2762 	u32 mask;
2763 	u32 diepempmsk;
2764 
2765 	mask = dwc2_readl(hsotg, epmsk_reg);
2766 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2767 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2768 	mask |= DXEPINT_SETUP_RCVD;
2769 
2770 	ints = dwc2_readl(hsotg, epint_reg);
2771 	ints &= mask;
2772 	return ints;
2773 }
2774 
2775 /**
2776  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2777  * @hs_ep: The endpoint on which interrupt is asserted.
2778  *
2779  * This interrupt indicates that the endpoint has been disabled per the
2780  * application's request.
2781  *
2782  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2783  * in case of ISOC completes current request.
2784  *
2785  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2786  * request starts it.
2787  */
2788 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2789 {
2790 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2791 	struct dwc2_hsotg_req *hs_req;
2792 	unsigned char idx = hs_ep->index;
2793 	int dir_in = hs_ep->dir_in;
2794 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2795 	int dctl = dwc2_readl(hsotg, DCTL);
2796 
2797 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2798 
2799 	if (dir_in) {
2800 		int epctl = dwc2_readl(hsotg, epctl_reg);
2801 
2802 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2803 
2804 		if (hs_ep->isochronous) {
2805 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2806 			return;
2807 		}
2808 
2809 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2810 			int dctl = dwc2_readl(hsotg, DCTL);
2811 
2812 			dctl |= DCTL_CGNPINNAK;
2813 			dwc2_writel(hsotg, dctl, DCTL);
2814 		}
2815 		return;
2816 	}
2817 
2818 	if (dctl & DCTL_GOUTNAKSTS) {
2819 		dctl |= DCTL_CGOUTNAK;
2820 		dwc2_writel(hsotg, dctl, DCTL);
2821 	}
2822 
2823 	if (!hs_ep->isochronous)
2824 		return;
2825 
2826 	if (list_empty(&hs_ep->queue)) {
2827 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2828 			__func__, hs_ep);
2829 		return;
2830 	}
2831 
2832 	do {
2833 		hs_req = get_ep_head(hs_ep);
2834 		if (hs_req)
2835 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2836 						    -ENODATA);
2837 		dwc2_gadget_incr_frame_num(hs_ep);
2838 		/* Update current frame number value. */
2839 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2840 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2841 
2842 	dwc2_gadget_start_next_request(hs_ep);
2843 }
2844 
2845 /**
2846  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2847  * @ep: The endpoint on which interrupt is asserted.
2848  *
2849  * This is starting point for ISOC-OUT transfer, synchronization done with
2850  * first out token received from host while corresponding EP is disabled.
2851  *
2852  * Device does not know initial frame in which out token will come. For this
2853  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2854  * getting this interrupt SW starts calculation for next transfer frame.
2855  */
2856 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2857 {
2858 	struct dwc2_hsotg *hsotg = ep->parent;
2859 	int dir_in = ep->dir_in;
2860 	u32 doepmsk;
2861 
2862 	if (dir_in || !ep->isochronous)
2863 		return;
2864 
2865 	if (using_desc_dma(hsotg)) {
2866 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2867 			/* Start first ISO Out */
2868 			ep->target_frame = hsotg->frame_number;
2869 			dwc2_gadget_start_isoc_ddma(ep);
2870 		}
2871 		return;
2872 	}
2873 
2874 	if (ep->interval > 1 &&
2875 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2876 		u32 ctrl;
2877 
2878 		ep->target_frame = hsotg->frame_number;
2879 		dwc2_gadget_incr_frame_num(ep);
2880 
2881 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2882 		if (ep->target_frame & 0x1)
2883 			ctrl |= DXEPCTL_SETODDFR;
2884 		else
2885 			ctrl |= DXEPCTL_SETEVENFR;
2886 
2887 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2888 	}
2889 
2890 	dwc2_gadget_start_next_request(ep);
2891 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2892 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2893 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2894 }
2895 
2896 /**
2897  * dwc2_gadget_handle_nak - handle NAK interrupt
2898  * @hs_ep: The endpoint on which interrupt is asserted.
2899  *
2900  * This is starting point for ISOC-IN transfer, synchronization done with
2901  * first IN token received from host while corresponding EP is disabled.
2902  *
2903  * Device does not know when first one token will arrive from host. On first
2904  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2905  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2906  * sent in response to that as there was no data in FIFO. SW is basing on this
2907  * interrupt to obtain frame in which token has come and then based on the
2908  * interval calculates next frame for transfer.
2909  */
2910 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2911 {
2912 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2913 	int dir_in = hs_ep->dir_in;
2914 
2915 	if (!dir_in || !hs_ep->isochronous)
2916 		return;
2917 
2918 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2919 
2920 		if (using_desc_dma(hsotg)) {
2921 			hs_ep->target_frame = hsotg->frame_number;
2922 			dwc2_gadget_incr_frame_num(hs_ep);
2923 
2924 			/* In service interval mode target_frame must
2925 			 * be set to last (u)frame of the service interval.
2926 			 */
2927 			if (hsotg->params.service_interval) {
2928 				/* Set target_frame to the first (u)frame of
2929 				 * the service interval
2930 				 */
2931 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2932 
2933 				/* Set target_frame to the last (u)frame of
2934 				 * the service interval
2935 				 */
2936 				dwc2_gadget_incr_frame_num(hs_ep);
2937 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2938 			}
2939 
2940 			dwc2_gadget_start_isoc_ddma(hs_ep);
2941 			return;
2942 		}
2943 
2944 		hs_ep->target_frame = hsotg->frame_number;
2945 		if (hs_ep->interval > 1) {
2946 			u32 ctrl = dwc2_readl(hsotg,
2947 					      DIEPCTL(hs_ep->index));
2948 			if (hs_ep->target_frame & 0x1)
2949 				ctrl |= DXEPCTL_SETODDFR;
2950 			else
2951 				ctrl |= DXEPCTL_SETEVENFR;
2952 
2953 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2954 		}
2955 
2956 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2957 					    get_ep_head(hs_ep), 0);
2958 	}
2959 
2960 	if (!using_desc_dma(hsotg))
2961 		dwc2_gadget_incr_frame_num(hs_ep);
2962 }
2963 
2964 /**
2965  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2966  * @hsotg: The driver state
2967  * @idx: The index for the endpoint (0..15)
2968  * @dir_in: Set if this is an IN endpoint
2969  *
2970  * Process and clear any interrupt pending for an individual endpoint
2971  */
2972 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2973 			     int dir_in)
2974 {
2975 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2976 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2977 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2978 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2979 	u32 ints;
2980 	u32 ctrl;
2981 
2982 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2983 	ctrl = dwc2_readl(hsotg, epctl_reg);
2984 
2985 	/* Clear endpoint interrupts */
2986 	dwc2_writel(hsotg, ints, epint_reg);
2987 
2988 	if (!hs_ep) {
2989 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2990 			__func__, idx, dir_in ? "in" : "out");
2991 		return;
2992 	}
2993 
2994 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2995 		__func__, idx, dir_in ? "in" : "out", ints);
2996 
2997 	/* Don't process XferCompl interrupt if it is a setup packet */
2998 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2999 		ints &= ~DXEPINT_XFERCOMPL;
3000 
3001 	/*
3002 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3003 	 * stage and xfercomplete was generated without SETUP phase done
3004 	 * interrupt. SW should parse received setup packet only after host's
3005 	 * exit from setup phase of control transfer.
3006 	 */
3007 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3008 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3009 		ints &= ~DXEPINT_XFERCOMPL;
3010 
3011 	if (ints & DXEPINT_XFERCOMPL) {
3012 		dev_dbg(hsotg->dev,
3013 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3014 			__func__, dwc2_readl(hsotg, epctl_reg),
3015 			dwc2_readl(hsotg, epsiz_reg));
3016 
3017 		/* In DDMA handle isochronous requests separately */
3018 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3019 			/* XferCompl set along with BNA */
3020 			if (!(ints & DXEPINT_BNAINTR))
3021 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3022 		} else if (dir_in) {
3023 			/*
3024 			 * We get OutDone from the FIFO, so we only
3025 			 * need to look at completing IN requests here
3026 			 * if operating slave mode
3027 			 */
3028 			if (hs_ep->isochronous && hs_ep->interval > 1)
3029 				dwc2_gadget_incr_frame_num(hs_ep);
3030 
3031 			dwc2_hsotg_complete_in(hsotg, hs_ep);
3032 			if (ints & DXEPINT_NAKINTRPT)
3033 				ints &= ~DXEPINT_NAKINTRPT;
3034 
3035 			if (idx == 0 && !hs_ep->req)
3036 				dwc2_hsotg_enqueue_setup(hsotg);
3037 		} else if (using_dma(hsotg)) {
3038 			/*
3039 			 * We're using DMA, we need to fire an OutDone here
3040 			 * as we ignore the RXFIFO.
3041 			 */
3042 			if (hs_ep->isochronous && hs_ep->interval > 1)
3043 				dwc2_gadget_incr_frame_num(hs_ep);
3044 
3045 			dwc2_hsotg_handle_outdone(hsotg, idx);
3046 		}
3047 	}
3048 
3049 	if (ints & DXEPINT_EPDISBLD)
3050 		dwc2_gadget_handle_ep_disabled(hs_ep);
3051 
3052 	if (ints & DXEPINT_OUTTKNEPDIS)
3053 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3054 
3055 	if (ints & DXEPINT_NAKINTRPT)
3056 		dwc2_gadget_handle_nak(hs_ep);
3057 
3058 	if (ints & DXEPINT_AHBERR)
3059 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3060 
3061 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3062 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3063 
3064 		if (using_dma(hsotg) && idx == 0) {
3065 			/*
3066 			 * this is the notification we've received a
3067 			 * setup packet. In non-DMA mode we'd get this
3068 			 * from the RXFIFO, instead we need to process
3069 			 * the setup here.
3070 			 */
3071 
3072 			if (dir_in)
3073 				WARN_ON_ONCE(1);
3074 			else
3075 				dwc2_hsotg_handle_outdone(hsotg, 0);
3076 		}
3077 	}
3078 
3079 	if (ints & DXEPINT_STSPHSERCVD) {
3080 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3081 
3082 		/* Safety check EP0 state when STSPHSERCVD asserted */
3083 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3084 			/* Move to STATUS IN for DDMA */
3085 			if (using_desc_dma(hsotg)) {
3086 				if (!hsotg->delayed_status)
3087 					dwc2_hsotg_ep0_zlp(hsotg, true);
3088 				else
3089 				/* In case of 3 stage Control Write with delayed
3090 				 * status, when Status IN transfer started
3091 				 * before STSPHSERCVD asserted, NAKSTS bit not
3092 				 * cleared by CNAK in dwc2_hsotg_start_req()
3093 				 * function. Clear now NAKSTS to allow complete
3094 				 * transfer.
3095 				 */
3096 					dwc2_set_bit(hsotg, DIEPCTL(0),
3097 						     DXEPCTL_CNAK);
3098 			}
3099 		}
3100 
3101 	}
3102 
3103 	if (ints & DXEPINT_BACK2BACKSETUP)
3104 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3105 
3106 	if (ints & DXEPINT_BNAINTR) {
3107 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3108 		if (hs_ep->isochronous)
3109 			dwc2_gadget_handle_isoc_bna(hs_ep);
3110 	}
3111 
3112 	if (dir_in && !hs_ep->isochronous) {
3113 		/* not sure if this is important, but we'll clear it anyway */
3114 		if (ints & DXEPINT_INTKNTXFEMP) {
3115 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3116 				__func__, idx);
3117 		}
3118 
3119 		/* this probably means something bad is happening */
3120 		if (ints & DXEPINT_INTKNEPMIS) {
3121 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3122 				 __func__, idx);
3123 		}
3124 
3125 		/* FIFO has space or is empty (see GAHBCFG) */
3126 		if (hsotg->dedicated_fifos &&
3127 		    ints & DXEPINT_TXFEMP) {
3128 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3129 				__func__, idx);
3130 			if (!using_dma(hsotg))
3131 				dwc2_hsotg_trytx(hsotg, hs_ep);
3132 		}
3133 	}
3134 }
3135 
3136 /**
3137  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3138  * @hsotg: The device state.
3139  *
3140  * Handle updating the device settings after the enumeration phase has
3141  * been completed.
3142  */
3143 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3144 {
3145 	u32 dsts = dwc2_readl(hsotg, DSTS);
3146 	int ep0_mps = 0, ep_mps = 8;
3147 
3148 	/*
3149 	 * This should signal the finish of the enumeration phase
3150 	 * of the USB handshaking, so we should now know what rate
3151 	 * we connected at.
3152 	 */
3153 
3154 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3155 
3156 	/*
3157 	 * note, since we're limited by the size of transfer on EP0, and
3158 	 * it seems IN transfers must be a even number of packets we do
3159 	 * not advertise a 64byte MPS on EP0.
3160 	 */
3161 
3162 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3163 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3164 	case DSTS_ENUMSPD_FS:
3165 	case DSTS_ENUMSPD_FS48:
3166 		hsotg->gadget.speed = USB_SPEED_FULL;
3167 		ep0_mps = EP0_MPS_LIMIT;
3168 		ep_mps = 1023;
3169 		break;
3170 
3171 	case DSTS_ENUMSPD_HS:
3172 		hsotg->gadget.speed = USB_SPEED_HIGH;
3173 		ep0_mps = EP0_MPS_LIMIT;
3174 		ep_mps = 1024;
3175 		break;
3176 
3177 	case DSTS_ENUMSPD_LS:
3178 		hsotg->gadget.speed = USB_SPEED_LOW;
3179 		ep0_mps = 8;
3180 		ep_mps = 8;
3181 		/*
3182 		 * note, we don't actually support LS in this driver at the
3183 		 * moment, and the documentation seems to imply that it isn't
3184 		 * supported by the PHYs on some of the devices.
3185 		 */
3186 		break;
3187 	}
3188 	dev_info(hsotg->dev, "new device is %s\n",
3189 		 usb_speed_string(hsotg->gadget.speed));
3190 
3191 	/*
3192 	 * we should now know the maximum packet size for an
3193 	 * endpoint, so set the endpoints to a default value.
3194 	 */
3195 
3196 	if (ep0_mps) {
3197 		int i;
3198 		/* Initialize ep0 for both in and out directions */
3199 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3200 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3201 		for (i = 1; i < hsotg->num_of_eps; i++) {
3202 			if (hsotg->eps_in[i])
3203 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3204 							    0, 1);
3205 			if (hsotg->eps_out[i])
3206 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3207 							    0, 0);
3208 		}
3209 	}
3210 
3211 	/* ensure after enumeration our EP0 is active */
3212 
3213 	dwc2_hsotg_enqueue_setup(hsotg);
3214 
3215 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3216 		dwc2_readl(hsotg, DIEPCTL0),
3217 		dwc2_readl(hsotg, DOEPCTL0));
3218 }
3219 
3220 /**
3221  * kill_all_requests - remove all requests from the endpoint's queue
3222  * @hsotg: The device state.
3223  * @ep: The endpoint the requests may be on.
3224  * @result: The result code to use.
3225  *
3226  * Go through the requests on the given endpoint and mark them
3227  * completed with the given result code.
3228  */
3229 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3230 			      struct dwc2_hsotg_ep *ep,
3231 			      int result)
3232 {
3233 	unsigned int size;
3234 
3235 	ep->req = NULL;
3236 
3237 	while (!list_empty(&ep->queue)) {
3238 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3239 
3240 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3241 	}
3242 
3243 	if (!hsotg->dedicated_fifos)
3244 		return;
3245 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3246 	if (size < ep->fifo_size)
3247 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3248 }
3249 
3250 /**
3251  * dwc2_hsotg_disconnect - disconnect service
3252  * @hsotg: The device state.
3253  *
3254  * The device has been disconnected. Remove all current
3255  * transactions and signal the gadget driver that this
3256  * has happened.
3257  */
3258 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3259 {
3260 	unsigned int ep;
3261 
3262 	if (!hsotg->connected)
3263 		return;
3264 
3265 	hsotg->connected = 0;
3266 	hsotg->test_mode = 0;
3267 
3268 	/* all endpoints should be shutdown */
3269 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3270 		if (hsotg->eps_in[ep])
3271 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3272 					  -ESHUTDOWN);
3273 		if (hsotg->eps_out[ep])
3274 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3275 					  -ESHUTDOWN);
3276 	}
3277 
3278 	call_gadget(hsotg, disconnect);
3279 	hsotg->lx_state = DWC2_L3;
3280 
3281 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3282 }
3283 
3284 /**
3285  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3286  * @hsotg: The device state:
3287  * @periodic: True if this is a periodic FIFO interrupt
3288  */
3289 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3290 {
3291 	struct dwc2_hsotg_ep *ep;
3292 	int epno, ret;
3293 
3294 	/* look through for any more data to transmit */
3295 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3296 		ep = index_to_ep(hsotg, epno, 1);
3297 
3298 		if (!ep)
3299 			continue;
3300 
3301 		if (!ep->dir_in)
3302 			continue;
3303 
3304 		if ((periodic && !ep->periodic) ||
3305 		    (!periodic && ep->periodic))
3306 			continue;
3307 
3308 		ret = dwc2_hsotg_trytx(hsotg, ep);
3309 		if (ret < 0)
3310 			break;
3311 	}
3312 }
3313 
3314 /* IRQ flags which will trigger a retry around the IRQ loop */
3315 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3316 			GINTSTS_PTXFEMP |  \
3317 			GINTSTS_RXFLVL)
3318 
3319 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3320 /**
3321  * dwc2_hsotg_core_init - issue softreset to the core
3322  * @hsotg: The device state
3323  * @is_usb_reset: Usb resetting flag
3324  *
3325  * Issue a soft reset to the core, and await the core finishing it.
3326  */
3327 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3328 				       bool is_usb_reset)
3329 {
3330 	u32 intmsk;
3331 	u32 val;
3332 	u32 usbcfg;
3333 	u32 dcfg = 0;
3334 	int ep;
3335 
3336 	/* Kill any ep0 requests as controller will be reinitialized */
3337 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3338 
3339 	if (!is_usb_reset) {
3340 		if (dwc2_core_reset(hsotg, true))
3341 			return;
3342 	} else {
3343 		/* all endpoints should be shutdown */
3344 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3345 			if (hsotg->eps_in[ep])
3346 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3347 			if (hsotg->eps_out[ep])
3348 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3349 		}
3350 	}
3351 
3352 	/*
3353 	 * we must now enable ep0 ready for host detection and then
3354 	 * set configuration.
3355 	 */
3356 
3357 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3358 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3359 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3360 	usbcfg |= GUSBCFG_TOUTCAL(7);
3361 
3362 	/* remove the HNP/SRP and set the PHY */
3363 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3364         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3365 
3366 	dwc2_phy_init(hsotg, true);
3367 
3368 	dwc2_hsotg_init_fifo(hsotg);
3369 
3370 	if (!is_usb_reset)
3371 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3372 
3373 	dcfg |= DCFG_EPMISCNT(1);
3374 
3375 	switch (hsotg->params.speed) {
3376 	case DWC2_SPEED_PARAM_LOW:
3377 		dcfg |= DCFG_DEVSPD_LS;
3378 		break;
3379 	case DWC2_SPEED_PARAM_FULL:
3380 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3381 			dcfg |= DCFG_DEVSPD_FS48;
3382 		else
3383 			dcfg |= DCFG_DEVSPD_FS;
3384 		break;
3385 	default:
3386 		dcfg |= DCFG_DEVSPD_HS;
3387 	}
3388 
3389 	if (hsotg->params.ipg_isoc_en)
3390 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3391 
3392 	dwc2_writel(hsotg, dcfg,  DCFG);
3393 
3394 	/* Clear any pending OTG interrupts */
3395 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3396 
3397 	/* Clear any pending interrupts */
3398 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3399 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3400 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3401 		GINTSTS_USBRST | GINTSTS_RESETDET |
3402 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3403 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3404 		GINTSTS_LPMTRANRCVD;
3405 
3406 	if (!using_desc_dma(hsotg))
3407 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3408 
3409 	if (!hsotg->params.external_id_pin_ctl)
3410 		intmsk |= GINTSTS_CONIDSTSCHNG;
3411 
3412 	dwc2_writel(hsotg, intmsk, GINTMSK);
3413 
3414 	if (using_dma(hsotg)) {
3415 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3416 			    hsotg->params.ahbcfg,
3417 			    GAHBCFG);
3418 
3419 		/* Set DDMA mode support in the core if needed */
3420 		if (using_desc_dma(hsotg))
3421 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3422 
3423 	} else {
3424 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3425 						(GAHBCFG_NP_TXF_EMP_LVL |
3426 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3427 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3428 	}
3429 
3430 	/*
3431 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3432 	 * when we have no data to transfer. Otherwise we get being flooded by
3433 	 * interrupts.
3434 	 */
3435 
3436 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3437 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3438 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3439 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3440 		DIEPMSK);
3441 
3442 	/*
3443 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3444 	 * DMA mode we may need this and StsPhseRcvd.
3445 	 */
3446 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3447 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3448 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3449 		DOEPMSK_SETUPMSK,
3450 		DOEPMSK);
3451 
3452 	/* Enable BNA interrupt for DDMA */
3453 	if (using_desc_dma(hsotg)) {
3454 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3455 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3456 	}
3457 
3458 	/* Enable Service Interval mode if supported */
3459 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3460 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3461 
3462 	dwc2_writel(hsotg, 0, DAINTMSK);
3463 
3464 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3465 		dwc2_readl(hsotg, DIEPCTL0),
3466 		dwc2_readl(hsotg, DOEPCTL0));
3467 
3468 	/* enable in and out endpoint interrupts */
3469 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3470 
3471 	/*
3472 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3473 	 * the data. In DMA mode, we get events from the FIFO but also
3474 	 * things we cannot process, so do not use it.
3475 	 */
3476 	if (!using_dma(hsotg))
3477 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3478 
3479 	/* Enable interrupts for EP0 in and out */
3480 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3481 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3482 
3483 	if (!is_usb_reset) {
3484 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3485 		udelay(10);  /* see openiboot */
3486 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3487 	}
3488 
3489 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3490 
3491 	/*
3492 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3493 	 * writing to the EPCTL register..
3494 	 */
3495 
3496 	/* set to read 1 8byte packet */
3497 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3498 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3499 
3500 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3501 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3502 	       DXEPCTL_USBACTEP,
3503 	       DOEPCTL0);
3504 
3505 	/* enable, but don't activate EP0in */
3506 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3507 	       DXEPCTL_USBACTEP, DIEPCTL0);
3508 
3509 	/* clear global NAKs */
3510 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3511 	if (!is_usb_reset)
3512 		val |= DCTL_SFTDISCON;
3513 	dwc2_set_bit(hsotg, DCTL, val);
3514 
3515 	/* configure the core to support LPM */
3516 	dwc2_gadget_init_lpm(hsotg);
3517 
3518 	/* program GREFCLK register if needed */
3519 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3520 		dwc2_gadget_program_ref_clk(hsotg);
3521 
3522 	/* must be at-least 3ms to allow bus to see disconnect */
3523 	mdelay(3);
3524 
3525 	hsotg->lx_state = DWC2_L0;
3526 
3527 	dwc2_hsotg_enqueue_setup(hsotg);
3528 
3529 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3530 		dwc2_readl(hsotg, DIEPCTL0),
3531 		dwc2_readl(hsotg, DOEPCTL0));
3532 }
3533 
3534 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3535 {
3536 	/* set the soft-disconnect bit */
3537 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3538 }
3539 
3540 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3541 {
3542 	/* remove the soft-disconnect and let's go */
3543 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3544 }
3545 
3546 /**
3547  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3548  * @hsotg: The device state:
3549  *
3550  * This interrupt indicates one of the following conditions occurred while
3551  * transmitting an ISOC transaction.
3552  * - Corrupted IN Token for ISOC EP.
3553  * - Packet not complete in FIFO.
3554  *
3555  * The following actions will be taken:
3556  * - Determine the EP
3557  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3558  */
3559 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3560 {
3561 	struct dwc2_hsotg_ep *hs_ep;
3562 	u32 epctrl;
3563 	u32 daintmsk;
3564 	u32 idx;
3565 
3566 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3567 
3568 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3569 
3570 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3571 		hs_ep = hsotg->eps_in[idx];
3572 		/* Proceed only unmasked ISOC EPs */
3573 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3574 			continue;
3575 
3576 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3577 		if ((epctrl & DXEPCTL_EPENA) &&
3578 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3579 			epctrl |= DXEPCTL_SNAK;
3580 			epctrl |= DXEPCTL_EPDIS;
3581 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3582 		}
3583 	}
3584 
3585 	/* Clear interrupt */
3586 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3587 }
3588 
3589 /**
3590  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3591  * @hsotg: The device state:
3592  *
3593  * This interrupt indicates one of the following conditions occurred while
3594  * transmitting an ISOC transaction.
3595  * - Corrupted OUT Token for ISOC EP.
3596  * - Packet not complete in FIFO.
3597  *
3598  * The following actions will be taken:
3599  * - Determine the EP
3600  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3601  */
3602 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3603 {
3604 	u32 gintsts;
3605 	u32 gintmsk;
3606 	u32 daintmsk;
3607 	u32 epctrl;
3608 	struct dwc2_hsotg_ep *hs_ep;
3609 	int idx;
3610 
3611 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3612 
3613 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3614 	daintmsk >>= DAINT_OUTEP_SHIFT;
3615 
3616 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3617 		hs_ep = hsotg->eps_out[idx];
3618 		/* Proceed only unmasked ISOC EPs */
3619 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3620 			continue;
3621 
3622 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3623 		if ((epctrl & DXEPCTL_EPENA) &&
3624 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3625 			/* Unmask GOUTNAKEFF interrupt */
3626 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3627 			gintmsk |= GINTSTS_GOUTNAKEFF;
3628 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3629 
3630 			gintsts = dwc2_readl(hsotg, GINTSTS);
3631 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3632 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3633 				break;
3634 			}
3635 		}
3636 	}
3637 
3638 	/* Clear interrupt */
3639 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3640 }
3641 
3642 /**
3643  * dwc2_hsotg_irq - handle device interrupt
3644  * @irq: The IRQ number triggered
3645  * @pw: The pw value when registered the handler.
3646  */
3647 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3648 {
3649 	struct dwc2_hsotg *hsotg = pw;
3650 	int retry_count = 8;
3651 	u32 gintsts;
3652 	u32 gintmsk;
3653 
3654 	if (!dwc2_is_device_mode(hsotg))
3655 		return IRQ_NONE;
3656 
3657 	spin_lock(&hsotg->lock);
3658 irq_retry:
3659 	gintsts = dwc2_readl(hsotg, GINTSTS);
3660 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3661 
3662 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3663 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3664 
3665 	gintsts &= gintmsk;
3666 
3667 	if (gintsts & GINTSTS_RESETDET) {
3668 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3669 
3670 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3671 
3672 		/* This event must be used only if controller is suspended */
3673 		if (hsotg->lx_state == DWC2_L2) {
3674 			dwc2_exit_partial_power_down(hsotg, true);
3675 			hsotg->lx_state = DWC2_L0;
3676 		}
3677 	}
3678 
3679 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3680 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3681 		u32 connected = hsotg->connected;
3682 
3683 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3684 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3685 			dwc2_readl(hsotg, GNPTXSTS));
3686 
3687 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3688 
3689 		/* Report disconnection if it is not already done. */
3690 		dwc2_hsotg_disconnect(hsotg);
3691 
3692 		/* Reset device address to zero */
3693 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3694 
3695 		if (usb_status & GOTGCTL_BSESVLD && connected)
3696 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3697 	}
3698 
3699 	if (gintsts & GINTSTS_ENUMDONE) {
3700 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3701 
3702 		dwc2_hsotg_irq_enumdone(hsotg);
3703 	}
3704 
3705 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3706 		u32 daint = dwc2_readl(hsotg, DAINT);
3707 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3708 		u32 daint_out, daint_in;
3709 		int ep;
3710 
3711 		daint &= daintmsk;
3712 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3713 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3714 
3715 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3716 
3717 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3718 						ep++, daint_out >>= 1) {
3719 			if (daint_out & 1)
3720 				dwc2_hsotg_epint(hsotg, ep, 0);
3721 		}
3722 
3723 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3724 						ep++, daint_in >>= 1) {
3725 			if (daint_in & 1)
3726 				dwc2_hsotg_epint(hsotg, ep, 1);
3727 		}
3728 	}
3729 
3730 	/* check both FIFOs */
3731 
3732 	if (gintsts & GINTSTS_NPTXFEMP) {
3733 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3734 
3735 		/*
3736 		 * Disable the interrupt to stop it happening again
3737 		 * unless one of these endpoint routines decides that
3738 		 * it needs re-enabling
3739 		 */
3740 
3741 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3742 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3743 	}
3744 
3745 	if (gintsts & GINTSTS_PTXFEMP) {
3746 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3747 
3748 		/* See note in GINTSTS_NPTxFEmp */
3749 
3750 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3751 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3752 	}
3753 
3754 	if (gintsts & GINTSTS_RXFLVL) {
3755 		/*
3756 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3757 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3758 		 * set.
3759 		 */
3760 
3761 		dwc2_hsotg_handle_rx(hsotg);
3762 	}
3763 
3764 	if (gintsts & GINTSTS_ERLYSUSP) {
3765 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3766 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3767 	}
3768 
3769 	/*
3770 	 * these next two seem to crop-up occasionally causing the core
3771 	 * to shutdown the USB transfer, so try clearing them and logging
3772 	 * the occurrence.
3773 	 */
3774 
3775 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3776 		u8 idx;
3777 		u32 epctrl;
3778 		u32 gintmsk;
3779 		u32 daintmsk;
3780 		struct dwc2_hsotg_ep *hs_ep;
3781 
3782 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3783 		daintmsk >>= DAINT_OUTEP_SHIFT;
3784 		/* Mask this interrupt */
3785 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3786 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3787 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3788 
3789 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3790 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3791 			hs_ep = hsotg->eps_out[idx];
3792 			/* Proceed only unmasked ISOC EPs */
3793 			if (BIT(idx) & ~daintmsk)
3794 				continue;
3795 
3796 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3797 
3798 			//ISOC Ep's only
3799 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3800 				epctrl |= DXEPCTL_SNAK;
3801 				epctrl |= DXEPCTL_EPDIS;
3802 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3803 				continue;
3804 			}
3805 
3806 			//Non-ISOC EP's
3807 			if (hs_ep->halted) {
3808 				if (!(epctrl & DXEPCTL_EPENA))
3809 					epctrl |= DXEPCTL_EPENA;
3810 				epctrl |= DXEPCTL_EPDIS;
3811 				epctrl |= DXEPCTL_STALL;
3812 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3813 			}
3814 		}
3815 
3816 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3817 	}
3818 
3819 	if (gintsts & GINTSTS_GINNAKEFF) {
3820 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3821 
3822 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3823 
3824 		dwc2_hsotg_dump(hsotg);
3825 	}
3826 
3827 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3828 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3829 
3830 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3831 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3832 
3833 	/*
3834 	 * if we've had fifo events, we should try and go around the
3835 	 * loop again to see if there's any point in returning yet.
3836 	 */
3837 
3838 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3839 		goto irq_retry;
3840 
3841 	/* Check WKUP_ALERT interrupt*/
3842 	if (hsotg->params.service_interval)
3843 		dwc2_gadget_wkup_alert_handler(hsotg);
3844 
3845 	spin_unlock(&hsotg->lock);
3846 
3847 	return IRQ_HANDLED;
3848 }
3849 
3850 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3851 				   struct dwc2_hsotg_ep *hs_ep)
3852 {
3853 	u32 epctrl_reg;
3854 	u32 epint_reg;
3855 
3856 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3857 		DOEPCTL(hs_ep->index);
3858 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3859 		DOEPINT(hs_ep->index);
3860 
3861 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3862 		hs_ep->name);
3863 
3864 	if (hs_ep->dir_in) {
3865 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3866 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3867 			/* Wait for Nak effect */
3868 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3869 						    DXEPINT_INEPNAKEFF, 100))
3870 				dev_warn(hsotg->dev,
3871 					 "%s: timeout DIEPINT.NAKEFF\n",
3872 					 __func__);
3873 		} else {
3874 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3875 			/* Wait for Nak effect */
3876 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3877 						    GINTSTS_GINNAKEFF, 100))
3878 				dev_warn(hsotg->dev,
3879 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3880 					 __func__);
3881 		}
3882 	} else {
3883 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3884 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3885 
3886 		/* Wait for global nak to take effect */
3887 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3888 					    GINTSTS_GOUTNAKEFF, 100))
3889 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3890 				 __func__);
3891 	}
3892 
3893 	/* Disable ep */
3894 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3895 
3896 	/* Wait for ep to be disabled */
3897 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3898 		dev_warn(hsotg->dev,
3899 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3900 
3901 	/* Clear EPDISBLD interrupt */
3902 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3903 
3904 	if (hs_ep->dir_in) {
3905 		unsigned short fifo_index;
3906 
3907 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3908 			fifo_index = hs_ep->fifo_index;
3909 		else
3910 			fifo_index = 0;
3911 
3912 		/* Flush TX FIFO */
3913 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3914 
3915 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3916 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3917 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3918 
3919 	} else {
3920 		/* Remove global NAKs */
3921 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3922 	}
3923 }
3924 
3925 /**
3926  * dwc2_hsotg_ep_enable - enable the given endpoint
3927  * @ep: The USB endpint to configure
3928  * @desc: The USB endpoint descriptor to configure with.
3929  *
3930  * This is called from the USB gadget code's usb_ep_enable().
3931  */
3932 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3933 				const struct usb_endpoint_descriptor *desc)
3934 {
3935 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3936 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3937 	unsigned long flags;
3938 	unsigned int index = hs_ep->index;
3939 	u32 epctrl_reg;
3940 	u32 epctrl;
3941 	u32 mps;
3942 	u32 mc;
3943 	u32 mask;
3944 	unsigned int dir_in;
3945 	unsigned int i, val, size;
3946 	int ret = 0;
3947 	unsigned char ep_type;
3948 	int desc_num;
3949 
3950 	dev_dbg(hsotg->dev,
3951 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3952 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3953 		desc->wMaxPacketSize, desc->bInterval);
3954 
3955 	/* not to be called for EP0 */
3956 	if (index == 0) {
3957 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3958 		return -EINVAL;
3959 	}
3960 
3961 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3962 	if (dir_in != hs_ep->dir_in) {
3963 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3964 		return -EINVAL;
3965 	}
3966 
3967 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3968 	mps = usb_endpoint_maxp(desc);
3969 	mc = usb_endpoint_maxp_mult(desc);
3970 
3971 	/* ISOC IN in DDMA supported bInterval up to 10 */
3972 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3973 	    dir_in && desc->bInterval > 10) {
3974 		dev_err(hsotg->dev,
3975 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3976 		return -EINVAL;
3977 	}
3978 
3979 	/* High bandwidth ISOC OUT in DDMA not supported */
3980 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3981 	    !dir_in && mc > 1) {
3982 		dev_err(hsotg->dev,
3983 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3984 		return -EINVAL;
3985 	}
3986 
3987 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3988 
3989 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3990 	epctrl = dwc2_readl(hsotg, epctrl_reg);
3991 
3992 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3993 		__func__, epctrl, epctrl_reg);
3994 
3995 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
3996 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
3997 	else
3998 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
3999 
4000 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4001 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4002 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4003 			desc_num * sizeof(struct dwc2_dma_desc),
4004 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4005 		if (!hs_ep->desc_list) {
4006 			ret = -ENOMEM;
4007 			goto error2;
4008 		}
4009 	}
4010 
4011 	spin_lock_irqsave(&hsotg->lock, flags);
4012 
4013 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4014 	epctrl |= DXEPCTL_MPS(mps);
4015 
4016 	/*
4017 	 * mark the endpoint as active, otherwise the core may ignore
4018 	 * transactions entirely for this endpoint
4019 	 */
4020 	epctrl |= DXEPCTL_USBACTEP;
4021 
4022 	/* update the endpoint state */
4023 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4024 
4025 	/* default, set to non-periodic */
4026 	hs_ep->isochronous = 0;
4027 	hs_ep->periodic = 0;
4028 	hs_ep->halted = 0;
4029 	hs_ep->interval = desc->bInterval;
4030 
4031 	switch (ep_type) {
4032 	case USB_ENDPOINT_XFER_ISOC:
4033 		epctrl |= DXEPCTL_EPTYPE_ISO;
4034 		epctrl |= DXEPCTL_SETEVENFR;
4035 		hs_ep->isochronous = 1;
4036 		hs_ep->interval = 1 << (desc->bInterval - 1);
4037 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4038 		hs_ep->next_desc = 0;
4039 		hs_ep->compl_desc = 0;
4040 		if (dir_in) {
4041 			hs_ep->periodic = 1;
4042 			mask = dwc2_readl(hsotg, DIEPMSK);
4043 			mask |= DIEPMSK_NAKMSK;
4044 			dwc2_writel(hsotg, mask, DIEPMSK);
4045 		} else {
4046 			mask = dwc2_readl(hsotg, DOEPMSK);
4047 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4048 			dwc2_writel(hsotg, mask, DOEPMSK);
4049 		}
4050 		break;
4051 
4052 	case USB_ENDPOINT_XFER_BULK:
4053 		epctrl |= DXEPCTL_EPTYPE_BULK;
4054 		break;
4055 
4056 	case USB_ENDPOINT_XFER_INT:
4057 		if (dir_in)
4058 			hs_ep->periodic = 1;
4059 
4060 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4061 			hs_ep->interval = 1 << (desc->bInterval - 1);
4062 
4063 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4064 		break;
4065 
4066 	case USB_ENDPOINT_XFER_CONTROL:
4067 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4068 		break;
4069 	}
4070 
4071 	/*
4072 	 * if the hardware has dedicated fifos, we must give each IN EP
4073 	 * a unique tx-fifo even if it is non-periodic.
4074 	 */
4075 	if (dir_in && hsotg->dedicated_fifos) {
4076 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4077 		u32 fifo_index = 0;
4078 		u32 fifo_size = UINT_MAX;
4079 
4080 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4081 		for (i = 1; i <= fifo_count; ++i) {
4082 			if (hsotg->fifo_map & (1 << i))
4083 				continue;
4084 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4085 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4086 			if (val < size)
4087 				continue;
4088 			/* Search for smallest acceptable fifo */
4089 			if (val < fifo_size) {
4090 				fifo_size = val;
4091 				fifo_index = i;
4092 			}
4093 		}
4094 		if (!fifo_index) {
4095 			dev_err(hsotg->dev,
4096 				"%s: No suitable fifo found\n", __func__);
4097 			ret = -ENOMEM;
4098 			goto error1;
4099 		}
4100 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4101 		hsotg->fifo_map |= 1 << fifo_index;
4102 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4103 		hs_ep->fifo_index = fifo_index;
4104 		hs_ep->fifo_size = fifo_size;
4105 	}
4106 
4107 	/* for non control endpoints, set PID to D0 */
4108 	if (index && !hs_ep->isochronous)
4109 		epctrl |= DXEPCTL_SETD0PID;
4110 
4111 	/* WA for Full speed ISOC IN in DDMA mode.
4112 	 * By Clear NAK status of EP, core will send ZLP
4113 	 * to IN token and assert NAK interrupt relying
4114 	 * on TxFIFO status only
4115 	 */
4116 
4117 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4118 	    hs_ep->isochronous && dir_in) {
4119 		/* The WA applies only to core versions from 2.72a
4120 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4121 		 * and HS_IOT_1.00a.
4122 		 */
4123 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4124 
4125 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4126 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4127 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4128 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4129 			epctrl |= DXEPCTL_CNAK;
4130 	}
4131 
4132 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4133 		__func__, epctrl);
4134 
4135 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4136 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4137 		__func__, dwc2_readl(hsotg, epctrl_reg));
4138 
4139 	/* enable the endpoint interrupt */
4140 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4141 
4142 error1:
4143 	spin_unlock_irqrestore(&hsotg->lock, flags);
4144 
4145 error2:
4146 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4147 		dmam_free_coherent(hsotg->dev, desc_num *
4148 			sizeof(struct dwc2_dma_desc),
4149 			hs_ep->desc_list, hs_ep->desc_list_dma);
4150 		hs_ep->desc_list = NULL;
4151 	}
4152 
4153 	return ret;
4154 }
4155 
4156 /**
4157  * dwc2_hsotg_ep_disable - disable given endpoint
4158  * @ep: The endpoint to disable.
4159  */
4160 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4161 {
4162 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4163 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4164 	int dir_in = hs_ep->dir_in;
4165 	int index = hs_ep->index;
4166 	u32 epctrl_reg;
4167 	u32 ctrl;
4168 
4169 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4170 
4171 	if (ep == &hsotg->eps_out[0]->ep) {
4172 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4173 		return -EINVAL;
4174 	}
4175 
4176 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4177 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4178 		return -EINVAL;
4179 	}
4180 
4181 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4182 
4183 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4184 
4185 	if (ctrl & DXEPCTL_EPENA)
4186 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4187 
4188 	ctrl &= ~DXEPCTL_EPENA;
4189 	ctrl &= ~DXEPCTL_USBACTEP;
4190 	ctrl |= DXEPCTL_SNAK;
4191 
4192 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4193 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4194 
4195 	/* disable endpoint interrupts */
4196 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4197 
4198 	/* terminate all requests with shutdown */
4199 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4200 
4201 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4202 	hs_ep->fifo_index = 0;
4203 	hs_ep->fifo_size = 0;
4204 
4205 	return 0;
4206 }
4207 
4208 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4209 {
4210 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4211 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4212 	unsigned long flags;
4213 	int ret;
4214 
4215 	spin_lock_irqsave(&hsotg->lock, flags);
4216 	ret = dwc2_hsotg_ep_disable(ep);
4217 	spin_unlock_irqrestore(&hsotg->lock, flags);
4218 	return ret;
4219 }
4220 
4221 /**
4222  * on_list - check request is on the given endpoint
4223  * @ep: The endpoint to check.
4224  * @test: The request to test if it is on the endpoint.
4225  */
4226 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4227 {
4228 	struct dwc2_hsotg_req *req, *treq;
4229 
4230 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4231 		if (req == test)
4232 			return true;
4233 	}
4234 
4235 	return false;
4236 }
4237 
4238 /**
4239  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4240  * @ep: The endpoint to dequeue.
4241  * @req: The request to be removed from a queue.
4242  */
4243 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4244 {
4245 	struct dwc2_hsotg_req *hs_req = our_req(req);
4246 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4247 	struct dwc2_hsotg *hs = hs_ep->parent;
4248 	unsigned long flags;
4249 
4250 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4251 
4252 	spin_lock_irqsave(&hs->lock, flags);
4253 
4254 	if (!on_list(hs_ep, hs_req)) {
4255 		spin_unlock_irqrestore(&hs->lock, flags);
4256 		return -EINVAL;
4257 	}
4258 
4259 	/* Dequeue already started request */
4260 	if (req == &hs_ep->req->req)
4261 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4262 
4263 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4264 	spin_unlock_irqrestore(&hs->lock, flags);
4265 
4266 	return 0;
4267 }
4268 
4269 /**
4270  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4271  * @ep: The endpoint to set halt.
4272  * @value: Set or unset the halt.
4273  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4274  *       the endpoint is busy processing requests.
4275  *
4276  * We need to stall the endpoint immediately if request comes from set_feature
4277  * protocol command handler.
4278  */
4279 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4280 {
4281 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4282 	struct dwc2_hsotg *hs = hs_ep->parent;
4283 	int index = hs_ep->index;
4284 	u32 epreg;
4285 	u32 epctl;
4286 	u32 xfertype;
4287 
4288 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4289 
4290 	if (index == 0) {
4291 		if (value)
4292 			dwc2_hsotg_stall_ep0(hs);
4293 		else
4294 			dev_warn(hs->dev,
4295 				 "%s: can't clear halt on ep0\n", __func__);
4296 		return 0;
4297 	}
4298 
4299 	if (hs_ep->isochronous) {
4300 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4301 		return -EINVAL;
4302 	}
4303 
4304 	if (!now && value && !list_empty(&hs_ep->queue)) {
4305 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4306 			ep->name);
4307 		return -EAGAIN;
4308 	}
4309 
4310 	if (hs_ep->dir_in) {
4311 		epreg = DIEPCTL(index);
4312 		epctl = dwc2_readl(hs, epreg);
4313 
4314 		if (value) {
4315 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4316 			if (epctl & DXEPCTL_EPENA)
4317 				epctl |= DXEPCTL_EPDIS;
4318 		} else {
4319 			epctl &= ~DXEPCTL_STALL;
4320 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4321 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4322 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4323 				epctl |= DXEPCTL_SETD0PID;
4324 		}
4325 		dwc2_writel(hs, epctl, epreg);
4326 	} else {
4327 		epreg = DOEPCTL(index);
4328 		epctl = dwc2_readl(hs, epreg);
4329 
4330 		if (value) {
4331 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4332 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4333 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4334 		} else {
4335 			epctl &= ~DXEPCTL_STALL;
4336 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4337 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4338 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4339 				epctl |= DXEPCTL_SETD0PID;
4340 			dwc2_writel(hs, epctl, epreg);
4341 		}
4342 	}
4343 
4344 	hs_ep->halted = value;
4345 	return 0;
4346 }
4347 
4348 /**
4349  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4350  * @ep: The endpoint to set halt.
4351  * @value: Set or unset the halt.
4352  */
4353 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4354 {
4355 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4356 	struct dwc2_hsotg *hs = hs_ep->parent;
4357 	unsigned long flags = 0;
4358 	int ret = 0;
4359 
4360 	spin_lock_irqsave(&hs->lock, flags);
4361 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4362 	spin_unlock_irqrestore(&hs->lock, flags);
4363 
4364 	return ret;
4365 }
4366 
4367 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4368 	.enable		= dwc2_hsotg_ep_enable,
4369 	.disable	= dwc2_hsotg_ep_disable_lock,
4370 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4371 	.free_request	= dwc2_hsotg_ep_free_request,
4372 	.queue		= dwc2_hsotg_ep_queue_lock,
4373 	.dequeue	= dwc2_hsotg_ep_dequeue,
4374 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4375 	/* note, don't believe we have any call for the fifo routines */
4376 };
4377 
4378 /**
4379  * dwc2_hsotg_init - initialize the usb core
4380  * @hsotg: The driver state
4381  */
4382 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4383 {
4384 	/* unmask subset of endpoint interrupts */
4385 
4386 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4387 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4388 		    DIEPMSK);
4389 
4390 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4391 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4392 		    DOEPMSK);
4393 
4394 	dwc2_writel(hsotg, 0, DAINTMSK);
4395 
4396 	/* Be in disconnected state until gadget is registered */
4397 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4398 
4399 	/* setup fifos */
4400 
4401 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4402 		dwc2_readl(hsotg, GRXFSIZ),
4403 		dwc2_readl(hsotg, GNPTXFSIZ));
4404 
4405 	dwc2_hsotg_init_fifo(hsotg);
4406 
4407 	if (using_dma(hsotg))
4408 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4409 }
4410 
4411 /**
4412  * dwc2_hsotg_udc_start - prepare the udc for work
4413  * @gadget: The usb gadget state
4414  * @driver: The usb gadget driver
4415  *
4416  * Perform initialization to prepare udc device and driver
4417  * to work.
4418  */
4419 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4420 				struct usb_gadget_driver *driver)
4421 {
4422 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4423 	unsigned long flags;
4424 	int ret;
4425 
4426 	if (!hsotg) {
4427 		pr_err("%s: called with no device\n", __func__);
4428 		return -ENODEV;
4429 	}
4430 
4431 	if (!driver) {
4432 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4433 		return -EINVAL;
4434 	}
4435 
4436 	if (driver->max_speed < USB_SPEED_FULL)
4437 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4438 
4439 	if (!driver->setup) {
4440 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4441 		return -EINVAL;
4442 	}
4443 
4444 	WARN_ON(hsotg->driver);
4445 
4446 	driver->driver.bus = NULL;
4447 	hsotg->driver = driver;
4448 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4449 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4450 
4451 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4452 		ret = dwc2_lowlevel_hw_enable(hsotg);
4453 		if (ret)
4454 			goto err;
4455 	}
4456 
4457 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4458 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4459 
4460 	spin_lock_irqsave(&hsotg->lock, flags);
4461 	if (dwc2_hw_is_device(hsotg)) {
4462 		dwc2_hsotg_init(hsotg);
4463 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4464 	}
4465 
4466 	hsotg->enabled = 0;
4467 	spin_unlock_irqrestore(&hsotg->lock, flags);
4468 
4469 	gadget->sg_supported = using_desc_dma(hsotg);
4470 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4471 
4472 	return 0;
4473 
4474 err:
4475 	hsotg->driver = NULL;
4476 	return ret;
4477 }
4478 
4479 /**
4480  * dwc2_hsotg_udc_stop - stop the udc
4481  * @gadget: The usb gadget state
4482  *
4483  * Stop udc hw block and stay tunned for future transmissions
4484  */
4485 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4486 {
4487 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4488 	unsigned long flags = 0;
4489 	int ep;
4490 
4491 	if (!hsotg)
4492 		return -ENODEV;
4493 
4494 	/* all endpoints should be shutdown */
4495 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4496 		if (hsotg->eps_in[ep])
4497 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4498 		if (hsotg->eps_out[ep])
4499 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4500 	}
4501 
4502 	spin_lock_irqsave(&hsotg->lock, flags);
4503 
4504 	hsotg->driver = NULL;
4505 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4506 	hsotg->enabled = 0;
4507 
4508 	spin_unlock_irqrestore(&hsotg->lock, flags);
4509 
4510 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4511 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4512 
4513 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4514 		dwc2_lowlevel_hw_disable(hsotg);
4515 
4516 	return 0;
4517 }
4518 
4519 /**
4520  * dwc2_hsotg_gadget_getframe - read the frame number
4521  * @gadget: The usb gadget state
4522  *
4523  * Read the {micro} frame number
4524  */
4525 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4526 {
4527 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4528 }
4529 
4530 /**
4531  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4532  * @gadget: The usb gadget state
4533  * @is_on: Current state of the USB PHY
4534  *
4535  * Connect/Disconnect the USB PHY pullup
4536  */
4537 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4538 {
4539 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4540 	unsigned long flags = 0;
4541 
4542 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4543 		hsotg->op_state);
4544 
4545 	/* Don't modify pullup state while in host mode */
4546 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4547 		hsotg->enabled = is_on;
4548 		return 0;
4549 	}
4550 
4551 	spin_lock_irqsave(&hsotg->lock, flags);
4552 	if (is_on) {
4553 		hsotg->enabled = 1;
4554 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4555 		/* Enable ACG feature in device mode,if supported */
4556 		dwc2_enable_acg(hsotg);
4557 		dwc2_hsotg_core_connect(hsotg);
4558 	} else {
4559 		dwc2_hsotg_core_disconnect(hsotg);
4560 		dwc2_hsotg_disconnect(hsotg);
4561 		hsotg->enabled = 0;
4562 	}
4563 
4564 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4565 	spin_unlock_irqrestore(&hsotg->lock, flags);
4566 
4567 	return 0;
4568 }
4569 
4570 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4571 {
4572 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4573 	unsigned long flags;
4574 
4575 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4576 	spin_lock_irqsave(&hsotg->lock, flags);
4577 
4578 	/*
4579 	 * If controller is hibernated, it must exit from power_down
4580 	 * before being initialized / de-initialized
4581 	 */
4582 	if (hsotg->lx_state == DWC2_L2)
4583 		dwc2_exit_partial_power_down(hsotg, false);
4584 
4585 	if (is_active) {
4586 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4587 
4588 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4589 		if (hsotg->enabled) {
4590 			/* Enable ACG feature in device mode,if supported */
4591 			dwc2_enable_acg(hsotg);
4592 			dwc2_hsotg_core_connect(hsotg);
4593 		}
4594 	} else {
4595 		dwc2_hsotg_core_disconnect(hsotg);
4596 		dwc2_hsotg_disconnect(hsotg);
4597 	}
4598 
4599 	spin_unlock_irqrestore(&hsotg->lock, flags);
4600 	return 0;
4601 }
4602 
4603 /**
4604  * dwc2_hsotg_vbus_draw - report bMaxPower field
4605  * @gadget: The usb gadget state
4606  * @mA: Amount of current
4607  *
4608  * Report how much power the device may consume to the phy.
4609  */
4610 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4611 {
4612 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4613 
4614 	if (IS_ERR_OR_NULL(hsotg->uphy))
4615 		return -ENOTSUPP;
4616 	return usb_phy_set_power(hsotg->uphy, mA);
4617 }
4618 
4619 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4620 	.get_frame	= dwc2_hsotg_gadget_getframe,
4621 	.udc_start		= dwc2_hsotg_udc_start,
4622 	.udc_stop		= dwc2_hsotg_udc_stop,
4623 	.pullup                 = dwc2_hsotg_pullup,
4624 	.vbus_session		= dwc2_hsotg_vbus_session,
4625 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4626 };
4627 
4628 /**
4629  * dwc2_hsotg_initep - initialise a single endpoint
4630  * @hsotg: The device state.
4631  * @hs_ep: The endpoint to be initialised.
4632  * @epnum: The endpoint number
4633  * @dir_in: True if direction is in.
4634  *
4635  * Initialise the given endpoint (as part of the probe and device state
4636  * creation) to give to the gadget driver. Setup the endpoint name, any
4637  * direction information and other state that may be required.
4638  */
4639 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4640 			      struct dwc2_hsotg_ep *hs_ep,
4641 				       int epnum,
4642 				       bool dir_in)
4643 {
4644 	char *dir;
4645 
4646 	if (epnum == 0)
4647 		dir = "";
4648 	else if (dir_in)
4649 		dir = "in";
4650 	else
4651 		dir = "out";
4652 
4653 	hs_ep->dir_in = dir_in;
4654 	hs_ep->index = epnum;
4655 
4656 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4657 
4658 	INIT_LIST_HEAD(&hs_ep->queue);
4659 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4660 
4661 	/* add to the list of endpoints known by the gadget driver */
4662 	if (epnum)
4663 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4664 
4665 	hs_ep->parent = hsotg;
4666 	hs_ep->ep.name = hs_ep->name;
4667 
4668 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4669 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4670 	else
4671 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4672 					   epnum ? 1024 : EP0_MPS_LIMIT);
4673 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4674 
4675 	if (epnum == 0) {
4676 		hs_ep->ep.caps.type_control = true;
4677 	} else {
4678 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4679 			hs_ep->ep.caps.type_iso = true;
4680 			hs_ep->ep.caps.type_bulk = true;
4681 		}
4682 		hs_ep->ep.caps.type_int = true;
4683 	}
4684 
4685 	if (dir_in)
4686 		hs_ep->ep.caps.dir_in = true;
4687 	else
4688 		hs_ep->ep.caps.dir_out = true;
4689 
4690 	/*
4691 	 * if we're using dma, we need to set the next-endpoint pointer
4692 	 * to be something valid.
4693 	 */
4694 
4695 	if (using_dma(hsotg)) {
4696 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4697 
4698 		if (dir_in)
4699 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4700 		else
4701 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4702 	}
4703 }
4704 
4705 /**
4706  * dwc2_hsotg_hw_cfg - read HW configuration registers
4707  * @hsotg: Programming view of the DWC_otg controller
4708  *
4709  * Read the USB core HW configuration registers
4710  */
4711 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4712 {
4713 	u32 cfg;
4714 	u32 ep_type;
4715 	u32 i;
4716 
4717 	/* check hardware configuration */
4718 
4719 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4720 
4721 	/* Add ep0 */
4722 	hsotg->num_of_eps++;
4723 
4724 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4725 					sizeof(struct dwc2_hsotg_ep),
4726 					GFP_KERNEL);
4727 	if (!hsotg->eps_in[0])
4728 		return -ENOMEM;
4729 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4730 	hsotg->eps_out[0] = hsotg->eps_in[0];
4731 
4732 	cfg = hsotg->hw_params.dev_ep_dirs;
4733 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4734 		ep_type = cfg & 3;
4735 		/* Direction in or both */
4736 		if (!(ep_type & 2)) {
4737 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4738 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4739 			if (!hsotg->eps_in[i])
4740 				return -ENOMEM;
4741 		}
4742 		/* Direction out or both */
4743 		if (!(ep_type & 1)) {
4744 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4745 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4746 			if (!hsotg->eps_out[i])
4747 				return -ENOMEM;
4748 		}
4749 	}
4750 
4751 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4752 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4753 
4754 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4755 		 hsotg->num_of_eps,
4756 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4757 		 hsotg->fifo_mem);
4758 	return 0;
4759 }
4760 
4761 /**
4762  * dwc2_hsotg_dump - dump state of the udc
4763  * @hsotg: Programming view of the DWC_otg controller
4764  *
4765  */
4766 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4767 {
4768 #ifdef DEBUG
4769 	struct device *dev = hsotg->dev;
4770 	u32 val;
4771 	int idx;
4772 
4773 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4774 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4775 		 dwc2_readl(hsotg, DIEPMSK));
4776 
4777 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4778 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4779 
4780 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4781 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4782 
4783 	/* show periodic fifo settings */
4784 
4785 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4786 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4787 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4788 			 val >> FIFOSIZE_DEPTH_SHIFT,
4789 			 val & FIFOSIZE_STARTADDR_MASK);
4790 	}
4791 
4792 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4793 		dev_info(dev,
4794 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4795 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4796 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4797 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4798 
4799 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4800 		dev_info(dev,
4801 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4802 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4803 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4804 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4805 	}
4806 
4807 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4808 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4809 #endif
4810 }
4811 
4812 /**
4813  * dwc2_gadget_init - init function for gadget
4814  * @hsotg: Programming view of the DWC_otg controller
4815  *
4816  */
4817 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4818 {
4819 	struct device *dev = hsotg->dev;
4820 	int epnum;
4821 	int ret;
4822 
4823 	/* Dump fifo information */
4824 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4825 		hsotg->params.g_np_tx_fifo_size);
4826 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4827 
4828 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4829 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4830 	hsotg->gadget.name = dev_name(dev);
4831 	hsotg->remote_wakeup_allowed = 0;
4832 
4833 	if (hsotg->params.lpm)
4834 		hsotg->gadget.lpm_capable = true;
4835 
4836 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4837 		hsotg->gadget.is_otg = 1;
4838 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4839 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4840 
4841 	ret = dwc2_hsotg_hw_cfg(hsotg);
4842 	if (ret) {
4843 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4844 		return ret;
4845 	}
4846 
4847 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4848 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4849 	if (!hsotg->ctrl_buff)
4850 		return -ENOMEM;
4851 
4852 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4853 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4854 	if (!hsotg->ep0_buff)
4855 		return -ENOMEM;
4856 
4857 	if (using_desc_dma(hsotg)) {
4858 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4859 		if (ret < 0)
4860 			return ret;
4861 	}
4862 
4863 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4864 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4865 	if (ret < 0) {
4866 		dev_err(dev, "cannot claim IRQ for gadget\n");
4867 		return ret;
4868 	}
4869 
4870 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4871 
4872 	if (hsotg->num_of_eps == 0) {
4873 		dev_err(dev, "wrong number of EPs (zero)\n");
4874 		return -EINVAL;
4875 	}
4876 
4877 	/* setup endpoint information */
4878 
4879 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4880 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4881 
4882 	/* allocate EP0 request */
4883 
4884 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4885 						     GFP_KERNEL);
4886 	if (!hsotg->ctrl_req) {
4887 		dev_err(dev, "failed to allocate ctrl req\n");
4888 		return -ENOMEM;
4889 	}
4890 
4891 	/* initialise the endpoints now the core has been initialised */
4892 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4893 		if (hsotg->eps_in[epnum])
4894 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4895 					  epnum, 1);
4896 		if (hsotg->eps_out[epnum])
4897 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4898 					  epnum, 0);
4899 	}
4900 
4901 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4902 	if (ret) {
4903 		dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4904 					   hsotg->ctrl_req);
4905 		return ret;
4906 	}
4907 	dwc2_hsotg_dump(hsotg);
4908 
4909 	return 0;
4910 }
4911 
4912 /**
4913  * dwc2_hsotg_remove - remove function for hsotg driver
4914  * @hsotg: Programming view of the DWC_otg controller
4915  *
4916  */
4917 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4918 {
4919 	usb_del_gadget_udc(&hsotg->gadget);
4920 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4921 
4922 	return 0;
4923 }
4924 
4925 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4926 {
4927 	unsigned long flags;
4928 
4929 	if (hsotg->lx_state != DWC2_L0)
4930 		return 0;
4931 
4932 	if (hsotg->driver) {
4933 		int ep;
4934 
4935 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4936 			 hsotg->driver->driver.name);
4937 
4938 		spin_lock_irqsave(&hsotg->lock, flags);
4939 		if (hsotg->enabled)
4940 			dwc2_hsotg_core_disconnect(hsotg);
4941 		dwc2_hsotg_disconnect(hsotg);
4942 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4943 		spin_unlock_irqrestore(&hsotg->lock, flags);
4944 
4945 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4946 			if (hsotg->eps_in[ep])
4947 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4948 			if (hsotg->eps_out[ep])
4949 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4950 		}
4951 	}
4952 
4953 	return 0;
4954 }
4955 
4956 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4957 {
4958 	unsigned long flags;
4959 
4960 	if (hsotg->lx_state == DWC2_L2)
4961 		return 0;
4962 
4963 	if (hsotg->driver) {
4964 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4965 			 hsotg->driver->driver.name);
4966 
4967 		spin_lock_irqsave(&hsotg->lock, flags);
4968 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4969 		if (hsotg->enabled) {
4970 			/* Enable ACG feature in device mode,if supported */
4971 			dwc2_enable_acg(hsotg);
4972 			dwc2_hsotg_core_connect(hsotg);
4973 		}
4974 		spin_unlock_irqrestore(&hsotg->lock, flags);
4975 	}
4976 
4977 	return 0;
4978 }
4979 
4980 /**
4981  * dwc2_backup_device_registers() - Backup controller device registers.
4982  * When suspending usb bus, registers needs to be backuped
4983  * if controller power is disabled once suspended.
4984  *
4985  * @hsotg: Programming view of the DWC_otg controller
4986  */
4987 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4988 {
4989 	struct dwc2_dregs_backup *dr;
4990 	int i;
4991 
4992 	dev_dbg(hsotg->dev, "%s\n", __func__);
4993 
4994 	/* Backup dev regs */
4995 	dr = &hsotg->dr_backup;
4996 
4997 	dr->dcfg = dwc2_readl(hsotg, DCFG);
4998 	dr->dctl = dwc2_readl(hsotg, DCTL);
4999 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5000 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5001 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5002 
5003 	for (i = 0; i < hsotg->num_of_eps; i++) {
5004 		/* Backup IN EPs */
5005 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5006 
5007 		/* Ensure DATA PID is correctly configured */
5008 		if (dr->diepctl[i] & DXEPCTL_DPID)
5009 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5010 		else
5011 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5012 
5013 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5014 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5015 
5016 		/* Backup OUT EPs */
5017 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5018 
5019 		/* Ensure DATA PID is correctly configured */
5020 		if (dr->doepctl[i] & DXEPCTL_DPID)
5021 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5022 		else
5023 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5024 
5025 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5026 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5027 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5028 	}
5029 	dr->valid = true;
5030 	return 0;
5031 }
5032 
5033 /**
5034  * dwc2_restore_device_registers() - Restore controller device registers.
5035  * When resuming usb bus, device registers needs to be restored
5036  * if controller power were disabled.
5037  *
5038  * @hsotg: Programming view of the DWC_otg controller
5039  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5040  *
5041  * Return: 0 if successful, negative error code otherwise
5042  */
5043 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5044 {
5045 	struct dwc2_dregs_backup *dr;
5046 	int i;
5047 
5048 	dev_dbg(hsotg->dev, "%s\n", __func__);
5049 
5050 	/* Restore dev regs */
5051 	dr = &hsotg->dr_backup;
5052 	if (!dr->valid) {
5053 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5054 			__func__);
5055 		return -EINVAL;
5056 	}
5057 	dr->valid = false;
5058 
5059 	if (!remote_wakeup)
5060 		dwc2_writel(hsotg, dr->dctl, DCTL);
5061 
5062 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5063 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5064 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5065 
5066 	for (i = 0; i < hsotg->num_of_eps; i++) {
5067 		/* Restore IN EPs */
5068 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5069 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5070 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5071 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5072 		 * hibernation wrong value read and saved from DIEPDMAx,
5073 		 * as result BNA interrupt asserted on hibernation exit
5074 		 * by restoring from saved area.
5075 		 */
5076 		if (hsotg->params.g_dma_desc &&
5077 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5078 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5079 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5080 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5081 		/* Restore OUT EPs */
5082 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5083 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5084 		 * hibernation wrong value read and saved from DOEPDMAx,
5085 		 * as result BNA interrupt asserted on hibernation exit
5086 		 * by restoring from saved area.
5087 		 */
5088 		if (hsotg->params.g_dma_desc &&
5089 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5090 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5091 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5092 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5093 	}
5094 
5095 	return 0;
5096 }
5097 
5098 /**
5099  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5100  *
5101  * @hsotg: Programming view of DWC_otg controller
5102  *
5103  */
5104 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5105 {
5106 	u32 val;
5107 
5108 	if (!hsotg->params.lpm)
5109 		return;
5110 
5111 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5112 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5113 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5114 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5115 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5116 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5117 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5118 	dwc2_writel(hsotg, val, GLPMCFG);
5119 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5120 
5121 	/* Unmask WKUP_ALERT Interrupt */
5122 	if (hsotg->params.service_interval)
5123 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5124 }
5125 
5126 /**
5127  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5128  *
5129  * @hsotg: Programming view of DWC_otg controller
5130  *
5131  */
5132 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5133 {
5134 	u32 val = 0;
5135 
5136 	val |= GREFCLK_REF_CLK_MODE;
5137 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5138 	val |= hsotg->params.sof_cnt_wkup_alert <<
5139 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5140 
5141 	dwc2_writel(hsotg, val, GREFCLK);
5142 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5143 }
5144 
5145 /**
5146  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5147  *
5148  * @hsotg: Programming view of the DWC_otg controller
5149  *
5150  * Return non-zero if failed to enter to hibernation.
5151  */
5152 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5153 {
5154 	u32 gpwrdn;
5155 	int ret = 0;
5156 
5157 	/* Change to L2(suspend) state */
5158 	hsotg->lx_state = DWC2_L2;
5159 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5160 	ret = dwc2_backup_global_registers(hsotg);
5161 	if (ret) {
5162 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5163 			__func__);
5164 		return ret;
5165 	}
5166 	ret = dwc2_backup_device_registers(hsotg);
5167 	if (ret) {
5168 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5169 			__func__);
5170 		return ret;
5171 	}
5172 
5173 	gpwrdn = GPWRDN_PWRDNRSTN;
5174 	gpwrdn |= GPWRDN_PMUACTV;
5175 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5176 	udelay(10);
5177 
5178 	/* Set flag to indicate that we are in hibernation */
5179 	hsotg->hibernated = 1;
5180 
5181 	/* Enable interrupts from wake up logic */
5182 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5183 	gpwrdn |= GPWRDN_PMUINTSEL;
5184 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5185 	udelay(10);
5186 
5187 	/* Unmask device mode interrupts in GPWRDN */
5188 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5189 	gpwrdn |= GPWRDN_RST_DET_MSK;
5190 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5191 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5192 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5193 	udelay(10);
5194 
5195 	/* Enable Power Down Clamp */
5196 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5197 	gpwrdn |= GPWRDN_PWRDNCLMP;
5198 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5199 	udelay(10);
5200 
5201 	/* Switch off VDD */
5202 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5203 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5204 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5205 	udelay(10);
5206 
5207 	/* Save gpwrdn register for further usage if stschng interrupt */
5208 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5209 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5210 
5211 	return ret;
5212 }
5213 
5214 /**
5215  * dwc2_gadget_exit_hibernation()
5216  * This function is for exiting from Device mode hibernation by host initiated
5217  * resume/reset and device initiated remote-wakeup.
5218  *
5219  * @hsotg: Programming view of the DWC_otg controller
5220  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5221  * @reset: indicates whether resume is initiated by Reset.
5222  *
5223  * Return non-zero if failed to exit from hibernation.
5224  */
5225 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5226 				 int rem_wakeup, int reset)
5227 {
5228 	u32 pcgcctl;
5229 	u32 gpwrdn;
5230 	u32 dctl;
5231 	int ret = 0;
5232 	struct dwc2_gregs_backup *gr;
5233 	struct dwc2_dregs_backup *dr;
5234 
5235 	gr = &hsotg->gr_backup;
5236 	dr = &hsotg->dr_backup;
5237 
5238 	if (!hsotg->hibernated) {
5239 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5240 		return 1;
5241 	}
5242 	dev_dbg(hsotg->dev,
5243 		"%s: called with rem_wakeup = %d reset = %d\n",
5244 		__func__, rem_wakeup, reset);
5245 
5246 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5247 
5248 	if (!reset) {
5249 		/* Clear all pending interupts */
5250 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5251 	}
5252 
5253 	/* De-assert Restore */
5254 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5255 	gpwrdn &= ~GPWRDN_RESTORE;
5256 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5257 	udelay(10);
5258 
5259 	if (!rem_wakeup) {
5260 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5261 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5262 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5263 	}
5264 
5265 	/* Restore GUSBCFG, DCFG and DCTL */
5266 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5267 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5268 	dwc2_writel(hsotg, dr->dctl, DCTL);
5269 
5270 	/* De-assert Wakeup Logic */
5271 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5272 	gpwrdn &= ~GPWRDN_PMUACTV;
5273 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5274 
5275 	if (rem_wakeup) {
5276 		udelay(10);
5277 		/* Start Remote Wakeup Signaling */
5278 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5279 	} else {
5280 		udelay(50);
5281 		/* Set Device programming done bit */
5282 		dctl = dwc2_readl(hsotg, DCTL);
5283 		dctl |= DCTL_PWRONPRGDONE;
5284 		dwc2_writel(hsotg, dctl, DCTL);
5285 	}
5286 	/* Wait for interrupts which must be cleared */
5287 	mdelay(2);
5288 	/* Clear all pending interupts */
5289 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5290 
5291 	/* Restore global registers */
5292 	ret = dwc2_restore_global_registers(hsotg);
5293 	if (ret) {
5294 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5295 			__func__);
5296 		return ret;
5297 	}
5298 
5299 	/* Restore device registers */
5300 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5301 	if (ret) {
5302 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5303 			__func__);
5304 		return ret;
5305 	}
5306 
5307 	if (rem_wakeup) {
5308 		mdelay(10);
5309 		dctl = dwc2_readl(hsotg, DCTL);
5310 		dctl &= ~DCTL_RMTWKUPSIG;
5311 		dwc2_writel(hsotg, dctl, DCTL);
5312 	}
5313 
5314 	hsotg->hibernated = 0;
5315 	hsotg->lx_state = DWC2_L0;
5316 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5317 
5318 	return ret;
5319 }
5320