xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision e2c75e76)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 
31 #include "core.h"
32 #include "hw.h"
33 
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 	return container_of(req, struct dwc2_hsotg_req, req);
38 }
39 
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44 
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 	return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49 
50 static inline void __orr32(void __iomem *ptr, u32 val)
51 {
52 	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 }
54 
55 static inline void __bic32(void __iomem *ptr, u32 val)
56 {
57 	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 }
59 
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 						u32 ep_index, u32 dir_in)
62 {
63 	if (dir_in)
64 		return hsotg->eps_in[ep_index];
65 	else
66 		return hsotg->eps_out[ep_index];
67 }
68 
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 
72 /**
73  * using_dma - return the DMA status of the driver.
74  * @hsotg: The driver state.
75  *
76  * Return true if we're using DMA.
77  *
78  * Currently, we have the DMA support code worked into everywhere
79  * that needs it, but the AMBA DMA implementation in the hardware can
80  * only DMA from 32bit aligned addresses. This means that gadgets such
81  * as the CDC Ethernet cannot work as they often pass packets which are
82  * not 32bit aligned.
83  *
84  * Unfortunately the choice to use DMA or not is global to the controller
85  * and seems to be only settable when the controller is being put through
86  * a core reset. This means we either need to fix the gadgets to take
87  * account of DMA alignment, or add bounce buffers (yuerk).
88  *
89  * g_using_dma is set depending on dts flag.
90  */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 	return hsotg->params.g_dma;
94 }
95 
96 /*
97  * using_desc_dma - return the descriptor DMA status of the driver.
98  * @hsotg: The driver state.
99  *
100  * Return true if we're using descriptor DMA.
101  */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 	return hsotg->params.g_dma_desc;
105 }
106 
107 /**
108  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109  * @hs_ep: The endpoint
110  * @increment: The value to increment by
111  *
112  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114  */
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116 {
117 	hs_ep->target_frame += hs_ep->interval;
118 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
119 		hs_ep->frame_overrun = 1;
120 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
121 	} else {
122 		hs_ep->frame_overrun = 0;
123 	}
124 }
125 
126 /**
127  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128  * @hsotg: The device state
129  * @ints: A bitmask of the interrupts to enable
130  */
131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
132 {
133 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 	u32 new_gsintmsk;
135 
136 	new_gsintmsk = gsintmsk | ints;
137 
138 	if (new_gsintmsk != gsintmsk) {
139 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
141 	}
142 }
143 
144 /**
145  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146  * @hsotg: The device state
147  * @ints: A bitmask of the interrupts to enable
148  */
149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150 {
151 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 	u32 new_gsintmsk;
153 
154 	new_gsintmsk = gsintmsk & ~ints;
155 
156 	if (new_gsintmsk != gsintmsk)
157 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
158 }
159 
160 /**
161  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162  * @hsotg: The device state
163  * @ep: The endpoint index
164  * @dir_in: True if direction is in.
165  * @en: The enable value, true to enable
166  *
167  * Set or clear the mask for an individual endpoint's interrupt
168  * request.
169  */
170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171 				  unsigned int ep, unsigned int dir_in,
172 				 unsigned int en)
173 {
174 	unsigned long flags;
175 	u32 bit = 1 << ep;
176 	u32 daint;
177 
178 	if (!dir_in)
179 		bit <<= 16;
180 
181 	local_irq_save(flags);
182 	daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 	if (en)
184 		daint |= bit;
185 	else
186 		daint &= ~bit;
187 	dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 	local_irq_restore(flags);
189 }
190 
191 /**
192  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
193  */
194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
195 {
196 	if (hsotg->hw_params.en_multiple_tx_fifo)
197 		/* In dedicated FIFO mode we need count of IN EPs */
198 		return hsotg->hw_params.num_dev_in_eps;
199 	else
200 		/* In shared FIFO mode we need count of Periodic IN EPs */
201 		return hsotg->hw_params.num_dev_perio_in_ep;
202 }
203 
204 /**
205  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
206  * device mode TX FIFOs
207  */
208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
209 {
210 	int addr;
211 	int tx_addr_max;
212 	u32 np_tx_fifo_size;
213 
214 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
215 				hsotg->params.g_np_tx_fifo_size);
216 
217 	/* Get Endpoint Info Control block size in DWORDs. */
218 	tx_addr_max = hsotg->hw_params.total_fifo_size;
219 
220 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
221 	if (tx_addr_max <= addr)
222 		return 0;
223 
224 	return tx_addr_max - addr;
225 }
226 
227 /**
228  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
229  * TX FIFOs
230  */
231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int tx_fifo_count;
234 	int tx_fifo_depth;
235 
236 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
237 
238 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
239 
240 	if (!tx_fifo_count)
241 		return tx_fifo_depth;
242 	else
243 		return tx_fifo_depth / tx_fifo_count;
244 }
245 
246 /**
247  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248  * @hsotg: The device instance.
249  */
250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
251 {
252 	unsigned int ep;
253 	unsigned int addr;
254 	int timeout;
255 	u32 val;
256 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
257 
258 	/* Reset fifo map if not correctly cleared during previous session */
259 	WARN_ON(hsotg->fifo_map);
260 	hsotg->fifo_map = 0;
261 
262 	/* set RX/NPTX FIFO sizes */
263 	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
264 	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
265 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
266 		    hsotg->regs + GNPTXFSIZ);
267 
268 	/*
269 	 * arange all the rest of the TX FIFOs, as some versions of this
270 	 * block have overlapping default addresses. This also ensures
271 	 * that if the settings have been changed, then they are set to
272 	 * known values.
273 	 */
274 
275 	/* start at the end of the GNPTXFSIZ, rounded up */
276 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
277 
278 	/*
279 	 * Configure fifos sizes from provided configuration and assign
280 	 * them to endpoints dynamically according to maxpacket size value of
281 	 * given endpoint.
282 	 */
283 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
284 		if (!txfsz[ep])
285 			continue;
286 		val = addr;
287 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
288 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
289 			  "insufficient fifo memory");
290 		addr += txfsz[ep];
291 
292 		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
293 		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
294 	}
295 
296 	dwc2_writel(hsotg->hw_params.total_fifo_size |
297 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
298 		    hsotg->regs + GDFIFOCFG);
299 	/*
300 	 * according to p428 of the design guide, we need to ensure that
301 	 * all fifos are flushed before continuing
302 	 */
303 
304 	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
305 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
306 
307 	/* wait until the fifos are both flushed */
308 	timeout = 100;
309 	while (1) {
310 		val = dwc2_readl(hsotg->regs + GRSTCTL);
311 
312 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
313 			break;
314 
315 		if (--timeout == 0) {
316 			dev_err(hsotg->dev,
317 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
318 				__func__, val);
319 			break;
320 		}
321 
322 		udelay(1);
323 	}
324 
325 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
326 }
327 
328 /**
329  * @ep: USB endpoint to allocate request for.
330  * @flags: Allocation flags
331  *
332  * Allocate a new USB request structure appropriate for the specified endpoint
333  */
334 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
335 						       gfp_t flags)
336 {
337 	struct dwc2_hsotg_req *req;
338 
339 	req = kzalloc(sizeof(*req), flags);
340 	if (!req)
341 		return NULL;
342 
343 	INIT_LIST_HEAD(&req->queue);
344 
345 	return &req->req;
346 }
347 
348 /**
349  * is_ep_periodic - return true if the endpoint is in periodic mode.
350  * @hs_ep: The endpoint to query.
351  *
352  * Returns true if the endpoint is in periodic mode, meaning it is being
353  * used for an Interrupt or ISO transfer.
354  */
355 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
356 {
357 	return hs_ep->periodic;
358 }
359 
360 /**
361  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
362  * @hsotg: The device state.
363  * @hs_ep: The endpoint for the request
364  * @hs_req: The request being processed.
365  *
366  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
367  * of a request to ensure the buffer is ready for access by the caller.
368  */
369 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
370 				 struct dwc2_hsotg_ep *hs_ep,
371 				struct dwc2_hsotg_req *hs_req)
372 {
373 	struct usb_request *req = &hs_req->req;
374 
375 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
376 }
377 
378 /*
379  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
380  * for Control endpoint
381  * @hsotg: The device state.
382  *
383  * This function will allocate 4 descriptor chains for EP 0: 2 for
384  * Setup stage, per one for IN and OUT data/status transactions.
385  */
386 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
387 {
388 	hsotg->setup_desc[0] =
389 		dmam_alloc_coherent(hsotg->dev,
390 				    sizeof(struct dwc2_dma_desc),
391 				    &hsotg->setup_desc_dma[0],
392 				    GFP_KERNEL);
393 	if (!hsotg->setup_desc[0])
394 		goto fail;
395 
396 	hsotg->setup_desc[1] =
397 		dmam_alloc_coherent(hsotg->dev,
398 				    sizeof(struct dwc2_dma_desc),
399 				    &hsotg->setup_desc_dma[1],
400 				    GFP_KERNEL);
401 	if (!hsotg->setup_desc[1])
402 		goto fail;
403 
404 	hsotg->ctrl_in_desc =
405 		dmam_alloc_coherent(hsotg->dev,
406 				    sizeof(struct dwc2_dma_desc),
407 				    &hsotg->ctrl_in_desc_dma,
408 				    GFP_KERNEL);
409 	if (!hsotg->ctrl_in_desc)
410 		goto fail;
411 
412 	hsotg->ctrl_out_desc =
413 		dmam_alloc_coherent(hsotg->dev,
414 				    sizeof(struct dwc2_dma_desc),
415 				    &hsotg->ctrl_out_desc_dma,
416 				    GFP_KERNEL);
417 	if (!hsotg->ctrl_out_desc)
418 		goto fail;
419 
420 	return 0;
421 
422 fail:
423 	return -ENOMEM;
424 }
425 
426 /**
427  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
428  * @hsotg: The controller state.
429  * @hs_ep: The endpoint we're going to write for.
430  * @hs_req: The request to write data for.
431  *
432  * This is called when the TxFIFO has some space in it to hold a new
433  * transmission and we have something to give it. The actual setup of
434  * the data size is done elsewhere, so all we have to do is to actually
435  * write the data.
436  *
437  * The return value is zero if there is more space (or nothing was done)
438  * otherwise -ENOSPC is returned if the FIFO space was used up.
439  *
440  * This routine is only needed for PIO
441  */
442 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
443 				 struct dwc2_hsotg_ep *hs_ep,
444 				struct dwc2_hsotg_req *hs_req)
445 {
446 	bool periodic = is_ep_periodic(hs_ep);
447 	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
448 	int buf_pos = hs_req->req.actual;
449 	int to_write = hs_ep->size_loaded;
450 	void *data;
451 	int can_write;
452 	int pkt_round;
453 	int max_transfer;
454 
455 	to_write -= (buf_pos - hs_ep->last_load);
456 
457 	/* if there's nothing to write, get out early */
458 	if (to_write == 0)
459 		return 0;
460 
461 	if (periodic && !hsotg->dedicated_fifos) {
462 		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
463 		int size_left;
464 		int size_done;
465 
466 		/*
467 		 * work out how much data was loaded so we can calculate
468 		 * how much data is left in the fifo.
469 		 */
470 
471 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
472 
473 		/*
474 		 * if shared fifo, we cannot write anything until the
475 		 * previous data has been completely sent.
476 		 */
477 		if (hs_ep->fifo_load != 0) {
478 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
479 			return -ENOSPC;
480 		}
481 
482 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
483 			__func__, size_left,
484 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
485 
486 		/* how much of the data has moved */
487 		size_done = hs_ep->size_loaded - size_left;
488 
489 		/* how much data is left in the fifo */
490 		can_write = hs_ep->fifo_load - size_done;
491 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
492 			__func__, can_write);
493 
494 		can_write = hs_ep->fifo_size - can_write;
495 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
496 			__func__, can_write);
497 
498 		if (can_write <= 0) {
499 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
500 			return -ENOSPC;
501 		}
502 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
503 		can_write = dwc2_readl(hsotg->regs +
504 				DTXFSTS(hs_ep->fifo_index));
505 
506 		can_write &= 0xffff;
507 		can_write *= 4;
508 	} else {
509 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
510 			dev_dbg(hsotg->dev,
511 				"%s: no queue slots available (0x%08x)\n",
512 				__func__, gnptxsts);
513 
514 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
515 			return -ENOSPC;
516 		}
517 
518 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
519 		can_write *= 4;	/* fifo size is in 32bit quantities. */
520 	}
521 
522 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
523 
524 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
525 		__func__, gnptxsts, can_write, to_write, max_transfer);
526 
527 	/*
528 	 * limit to 512 bytes of data, it seems at least on the non-periodic
529 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
530 	 * fragment of the end of the transfer in it.
531 	 */
532 	if (can_write > 512 && !periodic)
533 		can_write = 512;
534 
535 	/*
536 	 * limit the write to one max-packet size worth of data, but allow
537 	 * the transfer to return that it did not run out of fifo space
538 	 * doing it.
539 	 */
540 	if (to_write > max_transfer) {
541 		to_write = max_transfer;
542 
543 		/* it's needed only when we do not use dedicated fifos */
544 		if (!hsotg->dedicated_fifos)
545 			dwc2_hsotg_en_gsint(hsotg,
546 					    periodic ? GINTSTS_PTXFEMP :
547 					   GINTSTS_NPTXFEMP);
548 	}
549 
550 	/* see if we can write data */
551 
552 	if (to_write > can_write) {
553 		to_write = can_write;
554 		pkt_round = to_write % max_transfer;
555 
556 		/*
557 		 * Round the write down to an
558 		 * exact number of packets.
559 		 *
560 		 * Note, we do not currently check to see if we can ever
561 		 * write a full packet or not to the FIFO.
562 		 */
563 
564 		if (pkt_round)
565 			to_write -= pkt_round;
566 
567 		/*
568 		 * enable correct FIFO interrupt to alert us when there
569 		 * is more room left.
570 		 */
571 
572 		/* it's needed only when we do not use dedicated fifos */
573 		if (!hsotg->dedicated_fifos)
574 			dwc2_hsotg_en_gsint(hsotg,
575 					    periodic ? GINTSTS_PTXFEMP :
576 					   GINTSTS_NPTXFEMP);
577 	}
578 
579 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
580 		to_write, hs_req->req.length, can_write, buf_pos);
581 
582 	if (to_write <= 0)
583 		return -ENOSPC;
584 
585 	hs_req->req.actual = buf_pos + to_write;
586 	hs_ep->total_data += to_write;
587 
588 	if (periodic)
589 		hs_ep->fifo_load += to_write;
590 
591 	to_write = DIV_ROUND_UP(to_write, 4);
592 	data = hs_req->req.buf + buf_pos;
593 
594 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
595 
596 	return (to_write >= can_write) ? -ENOSPC : 0;
597 }
598 
599 /**
600  * get_ep_limit - get the maximum data legnth for this endpoint
601  * @hs_ep: The endpoint
602  *
603  * Return the maximum data that can be queued in one go on a given endpoint
604  * so that transfers that are too long can be split.
605  */
606 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
607 {
608 	int index = hs_ep->index;
609 	unsigned int maxsize;
610 	unsigned int maxpkt;
611 
612 	if (index != 0) {
613 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
614 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
615 	} else {
616 		maxsize = 64 + 64;
617 		if (hs_ep->dir_in)
618 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
619 		else
620 			maxpkt = 2;
621 	}
622 
623 	/* we made the constant loading easier above by using +1 */
624 	maxpkt--;
625 	maxsize--;
626 
627 	/*
628 	 * constrain by packet count if maxpkts*pktsize is greater
629 	 * than the length register size.
630 	 */
631 
632 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
633 		maxsize = maxpkt * hs_ep->ep.maxpacket;
634 
635 	return maxsize;
636 }
637 
638 /**
639  * dwc2_hsotg_read_frameno - read current frame number
640  * @hsotg: The device instance
641  *
642  * Return the current frame number
643  */
644 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
645 {
646 	u32 dsts;
647 
648 	dsts = dwc2_readl(hsotg->regs + DSTS);
649 	dsts &= DSTS_SOFFN_MASK;
650 	dsts >>= DSTS_SOFFN_SHIFT;
651 
652 	return dsts;
653 }
654 
655 /**
656  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
657  * DMA descriptor chain prepared for specific endpoint
658  * @hs_ep: The endpoint
659  *
660  * Return the maximum data that can be queued in one go on a given endpoint
661  * depending on its descriptor chain capacity so that transfers that
662  * are too long can be split.
663  */
664 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
665 {
666 	int is_isoc = hs_ep->isochronous;
667 	unsigned int maxsize;
668 
669 	if (is_isoc)
670 		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
671 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
672 	else
673 		maxsize = DEV_DMA_NBYTES_LIMIT;
674 
675 	/* Above size of one descriptor was chosen, multiple it */
676 	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
677 
678 	return maxsize;
679 }
680 
681 /*
682  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
683  * @hs_ep: The endpoint
684  * @mask: RX/TX bytes mask to be defined
685  *
686  * Returns maximum data payload for one descriptor after analyzing endpoint
687  * characteristics.
688  * DMA descriptor transfer bytes limit depends on EP type:
689  * Control out - MPS,
690  * Isochronous - descriptor rx/tx bytes bitfield limit,
691  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
692  * have concatenations from various descriptors within one packet.
693  *
694  * Selects corresponding mask for RX/TX bytes as well.
695  */
696 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
697 {
698 	u32 mps = hs_ep->ep.maxpacket;
699 	int dir_in = hs_ep->dir_in;
700 	u32 desc_size = 0;
701 
702 	if (!hs_ep->index && !dir_in) {
703 		desc_size = mps;
704 		*mask = DEV_DMA_NBYTES_MASK;
705 	} else if (hs_ep->isochronous) {
706 		if (dir_in) {
707 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
708 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
709 		} else {
710 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
711 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
712 		}
713 	} else {
714 		desc_size = DEV_DMA_NBYTES_LIMIT;
715 		*mask = DEV_DMA_NBYTES_MASK;
716 
717 		/* Round down desc_size to be mps multiple */
718 		desc_size -= desc_size % mps;
719 	}
720 
721 	return desc_size;
722 }
723 
724 /*
725  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
726  * @hs_ep: The endpoint
727  * @dma_buff: DMA address to use
728  * @len: Length of the transfer
729  *
730  * This function will iterate over descriptor chain and fill its entries
731  * with corresponding information based on transfer data.
732  */
733 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
734 						 dma_addr_t dma_buff,
735 						 unsigned int len)
736 {
737 	struct dwc2_hsotg *hsotg = hs_ep->parent;
738 	int dir_in = hs_ep->dir_in;
739 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
740 	u32 mps = hs_ep->ep.maxpacket;
741 	u32 maxsize = 0;
742 	u32 offset = 0;
743 	u32 mask = 0;
744 	int i;
745 
746 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
747 
748 	hs_ep->desc_count = (len / maxsize) +
749 				((len % maxsize) ? 1 : 0);
750 	if (len == 0)
751 		hs_ep->desc_count = 1;
752 
753 	for (i = 0; i < hs_ep->desc_count; ++i) {
754 		desc->status = 0;
755 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
756 				 << DEV_DMA_BUFF_STS_SHIFT);
757 
758 		if (len > maxsize) {
759 			if (!hs_ep->index && !dir_in)
760 				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
761 
762 			desc->status |= (maxsize <<
763 						DEV_DMA_NBYTES_SHIFT & mask);
764 			desc->buf = dma_buff + offset;
765 
766 			len -= maxsize;
767 			offset += maxsize;
768 		} else {
769 			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
770 
771 			if (dir_in)
772 				desc->status |= (len % mps) ? DEV_DMA_SHORT :
773 					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
774 			if (len > maxsize)
775 				dev_err(hsotg->dev, "wrong len %d\n", len);
776 
777 			desc->status |=
778 				len << DEV_DMA_NBYTES_SHIFT & mask;
779 			desc->buf = dma_buff + offset;
780 		}
781 
782 		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
783 		desc->status |= (DEV_DMA_BUFF_STS_HREADY
784 				 << DEV_DMA_BUFF_STS_SHIFT);
785 		desc++;
786 	}
787 }
788 
789 /*
790  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
791  * @hs_ep: The isochronous endpoint.
792  * @dma_buff: usb requests dma buffer.
793  * @len: usb request transfer length.
794  *
795  * Finds out index of first free entry either in the bottom or up half of
796  * descriptor chain depend on which is under SW control and not processed
797  * by HW. Then fills that descriptor with the data of the arrived usb request,
798  * frame info, sets Last and IOC bits increments next_desc. If filled
799  * descriptor is not the first one, removes L bit from the previous descriptor
800  * status.
801  */
802 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
803 				      dma_addr_t dma_buff, unsigned int len)
804 {
805 	struct dwc2_dma_desc *desc;
806 	struct dwc2_hsotg *hsotg = hs_ep->parent;
807 	u32 index;
808 	u32 maxsize = 0;
809 	u32 mask = 0;
810 
811 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
812 	if (len > maxsize) {
813 		dev_err(hsotg->dev, "wrong len %d\n", len);
814 		return -EINVAL;
815 	}
816 
817 	/*
818 	 * If SW has already filled half of chain, then return and wait for
819 	 * the other chain to be processed by HW.
820 	 */
821 	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
822 		return -EBUSY;
823 
824 	/* Increment frame number by interval for IN */
825 	if (hs_ep->dir_in)
826 		dwc2_gadget_incr_frame_num(hs_ep);
827 
828 	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
829 		 hs_ep->next_desc;
830 
831 	/* Sanity check of calculated index */
832 	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
833 	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
834 		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
835 		return -EINVAL;
836 	}
837 
838 	desc = &hs_ep->desc_list[index];
839 
840 	/* Clear L bit of previous desc if more than one entries in the chain */
841 	if (hs_ep->next_desc)
842 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
843 
844 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
845 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
846 
847 	desc->status = 0;
848 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
849 
850 	desc->buf = dma_buff;
851 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
852 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
853 
854 	if (hs_ep->dir_in) {
855 		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
856 				 DEV_DMA_ISOC_PID_MASK) |
857 				((len % hs_ep->ep.maxpacket) ?
858 				 DEV_DMA_SHORT : 0) |
859 				((hs_ep->target_frame <<
860 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
861 				 DEV_DMA_ISOC_FRNUM_MASK);
862 	}
863 
864 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
865 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
866 
867 	/* Update index of last configured entry in the chain */
868 	hs_ep->next_desc++;
869 
870 	return 0;
871 }
872 
873 /*
874  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
875  * @hs_ep: The isochronous endpoint.
876  *
877  * Prepare first descriptor chain for isochronous endpoints. Afterwards
878  * write DMA address to HW and enable the endpoint.
879  *
880  * Switch between descriptor chains via isoc_chain_num to give SW opportunity
881  * to prepare second descriptor chain while first one is being processed by HW.
882  */
883 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
884 {
885 	struct dwc2_hsotg *hsotg = hs_ep->parent;
886 	struct dwc2_hsotg_req *hs_req, *treq;
887 	int index = hs_ep->index;
888 	int ret;
889 	u32 dma_reg;
890 	u32 depctl;
891 	u32 ctrl;
892 
893 	if (list_empty(&hs_ep->queue)) {
894 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
895 		return;
896 	}
897 
898 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
899 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
900 						 hs_req->req.length);
901 		if (ret) {
902 			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
903 			break;
904 		}
905 	}
906 
907 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
908 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
909 
910 	/* write descriptor chain address to control register */
911 	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
912 
913 	ctrl = dwc2_readl(hsotg->regs + depctl);
914 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
915 	dwc2_writel(ctrl, hsotg->regs + depctl);
916 
917 	/* Switch ISOC descriptor chain number being processed by SW*/
918 	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
919 	hs_ep->next_desc = 0;
920 }
921 
922 /**
923  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
924  * @hsotg: The controller state.
925  * @hs_ep: The endpoint to process a request for
926  * @hs_req: The request to start.
927  * @continuing: True if we are doing more for the current request.
928  *
929  * Start the given request running by setting the endpoint registers
930  * appropriately, and writing any data to the FIFOs.
931  */
932 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
933 				 struct dwc2_hsotg_ep *hs_ep,
934 				struct dwc2_hsotg_req *hs_req,
935 				bool continuing)
936 {
937 	struct usb_request *ureq = &hs_req->req;
938 	int index = hs_ep->index;
939 	int dir_in = hs_ep->dir_in;
940 	u32 epctrl_reg;
941 	u32 epsize_reg;
942 	u32 epsize;
943 	u32 ctrl;
944 	unsigned int length;
945 	unsigned int packets;
946 	unsigned int maxreq;
947 	unsigned int dma_reg;
948 
949 	if (index != 0) {
950 		if (hs_ep->req && !continuing) {
951 			dev_err(hsotg->dev, "%s: active request\n", __func__);
952 			WARN_ON(1);
953 			return;
954 		} else if (hs_ep->req != hs_req && continuing) {
955 			dev_err(hsotg->dev,
956 				"%s: continue different req\n", __func__);
957 			WARN_ON(1);
958 			return;
959 		}
960 	}
961 
962 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
963 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
964 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
965 
966 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
967 		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
968 		hs_ep->dir_in ? "in" : "out");
969 
970 	/* If endpoint is stalled, we will restart request later */
971 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
972 
973 	if (index && ctrl & DXEPCTL_STALL) {
974 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
975 		return;
976 	}
977 
978 	length = ureq->length - ureq->actual;
979 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
980 		ureq->length, ureq->actual);
981 
982 	if (!using_desc_dma(hsotg))
983 		maxreq = get_ep_limit(hs_ep);
984 	else
985 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
986 
987 	if (length > maxreq) {
988 		int round = maxreq % hs_ep->ep.maxpacket;
989 
990 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
991 			__func__, length, maxreq, round);
992 
993 		/* round down to multiple of packets */
994 		if (round)
995 			maxreq -= round;
996 
997 		length = maxreq;
998 	}
999 
1000 	if (length)
1001 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1002 	else
1003 		packets = 1;	/* send one packet if length is zero. */
1004 
1005 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1006 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1007 		return;
1008 	}
1009 
1010 	if (dir_in && index != 0)
1011 		if (hs_ep->isochronous)
1012 			epsize = DXEPTSIZ_MC(packets);
1013 		else
1014 			epsize = DXEPTSIZ_MC(1);
1015 	else
1016 		epsize = 0;
1017 
1018 	/*
1019 	 * zero length packet should be programmed on its own and should not
1020 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1021 	 */
1022 	if (dir_in && ureq->zero && !continuing) {
1023 		/* Test if zlp is actually required. */
1024 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1025 		    !(ureq->length % hs_ep->ep.maxpacket))
1026 			hs_ep->send_zlp = 1;
1027 	}
1028 
1029 	epsize |= DXEPTSIZ_PKTCNT(packets);
1030 	epsize |= DXEPTSIZ_XFERSIZE(length);
1031 
1032 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1033 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1034 
1035 	/* store the request as the current one we're doing */
1036 	hs_ep->req = hs_req;
1037 
1038 	if (using_desc_dma(hsotg)) {
1039 		u32 offset = 0;
1040 		u32 mps = hs_ep->ep.maxpacket;
1041 
1042 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1043 		if (!dir_in) {
1044 			if (!index)
1045 				length = mps;
1046 			else if (length % mps)
1047 				length += (mps - (length % mps));
1048 		}
1049 
1050 		/*
1051 		 * If more data to send, adjust DMA for EP0 out data stage.
1052 		 * ureq->dma stays unchanged, hence increment it by already
1053 		 * passed passed data count before starting new transaction.
1054 		 */
1055 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1056 		    continuing)
1057 			offset = ureq->actual;
1058 
1059 		/* Fill DDMA chain entries */
1060 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1061 						     length);
1062 
1063 		/* write descriptor chain address to control register */
1064 		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1065 
1066 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1067 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1068 	} else {
1069 		/* write size / packets */
1070 		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1071 
1072 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1073 			/*
1074 			 * write DMA address to control register, buffer
1075 			 * already synced by dwc2_hsotg_ep_queue().
1076 			 */
1077 
1078 			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1079 
1080 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1081 				__func__, &ureq->dma, dma_reg);
1082 		}
1083 	}
1084 
1085 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1086 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1087 		dwc2_gadget_incr_frame_num(hs_ep);
1088 
1089 		if (hs_ep->target_frame & 0x1)
1090 			ctrl |= DXEPCTL_SETODDFR;
1091 		else
1092 			ctrl |= DXEPCTL_SETEVENFR;
1093 	}
1094 
1095 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1096 
1097 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1098 
1099 	/* For Setup request do not clear NAK */
1100 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1101 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1102 
1103 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1104 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1105 
1106 	/*
1107 	 * set these, it seems that DMA support increments past the end
1108 	 * of the packet buffer so we need to calculate the length from
1109 	 * this information.
1110 	 */
1111 	hs_ep->size_loaded = length;
1112 	hs_ep->last_load = ureq->actual;
1113 
1114 	if (dir_in && !using_dma(hsotg)) {
1115 		/* set these anyway, we may need them for non-periodic in */
1116 		hs_ep->fifo_load = 0;
1117 
1118 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1119 	}
1120 
1121 	/*
1122 	 * Note, trying to clear the NAK here causes problems with transmit
1123 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1124 	 */
1125 
1126 	/* check ep is enabled */
1127 	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1128 		dev_dbg(hsotg->dev,
1129 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1130 			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1131 
1132 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1133 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1134 
1135 	/* enable ep interrupts */
1136 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1137 }
1138 
1139 /**
1140  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1141  * @hsotg: The device state.
1142  * @hs_ep: The endpoint the request is on.
1143  * @req: The request being processed.
1144  *
1145  * We've been asked to queue a request, so ensure that the memory buffer
1146  * is correctly setup for DMA. If we've been passed an extant DMA address
1147  * then ensure the buffer has been synced to memory. If our buffer has no
1148  * DMA memory, then we map the memory and mark our request to allow us to
1149  * cleanup on completion.
1150  */
1151 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1152 			      struct dwc2_hsotg_ep *hs_ep,
1153 			     struct usb_request *req)
1154 {
1155 	int ret;
1156 
1157 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1158 	if (ret)
1159 		goto dma_error;
1160 
1161 	return 0;
1162 
1163 dma_error:
1164 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1165 		__func__, req->buf, req->length);
1166 
1167 	return -EIO;
1168 }
1169 
1170 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1171 						 struct dwc2_hsotg_ep *hs_ep,
1172 						 struct dwc2_hsotg_req *hs_req)
1173 {
1174 	void *req_buf = hs_req->req.buf;
1175 
1176 	/* If dma is not being used or buffer is aligned */
1177 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1178 		return 0;
1179 
1180 	WARN_ON(hs_req->saved_req_buf);
1181 
1182 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1183 		hs_ep->ep.name, req_buf, hs_req->req.length);
1184 
1185 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1186 	if (!hs_req->req.buf) {
1187 		hs_req->req.buf = req_buf;
1188 		dev_err(hsotg->dev,
1189 			"%s: unable to allocate memory for bounce buffer\n",
1190 			__func__);
1191 		return -ENOMEM;
1192 	}
1193 
1194 	/* Save actual buffer */
1195 	hs_req->saved_req_buf = req_buf;
1196 
1197 	if (hs_ep->dir_in)
1198 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1199 	return 0;
1200 }
1201 
1202 static void
1203 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1204 					 struct dwc2_hsotg_ep *hs_ep,
1205 					 struct dwc2_hsotg_req *hs_req)
1206 {
1207 	/* If dma is not being used or buffer was aligned */
1208 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1209 		return;
1210 
1211 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1212 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1213 
1214 	/* Copy data from bounce buffer on successful out transfer */
1215 	if (!hs_ep->dir_in && !hs_req->req.status)
1216 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1217 		       hs_req->req.actual);
1218 
1219 	/* Free bounce buffer */
1220 	kfree(hs_req->req.buf);
1221 
1222 	hs_req->req.buf = hs_req->saved_req_buf;
1223 	hs_req->saved_req_buf = NULL;
1224 }
1225 
1226 /**
1227  * dwc2_gadget_target_frame_elapsed - Checks target frame
1228  * @hs_ep: The driver endpoint to check
1229  *
1230  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1231  * corresponding transfer.
1232  */
1233 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1234 {
1235 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1236 	u32 target_frame = hs_ep->target_frame;
1237 	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1238 	bool frame_overrun = hs_ep->frame_overrun;
1239 
1240 	if (!frame_overrun && current_frame >= target_frame)
1241 		return true;
1242 
1243 	if (frame_overrun && current_frame >= target_frame &&
1244 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1245 		return true;
1246 
1247 	return false;
1248 }
1249 
1250 /*
1251  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1252  * @hsotg: The driver state
1253  * @hs_ep: the ep descriptor chain is for
1254  *
1255  * Called to update EP0 structure's pointers depend on stage of
1256  * control transfer.
1257  */
1258 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1259 					  struct dwc2_hsotg_ep *hs_ep)
1260 {
1261 	switch (hsotg->ep0_state) {
1262 	case DWC2_EP0_SETUP:
1263 	case DWC2_EP0_STATUS_OUT:
1264 		hs_ep->desc_list = hsotg->setup_desc[0];
1265 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1266 		break;
1267 	case DWC2_EP0_DATA_IN:
1268 	case DWC2_EP0_STATUS_IN:
1269 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1270 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1271 		break;
1272 	case DWC2_EP0_DATA_OUT:
1273 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1274 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1275 		break;
1276 	default:
1277 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1278 			hsotg->ep0_state);
1279 		return -EINVAL;
1280 	}
1281 
1282 	return 0;
1283 }
1284 
1285 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1286 			       gfp_t gfp_flags)
1287 {
1288 	struct dwc2_hsotg_req *hs_req = our_req(req);
1289 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1290 	struct dwc2_hsotg *hs = hs_ep->parent;
1291 	bool first;
1292 	int ret;
1293 
1294 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1295 		ep->name, req, req->length, req->buf, req->no_interrupt,
1296 		req->zero, req->short_not_ok);
1297 
1298 	/* Prevent new request submission when controller is suspended */
1299 	if (hs->lx_state == DWC2_L2) {
1300 		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1301 			__func__);
1302 		return -EAGAIN;
1303 	}
1304 
1305 	/* initialise status of the request */
1306 	INIT_LIST_HEAD(&hs_req->queue);
1307 	req->actual = 0;
1308 	req->status = -EINPROGRESS;
1309 
1310 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1311 	if (ret)
1312 		return ret;
1313 
1314 	/* if we're using DMA, sync the buffers as necessary */
1315 	if (using_dma(hs)) {
1316 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1317 		if (ret)
1318 			return ret;
1319 	}
1320 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1321 	if (using_desc_dma(hs) && !hs_ep->index) {
1322 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1323 		if (ret)
1324 			return ret;
1325 	}
1326 
1327 	first = list_empty(&hs_ep->queue);
1328 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1329 
1330 	/*
1331 	 * Handle DDMA isochronous transfers separately - just add new entry
1332 	 * to the half of descriptor chain that is not processed by HW.
1333 	 * Transfer will be started once SW gets either one of NAK or
1334 	 * OutTknEpDis interrupts.
1335 	 */
1336 	if (using_desc_dma(hs) && hs_ep->isochronous &&
1337 	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1338 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1339 						 hs_req->req.length);
1340 		if (ret)
1341 			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1342 
1343 		return 0;
1344 	}
1345 
1346 	if (first) {
1347 		if (!hs_ep->isochronous) {
1348 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1349 			return 0;
1350 		}
1351 
1352 		while (dwc2_gadget_target_frame_elapsed(hs_ep))
1353 			dwc2_gadget_incr_frame_num(hs_ep);
1354 
1355 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1356 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1357 	}
1358 	return 0;
1359 }
1360 
1361 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1362 				    gfp_t gfp_flags)
1363 {
1364 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1365 	struct dwc2_hsotg *hs = hs_ep->parent;
1366 	unsigned long flags = 0;
1367 	int ret = 0;
1368 
1369 	spin_lock_irqsave(&hs->lock, flags);
1370 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1371 	spin_unlock_irqrestore(&hs->lock, flags);
1372 
1373 	return ret;
1374 }
1375 
1376 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1377 				       struct usb_request *req)
1378 {
1379 	struct dwc2_hsotg_req *hs_req = our_req(req);
1380 
1381 	kfree(hs_req);
1382 }
1383 
1384 /**
1385  * dwc2_hsotg_complete_oursetup - setup completion callback
1386  * @ep: The endpoint the request was on.
1387  * @req: The request completed.
1388  *
1389  * Called on completion of any requests the driver itself
1390  * submitted that need cleaning up.
1391  */
1392 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1393 					 struct usb_request *req)
1394 {
1395 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1396 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1397 
1398 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1399 
1400 	dwc2_hsotg_ep_free_request(ep, req);
1401 }
1402 
1403 /**
1404  * ep_from_windex - convert control wIndex value to endpoint
1405  * @hsotg: The driver state.
1406  * @windex: The control request wIndex field (in host order).
1407  *
1408  * Convert the given wIndex into a pointer to an driver endpoint
1409  * structure, or return NULL if it is not a valid endpoint.
1410  */
1411 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1412 					    u32 windex)
1413 {
1414 	struct dwc2_hsotg_ep *ep;
1415 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1416 	int idx = windex & 0x7F;
1417 
1418 	if (windex >= 0x100)
1419 		return NULL;
1420 
1421 	if (idx > hsotg->num_of_eps)
1422 		return NULL;
1423 
1424 	ep = index_to_ep(hsotg, idx, dir);
1425 
1426 	if (idx && ep->dir_in != dir)
1427 		return NULL;
1428 
1429 	return ep;
1430 }
1431 
1432 /**
1433  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1434  * @hsotg: The driver state.
1435  * @testmode: requested usb test mode
1436  * Enable usb Test Mode requested by the Host.
1437  */
1438 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1439 {
1440 	int dctl = dwc2_readl(hsotg->regs + DCTL);
1441 
1442 	dctl &= ~DCTL_TSTCTL_MASK;
1443 	switch (testmode) {
1444 	case TEST_J:
1445 	case TEST_K:
1446 	case TEST_SE0_NAK:
1447 	case TEST_PACKET:
1448 	case TEST_FORCE_EN:
1449 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1450 		break;
1451 	default:
1452 		return -EINVAL;
1453 	}
1454 	dwc2_writel(dctl, hsotg->regs + DCTL);
1455 	return 0;
1456 }
1457 
1458 /**
1459  * dwc2_hsotg_send_reply - send reply to control request
1460  * @hsotg: The device state
1461  * @ep: Endpoint 0
1462  * @buff: Buffer for request
1463  * @length: Length of reply.
1464  *
1465  * Create a request and queue it on the given endpoint. This is useful as
1466  * an internal method of sending replies to certain control requests, etc.
1467  */
1468 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1469 				 struct dwc2_hsotg_ep *ep,
1470 				void *buff,
1471 				int length)
1472 {
1473 	struct usb_request *req;
1474 	int ret;
1475 
1476 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1477 
1478 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1479 	hsotg->ep0_reply = req;
1480 	if (!req) {
1481 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1482 		return -ENOMEM;
1483 	}
1484 
1485 	req->buf = hsotg->ep0_buff;
1486 	req->length = length;
1487 	/*
1488 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1489 	 * STATUS stage.
1490 	 */
1491 	req->zero = 0;
1492 	req->complete = dwc2_hsotg_complete_oursetup;
1493 
1494 	if (length)
1495 		memcpy(req->buf, buff, length);
1496 
1497 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1498 	if (ret) {
1499 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1500 		return ret;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 /**
1507  * dwc2_hsotg_process_req_status - process request GET_STATUS
1508  * @hsotg: The device state
1509  * @ctrl: USB control request
1510  */
1511 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1512 					 struct usb_ctrlrequest *ctrl)
1513 {
1514 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1515 	struct dwc2_hsotg_ep *ep;
1516 	__le16 reply;
1517 	int ret;
1518 
1519 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1520 
1521 	if (!ep0->dir_in) {
1522 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1523 		return -EINVAL;
1524 	}
1525 
1526 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1527 	case USB_RECIP_DEVICE:
1528 		/*
1529 		 * bit 0 => self powered
1530 		 * bit 1 => remote wakeup
1531 		 */
1532 		reply = cpu_to_le16(0);
1533 		break;
1534 
1535 	case USB_RECIP_INTERFACE:
1536 		/* currently, the data result should be zero */
1537 		reply = cpu_to_le16(0);
1538 		break;
1539 
1540 	case USB_RECIP_ENDPOINT:
1541 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1542 		if (!ep)
1543 			return -ENOENT;
1544 
1545 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1546 		break;
1547 
1548 	default:
1549 		return 0;
1550 	}
1551 
1552 	if (le16_to_cpu(ctrl->wLength) != 2)
1553 		return -EINVAL;
1554 
1555 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1556 	if (ret) {
1557 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1558 		return ret;
1559 	}
1560 
1561 	return 1;
1562 }
1563 
1564 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1565 
1566 /**
1567  * get_ep_head - return the first request on the endpoint
1568  * @hs_ep: The controller endpoint to get
1569  *
1570  * Get the first request on the endpoint.
1571  */
1572 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1573 {
1574 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1575 					queue);
1576 }
1577 
1578 /**
1579  * dwc2_gadget_start_next_request - Starts next request from ep queue
1580  * @hs_ep: Endpoint structure
1581  *
1582  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1583  * in its handler. Hence we need to unmask it here to be able to do
1584  * resynchronization.
1585  */
1586 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1587 {
1588 	u32 mask;
1589 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1590 	int dir_in = hs_ep->dir_in;
1591 	struct dwc2_hsotg_req *hs_req;
1592 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1593 
1594 	if (!list_empty(&hs_ep->queue)) {
1595 		hs_req = get_ep_head(hs_ep);
1596 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1597 		return;
1598 	}
1599 	if (!hs_ep->isochronous)
1600 		return;
1601 
1602 	if (dir_in) {
1603 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1604 			__func__);
1605 	} else {
1606 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1607 			__func__);
1608 		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1609 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1610 		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1611 	}
1612 }
1613 
1614 /**
1615  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1616  * @hsotg: The device state
1617  * @ctrl: USB control request
1618  */
1619 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1620 					  struct usb_ctrlrequest *ctrl)
1621 {
1622 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1623 	struct dwc2_hsotg_req *hs_req;
1624 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1625 	struct dwc2_hsotg_ep *ep;
1626 	int ret;
1627 	bool halted;
1628 	u32 recip;
1629 	u32 wValue;
1630 	u32 wIndex;
1631 
1632 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1633 		__func__, set ? "SET" : "CLEAR");
1634 
1635 	wValue = le16_to_cpu(ctrl->wValue);
1636 	wIndex = le16_to_cpu(ctrl->wIndex);
1637 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1638 
1639 	switch (recip) {
1640 	case USB_RECIP_DEVICE:
1641 		switch (wValue) {
1642 		case USB_DEVICE_TEST_MODE:
1643 			if ((wIndex & 0xff) != 0)
1644 				return -EINVAL;
1645 			if (!set)
1646 				return -EINVAL;
1647 
1648 			hsotg->test_mode = wIndex >> 8;
1649 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1650 			if (ret) {
1651 				dev_err(hsotg->dev,
1652 					"%s: failed to send reply\n", __func__);
1653 				return ret;
1654 			}
1655 			break;
1656 		default:
1657 			return -ENOENT;
1658 		}
1659 		break;
1660 
1661 	case USB_RECIP_ENDPOINT:
1662 		ep = ep_from_windex(hsotg, wIndex);
1663 		if (!ep) {
1664 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1665 				__func__, wIndex);
1666 			return -ENOENT;
1667 		}
1668 
1669 		switch (wValue) {
1670 		case USB_ENDPOINT_HALT:
1671 			halted = ep->halted;
1672 
1673 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1674 
1675 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1676 			if (ret) {
1677 				dev_err(hsotg->dev,
1678 					"%s: failed to send reply\n", __func__);
1679 				return ret;
1680 			}
1681 
1682 			/*
1683 			 * we have to complete all requests for ep if it was
1684 			 * halted, and the halt was cleared by CLEAR_FEATURE
1685 			 */
1686 
1687 			if (!set && halted) {
1688 				/*
1689 				 * If we have request in progress,
1690 				 * then complete it
1691 				 */
1692 				if (ep->req) {
1693 					hs_req = ep->req;
1694 					ep->req = NULL;
1695 					list_del_init(&hs_req->queue);
1696 					if (hs_req->req.complete) {
1697 						spin_unlock(&hsotg->lock);
1698 						usb_gadget_giveback_request(
1699 							&ep->ep, &hs_req->req);
1700 						spin_lock(&hsotg->lock);
1701 					}
1702 				}
1703 
1704 				/* If we have pending request, then start it */
1705 				if (!ep->req)
1706 					dwc2_gadget_start_next_request(ep);
1707 			}
1708 
1709 			break;
1710 
1711 		default:
1712 			return -ENOENT;
1713 		}
1714 		break;
1715 	default:
1716 		return -ENOENT;
1717 	}
1718 	return 1;
1719 }
1720 
1721 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1722 
1723 /**
1724  * dwc2_hsotg_stall_ep0 - stall ep0
1725  * @hsotg: The device state
1726  *
1727  * Set stall for ep0 as response for setup request.
1728  */
1729 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1730 {
1731 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1732 	u32 reg;
1733 	u32 ctrl;
1734 
1735 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1736 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1737 
1738 	/*
1739 	 * DxEPCTL_Stall will be cleared by EP once it has
1740 	 * taken effect, so no need to clear later.
1741 	 */
1742 
1743 	ctrl = dwc2_readl(hsotg->regs + reg);
1744 	ctrl |= DXEPCTL_STALL;
1745 	ctrl |= DXEPCTL_CNAK;
1746 	dwc2_writel(ctrl, hsotg->regs + reg);
1747 
1748 	dev_dbg(hsotg->dev,
1749 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1750 		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1751 
1752 	 /*
1753 	  * complete won't be called, so we enqueue
1754 	  * setup request here
1755 	  */
1756 	 dwc2_hsotg_enqueue_setup(hsotg);
1757 }
1758 
1759 /**
1760  * dwc2_hsotg_process_control - process a control request
1761  * @hsotg: The device state
1762  * @ctrl: The control request received
1763  *
1764  * The controller has received the SETUP phase of a control request, and
1765  * needs to work out what to do next (and whether to pass it on to the
1766  * gadget driver).
1767  */
1768 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1769 				       struct usb_ctrlrequest *ctrl)
1770 {
1771 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1772 	int ret = 0;
1773 	u32 dcfg;
1774 
1775 	dev_dbg(hsotg->dev,
1776 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1777 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1778 		ctrl->wIndex, ctrl->wLength);
1779 
1780 	if (ctrl->wLength == 0) {
1781 		ep0->dir_in = 1;
1782 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1783 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1784 		ep0->dir_in = 1;
1785 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1786 	} else {
1787 		ep0->dir_in = 0;
1788 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1789 	}
1790 
1791 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1792 		switch (ctrl->bRequest) {
1793 		case USB_REQ_SET_ADDRESS:
1794 			hsotg->connected = 1;
1795 			dcfg = dwc2_readl(hsotg->regs + DCFG);
1796 			dcfg &= ~DCFG_DEVADDR_MASK;
1797 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1798 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1799 			dwc2_writel(dcfg, hsotg->regs + DCFG);
1800 
1801 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1802 
1803 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1804 			return;
1805 
1806 		case USB_REQ_GET_STATUS:
1807 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1808 			break;
1809 
1810 		case USB_REQ_CLEAR_FEATURE:
1811 		case USB_REQ_SET_FEATURE:
1812 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1813 			break;
1814 		}
1815 	}
1816 
1817 	/* as a fallback, try delivering it to the driver to deal with */
1818 
1819 	if (ret == 0 && hsotg->driver) {
1820 		spin_unlock(&hsotg->lock);
1821 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1822 		spin_lock(&hsotg->lock);
1823 		if (ret < 0)
1824 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1825 	}
1826 
1827 	/*
1828 	 * the request is either unhandlable, or is not formatted correctly
1829 	 * so respond with a STALL for the status stage to indicate failure.
1830 	 */
1831 
1832 	if (ret < 0)
1833 		dwc2_hsotg_stall_ep0(hsotg);
1834 }
1835 
1836 /**
1837  * dwc2_hsotg_complete_setup - completion of a setup transfer
1838  * @ep: The endpoint the request was on.
1839  * @req: The request completed.
1840  *
1841  * Called on completion of any requests the driver itself submitted for
1842  * EP0 setup packets
1843  */
1844 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1845 				      struct usb_request *req)
1846 {
1847 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1848 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1849 
1850 	if (req->status < 0) {
1851 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1852 		return;
1853 	}
1854 
1855 	spin_lock(&hsotg->lock);
1856 	if (req->actual == 0)
1857 		dwc2_hsotg_enqueue_setup(hsotg);
1858 	else
1859 		dwc2_hsotg_process_control(hsotg, req->buf);
1860 	spin_unlock(&hsotg->lock);
1861 }
1862 
1863 /**
1864  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1865  * @hsotg: The device state.
1866  *
1867  * Enqueue a request on EP0 if necessary to received any SETUP packets
1868  * received from the host.
1869  */
1870 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1871 {
1872 	struct usb_request *req = hsotg->ctrl_req;
1873 	struct dwc2_hsotg_req *hs_req = our_req(req);
1874 	int ret;
1875 
1876 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1877 
1878 	req->zero = 0;
1879 	req->length = 8;
1880 	req->buf = hsotg->ctrl_buff;
1881 	req->complete = dwc2_hsotg_complete_setup;
1882 
1883 	if (!list_empty(&hs_req->queue)) {
1884 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1885 		return;
1886 	}
1887 
1888 	hsotg->eps_out[0]->dir_in = 0;
1889 	hsotg->eps_out[0]->send_zlp = 0;
1890 	hsotg->ep0_state = DWC2_EP0_SETUP;
1891 
1892 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1893 	if (ret < 0) {
1894 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1895 		/*
1896 		 * Don't think there's much we can do other than watch the
1897 		 * driver fail.
1898 		 */
1899 	}
1900 }
1901 
1902 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1903 				   struct dwc2_hsotg_ep *hs_ep)
1904 {
1905 	u32 ctrl;
1906 	u8 index = hs_ep->index;
1907 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1908 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1909 
1910 	if (hs_ep->dir_in)
1911 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1912 			index);
1913 	else
1914 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1915 			index);
1916 	if (using_desc_dma(hsotg)) {
1917 		/* Not specific buffer needed for ep0 ZLP */
1918 		dma_addr_t dma = hs_ep->desc_list_dma;
1919 
1920 		if (!index)
1921 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1922 
1923 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1924 	} else {
1925 		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1926 			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1927 			    epsiz_reg);
1928 	}
1929 
1930 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1931 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1932 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1933 	ctrl |= DXEPCTL_USBACTEP;
1934 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1935 }
1936 
1937 /**
1938  * dwc2_hsotg_complete_request - complete a request given to us
1939  * @hsotg: The device state.
1940  * @hs_ep: The endpoint the request was on.
1941  * @hs_req: The request to complete.
1942  * @result: The result code (0 => Ok, otherwise errno)
1943  *
1944  * The given request has finished, so call the necessary completion
1945  * if it has one and then look to see if we can start a new request
1946  * on the endpoint.
1947  *
1948  * Note, expects the ep to already be locked as appropriate.
1949  */
1950 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1951 					struct dwc2_hsotg_ep *hs_ep,
1952 				       struct dwc2_hsotg_req *hs_req,
1953 				       int result)
1954 {
1955 	if (!hs_req) {
1956 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1957 		return;
1958 	}
1959 
1960 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1961 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1962 
1963 	/*
1964 	 * only replace the status if we've not already set an error
1965 	 * from a previous transaction
1966 	 */
1967 
1968 	if (hs_req->req.status == -EINPROGRESS)
1969 		hs_req->req.status = result;
1970 
1971 	if (using_dma(hsotg))
1972 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1973 
1974 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1975 
1976 	hs_ep->req = NULL;
1977 	list_del_init(&hs_req->queue);
1978 
1979 	/*
1980 	 * call the complete request with the locks off, just in case the
1981 	 * request tries to queue more work for this endpoint.
1982 	 */
1983 
1984 	if (hs_req->req.complete) {
1985 		spin_unlock(&hsotg->lock);
1986 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1987 		spin_lock(&hsotg->lock);
1988 	}
1989 
1990 	/* In DDMA don't need to proceed to starting of next ISOC request */
1991 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
1992 		return;
1993 
1994 	/*
1995 	 * Look to see if there is anything else to do. Note, the completion
1996 	 * of the previous request may have caused a new request to be started
1997 	 * so be careful when doing this.
1998 	 */
1999 
2000 	if (!hs_ep->req && result >= 0)
2001 		dwc2_gadget_start_next_request(hs_ep);
2002 }
2003 
2004 /*
2005  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2006  * @hs_ep: The endpoint the request was on.
2007  *
2008  * Get first request from the ep queue, determine descriptor on which complete
2009  * happened. SW based on isoc_chain_num discovers which half of the descriptor
2010  * chain is currently in use by HW, adjusts dma_address and calculates index
2011  * of completed descriptor based on the value of DEPDMA register. Update actual
2012  * length of request, giveback to gadget.
2013  */
2014 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2015 {
2016 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2017 	struct dwc2_hsotg_req *hs_req;
2018 	struct usb_request *ureq;
2019 	int index;
2020 	dma_addr_t dma_addr;
2021 	u32 dma_reg;
2022 	u32 depdma;
2023 	u32 desc_sts;
2024 	u32 mask;
2025 
2026 	hs_req = get_ep_head(hs_ep);
2027 	if (!hs_req) {
2028 		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2029 		return;
2030 	}
2031 	ureq = &hs_req->req;
2032 
2033 	dma_addr = hs_ep->desc_list_dma;
2034 
2035 	/*
2036 	 * If lower half of  descriptor chain is currently use by SW,
2037 	 * that means higher half is being processed by HW, so shift
2038 	 * DMA address to higher half of descriptor chain.
2039 	 */
2040 	if (!hs_ep->isoc_chain_num)
2041 		dma_addr += sizeof(struct dwc2_dma_desc) *
2042 			    (MAX_DMA_DESC_NUM_GENERIC / 2);
2043 
2044 	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2045 	depdma = dwc2_readl(hsotg->regs + dma_reg);
2046 
2047 	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2048 	desc_sts = hs_ep->desc_list[index].status;
2049 
2050 	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2051 	       DEV_DMA_ISOC_RX_NBYTES_MASK;
2052 	ureq->actual = ureq->length -
2053 		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2054 
2055 	/* Adjust actual length for ISOC Out if length is not align of 4 */
2056 	if (!hs_ep->dir_in && ureq->length & 0x3)
2057 		ureq->actual += 4 - (ureq->length & 0x3);
2058 
2059 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2060 }
2061 
2062 /*
2063  * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2064  * @hs_ep: The isochronous endpoint to be re-enabled.
2065  *
2066  * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2067  * BNA (OUT endpoint) check the status of other half of descriptor chain that
2068  * was under SW control till HW was busy and restart the endpoint if needed.
2069  */
2070 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2071 {
2072 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2073 	u32 depctl;
2074 	u32 dma_reg;
2075 	u32 ctrl;
2076 	u32 dma_addr = hs_ep->desc_list_dma;
2077 	unsigned char index = hs_ep->index;
2078 
2079 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2080 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2081 
2082 	ctrl = dwc2_readl(hsotg->regs + depctl);
2083 
2084 	/*
2085 	 * EP was disabled if HW has processed last descriptor or BNA was set.
2086 	 * So restart ep if SW has prepared new descriptor chain in ep_queue
2087 	 * routine while HW was busy.
2088 	 */
2089 	if (!(ctrl & DXEPCTL_EPENA)) {
2090 		if (!hs_ep->next_desc) {
2091 			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2092 				__func__);
2093 			return;
2094 		}
2095 
2096 		dma_addr += sizeof(struct dwc2_dma_desc) *
2097 			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
2098 			    hs_ep->isoc_chain_num;
2099 		dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2100 
2101 		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2102 		dwc2_writel(ctrl, hsotg->regs + depctl);
2103 
2104 		/* Switch ISOC descriptor chain number being processed by SW*/
2105 		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2106 		hs_ep->next_desc = 0;
2107 
2108 		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2109 			__func__);
2110 	}
2111 }
2112 
2113 /**
2114  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2115  * @hsotg: The device state.
2116  * @ep_idx: The endpoint index for the data
2117  * @size: The size of data in the fifo, in bytes
2118  *
2119  * The FIFO status shows there is data to read from the FIFO for a given
2120  * endpoint, so sort out whether we need to read the data into a request
2121  * that has been made for that endpoint.
2122  */
2123 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2124 {
2125 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2126 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2127 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2128 	int to_read;
2129 	int max_req;
2130 	int read_ptr;
2131 
2132 	if (!hs_req) {
2133 		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2134 		int ptr;
2135 
2136 		dev_dbg(hsotg->dev,
2137 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2138 			 __func__, size, ep_idx, epctl);
2139 
2140 		/* dump the data from the FIFO, we've nothing we can do */
2141 		for (ptr = 0; ptr < size; ptr += 4)
2142 			(void)dwc2_readl(fifo);
2143 
2144 		return;
2145 	}
2146 
2147 	to_read = size;
2148 	read_ptr = hs_req->req.actual;
2149 	max_req = hs_req->req.length - read_ptr;
2150 
2151 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2152 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2153 
2154 	if (to_read > max_req) {
2155 		/*
2156 		 * more data appeared than we where willing
2157 		 * to deal with in this request.
2158 		 */
2159 
2160 		/* currently we don't deal this */
2161 		WARN_ON_ONCE(1);
2162 	}
2163 
2164 	hs_ep->total_data += to_read;
2165 	hs_req->req.actual += to_read;
2166 	to_read = DIV_ROUND_UP(to_read, 4);
2167 
2168 	/*
2169 	 * note, we might over-write the buffer end by 3 bytes depending on
2170 	 * alignment of the data.
2171 	 */
2172 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2173 }
2174 
2175 /**
2176  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2177  * @hsotg: The device instance
2178  * @dir_in: If IN zlp
2179  *
2180  * Generate a zero-length IN packet request for terminating a SETUP
2181  * transaction.
2182  *
2183  * Note, since we don't write any data to the TxFIFO, then it is
2184  * currently believed that we do not need to wait for any space in
2185  * the TxFIFO.
2186  */
2187 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2188 {
2189 	/* eps_out[0] is used in both directions */
2190 	hsotg->eps_out[0]->dir_in = dir_in;
2191 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2192 
2193 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2194 }
2195 
2196 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2197 					    u32 epctl_reg)
2198 {
2199 	u32 ctrl;
2200 
2201 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2202 	if (ctrl & DXEPCTL_EOFRNUM)
2203 		ctrl |= DXEPCTL_SETEVENFR;
2204 	else
2205 		ctrl |= DXEPCTL_SETODDFR;
2206 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2207 }
2208 
2209 /*
2210  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2211  * @hs_ep - The endpoint on which transfer went
2212  *
2213  * Iterate over endpoints descriptor chain and get info on bytes remained
2214  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2215  */
2216 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2217 {
2218 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2219 	unsigned int bytes_rem = 0;
2220 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2221 	int i;
2222 	u32 status;
2223 
2224 	if (!desc)
2225 		return -EINVAL;
2226 
2227 	for (i = 0; i < hs_ep->desc_count; ++i) {
2228 		status = desc->status;
2229 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2230 
2231 		if (status & DEV_DMA_STS_MASK)
2232 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2233 				i, status & DEV_DMA_STS_MASK);
2234 	}
2235 
2236 	return bytes_rem;
2237 }
2238 
2239 /**
2240  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2241  * @hsotg: The device instance
2242  * @epnum: The endpoint received from
2243  *
2244  * The RXFIFO has delivered an OutDone event, which means that the data
2245  * transfer for an OUT endpoint has been completed, either by a short
2246  * packet or by the finish of a transfer.
2247  */
2248 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2249 {
2250 	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2251 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2252 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2253 	struct usb_request *req = &hs_req->req;
2254 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2255 	int result = 0;
2256 
2257 	if (!hs_req) {
2258 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2259 		return;
2260 	}
2261 
2262 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2263 		dev_dbg(hsotg->dev, "zlp packet received\n");
2264 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2265 		dwc2_hsotg_enqueue_setup(hsotg);
2266 		return;
2267 	}
2268 
2269 	if (using_desc_dma(hsotg))
2270 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2271 
2272 	if (using_dma(hsotg)) {
2273 		unsigned int size_done;
2274 
2275 		/*
2276 		 * Calculate the size of the transfer by checking how much
2277 		 * is left in the endpoint size register and then working it
2278 		 * out from the amount we loaded for the transfer.
2279 		 *
2280 		 * We need to do this as DMA pointers are always 32bit aligned
2281 		 * so may overshoot/undershoot the transfer.
2282 		 */
2283 
2284 		size_done = hs_ep->size_loaded - size_left;
2285 		size_done += hs_ep->last_load;
2286 
2287 		req->actual = size_done;
2288 	}
2289 
2290 	/* if there is more request to do, schedule new transfer */
2291 	if (req->actual < req->length && size_left == 0) {
2292 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2293 		return;
2294 	}
2295 
2296 	if (req->actual < req->length && req->short_not_ok) {
2297 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2298 			__func__, req->actual, req->length);
2299 
2300 		/*
2301 		 * todo - what should we return here? there's no one else
2302 		 * even bothering to check the status.
2303 		 */
2304 	}
2305 
2306 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2307 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2308 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2309 		/* Move to STATUS IN */
2310 		dwc2_hsotg_ep0_zlp(hsotg, true);
2311 		return;
2312 	}
2313 
2314 	/*
2315 	 * Slave mode OUT transfers do not go through XferComplete so
2316 	 * adjust the ISOC parity here.
2317 	 */
2318 	if (!using_dma(hsotg)) {
2319 		if (hs_ep->isochronous && hs_ep->interval == 1)
2320 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2321 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2322 			dwc2_gadget_incr_frame_num(hs_ep);
2323 	}
2324 
2325 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2326 }
2327 
2328 /**
2329  * dwc2_hsotg_handle_rx - RX FIFO has data
2330  * @hsotg: The device instance
2331  *
2332  * The IRQ handler has detected that the RX FIFO has some data in it
2333  * that requires processing, so find out what is in there and do the
2334  * appropriate read.
2335  *
2336  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2337  * chunks, so if you have x packets received on an endpoint you'll get x
2338  * FIFO events delivered, each with a packet's worth of data in it.
2339  *
2340  * When using DMA, we should not be processing events from the RXFIFO
2341  * as the actual data should be sent to the memory directly and we turn
2342  * on the completion interrupts to get notifications of transfer completion.
2343  */
2344 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2345 {
2346 	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2347 	u32 epnum, status, size;
2348 
2349 	WARN_ON(using_dma(hsotg));
2350 
2351 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2352 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2353 
2354 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2355 	size >>= GRXSTS_BYTECNT_SHIFT;
2356 
2357 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2358 		__func__, grxstsr, size, epnum);
2359 
2360 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2361 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2362 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2363 		break;
2364 
2365 	case GRXSTS_PKTSTS_OUTDONE:
2366 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2367 			dwc2_hsotg_read_frameno(hsotg));
2368 
2369 		if (!using_dma(hsotg))
2370 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2371 		break;
2372 
2373 	case GRXSTS_PKTSTS_SETUPDONE:
2374 		dev_dbg(hsotg->dev,
2375 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2376 			dwc2_hsotg_read_frameno(hsotg),
2377 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2378 		/*
2379 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2380 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2381 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2382 		 */
2383 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2384 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2385 		break;
2386 
2387 	case GRXSTS_PKTSTS_OUTRX:
2388 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2389 		break;
2390 
2391 	case GRXSTS_PKTSTS_SETUPRX:
2392 		dev_dbg(hsotg->dev,
2393 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2394 			dwc2_hsotg_read_frameno(hsotg),
2395 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2396 
2397 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2398 
2399 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2400 		break;
2401 
2402 	default:
2403 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2404 			 __func__, grxstsr);
2405 
2406 		dwc2_hsotg_dump(hsotg);
2407 		break;
2408 	}
2409 }
2410 
2411 /**
2412  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2413  * @mps: The maximum packet size in bytes.
2414  */
2415 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2416 {
2417 	switch (mps) {
2418 	case 64:
2419 		return D0EPCTL_MPS_64;
2420 	case 32:
2421 		return D0EPCTL_MPS_32;
2422 	case 16:
2423 		return D0EPCTL_MPS_16;
2424 	case 8:
2425 		return D0EPCTL_MPS_8;
2426 	}
2427 
2428 	/* bad max packet size, warn and return invalid result */
2429 	WARN_ON(1);
2430 	return (u32)-1;
2431 }
2432 
2433 /**
2434  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2435  * @hsotg: The driver state.
2436  * @ep: The index number of the endpoint
2437  * @mps: The maximum packet size in bytes
2438  * @mc: The multicount value
2439  *
2440  * Configure the maximum packet size for the given endpoint, updating
2441  * the hardware control registers to reflect this.
2442  */
2443 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2444 					unsigned int ep, unsigned int mps,
2445 					unsigned int mc, unsigned int dir_in)
2446 {
2447 	struct dwc2_hsotg_ep *hs_ep;
2448 	void __iomem *regs = hsotg->regs;
2449 	u32 reg;
2450 
2451 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2452 	if (!hs_ep)
2453 		return;
2454 
2455 	if (ep == 0) {
2456 		u32 mps_bytes = mps;
2457 
2458 		/* EP0 is a special case */
2459 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2460 		if (mps > 3)
2461 			goto bad_mps;
2462 		hs_ep->ep.maxpacket = mps_bytes;
2463 		hs_ep->mc = 1;
2464 	} else {
2465 		if (mps > 1024)
2466 			goto bad_mps;
2467 		hs_ep->mc = mc;
2468 		if (mc > 3)
2469 			goto bad_mps;
2470 		hs_ep->ep.maxpacket = mps;
2471 	}
2472 
2473 	if (dir_in) {
2474 		reg = dwc2_readl(regs + DIEPCTL(ep));
2475 		reg &= ~DXEPCTL_MPS_MASK;
2476 		reg |= mps;
2477 		dwc2_writel(reg, regs + DIEPCTL(ep));
2478 	} else {
2479 		reg = dwc2_readl(regs + DOEPCTL(ep));
2480 		reg &= ~DXEPCTL_MPS_MASK;
2481 		reg |= mps;
2482 		dwc2_writel(reg, regs + DOEPCTL(ep));
2483 	}
2484 
2485 	return;
2486 
2487 bad_mps:
2488 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2489 }
2490 
2491 /**
2492  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2493  * @hsotg: The driver state
2494  * @idx: The index for the endpoint (0..15)
2495  */
2496 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2497 {
2498 	int timeout;
2499 	int val;
2500 
2501 	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2502 		    hsotg->regs + GRSTCTL);
2503 
2504 	/* wait until the fifo is flushed */
2505 	timeout = 100;
2506 
2507 	while (1) {
2508 		val = dwc2_readl(hsotg->regs + GRSTCTL);
2509 
2510 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2511 			break;
2512 
2513 		if (--timeout == 0) {
2514 			dev_err(hsotg->dev,
2515 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2516 				__func__, val);
2517 			break;
2518 		}
2519 
2520 		udelay(1);
2521 	}
2522 }
2523 
2524 /**
2525  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2526  * @hsotg: The driver state
2527  * @hs_ep: The driver endpoint to check.
2528  *
2529  * Check to see if there is a request that has data to send, and if so
2530  * make an attempt to write data into the FIFO.
2531  */
2532 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2533 			    struct dwc2_hsotg_ep *hs_ep)
2534 {
2535 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2536 
2537 	if (!hs_ep->dir_in || !hs_req) {
2538 		/**
2539 		 * if request is not enqueued, we disable interrupts
2540 		 * for endpoints, excepting ep0
2541 		 */
2542 		if (hs_ep->index != 0)
2543 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2544 					      hs_ep->dir_in, 0);
2545 		return 0;
2546 	}
2547 
2548 	if (hs_req->req.actual < hs_req->req.length) {
2549 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2550 			hs_ep->index);
2551 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2552 	}
2553 
2554 	return 0;
2555 }
2556 
2557 /**
2558  * dwc2_hsotg_complete_in - complete IN transfer
2559  * @hsotg: The device state.
2560  * @hs_ep: The endpoint that has just completed.
2561  *
2562  * An IN transfer has been completed, update the transfer's state and then
2563  * call the relevant completion routines.
2564  */
2565 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2566 				   struct dwc2_hsotg_ep *hs_ep)
2567 {
2568 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2569 	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2570 	int size_left, size_done;
2571 
2572 	if (!hs_req) {
2573 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2574 		return;
2575 	}
2576 
2577 	/* Finish ZLP handling for IN EP0 transactions */
2578 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2579 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2580 
2581 		/*
2582 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2583 		 * changed to IN. Change back to complete OUT transfer request
2584 		 */
2585 		hs_ep->dir_in = 0;
2586 
2587 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2588 		if (hsotg->test_mode) {
2589 			int ret;
2590 
2591 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2592 			if (ret < 0) {
2593 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2594 					hsotg->test_mode);
2595 				dwc2_hsotg_stall_ep0(hsotg);
2596 				return;
2597 			}
2598 		}
2599 		dwc2_hsotg_enqueue_setup(hsotg);
2600 		return;
2601 	}
2602 
2603 	/*
2604 	 * Calculate the size of the transfer by checking how much is left
2605 	 * in the endpoint size register and then working it out from
2606 	 * the amount we loaded for the transfer.
2607 	 *
2608 	 * We do this even for DMA, as the transfer may have incremented
2609 	 * past the end of the buffer (DMA transfers are always 32bit
2610 	 * aligned).
2611 	 */
2612 	if (using_desc_dma(hsotg)) {
2613 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2614 		if (size_left < 0)
2615 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2616 				size_left);
2617 	} else {
2618 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2619 	}
2620 
2621 	size_done = hs_ep->size_loaded - size_left;
2622 	size_done += hs_ep->last_load;
2623 
2624 	if (hs_req->req.actual != size_done)
2625 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2626 			__func__, hs_req->req.actual, size_done);
2627 
2628 	hs_req->req.actual = size_done;
2629 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2630 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2631 
2632 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2633 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2634 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2635 		return;
2636 	}
2637 
2638 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2639 	if (hs_ep->send_zlp) {
2640 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2641 		hs_ep->send_zlp = 0;
2642 		/* transfer will be completed on next complete interrupt */
2643 		return;
2644 	}
2645 
2646 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2647 		/* Move to STATUS OUT */
2648 		dwc2_hsotg_ep0_zlp(hsotg, false);
2649 		return;
2650 	}
2651 
2652 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2653 }
2654 
2655 /**
2656  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2657  * @hsotg: The device state.
2658  * @idx: Index of ep.
2659  * @dir_in: Endpoint direction 1-in 0-out.
2660  *
2661  * Reads for endpoint with given index and direction, by masking
2662  * epint_reg with coresponding mask.
2663  */
2664 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2665 					  unsigned int idx, int dir_in)
2666 {
2667 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2668 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2669 	u32 ints;
2670 	u32 mask;
2671 	u32 diepempmsk;
2672 
2673 	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2674 	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2675 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2676 	mask |= DXEPINT_SETUP_RCVD;
2677 
2678 	ints = dwc2_readl(hsotg->regs + epint_reg);
2679 	ints &= mask;
2680 	return ints;
2681 }
2682 
2683 /**
2684  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2685  * @hs_ep: The endpoint on which interrupt is asserted.
2686  *
2687  * This interrupt indicates that the endpoint has been disabled per the
2688  * application's request.
2689  *
2690  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2691  * in case of ISOC completes current request.
2692  *
2693  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2694  * request starts it.
2695  */
2696 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2697 {
2698 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2699 	struct dwc2_hsotg_req *hs_req;
2700 	unsigned char idx = hs_ep->index;
2701 	int dir_in = hs_ep->dir_in;
2702 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2703 	int dctl = dwc2_readl(hsotg->regs + DCTL);
2704 
2705 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2706 
2707 	if (dir_in) {
2708 		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2709 
2710 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2711 
2712 		if (hs_ep->isochronous) {
2713 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2714 			return;
2715 		}
2716 
2717 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2718 			int dctl = dwc2_readl(hsotg->regs + DCTL);
2719 
2720 			dctl |= DCTL_CGNPINNAK;
2721 			dwc2_writel(dctl, hsotg->regs + DCTL);
2722 		}
2723 		return;
2724 	}
2725 
2726 	if (dctl & DCTL_GOUTNAKSTS) {
2727 		dctl |= DCTL_CGOUTNAK;
2728 		dwc2_writel(dctl, hsotg->regs + DCTL);
2729 	}
2730 
2731 	if (!hs_ep->isochronous)
2732 		return;
2733 
2734 	if (list_empty(&hs_ep->queue)) {
2735 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2736 			__func__, hs_ep);
2737 		return;
2738 	}
2739 
2740 	do {
2741 		hs_req = get_ep_head(hs_ep);
2742 		if (hs_req)
2743 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2744 						    -ENODATA);
2745 		dwc2_gadget_incr_frame_num(hs_ep);
2746 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2747 
2748 	dwc2_gadget_start_next_request(hs_ep);
2749 }
2750 
2751 /**
2752  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2753  * @hs_ep: The endpoint on which interrupt is asserted.
2754  *
2755  * This is starting point for ISOC-OUT transfer, synchronization done with
2756  * first out token received from host while corresponding EP is disabled.
2757  *
2758  * Device does not know initial frame in which out token will come. For this
2759  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2760  * getting this interrupt SW starts calculation for next transfer frame.
2761  */
2762 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2763 {
2764 	struct dwc2_hsotg *hsotg = ep->parent;
2765 	int dir_in = ep->dir_in;
2766 	u32 doepmsk;
2767 	u32 tmp;
2768 
2769 	if (dir_in || !ep->isochronous)
2770 		return;
2771 
2772 	/*
2773 	 * Store frame in which irq was asserted here, as
2774 	 * it can change while completing request below.
2775 	 */
2776 	tmp = dwc2_hsotg_read_frameno(hsotg);
2777 
2778 	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2779 
2780 	if (using_desc_dma(hsotg)) {
2781 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2782 			/* Start first ISO Out */
2783 			ep->target_frame = tmp;
2784 			dwc2_gadget_start_isoc_ddma(ep);
2785 		}
2786 		return;
2787 	}
2788 
2789 	if (ep->interval > 1 &&
2790 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2791 		u32 dsts;
2792 		u32 ctrl;
2793 
2794 		dsts = dwc2_readl(hsotg->regs + DSTS);
2795 		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2796 		dwc2_gadget_incr_frame_num(ep);
2797 
2798 		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2799 		if (ep->target_frame & 0x1)
2800 			ctrl |= DXEPCTL_SETODDFR;
2801 		else
2802 			ctrl |= DXEPCTL_SETEVENFR;
2803 
2804 		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2805 	}
2806 
2807 	dwc2_gadget_start_next_request(ep);
2808 	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2809 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2810 	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2811 }
2812 
2813 /**
2814  * dwc2_gadget_handle_nak - handle NAK interrupt
2815  * @hs_ep: The endpoint on which interrupt is asserted.
2816  *
2817  * This is starting point for ISOC-IN transfer, synchronization done with
2818  * first IN token received from host while corresponding EP is disabled.
2819  *
2820  * Device does not know when first one token will arrive from host. On first
2821  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2822  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2823  * sent in response to that as there was no data in FIFO. SW is basing on this
2824  * interrupt to obtain frame in which token has come and then based on the
2825  * interval calculates next frame for transfer.
2826  */
2827 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2828 {
2829 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2830 	int dir_in = hs_ep->dir_in;
2831 
2832 	if (!dir_in || !hs_ep->isochronous)
2833 		return;
2834 
2835 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2836 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2837 
2838 		if (using_desc_dma(hsotg)) {
2839 			dwc2_gadget_start_isoc_ddma(hs_ep);
2840 			return;
2841 		}
2842 
2843 		if (hs_ep->interval > 1) {
2844 			u32 ctrl = dwc2_readl(hsotg->regs +
2845 					      DIEPCTL(hs_ep->index));
2846 			if (hs_ep->target_frame & 0x1)
2847 				ctrl |= DXEPCTL_SETODDFR;
2848 			else
2849 				ctrl |= DXEPCTL_SETEVENFR;
2850 
2851 			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2852 		}
2853 
2854 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2855 					    get_ep_head(hs_ep), 0);
2856 	}
2857 
2858 	dwc2_gadget_incr_frame_num(hs_ep);
2859 }
2860 
2861 /**
2862  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2863  * @hsotg: The driver state
2864  * @idx: The index for the endpoint (0..15)
2865  * @dir_in: Set if this is an IN endpoint
2866  *
2867  * Process and clear any interrupt pending for an individual endpoint
2868  */
2869 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2870 			     int dir_in)
2871 {
2872 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2873 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2874 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2875 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2876 	u32 ints;
2877 	u32 ctrl;
2878 
2879 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2880 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2881 
2882 	/* Clear endpoint interrupts */
2883 	dwc2_writel(ints, hsotg->regs + epint_reg);
2884 
2885 	if (!hs_ep) {
2886 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2887 			__func__, idx, dir_in ? "in" : "out");
2888 		return;
2889 	}
2890 
2891 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2892 		__func__, idx, dir_in ? "in" : "out", ints);
2893 
2894 	/* Don't process XferCompl interrupt if it is a setup packet */
2895 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2896 		ints &= ~DXEPINT_XFERCOMPL;
2897 
2898 	/*
2899 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2900 	 * stage and xfercomplete was generated without SETUP phase done
2901 	 * interrupt. SW should parse received setup packet only after host's
2902 	 * exit from setup phase of control transfer.
2903 	 */
2904 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2905 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2906 		ints &= ~DXEPINT_XFERCOMPL;
2907 
2908 	if (ints & DXEPINT_XFERCOMPL) {
2909 		dev_dbg(hsotg->dev,
2910 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2911 			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2912 			dwc2_readl(hsotg->regs + epsiz_reg));
2913 
2914 		/* In DDMA handle isochronous requests separately */
2915 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2916 			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2917 			/* Try to start next isoc request */
2918 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2919 		} else if (dir_in) {
2920 			/*
2921 			 * We get OutDone from the FIFO, so we only
2922 			 * need to look at completing IN requests here
2923 			 * if operating slave mode
2924 			 */
2925 			if (hs_ep->isochronous && hs_ep->interval > 1)
2926 				dwc2_gadget_incr_frame_num(hs_ep);
2927 
2928 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2929 			if (ints & DXEPINT_NAKINTRPT)
2930 				ints &= ~DXEPINT_NAKINTRPT;
2931 
2932 			if (idx == 0 && !hs_ep->req)
2933 				dwc2_hsotg_enqueue_setup(hsotg);
2934 		} else if (using_dma(hsotg)) {
2935 			/*
2936 			 * We're using DMA, we need to fire an OutDone here
2937 			 * as we ignore the RXFIFO.
2938 			 */
2939 			if (hs_ep->isochronous && hs_ep->interval > 1)
2940 				dwc2_gadget_incr_frame_num(hs_ep);
2941 
2942 			dwc2_hsotg_handle_outdone(hsotg, idx);
2943 		}
2944 	}
2945 
2946 	if (ints & DXEPINT_EPDISBLD)
2947 		dwc2_gadget_handle_ep_disabled(hs_ep);
2948 
2949 	if (ints & DXEPINT_OUTTKNEPDIS)
2950 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2951 
2952 	if (ints & DXEPINT_NAKINTRPT)
2953 		dwc2_gadget_handle_nak(hs_ep);
2954 
2955 	if (ints & DXEPINT_AHBERR)
2956 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2957 
2958 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2959 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2960 
2961 		if (using_dma(hsotg) && idx == 0) {
2962 			/*
2963 			 * this is the notification we've received a
2964 			 * setup packet. In non-DMA mode we'd get this
2965 			 * from the RXFIFO, instead we need to process
2966 			 * the setup here.
2967 			 */
2968 
2969 			if (dir_in)
2970 				WARN_ON_ONCE(1);
2971 			else
2972 				dwc2_hsotg_handle_outdone(hsotg, 0);
2973 		}
2974 	}
2975 
2976 	if (ints & DXEPINT_STSPHSERCVD) {
2977 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2978 
2979 		/* Safety check EP0 state when STSPHSERCVD asserted */
2980 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2981 			/* Move to STATUS IN for DDMA */
2982 			if (using_desc_dma(hsotg))
2983 				dwc2_hsotg_ep0_zlp(hsotg, true);
2984 		}
2985 
2986 	}
2987 
2988 	if (ints & DXEPINT_BACK2BACKSETUP)
2989 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2990 
2991 	if (ints & DXEPINT_BNAINTR) {
2992 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2993 
2994 		/*
2995 		 * Try to start next isoc request, if any.
2996 		 * Sometimes the endpoint remains enabled after BNA interrupt
2997 		 * assertion, which is not expected, hence we can enter here
2998 		 * couple of times.
2999 		 */
3000 		if (hs_ep->isochronous)
3001 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
3002 	}
3003 
3004 	if (dir_in && !hs_ep->isochronous) {
3005 		/* not sure if this is important, but we'll clear it anyway */
3006 		if (ints & DXEPINT_INTKNTXFEMP) {
3007 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3008 				__func__, idx);
3009 		}
3010 
3011 		/* this probably means something bad is happening */
3012 		if (ints & DXEPINT_INTKNEPMIS) {
3013 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3014 				 __func__, idx);
3015 		}
3016 
3017 		/* FIFO has space or is empty (see GAHBCFG) */
3018 		if (hsotg->dedicated_fifos &&
3019 		    ints & DXEPINT_TXFEMP) {
3020 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3021 				__func__, idx);
3022 			if (!using_dma(hsotg))
3023 				dwc2_hsotg_trytx(hsotg, hs_ep);
3024 		}
3025 	}
3026 }
3027 
3028 /**
3029  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3030  * @hsotg: The device state.
3031  *
3032  * Handle updating the device settings after the enumeration phase has
3033  * been completed.
3034  */
3035 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3036 {
3037 	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3038 	int ep0_mps = 0, ep_mps = 8;
3039 
3040 	/*
3041 	 * This should signal the finish of the enumeration phase
3042 	 * of the USB handshaking, so we should now know what rate
3043 	 * we connected at.
3044 	 */
3045 
3046 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3047 
3048 	/*
3049 	 * note, since we're limited by the size of transfer on EP0, and
3050 	 * it seems IN transfers must be a even number of packets we do
3051 	 * not advertise a 64byte MPS on EP0.
3052 	 */
3053 
3054 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3055 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3056 	case DSTS_ENUMSPD_FS:
3057 	case DSTS_ENUMSPD_FS48:
3058 		hsotg->gadget.speed = USB_SPEED_FULL;
3059 		ep0_mps = EP0_MPS_LIMIT;
3060 		ep_mps = 1023;
3061 		break;
3062 
3063 	case DSTS_ENUMSPD_HS:
3064 		hsotg->gadget.speed = USB_SPEED_HIGH;
3065 		ep0_mps = EP0_MPS_LIMIT;
3066 		ep_mps = 1024;
3067 		break;
3068 
3069 	case DSTS_ENUMSPD_LS:
3070 		hsotg->gadget.speed = USB_SPEED_LOW;
3071 		ep0_mps = 8;
3072 		ep_mps = 8;
3073 		/*
3074 		 * note, we don't actually support LS in this driver at the
3075 		 * moment, and the documentation seems to imply that it isn't
3076 		 * supported by the PHYs on some of the devices.
3077 		 */
3078 		break;
3079 	}
3080 	dev_info(hsotg->dev, "new device is %s\n",
3081 		 usb_speed_string(hsotg->gadget.speed));
3082 
3083 	/*
3084 	 * we should now know the maximum packet size for an
3085 	 * endpoint, so set the endpoints to a default value.
3086 	 */
3087 
3088 	if (ep0_mps) {
3089 		int i;
3090 		/* Initialize ep0 for both in and out directions */
3091 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3092 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3093 		for (i = 1; i < hsotg->num_of_eps; i++) {
3094 			if (hsotg->eps_in[i])
3095 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3096 							    0, 1);
3097 			if (hsotg->eps_out[i])
3098 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3099 							    0, 0);
3100 		}
3101 	}
3102 
3103 	/* ensure after enumeration our EP0 is active */
3104 
3105 	dwc2_hsotg_enqueue_setup(hsotg);
3106 
3107 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3108 		dwc2_readl(hsotg->regs + DIEPCTL0),
3109 		dwc2_readl(hsotg->regs + DOEPCTL0));
3110 }
3111 
3112 /**
3113  * kill_all_requests - remove all requests from the endpoint's queue
3114  * @hsotg: The device state.
3115  * @ep: The endpoint the requests may be on.
3116  * @result: The result code to use.
3117  *
3118  * Go through the requests on the given endpoint and mark them
3119  * completed with the given result code.
3120  */
3121 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3122 			      struct dwc2_hsotg_ep *ep,
3123 			      int result)
3124 {
3125 	struct dwc2_hsotg_req *req, *treq;
3126 	unsigned int size;
3127 
3128 	ep->req = NULL;
3129 
3130 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3131 		dwc2_hsotg_complete_request(hsotg, ep, req,
3132 					    result);
3133 
3134 	if (!hsotg->dedicated_fifos)
3135 		return;
3136 	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3137 	if (size < ep->fifo_size)
3138 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3139 }
3140 
3141 /**
3142  * dwc2_hsotg_disconnect - disconnect service
3143  * @hsotg: The device state.
3144  *
3145  * The device has been disconnected. Remove all current
3146  * transactions and signal the gadget driver that this
3147  * has happened.
3148  */
3149 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3150 {
3151 	unsigned int ep;
3152 
3153 	if (!hsotg->connected)
3154 		return;
3155 
3156 	hsotg->connected = 0;
3157 	hsotg->test_mode = 0;
3158 
3159 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3160 		if (hsotg->eps_in[ep])
3161 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3162 					  -ESHUTDOWN);
3163 		if (hsotg->eps_out[ep])
3164 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3165 					  -ESHUTDOWN);
3166 	}
3167 
3168 	call_gadget(hsotg, disconnect);
3169 	hsotg->lx_state = DWC2_L3;
3170 
3171 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3172 }
3173 
3174 /**
3175  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3176  * @hsotg: The device state:
3177  * @periodic: True if this is a periodic FIFO interrupt
3178  */
3179 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3180 {
3181 	struct dwc2_hsotg_ep *ep;
3182 	int epno, ret;
3183 
3184 	/* look through for any more data to transmit */
3185 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3186 		ep = index_to_ep(hsotg, epno, 1);
3187 
3188 		if (!ep)
3189 			continue;
3190 
3191 		if (!ep->dir_in)
3192 			continue;
3193 
3194 		if ((periodic && !ep->periodic) ||
3195 		    (!periodic && ep->periodic))
3196 			continue;
3197 
3198 		ret = dwc2_hsotg_trytx(hsotg, ep);
3199 		if (ret < 0)
3200 			break;
3201 	}
3202 }
3203 
3204 /* IRQ flags which will trigger a retry around the IRQ loop */
3205 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3206 			GINTSTS_PTXFEMP |  \
3207 			GINTSTS_RXFLVL)
3208 
3209 /**
3210  * dwc2_hsotg_core_init - issue softreset to the core
3211  * @hsotg: The device state
3212  *
3213  * Issue a soft reset to the core, and await the core finishing it.
3214  */
3215 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3216 				       bool is_usb_reset)
3217 {
3218 	u32 intmsk;
3219 	u32 val;
3220 	u32 usbcfg;
3221 	u32 dcfg = 0;
3222 
3223 	/* Kill any ep0 requests as controller will be reinitialized */
3224 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3225 
3226 	if (!is_usb_reset)
3227 		if (dwc2_core_reset(hsotg, true))
3228 			return;
3229 
3230 	/*
3231 	 * we must now enable ep0 ready for host detection and then
3232 	 * set configuration.
3233 	 */
3234 
3235 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3236 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3237 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3238 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3239 
3240 	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3241 	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3242 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3243 		/* FS/LS Dedicated Transceiver Interface */
3244 		usbcfg |= GUSBCFG_PHYSEL;
3245 	} else {
3246 		/* set the PLL on, remove the HNP/SRP and set the PHY */
3247 		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3248 		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3249 			(val << GUSBCFG_USBTRDTIM_SHIFT);
3250 	}
3251 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3252 
3253 	dwc2_hsotg_init_fifo(hsotg);
3254 
3255 	if (!is_usb_reset)
3256 		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3257 
3258 	dcfg |= DCFG_EPMISCNT(1);
3259 
3260 	switch (hsotg->params.speed) {
3261 	case DWC2_SPEED_PARAM_LOW:
3262 		dcfg |= DCFG_DEVSPD_LS;
3263 		break;
3264 	case DWC2_SPEED_PARAM_FULL:
3265 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3266 			dcfg |= DCFG_DEVSPD_FS48;
3267 		else
3268 			dcfg |= DCFG_DEVSPD_FS;
3269 		break;
3270 	default:
3271 		dcfg |= DCFG_DEVSPD_HS;
3272 	}
3273 
3274 	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3275 
3276 	/* Clear any pending OTG interrupts */
3277 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3278 
3279 	/* Clear any pending interrupts */
3280 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3281 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3282 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3283 		GINTSTS_USBRST | GINTSTS_RESETDET |
3284 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3285 		GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3286 
3287 	if (!using_desc_dma(hsotg))
3288 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3289 
3290 	if (!hsotg->params.external_id_pin_ctl)
3291 		intmsk |= GINTSTS_CONIDSTSCHNG;
3292 
3293 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3294 
3295 	if (using_dma(hsotg)) {
3296 		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3297 			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3298 			    hsotg->regs + GAHBCFG);
3299 
3300 		/* Set DDMA mode support in the core if needed */
3301 		if (using_desc_dma(hsotg))
3302 			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3303 
3304 	} else {
3305 		dwc2_writel(((hsotg->dedicated_fifos) ?
3306 						(GAHBCFG_NP_TXF_EMP_LVL |
3307 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3308 			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3309 	}
3310 
3311 	/*
3312 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3313 	 * when we have no data to transfer. Otherwise we get being flooded by
3314 	 * interrupts.
3315 	 */
3316 
3317 	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3318 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3319 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3320 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3321 		hsotg->regs + DIEPMSK);
3322 
3323 	/*
3324 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3325 	 * DMA mode we may need this and StsPhseRcvd.
3326 	 */
3327 	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3328 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3329 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3330 		DOEPMSK_SETUPMSK,
3331 		hsotg->regs + DOEPMSK);
3332 
3333 	/* Enable BNA interrupt for DDMA */
3334 	if (using_desc_dma(hsotg))
3335 		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3336 
3337 	dwc2_writel(0, hsotg->regs + DAINTMSK);
3338 
3339 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3340 		dwc2_readl(hsotg->regs + DIEPCTL0),
3341 		dwc2_readl(hsotg->regs + DOEPCTL0));
3342 
3343 	/* enable in and out endpoint interrupts */
3344 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3345 
3346 	/*
3347 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3348 	 * the data. In DMA mode, we get events from the FIFO but also
3349 	 * things we cannot process, so do not use it.
3350 	 */
3351 	if (!using_dma(hsotg))
3352 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3353 
3354 	/* Enable interrupts for EP0 in and out */
3355 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3356 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3357 
3358 	if (!is_usb_reset) {
3359 		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3360 		udelay(10);  /* see openiboot */
3361 		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3362 	}
3363 
3364 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3365 
3366 	/*
3367 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3368 	 * writing to the EPCTL register..
3369 	 */
3370 
3371 	/* set to read 1 8byte packet */
3372 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3373 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3374 
3375 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3376 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3377 	       DXEPCTL_USBACTEP,
3378 	       hsotg->regs + DOEPCTL0);
3379 
3380 	/* enable, but don't activate EP0in */
3381 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3382 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3383 
3384 	/* clear global NAKs */
3385 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3386 	if (!is_usb_reset)
3387 		val |= DCTL_SFTDISCON;
3388 	__orr32(hsotg->regs + DCTL, val);
3389 
3390 	/* must be at-least 3ms to allow bus to see disconnect */
3391 	mdelay(3);
3392 
3393 	hsotg->lx_state = DWC2_L0;
3394 
3395 	dwc2_hsotg_enqueue_setup(hsotg);
3396 
3397 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3398 		dwc2_readl(hsotg->regs + DIEPCTL0),
3399 		dwc2_readl(hsotg->regs + DOEPCTL0));
3400 }
3401 
3402 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3403 {
3404 	/* set the soft-disconnect bit */
3405 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3406 }
3407 
3408 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3409 {
3410 	/* remove the soft-disconnect and let's go */
3411 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3412 }
3413 
3414 /**
3415  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3416  * @hsotg: The device state:
3417  *
3418  * This interrupt indicates one of the following conditions occurred while
3419  * transmitting an ISOC transaction.
3420  * - Corrupted IN Token for ISOC EP.
3421  * - Packet not complete in FIFO.
3422  *
3423  * The following actions will be taken:
3424  * - Determine the EP
3425  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3426  */
3427 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3428 {
3429 	struct dwc2_hsotg_ep *hs_ep;
3430 	u32 epctrl;
3431 	u32 idx;
3432 
3433 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3434 
3435 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3436 		hs_ep = hsotg->eps_in[idx];
3437 		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3438 		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3439 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3440 			epctrl |= DXEPCTL_SNAK;
3441 			epctrl |= DXEPCTL_EPDIS;
3442 			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3443 		}
3444 	}
3445 
3446 	/* Clear interrupt */
3447 	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3448 }
3449 
3450 /**
3451  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3452  * @hsotg: The device state:
3453  *
3454  * This interrupt indicates one of the following conditions occurred while
3455  * transmitting an ISOC transaction.
3456  * - Corrupted OUT Token for ISOC EP.
3457  * - Packet not complete in FIFO.
3458  *
3459  * The following actions will be taken:
3460  * - Determine the EP
3461  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3462  */
3463 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3464 {
3465 	u32 gintsts;
3466 	u32 gintmsk;
3467 	u32 epctrl;
3468 	struct dwc2_hsotg_ep *hs_ep;
3469 	int idx;
3470 
3471 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3472 
3473 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3474 		hs_ep = hsotg->eps_out[idx];
3475 		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3476 		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3477 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3478 			/* Unmask GOUTNAKEFF interrupt */
3479 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3480 			gintmsk |= GINTSTS_GOUTNAKEFF;
3481 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3482 
3483 			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3484 			if (!(gintsts & GINTSTS_GOUTNAKEFF))
3485 				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3486 		}
3487 	}
3488 
3489 	/* Clear interrupt */
3490 	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3491 }
3492 
3493 /**
3494  * dwc2_hsotg_irq - handle device interrupt
3495  * @irq: The IRQ number triggered
3496  * @pw: The pw value when registered the handler.
3497  */
3498 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3499 {
3500 	struct dwc2_hsotg *hsotg = pw;
3501 	int retry_count = 8;
3502 	u32 gintsts;
3503 	u32 gintmsk;
3504 
3505 	if (!dwc2_is_device_mode(hsotg))
3506 		return IRQ_NONE;
3507 
3508 	spin_lock(&hsotg->lock);
3509 irq_retry:
3510 	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3511 	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3512 
3513 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3514 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3515 
3516 	gintsts &= gintmsk;
3517 
3518 	if (gintsts & GINTSTS_RESETDET) {
3519 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3520 
3521 		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3522 
3523 		/* This event must be used only if controller is suspended */
3524 		if (hsotg->lx_state == DWC2_L2) {
3525 			dwc2_exit_hibernation(hsotg, true);
3526 			hsotg->lx_state = DWC2_L0;
3527 		}
3528 	}
3529 
3530 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3531 		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3532 		u32 connected = hsotg->connected;
3533 
3534 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3535 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3536 			dwc2_readl(hsotg->regs + GNPTXSTS));
3537 
3538 		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3539 
3540 		/* Report disconnection if it is not already done. */
3541 		dwc2_hsotg_disconnect(hsotg);
3542 
3543 		/* Reset device address to zero */
3544 		__bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3545 
3546 		if (usb_status & GOTGCTL_BSESVLD && connected)
3547 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3548 	}
3549 
3550 	if (gintsts & GINTSTS_ENUMDONE) {
3551 		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3552 
3553 		dwc2_hsotg_irq_enumdone(hsotg);
3554 	}
3555 
3556 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3557 		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3558 		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3559 		u32 daint_out, daint_in;
3560 		int ep;
3561 
3562 		daint &= daintmsk;
3563 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3564 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3565 
3566 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3567 
3568 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3569 						ep++, daint_out >>= 1) {
3570 			if (daint_out & 1)
3571 				dwc2_hsotg_epint(hsotg, ep, 0);
3572 		}
3573 
3574 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3575 						ep++, daint_in >>= 1) {
3576 			if (daint_in & 1)
3577 				dwc2_hsotg_epint(hsotg, ep, 1);
3578 		}
3579 	}
3580 
3581 	/* check both FIFOs */
3582 
3583 	if (gintsts & GINTSTS_NPTXFEMP) {
3584 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3585 
3586 		/*
3587 		 * Disable the interrupt to stop it happening again
3588 		 * unless one of these endpoint routines decides that
3589 		 * it needs re-enabling
3590 		 */
3591 
3592 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3593 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3594 	}
3595 
3596 	if (gintsts & GINTSTS_PTXFEMP) {
3597 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3598 
3599 		/* See note in GINTSTS_NPTxFEmp */
3600 
3601 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3602 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3603 	}
3604 
3605 	if (gintsts & GINTSTS_RXFLVL) {
3606 		/*
3607 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3608 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3609 		 * set.
3610 		 */
3611 
3612 		dwc2_hsotg_handle_rx(hsotg);
3613 	}
3614 
3615 	if (gintsts & GINTSTS_ERLYSUSP) {
3616 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3617 		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3618 	}
3619 
3620 	/*
3621 	 * these next two seem to crop-up occasionally causing the core
3622 	 * to shutdown the USB transfer, so try clearing them and logging
3623 	 * the occurrence.
3624 	 */
3625 
3626 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3627 		u8 idx;
3628 		u32 epctrl;
3629 		u32 gintmsk;
3630 		struct dwc2_hsotg_ep *hs_ep;
3631 
3632 		/* Mask this interrupt */
3633 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3634 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3635 		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3636 
3637 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3638 		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3639 			hs_ep = hsotg->eps_out[idx];
3640 			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3641 
3642 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3643 				epctrl |= DXEPCTL_SNAK;
3644 				epctrl |= DXEPCTL_EPDIS;
3645 				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3646 			}
3647 		}
3648 
3649 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3650 	}
3651 
3652 	if (gintsts & GINTSTS_GINNAKEFF) {
3653 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3654 
3655 		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3656 
3657 		dwc2_hsotg_dump(hsotg);
3658 	}
3659 
3660 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3661 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3662 
3663 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3664 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3665 
3666 	/*
3667 	 * if we've had fifo events, we should try and go around the
3668 	 * loop again to see if there's any point in returning yet.
3669 	 */
3670 
3671 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3672 		goto irq_retry;
3673 
3674 	spin_unlock(&hsotg->lock);
3675 
3676 	return IRQ_HANDLED;
3677 }
3678 
3679 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3680 				   u32 bit, u32 timeout)
3681 {
3682 	u32 i;
3683 
3684 	for (i = 0; i < timeout; i++) {
3685 		if (dwc2_readl(hs_otg->regs + reg) & bit)
3686 			return 0;
3687 		udelay(1);
3688 	}
3689 
3690 	return -ETIMEDOUT;
3691 }
3692 
3693 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3694 				   struct dwc2_hsotg_ep *hs_ep)
3695 {
3696 	u32 epctrl_reg;
3697 	u32 epint_reg;
3698 
3699 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3700 		DOEPCTL(hs_ep->index);
3701 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3702 		DOEPINT(hs_ep->index);
3703 
3704 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3705 		hs_ep->name);
3706 
3707 	if (hs_ep->dir_in) {
3708 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3709 			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3710 			/* Wait for Nak effect */
3711 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3712 						    DXEPINT_INEPNAKEFF, 100))
3713 				dev_warn(hsotg->dev,
3714 					 "%s: timeout DIEPINT.NAKEFF\n",
3715 					 __func__);
3716 		} else {
3717 			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3718 			/* Wait for Nak effect */
3719 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3720 						    GINTSTS_GINNAKEFF, 100))
3721 				dev_warn(hsotg->dev,
3722 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3723 					 __func__);
3724 		}
3725 	} else {
3726 		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3727 			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3728 
3729 		/* Wait for global nak to take effect */
3730 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3731 					    GINTSTS_GOUTNAKEFF, 100))
3732 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3733 				 __func__);
3734 	}
3735 
3736 	/* Disable ep */
3737 	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3738 
3739 	/* Wait for ep to be disabled */
3740 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3741 		dev_warn(hsotg->dev,
3742 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3743 
3744 	/* Clear EPDISBLD interrupt */
3745 	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3746 
3747 	if (hs_ep->dir_in) {
3748 		unsigned short fifo_index;
3749 
3750 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3751 			fifo_index = hs_ep->fifo_index;
3752 		else
3753 			fifo_index = 0;
3754 
3755 		/* Flush TX FIFO */
3756 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3757 
3758 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3759 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3760 			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3761 
3762 	} else {
3763 		/* Remove global NAKs */
3764 		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3765 	}
3766 }
3767 
3768 /**
3769  * dwc2_hsotg_ep_enable - enable the given endpoint
3770  * @ep: The USB endpint to configure
3771  * @desc: The USB endpoint descriptor to configure with.
3772  *
3773  * This is called from the USB gadget code's usb_ep_enable().
3774  */
3775 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3776 				const struct usb_endpoint_descriptor *desc)
3777 {
3778 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3779 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3780 	unsigned long flags;
3781 	unsigned int index = hs_ep->index;
3782 	u32 epctrl_reg;
3783 	u32 epctrl;
3784 	u32 mps;
3785 	u32 mc;
3786 	u32 mask;
3787 	unsigned int dir_in;
3788 	unsigned int i, val, size;
3789 	int ret = 0;
3790 
3791 	dev_dbg(hsotg->dev,
3792 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3793 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3794 		desc->wMaxPacketSize, desc->bInterval);
3795 
3796 	/* not to be called for EP0 */
3797 	if (index == 0) {
3798 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3799 		return -EINVAL;
3800 	}
3801 
3802 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3803 	if (dir_in != hs_ep->dir_in) {
3804 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3805 		return -EINVAL;
3806 	}
3807 
3808 	mps = usb_endpoint_maxp(desc);
3809 	mc = usb_endpoint_maxp_mult(desc);
3810 
3811 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3812 
3813 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3814 	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3815 
3816 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3817 		__func__, epctrl, epctrl_reg);
3818 
3819 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3820 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3821 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3822 			MAX_DMA_DESC_NUM_GENERIC *
3823 			sizeof(struct dwc2_dma_desc),
3824 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3825 		if (!hs_ep->desc_list) {
3826 			ret = -ENOMEM;
3827 			goto error2;
3828 		}
3829 	}
3830 
3831 	spin_lock_irqsave(&hsotg->lock, flags);
3832 
3833 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3834 	epctrl |= DXEPCTL_MPS(mps);
3835 
3836 	/*
3837 	 * mark the endpoint as active, otherwise the core may ignore
3838 	 * transactions entirely for this endpoint
3839 	 */
3840 	epctrl |= DXEPCTL_USBACTEP;
3841 
3842 	/* update the endpoint state */
3843 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3844 
3845 	/* default, set to non-periodic */
3846 	hs_ep->isochronous = 0;
3847 	hs_ep->periodic = 0;
3848 	hs_ep->halted = 0;
3849 	hs_ep->interval = desc->bInterval;
3850 
3851 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3852 	case USB_ENDPOINT_XFER_ISOC:
3853 		epctrl |= DXEPCTL_EPTYPE_ISO;
3854 		epctrl |= DXEPCTL_SETEVENFR;
3855 		hs_ep->isochronous = 1;
3856 		hs_ep->interval = 1 << (desc->bInterval - 1);
3857 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3858 		hs_ep->isoc_chain_num = 0;
3859 		hs_ep->next_desc = 0;
3860 		if (dir_in) {
3861 			hs_ep->periodic = 1;
3862 			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3863 			mask |= DIEPMSK_NAKMSK;
3864 			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3865 		} else {
3866 			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3867 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3868 			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3869 		}
3870 		break;
3871 
3872 	case USB_ENDPOINT_XFER_BULK:
3873 		epctrl |= DXEPCTL_EPTYPE_BULK;
3874 		break;
3875 
3876 	case USB_ENDPOINT_XFER_INT:
3877 		if (dir_in)
3878 			hs_ep->periodic = 1;
3879 
3880 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3881 			hs_ep->interval = 1 << (desc->bInterval - 1);
3882 
3883 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3884 		break;
3885 
3886 	case USB_ENDPOINT_XFER_CONTROL:
3887 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3888 		break;
3889 	}
3890 
3891 	/*
3892 	 * if the hardware has dedicated fifos, we must give each IN EP
3893 	 * a unique tx-fifo even if it is non-periodic.
3894 	 */
3895 	if (dir_in && hsotg->dedicated_fifos) {
3896 		u32 fifo_index = 0;
3897 		u32 fifo_size = UINT_MAX;
3898 
3899 		size = hs_ep->ep.maxpacket * hs_ep->mc;
3900 		for (i = 1; i < hsotg->num_of_eps; ++i) {
3901 			if (hsotg->fifo_map & (1 << i))
3902 				continue;
3903 			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3904 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3905 			if (val < size)
3906 				continue;
3907 			/* Search for smallest acceptable fifo */
3908 			if (val < fifo_size) {
3909 				fifo_size = val;
3910 				fifo_index = i;
3911 			}
3912 		}
3913 		if (!fifo_index) {
3914 			dev_err(hsotg->dev,
3915 				"%s: No suitable fifo found\n", __func__);
3916 			ret = -ENOMEM;
3917 			goto error1;
3918 		}
3919 		hsotg->fifo_map |= 1 << fifo_index;
3920 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3921 		hs_ep->fifo_index = fifo_index;
3922 		hs_ep->fifo_size = fifo_size;
3923 	}
3924 
3925 	/* for non control endpoints, set PID to D0 */
3926 	if (index && !hs_ep->isochronous)
3927 		epctrl |= DXEPCTL_SETD0PID;
3928 
3929 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3930 		__func__, epctrl);
3931 
3932 	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3933 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3934 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3935 
3936 	/* enable the endpoint interrupt */
3937 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3938 
3939 error1:
3940 	spin_unlock_irqrestore(&hsotg->lock, flags);
3941 
3942 error2:
3943 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3944 		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3945 			sizeof(struct dwc2_dma_desc),
3946 			hs_ep->desc_list, hs_ep->desc_list_dma);
3947 		hs_ep->desc_list = NULL;
3948 	}
3949 
3950 	return ret;
3951 }
3952 
3953 /**
3954  * dwc2_hsotg_ep_disable - disable given endpoint
3955  * @ep: The endpoint to disable.
3956  */
3957 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3958 {
3959 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3960 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3961 	int dir_in = hs_ep->dir_in;
3962 	int index = hs_ep->index;
3963 	unsigned long flags;
3964 	u32 epctrl_reg;
3965 	u32 ctrl;
3966 
3967 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3968 
3969 	if (ep == &hsotg->eps_out[0]->ep) {
3970 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3971 		return -EINVAL;
3972 	}
3973 
3974 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3975 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
3976 		return -EINVAL;
3977 	}
3978 
3979 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3980 
3981 	spin_lock_irqsave(&hsotg->lock, flags);
3982 
3983 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3984 
3985 	if (ctrl & DXEPCTL_EPENA)
3986 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3987 
3988 	ctrl &= ~DXEPCTL_EPENA;
3989 	ctrl &= ~DXEPCTL_USBACTEP;
3990 	ctrl |= DXEPCTL_SNAK;
3991 
3992 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3993 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3994 
3995 	/* disable endpoint interrupts */
3996 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3997 
3998 	/* terminate all requests with shutdown */
3999 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4000 
4001 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4002 	hs_ep->fifo_index = 0;
4003 	hs_ep->fifo_size = 0;
4004 
4005 	spin_unlock_irqrestore(&hsotg->lock, flags);
4006 	return 0;
4007 }
4008 
4009 /**
4010  * on_list - check request is on the given endpoint
4011  * @ep: The endpoint to check.
4012  * @test: The request to test if it is on the endpoint.
4013  */
4014 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4015 {
4016 	struct dwc2_hsotg_req *req, *treq;
4017 
4018 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4019 		if (req == test)
4020 			return true;
4021 	}
4022 
4023 	return false;
4024 }
4025 
4026 /**
4027  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4028  * @ep: The endpoint to dequeue.
4029  * @req: The request to be removed from a queue.
4030  */
4031 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4032 {
4033 	struct dwc2_hsotg_req *hs_req = our_req(req);
4034 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4035 	struct dwc2_hsotg *hs = hs_ep->parent;
4036 	unsigned long flags;
4037 
4038 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4039 
4040 	spin_lock_irqsave(&hs->lock, flags);
4041 
4042 	if (!on_list(hs_ep, hs_req)) {
4043 		spin_unlock_irqrestore(&hs->lock, flags);
4044 		return -EINVAL;
4045 	}
4046 
4047 	/* Dequeue already started request */
4048 	if (req == &hs_ep->req->req)
4049 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4050 
4051 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4052 	spin_unlock_irqrestore(&hs->lock, flags);
4053 
4054 	return 0;
4055 }
4056 
4057 /**
4058  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4059  * @ep: The endpoint to set halt.
4060  * @value: Set or unset the halt.
4061  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4062  *       the endpoint is busy processing requests.
4063  *
4064  * We need to stall the endpoint immediately if request comes from set_feature
4065  * protocol command handler.
4066  */
4067 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4068 {
4069 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4070 	struct dwc2_hsotg *hs = hs_ep->parent;
4071 	int index = hs_ep->index;
4072 	u32 epreg;
4073 	u32 epctl;
4074 	u32 xfertype;
4075 
4076 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4077 
4078 	if (index == 0) {
4079 		if (value)
4080 			dwc2_hsotg_stall_ep0(hs);
4081 		else
4082 			dev_warn(hs->dev,
4083 				 "%s: can't clear halt on ep0\n", __func__);
4084 		return 0;
4085 	}
4086 
4087 	if (hs_ep->isochronous) {
4088 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4089 		return -EINVAL;
4090 	}
4091 
4092 	if (!now && value && !list_empty(&hs_ep->queue)) {
4093 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4094 			ep->name);
4095 		return -EAGAIN;
4096 	}
4097 
4098 	if (hs_ep->dir_in) {
4099 		epreg = DIEPCTL(index);
4100 		epctl = dwc2_readl(hs->regs + epreg);
4101 
4102 		if (value) {
4103 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4104 			if (epctl & DXEPCTL_EPENA)
4105 				epctl |= DXEPCTL_EPDIS;
4106 		} else {
4107 			epctl &= ~DXEPCTL_STALL;
4108 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4109 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4110 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4111 				epctl |= DXEPCTL_SETD0PID;
4112 		}
4113 		dwc2_writel(epctl, hs->regs + epreg);
4114 	} else {
4115 		epreg = DOEPCTL(index);
4116 		epctl = dwc2_readl(hs->regs + epreg);
4117 
4118 		if (value) {
4119 			epctl |= DXEPCTL_STALL;
4120 		} else {
4121 			epctl &= ~DXEPCTL_STALL;
4122 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4123 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4124 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4125 				epctl |= DXEPCTL_SETD0PID;
4126 		}
4127 		dwc2_writel(epctl, hs->regs + epreg);
4128 	}
4129 
4130 	hs_ep->halted = value;
4131 
4132 	return 0;
4133 }
4134 
4135 /**
4136  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4137  * @ep: The endpoint to set halt.
4138  * @value: Set or unset the halt.
4139  */
4140 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4141 {
4142 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4143 	struct dwc2_hsotg *hs = hs_ep->parent;
4144 	unsigned long flags = 0;
4145 	int ret = 0;
4146 
4147 	spin_lock_irqsave(&hs->lock, flags);
4148 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4149 	spin_unlock_irqrestore(&hs->lock, flags);
4150 
4151 	return ret;
4152 }
4153 
4154 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4155 	.enable		= dwc2_hsotg_ep_enable,
4156 	.disable	= dwc2_hsotg_ep_disable,
4157 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4158 	.free_request	= dwc2_hsotg_ep_free_request,
4159 	.queue		= dwc2_hsotg_ep_queue_lock,
4160 	.dequeue	= dwc2_hsotg_ep_dequeue,
4161 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4162 	/* note, don't believe we have any call for the fifo routines */
4163 };
4164 
4165 /**
4166  * dwc2_hsotg_init - initialize the usb core
4167  * @hsotg: The driver state
4168  */
4169 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4170 {
4171 	u32 trdtim;
4172 	u32 usbcfg;
4173 	/* unmask subset of endpoint interrupts */
4174 
4175 	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4176 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4177 		    hsotg->regs + DIEPMSK);
4178 
4179 	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4180 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4181 		    hsotg->regs + DOEPMSK);
4182 
4183 	dwc2_writel(0, hsotg->regs + DAINTMSK);
4184 
4185 	/* Be in disconnected state until gadget is registered */
4186 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4187 
4188 	/* setup fifos */
4189 
4190 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4191 		dwc2_readl(hsotg->regs + GRXFSIZ),
4192 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4193 
4194 	dwc2_hsotg_init_fifo(hsotg);
4195 
4196 	/* keep other bits untouched (so e.g. forced modes are not lost) */
4197 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4198 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4199 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4200 
4201 	/* set the PLL on, remove the HNP/SRP and set the PHY */
4202 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4203 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4204 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4205 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4206 
4207 	if (using_dma(hsotg))
4208 		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4209 }
4210 
4211 /**
4212  * dwc2_hsotg_udc_start - prepare the udc for work
4213  * @gadget: The usb gadget state
4214  * @driver: The usb gadget driver
4215  *
4216  * Perform initialization to prepare udc device and driver
4217  * to work.
4218  */
4219 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4220 				struct usb_gadget_driver *driver)
4221 {
4222 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4223 	unsigned long flags;
4224 	int ret;
4225 
4226 	if (!hsotg) {
4227 		pr_err("%s: called with no device\n", __func__);
4228 		return -ENODEV;
4229 	}
4230 
4231 	if (!driver) {
4232 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4233 		return -EINVAL;
4234 	}
4235 
4236 	if (driver->max_speed < USB_SPEED_FULL)
4237 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4238 
4239 	if (!driver->setup) {
4240 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4241 		return -EINVAL;
4242 	}
4243 
4244 	WARN_ON(hsotg->driver);
4245 
4246 	driver->driver.bus = NULL;
4247 	hsotg->driver = driver;
4248 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4249 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4250 
4251 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4252 		ret = dwc2_lowlevel_hw_enable(hsotg);
4253 		if (ret)
4254 			goto err;
4255 	}
4256 
4257 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4258 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4259 
4260 	spin_lock_irqsave(&hsotg->lock, flags);
4261 	if (dwc2_hw_is_device(hsotg)) {
4262 		dwc2_hsotg_init(hsotg);
4263 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4264 	}
4265 
4266 	hsotg->enabled = 0;
4267 	spin_unlock_irqrestore(&hsotg->lock, flags);
4268 
4269 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4270 
4271 	return 0;
4272 
4273 err:
4274 	hsotg->driver = NULL;
4275 	return ret;
4276 }
4277 
4278 /**
4279  * dwc2_hsotg_udc_stop - stop the udc
4280  * @gadget: The usb gadget state
4281  * @driver: The usb gadget driver
4282  *
4283  * Stop udc hw block and stay tunned for future transmissions
4284  */
4285 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4286 {
4287 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4288 	unsigned long flags = 0;
4289 	int ep;
4290 
4291 	if (!hsotg)
4292 		return -ENODEV;
4293 
4294 	/* all endpoints should be shutdown */
4295 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4296 		if (hsotg->eps_in[ep])
4297 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4298 		if (hsotg->eps_out[ep])
4299 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4300 	}
4301 
4302 	spin_lock_irqsave(&hsotg->lock, flags);
4303 
4304 	hsotg->driver = NULL;
4305 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4306 	hsotg->enabled = 0;
4307 
4308 	spin_unlock_irqrestore(&hsotg->lock, flags);
4309 
4310 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4311 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4312 
4313 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4314 		dwc2_lowlevel_hw_disable(hsotg);
4315 
4316 	return 0;
4317 }
4318 
4319 /**
4320  * dwc2_hsotg_gadget_getframe - read the frame number
4321  * @gadget: The usb gadget state
4322  *
4323  * Read the {micro} frame number
4324  */
4325 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4326 {
4327 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4328 }
4329 
4330 /**
4331  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4332  * @gadget: The usb gadget state
4333  * @is_on: Current state of the USB PHY
4334  *
4335  * Connect/Disconnect the USB PHY pullup
4336  */
4337 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4338 {
4339 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4340 	unsigned long flags = 0;
4341 
4342 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4343 		hsotg->op_state);
4344 
4345 	/* Don't modify pullup state while in host mode */
4346 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4347 		hsotg->enabled = is_on;
4348 		return 0;
4349 	}
4350 
4351 	spin_lock_irqsave(&hsotg->lock, flags);
4352 	if (is_on) {
4353 		hsotg->enabled = 1;
4354 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4355 		dwc2_hsotg_core_connect(hsotg);
4356 	} else {
4357 		dwc2_hsotg_core_disconnect(hsotg);
4358 		dwc2_hsotg_disconnect(hsotg);
4359 		hsotg->enabled = 0;
4360 	}
4361 
4362 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4363 	spin_unlock_irqrestore(&hsotg->lock, flags);
4364 
4365 	return 0;
4366 }
4367 
4368 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4369 {
4370 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4371 	unsigned long flags;
4372 
4373 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4374 	spin_lock_irqsave(&hsotg->lock, flags);
4375 
4376 	/*
4377 	 * If controller is hibernated, it must exit from hibernation
4378 	 * before being initialized / de-initialized
4379 	 */
4380 	if (hsotg->lx_state == DWC2_L2)
4381 		dwc2_exit_hibernation(hsotg, false);
4382 
4383 	if (is_active) {
4384 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4385 
4386 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4387 		if (hsotg->enabled)
4388 			dwc2_hsotg_core_connect(hsotg);
4389 	} else {
4390 		dwc2_hsotg_core_disconnect(hsotg);
4391 		dwc2_hsotg_disconnect(hsotg);
4392 	}
4393 
4394 	spin_unlock_irqrestore(&hsotg->lock, flags);
4395 	return 0;
4396 }
4397 
4398 /**
4399  * dwc2_hsotg_vbus_draw - report bMaxPower field
4400  * @gadget: The usb gadget state
4401  * @mA: Amount of current
4402  *
4403  * Report how much power the device may consume to the phy.
4404  */
4405 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4406 {
4407 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4408 
4409 	if (IS_ERR_OR_NULL(hsotg->uphy))
4410 		return -ENOTSUPP;
4411 	return usb_phy_set_power(hsotg->uphy, mA);
4412 }
4413 
4414 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4415 	.get_frame	= dwc2_hsotg_gadget_getframe,
4416 	.udc_start		= dwc2_hsotg_udc_start,
4417 	.udc_stop		= dwc2_hsotg_udc_stop,
4418 	.pullup                 = dwc2_hsotg_pullup,
4419 	.vbus_session		= dwc2_hsotg_vbus_session,
4420 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4421 };
4422 
4423 /**
4424  * dwc2_hsotg_initep - initialise a single endpoint
4425  * @hsotg: The device state.
4426  * @hs_ep: The endpoint to be initialised.
4427  * @epnum: The endpoint number
4428  *
4429  * Initialise the given endpoint (as part of the probe and device state
4430  * creation) to give to the gadget driver. Setup the endpoint name, any
4431  * direction information and other state that may be required.
4432  */
4433 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4434 			      struct dwc2_hsotg_ep *hs_ep,
4435 				       int epnum,
4436 				       bool dir_in)
4437 {
4438 	char *dir;
4439 
4440 	if (epnum == 0)
4441 		dir = "";
4442 	else if (dir_in)
4443 		dir = "in";
4444 	else
4445 		dir = "out";
4446 
4447 	hs_ep->dir_in = dir_in;
4448 	hs_ep->index = epnum;
4449 
4450 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4451 
4452 	INIT_LIST_HEAD(&hs_ep->queue);
4453 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4454 
4455 	/* add to the list of endpoints known by the gadget driver */
4456 	if (epnum)
4457 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4458 
4459 	hs_ep->parent = hsotg;
4460 	hs_ep->ep.name = hs_ep->name;
4461 
4462 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4463 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4464 	else
4465 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4466 					   epnum ? 1024 : EP0_MPS_LIMIT);
4467 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4468 
4469 	if (epnum == 0) {
4470 		hs_ep->ep.caps.type_control = true;
4471 	} else {
4472 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4473 			hs_ep->ep.caps.type_iso = true;
4474 			hs_ep->ep.caps.type_bulk = true;
4475 		}
4476 		hs_ep->ep.caps.type_int = true;
4477 	}
4478 
4479 	if (dir_in)
4480 		hs_ep->ep.caps.dir_in = true;
4481 	else
4482 		hs_ep->ep.caps.dir_out = true;
4483 
4484 	/*
4485 	 * if we're using dma, we need to set the next-endpoint pointer
4486 	 * to be something valid.
4487 	 */
4488 
4489 	if (using_dma(hsotg)) {
4490 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4491 
4492 		if (dir_in)
4493 			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4494 		else
4495 			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4496 	}
4497 }
4498 
4499 /**
4500  * dwc2_hsotg_hw_cfg - read HW configuration registers
4501  * @param: The device state
4502  *
4503  * Read the USB core HW configuration registers
4504  */
4505 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4506 {
4507 	u32 cfg;
4508 	u32 ep_type;
4509 	u32 i;
4510 
4511 	/* check hardware configuration */
4512 
4513 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4514 
4515 	/* Add ep0 */
4516 	hsotg->num_of_eps++;
4517 
4518 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4519 					sizeof(struct dwc2_hsotg_ep),
4520 					GFP_KERNEL);
4521 	if (!hsotg->eps_in[0])
4522 		return -ENOMEM;
4523 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4524 	hsotg->eps_out[0] = hsotg->eps_in[0];
4525 
4526 	cfg = hsotg->hw_params.dev_ep_dirs;
4527 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4528 		ep_type = cfg & 3;
4529 		/* Direction in or both */
4530 		if (!(ep_type & 2)) {
4531 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4532 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4533 			if (!hsotg->eps_in[i])
4534 				return -ENOMEM;
4535 		}
4536 		/* Direction out or both */
4537 		if (!(ep_type & 1)) {
4538 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4539 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4540 			if (!hsotg->eps_out[i])
4541 				return -ENOMEM;
4542 		}
4543 	}
4544 
4545 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4546 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4547 
4548 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4549 		 hsotg->num_of_eps,
4550 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4551 		 hsotg->fifo_mem);
4552 	return 0;
4553 }
4554 
4555 /**
4556  * dwc2_hsotg_dump - dump state of the udc
4557  * @param: The device state
4558  */
4559 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4560 {
4561 #ifdef DEBUG
4562 	struct device *dev = hsotg->dev;
4563 	void __iomem *regs = hsotg->regs;
4564 	u32 val;
4565 	int idx;
4566 
4567 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4568 		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4569 		 dwc2_readl(regs + DIEPMSK));
4570 
4571 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4572 		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4573 
4574 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4575 		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4576 
4577 	/* show periodic fifo settings */
4578 
4579 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4580 		val = dwc2_readl(regs + DPTXFSIZN(idx));
4581 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4582 			 val >> FIFOSIZE_DEPTH_SHIFT,
4583 			 val & FIFOSIZE_STARTADDR_MASK);
4584 	}
4585 
4586 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4587 		dev_info(dev,
4588 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4589 			 dwc2_readl(regs + DIEPCTL(idx)),
4590 			 dwc2_readl(regs + DIEPTSIZ(idx)),
4591 			 dwc2_readl(regs + DIEPDMA(idx)));
4592 
4593 		val = dwc2_readl(regs + DOEPCTL(idx));
4594 		dev_info(dev,
4595 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4596 			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4597 			 dwc2_readl(regs + DOEPTSIZ(idx)),
4598 			 dwc2_readl(regs + DOEPDMA(idx)));
4599 	}
4600 
4601 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4602 		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4603 #endif
4604 }
4605 
4606 /**
4607  * dwc2_gadget_init - init function for gadget
4608  * @dwc2: The data structure for the DWC2 driver.
4609  * @irq: The IRQ number for the controller.
4610  */
4611 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4612 {
4613 	struct device *dev = hsotg->dev;
4614 	int epnum;
4615 	int ret;
4616 
4617 	/* Dump fifo information */
4618 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4619 		hsotg->params.g_np_tx_fifo_size);
4620 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4621 
4622 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4623 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4624 	hsotg->gadget.name = dev_name(dev);
4625 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4626 		hsotg->gadget.is_otg = 1;
4627 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4628 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4629 
4630 	ret = dwc2_hsotg_hw_cfg(hsotg);
4631 	if (ret) {
4632 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4633 		return ret;
4634 	}
4635 
4636 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4637 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4638 	if (!hsotg->ctrl_buff)
4639 		return -ENOMEM;
4640 
4641 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4642 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4643 	if (!hsotg->ep0_buff)
4644 		return -ENOMEM;
4645 
4646 	if (using_desc_dma(hsotg)) {
4647 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4648 		if (ret < 0)
4649 			return ret;
4650 	}
4651 
4652 	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4653 			       dev_name(hsotg->dev), hsotg);
4654 	if (ret < 0) {
4655 		dev_err(dev, "cannot claim IRQ for gadget\n");
4656 		return ret;
4657 	}
4658 
4659 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4660 
4661 	if (hsotg->num_of_eps == 0) {
4662 		dev_err(dev, "wrong number of EPs (zero)\n");
4663 		return -EINVAL;
4664 	}
4665 
4666 	/* setup endpoint information */
4667 
4668 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4669 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4670 
4671 	/* allocate EP0 request */
4672 
4673 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4674 						     GFP_KERNEL);
4675 	if (!hsotg->ctrl_req) {
4676 		dev_err(dev, "failed to allocate ctrl req\n");
4677 		return -ENOMEM;
4678 	}
4679 
4680 	/* initialise the endpoints now the core has been initialised */
4681 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4682 		if (hsotg->eps_in[epnum])
4683 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4684 					  epnum, 1);
4685 		if (hsotg->eps_out[epnum])
4686 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4687 					  epnum, 0);
4688 	}
4689 
4690 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4691 	if (ret)
4692 		return ret;
4693 
4694 	dwc2_hsotg_dump(hsotg);
4695 
4696 	return 0;
4697 }
4698 
4699 /**
4700  * dwc2_hsotg_remove - remove function for hsotg driver
4701  * @pdev: The platform information for the driver
4702  */
4703 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4704 {
4705 	usb_del_gadget_udc(&hsotg->gadget);
4706 
4707 	return 0;
4708 }
4709 
4710 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4711 {
4712 	unsigned long flags;
4713 
4714 	if (hsotg->lx_state != DWC2_L0)
4715 		return 0;
4716 
4717 	if (hsotg->driver) {
4718 		int ep;
4719 
4720 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4721 			 hsotg->driver->driver.name);
4722 
4723 		spin_lock_irqsave(&hsotg->lock, flags);
4724 		if (hsotg->enabled)
4725 			dwc2_hsotg_core_disconnect(hsotg);
4726 		dwc2_hsotg_disconnect(hsotg);
4727 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4728 		spin_unlock_irqrestore(&hsotg->lock, flags);
4729 
4730 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4731 			if (hsotg->eps_in[ep])
4732 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4733 			if (hsotg->eps_out[ep])
4734 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4735 		}
4736 	}
4737 
4738 	return 0;
4739 }
4740 
4741 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4742 {
4743 	unsigned long flags;
4744 
4745 	if (hsotg->lx_state == DWC2_L2)
4746 		return 0;
4747 
4748 	if (hsotg->driver) {
4749 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4750 			 hsotg->driver->driver.name);
4751 
4752 		spin_lock_irqsave(&hsotg->lock, flags);
4753 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4754 		if (hsotg->enabled)
4755 			dwc2_hsotg_core_connect(hsotg);
4756 		spin_unlock_irqrestore(&hsotg->lock, flags);
4757 	}
4758 
4759 	return 0;
4760 }
4761 
4762 /**
4763  * dwc2_backup_device_registers() - Backup controller device registers.
4764  * When suspending usb bus, registers needs to be backuped
4765  * if controller power is disabled once suspended.
4766  *
4767  * @hsotg: Programming view of the DWC_otg controller
4768  */
4769 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4770 {
4771 	struct dwc2_dregs_backup *dr;
4772 	int i;
4773 
4774 	dev_dbg(hsotg->dev, "%s\n", __func__);
4775 
4776 	/* Backup dev regs */
4777 	dr = &hsotg->dr_backup;
4778 
4779 	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4780 	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4781 	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4782 	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4783 	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4784 
4785 	for (i = 0; i < hsotg->num_of_eps; i++) {
4786 		/* Backup IN EPs */
4787 		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4788 
4789 		/* Ensure DATA PID is correctly configured */
4790 		if (dr->diepctl[i] & DXEPCTL_DPID)
4791 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4792 		else
4793 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4794 
4795 		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4796 		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4797 
4798 		/* Backup OUT EPs */
4799 		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4800 
4801 		/* Ensure DATA PID is correctly configured */
4802 		if (dr->doepctl[i] & DXEPCTL_DPID)
4803 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4804 		else
4805 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4806 
4807 		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4808 		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4809 	}
4810 	dr->valid = true;
4811 	return 0;
4812 }
4813 
4814 /**
4815  * dwc2_restore_device_registers() - Restore controller device registers.
4816  * When resuming usb bus, device registers needs to be restored
4817  * if controller power were disabled.
4818  *
4819  * @hsotg: Programming view of the DWC_otg controller
4820  */
4821 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4822 {
4823 	struct dwc2_dregs_backup *dr;
4824 	u32 dctl;
4825 	int i;
4826 
4827 	dev_dbg(hsotg->dev, "%s\n", __func__);
4828 
4829 	/* Restore dev regs */
4830 	dr = &hsotg->dr_backup;
4831 	if (!dr->valid) {
4832 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4833 			__func__);
4834 		return -EINVAL;
4835 	}
4836 	dr->valid = false;
4837 
4838 	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4839 	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4840 	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4841 	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4842 	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4843 
4844 	for (i = 0; i < hsotg->num_of_eps; i++) {
4845 		/* Restore IN EPs */
4846 		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4847 		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4848 		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4849 
4850 		/* Restore OUT EPs */
4851 		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4852 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4853 		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4854 	}
4855 
4856 	/* Set the Power-On Programming done bit */
4857 	dctl = dwc2_readl(hsotg->regs + DCTL);
4858 	dctl |= DCTL_PWRONPRGDONE;
4859 	dwc2_writel(dctl, hsotg->regs + DCTL);
4860 
4861 	return 0;
4862 }
4863