1 // SPDX-License-Identifier: GPL-2.0 2 /** 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 31 #include "core.h" 32 #include "hw.h" 33 34 /* conversion functions */ 35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 36 { 37 return container_of(req, struct dwc2_hsotg_req, req); 38 } 39 40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 41 { 42 return container_of(ep, struct dwc2_hsotg_ep, ep); 43 } 44 45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 46 { 47 return container_of(gadget, struct dwc2_hsotg, gadget); 48 } 49 50 static inline void __orr32(void __iomem *ptr, u32 val) 51 { 52 dwc2_writel(dwc2_readl(ptr) | val, ptr); 53 } 54 55 static inline void __bic32(void __iomem *ptr, u32 val) 56 { 57 dwc2_writel(dwc2_readl(ptr) & ~val, ptr); 58 } 59 60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 61 u32 ep_index, u32 dir_in) 62 { 63 if (dir_in) 64 return hsotg->eps_in[ep_index]; 65 else 66 return hsotg->eps_out[ep_index]; 67 } 68 69 /* forward declaration of functions */ 70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 71 72 /** 73 * using_dma - return the DMA status of the driver. 74 * @hsotg: The driver state. 75 * 76 * Return true if we're using DMA. 77 * 78 * Currently, we have the DMA support code worked into everywhere 79 * that needs it, but the AMBA DMA implementation in the hardware can 80 * only DMA from 32bit aligned addresses. This means that gadgets such 81 * as the CDC Ethernet cannot work as they often pass packets which are 82 * not 32bit aligned. 83 * 84 * Unfortunately the choice to use DMA or not is global to the controller 85 * and seems to be only settable when the controller is being put through 86 * a core reset. This means we either need to fix the gadgets to take 87 * account of DMA alignment, or add bounce buffers (yuerk). 88 * 89 * g_using_dma is set depending on dts flag. 90 */ 91 static inline bool using_dma(struct dwc2_hsotg *hsotg) 92 { 93 return hsotg->params.g_dma; 94 } 95 96 /* 97 * using_desc_dma - return the descriptor DMA status of the driver. 98 * @hsotg: The driver state. 99 * 100 * Return true if we're using descriptor DMA. 101 */ 102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 103 { 104 return hsotg->params.g_dma_desc; 105 } 106 107 /** 108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 109 * @hs_ep: The endpoint 110 * @increment: The value to increment by 111 * 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 114 */ 115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 116 { 117 hs_ep->target_frame += hs_ep->interval; 118 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 119 hs_ep->frame_overrun = 1; 120 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 121 } else { 122 hs_ep->frame_overrun = 0; 123 } 124 } 125 126 /** 127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 128 * @hsotg: The device state 129 * @ints: A bitmask of the interrupts to enable 130 */ 131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 132 { 133 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 134 u32 new_gsintmsk; 135 136 new_gsintmsk = gsintmsk | ints; 137 138 if (new_gsintmsk != gsintmsk) { 139 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 140 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 141 } 142 } 143 144 /** 145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 146 * @hsotg: The device state 147 * @ints: A bitmask of the interrupts to enable 148 */ 149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 150 { 151 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 152 u32 new_gsintmsk; 153 154 new_gsintmsk = gsintmsk & ~ints; 155 156 if (new_gsintmsk != gsintmsk) 157 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 158 } 159 160 /** 161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 162 * @hsotg: The device state 163 * @ep: The endpoint index 164 * @dir_in: True if direction is in. 165 * @en: The enable value, true to enable 166 * 167 * Set or clear the mask for an individual endpoint's interrupt 168 * request. 169 */ 170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 171 unsigned int ep, unsigned int dir_in, 172 unsigned int en) 173 { 174 unsigned long flags; 175 u32 bit = 1 << ep; 176 u32 daint; 177 178 if (!dir_in) 179 bit <<= 16; 180 181 local_irq_save(flags); 182 daint = dwc2_readl(hsotg->regs + DAINTMSK); 183 if (en) 184 daint |= bit; 185 else 186 daint &= ~bit; 187 dwc2_writel(daint, hsotg->regs + DAINTMSK); 188 local_irq_restore(flags); 189 } 190 191 /** 192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 193 */ 194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 195 { 196 if (hsotg->hw_params.en_multiple_tx_fifo) 197 /* In dedicated FIFO mode we need count of IN EPs */ 198 return hsotg->hw_params.num_dev_in_eps; 199 else 200 /* In shared FIFO mode we need count of Periodic IN EPs */ 201 return hsotg->hw_params.num_dev_perio_in_ep; 202 } 203 204 /** 205 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 206 * device mode TX FIFOs 207 */ 208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 209 { 210 int addr; 211 int tx_addr_max; 212 u32 np_tx_fifo_size; 213 214 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 215 hsotg->params.g_np_tx_fifo_size); 216 217 /* Get Endpoint Info Control block size in DWORDs. */ 218 tx_addr_max = hsotg->hw_params.total_fifo_size; 219 220 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 221 if (tx_addr_max <= addr) 222 return 0; 223 224 return tx_addr_max - addr; 225 } 226 227 /** 228 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 229 * TX FIFOs 230 */ 231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 232 { 233 int tx_fifo_count; 234 int tx_fifo_depth; 235 236 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 237 238 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 239 240 if (!tx_fifo_count) 241 return tx_fifo_depth; 242 else 243 return tx_fifo_depth / tx_fifo_count; 244 } 245 246 /** 247 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 248 * @hsotg: The device instance. 249 */ 250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 251 { 252 unsigned int ep; 253 unsigned int addr; 254 int timeout; 255 u32 val; 256 u32 *txfsz = hsotg->params.g_tx_fifo_size; 257 258 /* Reset fifo map if not correctly cleared during previous session */ 259 WARN_ON(hsotg->fifo_map); 260 hsotg->fifo_map = 0; 261 262 /* set RX/NPTX FIFO sizes */ 263 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ); 264 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) | 265 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 266 hsotg->regs + GNPTXFSIZ); 267 268 /* 269 * arange all the rest of the TX FIFOs, as some versions of this 270 * block have overlapping default addresses. This also ensures 271 * that if the settings have been changed, then they are set to 272 * known values. 273 */ 274 275 /* start at the end of the GNPTXFSIZ, rounded up */ 276 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 277 278 /* 279 * Configure fifos sizes from provided configuration and assign 280 * them to endpoints dynamically according to maxpacket size value of 281 * given endpoint. 282 */ 283 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 284 if (!txfsz[ep]) 285 continue; 286 val = addr; 287 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 288 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 289 "insufficient fifo memory"); 290 addr += txfsz[ep]; 291 292 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep)); 293 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep)); 294 } 295 296 dwc2_writel(hsotg->hw_params.total_fifo_size | 297 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 298 hsotg->regs + GDFIFOCFG); 299 /* 300 * according to p428 of the design guide, we need to ensure that 301 * all fifos are flushed before continuing 302 */ 303 304 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 305 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 306 307 /* wait until the fifos are both flushed */ 308 timeout = 100; 309 while (1) { 310 val = dwc2_readl(hsotg->regs + GRSTCTL); 311 312 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 313 break; 314 315 if (--timeout == 0) { 316 dev_err(hsotg->dev, 317 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 318 __func__, val); 319 break; 320 } 321 322 udelay(1); 323 } 324 325 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 326 } 327 328 /** 329 * @ep: USB endpoint to allocate request for. 330 * @flags: Allocation flags 331 * 332 * Allocate a new USB request structure appropriate for the specified endpoint 333 */ 334 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 335 gfp_t flags) 336 { 337 struct dwc2_hsotg_req *req; 338 339 req = kzalloc(sizeof(*req), flags); 340 if (!req) 341 return NULL; 342 343 INIT_LIST_HEAD(&req->queue); 344 345 return &req->req; 346 } 347 348 /** 349 * is_ep_periodic - return true if the endpoint is in periodic mode. 350 * @hs_ep: The endpoint to query. 351 * 352 * Returns true if the endpoint is in periodic mode, meaning it is being 353 * used for an Interrupt or ISO transfer. 354 */ 355 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 356 { 357 return hs_ep->periodic; 358 } 359 360 /** 361 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 362 * @hsotg: The device state. 363 * @hs_ep: The endpoint for the request 364 * @hs_req: The request being processed. 365 * 366 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 367 * of a request to ensure the buffer is ready for access by the caller. 368 */ 369 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 370 struct dwc2_hsotg_ep *hs_ep, 371 struct dwc2_hsotg_req *hs_req) 372 { 373 struct usb_request *req = &hs_req->req; 374 375 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 376 } 377 378 /* 379 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 380 * for Control endpoint 381 * @hsotg: The device state. 382 * 383 * This function will allocate 4 descriptor chains for EP 0: 2 for 384 * Setup stage, per one for IN and OUT data/status transactions. 385 */ 386 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 387 { 388 hsotg->setup_desc[0] = 389 dmam_alloc_coherent(hsotg->dev, 390 sizeof(struct dwc2_dma_desc), 391 &hsotg->setup_desc_dma[0], 392 GFP_KERNEL); 393 if (!hsotg->setup_desc[0]) 394 goto fail; 395 396 hsotg->setup_desc[1] = 397 dmam_alloc_coherent(hsotg->dev, 398 sizeof(struct dwc2_dma_desc), 399 &hsotg->setup_desc_dma[1], 400 GFP_KERNEL); 401 if (!hsotg->setup_desc[1]) 402 goto fail; 403 404 hsotg->ctrl_in_desc = 405 dmam_alloc_coherent(hsotg->dev, 406 sizeof(struct dwc2_dma_desc), 407 &hsotg->ctrl_in_desc_dma, 408 GFP_KERNEL); 409 if (!hsotg->ctrl_in_desc) 410 goto fail; 411 412 hsotg->ctrl_out_desc = 413 dmam_alloc_coherent(hsotg->dev, 414 sizeof(struct dwc2_dma_desc), 415 &hsotg->ctrl_out_desc_dma, 416 GFP_KERNEL); 417 if (!hsotg->ctrl_out_desc) 418 goto fail; 419 420 return 0; 421 422 fail: 423 return -ENOMEM; 424 } 425 426 /** 427 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 428 * @hsotg: The controller state. 429 * @hs_ep: The endpoint we're going to write for. 430 * @hs_req: The request to write data for. 431 * 432 * This is called when the TxFIFO has some space in it to hold a new 433 * transmission and we have something to give it. The actual setup of 434 * the data size is done elsewhere, so all we have to do is to actually 435 * write the data. 436 * 437 * The return value is zero if there is more space (or nothing was done) 438 * otherwise -ENOSPC is returned if the FIFO space was used up. 439 * 440 * This routine is only needed for PIO 441 */ 442 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 443 struct dwc2_hsotg_ep *hs_ep, 444 struct dwc2_hsotg_req *hs_req) 445 { 446 bool periodic = is_ep_periodic(hs_ep); 447 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS); 448 int buf_pos = hs_req->req.actual; 449 int to_write = hs_ep->size_loaded; 450 void *data; 451 int can_write; 452 int pkt_round; 453 int max_transfer; 454 455 to_write -= (buf_pos - hs_ep->last_load); 456 457 /* if there's nothing to write, get out early */ 458 if (to_write == 0) 459 return 0; 460 461 if (periodic && !hsotg->dedicated_fifos) { 462 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 463 int size_left; 464 int size_done; 465 466 /* 467 * work out how much data was loaded so we can calculate 468 * how much data is left in the fifo. 469 */ 470 471 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 472 473 /* 474 * if shared fifo, we cannot write anything until the 475 * previous data has been completely sent. 476 */ 477 if (hs_ep->fifo_load != 0) { 478 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 479 return -ENOSPC; 480 } 481 482 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 483 __func__, size_left, 484 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 485 486 /* how much of the data has moved */ 487 size_done = hs_ep->size_loaded - size_left; 488 489 /* how much data is left in the fifo */ 490 can_write = hs_ep->fifo_load - size_done; 491 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 492 __func__, can_write); 493 494 can_write = hs_ep->fifo_size - can_write; 495 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 496 __func__, can_write); 497 498 if (can_write <= 0) { 499 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 500 return -ENOSPC; 501 } 502 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 503 can_write = dwc2_readl(hsotg->regs + 504 DTXFSTS(hs_ep->fifo_index)); 505 506 can_write &= 0xffff; 507 can_write *= 4; 508 } else { 509 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 510 dev_dbg(hsotg->dev, 511 "%s: no queue slots available (0x%08x)\n", 512 __func__, gnptxsts); 513 514 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 515 return -ENOSPC; 516 } 517 518 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 519 can_write *= 4; /* fifo size is in 32bit quantities. */ 520 } 521 522 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 523 524 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 525 __func__, gnptxsts, can_write, to_write, max_transfer); 526 527 /* 528 * limit to 512 bytes of data, it seems at least on the non-periodic 529 * FIFO, requests of >512 cause the endpoint to get stuck with a 530 * fragment of the end of the transfer in it. 531 */ 532 if (can_write > 512 && !periodic) 533 can_write = 512; 534 535 /* 536 * limit the write to one max-packet size worth of data, but allow 537 * the transfer to return that it did not run out of fifo space 538 * doing it. 539 */ 540 if (to_write > max_transfer) { 541 to_write = max_transfer; 542 543 /* it's needed only when we do not use dedicated fifos */ 544 if (!hsotg->dedicated_fifos) 545 dwc2_hsotg_en_gsint(hsotg, 546 periodic ? GINTSTS_PTXFEMP : 547 GINTSTS_NPTXFEMP); 548 } 549 550 /* see if we can write data */ 551 552 if (to_write > can_write) { 553 to_write = can_write; 554 pkt_round = to_write % max_transfer; 555 556 /* 557 * Round the write down to an 558 * exact number of packets. 559 * 560 * Note, we do not currently check to see if we can ever 561 * write a full packet or not to the FIFO. 562 */ 563 564 if (pkt_round) 565 to_write -= pkt_round; 566 567 /* 568 * enable correct FIFO interrupt to alert us when there 569 * is more room left. 570 */ 571 572 /* it's needed only when we do not use dedicated fifos */ 573 if (!hsotg->dedicated_fifos) 574 dwc2_hsotg_en_gsint(hsotg, 575 periodic ? GINTSTS_PTXFEMP : 576 GINTSTS_NPTXFEMP); 577 } 578 579 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 580 to_write, hs_req->req.length, can_write, buf_pos); 581 582 if (to_write <= 0) 583 return -ENOSPC; 584 585 hs_req->req.actual = buf_pos + to_write; 586 hs_ep->total_data += to_write; 587 588 if (periodic) 589 hs_ep->fifo_load += to_write; 590 591 to_write = DIV_ROUND_UP(to_write, 4); 592 data = hs_req->req.buf + buf_pos; 593 594 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 595 596 return (to_write >= can_write) ? -ENOSPC : 0; 597 } 598 599 /** 600 * get_ep_limit - get the maximum data legnth for this endpoint 601 * @hs_ep: The endpoint 602 * 603 * Return the maximum data that can be queued in one go on a given endpoint 604 * so that transfers that are too long can be split. 605 */ 606 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 607 { 608 int index = hs_ep->index; 609 unsigned int maxsize; 610 unsigned int maxpkt; 611 612 if (index != 0) { 613 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 614 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 615 } else { 616 maxsize = 64 + 64; 617 if (hs_ep->dir_in) 618 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 619 else 620 maxpkt = 2; 621 } 622 623 /* we made the constant loading easier above by using +1 */ 624 maxpkt--; 625 maxsize--; 626 627 /* 628 * constrain by packet count if maxpkts*pktsize is greater 629 * than the length register size. 630 */ 631 632 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 633 maxsize = maxpkt * hs_ep->ep.maxpacket; 634 635 return maxsize; 636 } 637 638 /** 639 * dwc2_hsotg_read_frameno - read current frame number 640 * @hsotg: The device instance 641 * 642 * Return the current frame number 643 */ 644 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 645 { 646 u32 dsts; 647 648 dsts = dwc2_readl(hsotg->regs + DSTS); 649 dsts &= DSTS_SOFFN_MASK; 650 dsts >>= DSTS_SOFFN_SHIFT; 651 652 return dsts; 653 } 654 655 /** 656 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 657 * DMA descriptor chain prepared for specific endpoint 658 * @hs_ep: The endpoint 659 * 660 * Return the maximum data that can be queued in one go on a given endpoint 661 * depending on its descriptor chain capacity so that transfers that 662 * are too long can be split. 663 */ 664 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 665 { 666 int is_isoc = hs_ep->isochronous; 667 unsigned int maxsize; 668 669 if (is_isoc) 670 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 671 DEV_DMA_ISOC_RX_NBYTES_LIMIT; 672 else 673 maxsize = DEV_DMA_NBYTES_LIMIT; 674 675 /* Above size of one descriptor was chosen, multiple it */ 676 maxsize *= MAX_DMA_DESC_NUM_GENERIC; 677 678 return maxsize; 679 } 680 681 /* 682 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 683 * @hs_ep: The endpoint 684 * @mask: RX/TX bytes mask to be defined 685 * 686 * Returns maximum data payload for one descriptor after analyzing endpoint 687 * characteristics. 688 * DMA descriptor transfer bytes limit depends on EP type: 689 * Control out - MPS, 690 * Isochronous - descriptor rx/tx bytes bitfield limit, 691 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 692 * have concatenations from various descriptors within one packet. 693 * 694 * Selects corresponding mask for RX/TX bytes as well. 695 */ 696 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 697 { 698 u32 mps = hs_ep->ep.maxpacket; 699 int dir_in = hs_ep->dir_in; 700 u32 desc_size = 0; 701 702 if (!hs_ep->index && !dir_in) { 703 desc_size = mps; 704 *mask = DEV_DMA_NBYTES_MASK; 705 } else if (hs_ep->isochronous) { 706 if (dir_in) { 707 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 708 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 709 } else { 710 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 711 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 712 } 713 } else { 714 desc_size = DEV_DMA_NBYTES_LIMIT; 715 *mask = DEV_DMA_NBYTES_MASK; 716 717 /* Round down desc_size to be mps multiple */ 718 desc_size -= desc_size % mps; 719 } 720 721 return desc_size; 722 } 723 724 /* 725 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 726 * @hs_ep: The endpoint 727 * @dma_buff: DMA address to use 728 * @len: Length of the transfer 729 * 730 * This function will iterate over descriptor chain and fill its entries 731 * with corresponding information based on transfer data. 732 */ 733 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 734 dma_addr_t dma_buff, 735 unsigned int len) 736 { 737 struct dwc2_hsotg *hsotg = hs_ep->parent; 738 int dir_in = hs_ep->dir_in; 739 struct dwc2_dma_desc *desc = hs_ep->desc_list; 740 u32 mps = hs_ep->ep.maxpacket; 741 u32 maxsize = 0; 742 u32 offset = 0; 743 u32 mask = 0; 744 int i; 745 746 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 747 748 hs_ep->desc_count = (len / maxsize) + 749 ((len % maxsize) ? 1 : 0); 750 if (len == 0) 751 hs_ep->desc_count = 1; 752 753 for (i = 0; i < hs_ep->desc_count; ++i) { 754 desc->status = 0; 755 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 756 << DEV_DMA_BUFF_STS_SHIFT); 757 758 if (len > maxsize) { 759 if (!hs_ep->index && !dir_in) 760 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 761 762 desc->status |= (maxsize << 763 DEV_DMA_NBYTES_SHIFT & mask); 764 desc->buf = dma_buff + offset; 765 766 len -= maxsize; 767 offset += maxsize; 768 } else { 769 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 770 771 if (dir_in) 772 desc->status |= (len % mps) ? DEV_DMA_SHORT : 773 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0); 774 if (len > maxsize) 775 dev_err(hsotg->dev, "wrong len %d\n", len); 776 777 desc->status |= 778 len << DEV_DMA_NBYTES_SHIFT & mask; 779 desc->buf = dma_buff + offset; 780 } 781 782 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 783 desc->status |= (DEV_DMA_BUFF_STS_HREADY 784 << DEV_DMA_BUFF_STS_SHIFT); 785 desc++; 786 } 787 } 788 789 /* 790 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 791 * @hs_ep: The isochronous endpoint. 792 * @dma_buff: usb requests dma buffer. 793 * @len: usb request transfer length. 794 * 795 * Finds out index of first free entry either in the bottom or up half of 796 * descriptor chain depend on which is under SW control and not processed 797 * by HW. Then fills that descriptor with the data of the arrived usb request, 798 * frame info, sets Last and IOC bits increments next_desc. If filled 799 * descriptor is not the first one, removes L bit from the previous descriptor 800 * status. 801 */ 802 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 803 dma_addr_t dma_buff, unsigned int len) 804 { 805 struct dwc2_dma_desc *desc; 806 struct dwc2_hsotg *hsotg = hs_ep->parent; 807 u32 index; 808 u32 maxsize = 0; 809 u32 mask = 0; 810 811 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 812 if (len > maxsize) { 813 dev_err(hsotg->dev, "wrong len %d\n", len); 814 return -EINVAL; 815 } 816 817 /* 818 * If SW has already filled half of chain, then return and wait for 819 * the other chain to be processed by HW. 820 */ 821 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2) 822 return -EBUSY; 823 824 /* Increment frame number by interval for IN */ 825 if (hs_ep->dir_in) 826 dwc2_gadget_incr_frame_num(hs_ep); 827 828 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num + 829 hs_ep->next_desc; 830 831 /* Sanity check of calculated index */ 832 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) || 833 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) { 834 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index); 835 return -EINVAL; 836 } 837 838 desc = &hs_ep->desc_list[index]; 839 840 /* Clear L bit of previous desc if more than one entries in the chain */ 841 if (hs_ep->next_desc) 842 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 843 844 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 845 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 846 847 desc->status = 0; 848 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 849 850 desc->buf = dma_buff; 851 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 852 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 853 854 if (hs_ep->dir_in) { 855 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) & 856 DEV_DMA_ISOC_PID_MASK) | 857 ((len % hs_ep->ep.maxpacket) ? 858 DEV_DMA_SHORT : 0) | 859 ((hs_ep->target_frame << 860 DEV_DMA_ISOC_FRNUM_SHIFT) & 861 DEV_DMA_ISOC_FRNUM_MASK); 862 } 863 864 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 865 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 866 867 /* Update index of last configured entry in the chain */ 868 hs_ep->next_desc++; 869 870 return 0; 871 } 872 873 /* 874 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 875 * @hs_ep: The isochronous endpoint. 876 * 877 * Prepare first descriptor chain for isochronous endpoints. Afterwards 878 * write DMA address to HW and enable the endpoint. 879 * 880 * Switch between descriptor chains via isoc_chain_num to give SW opportunity 881 * to prepare second descriptor chain while first one is being processed by HW. 882 */ 883 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 884 { 885 struct dwc2_hsotg *hsotg = hs_ep->parent; 886 struct dwc2_hsotg_req *hs_req, *treq; 887 int index = hs_ep->index; 888 int ret; 889 u32 dma_reg; 890 u32 depctl; 891 u32 ctrl; 892 893 if (list_empty(&hs_ep->queue)) { 894 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 895 return; 896 } 897 898 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 899 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 900 hs_req->req.length); 901 if (ret) { 902 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 903 break; 904 } 905 } 906 907 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 908 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 909 910 /* write descriptor chain address to control register */ 911 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 912 913 ctrl = dwc2_readl(hsotg->regs + depctl); 914 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 915 dwc2_writel(ctrl, hsotg->regs + depctl); 916 917 /* Switch ISOC descriptor chain number being processed by SW*/ 918 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1; 919 hs_ep->next_desc = 0; 920 } 921 922 /** 923 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 924 * @hsotg: The controller state. 925 * @hs_ep: The endpoint to process a request for 926 * @hs_req: The request to start. 927 * @continuing: True if we are doing more for the current request. 928 * 929 * Start the given request running by setting the endpoint registers 930 * appropriately, and writing any data to the FIFOs. 931 */ 932 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 933 struct dwc2_hsotg_ep *hs_ep, 934 struct dwc2_hsotg_req *hs_req, 935 bool continuing) 936 { 937 struct usb_request *ureq = &hs_req->req; 938 int index = hs_ep->index; 939 int dir_in = hs_ep->dir_in; 940 u32 epctrl_reg; 941 u32 epsize_reg; 942 u32 epsize; 943 u32 ctrl; 944 unsigned int length; 945 unsigned int packets; 946 unsigned int maxreq; 947 unsigned int dma_reg; 948 949 if (index != 0) { 950 if (hs_ep->req && !continuing) { 951 dev_err(hsotg->dev, "%s: active request\n", __func__); 952 WARN_ON(1); 953 return; 954 } else if (hs_ep->req != hs_req && continuing) { 955 dev_err(hsotg->dev, 956 "%s: continue different req\n", __func__); 957 WARN_ON(1); 958 return; 959 } 960 } 961 962 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 963 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 964 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 965 966 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 967 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index, 968 hs_ep->dir_in ? "in" : "out"); 969 970 /* If endpoint is stalled, we will restart request later */ 971 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 972 973 if (index && ctrl & DXEPCTL_STALL) { 974 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 975 return; 976 } 977 978 length = ureq->length - ureq->actual; 979 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 980 ureq->length, ureq->actual); 981 982 if (!using_desc_dma(hsotg)) 983 maxreq = get_ep_limit(hs_ep); 984 else 985 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 986 987 if (length > maxreq) { 988 int round = maxreq % hs_ep->ep.maxpacket; 989 990 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 991 __func__, length, maxreq, round); 992 993 /* round down to multiple of packets */ 994 if (round) 995 maxreq -= round; 996 997 length = maxreq; 998 } 999 1000 if (length) 1001 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1002 else 1003 packets = 1; /* send one packet if length is zero. */ 1004 1005 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1006 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 1007 return; 1008 } 1009 1010 if (dir_in && index != 0) 1011 if (hs_ep->isochronous) 1012 epsize = DXEPTSIZ_MC(packets); 1013 else 1014 epsize = DXEPTSIZ_MC(1); 1015 else 1016 epsize = 0; 1017 1018 /* 1019 * zero length packet should be programmed on its own and should not 1020 * be counted in DIEPTSIZ.PktCnt with other packets. 1021 */ 1022 if (dir_in && ureq->zero && !continuing) { 1023 /* Test if zlp is actually required. */ 1024 if ((ureq->length >= hs_ep->ep.maxpacket) && 1025 !(ureq->length % hs_ep->ep.maxpacket)) 1026 hs_ep->send_zlp = 1; 1027 } 1028 1029 epsize |= DXEPTSIZ_PKTCNT(packets); 1030 epsize |= DXEPTSIZ_XFERSIZE(length); 1031 1032 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1033 __func__, packets, length, ureq->length, epsize, epsize_reg); 1034 1035 /* store the request as the current one we're doing */ 1036 hs_ep->req = hs_req; 1037 1038 if (using_desc_dma(hsotg)) { 1039 u32 offset = 0; 1040 u32 mps = hs_ep->ep.maxpacket; 1041 1042 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1043 if (!dir_in) { 1044 if (!index) 1045 length = mps; 1046 else if (length % mps) 1047 length += (mps - (length % mps)); 1048 } 1049 1050 /* 1051 * If more data to send, adjust DMA for EP0 out data stage. 1052 * ureq->dma stays unchanged, hence increment it by already 1053 * passed passed data count before starting new transaction. 1054 */ 1055 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1056 continuing) 1057 offset = ureq->actual; 1058 1059 /* Fill DDMA chain entries */ 1060 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1061 length); 1062 1063 /* write descriptor chain address to control register */ 1064 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 1065 1066 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1067 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1068 } else { 1069 /* write size / packets */ 1070 dwc2_writel(epsize, hsotg->regs + epsize_reg); 1071 1072 if (using_dma(hsotg) && !continuing && (length != 0)) { 1073 /* 1074 * write DMA address to control register, buffer 1075 * already synced by dwc2_hsotg_ep_queue(). 1076 */ 1077 1078 dwc2_writel(ureq->dma, hsotg->regs + dma_reg); 1079 1080 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1081 __func__, &ureq->dma, dma_reg); 1082 } 1083 } 1084 1085 if (hs_ep->isochronous && hs_ep->interval == 1) { 1086 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1087 dwc2_gadget_incr_frame_num(hs_ep); 1088 1089 if (hs_ep->target_frame & 0x1) 1090 ctrl |= DXEPCTL_SETODDFR; 1091 else 1092 ctrl |= DXEPCTL_SETEVENFR; 1093 } 1094 1095 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1096 1097 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1098 1099 /* For Setup request do not clear NAK */ 1100 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1101 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1102 1103 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1104 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 1105 1106 /* 1107 * set these, it seems that DMA support increments past the end 1108 * of the packet buffer so we need to calculate the length from 1109 * this information. 1110 */ 1111 hs_ep->size_loaded = length; 1112 hs_ep->last_load = ureq->actual; 1113 1114 if (dir_in && !using_dma(hsotg)) { 1115 /* set these anyway, we may need them for non-periodic in */ 1116 hs_ep->fifo_load = 0; 1117 1118 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1119 } 1120 1121 /* 1122 * Note, trying to clear the NAK here causes problems with transmit 1123 * on the S3C6400 ending up with the TXFIFO becoming full. 1124 */ 1125 1126 /* check ep is enabled */ 1127 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 1128 dev_dbg(hsotg->dev, 1129 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1130 index, dwc2_readl(hsotg->regs + epctrl_reg)); 1131 1132 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1133 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 1134 1135 /* enable ep interrupts */ 1136 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1137 } 1138 1139 /** 1140 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1141 * @hsotg: The device state. 1142 * @hs_ep: The endpoint the request is on. 1143 * @req: The request being processed. 1144 * 1145 * We've been asked to queue a request, so ensure that the memory buffer 1146 * is correctly setup for DMA. If we've been passed an extant DMA address 1147 * then ensure the buffer has been synced to memory. If our buffer has no 1148 * DMA memory, then we map the memory and mark our request to allow us to 1149 * cleanup on completion. 1150 */ 1151 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1152 struct dwc2_hsotg_ep *hs_ep, 1153 struct usb_request *req) 1154 { 1155 int ret; 1156 1157 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1158 if (ret) 1159 goto dma_error; 1160 1161 return 0; 1162 1163 dma_error: 1164 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1165 __func__, req->buf, req->length); 1166 1167 return -EIO; 1168 } 1169 1170 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1171 struct dwc2_hsotg_ep *hs_ep, 1172 struct dwc2_hsotg_req *hs_req) 1173 { 1174 void *req_buf = hs_req->req.buf; 1175 1176 /* If dma is not being used or buffer is aligned */ 1177 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1178 return 0; 1179 1180 WARN_ON(hs_req->saved_req_buf); 1181 1182 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1183 hs_ep->ep.name, req_buf, hs_req->req.length); 1184 1185 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1186 if (!hs_req->req.buf) { 1187 hs_req->req.buf = req_buf; 1188 dev_err(hsotg->dev, 1189 "%s: unable to allocate memory for bounce buffer\n", 1190 __func__); 1191 return -ENOMEM; 1192 } 1193 1194 /* Save actual buffer */ 1195 hs_req->saved_req_buf = req_buf; 1196 1197 if (hs_ep->dir_in) 1198 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1199 return 0; 1200 } 1201 1202 static void 1203 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1204 struct dwc2_hsotg_ep *hs_ep, 1205 struct dwc2_hsotg_req *hs_req) 1206 { 1207 /* If dma is not being used or buffer was aligned */ 1208 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1209 return; 1210 1211 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1212 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1213 1214 /* Copy data from bounce buffer on successful out transfer */ 1215 if (!hs_ep->dir_in && !hs_req->req.status) 1216 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1217 hs_req->req.actual); 1218 1219 /* Free bounce buffer */ 1220 kfree(hs_req->req.buf); 1221 1222 hs_req->req.buf = hs_req->saved_req_buf; 1223 hs_req->saved_req_buf = NULL; 1224 } 1225 1226 /** 1227 * dwc2_gadget_target_frame_elapsed - Checks target frame 1228 * @hs_ep: The driver endpoint to check 1229 * 1230 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1231 * corresponding transfer. 1232 */ 1233 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1234 { 1235 struct dwc2_hsotg *hsotg = hs_ep->parent; 1236 u32 target_frame = hs_ep->target_frame; 1237 u32 current_frame = dwc2_hsotg_read_frameno(hsotg); 1238 bool frame_overrun = hs_ep->frame_overrun; 1239 1240 if (!frame_overrun && current_frame >= target_frame) 1241 return true; 1242 1243 if (frame_overrun && current_frame >= target_frame && 1244 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1245 return true; 1246 1247 return false; 1248 } 1249 1250 /* 1251 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1252 * @hsotg: The driver state 1253 * @hs_ep: the ep descriptor chain is for 1254 * 1255 * Called to update EP0 structure's pointers depend on stage of 1256 * control transfer. 1257 */ 1258 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1259 struct dwc2_hsotg_ep *hs_ep) 1260 { 1261 switch (hsotg->ep0_state) { 1262 case DWC2_EP0_SETUP: 1263 case DWC2_EP0_STATUS_OUT: 1264 hs_ep->desc_list = hsotg->setup_desc[0]; 1265 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1266 break; 1267 case DWC2_EP0_DATA_IN: 1268 case DWC2_EP0_STATUS_IN: 1269 hs_ep->desc_list = hsotg->ctrl_in_desc; 1270 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1271 break; 1272 case DWC2_EP0_DATA_OUT: 1273 hs_ep->desc_list = hsotg->ctrl_out_desc; 1274 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1275 break; 1276 default: 1277 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1278 hsotg->ep0_state); 1279 return -EINVAL; 1280 } 1281 1282 return 0; 1283 } 1284 1285 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1286 gfp_t gfp_flags) 1287 { 1288 struct dwc2_hsotg_req *hs_req = our_req(req); 1289 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1290 struct dwc2_hsotg *hs = hs_ep->parent; 1291 bool first; 1292 int ret; 1293 1294 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1295 ep->name, req, req->length, req->buf, req->no_interrupt, 1296 req->zero, req->short_not_ok); 1297 1298 /* Prevent new request submission when controller is suspended */ 1299 if (hs->lx_state == DWC2_L2) { 1300 dev_dbg(hs->dev, "%s: don't submit request while suspended\n", 1301 __func__); 1302 return -EAGAIN; 1303 } 1304 1305 /* initialise status of the request */ 1306 INIT_LIST_HEAD(&hs_req->queue); 1307 req->actual = 0; 1308 req->status = -EINPROGRESS; 1309 1310 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1311 if (ret) 1312 return ret; 1313 1314 /* if we're using DMA, sync the buffers as necessary */ 1315 if (using_dma(hs)) { 1316 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1317 if (ret) 1318 return ret; 1319 } 1320 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1321 if (using_desc_dma(hs) && !hs_ep->index) { 1322 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1323 if (ret) 1324 return ret; 1325 } 1326 1327 first = list_empty(&hs_ep->queue); 1328 list_add_tail(&hs_req->queue, &hs_ep->queue); 1329 1330 /* 1331 * Handle DDMA isochronous transfers separately - just add new entry 1332 * to the half of descriptor chain that is not processed by HW. 1333 * Transfer will be started once SW gets either one of NAK or 1334 * OutTknEpDis interrupts. 1335 */ 1336 if (using_desc_dma(hs) && hs_ep->isochronous && 1337 hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1338 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 1339 hs_req->req.length); 1340 if (ret) 1341 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__); 1342 1343 return 0; 1344 } 1345 1346 if (first) { 1347 if (!hs_ep->isochronous) { 1348 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1349 return 0; 1350 } 1351 1352 while (dwc2_gadget_target_frame_elapsed(hs_ep)) 1353 dwc2_gadget_incr_frame_num(hs_ep); 1354 1355 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1356 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1357 } 1358 return 0; 1359 } 1360 1361 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1362 gfp_t gfp_flags) 1363 { 1364 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1365 struct dwc2_hsotg *hs = hs_ep->parent; 1366 unsigned long flags = 0; 1367 int ret = 0; 1368 1369 spin_lock_irqsave(&hs->lock, flags); 1370 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1371 spin_unlock_irqrestore(&hs->lock, flags); 1372 1373 return ret; 1374 } 1375 1376 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1377 struct usb_request *req) 1378 { 1379 struct dwc2_hsotg_req *hs_req = our_req(req); 1380 1381 kfree(hs_req); 1382 } 1383 1384 /** 1385 * dwc2_hsotg_complete_oursetup - setup completion callback 1386 * @ep: The endpoint the request was on. 1387 * @req: The request completed. 1388 * 1389 * Called on completion of any requests the driver itself 1390 * submitted that need cleaning up. 1391 */ 1392 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1393 struct usb_request *req) 1394 { 1395 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1396 struct dwc2_hsotg *hsotg = hs_ep->parent; 1397 1398 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1399 1400 dwc2_hsotg_ep_free_request(ep, req); 1401 } 1402 1403 /** 1404 * ep_from_windex - convert control wIndex value to endpoint 1405 * @hsotg: The driver state. 1406 * @windex: The control request wIndex field (in host order). 1407 * 1408 * Convert the given wIndex into a pointer to an driver endpoint 1409 * structure, or return NULL if it is not a valid endpoint. 1410 */ 1411 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1412 u32 windex) 1413 { 1414 struct dwc2_hsotg_ep *ep; 1415 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1416 int idx = windex & 0x7F; 1417 1418 if (windex >= 0x100) 1419 return NULL; 1420 1421 if (idx > hsotg->num_of_eps) 1422 return NULL; 1423 1424 ep = index_to_ep(hsotg, idx, dir); 1425 1426 if (idx && ep->dir_in != dir) 1427 return NULL; 1428 1429 return ep; 1430 } 1431 1432 /** 1433 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1434 * @hsotg: The driver state. 1435 * @testmode: requested usb test mode 1436 * Enable usb Test Mode requested by the Host. 1437 */ 1438 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1439 { 1440 int dctl = dwc2_readl(hsotg->regs + DCTL); 1441 1442 dctl &= ~DCTL_TSTCTL_MASK; 1443 switch (testmode) { 1444 case TEST_J: 1445 case TEST_K: 1446 case TEST_SE0_NAK: 1447 case TEST_PACKET: 1448 case TEST_FORCE_EN: 1449 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1450 break; 1451 default: 1452 return -EINVAL; 1453 } 1454 dwc2_writel(dctl, hsotg->regs + DCTL); 1455 return 0; 1456 } 1457 1458 /** 1459 * dwc2_hsotg_send_reply - send reply to control request 1460 * @hsotg: The device state 1461 * @ep: Endpoint 0 1462 * @buff: Buffer for request 1463 * @length: Length of reply. 1464 * 1465 * Create a request and queue it on the given endpoint. This is useful as 1466 * an internal method of sending replies to certain control requests, etc. 1467 */ 1468 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1469 struct dwc2_hsotg_ep *ep, 1470 void *buff, 1471 int length) 1472 { 1473 struct usb_request *req; 1474 int ret; 1475 1476 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1477 1478 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1479 hsotg->ep0_reply = req; 1480 if (!req) { 1481 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1482 return -ENOMEM; 1483 } 1484 1485 req->buf = hsotg->ep0_buff; 1486 req->length = length; 1487 /* 1488 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1489 * STATUS stage. 1490 */ 1491 req->zero = 0; 1492 req->complete = dwc2_hsotg_complete_oursetup; 1493 1494 if (length) 1495 memcpy(req->buf, buff, length); 1496 1497 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1498 if (ret) { 1499 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1500 return ret; 1501 } 1502 1503 return 0; 1504 } 1505 1506 /** 1507 * dwc2_hsotg_process_req_status - process request GET_STATUS 1508 * @hsotg: The device state 1509 * @ctrl: USB control request 1510 */ 1511 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1512 struct usb_ctrlrequest *ctrl) 1513 { 1514 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1515 struct dwc2_hsotg_ep *ep; 1516 __le16 reply; 1517 int ret; 1518 1519 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1520 1521 if (!ep0->dir_in) { 1522 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1523 return -EINVAL; 1524 } 1525 1526 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1527 case USB_RECIP_DEVICE: 1528 /* 1529 * bit 0 => self powered 1530 * bit 1 => remote wakeup 1531 */ 1532 reply = cpu_to_le16(0); 1533 break; 1534 1535 case USB_RECIP_INTERFACE: 1536 /* currently, the data result should be zero */ 1537 reply = cpu_to_le16(0); 1538 break; 1539 1540 case USB_RECIP_ENDPOINT: 1541 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1542 if (!ep) 1543 return -ENOENT; 1544 1545 reply = cpu_to_le16(ep->halted ? 1 : 0); 1546 break; 1547 1548 default: 1549 return 0; 1550 } 1551 1552 if (le16_to_cpu(ctrl->wLength) != 2) 1553 return -EINVAL; 1554 1555 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1556 if (ret) { 1557 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1558 return ret; 1559 } 1560 1561 return 1; 1562 } 1563 1564 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1565 1566 /** 1567 * get_ep_head - return the first request on the endpoint 1568 * @hs_ep: The controller endpoint to get 1569 * 1570 * Get the first request on the endpoint. 1571 */ 1572 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1573 { 1574 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1575 queue); 1576 } 1577 1578 /** 1579 * dwc2_gadget_start_next_request - Starts next request from ep queue 1580 * @hs_ep: Endpoint structure 1581 * 1582 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1583 * in its handler. Hence we need to unmask it here to be able to do 1584 * resynchronization. 1585 */ 1586 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1587 { 1588 u32 mask; 1589 struct dwc2_hsotg *hsotg = hs_ep->parent; 1590 int dir_in = hs_ep->dir_in; 1591 struct dwc2_hsotg_req *hs_req; 1592 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1593 1594 if (!list_empty(&hs_ep->queue)) { 1595 hs_req = get_ep_head(hs_ep); 1596 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1597 return; 1598 } 1599 if (!hs_ep->isochronous) 1600 return; 1601 1602 if (dir_in) { 1603 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1604 __func__); 1605 } else { 1606 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1607 __func__); 1608 mask = dwc2_readl(hsotg->regs + epmsk_reg); 1609 mask |= DOEPMSK_OUTTKNEPDISMSK; 1610 dwc2_writel(mask, hsotg->regs + epmsk_reg); 1611 } 1612 } 1613 1614 /** 1615 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1616 * @hsotg: The device state 1617 * @ctrl: USB control request 1618 */ 1619 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1620 struct usb_ctrlrequest *ctrl) 1621 { 1622 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1623 struct dwc2_hsotg_req *hs_req; 1624 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1625 struct dwc2_hsotg_ep *ep; 1626 int ret; 1627 bool halted; 1628 u32 recip; 1629 u32 wValue; 1630 u32 wIndex; 1631 1632 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1633 __func__, set ? "SET" : "CLEAR"); 1634 1635 wValue = le16_to_cpu(ctrl->wValue); 1636 wIndex = le16_to_cpu(ctrl->wIndex); 1637 recip = ctrl->bRequestType & USB_RECIP_MASK; 1638 1639 switch (recip) { 1640 case USB_RECIP_DEVICE: 1641 switch (wValue) { 1642 case USB_DEVICE_TEST_MODE: 1643 if ((wIndex & 0xff) != 0) 1644 return -EINVAL; 1645 if (!set) 1646 return -EINVAL; 1647 1648 hsotg->test_mode = wIndex >> 8; 1649 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1650 if (ret) { 1651 dev_err(hsotg->dev, 1652 "%s: failed to send reply\n", __func__); 1653 return ret; 1654 } 1655 break; 1656 default: 1657 return -ENOENT; 1658 } 1659 break; 1660 1661 case USB_RECIP_ENDPOINT: 1662 ep = ep_from_windex(hsotg, wIndex); 1663 if (!ep) { 1664 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1665 __func__, wIndex); 1666 return -ENOENT; 1667 } 1668 1669 switch (wValue) { 1670 case USB_ENDPOINT_HALT: 1671 halted = ep->halted; 1672 1673 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1674 1675 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1676 if (ret) { 1677 dev_err(hsotg->dev, 1678 "%s: failed to send reply\n", __func__); 1679 return ret; 1680 } 1681 1682 /* 1683 * we have to complete all requests for ep if it was 1684 * halted, and the halt was cleared by CLEAR_FEATURE 1685 */ 1686 1687 if (!set && halted) { 1688 /* 1689 * If we have request in progress, 1690 * then complete it 1691 */ 1692 if (ep->req) { 1693 hs_req = ep->req; 1694 ep->req = NULL; 1695 list_del_init(&hs_req->queue); 1696 if (hs_req->req.complete) { 1697 spin_unlock(&hsotg->lock); 1698 usb_gadget_giveback_request( 1699 &ep->ep, &hs_req->req); 1700 spin_lock(&hsotg->lock); 1701 } 1702 } 1703 1704 /* If we have pending request, then start it */ 1705 if (!ep->req) 1706 dwc2_gadget_start_next_request(ep); 1707 } 1708 1709 break; 1710 1711 default: 1712 return -ENOENT; 1713 } 1714 break; 1715 default: 1716 return -ENOENT; 1717 } 1718 return 1; 1719 } 1720 1721 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1722 1723 /** 1724 * dwc2_hsotg_stall_ep0 - stall ep0 1725 * @hsotg: The device state 1726 * 1727 * Set stall for ep0 as response for setup request. 1728 */ 1729 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1730 { 1731 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1732 u32 reg; 1733 u32 ctrl; 1734 1735 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1736 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1737 1738 /* 1739 * DxEPCTL_Stall will be cleared by EP once it has 1740 * taken effect, so no need to clear later. 1741 */ 1742 1743 ctrl = dwc2_readl(hsotg->regs + reg); 1744 ctrl |= DXEPCTL_STALL; 1745 ctrl |= DXEPCTL_CNAK; 1746 dwc2_writel(ctrl, hsotg->regs + reg); 1747 1748 dev_dbg(hsotg->dev, 1749 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1750 ctrl, reg, dwc2_readl(hsotg->regs + reg)); 1751 1752 /* 1753 * complete won't be called, so we enqueue 1754 * setup request here 1755 */ 1756 dwc2_hsotg_enqueue_setup(hsotg); 1757 } 1758 1759 /** 1760 * dwc2_hsotg_process_control - process a control request 1761 * @hsotg: The device state 1762 * @ctrl: The control request received 1763 * 1764 * The controller has received the SETUP phase of a control request, and 1765 * needs to work out what to do next (and whether to pass it on to the 1766 * gadget driver). 1767 */ 1768 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1769 struct usb_ctrlrequest *ctrl) 1770 { 1771 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1772 int ret = 0; 1773 u32 dcfg; 1774 1775 dev_dbg(hsotg->dev, 1776 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1777 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1778 ctrl->wIndex, ctrl->wLength); 1779 1780 if (ctrl->wLength == 0) { 1781 ep0->dir_in = 1; 1782 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1783 } else if (ctrl->bRequestType & USB_DIR_IN) { 1784 ep0->dir_in = 1; 1785 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1786 } else { 1787 ep0->dir_in = 0; 1788 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1789 } 1790 1791 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1792 switch (ctrl->bRequest) { 1793 case USB_REQ_SET_ADDRESS: 1794 hsotg->connected = 1; 1795 dcfg = dwc2_readl(hsotg->regs + DCFG); 1796 dcfg &= ~DCFG_DEVADDR_MASK; 1797 dcfg |= (le16_to_cpu(ctrl->wValue) << 1798 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1799 dwc2_writel(dcfg, hsotg->regs + DCFG); 1800 1801 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1802 1803 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1804 return; 1805 1806 case USB_REQ_GET_STATUS: 1807 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1808 break; 1809 1810 case USB_REQ_CLEAR_FEATURE: 1811 case USB_REQ_SET_FEATURE: 1812 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1813 break; 1814 } 1815 } 1816 1817 /* as a fallback, try delivering it to the driver to deal with */ 1818 1819 if (ret == 0 && hsotg->driver) { 1820 spin_unlock(&hsotg->lock); 1821 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1822 spin_lock(&hsotg->lock); 1823 if (ret < 0) 1824 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1825 } 1826 1827 /* 1828 * the request is either unhandlable, or is not formatted correctly 1829 * so respond with a STALL for the status stage to indicate failure. 1830 */ 1831 1832 if (ret < 0) 1833 dwc2_hsotg_stall_ep0(hsotg); 1834 } 1835 1836 /** 1837 * dwc2_hsotg_complete_setup - completion of a setup transfer 1838 * @ep: The endpoint the request was on. 1839 * @req: The request completed. 1840 * 1841 * Called on completion of any requests the driver itself submitted for 1842 * EP0 setup packets 1843 */ 1844 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1845 struct usb_request *req) 1846 { 1847 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1848 struct dwc2_hsotg *hsotg = hs_ep->parent; 1849 1850 if (req->status < 0) { 1851 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1852 return; 1853 } 1854 1855 spin_lock(&hsotg->lock); 1856 if (req->actual == 0) 1857 dwc2_hsotg_enqueue_setup(hsotg); 1858 else 1859 dwc2_hsotg_process_control(hsotg, req->buf); 1860 spin_unlock(&hsotg->lock); 1861 } 1862 1863 /** 1864 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1865 * @hsotg: The device state. 1866 * 1867 * Enqueue a request on EP0 if necessary to received any SETUP packets 1868 * received from the host. 1869 */ 1870 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 1871 { 1872 struct usb_request *req = hsotg->ctrl_req; 1873 struct dwc2_hsotg_req *hs_req = our_req(req); 1874 int ret; 1875 1876 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1877 1878 req->zero = 0; 1879 req->length = 8; 1880 req->buf = hsotg->ctrl_buff; 1881 req->complete = dwc2_hsotg_complete_setup; 1882 1883 if (!list_empty(&hs_req->queue)) { 1884 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1885 return; 1886 } 1887 1888 hsotg->eps_out[0]->dir_in = 0; 1889 hsotg->eps_out[0]->send_zlp = 0; 1890 hsotg->ep0_state = DWC2_EP0_SETUP; 1891 1892 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 1893 if (ret < 0) { 1894 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1895 /* 1896 * Don't think there's much we can do other than watch the 1897 * driver fail. 1898 */ 1899 } 1900 } 1901 1902 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 1903 struct dwc2_hsotg_ep *hs_ep) 1904 { 1905 u32 ctrl; 1906 u8 index = hs_ep->index; 1907 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1908 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1909 1910 if (hs_ep->dir_in) 1911 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 1912 index); 1913 else 1914 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 1915 index); 1916 if (using_desc_dma(hsotg)) { 1917 /* Not specific buffer needed for ep0 ZLP */ 1918 dma_addr_t dma = hs_ep->desc_list_dma; 1919 1920 if (!index) 1921 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 1922 1923 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 1924 } else { 1925 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1926 DXEPTSIZ_XFERSIZE(0), hsotg->regs + 1927 epsiz_reg); 1928 } 1929 1930 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 1931 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1932 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1933 ctrl |= DXEPCTL_USBACTEP; 1934 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 1935 } 1936 1937 /** 1938 * dwc2_hsotg_complete_request - complete a request given to us 1939 * @hsotg: The device state. 1940 * @hs_ep: The endpoint the request was on. 1941 * @hs_req: The request to complete. 1942 * @result: The result code (0 => Ok, otherwise errno) 1943 * 1944 * The given request has finished, so call the necessary completion 1945 * if it has one and then look to see if we can start a new request 1946 * on the endpoint. 1947 * 1948 * Note, expects the ep to already be locked as appropriate. 1949 */ 1950 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1951 struct dwc2_hsotg_ep *hs_ep, 1952 struct dwc2_hsotg_req *hs_req, 1953 int result) 1954 { 1955 if (!hs_req) { 1956 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1957 return; 1958 } 1959 1960 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 1961 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 1962 1963 /* 1964 * only replace the status if we've not already set an error 1965 * from a previous transaction 1966 */ 1967 1968 if (hs_req->req.status == -EINPROGRESS) 1969 hs_req->req.status = result; 1970 1971 if (using_dma(hsotg)) 1972 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 1973 1974 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 1975 1976 hs_ep->req = NULL; 1977 list_del_init(&hs_req->queue); 1978 1979 /* 1980 * call the complete request with the locks off, just in case the 1981 * request tries to queue more work for this endpoint. 1982 */ 1983 1984 if (hs_req->req.complete) { 1985 spin_unlock(&hsotg->lock); 1986 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 1987 spin_lock(&hsotg->lock); 1988 } 1989 1990 /* In DDMA don't need to proceed to starting of next ISOC request */ 1991 if (using_desc_dma(hsotg) && hs_ep->isochronous) 1992 return; 1993 1994 /* 1995 * Look to see if there is anything else to do. Note, the completion 1996 * of the previous request may have caused a new request to be started 1997 * so be careful when doing this. 1998 */ 1999 2000 if (!hs_ep->req && result >= 0) 2001 dwc2_gadget_start_next_request(hs_ep); 2002 } 2003 2004 /* 2005 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2006 * @hs_ep: The endpoint the request was on. 2007 * 2008 * Get first request from the ep queue, determine descriptor on which complete 2009 * happened. SW based on isoc_chain_num discovers which half of the descriptor 2010 * chain is currently in use by HW, adjusts dma_address and calculates index 2011 * of completed descriptor based on the value of DEPDMA register. Update actual 2012 * length of request, giveback to gadget. 2013 */ 2014 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2015 { 2016 struct dwc2_hsotg *hsotg = hs_ep->parent; 2017 struct dwc2_hsotg_req *hs_req; 2018 struct usb_request *ureq; 2019 int index; 2020 dma_addr_t dma_addr; 2021 u32 dma_reg; 2022 u32 depdma; 2023 u32 desc_sts; 2024 u32 mask; 2025 2026 hs_req = get_ep_head(hs_ep); 2027 if (!hs_req) { 2028 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2029 return; 2030 } 2031 ureq = &hs_req->req; 2032 2033 dma_addr = hs_ep->desc_list_dma; 2034 2035 /* 2036 * If lower half of descriptor chain is currently use by SW, 2037 * that means higher half is being processed by HW, so shift 2038 * DMA address to higher half of descriptor chain. 2039 */ 2040 if (!hs_ep->isoc_chain_num) 2041 dma_addr += sizeof(struct dwc2_dma_desc) * 2042 (MAX_DMA_DESC_NUM_GENERIC / 2); 2043 2044 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index); 2045 depdma = dwc2_readl(hsotg->regs + dma_reg); 2046 2047 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1; 2048 desc_sts = hs_ep->desc_list[index].status; 2049 2050 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2051 DEV_DMA_ISOC_RX_NBYTES_MASK; 2052 ureq->actual = ureq->length - 2053 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT); 2054 2055 /* Adjust actual length for ISOC Out if length is not align of 4 */ 2056 if (!hs_ep->dir_in && ureq->length & 0x3) 2057 ureq->actual += 4 - (ureq->length & 0x3); 2058 2059 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2060 } 2061 2062 /* 2063 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any. 2064 * @hs_ep: The isochronous endpoint to be re-enabled. 2065 * 2066 * If ep has been disabled due to last descriptor servicing (IN endpoint) or 2067 * BNA (OUT endpoint) check the status of other half of descriptor chain that 2068 * was under SW control till HW was busy and restart the endpoint if needed. 2069 */ 2070 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 2071 { 2072 struct dwc2_hsotg *hsotg = hs_ep->parent; 2073 u32 depctl; 2074 u32 dma_reg; 2075 u32 ctrl; 2076 u32 dma_addr = hs_ep->desc_list_dma; 2077 unsigned char index = hs_ep->index; 2078 2079 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 2080 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2081 2082 ctrl = dwc2_readl(hsotg->regs + depctl); 2083 2084 /* 2085 * EP was disabled if HW has processed last descriptor or BNA was set. 2086 * So restart ep if SW has prepared new descriptor chain in ep_queue 2087 * routine while HW was busy. 2088 */ 2089 if (!(ctrl & DXEPCTL_EPENA)) { 2090 if (!hs_ep->next_desc) { 2091 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n", 2092 __func__); 2093 return; 2094 } 2095 2096 dma_addr += sizeof(struct dwc2_dma_desc) * 2097 (MAX_DMA_DESC_NUM_GENERIC / 2) * 2098 hs_ep->isoc_chain_num; 2099 dwc2_writel(dma_addr, hsotg->regs + dma_reg); 2100 2101 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 2102 dwc2_writel(ctrl, hsotg->regs + depctl); 2103 2104 /* Switch ISOC descriptor chain number being processed by SW*/ 2105 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1; 2106 hs_ep->next_desc = 0; 2107 2108 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n", 2109 __func__); 2110 } 2111 } 2112 2113 /** 2114 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2115 * @hsotg: The device state. 2116 * @ep_idx: The endpoint index for the data 2117 * @size: The size of data in the fifo, in bytes 2118 * 2119 * The FIFO status shows there is data to read from the FIFO for a given 2120 * endpoint, so sort out whether we need to read the data into a request 2121 * that has been made for that endpoint. 2122 */ 2123 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2124 { 2125 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2126 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2127 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 2128 int to_read; 2129 int max_req; 2130 int read_ptr; 2131 2132 if (!hs_req) { 2133 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx)); 2134 int ptr; 2135 2136 dev_dbg(hsotg->dev, 2137 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2138 __func__, size, ep_idx, epctl); 2139 2140 /* dump the data from the FIFO, we've nothing we can do */ 2141 for (ptr = 0; ptr < size; ptr += 4) 2142 (void)dwc2_readl(fifo); 2143 2144 return; 2145 } 2146 2147 to_read = size; 2148 read_ptr = hs_req->req.actual; 2149 max_req = hs_req->req.length - read_ptr; 2150 2151 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2152 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2153 2154 if (to_read > max_req) { 2155 /* 2156 * more data appeared than we where willing 2157 * to deal with in this request. 2158 */ 2159 2160 /* currently we don't deal this */ 2161 WARN_ON_ONCE(1); 2162 } 2163 2164 hs_ep->total_data += to_read; 2165 hs_req->req.actual += to_read; 2166 to_read = DIV_ROUND_UP(to_read, 4); 2167 2168 /* 2169 * note, we might over-write the buffer end by 3 bytes depending on 2170 * alignment of the data. 2171 */ 2172 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 2173 } 2174 2175 /** 2176 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2177 * @hsotg: The device instance 2178 * @dir_in: If IN zlp 2179 * 2180 * Generate a zero-length IN packet request for terminating a SETUP 2181 * transaction. 2182 * 2183 * Note, since we don't write any data to the TxFIFO, then it is 2184 * currently believed that we do not need to wait for any space in 2185 * the TxFIFO. 2186 */ 2187 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2188 { 2189 /* eps_out[0] is used in both directions */ 2190 hsotg->eps_out[0]->dir_in = dir_in; 2191 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2192 2193 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2194 } 2195 2196 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2197 u32 epctl_reg) 2198 { 2199 u32 ctrl; 2200 2201 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2202 if (ctrl & DXEPCTL_EOFRNUM) 2203 ctrl |= DXEPCTL_SETEVENFR; 2204 else 2205 ctrl |= DXEPCTL_SETODDFR; 2206 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 2207 } 2208 2209 /* 2210 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2211 * @hs_ep - The endpoint on which transfer went 2212 * 2213 * Iterate over endpoints descriptor chain and get info on bytes remained 2214 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2215 */ 2216 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2217 { 2218 struct dwc2_hsotg *hsotg = hs_ep->parent; 2219 unsigned int bytes_rem = 0; 2220 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2221 int i; 2222 u32 status; 2223 2224 if (!desc) 2225 return -EINVAL; 2226 2227 for (i = 0; i < hs_ep->desc_count; ++i) { 2228 status = desc->status; 2229 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2230 2231 if (status & DEV_DMA_STS_MASK) 2232 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2233 i, status & DEV_DMA_STS_MASK); 2234 } 2235 2236 return bytes_rem; 2237 } 2238 2239 /** 2240 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2241 * @hsotg: The device instance 2242 * @epnum: The endpoint received from 2243 * 2244 * The RXFIFO has delivered an OutDone event, which means that the data 2245 * transfer for an OUT endpoint has been completed, either by a short 2246 * packet or by the finish of a transfer. 2247 */ 2248 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2249 { 2250 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum)); 2251 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2252 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2253 struct usb_request *req = &hs_req->req; 2254 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2255 int result = 0; 2256 2257 if (!hs_req) { 2258 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2259 return; 2260 } 2261 2262 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2263 dev_dbg(hsotg->dev, "zlp packet received\n"); 2264 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2265 dwc2_hsotg_enqueue_setup(hsotg); 2266 return; 2267 } 2268 2269 if (using_desc_dma(hsotg)) 2270 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2271 2272 if (using_dma(hsotg)) { 2273 unsigned int size_done; 2274 2275 /* 2276 * Calculate the size of the transfer by checking how much 2277 * is left in the endpoint size register and then working it 2278 * out from the amount we loaded for the transfer. 2279 * 2280 * We need to do this as DMA pointers are always 32bit aligned 2281 * so may overshoot/undershoot the transfer. 2282 */ 2283 2284 size_done = hs_ep->size_loaded - size_left; 2285 size_done += hs_ep->last_load; 2286 2287 req->actual = size_done; 2288 } 2289 2290 /* if there is more request to do, schedule new transfer */ 2291 if (req->actual < req->length && size_left == 0) { 2292 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2293 return; 2294 } 2295 2296 if (req->actual < req->length && req->short_not_ok) { 2297 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2298 __func__, req->actual, req->length); 2299 2300 /* 2301 * todo - what should we return here? there's no one else 2302 * even bothering to check the status. 2303 */ 2304 } 2305 2306 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2307 if (!using_desc_dma(hsotg) && epnum == 0 && 2308 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2309 /* Move to STATUS IN */ 2310 dwc2_hsotg_ep0_zlp(hsotg, true); 2311 return; 2312 } 2313 2314 /* 2315 * Slave mode OUT transfers do not go through XferComplete so 2316 * adjust the ISOC parity here. 2317 */ 2318 if (!using_dma(hsotg)) { 2319 if (hs_ep->isochronous && hs_ep->interval == 1) 2320 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2321 else if (hs_ep->isochronous && hs_ep->interval > 1) 2322 dwc2_gadget_incr_frame_num(hs_ep); 2323 } 2324 2325 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2326 } 2327 2328 /** 2329 * dwc2_hsotg_handle_rx - RX FIFO has data 2330 * @hsotg: The device instance 2331 * 2332 * The IRQ handler has detected that the RX FIFO has some data in it 2333 * that requires processing, so find out what is in there and do the 2334 * appropriate read. 2335 * 2336 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2337 * chunks, so if you have x packets received on an endpoint you'll get x 2338 * FIFO events delivered, each with a packet's worth of data in it. 2339 * 2340 * When using DMA, we should not be processing events from the RXFIFO 2341 * as the actual data should be sent to the memory directly and we turn 2342 * on the completion interrupts to get notifications of transfer completion. 2343 */ 2344 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2345 { 2346 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP); 2347 u32 epnum, status, size; 2348 2349 WARN_ON(using_dma(hsotg)); 2350 2351 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2352 status = grxstsr & GRXSTS_PKTSTS_MASK; 2353 2354 size = grxstsr & GRXSTS_BYTECNT_MASK; 2355 size >>= GRXSTS_BYTECNT_SHIFT; 2356 2357 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2358 __func__, grxstsr, size, epnum); 2359 2360 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2361 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2362 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2363 break; 2364 2365 case GRXSTS_PKTSTS_OUTDONE: 2366 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2367 dwc2_hsotg_read_frameno(hsotg)); 2368 2369 if (!using_dma(hsotg)) 2370 dwc2_hsotg_handle_outdone(hsotg, epnum); 2371 break; 2372 2373 case GRXSTS_PKTSTS_SETUPDONE: 2374 dev_dbg(hsotg->dev, 2375 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2376 dwc2_hsotg_read_frameno(hsotg), 2377 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2378 /* 2379 * Call dwc2_hsotg_handle_outdone here if it was not called from 2380 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2381 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2382 */ 2383 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2384 dwc2_hsotg_handle_outdone(hsotg, epnum); 2385 break; 2386 2387 case GRXSTS_PKTSTS_OUTRX: 2388 dwc2_hsotg_rx_data(hsotg, epnum, size); 2389 break; 2390 2391 case GRXSTS_PKTSTS_SETUPRX: 2392 dev_dbg(hsotg->dev, 2393 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2394 dwc2_hsotg_read_frameno(hsotg), 2395 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2396 2397 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2398 2399 dwc2_hsotg_rx_data(hsotg, epnum, size); 2400 break; 2401 2402 default: 2403 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2404 __func__, grxstsr); 2405 2406 dwc2_hsotg_dump(hsotg); 2407 break; 2408 } 2409 } 2410 2411 /** 2412 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2413 * @mps: The maximum packet size in bytes. 2414 */ 2415 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2416 { 2417 switch (mps) { 2418 case 64: 2419 return D0EPCTL_MPS_64; 2420 case 32: 2421 return D0EPCTL_MPS_32; 2422 case 16: 2423 return D0EPCTL_MPS_16; 2424 case 8: 2425 return D0EPCTL_MPS_8; 2426 } 2427 2428 /* bad max packet size, warn and return invalid result */ 2429 WARN_ON(1); 2430 return (u32)-1; 2431 } 2432 2433 /** 2434 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2435 * @hsotg: The driver state. 2436 * @ep: The index number of the endpoint 2437 * @mps: The maximum packet size in bytes 2438 * @mc: The multicount value 2439 * 2440 * Configure the maximum packet size for the given endpoint, updating 2441 * the hardware control registers to reflect this. 2442 */ 2443 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2444 unsigned int ep, unsigned int mps, 2445 unsigned int mc, unsigned int dir_in) 2446 { 2447 struct dwc2_hsotg_ep *hs_ep; 2448 void __iomem *regs = hsotg->regs; 2449 u32 reg; 2450 2451 hs_ep = index_to_ep(hsotg, ep, dir_in); 2452 if (!hs_ep) 2453 return; 2454 2455 if (ep == 0) { 2456 u32 mps_bytes = mps; 2457 2458 /* EP0 is a special case */ 2459 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2460 if (mps > 3) 2461 goto bad_mps; 2462 hs_ep->ep.maxpacket = mps_bytes; 2463 hs_ep->mc = 1; 2464 } else { 2465 if (mps > 1024) 2466 goto bad_mps; 2467 hs_ep->mc = mc; 2468 if (mc > 3) 2469 goto bad_mps; 2470 hs_ep->ep.maxpacket = mps; 2471 } 2472 2473 if (dir_in) { 2474 reg = dwc2_readl(regs + DIEPCTL(ep)); 2475 reg &= ~DXEPCTL_MPS_MASK; 2476 reg |= mps; 2477 dwc2_writel(reg, regs + DIEPCTL(ep)); 2478 } else { 2479 reg = dwc2_readl(regs + DOEPCTL(ep)); 2480 reg &= ~DXEPCTL_MPS_MASK; 2481 reg |= mps; 2482 dwc2_writel(reg, regs + DOEPCTL(ep)); 2483 } 2484 2485 return; 2486 2487 bad_mps: 2488 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2489 } 2490 2491 /** 2492 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2493 * @hsotg: The driver state 2494 * @idx: The index for the endpoint (0..15) 2495 */ 2496 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2497 { 2498 int timeout; 2499 int val; 2500 2501 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2502 hsotg->regs + GRSTCTL); 2503 2504 /* wait until the fifo is flushed */ 2505 timeout = 100; 2506 2507 while (1) { 2508 val = dwc2_readl(hsotg->regs + GRSTCTL); 2509 2510 if ((val & (GRSTCTL_TXFFLSH)) == 0) 2511 break; 2512 2513 if (--timeout == 0) { 2514 dev_err(hsotg->dev, 2515 "%s: timeout flushing fifo (GRSTCTL=%08x)\n", 2516 __func__, val); 2517 break; 2518 } 2519 2520 udelay(1); 2521 } 2522 } 2523 2524 /** 2525 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2526 * @hsotg: The driver state 2527 * @hs_ep: The driver endpoint to check. 2528 * 2529 * Check to see if there is a request that has data to send, and if so 2530 * make an attempt to write data into the FIFO. 2531 */ 2532 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2533 struct dwc2_hsotg_ep *hs_ep) 2534 { 2535 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2536 2537 if (!hs_ep->dir_in || !hs_req) { 2538 /** 2539 * if request is not enqueued, we disable interrupts 2540 * for endpoints, excepting ep0 2541 */ 2542 if (hs_ep->index != 0) 2543 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2544 hs_ep->dir_in, 0); 2545 return 0; 2546 } 2547 2548 if (hs_req->req.actual < hs_req->req.length) { 2549 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2550 hs_ep->index); 2551 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2552 } 2553 2554 return 0; 2555 } 2556 2557 /** 2558 * dwc2_hsotg_complete_in - complete IN transfer 2559 * @hsotg: The device state. 2560 * @hs_ep: The endpoint that has just completed. 2561 * 2562 * An IN transfer has been completed, update the transfer's state and then 2563 * call the relevant completion routines. 2564 */ 2565 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2566 struct dwc2_hsotg_ep *hs_ep) 2567 { 2568 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2569 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 2570 int size_left, size_done; 2571 2572 if (!hs_req) { 2573 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2574 return; 2575 } 2576 2577 /* Finish ZLP handling for IN EP0 transactions */ 2578 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2579 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2580 2581 /* 2582 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2583 * changed to IN. Change back to complete OUT transfer request 2584 */ 2585 hs_ep->dir_in = 0; 2586 2587 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2588 if (hsotg->test_mode) { 2589 int ret; 2590 2591 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2592 if (ret < 0) { 2593 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2594 hsotg->test_mode); 2595 dwc2_hsotg_stall_ep0(hsotg); 2596 return; 2597 } 2598 } 2599 dwc2_hsotg_enqueue_setup(hsotg); 2600 return; 2601 } 2602 2603 /* 2604 * Calculate the size of the transfer by checking how much is left 2605 * in the endpoint size register and then working it out from 2606 * the amount we loaded for the transfer. 2607 * 2608 * We do this even for DMA, as the transfer may have incremented 2609 * past the end of the buffer (DMA transfers are always 32bit 2610 * aligned). 2611 */ 2612 if (using_desc_dma(hsotg)) { 2613 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2614 if (size_left < 0) 2615 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2616 size_left); 2617 } else { 2618 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2619 } 2620 2621 size_done = hs_ep->size_loaded - size_left; 2622 size_done += hs_ep->last_load; 2623 2624 if (hs_req->req.actual != size_done) 2625 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2626 __func__, hs_req->req.actual, size_done); 2627 2628 hs_req->req.actual = size_done; 2629 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2630 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2631 2632 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2633 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2634 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2635 return; 2636 } 2637 2638 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2639 if (hs_ep->send_zlp) { 2640 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2641 hs_ep->send_zlp = 0; 2642 /* transfer will be completed on next complete interrupt */ 2643 return; 2644 } 2645 2646 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2647 /* Move to STATUS OUT */ 2648 dwc2_hsotg_ep0_zlp(hsotg, false); 2649 return; 2650 } 2651 2652 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2653 } 2654 2655 /** 2656 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2657 * @hsotg: The device state. 2658 * @idx: Index of ep. 2659 * @dir_in: Endpoint direction 1-in 0-out. 2660 * 2661 * Reads for endpoint with given index and direction, by masking 2662 * epint_reg with coresponding mask. 2663 */ 2664 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2665 unsigned int idx, int dir_in) 2666 { 2667 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2668 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2669 u32 ints; 2670 u32 mask; 2671 u32 diepempmsk; 2672 2673 mask = dwc2_readl(hsotg->regs + epmsk_reg); 2674 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK); 2675 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2676 mask |= DXEPINT_SETUP_RCVD; 2677 2678 ints = dwc2_readl(hsotg->regs + epint_reg); 2679 ints &= mask; 2680 return ints; 2681 } 2682 2683 /** 2684 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2685 * @hs_ep: The endpoint on which interrupt is asserted. 2686 * 2687 * This interrupt indicates that the endpoint has been disabled per the 2688 * application's request. 2689 * 2690 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2691 * in case of ISOC completes current request. 2692 * 2693 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2694 * request starts it. 2695 */ 2696 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2697 { 2698 struct dwc2_hsotg *hsotg = hs_ep->parent; 2699 struct dwc2_hsotg_req *hs_req; 2700 unsigned char idx = hs_ep->index; 2701 int dir_in = hs_ep->dir_in; 2702 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2703 int dctl = dwc2_readl(hsotg->regs + DCTL); 2704 2705 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2706 2707 if (dir_in) { 2708 int epctl = dwc2_readl(hsotg->regs + epctl_reg); 2709 2710 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2711 2712 if (hs_ep->isochronous) { 2713 dwc2_hsotg_complete_in(hsotg, hs_ep); 2714 return; 2715 } 2716 2717 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2718 int dctl = dwc2_readl(hsotg->regs + DCTL); 2719 2720 dctl |= DCTL_CGNPINNAK; 2721 dwc2_writel(dctl, hsotg->regs + DCTL); 2722 } 2723 return; 2724 } 2725 2726 if (dctl & DCTL_GOUTNAKSTS) { 2727 dctl |= DCTL_CGOUTNAK; 2728 dwc2_writel(dctl, hsotg->regs + DCTL); 2729 } 2730 2731 if (!hs_ep->isochronous) 2732 return; 2733 2734 if (list_empty(&hs_ep->queue)) { 2735 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2736 __func__, hs_ep); 2737 return; 2738 } 2739 2740 do { 2741 hs_req = get_ep_head(hs_ep); 2742 if (hs_req) 2743 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2744 -ENODATA); 2745 dwc2_gadget_incr_frame_num(hs_ep); 2746 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2747 2748 dwc2_gadget_start_next_request(hs_ep); 2749 } 2750 2751 /** 2752 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2753 * @hs_ep: The endpoint on which interrupt is asserted. 2754 * 2755 * This is starting point for ISOC-OUT transfer, synchronization done with 2756 * first out token received from host while corresponding EP is disabled. 2757 * 2758 * Device does not know initial frame in which out token will come. For this 2759 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2760 * getting this interrupt SW starts calculation for next transfer frame. 2761 */ 2762 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2763 { 2764 struct dwc2_hsotg *hsotg = ep->parent; 2765 int dir_in = ep->dir_in; 2766 u32 doepmsk; 2767 u32 tmp; 2768 2769 if (dir_in || !ep->isochronous) 2770 return; 2771 2772 /* 2773 * Store frame in which irq was asserted here, as 2774 * it can change while completing request below. 2775 */ 2776 tmp = dwc2_hsotg_read_frameno(hsotg); 2777 2778 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA); 2779 2780 if (using_desc_dma(hsotg)) { 2781 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2782 /* Start first ISO Out */ 2783 ep->target_frame = tmp; 2784 dwc2_gadget_start_isoc_ddma(ep); 2785 } 2786 return; 2787 } 2788 2789 if (ep->interval > 1 && 2790 ep->target_frame == TARGET_FRAME_INITIAL) { 2791 u32 dsts; 2792 u32 ctrl; 2793 2794 dsts = dwc2_readl(hsotg->regs + DSTS); 2795 ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2796 dwc2_gadget_incr_frame_num(ep); 2797 2798 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index)); 2799 if (ep->target_frame & 0x1) 2800 ctrl |= DXEPCTL_SETODDFR; 2801 else 2802 ctrl |= DXEPCTL_SETEVENFR; 2803 2804 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index)); 2805 } 2806 2807 dwc2_gadget_start_next_request(ep); 2808 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 2809 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2810 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK); 2811 } 2812 2813 /** 2814 * dwc2_gadget_handle_nak - handle NAK interrupt 2815 * @hs_ep: The endpoint on which interrupt is asserted. 2816 * 2817 * This is starting point for ISOC-IN transfer, synchronization done with 2818 * first IN token received from host while corresponding EP is disabled. 2819 * 2820 * Device does not know when first one token will arrive from host. On first 2821 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2822 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2823 * sent in response to that as there was no data in FIFO. SW is basing on this 2824 * interrupt to obtain frame in which token has come and then based on the 2825 * interval calculates next frame for transfer. 2826 */ 2827 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2828 { 2829 struct dwc2_hsotg *hsotg = hs_ep->parent; 2830 int dir_in = hs_ep->dir_in; 2831 2832 if (!dir_in || !hs_ep->isochronous) 2833 return; 2834 2835 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2836 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2837 2838 if (using_desc_dma(hsotg)) { 2839 dwc2_gadget_start_isoc_ddma(hs_ep); 2840 return; 2841 } 2842 2843 if (hs_ep->interval > 1) { 2844 u32 ctrl = dwc2_readl(hsotg->regs + 2845 DIEPCTL(hs_ep->index)); 2846 if (hs_ep->target_frame & 0x1) 2847 ctrl |= DXEPCTL_SETODDFR; 2848 else 2849 ctrl |= DXEPCTL_SETEVENFR; 2850 2851 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index)); 2852 } 2853 2854 dwc2_hsotg_complete_request(hsotg, hs_ep, 2855 get_ep_head(hs_ep), 0); 2856 } 2857 2858 dwc2_gadget_incr_frame_num(hs_ep); 2859 } 2860 2861 /** 2862 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2863 * @hsotg: The driver state 2864 * @idx: The index for the endpoint (0..15) 2865 * @dir_in: Set if this is an IN endpoint 2866 * 2867 * Process and clear any interrupt pending for an individual endpoint 2868 */ 2869 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2870 int dir_in) 2871 { 2872 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2873 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2874 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2875 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2876 u32 ints; 2877 u32 ctrl; 2878 2879 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2880 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2881 2882 /* Clear endpoint interrupts */ 2883 dwc2_writel(ints, hsotg->regs + epint_reg); 2884 2885 if (!hs_ep) { 2886 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2887 __func__, idx, dir_in ? "in" : "out"); 2888 return; 2889 } 2890 2891 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2892 __func__, idx, dir_in ? "in" : "out", ints); 2893 2894 /* Don't process XferCompl interrupt if it is a setup packet */ 2895 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 2896 ints &= ~DXEPINT_XFERCOMPL; 2897 2898 /* 2899 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 2900 * stage and xfercomplete was generated without SETUP phase done 2901 * interrupt. SW should parse received setup packet only after host's 2902 * exit from setup phase of control transfer. 2903 */ 2904 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 2905 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 2906 ints &= ~DXEPINT_XFERCOMPL; 2907 2908 if (ints & DXEPINT_XFERCOMPL) { 2909 dev_dbg(hsotg->dev, 2910 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 2911 __func__, dwc2_readl(hsotg->regs + epctl_reg), 2912 dwc2_readl(hsotg->regs + epsiz_reg)); 2913 2914 /* In DDMA handle isochronous requests separately */ 2915 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 2916 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 2917 /* Try to start next isoc request */ 2918 dwc2_gadget_start_next_isoc_ddma(hs_ep); 2919 } else if (dir_in) { 2920 /* 2921 * We get OutDone from the FIFO, so we only 2922 * need to look at completing IN requests here 2923 * if operating slave mode 2924 */ 2925 if (hs_ep->isochronous && hs_ep->interval > 1) 2926 dwc2_gadget_incr_frame_num(hs_ep); 2927 2928 dwc2_hsotg_complete_in(hsotg, hs_ep); 2929 if (ints & DXEPINT_NAKINTRPT) 2930 ints &= ~DXEPINT_NAKINTRPT; 2931 2932 if (idx == 0 && !hs_ep->req) 2933 dwc2_hsotg_enqueue_setup(hsotg); 2934 } else if (using_dma(hsotg)) { 2935 /* 2936 * We're using DMA, we need to fire an OutDone here 2937 * as we ignore the RXFIFO. 2938 */ 2939 if (hs_ep->isochronous && hs_ep->interval > 1) 2940 dwc2_gadget_incr_frame_num(hs_ep); 2941 2942 dwc2_hsotg_handle_outdone(hsotg, idx); 2943 } 2944 } 2945 2946 if (ints & DXEPINT_EPDISBLD) 2947 dwc2_gadget_handle_ep_disabled(hs_ep); 2948 2949 if (ints & DXEPINT_OUTTKNEPDIS) 2950 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 2951 2952 if (ints & DXEPINT_NAKINTRPT) 2953 dwc2_gadget_handle_nak(hs_ep); 2954 2955 if (ints & DXEPINT_AHBERR) 2956 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 2957 2958 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 2959 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 2960 2961 if (using_dma(hsotg) && idx == 0) { 2962 /* 2963 * this is the notification we've received a 2964 * setup packet. In non-DMA mode we'd get this 2965 * from the RXFIFO, instead we need to process 2966 * the setup here. 2967 */ 2968 2969 if (dir_in) 2970 WARN_ON_ONCE(1); 2971 else 2972 dwc2_hsotg_handle_outdone(hsotg, 0); 2973 } 2974 } 2975 2976 if (ints & DXEPINT_STSPHSERCVD) { 2977 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 2978 2979 /* Safety check EP0 state when STSPHSERCVD asserted */ 2980 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2981 /* Move to STATUS IN for DDMA */ 2982 if (using_desc_dma(hsotg)) 2983 dwc2_hsotg_ep0_zlp(hsotg, true); 2984 } 2985 2986 } 2987 2988 if (ints & DXEPINT_BACK2BACKSETUP) 2989 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 2990 2991 if (ints & DXEPINT_BNAINTR) { 2992 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 2993 2994 /* 2995 * Try to start next isoc request, if any. 2996 * Sometimes the endpoint remains enabled after BNA interrupt 2997 * assertion, which is not expected, hence we can enter here 2998 * couple of times. 2999 */ 3000 if (hs_ep->isochronous) 3001 dwc2_gadget_start_next_isoc_ddma(hs_ep); 3002 } 3003 3004 if (dir_in && !hs_ep->isochronous) { 3005 /* not sure if this is important, but we'll clear it anyway */ 3006 if (ints & DXEPINT_INTKNTXFEMP) { 3007 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3008 __func__, idx); 3009 } 3010 3011 /* this probably means something bad is happening */ 3012 if (ints & DXEPINT_INTKNEPMIS) { 3013 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3014 __func__, idx); 3015 } 3016 3017 /* FIFO has space or is empty (see GAHBCFG) */ 3018 if (hsotg->dedicated_fifos && 3019 ints & DXEPINT_TXFEMP) { 3020 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3021 __func__, idx); 3022 if (!using_dma(hsotg)) 3023 dwc2_hsotg_trytx(hsotg, hs_ep); 3024 } 3025 } 3026 } 3027 3028 /** 3029 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3030 * @hsotg: The device state. 3031 * 3032 * Handle updating the device settings after the enumeration phase has 3033 * been completed. 3034 */ 3035 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3036 { 3037 u32 dsts = dwc2_readl(hsotg->regs + DSTS); 3038 int ep0_mps = 0, ep_mps = 8; 3039 3040 /* 3041 * This should signal the finish of the enumeration phase 3042 * of the USB handshaking, so we should now know what rate 3043 * we connected at. 3044 */ 3045 3046 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3047 3048 /* 3049 * note, since we're limited by the size of transfer on EP0, and 3050 * it seems IN transfers must be a even number of packets we do 3051 * not advertise a 64byte MPS on EP0. 3052 */ 3053 3054 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3055 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3056 case DSTS_ENUMSPD_FS: 3057 case DSTS_ENUMSPD_FS48: 3058 hsotg->gadget.speed = USB_SPEED_FULL; 3059 ep0_mps = EP0_MPS_LIMIT; 3060 ep_mps = 1023; 3061 break; 3062 3063 case DSTS_ENUMSPD_HS: 3064 hsotg->gadget.speed = USB_SPEED_HIGH; 3065 ep0_mps = EP0_MPS_LIMIT; 3066 ep_mps = 1024; 3067 break; 3068 3069 case DSTS_ENUMSPD_LS: 3070 hsotg->gadget.speed = USB_SPEED_LOW; 3071 ep0_mps = 8; 3072 ep_mps = 8; 3073 /* 3074 * note, we don't actually support LS in this driver at the 3075 * moment, and the documentation seems to imply that it isn't 3076 * supported by the PHYs on some of the devices. 3077 */ 3078 break; 3079 } 3080 dev_info(hsotg->dev, "new device is %s\n", 3081 usb_speed_string(hsotg->gadget.speed)); 3082 3083 /* 3084 * we should now know the maximum packet size for an 3085 * endpoint, so set the endpoints to a default value. 3086 */ 3087 3088 if (ep0_mps) { 3089 int i; 3090 /* Initialize ep0 for both in and out directions */ 3091 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3092 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3093 for (i = 1; i < hsotg->num_of_eps; i++) { 3094 if (hsotg->eps_in[i]) 3095 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3096 0, 1); 3097 if (hsotg->eps_out[i]) 3098 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3099 0, 0); 3100 } 3101 } 3102 3103 /* ensure after enumeration our EP0 is active */ 3104 3105 dwc2_hsotg_enqueue_setup(hsotg); 3106 3107 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3108 dwc2_readl(hsotg->regs + DIEPCTL0), 3109 dwc2_readl(hsotg->regs + DOEPCTL0)); 3110 } 3111 3112 /** 3113 * kill_all_requests - remove all requests from the endpoint's queue 3114 * @hsotg: The device state. 3115 * @ep: The endpoint the requests may be on. 3116 * @result: The result code to use. 3117 * 3118 * Go through the requests on the given endpoint and mark them 3119 * completed with the given result code. 3120 */ 3121 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3122 struct dwc2_hsotg_ep *ep, 3123 int result) 3124 { 3125 struct dwc2_hsotg_req *req, *treq; 3126 unsigned int size; 3127 3128 ep->req = NULL; 3129 3130 list_for_each_entry_safe(req, treq, &ep->queue, queue) 3131 dwc2_hsotg_complete_request(hsotg, ep, req, 3132 result); 3133 3134 if (!hsotg->dedicated_fifos) 3135 return; 3136 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3137 if (size < ep->fifo_size) 3138 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3139 } 3140 3141 /** 3142 * dwc2_hsotg_disconnect - disconnect service 3143 * @hsotg: The device state. 3144 * 3145 * The device has been disconnected. Remove all current 3146 * transactions and signal the gadget driver that this 3147 * has happened. 3148 */ 3149 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3150 { 3151 unsigned int ep; 3152 3153 if (!hsotg->connected) 3154 return; 3155 3156 hsotg->connected = 0; 3157 hsotg->test_mode = 0; 3158 3159 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3160 if (hsotg->eps_in[ep]) 3161 kill_all_requests(hsotg, hsotg->eps_in[ep], 3162 -ESHUTDOWN); 3163 if (hsotg->eps_out[ep]) 3164 kill_all_requests(hsotg, hsotg->eps_out[ep], 3165 -ESHUTDOWN); 3166 } 3167 3168 call_gadget(hsotg, disconnect); 3169 hsotg->lx_state = DWC2_L3; 3170 3171 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3172 } 3173 3174 /** 3175 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3176 * @hsotg: The device state: 3177 * @periodic: True if this is a periodic FIFO interrupt 3178 */ 3179 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3180 { 3181 struct dwc2_hsotg_ep *ep; 3182 int epno, ret; 3183 3184 /* look through for any more data to transmit */ 3185 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3186 ep = index_to_ep(hsotg, epno, 1); 3187 3188 if (!ep) 3189 continue; 3190 3191 if (!ep->dir_in) 3192 continue; 3193 3194 if ((periodic && !ep->periodic) || 3195 (!periodic && ep->periodic)) 3196 continue; 3197 3198 ret = dwc2_hsotg_trytx(hsotg, ep); 3199 if (ret < 0) 3200 break; 3201 } 3202 } 3203 3204 /* IRQ flags which will trigger a retry around the IRQ loop */ 3205 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3206 GINTSTS_PTXFEMP | \ 3207 GINTSTS_RXFLVL) 3208 3209 /** 3210 * dwc2_hsotg_core_init - issue softreset to the core 3211 * @hsotg: The device state 3212 * 3213 * Issue a soft reset to the core, and await the core finishing it. 3214 */ 3215 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3216 bool is_usb_reset) 3217 { 3218 u32 intmsk; 3219 u32 val; 3220 u32 usbcfg; 3221 u32 dcfg = 0; 3222 3223 /* Kill any ep0 requests as controller will be reinitialized */ 3224 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3225 3226 if (!is_usb_reset) 3227 if (dwc2_core_reset(hsotg, true)) 3228 return; 3229 3230 /* 3231 * we must now enable ep0 ready for host detection and then 3232 * set configuration. 3233 */ 3234 3235 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3236 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 3237 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 3238 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 3239 3240 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS && 3241 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 3242 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) { 3243 /* FS/LS Dedicated Transceiver Interface */ 3244 usbcfg |= GUSBCFG_PHYSEL; 3245 } else { 3246 /* set the PLL on, remove the HNP/SRP and set the PHY */ 3247 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 3248 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 3249 (val << GUSBCFG_USBTRDTIM_SHIFT); 3250 } 3251 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 3252 3253 dwc2_hsotg_init_fifo(hsotg); 3254 3255 if (!is_usb_reset) 3256 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 3257 3258 dcfg |= DCFG_EPMISCNT(1); 3259 3260 switch (hsotg->params.speed) { 3261 case DWC2_SPEED_PARAM_LOW: 3262 dcfg |= DCFG_DEVSPD_LS; 3263 break; 3264 case DWC2_SPEED_PARAM_FULL: 3265 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3266 dcfg |= DCFG_DEVSPD_FS48; 3267 else 3268 dcfg |= DCFG_DEVSPD_FS; 3269 break; 3270 default: 3271 dcfg |= DCFG_DEVSPD_HS; 3272 } 3273 3274 dwc2_writel(dcfg, hsotg->regs + DCFG); 3275 3276 /* Clear any pending OTG interrupts */ 3277 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT); 3278 3279 /* Clear any pending interrupts */ 3280 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 3281 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3282 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3283 GINTSTS_USBRST | GINTSTS_RESETDET | 3284 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3285 GINTSTS_USBSUSP | GINTSTS_WKUPINT; 3286 3287 if (!using_desc_dma(hsotg)) 3288 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3289 3290 if (!hsotg->params.external_id_pin_ctl) 3291 intmsk |= GINTSTS_CONIDSTSCHNG; 3292 3293 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 3294 3295 if (using_dma(hsotg)) { 3296 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3297 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT), 3298 hsotg->regs + GAHBCFG); 3299 3300 /* Set DDMA mode support in the core if needed */ 3301 if (using_desc_dma(hsotg)) 3302 __orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN); 3303 3304 } else { 3305 dwc2_writel(((hsotg->dedicated_fifos) ? 3306 (GAHBCFG_NP_TXF_EMP_LVL | 3307 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3308 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG); 3309 } 3310 3311 /* 3312 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3313 * when we have no data to transfer. Otherwise we get being flooded by 3314 * interrupts. 3315 */ 3316 3317 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3318 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3319 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3320 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3321 hsotg->regs + DIEPMSK); 3322 3323 /* 3324 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3325 * DMA mode we may need this and StsPhseRcvd. 3326 */ 3327 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3328 DOEPMSK_STSPHSERCVDMSK) : 0) | 3329 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3330 DOEPMSK_SETUPMSK, 3331 hsotg->regs + DOEPMSK); 3332 3333 /* Enable BNA interrupt for DDMA */ 3334 if (using_desc_dma(hsotg)) 3335 __orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK); 3336 3337 dwc2_writel(0, hsotg->regs + DAINTMSK); 3338 3339 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3340 dwc2_readl(hsotg->regs + DIEPCTL0), 3341 dwc2_readl(hsotg->regs + DOEPCTL0)); 3342 3343 /* enable in and out endpoint interrupts */ 3344 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3345 3346 /* 3347 * Enable the RXFIFO when in slave mode, as this is how we collect 3348 * the data. In DMA mode, we get events from the FIFO but also 3349 * things we cannot process, so do not use it. 3350 */ 3351 if (!using_dma(hsotg)) 3352 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3353 3354 /* Enable interrupts for EP0 in and out */ 3355 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3356 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3357 3358 if (!is_usb_reset) { 3359 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3360 udelay(10); /* see openiboot */ 3361 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3362 } 3363 3364 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL)); 3365 3366 /* 3367 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3368 * writing to the EPCTL register.. 3369 */ 3370 3371 /* set to read 1 8byte packet */ 3372 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3373 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 3374 3375 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3376 DXEPCTL_CNAK | DXEPCTL_EPENA | 3377 DXEPCTL_USBACTEP, 3378 hsotg->regs + DOEPCTL0); 3379 3380 /* enable, but don't activate EP0in */ 3381 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3382 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 3383 3384 /* clear global NAKs */ 3385 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3386 if (!is_usb_reset) 3387 val |= DCTL_SFTDISCON; 3388 __orr32(hsotg->regs + DCTL, val); 3389 3390 /* must be at-least 3ms to allow bus to see disconnect */ 3391 mdelay(3); 3392 3393 hsotg->lx_state = DWC2_L0; 3394 3395 dwc2_hsotg_enqueue_setup(hsotg); 3396 3397 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3398 dwc2_readl(hsotg->regs + DIEPCTL0), 3399 dwc2_readl(hsotg->regs + DOEPCTL0)); 3400 } 3401 3402 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3403 { 3404 /* set the soft-disconnect bit */ 3405 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 3406 } 3407 3408 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3409 { 3410 /* remove the soft-disconnect and let's go */ 3411 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON); 3412 } 3413 3414 /** 3415 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3416 * @hsotg: The device state: 3417 * 3418 * This interrupt indicates one of the following conditions occurred while 3419 * transmitting an ISOC transaction. 3420 * - Corrupted IN Token for ISOC EP. 3421 * - Packet not complete in FIFO. 3422 * 3423 * The following actions will be taken: 3424 * - Determine the EP 3425 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3426 */ 3427 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3428 { 3429 struct dwc2_hsotg_ep *hs_ep; 3430 u32 epctrl; 3431 u32 idx; 3432 3433 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3434 3435 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3436 hs_ep = hsotg->eps_in[idx]; 3437 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx)); 3438 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous && 3439 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3440 epctrl |= DXEPCTL_SNAK; 3441 epctrl |= DXEPCTL_EPDIS; 3442 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx)); 3443 } 3444 } 3445 3446 /* Clear interrupt */ 3447 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS); 3448 } 3449 3450 /** 3451 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3452 * @hsotg: The device state: 3453 * 3454 * This interrupt indicates one of the following conditions occurred while 3455 * transmitting an ISOC transaction. 3456 * - Corrupted OUT Token for ISOC EP. 3457 * - Packet not complete in FIFO. 3458 * 3459 * The following actions will be taken: 3460 * - Determine the EP 3461 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3462 */ 3463 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3464 { 3465 u32 gintsts; 3466 u32 gintmsk; 3467 u32 epctrl; 3468 struct dwc2_hsotg_ep *hs_ep; 3469 int idx; 3470 3471 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3472 3473 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3474 hs_ep = hsotg->eps_out[idx]; 3475 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3476 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous && 3477 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3478 /* Unmask GOUTNAKEFF interrupt */ 3479 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3480 gintmsk |= GINTSTS_GOUTNAKEFF; 3481 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3482 3483 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3484 if (!(gintsts & GINTSTS_GOUTNAKEFF)) 3485 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3486 } 3487 } 3488 3489 /* Clear interrupt */ 3490 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS); 3491 } 3492 3493 /** 3494 * dwc2_hsotg_irq - handle device interrupt 3495 * @irq: The IRQ number triggered 3496 * @pw: The pw value when registered the handler. 3497 */ 3498 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3499 { 3500 struct dwc2_hsotg *hsotg = pw; 3501 int retry_count = 8; 3502 u32 gintsts; 3503 u32 gintmsk; 3504 3505 if (!dwc2_is_device_mode(hsotg)) 3506 return IRQ_NONE; 3507 3508 spin_lock(&hsotg->lock); 3509 irq_retry: 3510 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3511 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3512 3513 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3514 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3515 3516 gintsts &= gintmsk; 3517 3518 if (gintsts & GINTSTS_RESETDET) { 3519 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3520 3521 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS); 3522 3523 /* This event must be used only if controller is suspended */ 3524 if (hsotg->lx_state == DWC2_L2) { 3525 dwc2_exit_hibernation(hsotg, true); 3526 hsotg->lx_state = DWC2_L0; 3527 } 3528 } 3529 3530 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3531 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL); 3532 u32 connected = hsotg->connected; 3533 3534 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3535 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3536 dwc2_readl(hsotg->regs + GNPTXSTS)); 3537 3538 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 3539 3540 /* Report disconnection if it is not already done. */ 3541 dwc2_hsotg_disconnect(hsotg); 3542 3543 /* Reset device address to zero */ 3544 __bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK); 3545 3546 if (usb_status & GOTGCTL_BSESVLD && connected) 3547 dwc2_hsotg_core_init_disconnected(hsotg, true); 3548 } 3549 3550 if (gintsts & GINTSTS_ENUMDONE) { 3551 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 3552 3553 dwc2_hsotg_irq_enumdone(hsotg); 3554 } 3555 3556 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3557 u32 daint = dwc2_readl(hsotg->regs + DAINT); 3558 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3559 u32 daint_out, daint_in; 3560 int ep; 3561 3562 daint &= daintmsk; 3563 daint_out = daint >> DAINT_OUTEP_SHIFT; 3564 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3565 3566 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3567 3568 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3569 ep++, daint_out >>= 1) { 3570 if (daint_out & 1) 3571 dwc2_hsotg_epint(hsotg, ep, 0); 3572 } 3573 3574 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3575 ep++, daint_in >>= 1) { 3576 if (daint_in & 1) 3577 dwc2_hsotg_epint(hsotg, ep, 1); 3578 } 3579 } 3580 3581 /* check both FIFOs */ 3582 3583 if (gintsts & GINTSTS_NPTXFEMP) { 3584 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3585 3586 /* 3587 * Disable the interrupt to stop it happening again 3588 * unless one of these endpoint routines decides that 3589 * it needs re-enabling 3590 */ 3591 3592 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3593 dwc2_hsotg_irq_fifoempty(hsotg, false); 3594 } 3595 3596 if (gintsts & GINTSTS_PTXFEMP) { 3597 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3598 3599 /* See note in GINTSTS_NPTxFEmp */ 3600 3601 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3602 dwc2_hsotg_irq_fifoempty(hsotg, true); 3603 } 3604 3605 if (gintsts & GINTSTS_RXFLVL) { 3606 /* 3607 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3608 * we need to retry dwc2_hsotg_handle_rx if this is still 3609 * set. 3610 */ 3611 3612 dwc2_hsotg_handle_rx(hsotg); 3613 } 3614 3615 if (gintsts & GINTSTS_ERLYSUSP) { 3616 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3617 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 3618 } 3619 3620 /* 3621 * these next two seem to crop-up occasionally causing the core 3622 * to shutdown the USB transfer, so try clearing them and logging 3623 * the occurrence. 3624 */ 3625 3626 if (gintsts & GINTSTS_GOUTNAKEFF) { 3627 u8 idx; 3628 u32 epctrl; 3629 u32 gintmsk; 3630 struct dwc2_hsotg_ep *hs_ep; 3631 3632 /* Mask this interrupt */ 3633 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3634 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3635 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3636 3637 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3638 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3639 hs_ep = hsotg->eps_out[idx]; 3640 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3641 3642 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3643 epctrl |= DXEPCTL_SNAK; 3644 epctrl |= DXEPCTL_EPDIS; 3645 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx)); 3646 } 3647 } 3648 3649 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3650 } 3651 3652 if (gintsts & GINTSTS_GINNAKEFF) { 3653 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3654 3655 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3656 3657 dwc2_hsotg_dump(hsotg); 3658 } 3659 3660 if (gintsts & GINTSTS_INCOMPL_SOIN) 3661 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3662 3663 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3664 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3665 3666 /* 3667 * if we've had fifo events, we should try and go around the 3668 * loop again to see if there's any point in returning yet. 3669 */ 3670 3671 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3672 goto irq_retry; 3673 3674 spin_unlock(&hsotg->lock); 3675 3676 return IRQ_HANDLED; 3677 } 3678 3679 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, 3680 u32 bit, u32 timeout) 3681 { 3682 u32 i; 3683 3684 for (i = 0; i < timeout; i++) { 3685 if (dwc2_readl(hs_otg->regs + reg) & bit) 3686 return 0; 3687 udelay(1); 3688 } 3689 3690 return -ETIMEDOUT; 3691 } 3692 3693 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3694 struct dwc2_hsotg_ep *hs_ep) 3695 { 3696 u32 epctrl_reg; 3697 u32 epint_reg; 3698 3699 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3700 DOEPCTL(hs_ep->index); 3701 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3702 DOEPINT(hs_ep->index); 3703 3704 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3705 hs_ep->name); 3706 3707 if (hs_ep->dir_in) { 3708 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3709 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK); 3710 /* Wait for Nak effect */ 3711 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3712 DXEPINT_INEPNAKEFF, 100)) 3713 dev_warn(hsotg->dev, 3714 "%s: timeout DIEPINT.NAKEFF\n", 3715 __func__); 3716 } else { 3717 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK); 3718 /* Wait for Nak effect */ 3719 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3720 GINTSTS_GINNAKEFF, 100)) 3721 dev_warn(hsotg->dev, 3722 "%s: timeout GINTSTS.GINNAKEFF\n", 3723 __func__); 3724 } 3725 } else { 3726 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF)) 3727 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3728 3729 /* Wait for global nak to take effect */ 3730 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3731 GINTSTS_GOUTNAKEFF, 100)) 3732 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3733 __func__); 3734 } 3735 3736 /* Disable ep */ 3737 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3738 3739 /* Wait for ep to be disabled */ 3740 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3741 dev_warn(hsotg->dev, 3742 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3743 3744 /* Clear EPDISBLD interrupt */ 3745 __orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD); 3746 3747 if (hs_ep->dir_in) { 3748 unsigned short fifo_index; 3749 3750 if (hsotg->dedicated_fifos || hs_ep->periodic) 3751 fifo_index = hs_ep->fifo_index; 3752 else 3753 fifo_index = 0; 3754 3755 /* Flush TX FIFO */ 3756 dwc2_flush_tx_fifo(hsotg, fifo_index); 3757 3758 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3759 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3760 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3761 3762 } else { 3763 /* Remove global NAKs */ 3764 __orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK); 3765 } 3766 } 3767 3768 /** 3769 * dwc2_hsotg_ep_enable - enable the given endpoint 3770 * @ep: The USB endpint to configure 3771 * @desc: The USB endpoint descriptor to configure with. 3772 * 3773 * This is called from the USB gadget code's usb_ep_enable(). 3774 */ 3775 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3776 const struct usb_endpoint_descriptor *desc) 3777 { 3778 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3779 struct dwc2_hsotg *hsotg = hs_ep->parent; 3780 unsigned long flags; 3781 unsigned int index = hs_ep->index; 3782 u32 epctrl_reg; 3783 u32 epctrl; 3784 u32 mps; 3785 u32 mc; 3786 u32 mask; 3787 unsigned int dir_in; 3788 unsigned int i, val, size; 3789 int ret = 0; 3790 3791 dev_dbg(hsotg->dev, 3792 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3793 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3794 desc->wMaxPacketSize, desc->bInterval); 3795 3796 /* not to be called for EP0 */ 3797 if (index == 0) { 3798 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3799 return -EINVAL; 3800 } 3801 3802 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3803 if (dir_in != hs_ep->dir_in) { 3804 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3805 return -EINVAL; 3806 } 3807 3808 mps = usb_endpoint_maxp(desc); 3809 mc = usb_endpoint_maxp_mult(desc); 3810 3811 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3812 3813 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3814 epctrl = dwc2_readl(hsotg->regs + epctrl_reg); 3815 3816 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3817 __func__, epctrl, epctrl_reg); 3818 3819 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 3820 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 3821 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 3822 MAX_DMA_DESC_NUM_GENERIC * 3823 sizeof(struct dwc2_dma_desc), 3824 &hs_ep->desc_list_dma, GFP_ATOMIC); 3825 if (!hs_ep->desc_list) { 3826 ret = -ENOMEM; 3827 goto error2; 3828 } 3829 } 3830 3831 spin_lock_irqsave(&hsotg->lock, flags); 3832 3833 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 3834 epctrl |= DXEPCTL_MPS(mps); 3835 3836 /* 3837 * mark the endpoint as active, otherwise the core may ignore 3838 * transactions entirely for this endpoint 3839 */ 3840 epctrl |= DXEPCTL_USBACTEP; 3841 3842 /* update the endpoint state */ 3843 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 3844 3845 /* default, set to non-periodic */ 3846 hs_ep->isochronous = 0; 3847 hs_ep->periodic = 0; 3848 hs_ep->halted = 0; 3849 hs_ep->interval = desc->bInterval; 3850 3851 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { 3852 case USB_ENDPOINT_XFER_ISOC: 3853 epctrl |= DXEPCTL_EPTYPE_ISO; 3854 epctrl |= DXEPCTL_SETEVENFR; 3855 hs_ep->isochronous = 1; 3856 hs_ep->interval = 1 << (desc->bInterval - 1); 3857 hs_ep->target_frame = TARGET_FRAME_INITIAL; 3858 hs_ep->isoc_chain_num = 0; 3859 hs_ep->next_desc = 0; 3860 if (dir_in) { 3861 hs_ep->periodic = 1; 3862 mask = dwc2_readl(hsotg->regs + DIEPMSK); 3863 mask |= DIEPMSK_NAKMSK; 3864 dwc2_writel(mask, hsotg->regs + DIEPMSK); 3865 } else { 3866 mask = dwc2_readl(hsotg->regs + DOEPMSK); 3867 mask |= DOEPMSK_OUTTKNEPDISMSK; 3868 dwc2_writel(mask, hsotg->regs + DOEPMSK); 3869 } 3870 break; 3871 3872 case USB_ENDPOINT_XFER_BULK: 3873 epctrl |= DXEPCTL_EPTYPE_BULK; 3874 break; 3875 3876 case USB_ENDPOINT_XFER_INT: 3877 if (dir_in) 3878 hs_ep->periodic = 1; 3879 3880 if (hsotg->gadget.speed == USB_SPEED_HIGH) 3881 hs_ep->interval = 1 << (desc->bInterval - 1); 3882 3883 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 3884 break; 3885 3886 case USB_ENDPOINT_XFER_CONTROL: 3887 epctrl |= DXEPCTL_EPTYPE_CONTROL; 3888 break; 3889 } 3890 3891 /* 3892 * if the hardware has dedicated fifos, we must give each IN EP 3893 * a unique tx-fifo even if it is non-periodic. 3894 */ 3895 if (dir_in && hsotg->dedicated_fifos) { 3896 u32 fifo_index = 0; 3897 u32 fifo_size = UINT_MAX; 3898 3899 size = hs_ep->ep.maxpacket * hs_ep->mc; 3900 for (i = 1; i < hsotg->num_of_eps; ++i) { 3901 if (hsotg->fifo_map & (1 << i)) 3902 continue; 3903 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i)); 3904 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 3905 if (val < size) 3906 continue; 3907 /* Search for smallest acceptable fifo */ 3908 if (val < fifo_size) { 3909 fifo_size = val; 3910 fifo_index = i; 3911 } 3912 } 3913 if (!fifo_index) { 3914 dev_err(hsotg->dev, 3915 "%s: No suitable fifo found\n", __func__); 3916 ret = -ENOMEM; 3917 goto error1; 3918 } 3919 hsotg->fifo_map |= 1 << fifo_index; 3920 epctrl |= DXEPCTL_TXFNUM(fifo_index); 3921 hs_ep->fifo_index = fifo_index; 3922 hs_ep->fifo_size = fifo_size; 3923 } 3924 3925 /* for non control endpoints, set PID to D0 */ 3926 if (index && !hs_ep->isochronous) 3927 epctrl |= DXEPCTL_SETD0PID; 3928 3929 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 3930 __func__, epctrl); 3931 3932 dwc2_writel(epctrl, hsotg->regs + epctrl_reg); 3933 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 3934 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 3935 3936 /* enable the endpoint interrupt */ 3937 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 3938 3939 error1: 3940 spin_unlock_irqrestore(&hsotg->lock, flags); 3941 3942 error2: 3943 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 3944 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC * 3945 sizeof(struct dwc2_dma_desc), 3946 hs_ep->desc_list, hs_ep->desc_list_dma); 3947 hs_ep->desc_list = NULL; 3948 } 3949 3950 return ret; 3951 } 3952 3953 /** 3954 * dwc2_hsotg_ep_disable - disable given endpoint 3955 * @ep: The endpoint to disable. 3956 */ 3957 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 3958 { 3959 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3960 struct dwc2_hsotg *hsotg = hs_ep->parent; 3961 int dir_in = hs_ep->dir_in; 3962 int index = hs_ep->index; 3963 unsigned long flags; 3964 u32 epctrl_reg; 3965 u32 ctrl; 3966 3967 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 3968 3969 if (ep == &hsotg->eps_out[0]->ep) { 3970 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 3971 return -EINVAL; 3972 } 3973 3974 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 3975 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 3976 return -EINVAL; 3977 } 3978 3979 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3980 3981 spin_lock_irqsave(&hsotg->lock, flags); 3982 3983 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 3984 3985 if (ctrl & DXEPCTL_EPENA) 3986 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 3987 3988 ctrl &= ~DXEPCTL_EPENA; 3989 ctrl &= ~DXEPCTL_USBACTEP; 3990 ctrl |= DXEPCTL_SNAK; 3991 3992 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 3993 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 3994 3995 /* disable endpoint interrupts */ 3996 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 3997 3998 /* terminate all requests with shutdown */ 3999 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4000 4001 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4002 hs_ep->fifo_index = 0; 4003 hs_ep->fifo_size = 0; 4004 4005 spin_unlock_irqrestore(&hsotg->lock, flags); 4006 return 0; 4007 } 4008 4009 /** 4010 * on_list - check request is on the given endpoint 4011 * @ep: The endpoint to check. 4012 * @test: The request to test if it is on the endpoint. 4013 */ 4014 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4015 { 4016 struct dwc2_hsotg_req *req, *treq; 4017 4018 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4019 if (req == test) 4020 return true; 4021 } 4022 4023 return false; 4024 } 4025 4026 /** 4027 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4028 * @ep: The endpoint to dequeue. 4029 * @req: The request to be removed from a queue. 4030 */ 4031 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4032 { 4033 struct dwc2_hsotg_req *hs_req = our_req(req); 4034 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4035 struct dwc2_hsotg *hs = hs_ep->parent; 4036 unsigned long flags; 4037 4038 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4039 4040 spin_lock_irqsave(&hs->lock, flags); 4041 4042 if (!on_list(hs_ep, hs_req)) { 4043 spin_unlock_irqrestore(&hs->lock, flags); 4044 return -EINVAL; 4045 } 4046 4047 /* Dequeue already started request */ 4048 if (req == &hs_ep->req->req) 4049 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4050 4051 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4052 spin_unlock_irqrestore(&hs->lock, flags); 4053 4054 return 0; 4055 } 4056 4057 /** 4058 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4059 * @ep: The endpoint to set halt. 4060 * @value: Set or unset the halt. 4061 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4062 * the endpoint is busy processing requests. 4063 * 4064 * We need to stall the endpoint immediately if request comes from set_feature 4065 * protocol command handler. 4066 */ 4067 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4068 { 4069 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4070 struct dwc2_hsotg *hs = hs_ep->parent; 4071 int index = hs_ep->index; 4072 u32 epreg; 4073 u32 epctl; 4074 u32 xfertype; 4075 4076 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4077 4078 if (index == 0) { 4079 if (value) 4080 dwc2_hsotg_stall_ep0(hs); 4081 else 4082 dev_warn(hs->dev, 4083 "%s: can't clear halt on ep0\n", __func__); 4084 return 0; 4085 } 4086 4087 if (hs_ep->isochronous) { 4088 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4089 return -EINVAL; 4090 } 4091 4092 if (!now && value && !list_empty(&hs_ep->queue)) { 4093 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4094 ep->name); 4095 return -EAGAIN; 4096 } 4097 4098 if (hs_ep->dir_in) { 4099 epreg = DIEPCTL(index); 4100 epctl = dwc2_readl(hs->regs + epreg); 4101 4102 if (value) { 4103 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4104 if (epctl & DXEPCTL_EPENA) 4105 epctl |= DXEPCTL_EPDIS; 4106 } else { 4107 epctl &= ~DXEPCTL_STALL; 4108 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4109 if (xfertype == DXEPCTL_EPTYPE_BULK || 4110 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4111 epctl |= DXEPCTL_SETD0PID; 4112 } 4113 dwc2_writel(epctl, hs->regs + epreg); 4114 } else { 4115 epreg = DOEPCTL(index); 4116 epctl = dwc2_readl(hs->regs + epreg); 4117 4118 if (value) { 4119 epctl |= DXEPCTL_STALL; 4120 } else { 4121 epctl &= ~DXEPCTL_STALL; 4122 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4123 if (xfertype == DXEPCTL_EPTYPE_BULK || 4124 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4125 epctl |= DXEPCTL_SETD0PID; 4126 } 4127 dwc2_writel(epctl, hs->regs + epreg); 4128 } 4129 4130 hs_ep->halted = value; 4131 4132 return 0; 4133 } 4134 4135 /** 4136 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4137 * @ep: The endpoint to set halt. 4138 * @value: Set or unset the halt. 4139 */ 4140 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4141 { 4142 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4143 struct dwc2_hsotg *hs = hs_ep->parent; 4144 unsigned long flags = 0; 4145 int ret = 0; 4146 4147 spin_lock_irqsave(&hs->lock, flags); 4148 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4149 spin_unlock_irqrestore(&hs->lock, flags); 4150 4151 return ret; 4152 } 4153 4154 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4155 .enable = dwc2_hsotg_ep_enable, 4156 .disable = dwc2_hsotg_ep_disable, 4157 .alloc_request = dwc2_hsotg_ep_alloc_request, 4158 .free_request = dwc2_hsotg_ep_free_request, 4159 .queue = dwc2_hsotg_ep_queue_lock, 4160 .dequeue = dwc2_hsotg_ep_dequeue, 4161 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4162 /* note, don't believe we have any call for the fifo routines */ 4163 }; 4164 4165 /** 4166 * dwc2_hsotg_init - initialize the usb core 4167 * @hsotg: The driver state 4168 */ 4169 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4170 { 4171 u32 trdtim; 4172 u32 usbcfg; 4173 /* unmask subset of endpoint interrupts */ 4174 4175 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4176 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4177 hsotg->regs + DIEPMSK); 4178 4179 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4180 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4181 hsotg->regs + DOEPMSK); 4182 4183 dwc2_writel(0, hsotg->regs + DAINTMSK); 4184 4185 /* Be in disconnected state until gadget is registered */ 4186 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 4187 4188 /* setup fifos */ 4189 4190 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4191 dwc2_readl(hsotg->regs + GRXFSIZ), 4192 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 4193 4194 dwc2_hsotg_init_fifo(hsotg); 4195 4196 /* keep other bits untouched (so e.g. forced modes are not lost) */ 4197 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 4198 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 4199 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 4200 4201 /* set the PLL on, remove the HNP/SRP and set the PHY */ 4202 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 4203 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 4204 (trdtim << GUSBCFG_USBTRDTIM_SHIFT); 4205 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 4206 4207 if (using_dma(hsotg)) 4208 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN); 4209 } 4210 4211 /** 4212 * dwc2_hsotg_udc_start - prepare the udc for work 4213 * @gadget: The usb gadget state 4214 * @driver: The usb gadget driver 4215 * 4216 * Perform initialization to prepare udc device and driver 4217 * to work. 4218 */ 4219 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4220 struct usb_gadget_driver *driver) 4221 { 4222 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4223 unsigned long flags; 4224 int ret; 4225 4226 if (!hsotg) { 4227 pr_err("%s: called with no device\n", __func__); 4228 return -ENODEV; 4229 } 4230 4231 if (!driver) { 4232 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4233 return -EINVAL; 4234 } 4235 4236 if (driver->max_speed < USB_SPEED_FULL) 4237 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4238 4239 if (!driver->setup) { 4240 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4241 return -EINVAL; 4242 } 4243 4244 WARN_ON(hsotg->driver); 4245 4246 driver->driver.bus = NULL; 4247 hsotg->driver = driver; 4248 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4249 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4250 4251 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4252 ret = dwc2_lowlevel_hw_enable(hsotg); 4253 if (ret) 4254 goto err; 4255 } 4256 4257 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4258 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4259 4260 spin_lock_irqsave(&hsotg->lock, flags); 4261 if (dwc2_hw_is_device(hsotg)) { 4262 dwc2_hsotg_init(hsotg); 4263 dwc2_hsotg_core_init_disconnected(hsotg, false); 4264 } 4265 4266 hsotg->enabled = 0; 4267 spin_unlock_irqrestore(&hsotg->lock, flags); 4268 4269 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4270 4271 return 0; 4272 4273 err: 4274 hsotg->driver = NULL; 4275 return ret; 4276 } 4277 4278 /** 4279 * dwc2_hsotg_udc_stop - stop the udc 4280 * @gadget: The usb gadget state 4281 * @driver: The usb gadget driver 4282 * 4283 * Stop udc hw block and stay tunned for future transmissions 4284 */ 4285 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4286 { 4287 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4288 unsigned long flags = 0; 4289 int ep; 4290 4291 if (!hsotg) 4292 return -ENODEV; 4293 4294 /* all endpoints should be shutdown */ 4295 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4296 if (hsotg->eps_in[ep]) 4297 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4298 if (hsotg->eps_out[ep]) 4299 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4300 } 4301 4302 spin_lock_irqsave(&hsotg->lock, flags); 4303 4304 hsotg->driver = NULL; 4305 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4306 hsotg->enabled = 0; 4307 4308 spin_unlock_irqrestore(&hsotg->lock, flags); 4309 4310 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4311 otg_set_peripheral(hsotg->uphy->otg, NULL); 4312 4313 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4314 dwc2_lowlevel_hw_disable(hsotg); 4315 4316 return 0; 4317 } 4318 4319 /** 4320 * dwc2_hsotg_gadget_getframe - read the frame number 4321 * @gadget: The usb gadget state 4322 * 4323 * Read the {micro} frame number 4324 */ 4325 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4326 { 4327 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4328 } 4329 4330 /** 4331 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4332 * @gadget: The usb gadget state 4333 * @is_on: Current state of the USB PHY 4334 * 4335 * Connect/Disconnect the USB PHY pullup 4336 */ 4337 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4338 { 4339 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4340 unsigned long flags = 0; 4341 4342 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4343 hsotg->op_state); 4344 4345 /* Don't modify pullup state while in host mode */ 4346 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4347 hsotg->enabled = is_on; 4348 return 0; 4349 } 4350 4351 spin_lock_irqsave(&hsotg->lock, flags); 4352 if (is_on) { 4353 hsotg->enabled = 1; 4354 dwc2_hsotg_core_init_disconnected(hsotg, false); 4355 dwc2_hsotg_core_connect(hsotg); 4356 } else { 4357 dwc2_hsotg_core_disconnect(hsotg); 4358 dwc2_hsotg_disconnect(hsotg); 4359 hsotg->enabled = 0; 4360 } 4361 4362 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4363 spin_unlock_irqrestore(&hsotg->lock, flags); 4364 4365 return 0; 4366 } 4367 4368 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4369 { 4370 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4371 unsigned long flags; 4372 4373 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4374 spin_lock_irqsave(&hsotg->lock, flags); 4375 4376 /* 4377 * If controller is hibernated, it must exit from hibernation 4378 * before being initialized / de-initialized 4379 */ 4380 if (hsotg->lx_state == DWC2_L2) 4381 dwc2_exit_hibernation(hsotg, false); 4382 4383 if (is_active) { 4384 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4385 4386 dwc2_hsotg_core_init_disconnected(hsotg, false); 4387 if (hsotg->enabled) 4388 dwc2_hsotg_core_connect(hsotg); 4389 } else { 4390 dwc2_hsotg_core_disconnect(hsotg); 4391 dwc2_hsotg_disconnect(hsotg); 4392 } 4393 4394 spin_unlock_irqrestore(&hsotg->lock, flags); 4395 return 0; 4396 } 4397 4398 /** 4399 * dwc2_hsotg_vbus_draw - report bMaxPower field 4400 * @gadget: The usb gadget state 4401 * @mA: Amount of current 4402 * 4403 * Report how much power the device may consume to the phy. 4404 */ 4405 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4406 { 4407 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4408 4409 if (IS_ERR_OR_NULL(hsotg->uphy)) 4410 return -ENOTSUPP; 4411 return usb_phy_set_power(hsotg->uphy, mA); 4412 } 4413 4414 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4415 .get_frame = dwc2_hsotg_gadget_getframe, 4416 .udc_start = dwc2_hsotg_udc_start, 4417 .udc_stop = dwc2_hsotg_udc_stop, 4418 .pullup = dwc2_hsotg_pullup, 4419 .vbus_session = dwc2_hsotg_vbus_session, 4420 .vbus_draw = dwc2_hsotg_vbus_draw, 4421 }; 4422 4423 /** 4424 * dwc2_hsotg_initep - initialise a single endpoint 4425 * @hsotg: The device state. 4426 * @hs_ep: The endpoint to be initialised. 4427 * @epnum: The endpoint number 4428 * 4429 * Initialise the given endpoint (as part of the probe and device state 4430 * creation) to give to the gadget driver. Setup the endpoint name, any 4431 * direction information and other state that may be required. 4432 */ 4433 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4434 struct dwc2_hsotg_ep *hs_ep, 4435 int epnum, 4436 bool dir_in) 4437 { 4438 char *dir; 4439 4440 if (epnum == 0) 4441 dir = ""; 4442 else if (dir_in) 4443 dir = "in"; 4444 else 4445 dir = "out"; 4446 4447 hs_ep->dir_in = dir_in; 4448 hs_ep->index = epnum; 4449 4450 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4451 4452 INIT_LIST_HEAD(&hs_ep->queue); 4453 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4454 4455 /* add to the list of endpoints known by the gadget driver */ 4456 if (epnum) 4457 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4458 4459 hs_ep->parent = hsotg; 4460 hs_ep->ep.name = hs_ep->name; 4461 4462 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4463 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4464 else 4465 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4466 epnum ? 1024 : EP0_MPS_LIMIT); 4467 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4468 4469 if (epnum == 0) { 4470 hs_ep->ep.caps.type_control = true; 4471 } else { 4472 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4473 hs_ep->ep.caps.type_iso = true; 4474 hs_ep->ep.caps.type_bulk = true; 4475 } 4476 hs_ep->ep.caps.type_int = true; 4477 } 4478 4479 if (dir_in) 4480 hs_ep->ep.caps.dir_in = true; 4481 else 4482 hs_ep->ep.caps.dir_out = true; 4483 4484 /* 4485 * if we're using dma, we need to set the next-endpoint pointer 4486 * to be something valid. 4487 */ 4488 4489 if (using_dma(hsotg)) { 4490 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4491 4492 if (dir_in) 4493 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum)); 4494 else 4495 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum)); 4496 } 4497 } 4498 4499 /** 4500 * dwc2_hsotg_hw_cfg - read HW configuration registers 4501 * @param: The device state 4502 * 4503 * Read the USB core HW configuration registers 4504 */ 4505 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4506 { 4507 u32 cfg; 4508 u32 ep_type; 4509 u32 i; 4510 4511 /* check hardware configuration */ 4512 4513 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4514 4515 /* Add ep0 */ 4516 hsotg->num_of_eps++; 4517 4518 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4519 sizeof(struct dwc2_hsotg_ep), 4520 GFP_KERNEL); 4521 if (!hsotg->eps_in[0]) 4522 return -ENOMEM; 4523 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4524 hsotg->eps_out[0] = hsotg->eps_in[0]; 4525 4526 cfg = hsotg->hw_params.dev_ep_dirs; 4527 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4528 ep_type = cfg & 3; 4529 /* Direction in or both */ 4530 if (!(ep_type & 2)) { 4531 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4532 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4533 if (!hsotg->eps_in[i]) 4534 return -ENOMEM; 4535 } 4536 /* Direction out or both */ 4537 if (!(ep_type & 1)) { 4538 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4539 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4540 if (!hsotg->eps_out[i]) 4541 return -ENOMEM; 4542 } 4543 } 4544 4545 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4546 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4547 4548 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4549 hsotg->num_of_eps, 4550 hsotg->dedicated_fifos ? "dedicated" : "shared", 4551 hsotg->fifo_mem); 4552 return 0; 4553 } 4554 4555 /** 4556 * dwc2_hsotg_dump - dump state of the udc 4557 * @param: The device state 4558 */ 4559 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4560 { 4561 #ifdef DEBUG 4562 struct device *dev = hsotg->dev; 4563 void __iomem *regs = hsotg->regs; 4564 u32 val; 4565 int idx; 4566 4567 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4568 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL), 4569 dwc2_readl(regs + DIEPMSK)); 4570 4571 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4572 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1)); 4573 4574 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4575 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ)); 4576 4577 /* show periodic fifo settings */ 4578 4579 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4580 val = dwc2_readl(regs + DPTXFSIZN(idx)); 4581 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4582 val >> FIFOSIZE_DEPTH_SHIFT, 4583 val & FIFOSIZE_STARTADDR_MASK); 4584 } 4585 4586 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4587 dev_info(dev, 4588 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4589 dwc2_readl(regs + DIEPCTL(idx)), 4590 dwc2_readl(regs + DIEPTSIZ(idx)), 4591 dwc2_readl(regs + DIEPDMA(idx))); 4592 4593 val = dwc2_readl(regs + DOEPCTL(idx)); 4594 dev_info(dev, 4595 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4596 idx, dwc2_readl(regs + DOEPCTL(idx)), 4597 dwc2_readl(regs + DOEPTSIZ(idx)), 4598 dwc2_readl(regs + DOEPDMA(idx))); 4599 } 4600 4601 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4602 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE)); 4603 #endif 4604 } 4605 4606 /** 4607 * dwc2_gadget_init - init function for gadget 4608 * @dwc2: The data structure for the DWC2 driver. 4609 * @irq: The IRQ number for the controller. 4610 */ 4611 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq) 4612 { 4613 struct device *dev = hsotg->dev; 4614 int epnum; 4615 int ret; 4616 4617 /* Dump fifo information */ 4618 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4619 hsotg->params.g_np_tx_fifo_size); 4620 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4621 4622 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4623 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4624 hsotg->gadget.name = dev_name(dev); 4625 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4626 hsotg->gadget.is_otg = 1; 4627 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4628 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4629 4630 ret = dwc2_hsotg_hw_cfg(hsotg); 4631 if (ret) { 4632 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4633 return ret; 4634 } 4635 4636 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4637 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4638 if (!hsotg->ctrl_buff) 4639 return -ENOMEM; 4640 4641 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4642 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4643 if (!hsotg->ep0_buff) 4644 return -ENOMEM; 4645 4646 if (using_desc_dma(hsotg)) { 4647 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4648 if (ret < 0) 4649 return ret; 4650 } 4651 4652 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED, 4653 dev_name(hsotg->dev), hsotg); 4654 if (ret < 0) { 4655 dev_err(dev, "cannot claim IRQ for gadget\n"); 4656 return ret; 4657 } 4658 4659 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4660 4661 if (hsotg->num_of_eps == 0) { 4662 dev_err(dev, "wrong number of EPs (zero)\n"); 4663 return -EINVAL; 4664 } 4665 4666 /* setup endpoint information */ 4667 4668 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4669 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4670 4671 /* allocate EP0 request */ 4672 4673 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4674 GFP_KERNEL); 4675 if (!hsotg->ctrl_req) { 4676 dev_err(dev, "failed to allocate ctrl req\n"); 4677 return -ENOMEM; 4678 } 4679 4680 /* initialise the endpoints now the core has been initialised */ 4681 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4682 if (hsotg->eps_in[epnum]) 4683 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4684 epnum, 1); 4685 if (hsotg->eps_out[epnum]) 4686 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4687 epnum, 0); 4688 } 4689 4690 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4691 if (ret) 4692 return ret; 4693 4694 dwc2_hsotg_dump(hsotg); 4695 4696 return 0; 4697 } 4698 4699 /** 4700 * dwc2_hsotg_remove - remove function for hsotg driver 4701 * @pdev: The platform information for the driver 4702 */ 4703 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4704 { 4705 usb_del_gadget_udc(&hsotg->gadget); 4706 4707 return 0; 4708 } 4709 4710 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4711 { 4712 unsigned long flags; 4713 4714 if (hsotg->lx_state != DWC2_L0) 4715 return 0; 4716 4717 if (hsotg->driver) { 4718 int ep; 4719 4720 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4721 hsotg->driver->driver.name); 4722 4723 spin_lock_irqsave(&hsotg->lock, flags); 4724 if (hsotg->enabled) 4725 dwc2_hsotg_core_disconnect(hsotg); 4726 dwc2_hsotg_disconnect(hsotg); 4727 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4728 spin_unlock_irqrestore(&hsotg->lock, flags); 4729 4730 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4731 if (hsotg->eps_in[ep]) 4732 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4733 if (hsotg->eps_out[ep]) 4734 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4735 } 4736 } 4737 4738 return 0; 4739 } 4740 4741 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4742 { 4743 unsigned long flags; 4744 4745 if (hsotg->lx_state == DWC2_L2) 4746 return 0; 4747 4748 if (hsotg->driver) { 4749 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4750 hsotg->driver->driver.name); 4751 4752 spin_lock_irqsave(&hsotg->lock, flags); 4753 dwc2_hsotg_core_init_disconnected(hsotg, false); 4754 if (hsotg->enabled) 4755 dwc2_hsotg_core_connect(hsotg); 4756 spin_unlock_irqrestore(&hsotg->lock, flags); 4757 } 4758 4759 return 0; 4760 } 4761 4762 /** 4763 * dwc2_backup_device_registers() - Backup controller device registers. 4764 * When suspending usb bus, registers needs to be backuped 4765 * if controller power is disabled once suspended. 4766 * 4767 * @hsotg: Programming view of the DWC_otg controller 4768 */ 4769 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 4770 { 4771 struct dwc2_dregs_backup *dr; 4772 int i; 4773 4774 dev_dbg(hsotg->dev, "%s\n", __func__); 4775 4776 /* Backup dev regs */ 4777 dr = &hsotg->dr_backup; 4778 4779 dr->dcfg = dwc2_readl(hsotg->regs + DCFG); 4780 dr->dctl = dwc2_readl(hsotg->regs + DCTL); 4781 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 4782 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK); 4783 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 4784 4785 for (i = 0; i < hsotg->num_of_eps; i++) { 4786 /* Backup IN EPs */ 4787 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i)); 4788 4789 /* Ensure DATA PID is correctly configured */ 4790 if (dr->diepctl[i] & DXEPCTL_DPID) 4791 dr->diepctl[i] |= DXEPCTL_SETD1PID; 4792 else 4793 dr->diepctl[i] |= DXEPCTL_SETD0PID; 4794 4795 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i)); 4796 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i)); 4797 4798 /* Backup OUT EPs */ 4799 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i)); 4800 4801 /* Ensure DATA PID is correctly configured */ 4802 if (dr->doepctl[i] & DXEPCTL_DPID) 4803 dr->doepctl[i] |= DXEPCTL_SETD1PID; 4804 else 4805 dr->doepctl[i] |= DXEPCTL_SETD0PID; 4806 4807 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i)); 4808 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i)); 4809 } 4810 dr->valid = true; 4811 return 0; 4812 } 4813 4814 /** 4815 * dwc2_restore_device_registers() - Restore controller device registers. 4816 * When resuming usb bus, device registers needs to be restored 4817 * if controller power were disabled. 4818 * 4819 * @hsotg: Programming view of the DWC_otg controller 4820 */ 4821 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg) 4822 { 4823 struct dwc2_dregs_backup *dr; 4824 u32 dctl; 4825 int i; 4826 4827 dev_dbg(hsotg->dev, "%s\n", __func__); 4828 4829 /* Restore dev regs */ 4830 dr = &hsotg->dr_backup; 4831 if (!dr->valid) { 4832 dev_err(hsotg->dev, "%s: no device registers to restore\n", 4833 __func__); 4834 return -EINVAL; 4835 } 4836 dr->valid = false; 4837 4838 dwc2_writel(dr->dcfg, hsotg->regs + DCFG); 4839 dwc2_writel(dr->dctl, hsotg->regs + DCTL); 4840 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK); 4841 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK); 4842 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK); 4843 4844 for (i = 0; i < hsotg->num_of_eps; i++) { 4845 /* Restore IN EPs */ 4846 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i)); 4847 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i)); 4848 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i)); 4849 4850 /* Restore OUT EPs */ 4851 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i)); 4852 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i)); 4853 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i)); 4854 } 4855 4856 /* Set the Power-On Programming done bit */ 4857 dctl = dwc2_readl(hsotg->regs + DCTL); 4858 dctl |= DCTL_PWRONPRGDONE; 4859 dwc2_writel(dctl, hsotg->regs + DCTL); 4860 4861 return 0; 4862 } 4863