xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision d3964221)
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/of_platform.h>
29 
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/phy.h>
33 
34 #include "core.h"
35 #include "hw.h"
36 
37 /* conversion functions */
38 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39 {
40 	return container_of(req, struct dwc2_hsotg_req, req);
41 }
42 
43 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44 {
45 	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 }
47 
48 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49 {
50 	return container_of(gadget, struct dwc2_hsotg, gadget);
51 }
52 
53 static inline void __orr32(void __iomem *ptr, u32 val)
54 {
55 	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 }
57 
58 static inline void __bic32(void __iomem *ptr, u32 val)
59 {
60 	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 }
62 
63 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 						u32 ep_index, u32 dir_in)
65 {
66 	if (dir_in)
67 		return hsotg->eps_in[ep_index];
68 	else
69 		return hsotg->eps_out[ep_index];
70 }
71 
72 /* forward declaration of functions */
73 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 
75 /**
76  * using_dma - return the DMA status of the driver.
77  * @hsotg: The driver state.
78  *
79  * Return true if we're using DMA.
80  *
81  * Currently, we have the DMA support code worked into everywhere
82  * that needs it, but the AMBA DMA implementation in the hardware can
83  * only DMA from 32bit aligned addresses. This means that gadgets such
84  * as the CDC Ethernet cannot work as they often pass packets which are
85  * not 32bit aligned.
86  *
87  * Unfortunately the choice to use DMA or not is global to the controller
88  * and seems to be only settable when the controller is being put through
89  * a core reset. This means we either need to fix the gadgets to take
90  * account of DMA alignment, or add bounce buffers (yuerk).
91  *
92  * g_using_dma is set depending on dts flag.
93  */
94 static inline bool using_dma(struct dwc2_hsotg *hsotg)
95 {
96 	return hsotg->params.g_dma;
97 }
98 
99 /*
100  * using_desc_dma - return the descriptor DMA status of the driver.
101  * @hsotg: The driver state.
102  *
103  * Return true if we're using descriptor DMA.
104  */
105 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
106 {
107 	return hsotg->params.g_dma_desc;
108 }
109 
110 /**
111  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
112  * @hs_ep: The endpoint
113  * @increment: The value to increment by
114  *
115  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
116  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
117  */
118 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
119 {
120 	hs_ep->target_frame += hs_ep->interval;
121 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
122 		hs_ep->frame_overrun = 1;
123 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
124 	} else {
125 		hs_ep->frame_overrun = 0;
126 	}
127 }
128 
129 /**
130  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131  * @hsotg: The device state
132  * @ints: A bitmask of the interrupts to enable
133  */
134 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135 {
136 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 	u32 new_gsintmsk;
138 
139 	new_gsintmsk = gsintmsk | ints;
140 
141 	if (new_gsintmsk != gsintmsk) {
142 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 	}
145 }
146 
147 /**
148  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149  * @hsotg: The device state
150  * @ints: A bitmask of the interrupts to enable
151  */
152 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153 {
154 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 	u32 new_gsintmsk;
156 
157 	new_gsintmsk = gsintmsk & ~ints;
158 
159 	if (new_gsintmsk != gsintmsk)
160 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 }
162 
163 /**
164  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165  * @hsotg: The device state
166  * @ep: The endpoint index
167  * @dir_in: True if direction is in.
168  * @en: The enable value, true to enable
169  *
170  * Set or clear the mask for an individual endpoint's interrupt
171  * request.
172  */
173 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 				  unsigned int ep, unsigned int dir_in,
175 				 unsigned int en)
176 {
177 	unsigned long flags;
178 	u32 bit = 1 << ep;
179 	u32 daint;
180 
181 	if (!dir_in)
182 		bit <<= 16;
183 
184 	local_irq_save(flags);
185 	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 	if (en)
187 		daint |= bit;
188 	else
189 		daint &= ~bit;
190 	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 	local_irq_restore(flags);
192 }
193 
194 /**
195  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
196  */
197 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
198 {
199 	if (hsotg->hw_params.en_multiple_tx_fifo)
200 		/* In dedicated FIFO mode we need count of IN EPs */
201 		return (dwc2_readl(hsotg->regs + GHWCFG4)  &
202 			GHWCFG4_NUM_IN_EPS_MASK) >> GHWCFG4_NUM_IN_EPS_SHIFT;
203 	else
204 		/* In shared FIFO mode we need count of Periodic IN EPs */
205 		return hsotg->hw_params.num_dev_perio_in_ep;
206 }
207 
208 /**
209  * dwc2_hsotg_ep_info_size - return Endpoint Info Control block size in DWORDs
210  */
211 static int dwc2_hsotg_ep_info_size(struct dwc2_hsotg *hsotg)
212 {
213 	int val = 0;
214 	int i;
215 	u32 ep_dirs;
216 
217 	/*
218 	 * Don't need additional space for ep info control registers in
219 	 * slave mode.
220 	 */
221 	if (!using_dma(hsotg)) {
222 		dev_dbg(hsotg->dev, "Buffer DMA ep info size 0\n");
223 		return 0;
224 	}
225 
226 	/*
227 	 * Buffer DMA mode - 1 location per endpoit
228 	 * Descriptor DMA mode - 4 locations per endpoint
229 	 */
230 	ep_dirs = hsotg->hw_params.dev_ep_dirs;
231 
232 	for (i = 0; i <= hsotg->hw_params.num_dev_ep; i++) {
233 		val += ep_dirs & 3 ? 1 : 2;
234 		ep_dirs >>= 2;
235 	}
236 
237 	if (using_desc_dma(hsotg))
238 		val = val * 4;
239 
240 	return val;
241 }
242 
243 /**
244  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
245  * device mode TX FIFOs
246  */
247 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
248 {
249 	int ep_info_size;
250 	int addr;
251 	int tx_addr_max;
252 	u32 np_tx_fifo_size;
253 
254 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
255 				hsotg->params.g_np_tx_fifo_size);
256 
257 	/* Get Endpoint Info Control block size in DWORDs. */
258 	ep_info_size = dwc2_hsotg_ep_info_size(hsotg);
259 	tx_addr_max = hsotg->hw_params.total_fifo_size - ep_info_size;
260 
261 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
262 	if (tx_addr_max <= addr)
263 		return 0;
264 
265 	return tx_addr_max - addr;
266 }
267 
268 /**
269  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
270  * TX FIFOs
271  */
272 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
273 {
274 	int tx_fifo_count;
275 	int tx_fifo_depth;
276 
277 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
278 
279 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
280 
281 	if (!tx_fifo_count)
282 		return tx_fifo_depth;
283 	else
284 		return tx_fifo_depth / tx_fifo_count;
285 }
286 
287 /**
288  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
289  * @hsotg: The device instance.
290  */
291 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
292 {
293 	unsigned int ep;
294 	unsigned int addr;
295 	int timeout;
296 	u32 val;
297 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
298 
299 	/* Reset fifo map if not correctly cleared during previous session */
300 	WARN_ON(hsotg->fifo_map);
301 	hsotg->fifo_map = 0;
302 
303 	/* set RX/NPTX FIFO sizes */
304 	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
305 	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
306 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
307 		    hsotg->regs + GNPTXFSIZ);
308 
309 	/*
310 	 * arange all the rest of the TX FIFOs, as some versions of this
311 	 * block have overlapping default addresses. This also ensures
312 	 * that if the settings have been changed, then they are set to
313 	 * known values.
314 	 */
315 
316 	/* start at the end of the GNPTXFSIZ, rounded up */
317 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
318 
319 	/*
320 	 * Configure fifos sizes from provided configuration and assign
321 	 * them to endpoints dynamically according to maxpacket size value of
322 	 * given endpoint.
323 	 */
324 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
325 		if (!txfsz[ep])
326 			continue;
327 		val = addr;
328 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
329 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
330 			  "insufficient fifo memory");
331 		addr += txfsz[ep];
332 
333 		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
334 		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
335 	}
336 
337 	dwc2_writel(hsotg->hw_params.total_fifo_size |
338 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
339 		    hsotg->regs + GDFIFOCFG);
340 	/*
341 	 * according to p428 of the design guide, we need to ensure that
342 	 * all fifos are flushed before continuing
343 	 */
344 
345 	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
346 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
347 
348 	/* wait until the fifos are both flushed */
349 	timeout = 100;
350 	while (1) {
351 		val = dwc2_readl(hsotg->regs + GRSTCTL);
352 
353 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
354 			break;
355 
356 		if (--timeout == 0) {
357 			dev_err(hsotg->dev,
358 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
359 				__func__, val);
360 			break;
361 		}
362 
363 		udelay(1);
364 	}
365 
366 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
367 }
368 
369 /**
370  * @ep: USB endpoint to allocate request for.
371  * @flags: Allocation flags
372  *
373  * Allocate a new USB request structure appropriate for the specified endpoint
374  */
375 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
376 						       gfp_t flags)
377 {
378 	struct dwc2_hsotg_req *req;
379 
380 	req = kzalloc(sizeof(*req), flags);
381 	if (!req)
382 		return NULL;
383 
384 	INIT_LIST_HEAD(&req->queue);
385 
386 	return &req->req;
387 }
388 
389 /**
390  * is_ep_periodic - return true if the endpoint is in periodic mode.
391  * @hs_ep: The endpoint to query.
392  *
393  * Returns true if the endpoint is in periodic mode, meaning it is being
394  * used for an Interrupt or ISO transfer.
395  */
396 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
397 {
398 	return hs_ep->periodic;
399 }
400 
401 /**
402  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
403  * @hsotg: The device state.
404  * @hs_ep: The endpoint for the request
405  * @hs_req: The request being processed.
406  *
407  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
408  * of a request to ensure the buffer is ready for access by the caller.
409  */
410 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
411 				 struct dwc2_hsotg_ep *hs_ep,
412 				struct dwc2_hsotg_req *hs_req)
413 {
414 	struct usb_request *req = &hs_req->req;
415 
416 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
417 }
418 
419 /*
420  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
421  * for Control endpoint
422  * @hsotg: The device state.
423  *
424  * This function will allocate 4 descriptor chains for EP 0: 2 for
425  * Setup stage, per one for IN and OUT data/status transactions.
426  */
427 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
428 {
429 	hsotg->setup_desc[0] =
430 		dmam_alloc_coherent(hsotg->dev,
431 				    sizeof(struct dwc2_dma_desc),
432 				    &hsotg->setup_desc_dma[0],
433 				    GFP_KERNEL);
434 	if (!hsotg->setup_desc[0])
435 		goto fail;
436 
437 	hsotg->setup_desc[1] =
438 		dmam_alloc_coherent(hsotg->dev,
439 				    sizeof(struct dwc2_dma_desc),
440 				    &hsotg->setup_desc_dma[1],
441 				    GFP_KERNEL);
442 	if (!hsotg->setup_desc[1])
443 		goto fail;
444 
445 	hsotg->ctrl_in_desc =
446 		dmam_alloc_coherent(hsotg->dev,
447 				    sizeof(struct dwc2_dma_desc),
448 				    &hsotg->ctrl_in_desc_dma,
449 				    GFP_KERNEL);
450 	if (!hsotg->ctrl_in_desc)
451 		goto fail;
452 
453 	hsotg->ctrl_out_desc =
454 		dmam_alloc_coherent(hsotg->dev,
455 				    sizeof(struct dwc2_dma_desc),
456 				    &hsotg->ctrl_out_desc_dma,
457 				    GFP_KERNEL);
458 	if (!hsotg->ctrl_out_desc)
459 		goto fail;
460 
461 	return 0;
462 
463 fail:
464 	return -ENOMEM;
465 }
466 
467 /**
468  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
469  * @hsotg: The controller state.
470  * @hs_ep: The endpoint we're going to write for.
471  * @hs_req: The request to write data for.
472  *
473  * This is called when the TxFIFO has some space in it to hold a new
474  * transmission and we have something to give it. The actual setup of
475  * the data size is done elsewhere, so all we have to do is to actually
476  * write the data.
477  *
478  * The return value is zero if there is more space (or nothing was done)
479  * otherwise -ENOSPC is returned if the FIFO space was used up.
480  *
481  * This routine is only needed for PIO
482  */
483 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
484 				 struct dwc2_hsotg_ep *hs_ep,
485 				struct dwc2_hsotg_req *hs_req)
486 {
487 	bool periodic = is_ep_periodic(hs_ep);
488 	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
489 	int buf_pos = hs_req->req.actual;
490 	int to_write = hs_ep->size_loaded;
491 	void *data;
492 	int can_write;
493 	int pkt_round;
494 	int max_transfer;
495 
496 	to_write -= (buf_pos - hs_ep->last_load);
497 
498 	/* if there's nothing to write, get out early */
499 	if (to_write == 0)
500 		return 0;
501 
502 	if (periodic && !hsotg->dedicated_fifos) {
503 		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
504 		int size_left;
505 		int size_done;
506 
507 		/*
508 		 * work out how much data was loaded so we can calculate
509 		 * how much data is left in the fifo.
510 		 */
511 
512 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
513 
514 		/*
515 		 * if shared fifo, we cannot write anything until the
516 		 * previous data has been completely sent.
517 		 */
518 		if (hs_ep->fifo_load != 0) {
519 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
520 			return -ENOSPC;
521 		}
522 
523 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
524 			__func__, size_left,
525 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
526 
527 		/* how much of the data has moved */
528 		size_done = hs_ep->size_loaded - size_left;
529 
530 		/* how much data is left in the fifo */
531 		can_write = hs_ep->fifo_load - size_done;
532 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
533 			__func__, can_write);
534 
535 		can_write = hs_ep->fifo_size - can_write;
536 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
537 			__func__, can_write);
538 
539 		if (can_write <= 0) {
540 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
541 			return -ENOSPC;
542 		}
543 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
544 		can_write = dwc2_readl(hsotg->regs +
545 				DTXFSTS(hs_ep->fifo_index));
546 
547 		can_write &= 0xffff;
548 		can_write *= 4;
549 	} else {
550 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
551 			dev_dbg(hsotg->dev,
552 				"%s: no queue slots available (0x%08x)\n",
553 				__func__, gnptxsts);
554 
555 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
556 			return -ENOSPC;
557 		}
558 
559 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
560 		can_write *= 4;	/* fifo size is in 32bit quantities. */
561 	}
562 
563 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
564 
565 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
566 		__func__, gnptxsts, can_write, to_write, max_transfer);
567 
568 	/*
569 	 * limit to 512 bytes of data, it seems at least on the non-periodic
570 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
571 	 * fragment of the end of the transfer in it.
572 	 */
573 	if (can_write > 512 && !periodic)
574 		can_write = 512;
575 
576 	/*
577 	 * limit the write to one max-packet size worth of data, but allow
578 	 * the transfer to return that it did not run out of fifo space
579 	 * doing it.
580 	 */
581 	if (to_write > max_transfer) {
582 		to_write = max_transfer;
583 
584 		/* it's needed only when we do not use dedicated fifos */
585 		if (!hsotg->dedicated_fifos)
586 			dwc2_hsotg_en_gsint(hsotg,
587 					    periodic ? GINTSTS_PTXFEMP :
588 					   GINTSTS_NPTXFEMP);
589 	}
590 
591 	/* see if we can write data */
592 
593 	if (to_write > can_write) {
594 		to_write = can_write;
595 		pkt_round = to_write % max_transfer;
596 
597 		/*
598 		 * Round the write down to an
599 		 * exact number of packets.
600 		 *
601 		 * Note, we do not currently check to see if we can ever
602 		 * write a full packet or not to the FIFO.
603 		 */
604 
605 		if (pkt_round)
606 			to_write -= pkt_round;
607 
608 		/*
609 		 * enable correct FIFO interrupt to alert us when there
610 		 * is more room left.
611 		 */
612 
613 		/* it's needed only when we do not use dedicated fifos */
614 		if (!hsotg->dedicated_fifos)
615 			dwc2_hsotg_en_gsint(hsotg,
616 					    periodic ? GINTSTS_PTXFEMP :
617 					   GINTSTS_NPTXFEMP);
618 	}
619 
620 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
621 		to_write, hs_req->req.length, can_write, buf_pos);
622 
623 	if (to_write <= 0)
624 		return -ENOSPC;
625 
626 	hs_req->req.actual = buf_pos + to_write;
627 	hs_ep->total_data += to_write;
628 
629 	if (periodic)
630 		hs_ep->fifo_load += to_write;
631 
632 	to_write = DIV_ROUND_UP(to_write, 4);
633 	data = hs_req->req.buf + buf_pos;
634 
635 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
636 
637 	return (to_write >= can_write) ? -ENOSPC : 0;
638 }
639 
640 /**
641  * get_ep_limit - get the maximum data legnth for this endpoint
642  * @hs_ep: The endpoint
643  *
644  * Return the maximum data that can be queued in one go on a given endpoint
645  * so that transfers that are too long can be split.
646  */
647 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
648 {
649 	int index = hs_ep->index;
650 	unsigned int maxsize;
651 	unsigned int maxpkt;
652 
653 	if (index != 0) {
654 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
655 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
656 	} else {
657 		maxsize = 64 + 64;
658 		if (hs_ep->dir_in)
659 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
660 		else
661 			maxpkt = 2;
662 	}
663 
664 	/* we made the constant loading easier above by using +1 */
665 	maxpkt--;
666 	maxsize--;
667 
668 	/*
669 	 * constrain by packet count if maxpkts*pktsize is greater
670 	 * than the length register size.
671 	 */
672 
673 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
674 		maxsize = maxpkt * hs_ep->ep.maxpacket;
675 
676 	return maxsize;
677 }
678 
679 /**
680  * dwc2_hsotg_read_frameno - read current frame number
681  * @hsotg: The device instance
682  *
683  * Return the current frame number
684  */
685 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
686 {
687 	u32 dsts;
688 
689 	dsts = dwc2_readl(hsotg->regs + DSTS);
690 	dsts &= DSTS_SOFFN_MASK;
691 	dsts >>= DSTS_SOFFN_SHIFT;
692 
693 	return dsts;
694 }
695 
696 /**
697  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
698  * DMA descriptor chain prepared for specific endpoint
699  * @hs_ep: The endpoint
700  *
701  * Return the maximum data that can be queued in one go on a given endpoint
702  * depending on its descriptor chain capacity so that transfers that
703  * are too long can be split.
704  */
705 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
706 {
707 	int is_isoc = hs_ep->isochronous;
708 	unsigned int maxsize;
709 
710 	if (is_isoc)
711 		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
712 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
713 	else
714 		maxsize = DEV_DMA_NBYTES_LIMIT;
715 
716 	/* Above size of one descriptor was chosen, multiple it */
717 	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
718 
719 	return maxsize;
720 }
721 
722 /*
723  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
724  * @hs_ep: The endpoint
725  * @mask: RX/TX bytes mask to be defined
726  *
727  * Returns maximum data payload for one descriptor after analyzing endpoint
728  * characteristics.
729  * DMA descriptor transfer bytes limit depends on EP type:
730  * Control out - MPS,
731  * Isochronous - descriptor rx/tx bytes bitfield limit,
732  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
733  * have concatenations from various descriptors within one packet.
734  *
735  * Selects corresponding mask for RX/TX bytes as well.
736  */
737 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
738 {
739 	u32 mps = hs_ep->ep.maxpacket;
740 	int dir_in = hs_ep->dir_in;
741 	u32 desc_size = 0;
742 
743 	if (!hs_ep->index && !dir_in) {
744 		desc_size = mps;
745 		*mask = DEV_DMA_NBYTES_MASK;
746 	} else if (hs_ep->isochronous) {
747 		if (dir_in) {
748 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
749 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
750 		} else {
751 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
752 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
753 		}
754 	} else {
755 		desc_size = DEV_DMA_NBYTES_LIMIT;
756 		*mask = DEV_DMA_NBYTES_MASK;
757 
758 		/* Round down desc_size to be mps multiple */
759 		desc_size -= desc_size % mps;
760 	}
761 
762 	return desc_size;
763 }
764 
765 /*
766  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
767  * @hs_ep: The endpoint
768  * @dma_buff: DMA address to use
769  * @len: Length of the transfer
770  *
771  * This function will iterate over descriptor chain and fill its entries
772  * with corresponding information based on transfer data.
773  */
774 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
775 						 dma_addr_t dma_buff,
776 						 unsigned int len)
777 {
778 	struct dwc2_hsotg *hsotg = hs_ep->parent;
779 	int dir_in = hs_ep->dir_in;
780 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
781 	u32 mps = hs_ep->ep.maxpacket;
782 	u32 maxsize = 0;
783 	u32 offset = 0;
784 	u32 mask = 0;
785 	int i;
786 
787 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
788 
789 	hs_ep->desc_count = (len / maxsize) +
790 				((len % maxsize) ? 1 : 0);
791 	if (len == 0)
792 		hs_ep->desc_count = 1;
793 
794 	for (i = 0; i < hs_ep->desc_count; ++i) {
795 		desc->status = 0;
796 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
797 				 << DEV_DMA_BUFF_STS_SHIFT);
798 
799 		if (len > maxsize) {
800 			if (!hs_ep->index && !dir_in)
801 				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
802 
803 			desc->status |= (maxsize <<
804 						DEV_DMA_NBYTES_SHIFT & mask);
805 			desc->buf = dma_buff + offset;
806 
807 			len -= maxsize;
808 			offset += maxsize;
809 		} else {
810 			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
811 
812 			if (dir_in)
813 				desc->status |= (len % mps) ? DEV_DMA_SHORT :
814 					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
815 			if (len > maxsize)
816 				dev_err(hsotg->dev, "wrong len %d\n", len);
817 
818 			desc->status |=
819 				len << DEV_DMA_NBYTES_SHIFT & mask;
820 			desc->buf = dma_buff + offset;
821 		}
822 
823 		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
824 		desc->status |= (DEV_DMA_BUFF_STS_HREADY
825 				 << DEV_DMA_BUFF_STS_SHIFT);
826 		desc++;
827 	}
828 }
829 
830 /*
831  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
832  * @hs_ep: The isochronous endpoint.
833  * @dma_buff: usb requests dma buffer.
834  * @len: usb request transfer length.
835  *
836  * Finds out index of first free entry either in the bottom or up half of
837  * descriptor chain depend on which is under SW control and not processed
838  * by HW. Then fills that descriptor with the data of the arrived usb request,
839  * frame info, sets Last and IOC bits increments next_desc. If filled
840  * descriptor is not the first one, removes L bit from the previous descriptor
841  * status.
842  */
843 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
844 				      dma_addr_t dma_buff, unsigned int len)
845 {
846 	struct dwc2_dma_desc *desc;
847 	struct dwc2_hsotg *hsotg = hs_ep->parent;
848 	u32 index;
849 	u32 maxsize = 0;
850 	u32 mask = 0;
851 
852 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
853 	if (len > maxsize) {
854 		dev_err(hsotg->dev, "wrong len %d\n", len);
855 		return -EINVAL;
856 	}
857 
858 	/*
859 	 * If SW has already filled half of chain, then return and wait for
860 	 * the other chain to be processed by HW.
861 	 */
862 	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
863 		return -EBUSY;
864 
865 	/* Increment frame number by interval for IN */
866 	if (hs_ep->dir_in)
867 		dwc2_gadget_incr_frame_num(hs_ep);
868 
869 	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
870 		 hs_ep->next_desc;
871 
872 	/* Sanity check of calculated index */
873 	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
874 	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
875 		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
876 		return -EINVAL;
877 	}
878 
879 	desc = &hs_ep->desc_list[index];
880 
881 	/* Clear L bit of previous desc if more than one entries in the chain */
882 	if (hs_ep->next_desc)
883 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
884 
885 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
886 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
887 
888 	desc->status = 0;
889 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
890 
891 	desc->buf = dma_buff;
892 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
893 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
894 
895 	if (hs_ep->dir_in) {
896 		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
897 				 DEV_DMA_ISOC_PID_MASK) |
898 				((len % hs_ep->ep.maxpacket) ?
899 				 DEV_DMA_SHORT : 0) |
900 				((hs_ep->target_frame <<
901 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
902 				 DEV_DMA_ISOC_FRNUM_MASK);
903 	}
904 
905 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
906 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
907 
908 	/* Update index of last configured entry in the chain */
909 	hs_ep->next_desc++;
910 
911 	return 0;
912 }
913 
914 /*
915  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
916  * @hs_ep: The isochronous endpoint.
917  *
918  * Prepare first descriptor chain for isochronous endpoints. Afterwards
919  * write DMA address to HW and enable the endpoint.
920  *
921  * Switch between descriptor chains via isoc_chain_num to give SW opportunity
922  * to prepare second descriptor chain while first one is being processed by HW.
923  */
924 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
925 {
926 	struct dwc2_hsotg *hsotg = hs_ep->parent;
927 	struct dwc2_hsotg_req *hs_req, *treq;
928 	int index = hs_ep->index;
929 	int ret;
930 	u32 dma_reg;
931 	u32 depctl;
932 	u32 ctrl;
933 
934 	if (list_empty(&hs_ep->queue)) {
935 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
936 		return;
937 	}
938 
939 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
940 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
941 						 hs_req->req.length);
942 		if (ret) {
943 			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
944 			break;
945 		}
946 	}
947 
948 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
949 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
950 
951 	/* write descriptor chain address to control register */
952 	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
953 
954 	ctrl = dwc2_readl(hsotg->regs + depctl);
955 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
956 	dwc2_writel(ctrl, hsotg->regs + depctl);
957 
958 	/* Switch ISOC descriptor chain number being processed by SW*/
959 	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
960 	hs_ep->next_desc = 0;
961 }
962 
963 /**
964  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
965  * @hsotg: The controller state.
966  * @hs_ep: The endpoint to process a request for
967  * @hs_req: The request to start.
968  * @continuing: True if we are doing more for the current request.
969  *
970  * Start the given request running by setting the endpoint registers
971  * appropriately, and writing any data to the FIFOs.
972  */
973 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
974 				 struct dwc2_hsotg_ep *hs_ep,
975 				struct dwc2_hsotg_req *hs_req,
976 				bool continuing)
977 {
978 	struct usb_request *ureq = &hs_req->req;
979 	int index = hs_ep->index;
980 	int dir_in = hs_ep->dir_in;
981 	u32 epctrl_reg;
982 	u32 epsize_reg;
983 	u32 epsize;
984 	u32 ctrl;
985 	unsigned int length;
986 	unsigned int packets;
987 	unsigned int maxreq;
988 	unsigned int dma_reg;
989 
990 	if (index != 0) {
991 		if (hs_ep->req && !continuing) {
992 			dev_err(hsotg->dev, "%s: active request\n", __func__);
993 			WARN_ON(1);
994 			return;
995 		} else if (hs_ep->req != hs_req && continuing) {
996 			dev_err(hsotg->dev,
997 				"%s: continue different req\n", __func__);
998 			WARN_ON(1);
999 			return;
1000 		}
1001 	}
1002 
1003 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1004 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1005 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1006 
1007 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1008 		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
1009 		hs_ep->dir_in ? "in" : "out");
1010 
1011 	/* If endpoint is stalled, we will restart request later */
1012 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
1013 
1014 	if (index && ctrl & DXEPCTL_STALL) {
1015 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1016 		return;
1017 	}
1018 
1019 	length = ureq->length - ureq->actual;
1020 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1021 		ureq->length, ureq->actual);
1022 
1023 	if (!using_desc_dma(hsotg))
1024 		maxreq = get_ep_limit(hs_ep);
1025 	else
1026 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1027 
1028 	if (length > maxreq) {
1029 		int round = maxreq % hs_ep->ep.maxpacket;
1030 
1031 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1032 			__func__, length, maxreq, round);
1033 
1034 		/* round down to multiple of packets */
1035 		if (round)
1036 			maxreq -= round;
1037 
1038 		length = maxreq;
1039 	}
1040 
1041 	if (length)
1042 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1043 	else
1044 		packets = 1;	/* send one packet if length is zero. */
1045 
1046 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1047 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1048 		return;
1049 	}
1050 
1051 	if (dir_in && index != 0)
1052 		if (hs_ep->isochronous)
1053 			epsize = DXEPTSIZ_MC(packets);
1054 		else
1055 			epsize = DXEPTSIZ_MC(1);
1056 	else
1057 		epsize = 0;
1058 
1059 	/*
1060 	 * zero length packet should be programmed on its own and should not
1061 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1062 	 */
1063 	if (dir_in && ureq->zero && !continuing) {
1064 		/* Test if zlp is actually required. */
1065 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1066 		    !(ureq->length % hs_ep->ep.maxpacket))
1067 			hs_ep->send_zlp = 1;
1068 	}
1069 
1070 	epsize |= DXEPTSIZ_PKTCNT(packets);
1071 	epsize |= DXEPTSIZ_XFERSIZE(length);
1072 
1073 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1074 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1075 
1076 	/* store the request as the current one we're doing */
1077 	hs_ep->req = hs_req;
1078 
1079 	if (using_desc_dma(hsotg)) {
1080 		u32 offset = 0;
1081 		u32 mps = hs_ep->ep.maxpacket;
1082 
1083 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1084 		if (!dir_in) {
1085 			if (!index)
1086 				length = mps;
1087 			else if (length % mps)
1088 				length += (mps - (length % mps));
1089 		}
1090 
1091 		/*
1092 		 * If more data to send, adjust DMA for EP0 out data stage.
1093 		 * ureq->dma stays unchanged, hence increment it by already
1094 		 * passed passed data count before starting new transaction.
1095 		 */
1096 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1097 		    continuing)
1098 			offset = ureq->actual;
1099 
1100 		/* Fill DDMA chain entries */
1101 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1102 						     length);
1103 
1104 		/* write descriptor chain address to control register */
1105 		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1106 
1107 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1108 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1109 	} else {
1110 		/* write size / packets */
1111 		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1112 
1113 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1114 			/*
1115 			 * write DMA address to control register, buffer
1116 			 * already synced by dwc2_hsotg_ep_queue().
1117 			 */
1118 
1119 			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1120 
1121 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1122 				__func__, &ureq->dma, dma_reg);
1123 		}
1124 	}
1125 
1126 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1127 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1128 		dwc2_gadget_incr_frame_num(hs_ep);
1129 
1130 		if (hs_ep->target_frame & 0x1)
1131 			ctrl |= DXEPCTL_SETODDFR;
1132 		else
1133 			ctrl |= DXEPCTL_SETEVENFR;
1134 	}
1135 
1136 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1137 
1138 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1139 
1140 	/* For Setup request do not clear NAK */
1141 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1142 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1143 
1144 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1145 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1146 
1147 	/*
1148 	 * set these, it seems that DMA support increments past the end
1149 	 * of the packet buffer so we need to calculate the length from
1150 	 * this information.
1151 	 */
1152 	hs_ep->size_loaded = length;
1153 	hs_ep->last_load = ureq->actual;
1154 
1155 	if (dir_in && !using_dma(hsotg)) {
1156 		/* set these anyway, we may need them for non-periodic in */
1157 		hs_ep->fifo_load = 0;
1158 
1159 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1160 	}
1161 
1162 	/*
1163 	 * Note, trying to clear the NAK here causes problems with transmit
1164 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1165 	 */
1166 
1167 	/* check ep is enabled */
1168 	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1169 		dev_dbg(hsotg->dev,
1170 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1171 			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1172 
1173 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1174 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1175 
1176 	/* enable ep interrupts */
1177 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1178 }
1179 
1180 /**
1181  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1182  * @hsotg: The device state.
1183  * @hs_ep: The endpoint the request is on.
1184  * @req: The request being processed.
1185  *
1186  * We've been asked to queue a request, so ensure that the memory buffer
1187  * is correctly setup for DMA. If we've been passed an extant DMA address
1188  * then ensure the buffer has been synced to memory. If our buffer has no
1189  * DMA memory, then we map the memory and mark our request to allow us to
1190  * cleanup on completion.
1191  */
1192 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1193 			      struct dwc2_hsotg_ep *hs_ep,
1194 			     struct usb_request *req)
1195 {
1196 	int ret;
1197 
1198 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1199 	if (ret)
1200 		goto dma_error;
1201 
1202 	return 0;
1203 
1204 dma_error:
1205 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1206 		__func__, req->buf, req->length);
1207 
1208 	return -EIO;
1209 }
1210 
1211 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1212 						 struct dwc2_hsotg_ep *hs_ep,
1213 						 struct dwc2_hsotg_req *hs_req)
1214 {
1215 	void *req_buf = hs_req->req.buf;
1216 
1217 	/* If dma is not being used or buffer is aligned */
1218 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1219 		return 0;
1220 
1221 	WARN_ON(hs_req->saved_req_buf);
1222 
1223 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1224 		hs_ep->ep.name, req_buf, hs_req->req.length);
1225 
1226 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1227 	if (!hs_req->req.buf) {
1228 		hs_req->req.buf = req_buf;
1229 		dev_err(hsotg->dev,
1230 			"%s: unable to allocate memory for bounce buffer\n",
1231 			__func__);
1232 		return -ENOMEM;
1233 	}
1234 
1235 	/* Save actual buffer */
1236 	hs_req->saved_req_buf = req_buf;
1237 
1238 	if (hs_ep->dir_in)
1239 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1240 	return 0;
1241 }
1242 
1243 static void
1244 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1245 					 struct dwc2_hsotg_ep *hs_ep,
1246 					 struct dwc2_hsotg_req *hs_req)
1247 {
1248 	/* If dma is not being used or buffer was aligned */
1249 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1250 		return;
1251 
1252 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1253 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1254 
1255 	/* Copy data from bounce buffer on successful out transfer */
1256 	if (!hs_ep->dir_in && !hs_req->req.status)
1257 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1258 		       hs_req->req.actual);
1259 
1260 	/* Free bounce buffer */
1261 	kfree(hs_req->req.buf);
1262 
1263 	hs_req->req.buf = hs_req->saved_req_buf;
1264 	hs_req->saved_req_buf = NULL;
1265 }
1266 
1267 /**
1268  * dwc2_gadget_target_frame_elapsed - Checks target frame
1269  * @hs_ep: The driver endpoint to check
1270  *
1271  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1272  * corresponding transfer.
1273  */
1274 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1275 {
1276 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1277 	u32 target_frame = hs_ep->target_frame;
1278 	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1279 	bool frame_overrun = hs_ep->frame_overrun;
1280 
1281 	if (!frame_overrun && current_frame >= target_frame)
1282 		return true;
1283 
1284 	if (frame_overrun && current_frame >= target_frame &&
1285 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1286 		return true;
1287 
1288 	return false;
1289 }
1290 
1291 /*
1292  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1293  * @hsotg: The driver state
1294  * @hs_ep: the ep descriptor chain is for
1295  *
1296  * Called to update EP0 structure's pointers depend on stage of
1297  * control transfer.
1298  */
1299 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1300 					  struct dwc2_hsotg_ep *hs_ep)
1301 {
1302 	switch (hsotg->ep0_state) {
1303 	case DWC2_EP0_SETUP:
1304 	case DWC2_EP0_STATUS_OUT:
1305 		hs_ep->desc_list = hsotg->setup_desc[0];
1306 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1307 		break;
1308 	case DWC2_EP0_DATA_IN:
1309 	case DWC2_EP0_STATUS_IN:
1310 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1311 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1312 		break;
1313 	case DWC2_EP0_DATA_OUT:
1314 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1315 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1316 		break;
1317 	default:
1318 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1319 			hsotg->ep0_state);
1320 		return -EINVAL;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1327 			       gfp_t gfp_flags)
1328 {
1329 	struct dwc2_hsotg_req *hs_req = our_req(req);
1330 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1331 	struct dwc2_hsotg *hs = hs_ep->parent;
1332 	bool first;
1333 	int ret;
1334 
1335 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1336 		ep->name, req, req->length, req->buf, req->no_interrupt,
1337 		req->zero, req->short_not_ok);
1338 
1339 	/* Prevent new request submission when controller is suspended */
1340 	if (hs->lx_state == DWC2_L2) {
1341 		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1342 			__func__);
1343 		return -EAGAIN;
1344 	}
1345 
1346 	/* initialise status of the request */
1347 	INIT_LIST_HEAD(&hs_req->queue);
1348 	req->actual = 0;
1349 	req->status = -EINPROGRESS;
1350 
1351 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1352 	if (ret)
1353 		return ret;
1354 
1355 	/* if we're using DMA, sync the buffers as necessary */
1356 	if (using_dma(hs)) {
1357 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1358 		if (ret)
1359 			return ret;
1360 	}
1361 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1362 	if (using_desc_dma(hs) && !hs_ep->index) {
1363 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1364 		if (ret)
1365 			return ret;
1366 	}
1367 
1368 	first = list_empty(&hs_ep->queue);
1369 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1370 
1371 	/*
1372 	 * Handle DDMA isochronous transfers separately - just add new entry
1373 	 * to the half of descriptor chain that is not processed by HW.
1374 	 * Transfer will be started once SW gets either one of NAK or
1375 	 * OutTknEpDis interrupts.
1376 	 */
1377 	if (using_desc_dma(hs) && hs_ep->isochronous &&
1378 	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1379 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1380 						 hs_req->req.length);
1381 		if (ret)
1382 			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1383 
1384 		return 0;
1385 	}
1386 
1387 	if (first) {
1388 		if (!hs_ep->isochronous) {
1389 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1390 			return 0;
1391 		}
1392 
1393 		while (dwc2_gadget_target_frame_elapsed(hs_ep))
1394 			dwc2_gadget_incr_frame_num(hs_ep);
1395 
1396 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1397 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1398 	}
1399 	return 0;
1400 }
1401 
1402 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1403 				    gfp_t gfp_flags)
1404 {
1405 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1406 	struct dwc2_hsotg *hs = hs_ep->parent;
1407 	unsigned long flags = 0;
1408 	int ret = 0;
1409 
1410 	spin_lock_irqsave(&hs->lock, flags);
1411 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1412 	spin_unlock_irqrestore(&hs->lock, flags);
1413 
1414 	return ret;
1415 }
1416 
1417 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1418 				       struct usb_request *req)
1419 {
1420 	struct dwc2_hsotg_req *hs_req = our_req(req);
1421 
1422 	kfree(hs_req);
1423 }
1424 
1425 /**
1426  * dwc2_hsotg_complete_oursetup - setup completion callback
1427  * @ep: The endpoint the request was on.
1428  * @req: The request completed.
1429  *
1430  * Called on completion of any requests the driver itself
1431  * submitted that need cleaning up.
1432  */
1433 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1434 					 struct usb_request *req)
1435 {
1436 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1437 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1438 
1439 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1440 
1441 	dwc2_hsotg_ep_free_request(ep, req);
1442 }
1443 
1444 /**
1445  * ep_from_windex - convert control wIndex value to endpoint
1446  * @hsotg: The driver state.
1447  * @windex: The control request wIndex field (in host order).
1448  *
1449  * Convert the given wIndex into a pointer to an driver endpoint
1450  * structure, or return NULL if it is not a valid endpoint.
1451  */
1452 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1453 					    u32 windex)
1454 {
1455 	struct dwc2_hsotg_ep *ep;
1456 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1457 	int idx = windex & 0x7F;
1458 
1459 	if (windex >= 0x100)
1460 		return NULL;
1461 
1462 	if (idx > hsotg->num_of_eps)
1463 		return NULL;
1464 
1465 	ep = index_to_ep(hsotg, idx, dir);
1466 
1467 	if (idx && ep->dir_in != dir)
1468 		return NULL;
1469 
1470 	return ep;
1471 }
1472 
1473 /**
1474  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1475  * @hsotg: The driver state.
1476  * @testmode: requested usb test mode
1477  * Enable usb Test Mode requested by the Host.
1478  */
1479 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1480 {
1481 	int dctl = dwc2_readl(hsotg->regs + DCTL);
1482 
1483 	dctl &= ~DCTL_TSTCTL_MASK;
1484 	switch (testmode) {
1485 	case TEST_J:
1486 	case TEST_K:
1487 	case TEST_SE0_NAK:
1488 	case TEST_PACKET:
1489 	case TEST_FORCE_EN:
1490 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1491 		break;
1492 	default:
1493 		return -EINVAL;
1494 	}
1495 	dwc2_writel(dctl, hsotg->regs + DCTL);
1496 	return 0;
1497 }
1498 
1499 /**
1500  * dwc2_hsotg_send_reply - send reply to control request
1501  * @hsotg: The device state
1502  * @ep: Endpoint 0
1503  * @buff: Buffer for request
1504  * @length: Length of reply.
1505  *
1506  * Create a request and queue it on the given endpoint. This is useful as
1507  * an internal method of sending replies to certain control requests, etc.
1508  */
1509 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1510 				 struct dwc2_hsotg_ep *ep,
1511 				void *buff,
1512 				int length)
1513 {
1514 	struct usb_request *req;
1515 	int ret;
1516 
1517 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1518 
1519 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1520 	hsotg->ep0_reply = req;
1521 	if (!req) {
1522 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1523 		return -ENOMEM;
1524 	}
1525 
1526 	req->buf = hsotg->ep0_buff;
1527 	req->length = length;
1528 	/*
1529 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1530 	 * STATUS stage.
1531 	 */
1532 	req->zero = 0;
1533 	req->complete = dwc2_hsotg_complete_oursetup;
1534 
1535 	if (length)
1536 		memcpy(req->buf, buff, length);
1537 
1538 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1539 	if (ret) {
1540 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1541 		return ret;
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 /**
1548  * dwc2_hsotg_process_req_status - process request GET_STATUS
1549  * @hsotg: The device state
1550  * @ctrl: USB control request
1551  */
1552 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1553 					 struct usb_ctrlrequest *ctrl)
1554 {
1555 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1556 	struct dwc2_hsotg_ep *ep;
1557 	__le16 reply;
1558 	int ret;
1559 
1560 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1561 
1562 	if (!ep0->dir_in) {
1563 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1564 		return -EINVAL;
1565 	}
1566 
1567 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1568 	case USB_RECIP_DEVICE:
1569 		/*
1570 		 * bit 0 => self powered
1571 		 * bit 1 => remote wakeup
1572 		 */
1573 		reply = cpu_to_le16(0);
1574 		break;
1575 
1576 	case USB_RECIP_INTERFACE:
1577 		/* currently, the data result should be zero */
1578 		reply = cpu_to_le16(0);
1579 		break;
1580 
1581 	case USB_RECIP_ENDPOINT:
1582 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1583 		if (!ep)
1584 			return -ENOENT;
1585 
1586 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1587 		break;
1588 
1589 	default:
1590 		return 0;
1591 	}
1592 
1593 	if (le16_to_cpu(ctrl->wLength) != 2)
1594 		return -EINVAL;
1595 
1596 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1597 	if (ret) {
1598 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1599 		return ret;
1600 	}
1601 
1602 	return 1;
1603 }
1604 
1605 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1606 
1607 /**
1608  * get_ep_head - return the first request on the endpoint
1609  * @hs_ep: The controller endpoint to get
1610  *
1611  * Get the first request on the endpoint.
1612  */
1613 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1614 {
1615 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1616 					queue);
1617 }
1618 
1619 /**
1620  * dwc2_gadget_start_next_request - Starts next request from ep queue
1621  * @hs_ep: Endpoint structure
1622  *
1623  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1624  * in its handler. Hence we need to unmask it here to be able to do
1625  * resynchronization.
1626  */
1627 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1628 {
1629 	u32 mask;
1630 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1631 	int dir_in = hs_ep->dir_in;
1632 	struct dwc2_hsotg_req *hs_req;
1633 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1634 
1635 	if (!list_empty(&hs_ep->queue)) {
1636 		hs_req = get_ep_head(hs_ep);
1637 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1638 		return;
1639 	}
1640 	if (!hs_ep->isochronous)
1641 		return;
1642 
1643 	if (dir_in) {
1644 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1645 			__func__);
1646 	} else {
1647 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1648 			__func__);
1649 		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1650 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1651 		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1652 	}
1653 }
1654 
1655 /**
1656  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1657  * @hsotg: The device state
1658  * @ctrl: USB control request
1659  */
1660 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1661 					  struct usb_ctrlrequest *ctrl)
1662 {
1663 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1664 	struct dwc2_hsotg_req *hs_req;
1665 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1666 	struct dwc2_hsotg_ep *ep;
1667 	int ret;
1668 	bool halted;
1669 	u32 recip;
1670 	u32 wValue;
1671 	u32 wIndex;
1672 
1673 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1674 		__func__, set ? "SET" : "CLEAR");
1675 
1676 	wValue = le16_to_cpu(ctrl->wValue);
1677 	wIndex = le16_to_cpu(ctrl->wIndex);
1678 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1679 
1680 	switch (recip) {
1681 	case USB_RECIP_DEVICE:
1682 		switch (wValue) {
1683 		case USB_DEVICE_TEST_MODE:
1684 			if ((wIndex & 0xff) != 0)
1685 				return -EINVAL;
1686 			if (!set)
1687 				return -EINVAL;
1688 
1689 			hsotg->test_mode = wIndex >> 8;
1690 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1691 			if (ret) {
1692 				dev_err(hsotg->dev,
1693 					"%s: failed to send reply\n", __func__);
1694 				return ret;
1695 			}
1696 			break;
1697 		default:
1698 			return -ENOENT;
1699 		}
1700 		break;
1701 
1702 	case USB_RECIP_ENDPOINT:
1703 		ep = ep_from_windex(hsotg, wIndex);
1704 		if (!ep) {
1705 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1706 				__func__, wIndex);
1707 			return -ENOENT;
1708 		}
1709 
1710 		switch (wValue) {
1711 		case USB_ENDPOINT_HALT:
1712 			halted = ep->halted;
1713 
1714 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1715 
1716 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1717 			if (ret) {
1718 				dev_err(hsotg->dev,
1719 					"%s: failed to send reply\n", __func__);
1720 				return ret;
1721 			}
1722 
1723 			/*
1724 			 * we have to complete all requests for ep if it was
1725 			 * halted, and the halt was cleared by CLEAR_FEATURE
1726 			 */
1727 
1728 			if (!set && halted) {
1729 				/*
1730 				 * If we have request in progress,
1731 				 * then complete it
1732 				 */
1733 				if (ep->req) {
1734 					hs_req = ep->req;
1735 					ep->req = NULL;
1736 					list_del_init(&hs_req->queue);
1737 					if (hs_req->req.complete) {
1738 						spin_unlock(&hsotg->lock);
1739 						usb_gadget_giveback_request(
1740 							&ep->ep, &hs_req->req);
1741 						spin_lock(&hsotg->lock);
1742 					}
1743 				}
1744 
1745 				/* If we have pending request, then start it */
1746 				if (!ep->req)
1747 					dwc2_gadget_start_next_request(ep);
1748 			}
1749 
1750 			break;
1751 
1752 		default:
1753 			return -ENOENT;
1754 		}
1755 		break;
1756 	default:
1757 		return -ENOENT;
1758 	}
1759 	return 1;
1760 }
1761 
1762 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1763 
1764 /**
1765  * dwc2_hsotg_stall_ep0 - stall ep0
1766  * @hsotg: The device state
1767  *
1768  * Set stall for ep0 as response for setup request.
1769  */
1770 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1771 {
1772 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1773 	u32 reg;
1774 	u32 ctrl;
1775 
1776 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1777 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1778 
1779 	/*
1780 	 * DxEPCTL_Stall will be cleared by EP once it has
1781 	 * taken effect, so no need to clear later.
1782 	 */
1783 
1784 	ctrl = dwc2_readl(hsotg->regs + reg);
1785 	ctrl |= DXEPCTL_STALL;
1786 	ctrl |= DXEPCTL_CNAK;
1787 	dwc2_writel(ctrl, hsotg->regs + reg);
1788 
1789 	dev_dbg(hsotg->dev,
1790 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1791 		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1792 
1793 	 /*
1794 	  * complete won't be called, so we enqueue
1795 	  * setup request here
1796 	  */
1797 	 dwc2_hsotg_enqueue_setup(hsotg);
1798 }
1799 
1800 /**
1801  * dwc2_hsotg_process_control - process a control request
1802  * @hsotg: The device state
1803  * @ctrl: The control request received
1804  *
1805  * The controller has received the SETUP phase of a control request, and
1806  * needs to work out what to do next (and whether to pass it on to the
1807  * gadget driver).
1808  */
1809 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1810 				       struct usb_ctrlrequest *ctrl)
1811 {
1812 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1813 	int ret = 0;
1814 	u32 dcfg;
1815 
1816 	dev_dbg(hsotg->dev,
1817 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1818 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1819 		ctrl->wIndex, ctrl->wLength);
1820 
1821 	if (ctrl->wLength == 0) {
1822 		ep0->dir_in = 1;
1823 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1824 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1825 		ep0->dir_in = 1;
1826 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1827 	} else {
1828 		ep0->dir_in = 0;
1829 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1830 	}
1831 
1832 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1833 		switch (ctrl->bRequest) {
1834 		case USB_REQ_SET_ADDRESS:
1835 			hsotg->connected = 1;
1836 			dcfg = dwc2_readl(hsotg->regs + DCFG);
1837 			dcfg &= ~DCFG_DEVADDR_MASK;
1838 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1839 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1840 			dwc2_writel(dcfg, hsotg->regs + DCFG);
1841 
1842 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1843 
1844 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1845 			return;
1846 
1847 		case USB_REQ_GET_STATUS:
1848 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1849 			break;
1850 
1851 		case USB_REQ_CLEAR_FEATURE:
1852 		case USB_REQ_SET_FEATURE:
1853 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1854 			break;
1855 		}
1856 	}
1857 
1858 	/* as a fallback, try delivering it to the driver to deal with */
1859 
1860 	if (ret == 0 && hsotg->driver) {
1861 		spin_unlock(&hsotg->lock);
1862 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1863 		spin_lock(&hsotg->lock);
1864 		if (ret < 0)
1865 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1866 	}
1867 
1868 	/*
1869 	 * the request is either unhandlable, or is not formatted correctly
1870 	 * so respond with a STALL for the status stage to indicate failure.
1871 	 */
1872 
1873 	if (ret < 0)
1874 		dwc2_hsotg_stall_ep0(hsotg);
1875 }
1876 
1877 /**
1878  * dwc2_hsotg_complete_setup - completion of a setup transfer
1879  * @ep: The endpoint the request was on.
1880  * @req: The request completed.
1881  *
1882  * Called on completion of any requests the driver itself submitted for
1883  * EP0 setup packets
1884  */
1885 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1886 				      struct usb_request *req)
1887 {
1888 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1889 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1890 
1891 	if (req->status < 0) {
1892 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1893 		return;
1894 	}
1895 
1896 	spin_lock(&hsotg->lock);
1897 	if (req->actual == 0)
1898 		dwc2_hsotg_enqueue_setup(hsotg);
1899 	else
1900 		dwc2_hsotg_process_control(hsotg, req->buf);
1901 	spin_unlock(&hsotg->lock);
1902 }
1903 
1904 /**
1905  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1906  * @hsotg: The device state.
1907  *
1908  * Enqueue a request on EP0 if necessary to received any SETUP packets
1909  * received from the host.
1910  */
1911 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1912 {
1913 	struct usb_request *req = hsotg->ctrl_req;
1914 	struct dwc2_hsotg_req *hs_req = our_req(req);
1915 	int ret;
1916 
1917 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1918 
1919 	req->zero = 0;
1920 	req->length = 8;
1921 	req->buf = hsotg->ctrl_buff;
1922 	req->complete = dwc2_hsotg_complete_setup;
1923 
1924 	if (!list_empty(&hs_req->queue)) {
1925 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1926 		return;
1927 	}
1928 
1929 	hsotg->eps_out[0]->dir_in = 0;
1930 	hsotg->eps_out[0]->send_zlp = 0;
1931 	hsotg->ep0_state = DWC2_EP0_SETUP;
1932 
1933 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1934 	if (ret < 0) {
1935 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1936 		/*
1937 		 * Don't think there's much we can do other than watch the
1938 		 * driver fail.
1939 		 */
1940 	}
1941 }
1942 
1943 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1944 				   struct dwc2_hsotg_ep *hs_ep)
1945 {
1946 	u32 ctrl;
1947 	u8 index = hs_ep->index;
1948 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1949 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1950 
1951 	if (hs_ep->dir_in)
1952 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1953 			index);
1954 	else
1955 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1956 			index);
1957 	if (using_desc_dma(hsotg)) {
1958 		/* Not specific buffer needed for ep0 ZLP */
1959 		dma_addr_t dma = hs_ep->desc_list_dma;
1960 
1961 		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1962 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1963 	} else {
1964 		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1965 			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1966 			    epsiz_reg);
1967 	}
1968 
1969 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1970 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1971 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1972 	ctrl |= DXEPCTL_USBACTEP;
1973 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1974 }
1975 
1976 /**
1977  * dwc2_hsotg_complete_request - complete a request given to us
1978  * @hsotg: The device state.
1979  * @hs_ep: The endpoint the request was on.
1980  * @hs_req: The request to complete.
1981  * @result: The result code (0 => Ok, otherwise errno)
1982  *
1983  * The given request has finished, so call the necessary completion
1984  * if it has one and then look to see if we can start a new request
1985  * on the endpoint.
1986  *
1987  * Note, expects the ep to already be locked as appropriate.
1988  */
1989 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1990 					struct dwc2_hsotg_ep *hs_ep,
1991 				       struct dwc2_hsotg_req *hs_req,
1992 				       int result)
1993 {
1994 	if (!hs_req) {
1995 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1996 		return;
1997 	}
1998 
1999 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2000 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2001 
2002 	/*
2003 	 * only replace the status if we've not already set an error
2004 	 * from a previous transaction
2005 	 */
2006 
2007 	if (hs_req->req.status == -EINPROGRESS)
2008 		hs_req->req.status = result;
2009 
2010 	if (using_dma(hsotg))
2011 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2012 
2013 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2014 
2015 	hs_ep->req = NULL;
2016 	list_del_init(&hs_req->queue);
2017 
2018 	/*
2019 	 * call the complete request with the locks off, just in case the
2020 	 * request tries to queue more work for this endpoint.
2021 	 */
2022 
2023 	if (hs_req->req.complete) {
2024 		spin_unlock(&hsotg->lock);
2025 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2026 		spin_lock(&hsotg->lock);
2027 	}
2028 
2029 	/* In DDMA don't need to proceed to starting of next ISOC request */
2030 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2031 		return;
2032 
2033 	/*
2034 	 * Look to see if there is anything else to do. Note, the completion
2035 	 * of the previous request may have caused a new request to be started
2036 	 * so be careful when doing this.
2037 	 */
2038 
2039 	if (!hs_ep->req && result >= 0)
2040 		dwc2_gadget_start_next_request(hs_ep);
2041 }
2042 
2043 /*
2044  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2045  * @hs_ep: The endpoint the request was on.
2046  *
2047  * Get first request from the ep queue, determine descriptor on which complete
2048  * happened. SW based on isoc_chain_num discovers which half of the descriptor
2049  * chain is currently in use by HW, adjusts dma_address and calculates index
2050  * of completed descriptor based on the value of DEPDMA register. Update actual
2051  * length of request, giveback to gadget.
2052  */
2053 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2054 {
2055 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2056 	struct dwc2_hsotg_req *hs_req;
2057 	struct usb_request *ureq;
2058 	int index;
2059 	dma_addr_t dma_addr;
2060 	u32 dma_reg;
2061 	u32 depdma;
2062 	u32 desc_sts;
2063 	u32 mask;
2064 
2065 	hs_req = get_ep_head(hs_ep);
2066 	if (!hs_req) {
2067 		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2068 		return;
2069 	}
2070 	ureq = &hs_req->req;
2071 
2072 	dma_addr = hs_ep->desc_list_dma;
2073 
2074 	/*
2075 	 * If lower half of  descriptor chain is currently use by SW,
2076 	 * that means higher half is being processed by HW, so shift
2077 	 * DMA address to higher half of descriptor chain.
2078 	 */
2079 	if (!hs_ep->isoc_chain_num)
2080 		dma_addr += sizeof(struct dwc2_dma_desc) *
2081 			    (MAX_DMA_DESC_NUM_GENERIC / 2);
2082 
2083 	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2084 	depdma = dwc2_readl(hsotg->regs + dma_reg);
2085 
2086 	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2087 	desc_sts = hs_ep->desc_list[index].status;
2088 
2089 	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2090 	       DEV_DMA_ISOC_RX_NBYTES_MASK;
2091 	ureq->actual = ureq->length -
2092 		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2093 
2094 	/* Adjust actual length for ISOC Out if length is not align of 4 */
2095 	if (!hs_ep->dir_in && ureq->length & 0x3)
2096 		ureq->actual += 4 - (ureq->length & 0x3);
2097 
2098 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2099 }
2100 
2101 /*
2102  * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2103  * @hs_ep: The isochronous endpoint to be re-enabled.
2104  *
2105  * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2106  * BNA (OUT endpoint) check the status of other half of descriptor chain that
2107  * was under SW control till HW was busy and restart the endpoint if needed.
2108  */
2109 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2110 {
2111 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2112 	u32 depctl;
2113 	u32 dma_reg;
2114 	u32 ctrl;
2115 	u32 dma_addr = hs_ep->desc_list_dma;
2116 	unsigned char index = hs_ep->index;
2117 
2118 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2119 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2120 
2121 	ctrl = dwc2_readl(hsotg->regs + depctl);
2122 
2123 	/*
2124 	 * EP was disabled if HW has processed last descriptor or BNA was set.
2125 	 * So restart ep if SW has prepared new descriptor chain in ep_queue
2126 	 * routine while HW was busy.
2127 	 */
2128 	if (!(ctrl & DXEPCTL_EPENA)) {
2129 		if (!hs_ep->next_desc) {
2130 			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2131 				__func__);
2132 			return;
2133 		}
2134 
2135 		dma_addr += sizeof(struct dwc2_dma_desc) *
2136 			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
2137 			    hs_ep->isoc_chain_num;
2138 		dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2139 
2140 		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2141 		dwc2_writel(ctrl, hsotg->regs + depctl);
2142 
2143 		/* Switch ISOC descriptor chain number being processed by SW*/
2144 		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2145 		hs_ep->next_desc = 0;
2146 
2147 		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2148 			__func__);
2149 	}
2150 }
2151 
2152 /**
2153  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2154  * @hsotg: The device state.
2155  * @ep_idx: The endpoint index for the data
2156  * @size: The size of data in the fifo, in bytes
2157  *
2158  * The FIFO status shows there is data to read from the FIFO for a given
2159  * endpoint, so sort out whether we need to read the data into a request
2160  * that has been made for that endpoint.
2161  */
2162 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2163 {
2164 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2165 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2166 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2167 	int to_read;
2168 	int max_req;
2169 	int read_ptr;
2170 
2171 	if (!hs_req) {
2172 		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2173 		int ptr;
2174 
2175 		dev_dbg(hsotg->dev,
2176 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2177 			 __func__, size, ep_idx, epctl);
2178 
2179 		/* dump the data from the FIFO, we've nothing we can do */
2180 		for (ptr = 0; ptr < size; ptr += 4)
2181 			(void)dwc2_readl(fifo);
2182 
2183 		return;
2184 	}
2185 
2186 	to_read = size;
2187 	read_ptr = hs_req->req.actual;
2188 	max_req = hs_req->req.length - read_ptr;
2189 
2190 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2191 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2192 
2193 	if (to_read > max_req) {
2194 		/*
2195 		 * more data appeared than we where willing
2196 		 * to deal with in this request.
2197 		 */
2198 
2199 		/* currently we don't deal this */
2200 		WARN_ON_ONCE(1);
2201 	}
2202 
2203 	hs_ep->total_data += to_read;
2204 	hs_req->req.actual += to_read;
2205 	to_read = DIV_ROUND_UP(to_read, 4);
2206 
2207 	/*
2208 	 * note, we might over-write the buffer end by 3 bytes depending on
2209 	 * alignment of the data.
2210 	 */
2211 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2212 }
2213 
2214 /**
2215  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2216  * @hsotg: The device instance
2217  * @dir_in: If IN zlp
2218  *
2219  * Generate a zero-length IN packet request for terminating a SETUP
2220  * transaction.
2221  *
2222  * Note, since we don't write any data to the TxFIFO, then it is
2223  * currently believed that we do not need to wait for any space in
2224  * the TxFIFO.
2225  */
2226 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2227 {
2228 	/* eps_out[0] is used in both directions */
2229 	hsotg->eps_out[0]->dir_in = dir_in;
2230 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2231 
2232 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2233 }
2234 
2235 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2236 					    u32 epctl_reg)
2237 {
2238 	u32 ctrl;
2239 
2240 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2241 	if (ctrl & DXEPCTL_EOFRNUM)
2242 		ctrl |= DXEPCTL_SETEVENFR;
2243 	else
2244 		ctrl |= DXEPCTL_SETODDFR;
2245 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2246 }
2247 
2248 /*
2249  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2250  * @hs_ep - The endpoint on which transfer went
2251  *
2252  * Iterate over endpoints descriptor chain and get info on bytes remained
2253  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2254  */
2255 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2256 {
2257 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2258 	unsigned int bytes_rem = 0;
2259 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2260 	int i;
2261 	u32 status;
2262 
2263 	if (!desc)
2264 		return -EINVAL;
2265 
2266 	for (i = 0; i < hs_ep->desc_count; ++i) {
2267 		status = desc->status;
2268 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2269 
2270 		if (status & DEV_DMA_STS_MASK)
2271 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2272 				i, status & DEV_DMA_STS_MASK);
2273 	}
2274 
2275 	return bytes_rem;
2276 }
2277 
2278 /**
2279  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2280  * @hsotg: The device instance
2281  * @epnum: The endpoint received from
2282  *
2283  * The RXFIFO has delivered an OutDone event, which means that the data
2284  * transfer for an OUT endpoint has been completed, either by a short
2285  * packet or by the finish of a transfer.
2286  */
2287 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2288 {
2289 	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2290 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2291 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2292 	struct usb_request *req = &hs_req->req;
2293 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2294 	int result = 0;
2295 
2296 	if (!hs_req) {
2297 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2298 		return;
2299 	}
2300 
2301 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2302 		dev_dbg(hsotg->dev, "zlp packet received\n");
2303 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2304 		dwc2_hsotg_enqueue_setup(hsotg);
2305 		return;
2306 	}
2307 
2308 	if (using_desc_dma(hsotg))
2309 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2310 
2311 	if (using_dma(hsotg)) {
2312 		unsigned int size_done;
2313 
2314 		/*
2315 		 * Calculate the size of the transfer by checking how much
2316 		 * is left in the endpoint size register and then working it
2317 		 * out from the amount we loaded for the transfer.
2318 		 *
2319 		 * We need to do this as DMA pointers are always 32bit aligned
2320 		 * so may overshoot/undershoot the transfer.
2321 		 */
2322 
2323 		size_done = hs_ep->size_loaded - size_left;
2324 		size_done += hs_ep->last_load;
2325 
2326 		req->actual = size_done;
2327 	}
2328 
2329 	/* if there is more request to do, schedule new transfer */
2330 	if (req->actual < req->length && size_left == 0) {
2331 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2332 		return;
2333 	}
2334 
2335 	if (req->actual < req->length && req->short_not_ok) {
2336 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2337 			__func__, req->actual, req->length);
2338 
2339 		/*
2340 		 * todo - what should we return here? there's no one else
2341 		 * even bothering to check the status.
2342 		 */
2343 	}
2344 
2345 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2346 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2347 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2348 		/* Move to STATUS IN */
2349 		dwc2_hsotg_ep0_zlp(hsotg, true);
2350 		return;
2351 	}
2352 
2353 	/*
2354 	 * Slave mode OUT transfers do not go through XferComplete so
2355 	 * adjust the ISOC parity here.
2356 	 */
2357 	if (!using_dma(hsotg)) {
2358 		if (hs_ep->isochronous && hs_ep->interval == 1)
2359 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2360 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2361 			dwc2_gadget_incr_frame_num(hs_ep);
2362 	}
2363 
2364 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2365 }
2366 
2367 /**
2368  * dwc2_hsotg_handle_rx - RX FIFO has data
2369  * @hsotg: The device instance
2370  *
2371  * The IRQ handler has detected that the RX FIFO has some data in it
2372  * that requires processing, so find out what is in there and do the
2373  * appropriate read.
2374  *
2375  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2376  * chunks, so if you have x packets received on an endpoint you'll get x
2377  * FIFO events delivered, each with a packet's worth of data in it.
2378  *
2379  * When using DMA, we should not be processing events from the RXFIFO
2380  * as the actual data should be sent to the memory directly and we turn
2381  * on the completion interrupts to get notifications of transfer completion.
2382  */
2383 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2384 {
2385 	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2386 	u32 epnum, status, size;
2387 
2388 	WARN_ON(using_dma(hsotg));
2389 
2390 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2391 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2392 
2393 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2394 	size >>= GRXSTS_BYTECNT_SHIFT;
2395 
2396 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2397 		__func__, grxstsr, size, epnum);
2398 
2399 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2400 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2401 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2402 		break;
2403 
2404 	case GRXSTS_PKTSTS_OUTDONE:
2405 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2406 			dwc2_hsotg_read_frameno(hsotg));
2407 
2408 		if (!using_dma(hsotg))
2409 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2410 		break;
2411 
2412 	case GRXSTS_PKTSTS_SETUPDONE:
2413 		dev_dbg(hsotg->dev,
2414 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2415 			dwc2_hsotg_read_frameno(hsotg),
2416 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2417 		/*
2418 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2419 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2420 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2421 		 */
2422 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2423 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2424 		break;
2425 
2426 	case GRXSTS_PKTSTS_OUTRX:
2427 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2428 		break;
2429 
2430 	case GRXSTS_PKTSTS_SETUPRX:
2431 		dev_dbg(hsotg->dev,
2432 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2433 			dwc2_hsotg_read_frameno(hsotg),
2434 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2435 
2436 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2437 
2438 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2439 		break;
2440 
2441 	default:
2442 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2443 			 __func__, grxstsr);
2444 
2445 		dwc2_hsotg_dump(hsotg);
2446 		break;
2447 	}
2448 }
2449 
2450 /**
2451  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2452  * @mps: The maximum packet size in bytes.
2453  */
2454 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2455 {
2456 	switch (mps) {
2457 	case 64:
2458 		return D0EPCTL_MPS_64;
2459 	case 32:
2460 		return D0EPCTL_MPS_32;
2461 	case 16:
2462 		return D0EPCTL_MPS_16;
2463 	case 8:
2464 		return D0EPCTL_MPS_8;
2465 	}
2466 
2467 	/* bad max packet size, warn and return invalid result */
2468 	WARN_ON(1);
2469 	return (u32)-1;
2470 }
2471 
2472 /**
2473  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2474  * @hsotg: The driver state.
2475  * @ep: The index number of the endpoint
2476  * @mps: The maximum packet size in bytes
2477  * @mc: The multicount value
2478  *
2479  * Configure the maximum packet size for the given endpoint, updating
2480  * the hardware control registers to reflect this.
2481  */
2482 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2483 					unsigned int ep, unsigned int mps,
2484 					unsigned int mc, unsigned int dir_in)
2485 {
2486 	struct dwc2_hsotg_ep *hs_ep;
2487 	void __iomem *regs = hsotg->regs;
2488 	u32 reg;
2489 
2490 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2491 	if (!hs_ep)
2492 		return;
2493 
2494 	if (ep == 0) {
2495 		u32 mps_bytes = mps;
2496 
2497 		/* EP0 is a special case */
2498 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2499 		if (mps > 3)
2500 			goto bad_mps;
2501 		hs_ep->ep.maxpacket = mps_bytes;
2502 		hs_ep->mc = 1;
2503 	} else {
2504 		if (mps > 1024)
2505 			goto bad_mps;
2506 		hs_ep->mc = mc;
2507 		if (mc > 3)
2508 			goto bad_mps;
2509 		hs_ep->ep.maxpacket = mps;
2510 	}
2511 
2512 	if (dir_in) {
2513 		reg = dwc2_readl(regs + DIEPCTL(ep));
2514 		reg &= ~DXEPCTL_MPS_MASK;
2515 		reg |= mps;
2516 		dwc2_writel(reg, regs + DIEPCTL(ep));
2517 	} else {
2518 		reg = dwc2_readl(regs + DOEPCTL(ep));
2519 		reg &= ~DXEPCTL_MPS_MASK;
2520 		reg |= mps;
2521 		dwc2_writel(reg, regs + DOEPCTL(ep));
2522 	}
2523 
2524 	return;
2525 
2526 bad_mps:
2527 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2528 }
2529 
2530 /**
2531  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2532  * @hsotg: The driver state
2533  * @idx: The index for the endpoint (0..15)
2534  */
2535 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2536 {
2537 	int timeout;
2538 	int val;
2539 
2540 	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2541 		    hsotg->regs + GRSTCTL);
2542 
2543 	/* wait until the fifo is flushed */
2544 	timeout = 100;
2545 
2546 	while (1) {
2547 		val = dwc2_readl(hsotg->regs + GRSTCTL);
2548 
2549 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2550 			break;
2551 
2552 		if (--timeout == 0) {
2553 			dev_err(hsotg->dev,
2554 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2555 				__func__, val);
2556 			break;
2557 		}
2558 
2559 		udelay(1);
2560 	}
2561 }
2562 
2563 /**
2564  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2565  * @hsotg: The driver state
2566  * @hs_ep: The driver endpoint to check.
2567  *
2568  * Check to see if there is a request that has data to send, and if so
2569  * make an attempt to write data into the FIFO.
2570  */
2571 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2572 			    struct dwc2_hsotg_ep *hs_ep)
2573 {
2574 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2575 
2576 	if (!hs_ep->dir_in || !hs_req) {
2577 		/**
2578 		 * if request is not enqueued, we disable interrupts
2579 		 * for endpoints, excepting ep0
2580 		 */
2581 		if (hs_ep->index != 0)
2582 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2583 					      hs_ep->dir_in, 0);
2584 		return 0;
2585 	}
2586 
2587 	if (hs_req->req.actual < hs_req->req.length) {
2588 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2589 			hs_ep->index);
2590 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2591 	}
2592 
2593 	return 0;
2594 }
2595 
2596 /**
2597  * dwc2_hsotg_complete_in - complete IN transfer
2598  * @hsotg: The device state.
2599  * @hs_ep: The endpoint that has just completed.
2600  *
2601  * An IN transfer has been completed, update the transfer's state and then
2602  * call the relevant completion routines.
2603  */
2604 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2605 				   struct dwc2_hsotg_ep *hs_ep)
2606 {
2607 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2608 	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2609 	int size_left, size_done;
2610 
2611 	if (!hs_req) {
2612 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2613 		return;
2614 	}
2615 
2616 	/* Finish ZLP handling for IN EP0 transactions */
2617 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2618 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2619 
2620 		/*
2621 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2622 		 * changed to IN. Change back to complete OUT transfer request
2623 		 */
2624 		hs_ep->dir_in = 0;
2625 
2626 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2627 		if (hsotg->test_mode) {
2628 			int ret;
2629 
2630 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2631 			if (ret < 0) {
2632 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2633 					hsotg->test_mode);
2634 				dwc2_hsotg_stall_ep0(hsotg);
2635 				return;
2636 			}
2637 		}
2638 		dwc2_hsotg_enqueue_setup(hsotg);
2639 		return;
2640 	}
2641 
2642 	/*
2643 	 * Calculate the size of the transfer by checking how much is left
2644 	 * in the endpoint size register and then working it out from
2645 	 * the amount we loaded for the transfer.
2646 	 *
2647 	 * We do this even for DMA, as the transfer may have incremented
2648 	 * past the end of the buffer (DMA transfers are always 32bit
2649 	 * aligned).
2650 	 */
2651 	if (using_desc_dma(hsotg)) {
2652 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2653 		if (size_left < 0)
2654 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2655 				size_left);
2656 	} else {
2657 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2658 	}
2659 
2660 	size_done = hs_ep->size_loaded - size_left;
2661 	size_done += hs_ep->last_load;
2662 
2663 	if (hs_req->req.actual != size_done)
2664 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2665 			__func__, hs_req->req.actual, size_done);
2666 
2667 	hs_req->req.actual = size_done;
2668 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2669 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2670 
2671 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2672 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2673 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2674 		return;
2675 	}
2676 
2677 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2678 	if (hs_ep->send_zlp) {
2679 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2680 		hs_ep->send_zlp = 0;
2681 		/* transfer will be completed on next complete interrupt */
2682 		return;
2683 	}
2684 
2685 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2686 		/* Move to STATUS OUT */
2687 		dwc2_hsotg_ep0_zlp(hsotg, false);
2688 		return;
2689 	}
2690 
2691 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2692 }
2693 
2694 /**
2695  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2696  * @hsotg: The device state.
2697  * @idx: Index of ep.
2698  * @dir_in: Endpoint direction 1-in 0-out.
2699  *
2700  * Reads for endpoint with given index and direction, by masking
2701  * epint_reg with coresponding mask.
2702  */
2703 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2704 					  unsigned int idx, int dir_in)
2705 {
2706 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2707 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2708 	u32 ints;
2709 	u32 mask;
2710 	u32 diepempmsk;
2711 
2712 	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2713 	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2714 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2715 	mask |= DXEPINT_SETUP_RCVD;
2716 
2717 	ints = dwc2_readl(hsotg->regs + epint_reg);
2718 	ints &= mask;
2719 	return ints;
2720 }
2721 
2722 /**
2723  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2724  * @hs_ep: The endpoint on which interrupt is asserted.
2725  *
2726  * This interrupt indicates that the endpoint has been disabled per the
2727  * application's request.
2728  *
2729  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2730  * in case of ISOC completes current request.
2731  *
2732  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2733  * request starts it.
2734  */
2735 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2736 {
2737 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2738 	struct dwc2_hsotg_req *hs_req;
2739 	unsigned char idx = hs_ep->index;
2740 	int dir_in = hs_ep->dir_in;
2741 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2742 	int dctl = dwc2_readl(hsotg->regs + DCTL);
2743 
2744 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2745 
2746 	if (dir_in) {
2747 		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2748 
2749 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2750 
2751 		if (hs_ep->isochronous) {
2752 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2753 			return;
2754 		}
2755 
2756 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2757 			int dctl = dwc2_readl(hsotg->regs + DCTL);
2758 
2759 			dctl |= DCTL_CGNPINNAK;
2760 			dwc2_writel(dctl, hsotg->regs + DCTL);
2761 		}
2762 		return;
2763 	}
2764 
2765 	if (dctl & DCTL_GOUTNAKSTS) {
2766 		dctl |= DCTL_CGOUTNAK;
2767 		dwc2_writel(dctl, hsotg->regs + DCTL);
2768 	}
2769 
2770 	if (!hs_ep->isochronous)
2771 		return;
2772 
2773 	if (list_empty(&hs_ep->queue)) {
2774 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2775 			__func__, hs_ep);
2776 		return;
2777 	}
2778 
2779 	do {
2780 		hs_req = get_ep_head(hs_ep);
2781 		if (hs_req)
2782 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2783 						    -ENODATA);
2784 		dwc2_gadget_incr_frame_num(hs_ep);
2785 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2786 
2787 	dwc2_gadget_start_next_request(hs_ep);
2788 }
2789 
2790 /**
2791  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2792  * @hs_ep: The endpoint on which interrupt is asserted.
2793  *
2794  * This is starting point for ISOC-OUT transfer, synchronization done with
2795  * first out token received from host while corresponding EP is disabled.
2796  *
2797  * Device does not know initial frame in which out token will come. For this
2798  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2799  * getting this interrupt SW starts calculation for next transfer frame.
2800  */
2801 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2802 {
2803 	struct dwc2_hsotg *hsotg = ep->parent;
2804 	int dir_in = ep->dir_in;
2805 	u32 doepmsk;
2806 	u32 tmp;
2807 
2808 	if (dir_in || !ep->isochronous)
2809 		return;
2810 
2811 	/*
2812 	 * Store frame in which irq was asserted here, as
2813 	 * it can change while completing request below.
2814 	 */
2815 	tmp = dwc2_hsotg_read_frameno(hsotg);
2816 
2817 	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2818 
2819 	if (using_desc_dma(hsotg)) {
2820 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2821 			/* Start first ISO Out */
2822 			ep->target_frame = tmp;
2823 			dwc2_gadget_start_isoc_ddma(ep);
2824 		}
2825 		return;
2826 	}
2827 
2828 	if (ep->interval > 1 &&
2829 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2830 		u32 dsts;
2831 		u32 ctrl;
2832 
2833 		dsts = dwc2_readl(hsotg->regs + DSTS);
2834 		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2835 		dwc2_gadget_incr_frame_num(ep);
2836 
2837 		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2838 		if (ep->target_frame & 0x1)
2839 			ctrl |= DXEPCTL_SETODDFR;
2840 		else
2841 			ctrl |= DXEPCTL_SETEVENFR;
2842 
2843 		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2844 	}
2845 
2846 	dwc2_gadget_start_next_request(ep);
2847 	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2848 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2849 	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2850 }
2851 
2852 /**
2853  * dwc2_gadget_handle_nak - handle NAK interrupt
2854  * @hs_ep: The endpoint on which interrupt is asserted.
2855  *
2856  * This is starting point for ISOC-IN transfer, synchronization done with
2857  * first IN token received from host while corresponding EP is disabled.
2858  *
2859  * Device does not know when first one token will arrive from host. On first
2860  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2861  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2862  * sent in response to that as there was no data in FIFO. SW is basing on this
2863  * interrupt to obtain frame in which token has come and then based on the
2864  * interval calculates next frame for transfer.
2865  */
2866 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2867 {
2868 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2869 	int dir_in = hs_ep->dir_in;
2870 
2871 	if (!dir_in || !hs_ep->isochronous)
2872 		return;
2873 
2874 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2875 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2876 
2877 		if (using_desc_dma(hsotg)) {
2878 			dwc2_gadget_start_isoc_ddma(hs_ep);
2879 			return;
2880 		}
2881 
2882 		if (hs_ep->interval > 1) {
2883 			u32 ctrl = dwc2_readl(hsotg->regs +
2884 					      DIEPCTL(hs_ep->index));
2885 			if (hs_ep->target_frame & 0x1)
2886 				ctrl |= DXEPCTL_SETODDFR;
2887 			else
2888 				ctrl |= DXEPCTL_SETEVENFR;
2889 
2890 			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2891 		}
2892 
2893 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2894 					    get_ep_head(hs_ep), 0);
2895 	}
2896 
2897 	dwc2_gadget_incr_frame_num(hs_ep);
2898 }
2899 
2900 /**
2901  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2902  * @hsotg: The driver state
2903  * @idx: The index for the endpoint (0..15)
2904  * @dir_in: Set if this is an IN endpoint
2905  *
2906  * Process and clear any interrupt pending for an individual endpoint
2907  */
2908 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2909 			     int dir_in)
2910 {
2911 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2912 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2913 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2914 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2915 	u32 ints;
2916 	u32 ctrl;
2917 
2918 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2919 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2920 
2921 	/* Clear endpoint interrupts */
2922 	dwc2_writel(ints, hsotg->regs + epint_reg);
2923 
2924 	if (!hs_ep) {
2925 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2926 			__func__, idx, dir_in ? "in" : "out");
2927 		return;
2928 	}
2929 
2930 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2931 		__func__, idx, dir_in ? "in" : "out", ints);
2932 
2933 	/* Don't process XferCompl interrupt if it is a setup packet */
2934 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2935 		ints &= ~DXEPINT_XFERCOMPL;
2936 
2937 	/*
2938 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2939 	 * stage and xfercomplete was generated without SETUP phase done
2940 	 * interrupt. SW should parse received setup packet only after host's
2941 	 * exit from setup phase of control transfer.
2942 	 */
2943 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2944 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2945 		ints &= ~DXEPINT_XFERCOMPL;
2946 
2947 	if (ints & DXEPINT_XFERCOMPL) {
2948 		dev_dbg(hsotg->dev,
2949 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2950 			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2951 			dwc2_readl(hsotg->regs + epsiz_reg));
2952 
2953 		/* In DDMA handle isochronous requests separately */
2954 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2955 			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2956 			/* Try to start next isoc request */
2957 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2958 		} else if (dir_in) {
2959 			/*
2960 			 * We get OutDone from the FIFO, so we only
2961 			 * need to look at completing IN requests here
2962 			 * if operating slave mode
2963 			 */
2964 			if (hs_ep->isochronous && hs_ep->interval > 1)
2965 				dwc2_gadget_incr_frame_num(hs_ep);
2966 
2967 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2968 			if (ints & DXEPINT_NAKINTRPT)
2969 				ints &= ~DXEPINT_NAKINTRPT;
2970 
2971 			if (idx == 0 && !hs_ep->req)
2972 				dwc2_hsotg_enqueue_setup(hsotg);
2973 		} else if (using_dma(hsotg)) {
2974 			/*
2975 			 * We're using DMA, we need to fire an OutDone here
2976 			 * as we ignore the RXFIFO.
2977 			 */
2978 			if (hs_ep->isochronous && hs_ep->interval > 1)
2979 				dwc2_gadget_incr_frame_num(hs_ep);
2980 
2981 			dwc2_hsotg_handle_outdone(hsotg, idx);
2982 		}
2983 	}
2984 
2985 	if (ints & DXEPINT_EPDISBLD)
2986 		dwc2_gadget_handle_ep_disabled(hs_ep);
2987 
2988 	if (ints & DXEPINT_OUTTKNEPDIS)
2989 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2990 
2991 	if (ints & DXEPINT_NAKINTRPT)
2992 		dwc2_gadget_handle_nak(hs_ep);
2993 
2994 	if (ints & DXEPINT_AHBERR)
2995 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2996 
2997 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2998 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2999 
3000 		if (using_dma(hsotg) && idx == 0) {
3001 			/*
3002 			 * this is the notification we've received a
3003 			 * setup packet. In non-DMA mode we'd get this
3004 			 * from the RXFIFO, instead we need to process
3005 			 * the setup here.
3006 			 */
3007 
3008 			if (dir_in)
3009 				WARN_ON_ONCE(1);
3010 			else
3011 				dwc2_hsotg_handle_outdone(hsotg, 0);
3012 		}
3013 	}
3014 
3015 	if (ints & DXEPINT_STSPHSERCVD) {
3016 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3017 
3018 		/* Move to STATUS IN for DDMA */
3019 		if (using_desc_dma(hsotg))
3020 			dwc2_hsotg_ep0_zlp(hsotg, true);
3021 	}
3022 
3023 	if (ints & DXEPINT_BACK2BACKSETUP)
3024 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3025 
3026 	if (ints & DXEPINT_BNAINTR) {
3027 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3028 
3029 		/*
3030 		 * Try to start next isoc request, if any.
3031 		 * Sometimes the endpoint remains enabled after BNA interrupt
3032 		 * assertion, which is not expected, hence we can enter here
3033 		 * couple of times.
3034 		 */
3035 		if (hs_ep->isochronous)
3036 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
3037 	}
3038 
3039 	if (dir_in && !hs_ep->isochronous) {
3040 		/* not sure if this is important, but we'll clear it anyway */
3041 		if (ints & DXEPINT_INTKNTXFEMP) {
3042 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3043 				__func__, idx);
3044 		}
3045 
3046 		/* this probably means something bad is happening */
3047 		if (ints & DXEPINT_INTKNEPMIS) {
3048 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3049 				 __func__, idx);
3050 		}
3051 
3052 		/* FIFO has space or is empty (see GAHBCFG) */
3053 		if (hsotg->dedicated_fifos &&
3054 		    ints & DXEPINT_TXFEMP) {
3055 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3056 				__func__, idx);
3057 			if (!using_dma(hsotg))
3058 				dwc2_hsotg_trytx(hsotg, hs_ep);
3059 		}
3060 	}
3061 }
3062 
3063 /**
3064  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3065  * @hsotg: The device state.
3066  *
3067  * Handle updating the device settings after the enumeration phase has
3068  * been completed.
3069  */
3070 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3071 {
3072 	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3073 	int ep0_mps = 0, ep_mps = 8;
3074 
3075 	/*
3076 	 * This should signal the finish of the enumeration phase
3077 	 * of the USB handshaking, so we should now know what rate
3078 	 * we connected at.
3079 	 */
3080 
3081 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3082 
3083 	/*
3084 	 * note, since we're limited by the size of transfer on EP0, and
3085 	 * it seems IN transfers must be a even number of packets we do
3086 	 * not advertise a 64byte MPS on EP0.
3087 	 */
3088 
3089 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3090 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3091 	case DSTS_ENUMSPD_FS:
3092 	case DSTS_ENUMSPD_FS48:
3093 		hsotg->gadget.speed = USB_SPEED_FULL;
3094 		ep0_mps = EP0_MPS_LIMIT;
3095 		ep_mps = 1023;
3096 		break;
3097 
3098 	case DSTS_ENUMSPD_HS:
3099 		hsotg->gadget.speed = USB_SPEED_HIGH;
3100 		ep0_mps = EP0_MPS_LIMIT;
3101 		ep_mps = 1024;
3102 		break;
3103 
3104 	case DSTS_ENUMSPD_LS:
3105 		hsotg->gadget.speed = USB_SPEED_LOW;
3106 		ep0_mps = 8;
3107 		ep_mps = 8;
3108 		/*
3109 		 * note, we don't actually support LS in this driver at the
3110 		 * moment, and the documentation seems to imply that it isn't
3111 		 * supported by the PHYs on some of the devices.
3112 		 */
3113 		break;
3114 	}
3115 	dev_info(hsotg->dev, "new device is %s\n",
3116 		 usb_speed_string(hsotg->gadget.speed));
3117 
3118 	/*
3119 	 * we should now know the maximum packet size for an
3120 	 * endpoint, so set the endpoints to a default value.
3121 	 */
3122 
3123 	if (ep0_mps) {
3124 		int i;
3125 		/* Initialize ep0 for both in and out directions */
3126 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3127 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3128 		for (i = 1; i < hsotg->num_of_eps; i++) {
3129 			if (hsotg->eps_in[i])
3130 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3131 							    0, 1);
3132 			if (hsotg->eps_out[i])
3133 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3134 							    0, 0);
3135 		}
3136 	}
3137 
3138 	/* ensure after enumeration our EP0 is active */
3139 
3140 	dwc2_hsotg_enqueue_setup(hsotg);
3141 
3142 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3143 		dwc2_readl(hsotg->regs + DIEPCTL0),
3144 		dwc2_readl(hsotg->regs + DOEPCTL0));
3145 }
3146 
3147 /**
3148  * kill_all_requests - remove all requests from the endpoint's queue
3149  * @hsotg: The device state.
3150  * @ep: The endpoint the requests may be on.
3151  * @result: The result code to use.
3152  *
3153  * Go through the requests on the given endpoint and mark them
3154  * completed with the given result code.
3155  */
3156 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3157 			      struct dwc2_hsotg_ep *ep,
3158 			      int result)
3159 {
3160 	struct dwc2_hsotg_req *req, *treq;
3161 	unsigned int size;
3162 
3163 	ep->req = NULL;
3164 
3165 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3166 		dwc2_hsotg_complete_request(hsotg, ep, req,
3167 					    result);
3168 
3169 	if (!hsotg->dedicated_fifos)
3170 		return;
3171 	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3172 	if (size < ep->fifo_size)
3173 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3174 }
3175 
3176 /**
3177  * dwc2_hsotg_disconnect - disconnect service
3178  * @hsotg: The device state.
3179  *
3180  * The device has been disconnected. Remove all current
3181  * transactions and signal the gadget driver that this
3182  * has happened.
3183  */
3184 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3185 {
3186 	unsigned int ep;
3187 
3188 	if (!hsotg->connected)
3189 		return;
3190 
3191 	hsotg->connected = 0;
3192 	hsotg->test_mode = 0;
3193 
3194 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3195 		if (hsotg->eps_in[ep])
3196 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3197 					  -ESHUTDOWN);
3198 		if (hsotg->eps_out[ep])
3199 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3200 					  -ESHUTDOWN);
3201 	}
3202 
3203 	call_gadget(hsotg, disconnect);
3204 	hsotg->lx_state = DWC2_L3;
3205 }
3206 
3207 /**
3208  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3209  * @hsotg: The device state:
3210  * @periodic: True if this is a periodic FIFO interrupt
3211  */
3212 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3213 {
3214 	struct dwc2_hsotg_ep *ep;
3215 	int epno, ret;
3216 
3217 	/* look through for any more data to transmit */
3218 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3219 		ep = index_to_ep(hsotg, epno, 1);
3220 
3221 		if (!ep)
3222 			continue;
3223 
3224 		if (!ep->dir_in)
3225 			continue;
3226 
3227 		if ((periodic && !ep->periodic) ||
3228 		    (!periodic && ep->periodic))
3229 			continue;
3230 
3231 		ret = dwc2_hsotg_trytx(hsotg, ep);
3232 		if (ret < 0)
3233 			break;
3234 	}
3235 }
3236 
3237 /* IRQ flags which will trigger a retry around the IRQ loop */
3238 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3239 			GINTSTS_PTXFEMP |  \
3240 			GINTSTS_RXFLVL)
3241 
3242 /**
3243  * dwc2_hsotg_core_init - issue softreset to the core
3244  * @hsotg: The device state
3245  *
3246  * Issue a soft reset to the core, and await the core finishing it.
3247  */
3248 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3249 				       bool is_usb_reset)
3250 {
3251 	u32 intmsk;
3252 	u32 val;
3253 	u32 usbcfg;
3254 	u32 dcfg = 0;
3255 
3256 	/* Kill any ep0 requests as controller will be reinitialized */
3257 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3258 
3259 	if (!is_usb_reset)
3260 		if (dwc2_core_reset(hsotg, true))
3261 			return;
3262 
3263 	/*
3264 	 * we must now enable ep0 ready for host detection and then
3265 	 * set configuration.
3266 	 */
3267 
3268 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3269 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3270 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3271 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3272 
3273 	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3274 	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3275 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3276 		/* FS/LS Dedicated Transceiver Interface */
3277 		usbcfg |= GUSBCFG_PHYSEL;
3278 	} else {
3279 		/* set the PLL on, remove the HNP/SRP and set the PHY */
3280 		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3281 		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3282 			(val << GUSBCFG_USBTRDTIM_SHIFT);
3283 	}
3284 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3285 
3286 	dwc2_hsotg_init_fifo(hsotg);
3287 
3288 	if (!is_usb_reset)
3289 		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3290 
3291 	dcfg |= DCFG_EPMISCNT(1);
3292 
3293 	switch (hsotg->params.speed) {
3294 	case DWC2_SPEED_PARAM_LOW:
3295 		dcfg |= DCFG_DEVSPD_LS;
3296 		break;
3297 	case DWC2_SPEED_PARAM_FULL:
3298 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3299 			dcfg |= DCFG_DEVSPD_FS48;
3300 		else
3301 			dcfg |= DCFG_DEVSPD_FS;
3302 		break;
3303 	default:
3304 		dcfg |= DCFG_DEVSPD_HS;
3305 	}
3306 
3307 	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3308 
3309 	/* Clear any pending OTG interrupts */
3310 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3311 
3312 	/* Clear any pending interrupts */
3313 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3314 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3315 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3316 		GINTSTS_USBRST | GINTSTS_RESETDET |
3317 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3318 		GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3319 
3320 	if (!using_desc_dma(hsotg))
3321 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3322 
3323 	if (!hsotg->params.external_id_pin_ctl)
3324 		intmsk |= GINTSTS_CONIDSTSCHNG;
3325 
3326 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3327 
3328 	if (using_dma(hsotg)) {
3329 		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3330 			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3331 			    hsotg->regs + GAHBCFG);
3332 
3333 		/* Set DDMA mode support in the core if needed */
3334 		if (using_desc_dma(hsotg))
3335 			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3336 
3337 	} else {
3338 		dwc2_writel(((hsotg->dedicated_fifos) ?
3339 						(GAHBCFG_NP_TXF_EMP_LVL |
3340 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3341 			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3342 	}
3343 
3344 	/*
3345 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3346 	 * when we have no data to transfer. Otherwise we get being flooded by
3347 	 * interrupts.
3348 	 */
3349 
3350 	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3351 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3352 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3353 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3354 		hsotg->regs + DIEPMSK);
3355 
3356 	/*
3357 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3358 	 * DMA mode we may need this and StsPhseRcvd.
3359 	 */
3360 	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3361 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3362 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3363 		DOEPMSK_SETUPMSK,
3364 		hsotg->regs + DOEPMSK);
3365 
3366 	/* Enable BNA interrupt for DDMA */
3367 	if (using_desc_dma(hsotg))
3368 		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3369 
3370 	dwc2_writel(0, hsotg->regs + DAINTMSK);
3371 
3372 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3373 		dwc2_readl(hsotg->regs + DIEPCTL0),
3374 		dwc2_readl(hsotg->regs + DOEPCTL0));
3375 
3376 	/* enable in and out endpoint interrupts */
3377 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3378 
3379 	/*
3380 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3381 	 * the data. In DMA mode, we get events from the FIFO but also
3382 	 * things we cannot process, so do not use it.
3383 	 */
3384 	if (!using_dma(hsotg))
3385 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3386 
3387 	/* Enable interrupts for EP0 in and out */
3388 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3389 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3390 
3391 	if (!is_usb_reset) {
3392 		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3393 		udelay(10);  /* see openiboot */
3394 		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3395 	}
3396 
3397 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3398 
3399 	/*
3400 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3401 	 * writing to the EPCTL register..
3402 	 */
3403 
3404 	/* set to read 1 8byte packet */
3405 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3406 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3407 
3408 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3409 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3410 	       DXEPCTL_USBACTEP,
3411 	       hsotg->regs + DOEPCTL0);
3412 
3413 	/* enable, but don't activate EP0in */
3414 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3415 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3416 
3417 	dwc2_hsotg_enqueue_setup(hsotg);
3418 
3419 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3420 		dwc2_readl(hsotg->regs + DIEPCTL0),
3421 		dwc2_readl(hsotg->regs + DOEPCTL0));
3422 
3423 	/* clear global NAKs */
3424 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3425 	if (!is_usb_reset)
3426 		val |= DCTL_SFTDISCON;
3427 	__orr32(hsotg->regs + DCTL, val);
3428 
3429 	/* must be at-least 3ms to allow bus to see disconnect */
3430 	mdelay(3);
3431 
3432 	hsotg->lx_state = DWC2_L0;
3433 }
3434 
3435 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3436 {
3437 	/* set the soft-disconnect bit */
3438 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3439 }
3440 
3441 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3442 {
3443 	/* remove the soft-disconnect and let's go */
3444 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3445 }
3446 
3447 /**
3448  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3449  * @hsotg: The device state:
3450  *
3451  * This interrupt indicates one of the following conditions occurred while
3452  * transmitting an ISOC transaction.
3453  * - Corrupted IN Token for ISOC EP.
3454  * - Packet not complete in FIFO.
3455  *
3456  * The following actions will be taken:
3457  * - Determine the EP
3458  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3459  */
3460 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3461 {
3462 	struct dwc2_hsotg_ep *hs_ep;
3463 	u32 epctrl;
3464 	u32 idx;
3465 
3466 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3467 
3468 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3469 		hs_ep = hsotg->eps_in[idx];
3470 		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3471 		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3472 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3473 			epctrl |= DXEPCTL_SNAK;
3474 			epctrl |= DXEPCTL_EPDIS;
3475 			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3476 		}
3477 	}
3478 
3479 	/* Clear interrupt */
3480 	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3481 }
3482 
3483 /**
3484  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3485  * @hsotg: The device state:
3486  *
3487  * This interrupt indicates one of the following conditions occurred while
3488  * transmitting an ISOC transaction.
3489  * - Corrupted OUT Token for ISOC EP.
3490  * - Packet not complete in FIFO.
3491  *
3492  * The following actions will be taken:
3493  * - Determine the EP
3494  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3495  */
3496 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3497 {
3498 	u32 gintsts;
3499 	u32 gintmsk;
3500 	u32 epctrl;
3501 	struct dwc2_hsotg_ep *hs_ep;
3502 	int idx;
3503 
3504 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3505 
3506 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3507 		hs_ep = hsotg->eps_out[idx];
3508 		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3509 		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3510 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3511 			/* Unmask GOUTNAKEFF interrupt */
3512 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3513 			gintmsk |= GINTSTS_GOUTNAKEFF;
3514 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3515 
3516 			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3517 			if (!(gintsts & GINTSTS_GOUTNAKEFF))
3518 				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3519 		}
3520 	}
3521 
3522 	/* Clear interrupt */
3523 	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3524 }
3525 
3526 /**
3527  * dwc2_hsotg_irq - handle device interrupt
3528  * @irq: The IRQ number triggered
3529  * @pw: The pw value when registered the handler.
3530  */
3531 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3532 {
3533 	struct dwc2_hsotg *hsotg = pw;
3534 	int retry_count = 8;
3535 	u32 gintsts;
3536 	u32 gintmsk;
3537 
3538 	if (!dwc2_is_device_mode(hsotg))
3539 		return IRQ_NONE;
3540 
3541 	spin_lock(&hsotg->lock);
3542 irq_retry:
3543 	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3544 	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3545 
3546 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3547 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3548 
3549 	gintsts &= gintmsk;
3550 
3551 	if (gintsts & GINTSTS_RESETDET) {
3552 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3553 
3554 		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3555 
3556 		/* This event must be used only if controller is suspended */
3557 		if (hsotg->lx_state == DWC2_L2) {
3558 			dwc2_exit_hibernation(hsotg, true);
3559 			hsotg->lx_state = DWC2_L0;
3560 		}
3561 	}
3562 
3563 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3564 		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3565 		u32 connected = hsotg->connected;
3566 
3567 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3568 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3569 			dwc2_readl(hsotg->regs + GNPTXSTS));
3570 
3571 		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3572 
3573 		/* Report disconnection if it is not already done. */
3574 		dwc2_hsotg_disconnect(hsotg);
3575 
3576 		/* Reset device address to zero */
3577 		__bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3578 
3579 		if (usb_status & GOTGCTL_BSESVLD && connected)
3580 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3581 	}
3582 
3583 	if (gintsts & GINTSTS_ENUMDONE) {
3584 		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3585 
3586 		dwc2_hsotg_irq_enumdone(hsotg);
3587 	}
3588 
3589 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3590 		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3591 		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3592 		u32 daint_out, daint_in;
3593 		int ep;
3594 
3595 		daint &= daintmsk;
3596 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3597 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3598 
3599 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3600 
3601 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3602 						ep++, daint_out >>= 1) {
3603 			if (daint_out & 1)
3604 				dwc2_hsotg_epint(hsotg, ep, 0);
3605 		}
3606 
3607 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3608 						ep++, daint_in >>= 1) {
3609 			if (daint_in & 1)
3610 				dwc2_hsotg_epint(hsotg, ep, 1);
3611 		}
3612 	}
3613 
3614 	/* check both FIFOs */
3615 
3616 	if (gintsts & GINTSTS_NPTXFEMP) {
3617 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3618 
3619 		/*
3620 		 * Disable the interrupt to stop it happening again
3621 		 * unless one of these endpoint routines decides that
3622 		 * it needs re-enabling
3623 		 */
3624 
3625 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3626 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3627 	}
3628 
3629 	if (gintsts & GINTSTS_PTXFEMP) {
3630 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3631 
3632 		/* See note in GINTSTS_NPTxFEmp */
3633 
3634 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3635 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3636 	}
3637 
3638 	if (gintsts & GINTSTS_RXFLVL) {
3639 		/*
3640 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3641 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3642 		 * set.
3643 		 */
3644 
3645 		dwc2_hsotg_handle_rx(hsotg);
3646 	}
3647 
3648 	if (gintsts & GINTSTS_ERLYSUSP) {
3649 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3650 		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3651 	}
3652 
3653 	/*
3654 	 * these next two seem to crop-up occasionally causing the core
3655 	 * to shutdown the USB transfer, so try clearing them and logging
3656 	 * the occurrence.
3657 	 */
3658 
3659 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3660 		u8 idx;
3661 		u32 epctrl;
3662 		u32 gintmsk;
3663 		struct dwc2_hsotg_ep *hs_ep;
3664 
3665 		/* Mask this interrupt */
3666 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3667 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3668 		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3669 
3670 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3671 		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3672 			hs_ep = hsotg->eps_out[idx];
3673 			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3674 
3675 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3676 				epctrl |= DXEPCTL_SNAK;
3677 				epctrl |= DXEPCTL_EPDIS;
3678 				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3679 			}
3680 		}
3681 
3682 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3683 	}
3684 
3685 	if (gintsts & GINTSTS_GINNAKEFF) {
3686 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3687 
3688 		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3689 
3690 		dwc2_hsotg_dump(hsotg);
3691 	}
3692 
3693 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3694 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3695 
3696 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3697 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3698 
3699 	/*
3700 	 * if we've had fifo events, we should try and go around the
3701 	 * loop again to see if there's any point in returning yet.
3702 	 */
3703 
3704 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3705 		goto irq_retry;
3706 
3707 	spin_unlock(&hsotg->lock);
3708 
3709 	return IRQ_HANDLED;
3710 }
3711 
3712 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3713 				   u32 bit, u32 timeout)
3714 {
3715 	u32 i;
3716 
3717 	for (i = 0; i < timeout; i++) {
3718 		if (dwc2_readl(hs_otg->regs + reg) & bit)
3719 			return 0;
3720 		udelay(1);
3721 	}
3722 
3723 	return -ETIMEDOUT;
3724 }
3725 
3726 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3727 				   struct dwc2_hsotg_ep *hs_ep)
3728 {
3729 	u32 epctrl_reg;
3730 	u32 epint_reg;
3731 
3732 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3733 		DOEPCTL(hs_ep->index);
3734 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3735 		DOEPINT(hs_ep->index);
3736 
3737 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3738 		hs_ep->name);
3739 
3740 	if (hs_ep->dir_in) {
3741 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3742 			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3743 			/* Wait for Nak effect */
3744 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3745 						    DXEPINT_INEPNAKEFF, 100))
3746 				dev_warn(hsotg->dev,
3747 					 "%s: timeout DIEPINT.NAKEFF\n",
3748 					 __func__);
3749 		} else {
3750 			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3751 			/* Wait for Nak effect */
3752 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3753 						    GINTSTS_GINNAKEFF, 100))
3754 				dev_warn(hsotg->dev,
3755 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3756 					 __func__);
3757 		}
3758 	} else {
3759 		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3760 			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3761 
3762 		/* Wait for global nak to take effect */
3763 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3764 					    GINTSTS_GOUTNAKEFF, 100))
3765 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3766 				 __func__);
3767 	}
3768 
3769 	/* Disable ep */
3770 	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3771 
3772 	/* Wait for ep to be disabled */
3773 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3774 		dev_warn(hsotg->dev,
3775 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3776 
3777 	/* Clear EPDISBLD interrupt */
3778 	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3779 
3780 	if (hs_ep->dir_in) {
3781 		unsigned short fifo_index;
3782 
3783 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3784 			fifo_index = hs_ep->fifo_index;
3785 		else
3786 			fifo_index = 0;
3787 
3788 		/* Flush TX FIFO */
3789 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3790 
3791 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3792 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3793 			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3794 
3795 	} else {
3796 		/* Remove global NAKs */
3797 		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3798 	}
3799 }
3800 
3801 /**
3802  * dwc2_hsotg_ep_enable - enable the given endpoint
3803  * @ep: The USB endpint to configure
3804  * @desc: The USB endpoint descriptor to configure with.
3805  *
3806  * This is called from the USB gadget code's usb_ep_enable().
3807  */
3808 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3809 				const struct usb_endpoint_descriptor *desc)
3810 {
3811 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3812 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3813 	unsigned long flags;
3814 	unsigned int index = hs_ep->index;
3815 	u32 epctrl_reg;
3816 	u32 epctrl;
3817 	u32 mps;
3818 	u32 mc;
3819 	u32 mask;
3820 	unsigned int dir_in;
3821 	unsigned int i, val, size;
3822 	int ret = 0;
3823 
3824 	dev_dbg(hsotg->dev,
3825 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3826 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3827 		desc->wMaxPacketSize, desc->bInterval);
3828 
3829 	/* not to be called for EP0 */
3830 	if (index == 0) {
3831 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3832 		return -EINVAL;
3833 	}
3834 
3835 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3836 	if (dir_in != hs_ep->dir_in) {
3837 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3838 		return -EINVAL;
3839 	}
3840 
3841 	mps = usb_endpoint_maxp(desc);
3842 	mc = usb_endpoint_maxp_mult(desc);
3843 
3844 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3845 
3846 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3847 	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3848 
3849 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3850 		__func__, epctrl, epctrl_reg);
3851 
3852 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3853 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3854 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3855 			MAX_DMA_DESC_NUM_GENERIC *
3856 			sizeof(struct dwc2_dma_desc),
3857 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3858 		if (!hs_ep->desc_list) {
3859 			ret = -ENOMEM;
3860 			goto error2;
3861 		}
3862 	}
3863 
3864 	spin_lock_irqsave(&hsotg->lock, flags);
3865 
3866 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3867 	epctrl |= DXEPCTL_MPS(mps);
3868 
3869 	/*
3870 	 * mark the endpoint as active, otherwise the core may ignore
3871 	 * transactions entirely for this endpoint
3872 	 */
3873 	epctrl |= DXEPCTL_USBACTEP;
3874 
3875 	/* update the endpoint state */
3876 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3877 
3878 	/* default, set to non-periodic */
3879 	hs_ep->isochronous = 0;
3880 	hs_ep->periodic = 0;
3881 	hs_ep->halted = 0;
3882 	hs_ep->interval = desc->bInterval;
3883 
3884 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3885 	case USB_ENDPOINT_XFER_ISOC:
3886 		epctrl |= DXEPCTL_EPTYPE_ISO;
3887 		epctrl |= DXEPCTL_SETEVENFR;
3888 		hs_ep->isochronous = 1;
3889 		hs_ep->interval = 1 << (desc->bInterval - 1);
3890 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3891 		hs_ep->isoc_chain_num = 0;
3892 		hs_ep->next_desc = 0;
3893 		if (dir_in) {
3894 			hs_ep->periodic = 1;
3895 			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3896 			mask |= DIEPMSK_NAKMSK;
3897 			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3898 		} else {
3899 			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3900 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3901 			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3902 		}
3903 		break;
3904 
3905 	case USB_ENDPOINT_XFER_BULK:
3906 		epctrl |= DXEPCTL_EPTYPE_BULK;
3907 		break;
3908 
3909 	case USB_ENDPOINT_XFER_INT:
3910 		if (dir_in)
3911 			hs_ep->periodic = 1;
3912 
3913 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3914 			hs_ep->interval = 1 << (desc->bInterval - 1);
3915 
3916 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3917 		break;
3918 
3919 	case USB_ENDPOINT_XFER_CONTROL:
3920 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3921 		break;
3922 	}
3923 
3924 	/*
3925 	 * if the hardware has dedicated fifos, we must give each IN EP
3926 	 * a unique tx-fifo even if it is non-periodic.
3927 	 */
3928 	if (dir_in && hsotg->dedicated_fifos) {
3929 		u32 fifo_index = 0;
3930 		u32 fifo_size = UINT_MAX;
3931 
3932 		size = hs_ep->ep.maxpacket * hs_ep->mc;
3933 		for (i = 1; i < hsotg->num_of_eps; ++i) {
3934 			if (hsotg->fifo_map & (1 << i))
3935 				continue;
3936 			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3937 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3938 			if (val < size)
3939 				continue;
3940 			/* Search for smallest acceptable fifo */
3941 			if (val < fifo_size) {
3942 				fifo_size = val;
3943 				fifo_index = i;
3944 			}
3945 		}
3946 		if (!fifo_index) {
3947 			dev_err(hsotg->dev,
3948 				"%s: No suitable fifo found\n", __func__);
3949 			ret = -ENOMEM;
3950 			goto error1;
3951 		}
3952 		hsotg->fifo_map |= 1 << fifo_index;
3953 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3954 		hs_ep->fifo_index = fifo_index;
3955 		hs_ep->fifo_size = fifo_size;
3956 	}
3957 
3958 	/* for non control endpoints, set PID to D0 */
3959 	if (index && !hs_ep->isochronous)
3960 		epctrl |= DXEPCTL_SETD0PID;
3961 
3962 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3963 		__func__, epctrl);
3964 
3965 	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3966 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3967 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3968 
3969 	/* enable the endpoint interrupt */
3970 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3971 
3972 error1:
3973 	spin_unlock_irqrestore(&hsotg->lock, flags);
3974 
3975 error2:
3976 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3977 		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3978 			sizeof(struct dwc2_dma_desc),
3979 			hs_ep->desc_list, hs_ep->desc_list_dma);
3980 		hs_ep->desc_list = NULL;
3981 	}
3982 
3983 	return ret;
3984 }
3985 
3986 /**
3987  * dwc2_hsotg_ep_disable - disable given endpoint
3988  * @ep: The endpoint to disable.
3989  */
3990 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3991 {
3992 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3993 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3994 	int dir_in = hs_ep->dir_in;
3995 	int index = hs_ep->index;
3996 	unsigned long flags;
3997 	u32 epctrl_reg;
3998 	u32 ctrl;
3999 
4000 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4001 
4002 	if (ep == &hsotg->eps_out[0]->ep) {
4003 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4004 		return -EINVAL;
4005 	}
4006 
4007 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4008 
4009 	spin_lock_irqsave(&hsotg->lock, flags);
4010 
4011 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4012 
4013 	if (ctrl & DXEPCTL_EPENA)
4014 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4015 
4016 	ctrl &= ~DXEPCTL_EPENA;
4017 	ctrl &= ~DXEPCTL_USBACTEP;
4018 	ctrl |= DXEPCTL_SNAK;
4019 
4020 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4021 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4022 
4023 	/* disable endpoint interrupts */
4024 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4025 
4026 	/* terminate all requests with shutdown */
4027 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4028 
4029 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4030 	hs_ep->fifo_index = 0;
4031 	hs_ep->fifo_size = 0;
4032 
4033 	spin_unlock_irqrestore(&hsotg->lock, flags);
4034 	return 0;
4035 }
4036 
4037 /**
4038  * on_list - check request is on the given endpoint
4039  * @ep: The endpoint to check.
4040  * @test: The request to test if it is on the endpoint.
4041  */
4042 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4043 {
4044 	struct dwc2_hsotg_req *req, *treq;
4045 
4046 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4047 		if (req == test)
4048 			return true;
4049 	}
4050 
4051 	return false;
4052 }
4053 
4054 /**
4055  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4056  * @ep: The endpoint to dequeue.
4057  * @req: The request to be removed from a queue.
4058  */
4059 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4060 {
4061 	struct dwc2_hsotg_req *hs_req = our_req(req);
4062 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4063 	struct dwc2_hsotg *hs = hs_ep->parent;
4064 	unsigned long flags;
4065 
4066 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4067 
4068 	spin_lock_irqsave(&hs->lock, flags);
4069 
4070 	if (!on_list(hs_ep, hs_req)) {
4071 		spin_unlock_irqrestore(&hs->lock, flags);
4072 		return -EINVAL;
4073 	}
4074 
4075 	/* Dequeue already started request */
4076 	if (req == &hs_ep->req->req)
4077 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4078 
4079 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4080 	spin_unlock_irqrestore(&hs->lock, flags);
4081 
4082 	return 0;
4083 }
4084 
4085 /**
4086  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4087  * @ep: The endpoint to set halt.
4088  * @value: Set or unset the halt.
4089  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4090  *       the endpoint is busy processing requests.
4091  *
4092  * We need to stall the endpoint immediately if request comes from set_feature
4093  * protocol command handler.
4094  */
4095 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4096 {
4097 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4098 	struct dwc2_hsotg *hs = hs_ep->parent;
4099 	int index = hs_ep->index;
4100 	u32 epreg;
4101 	u32 epctl;
4102 	u32 xfertype;
4103 
4104 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4105 
4106 	if (index == 0) {
4107 		if (value)
4108 			dwc2_hsotg_stall_ep0(hs);
4109 		else
4110 			dev_warn(hs->dev,
4111 				 "%s: can't clear halt on ep0\n", __func__);
4112 		return 0;
4113 	}
4114 
4115 	if (hs_ep->isochronous) {
4116 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4117 		return -EINVAL;
4118 	}
4119 
4120 	if (!now && value && !list_empty(&hs_ep->queue)) {
4121 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4122 			ep->name);
4123 		return -EAGAIN;
4124 	}
4125 
4126 	if (hs_ep->dir_in) {
4127 		epreg = DIEPCTL(index);
4128 		epctl = dwc2_readl(hs->regs + epreg);
4129 
4130 		if (value) {
4131 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4132 			if (epctl & DXEPCTL_EPENA)
4133 				epctl |= DXEPCTL_EPDIS;
4134 		} else {
4135 			epctl &= ~DXEPCTL_STALL;
4136 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4137 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4138 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4139 				epctl |= DXEPCTL_SETD0PID;
4140 		}
4141 		dwc2_writel(epctl, hs->regs + epreg);
4142 	} else {
4143 		epreg = DOEPCTL(index);
4144 		epctl = dwc2_readl(hs->regs + epreg);
4145 
4146 		if (value) {
4147 			epctl |= DXEPCTL_STALL;
4148 		} else {
4149 			epctl &= ~DXEPCTL_STALL;
4150 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4151 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4152 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4153 				epctl |= DXEPCTL_SETD0PID;
4154 		}
4155 		dwc2_writel(epctl, hs->regs + epreg);
4156 	}
4157 
4158 	hs_ep->halted = value;
4159 
4160 	return 0;
4161 }
4162 
4163 /**
4164  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4165  * @ep: The endpoint to set halt.
4166  * @value: Set or unset the halt.
4167  */
4168 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4169 {
4170 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4171 	struct dwc2_hsotg *hs = hs_ep->parent;
4172 	unsigned long flags = 0;
4173 	int ret = 0;
4174 
4175 	spin_lock_irqsave(&hs->lock, flags);
4176 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4177 	spin_unlock_irqrestore(&hs->lock, flags);
4178 
4179 	return ret;
4180 }
4181 
4182 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4183 	.enable		= dwc2_hsotg_ep_enable,
4184 	.disable	= dwc2_hsotg_ep_disable,
4185 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4186 	.free_request	= dwc2_hsotg_ep_free_request,
4187 	.queue		= dwc2_hsotg_ep_queue_lock,
4188 	.dequeue	= dwc2_hsotg_ep_dequeue,
4189 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4190 	/* note, don't believe we have any call for the fifo routines */
4191 };
4192 
4193 /**
4194  * dwc2_hsotg_init - initialize the usb core
4195  * @hsotg: The driver state
4196  */
4197 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4198 {
4199 	u32 trdtim;
4200 	u32 usbcfg;
4201 	/* unmask subset of endpoint interrupts */
4202 
4203 	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4204 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4205 		    hsotg->regs + DIEPMSK);
4206 
4207 	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4208 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4209 		    hsotg->regs + DOEPMSK);
4210 
4211 	dwc2_writel(0, hsotg->regs + DAINTMSK);
4212 
4213 	/* Be in disconnected state until gadget is registered */
4214 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4215 
4216 	/* setup fifos */
4217 
4218 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4219 		dwc2_readl(hsotg->regs + GRXFSIZ),
4220 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4221 
4222 	dwc2_hsotg_init_fifo(hsotg);
4223 
4224 	/* keep other bits untouched (so e.g. forced modes are not lost) */
4225 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4226 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4227 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4228 
4229 	/* set the PLL on, remove the HNP/SRP and set the PHY */
4230 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4231 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4232 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4233 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4234 
4235 	if (using_dma(hsotg))
4236 		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4237 }
4238 
4239 /**
4240  * dwc2_hsotg_udc_start - prepare the udc for work
4241  * @gadget: The usb gadget state
4242  * @driver: The usb gadget driver
4243  *
4244  * Perform initialization to prepare udc device and driver
4245  * to work.
4246  */
4247 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4248 				struct usb_gadget_driver *driver)
4249 {
4250 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4251 	unsigned long flags;
4252 	int ret;
4253 
4254 	if (!hsotg) {
4255 		pr_err("%s: called with no device\n", __func__);
4256 		return -ENODEV;
4257 	}
4258 
4259 	if (!driver) {
4260 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4261 		return -EINVAL;
4262 	}
4263 
4264 	if (driver->max_speed < USB_SPEED_FULL)
4265 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4266 
4267 	if (!driver->setup) {
4268 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4269 		return -EINVAL;
4270 	}
4271 
4272 	WARN_ON(hsotg->driver);
4273 
4274 	driver->driver.bus = NULL;
4275 	hsotg->driver = driver;
4276 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4277 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4278 
4279 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4280 		ret = dwc2_lowlevel_hw_enable(hsotg);
4281 		if (ret)
4282 			goto err;
4283 	}
4284 
4285 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4286 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4287 
4288 	spin_lock_irqsave(&hsotg->lock, flags);
4289 	if (dwc2_hw_is_device(hsotg)) {
4290 		dwc2_hsotg_init(hsotg);
4291 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4292 	}
4293 
4294 	hsotg->enabled = 0;
4295 	spin_unlock_irqrestore(&hsotg->lock, flags);
4296 
4297 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4298 
4299 	return 0;
4300 
4301 err:
4302 	hsotg->driver = NULL;
4303 	return ret;
4304 }
4305 
4306 /**
4307  * dwc2_hsotg_udc_stop - stop the udc
4308  * @gadget: The usb gadget state
4309  * @driver: The usb gadget driver
4310  *
4311  * Stop udc hw block and stay tunned for future transmissions
4312  */
4313 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4314 {
4315 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4316 	unsigned long flags = 0;
4317 	int ep;
4318 
4319 	if (!hsotg)
4320 		return -ENODEV;
4321 
4322 	/* all endpoints should be shutdown */
4323 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4324 		if (hsotg->eps_in[ep])
4325 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4326 		if (hsotg->eps_out[ep])
4327 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4328 	}
4329 
4330 	spin_lock_irqsave(&hsotg->lock, flags);
4331 
4332 	hsotg->driver = NULL;
4333 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4334 	hsotg->enabled = 0;
4335 
4336 	spin_unlock_irqrestore(&hsotg->lock, flags);
4337 
4338 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4339 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4340 
4341 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4342 		dwc2_lowlevel_hw_disable(hsotg);
4343 
4344 	return 0;
4345 }
4346 
4347 /**
4348  * dwc2_hsotg_gadget_getframe - read the frame number
4349  * @gadget: The usb gadget state
4350  *
4351  * Read the {micro} frame number
4352  */
4353 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4354 {
4355 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4356 }
4357 
4358 /**
4359  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4360  * @gadget: The usb gadget state
4361  * @is_on: Current state of the USB PHY
4362  *
4363  * Connect/Disconnect the USB PHY pullup
4364  */
4365 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4366 {
4367 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4368 	unsigned long flags = 0;
4369 
4370 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4371 		hsotg->op_state);
4372 
4373 	/* Don't modify pullup state while in host mode */
4374 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4375 		hsotg->enabled = is_on;
4376 		return 0;
4377 	}
4378 
4379 	spin_lock_irqsave(&hsotg->lock, flags);
4380 	if (is_on) {
4381 		hsotg->enabled = 1;
4382 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4383 		dwc2_hsotg_core_connect(hsotg);
4384 	} else {
4385 		dwc2_hsotg_core_disconnect(hsotg);
4386 		dwc2_hsotg_disconnect(hsotg);
4387 		hsotg->enabled = 0;
4388 	}
4389 
4390 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4391 	spin_unlock_irqrestore(&hsotg->lock, flags);
4392 
4393 	return 0;
4394 }
4395 
4396 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4397 {
4398 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4399 	unsigned long flags;
4400 
4401 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4402 	spin_lock_irqsave(&hsotg->lock, flags);
4403 
4404 	/*
4405 	 * If controller is hibernated, it must exit from hibernation
4406 	 * before being initialized / de-initialized
4407 	 */
4408 	if (hsotg->lx_state == DWC2_L2)
4409 		dwc2_exit_hibernation(hsotg, false);
4410 
4411 	if (is_active) {
4412 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4413 
4414 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4415 		if (hsotg->enabled)
4416 			dwc2_hsotg_core_connect(hsotg);
4417 	} else {
4418 		dwc2_hsotg_core_disconnect(hsotg);
4419 		dwc2_hsotg_disconnect(hsotg);
4420 	}
4421 
4422 	spin_unlock_irqrestore(&hsotg->lock, flags);
4423 	return 0;
4424 }
4425 
4426 /**
4427  * dwc2_hsotg_vbus_draw - report bMaxPower field
4428  * @gadget: The usb gadget state
4429  * @mA: Amount of current
4430  *
4431  * Report how much power the device may consume to the phy.
4432  */
4433 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4434 {
4435 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4436 
4437 	if (IS_ERR_OR_NULL(hsotg->uphy))
4438 		return -ENOTSUPP;
4439 	return usb_phy_set_power(hsotg->uphy, mA);
4440 }
4441 
4442 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4443 	.get_frame	= dwc2_hsotg_gadget_getframe,
4444 	.udc_start		= dwc2_hsotg_udc_start,
4445 	.udc_stop		= dwc2_hsotg_udc_stop,
4446 	.pullup                 = dwc2_hsotg_pullup,
4447 	.vbus_session		= dwc2_hsotg_vbus_session,
4448 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4449 };
4450 
4451 /**
4452  * dwc2_hsotg_initep - initialise a single endpoint
4453  * @hsotg: The device state.
4454  * @hs_ep: The endpoint to be initialised.
4455  * @epnum: The endpoint number
4456  *
4457  * Initialise the given endpoint (as part of the probe and device state
4458  * creation) to give to the gadget driver. Setup the endpoint name, any
4459  * direction information and other state that may be required.
4460  */
4461 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4462 			      struct dwc2_hsotg_ep *hs_ep,
4463 				       int epnum,
4464 				       bool dir_in)
4465 {
4466 	char *dir;
4467 
4468 	if (epnum == 0)
4469 		dir = "";
4470 	else if (dir_in)
4471 		dir = "in";
4472 	else
4473 		dir = "out";
4474 
4475 	hs_ep->dir_in = dir_in;
4476 	hs_ep->index = epnum;
4477 
4478 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4479 
4480 	INIT_LIST_HEAD(&hs_ep->queue);
4481 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4482 
4483 	/* add to the list of endpoints known by the gadget driver */
4484 	if (epnum)
4485 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4486 
4487 	hs_ep->parent = hsotg;
4488 	hs_ep->ep.name = hs_ep->name;
4489 
4490 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4491 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4492 	else
4493 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4494 					   epnum ? 1024 : EP0_MPS_LIMIT);
4495 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4496 
4497 	if (epnum == 0) {
4498 		hs_ep->ep.caps.type_control = true;
4499 	} else {
4500 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4501 			hs_ep->ep.caps.type_iso = true;
4502 			hs_ep->ep.caps.type_bulk = true;
4503 		}
4504 		hs_ep->ep.caps.type_int = true;
4505 	}
4506 
4507 	if (dir_in)
4508 		hs_ep->ep.caps.dir_in = true;
4509 	else
4510 		hs_ep->ep.caps.dir_out = true;
4511 
4512 	/*
4513 	 * if we're using dma, we need to set the next-endpoint pointer
4514 	 * to be something valid.
4515 	 */
4516 
4517 	if (using_dma(hsotg)) {
4518 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4519 
4520 		if (dir_in)
4521 			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4522 		else
4523 			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4524 	}
4525 }
4526 
4527 /**
4528  * dwc2_hsotg_hw_cfg - read HW configuration registers
4529  * @param: The device state
4530  *
4531  * Read the USB core HW configuration registers
4532  */
4533 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4534 {
4535 	u32 cfg;
4536 	u32 ep_type;
4537 	u32 i;
4538 
4539 	/* check hardware configuration */
4540 
4541 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4542 
4543 	/* Add ep0 */
4544 	hsotg->num_of_eps++;
4545 
4546 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4547 					sizeof(struct dwc2_hsotg_ep),
4548 					GFP_KERNEL);
4549 	if (!hsotg->eps_in[0])
4550 		return -ENOMEM;
4551 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4552 	hsotg->eps_out[0] = hsotg->eps_in[0];
4553 
4554 	cfg = hsotg->hw_params.dev_ep_dirs;
4555 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4556 		ep_type = cfg & 3;
4557 		/* Direction in or both */
4558 		if (!(ep_type & 2)) {
4559 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4560 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4561 			if (!hsotg->eps_in[i])
4562 				return -ENOMEM;
4563 		}
4564 		/* Direction out or both */
4565 		if (!(ep_type & 1)) {
4566 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4567 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4568 			if (!hsotg->eps_out[i])
4569 				return -ENOMEM;
4570 		}
4571 	}
4572 
4573 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4574 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4575 
4576 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4577 		 hsotg->num_of_eps,
4578 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4579 		 hsotg->fifo_mem);
4580 	return 0;
4581 }
4582 
4583 /**
4584  * dwc2_hsotg_dump - dump state of the udc
4585  * @param: The device state
4586  */
4587 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4588 {
4589 #ifdef DEBUG
4590 	struct device *dev = hsotg->dev;
4591 	void __iomem *regs = hsotg->regs;
4592 	u32 val;
4593 	int idx;
4594 
4595 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4596 		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4597 		 dwc2_readl(regs + DIEPMSK));
4598 
4599 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4600 		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4601 
4602 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4603 		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4604 
4605 	/* show periodic fifo settings */
4606 
4607 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4608 		val = dwc2_readl(regs + DPTXFSIZN(idx));
4609 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4610 			 val >> FIFOSIZE_DEPTH_SHIFT,
4611 			 val & FIFOSIZE_STARTADDR_MASK);
4612 	}
4613 
4614 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4615 		dev_info(dev,
4616 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4617 			 dwc2_readl(regs + DIEPCTL(idx)),
4618 			 dwc2_readl(regs + DIEPTSIZ(idx)),
4619 			 dwc2_readl(regs + DIEPDMA(idx)));
4620 
4621 		val = dwc2_readl(regs + DOEPCTL(idx));
4622 		dev_info(dev,
4623 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4624 			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4625 			 dwc2_readl(regs + DOEPTSIZ(idx)),
4626 			 dwc2_readl(regs + DOEPDMA(idx)));
4627 	}
4628 
4629 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4630 		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4631 #endif
4632 }
4633 
4634 /**
4635  * dwc2_gadget_init - init function for gadget
4636  * @dwc2: The data structure for the DWC2 driver.
4637  * @irq: The IRQ number for the controller.
4638  */
4639 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4640 {
4641 	struct device *dev = hsotg->dev;
4642 	int epnum;
4643 	int ret;
4644 
4645 	/* Dump fifo information */
4646 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4647 		hsotg->params.g_np_tx_fifo_size);
4648 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4649 
4650 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4651 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4652 	hsotg->gadget.name = dev_name(dev);
4653 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4654 		hsotg->gadget.is_otg = 1;
4655 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4656 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4657 
4658 	ret = dwc2_hsotg_hw_cfg(hsotg);
4659 	if (ret) {
4660 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4661 		return ret;
4662 	}
4663 
4664 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4665 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4666 	if (!hsotg->ctrl_buff)
4667 		return -ENOMEM;
4668 
4669 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4670 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4671 	if (!hsotg->ep0_buff)
4672 		return -ENOMEM;
4673 
4674 	if (using_desc_dma(hsotg)) {
4675 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4676 		if (ret < 0)
4677 			return ret;
4678 	}
4679 
4680 	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4681 			       dev_name(hsotg->dev), hsotg);
4682 	if (ret < 0) {
4683 		dev_err(dev, "cannot claim IRQ for gadget\n");
4684 		return ret;
4685 	}
4686 
4687 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4688 
4689 	if (hsotg->num_of_eps == 0) {
4690 		dev_err(dev, "wrong number of EPs (zero)\n");
4691 		return -EINVAL;
4692 	}
4693 
4694 	/* setup endpoint information */
4695 
4696 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4697 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4698 
4699 	/* allocate EP0 request */
4700 
4701 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4702 						     GFP_KERNEL);
4703 	if (!hsotg->ctrl_req) {
4704 		dev_err(dev, "failed to allocate ctrl req\n");
4705 		return -ENOMEM;
4706 	}
4707 
4708 	/* initialise the endpoints now the core has been initialised */
4709 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4710 		if (hsotg->eps_in[epnum])
4711 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4712 					  epnum, 1);
4713 		if (hsotg->eps_out[epnum])
4714 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4715 					  epnum, 0);
4716 	}
4717 
4718 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4719 	if (ret)
4720 		return ret;
4721 
4722 	dwc2_hsotg_dump(hsotg);
4723 
4724 	return 0;
4725 }
4726 
4727 /**
4728  * dwc2_hsotg_remove - remove function for hsotg driver
4729  * @pdev: The platform information for the driver
4730  */
4731 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4732 {
4733 	usb_del_gadget_udc(&hsotg->gadget);
4734 
4735 	return 0;
4736 }
4737 
4738 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4739 {
4740 	unsigned long flags;
4741 
4742 	if (hsotg->lx_state != DWC2_L0)
4743 		return 0;
4744 
4745 	if (hsotg->driver) {
4746 		int ep;
4747 
4748 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4749 			 hsotg->driver->driver.name);
4750 
4751 		spin_lock_irqsave(&hsotg->lock, flags);
4752 		if (hsotg->enabled)
4753 			dwc2_hsotg_core_disconnect(hsotg);
4754 		dwc2_hsotg_disconnect(hsotg);
4755 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4756 		spin_unlock_irqrestore(&hsotg->lock, flags);
4757 
4758 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4759 			if (hsotg->eps_in[ep])
4760 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4761 			if (hsotg->eps_out[ep])
4762 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4763 		}
4764 	}
4765 
4766 	return 0;
4767 }
4768 
4769 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4770 {
4771 	unsigned long flags;
4772 
4773 	if (hsotg->lx_state == DWC2_L2)
4774 		return 0;
4775 
4776 	if (hsotg->driver) {
4777 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4778 			 hsotg->driver->driver.name);
4779 
4780 		spin_lock_irqsave(&hsotg->lock, flags);
4781 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4782 		if (hsotg->enabled)
4783 			dwc2_hsotg_core_connect(hsotg);
4784 		spin_unlock_irqrestore(&hsotg->lock, flags);
4785 	}
4786 
4787 	return 0;
4788 }
4789 
4790 /**
4791  * dwc2_backup_device_registers() - Backup controller device registers.
4792  * When suspending usb bus, registers needs to be backuped
4793  * if controller power is disabled once suspended.
4794  *
4795  * @hsotg: Programming view of the DWC_otg controller
4796  */
4797 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4798 {
4799 	struct dwc2_dregs_backup *dr;
4800 	int i;
4801 
4802 	dev_dbg(hsotg->dev, "%s\n", __func__);
4803 
4804 	/* Backup dev regs */
4805 	dr = &hsotg->dr_backup;
4806 
4807 	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4808 	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4809 	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4810 	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4811 	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4812 
4813 	for (i = 0; i < hsotg->num_of_eps; i++) {
4814 		/* Backup IN EPs */
4815 		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4816 
4817 		/* Ensure DATA PID is correctly configured */
4818 		if (dr->diepctl[i] & DXEPCTL_DPID)
4819 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4820 		else
4821 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4822 
4823 		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4824 		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4825 
4826 		/* Backup OUT EPs */
4827 		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4828 
4829 		/* Ensure DATA PID is correctly configured */
4830 		if (dr->doepctl[i] & DXEPCTL_DPID)
4831 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4832 		else
4833 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4834 
4835 		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4836 		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4837 	}
4838 	dr->valid = true;
4839 	return 0;
4840 }
4841 
4842 /**
4843  * dwc2_restore_device_registers() - Restore controller device registers.
4844  * When resuming usb bus, device registers needs to be restored
4845  * if controller power were disabled.
4846  *
4847  * @hsotg: Programming view of the DWC_otg controller
4848  */
4849 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4850 {
4851 	struct dwc2_dregs_backup *dr;
4852 	u32 dctl;
4853 	int i;
4854 
4855 	dev_dbg(hsotg->dev, "%s\n", __func__);
4856 
4857 	/* Restore dev regs */
4858 	dr = &hsotg->dr_backup;
4859 	if (!dr->valid) {
4860 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4861 			__func__);
4862 		return -EINVAL;
4863 	}
4864 	dr->valid = false;
4865 
4866 	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4867 	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4868 	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4869 	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4870 	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4871 
4872 	for (i = 0; i < hsotg->num_of_eps; i++) {
4873 		/* Restore IN EPs */
4874 		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4875 		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4876 		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4877 
4878 		/* Restore OUT EPs */
4879 		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4880 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4881 		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4882 	}
4883 
4884 	/* Set the Power-On Programming done bit */
4885 	dctl = dwc2_readl(hsotg->regs + DCTL);
4886 	dctl |= DCTL_PWRONPRGDONE;
4887 	dwc2_writel(dctl, hsotg->regs + DCTL);
4888 
4889 	return 0;
4890 }
4891