xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision d2ba09c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 
31 #include "core.h"
32 #include "hw.h"
33 
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 	return container_of(req, struct dwc2_hsotg_req, req);
38 }
39 
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44 
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 	return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49 
50 static inline void dwc2_set_bit(void __iomem *ptr, u32 val)
51 {
52 	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 }
54 
55 static inline void dwc2_clear_bit(void __iomem *ptr, u32 val)
56 {
57 	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 }
59 
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 						u32 ep_index, u32 dir_in)
62 {
63 	if (dir_in)
64 		return hsotg->eps_in[ep_index];
65 	else
66 		return hsotg->eps_out[ep_index];
67 }
68 
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 
72 /**
73  * using_dma - return the DMA status of the driver.
74  * @hsotg: The driver state.
75  *
76  * Return true if we're using DMA.
77  *
78  * Currently, we have the DMA support code worked into everywhere
79  * that needs it, but the AMBA DMA implementation in the hardware can
80  * only DMA from 32bit aligned addresses. This means that gadgets such
81  * as the CDC Ethernet cannot work as they often pass packets which are
82  * not 32bit aligned.
83  *
84  * Unfortunately the choice to use DMA or not is global to the controller
85  * and seems to be only settable when the controller is being put through
86  * a core reset. This means we either need to fix the gadgets to take
87  * account of DMA alignment, or add bounce buffers (yuerk).
88  *
89  * g_using_dma is set depending on dts flag.
90  */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 	return hsotg->params.g_dma;
94 }
95 
96 /*
97  * using_desc_dma - return the descriptor DMA status of the driver.
98  * @hsotg: The driver state.
99  *
100  * Return true if we're using descriptor DMA.
101  */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 	return hsotg->params.g_dma_desc;
105 }
106 
107 /**
108  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109  * @hs_ep: The endpoint
110  * @increment: The value to increment by
111  *
112  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114  */
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116 {
117 	hs_ep->target_frame += hs_ep->interval;
118 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
119 		hs_ep->frame_overrun = true;
120 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
121 	} else {
122 		hs_ep->frame_overrun = false;
123 	}
124 }
125 
126 /**
127  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128  * @hsotg: The device state
129  * @ints: A bitmask of the interrupts to enable
130  */
131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
132 {
133 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 	u32 new_gsintmsk;
135 
136 	new_gsintmsk = gsintmsk | ints;
137 
138 	if (new_gsintmsk != gsintmsk) {
139 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
141 	}
142 }
143 
144 /**
145  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146  * @hsotg: The device state
147  * @ints: A bitmask of the interrupts to enable
148  */
149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150 {
151 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 	u32 new_gsintmsk;
153 
154 	new_gsintmsk = gsintmsk & ~ints;
155 
156 	if (new_gsintmsk != gsintmsk)
157 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
158 }
159 
160 /**
161  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162  * @hsotg: The device state
163  * @ep: The endpoint index
164  * @dir_in: True if direction is in.
165  * @en: The enable value, true to enable
166  *
167  * Set or clear the mask for an individual endpoint's interrupt
168  * request.
169  */
170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171 				  unsigned int ep, unsigned int dir_in,
172 				 unsigned int en)
173 {
174 	unsigned long flags;
175 	u32 bit = 1 << ep;
176 	u32 daint;
177 
178 	if (!dir_in)
179 		bit <<= 16;
180 
181 	local_irq_save(flags);
182 	daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 	if (en)
184 		daint |= bit;
185 	else
186 		daint &= ~bit;
187 	dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 	local_irq_restore(flags);
189 }
190 
191 /**
192  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
193  */
194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
195 {
196 	if (hsotg->hw_params.en_multiple_tx_fifo)
197 		/* In dedicated FIFO mode we need count of IN EPs */
198 		return hsotg->hw_params.num_dev_in_eps;
199 	else
200 		/* In shared FIFO mode we need count of Periodic IN EPs */
201 		return hsotg->hw_params.num_dev_perio_in_ep;
202 }
203 
204 /**
205  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
206  * device mode TX FIFOs
207  */
208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
209 {
210 	int addr;
211 	int tx_addr_max;
212 	u32 np_tx_fifo_size;
213 
214 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
215 				hsotg->params.g_np_tx_fifo_size);
216 
217 	/* Get Endpoint Info Control block size in DWORDs. */
218 	tx_addr_max = hsotg->hw_params.total_fifo_size;
219 
220 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
221 	if (tx_addr_max <= addr)
222 		return 0;
223 
224 	return tx_addr_max - addr;
225 }
226 
227 /**
228  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
229  * TX FIFOs
230  */
231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int tx_fifo_count;
234 	int tx_fifo_depth;
235 
236 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
237 
238 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
239 
240 	if (!tx_fifo_count)
241 		return tx_fifo_depth;
242 	else
243 		return tx_fifo_depth / tx_fifo_count;
244 }
245 
246 /**
247  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248  * @hsotg: The device instance.
249  */
250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
251 {
252 	unsigned int ep;
253 	unsigned int addr;
254 	int timeout;
255 
256 	u32 val;
257 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
258 
259 	/* Reset fifo map if not correctly cleared during previous session */
260 	WARN_ON(hsotg->fifo_map);
261 	hsotg->fifo_map = 0;
262 
263 	/* set RX/NPTX FIFO sizes */
264 	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
265 	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
266 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
267 		    hsotg->regs + GNPTXFSIZ);
268 
269 	/*
270 	 * arange all the rest of the TX FIFOs, as some versions of this
271 	 * block have overlapping default addresses. This also ensures
272 	 * that if the settings have been changed, then they are set to
273 	 * known values.
274 	 */
275 
276 	/* start at the end of the GNPTXFSIZ, rounded up */
277 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
278 
279 	/*
280 	 * Configure fifos sizes from provided configuration and assign
281 	 * them to endpoints dynamically according to maxpacket size value of
282 	 * given endpoint.
283 	 */
284 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
285 		if (!txfsz[ep])
286 			continue;
287 		val = addr;
288 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
289 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
290 			  "insufficient fifo memory");
291 		addr += txfsz[ep];
292 
293 		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
294 		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
295 	}
296 
297 	dwc2_writel(hsotg->hw_params.total_fifo_size |
298 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
299 		    hsotg->regs + GDFIFOCFG);
300 	/*
301 	 * according to p428 of the design guide, we need to ensure that
302 	 * all fifos are flushed before continuing
303 	 */
304 
305 	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
306 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
307 
308 	/* wait until the fifos are both flushed */
309 	timeout = 100;
310 	while (1) {
311 		val = dwc2_readl(hsotg->regs + GRSTCTL);
312 
313 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
314 			break;
315 
316 		if (--timeout == 0) {
317 			dev_err(hsotg->dev,
318 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
319 				__func__, val);
320 			break;
321 		}
322 
323 		udelay(1);
324 	}
325 
326 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
327 }
328 
329 /**
330  * @ep: USB endpoint to allocate request for.
331  * @flags: Allocation flags
332  *
333  * Allocate a new USB request structure appropriate for the specified endpoint
334  */
335 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
336 						       gfp_t flags)
337 {
338 	struct dwc2_hsotg_req *req;
339 
340 	req = kzalloc(sizeof(*req), flags);
341 	if (!req)
342 		return NULL;
343 
344 	INIT_LIST_HEAD(&req->queue);
345 
346 	return &req->req;
347 }
348 
349 /**
350  * is_ep_periodic - return true if the endpoint is in periodic mode.
351  * @hs_ep: The endpoint to query.
352  *
353  * Returns true if the endpoint is in periodic mode, meaning it is being
354  * used for an Interrupt or ISO transfer.
355  */
356 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
357 {
358 	return hs_ep->periodic;
359 }
360 
361 /**
362  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
363  * @hsotg: The device state.
364  * @hs_ep: The endpoint for the request
365  * @hs_req: The request being processed.
366  *
367  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
368  * of a request to ensure the buffer is ready for access by the caller.
369  */
370 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
371 				 struct dwc2_hsotg_ep *hs_ep,
372 				struct dwc2_hsotg_req *hs_req)
373 {
374 	struct usb_request *req = &hs_req->req;
375 
376 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
377 }
378 
379 /*
380  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
381  * for Control endpoint
382  * @hsotg: The device state.
383  *
384  * This function will allocate 4 descriptor chains for EP 0: 2 for
385  * Setup stage, per one for IN and OUT data/status transactions.
386  */
387 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
388 {
389 	hsotg->setup_desc[0] =
390 		dmam_alloc_coherent(hsotg->dev,
391 				    sizeof(struct dwc2_dma_desc),
392 				    &hsotg->setup_desc_dma[0],
393 				    GFP_KERNEL);
394 	if (!hsotg->setup_desc[0])
395 		goto fail;
396 
397 	hsotg->setup_desc[1] =
398 		dmam_alloc_coherent(hsotg->dev,
399 				    sizeof(struct dwc2_dma_desc),
400 				    &hsotg->setup_desc_dma[1],
401 				    GFP_KERNEL);
402 	if (!hsotg->setup_desc[1])
403 		goto fail;
404 
405 	hsotg->ctrl_in_desc =
406 		dmam_alloc_coherent(hsotg->dev,
407 				    sizeof(struct dwc2_dma_desc),
408 				    &hsotg->ctrl_in_desc_dma,
409 				    GFP_KERNEL);
410 	if (!hsotg->ctrl_in_desc)
411 		goto fail;
412 
413 	hsotg->ctrl_out_desc =
414 		dmam_alloc_coherent(hsotg->dev,
415 				    sizeof(struct dwc2_dma_desc),
416 				    &hsotg->ctrl_out_desc_dma,
417 				    GFP_KERNEL);
418 	if (!hsotg->ctrl_out_desc)
419 		goto fail;
420 
421 	return 0;
422 
423 fail:
424 	return -ENOMEM;
425 }
426 
427 /**
428  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
429  * @hsotg: The controller state.
430  * @hs_ep: The endpoint we're going to write for.
431  * @hs_req: The request to write data for.
432  *
433  * This is called when the TxFIFO has some space in it to hold a new
434  * transmission and we have something to give it. The actual setup of
435  * the data size is done elsewhere, so all we have to do is to actually
436  * write the data.
437  *
438  * The return value is zero if there is more space (or nothing was done)
439  * otherwise -ENOSPC is returned if the FIFO space was used up.
440  *
441  * This routine is only needed for PIO
442  */
443 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
444 				 struct dwc2_hsotg_ep *hs_ep,
445 				struct dwc2_hsotg_req *hs_req)
446 {
447 	bool periodic = is_ep_periodic(hs_ep);
448 	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
449 	int buf_pos = hs_req->req.actual;
450 	int to_write = hs_ep->size_loaded;
451 	void *data;
452 	int can_write;
453 	int pkt_round;
454 	int max_transfer;
455 
456 	to_write -= (buf_pos - hs_ep->last_load);
457 
458 	/* if there's nothing to write, get out early */
459 	if (to_write == 0)
460 		return 0;
461 
462 	if (periodic && !hsotg->dedicated_fifos) {
463 		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
464 		int size_left;
465 		int size_done;
466 
467 		/*
468 		 * work out how much data was loaded so we can calculate
469 		 * how much data is left in the fifo.
470 		 */
471 
472 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
473 
474 		/*
475 		 * if shared fifo, we cannot write anything until the
476 		 * previous data has been completely sent.
477 		 */
478 		if (hs_ep->fifo_load != 0) {
479 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
480 			return -ENOSPC;
481 		}
482 
483 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
484 			__func__, size_left,
485 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
486 
487 		/* how much of the data has moved */
488 		size_done = hs_ep->size_loaded - size_left;
489 
490 		/* how much data is left in the fifo */
491 		can_write = hs_ep->fifo_load - size_done;
492 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
493 			__func__, can_write);
494 
495 		can_write = hs_ep->fifo_size - can_write;
496 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
497 			__func__, can_write);
498 
499 		if (can_write <= 0) {
500 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
501 			return -ENOSPC;
502 		}
503 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
504 		can_write = dwc2_readl(hsotg->regs +
505 				DTXFSTS(hs_ep->fifo_index));
506 
507 		can_write &= 0xffff;
508 		can_write *= 4;
509 	} else {
510 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
511 			dev_dbg(hsotg->dev,
512 				"%s: no queue slots available (0x%08x)\n",
513 				__func__, gnptxsts);
514 
515 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
516 			return -ENOSPC;
517 		}
518 
519 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
520 		can_write *= 4;	/* fifo size is in 32bit quantities. */
521 	}
522 
523 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
524 
525 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
526 		__func__, gnptxsts, can_write, to_write, max_transfer);
527 
528 	/*
529 	 * limit to 512 bytes of data, it seems at least on the non-periodic
530 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
531 	 * fragment of the end of the transfer in it.
532 	 */
533 	if (can_write > 512 && !periodic)
534 		can_write = 512;
535 
536 	/*
537 	 * limit the write to one max-packet size worth of data, but allow
538 	 * the transfer to return that it did not run out of fifo space
539 	 * doing it.
540 	 */
541 	if (to_write > max_transfer) {
542 		to_write = max_transfer;
543 
544 		/* it's needed only when we do not use dedicated fifos */
545 		if (!hsotg->dedicated_fifos)
546 			dwc2_hsotg_en_gsint(hsotg,
547 					    periodic ? GINTSTS_PTXFEMP :
548 					   GINTSTS_NPTXFEMP);
549 	}
550 
551 	/* see if we can write data */
552 
553 	if (to_write > can_write) {
554 		to_write = can_write;
555 		pkt_round = to_write % max_transfer;
556 
557 		/*
558 		 * Round the write down to an
559 		 * exact number of packets.
560 		 *
561 		 * Note, we do not currently check to see if we can ever
562 		 * write a full packet or not to the FIFO.
563 		 */
564 
565 		if (pkt_round)
566 			to_write -= pkt_round;
567 
568 		/*
569 		 * enable correct FIFO interrupt to alert us when there
570 		 * is more room left.
571 		 */
572 
573 		/* it's needed only when we do not use dedicated fifos */
574 		if (!hsotg->dedicated_fifos)
575 			dwc2_hsotg_en_gsint(hsotg,
576 					    periodic ? GINTSTS_PTXFEMP :
577 					   GINTSTS_NPTXFEMP);
578 	}
579 
580 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
581 		to_write, hs_req->req.length, can_write, buf_pos);
582 
583 	if (to_write <= 0)
584 		return -ENOSPC;
585 
586 	hs_req->req.actual = buf_pos + to_write;
587 	hs_ep->total_data += to_write;
588 
589 	if (periodic)
590 		hs_ep->fifo_load += to_write;
591 
592 	to_write = DIV_ROUND_UP(to_write, 4);
593 	data = hs_req->req.buf + buf_pos;
594 
595 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
596 
597 	return (to_write >= can_write) ? -ENOSPC : 0;
598 }
599 
600 /**
601  * get_ep_limit - get the maximum data legnth for this endpoint
602  * @hs_ep: The endpoint
603  *
604  * Return the maximum data that can be queued in one go on a given endpoint
605  * so that transfers that are too long can be split.
606  */
607 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
608 {
609 	int index = hs_ep->index;
610 	unsigned int maxsize;
611 	unsigned int maxpkt;
612 
613 	if (index != 0) {
614 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
615 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
616 	} else {
617 		maxsize = 64 + 64;
618 		if (hs_ep->dir_in)
619 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
620 		else
621 			maxpkt = 2;
622 	}
623 
624 	/* we made the constant loading easier above by using +1 */
625 	maxpkt--;
626 	maxsize--;
627 
628 	/*
629 	 * constrain by packet count if maxpkts*pktsize is greater
630 	 * than the length register size.
631 	 */
632 
633 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
634 		maxsize = maxpkt * hs_ep->ep.maxpacket;
635 
636 	return maxsize;
637 }
638 
639 /**
640  * dwc2_hsotg_read_frameno - read current frame number
641  * @hsotg: The device instance
642  *
643  * Return the current frame number
644  */
645 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
646 {
647 	u32 dsts;
648 
649 	dsts = dwc2_readl(hsotg->regs + DSTS);
650 	dsts &= DSTS_SOFFN_MASK;
651 	dsts >>= DSTS_SOFFN_SHIFT;
652 
653 	return dsts;
654 }
655 
656 /**
657  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
658  * DMA descriptor chain prepared for specific endpoint
659  * @hs_ep: The endpoint
660  *
661  * Return the maximum data that can be queued in one go on a given endpoint
662  * depending on its descriptor chain capacity so that transfers that
663  * are too long can be split.
664  */
665 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
666 {
667 	int is_isoc = hs_ep->isochronous;
668 	unsigned int maxsize;
669 
670 	if (is_isoc)
671 		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
672 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
673 	else
674 		maxsize = DEV_DMA_NBYTES_LIMIT;
675 
676 	/* Above size of one descriptor was chosen, multiple it */
677 	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
678 
679 	return maxsize;
680 }
681 
682 /*
683  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
684  * @hs_ep: The endpoint
685  * @mask: RX/TX bytes mask to be defined
686  *
687  * Returns maximum data payload for one descriptor after analyzing endpoint
688  * characteristics.
689  * DMA descriptor transfer bytes limit depends on EP type:
690  * Control out - MPS,
691  * Isochronous - descriptor rx/tx bytes bitfield limit,
692  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
693  * have concatenations from various descriptors within one packet.
694  *
695  * Selects corresponding mask for RX/TX bytes as well.
696  */
697 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
698 {
699 	u32 mps = hs_ep->ep.maxpacket;
700 	int dir_in = hs_ep->dir_in;
701 	u32 desc_size = 0;
702 
703 	if (!hs_ep->index && !dir_in) {
704 		desc_size = mps;
705 		*mask = DEV_DMA_NBYTES_MASK;
706 	} else if (hs_ep->isochronous) {
707 		if (dir_in) {
708 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
709 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
710 		} else {
711 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
712 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
713 		}
714 	} else {
715 		desc_size = DEV_DMA_NBYTES_LIMIT;
716 		*mask = DEV_DMA_NBYTES_MASK;
717 
718 		/* Round down desc_size to be mps multiple */
719 		desc_size -= desc_size % mps;
720 	}
721 
722 	return desc_size;
723 }
724 
725 /*
726  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
727  * @hs_ep: The endpoint
728  * @dma_buff: DMA address to use
729  * @len: Length of the transfer
730  *
731  * This function will iterate over descriptor chain and fill its entries
732  * with corresponding information based on transfer data.
733  */
734 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
735 						 dma_addr_t dma_buff,
736 						 unsigned int len)
737 {
738 	struct dwc2_hsotg *hsotg = hs_ep->parent;
739 	int dir_in = hs_ep->dir_in;
740 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
741 	u32 mps = hs_ep->ep.maxpacket;
742 	u32 maxsize = 0;
743 	u32 offset = 0;
744 	u32 mask = 0;
745 	int i;
746 
747 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
748 
749 	hs_ep->desc_count = (len / maxsize) +
750 				((len % maxsize) ? 1 : 0);
751 	if (len == 0)
752 		hs_ep->desc_count = 1;
753 
754 	for (i = 0; i < hs_ep->desc_count; ++i) {
755 		desc->status = 0;
756 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
757 				 << DEV_DMA_BUFF_STS_SHIFT);
758 
759 		if (len > maxsize) {
760 			if (!hs_ep->index && !dir_in)
761 				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
762 
763 			desc->status |= (maxsize <<
764 						DEV_DMA_NBYTES_SHIFT & mask);
765 			desc->buf = dma_buff + offset;
766 
767 			len -= maxsize;
768 			offset += maxsize;
769 		} else {
770 			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
771 
772 			if (dir_in)
773 				desc->status |= (len % mps) ? DEV_DMA_SHORT :
774 					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
775 			if (len > maxsize)
776 				dev_err(hsotg->dev, "wrong len %d\n", len);
777 
778 			desc->status |=
779 				len << DEV_DMA_NBYTES_SHIFT & mask;
780 			desc->buf = dma_buff + offset;
781 		}
782 
783 		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
784 		desc->status |= (DEV_DMA_BUFF_STS_HREADY
785 				 << DEV_DMA_BUFF_STS_SHIFT);
786 		desc++;
787 	}
788 }
789 
790 /*
791  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
792  * @hs_ep: The isochronous endpoint.
793  * @dma_buff: usb requests dma buffer.
794  * @len: usb request transfer length.
795  *
796  * Finds out index of first free entry either in the bottom or up half of
797  * descriptor chain depend on which is under SW control and not processed
798  * by HW. Then fills that descriptor with the data of the arrived usb request,
799  * frame info, sets Last and IOC bits increments next_desc. If filled
800  * descriptor is not the first one, removes L bit from the previous descriptor
801  * status.
802  */
803 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
804 				      dma_addr_t dma_buff, unsigned int len)
805 {
806 	struct dwc2_dma_desc *desc;
807 	struct dwc2_hsotg *hsotg = hs_ep->parent;
808 	u32 index;
809 	u32 maxsize = 0;
810 	u32 mask = 0;
811 
812 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
813 	if (len > maxsize) {
814 		dev_err(hsotg->dev, "wrong len %d\n", len);
815 		return -EINVAL;
816 	}
817 
818 	/*
819 	 * If SW has already filled half of chain, then return and wait for
820 	 * the other chain to be processed by HW.
821 	 */
822 	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
823 		return -EBUSY;
824 
825 	/* Increment frame number by interval for IN */
826 	if (hs_ep->dir_in)
827 		dwc2_gadget_incr_frame_num(hs_ep);
828 
829 	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
830 		 hs_ep->next_desc;
831 
832 	/* Sanity check of calculated index */
833 	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
834 	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
835 		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
836 		return -EINVAL;
837 	}
838 
839 	desc = &hs_ep->desc_list[index];
840 
841 	/* Clear L bit of previous desc if more than one entries in the chain */
842 	if (hs_ep->next_desc)
843 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
844 
845 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
846 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
847 
848 	desc->status = 0;
849 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
850 
851 	desc->buf = dma_buff;
852 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
853 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
854 
855 	if (hs_ep->dir_in) {
856 		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
857 				 DEV_DMA_ISOC_PID_MASK) |
858 				((len % hs_ep->ep.maxpacket) ?
859 				 DEV_DMA_SHORT : 0) |
860 				((hs_ep->target_frame <<
861 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
862 				 DEV_DMA_ISOC_FRNUM_MASK);
863 	}
864 
865 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
866 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
867 
868 	/* Update index of last configured entry in the chain */
869 	hs_ep->next_desc++;
870 
871 	return 0;
872 }
873 
874 /*
875  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
876  * @hs_ep: The isochronous endpoint.
877  *
878  * Prepare first descriptor chain for isochronous endpoints. Afterwards
879  * write DMA address to HW and enable the endpoint.
880  *
881  * Switch between descriptor chains via isoc_chain_num to give SW opportunity
882  * to prepare second descriptor chain while first one is being processed by HW.
883  */
884 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
885 {
886 	struct dwc2_hsotg *hsotg = hs_ep->parent;
887 	struct dwc2_hsotg_req *hs_req, *treq;
888 	int index = hs_ep->index;
889 	int ret;
890 	u32 dma_reg;
891 	u32 depctl;
892 	u32 ctrl;
893 
894 	if (list_empty(&hs_ep->queue)) {
895 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
896 		return;
897 	}
898 
899 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
900 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
901 						 hs_req->req.length);
902 		if (ret) {
903 			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
904 			break;
905 		}
906 	}
907 
908 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
909 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
910 
911 	/* write descriptor chain address to control register */
912 	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
913 
914 	ctrl = dwc2_readl(hsotg->regs + depctl);
915 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
916 	dwc2_writel(ctrl, hsotg->regs + depctl);
917 
918 	/* Switch ISOC descriptor chain number being processed by SW*/
919 	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
920 	hs_ep->next_desc = 0;
921 }
922 
923 /**
924  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
925  * @hsotg: The controller state.
926  * @hs_ep: The endpoint to process a request for
927  * @hs_req: The request to start.
928  * @continuing: True if we are doing more for the current request.
929  *
930  * Start the given request running by setting the endpoint registers
931  * appropriately, and writing any data to the FIFOs.
932  */
933 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
934 				 struct dwc2_hsotg_ep *hs_ep,
935 				struct dwc2_hsotg_req *hs_req,
936 				bool continuing)
937 {
938 	struct usb_request *ureq = &hs_req->req;
939 	int index = hs_ep->index;
940 	int dir_in = hs_ep->dir_in;
941 	u32 epctrl_reg;
942 	u32 epsize_reg;
943 	u32 epsize;
944 	u32 ctrl;
945 	unsigned int length;
946 	unsigned int packets;
947 	unsigned int maxreq;
948 	unsigned int dma_reg;
949 
950 	if (index != 0) {
951 		if (hs_ep->req && !continuing) {
952 			dev_err(hsotg->dev, "%s: active request\n", __func__);
953 			WARN_ON(1);
954 			return;
955 		} else if (hs_ep->req != hs_req && continuing) {
956 			dev_err(hsotg->dev,
957 				"%s: continue different req\n", __func__);
958 			WARN_ON(1);
959 			return;
960 		}
961 	}
962 
963 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
964 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
965 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
966 
967 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
968 		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
969 		hs_ep->dir_in ? "in" : "out");
970 
971 	/* If endpoint is stalled, we will restart request later */
972 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
973 
974 	if (index && ctrl & DXEPCTL_STALL) {
975 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
976 		return;
977 	}
978 
979 	length = ureq->length - ureq->actual;
980 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
981 		ureq->length, ureq->actual);
982 
983 	if (!using_desc_dma(hsotg))
984 		maxreq = get_ep_limit(hs_ep);
985 	else
986 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
987 
988 	if (length > maxreq) {
989 		int round = maxreq % hs_ep->ep.maxpacket;
990 
991 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
992 			__func__, length, maxreq, round);
993 
994 		/* round down to multiple of packets */
995 		if (round)
996 			maxreq -= round;
997 
998 		length = maxreq;
999 	}
1000 
1001 	if (length)
1002 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1003 	else
1004 		packets = 1;	/* send one packet if length is zero. */
1005 
1006 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1007 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1008 		return;
1009 	}
1010 
1011 	if (dir_in && index != 0)
1012 		if (hs_ep->isochronous)
1013 			epsize = DXEPTSIZ_MC(packets);
1014 		else
1015 			epsize = DXEPTSIZ_MC(1);
1016 	else
1017 		epsize = 0;
1018 
1019 	/*
1020 	 * zero length packet should be programmed on its own and should not
1021 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1022 	 */
1023 	if (dir_in && ureq->zero && !continuing) {
1024 		/* Test if zlp is actually required. */
1025 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1026 		    !(ureq->length % hs_ep->ep.maxpacket))
1027 			hs_ep->send_zlp = 1;
1028 	}
1029 
1030 	epsize |= DXEPTSIZ_PKTCNT(packets);
1031 	epsize |= DXEPTSIZ_XFERSIZE(length);
1032 
1033 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1034 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1035 
1036 	/* store the request as the current one we're doing */
1037 	hs_ep->req = hs_req;
1038 
1039 	if (using_desc_dma(hsotg)) {
1040 		u32 offset = 0;
1041 		u32 mps = hs_ep->ep.maxpacket;
1042 
1043 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1044 		if (!dir_in) {
1045 			if (!index)
1046 				length = mps;
1047 			else if (length % mps)
1048 				length += (mps - (length % mps));
1049 		}
1050 
1051 		/*
1052 		 * If more data to send, adjust DMA for EP0 out data stage.
1053 		 * ureq->dma stays unchanged, hence increment it by already
1054 		 * passed passed data count before starting new transaction.
1055 		 */
1056 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1057 		    continuing)
1058 			offset = ureq->actual;
1059 
1060 		/* Fill DDMA chain entries */
1061 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1062 						     length);
1063 
1064 		/* write descriptor chain address to control register */
1065 		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1066 
1067 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1068 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1069 	} else {
1070 		/* write size / packets */
1071 		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1072 
1073 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1074 			/*
1075 			 * write DMA address to control register, buffer
1076 			 * already synced by dwc2_hsotg_ep_queue().
1077 			 */
1078 
1079 			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1080 
1081 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1082 				__func__, &ureq->dma, dma_reg);
1083 		}
1084 	}
1085 
1086 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1087 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1088 		dwc2_gadget_incr_frame_num(hs_ep);
1089 
1090 		if (hs_ep->target_frame & 0x1)
1091 			ctrl |= DXEPCTL_SETODDFR;
1092 		else
1093 			ctrl |= DXEPCTL_SETEVENFR;
1094 	}
1095 
1096 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1097 
1098 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1099 
1100 	/* For Setup request do not clear NAK */
1101 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1102 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1103 
1104 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1105 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1106 
1107 	/*
1108 	 * set these, it seems that DMA support increments past the end
1109 	 * of the packet buffer so we need to calculate the length from
1110 	 * this information.
1111 	 */
1112 	hs_ep->size_loaded = length;
1113 	hs_ep->last_load = ureq->actual;
1114 
1115 	if (dir_in && !using_dma(hsotg)) {
1116 		/* set these anyway, we may need them for non-periodic in */
1117 		hs_ep->fifo_load = 0;
1118 
1119 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1120 	}
1121 
1122 	/*
1123 	 * Note, trying to clear the NAK here causes problems with transmit
1124 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1125 	 */
1126 
1127 	/* check ep is enabled */
1128 	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1129 		dev_dbg(hsotg->dev,
1130 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1131 			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1132 
1133 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1134 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1135 
1136 	/* enable ep interrupts */
1137 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1138 }
1139 
1140 /**
1141  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1142  * @hsotg: The device state.
1143  * @hs_ep: The endpoint the request is on.
1144  * @req: The request being processed.
1145  *
1146  * We've been asked to queue a request, so ensure that the memory buffer
1147  * is correctly setup for DMA. If we've been passed an extant DMA address
1148  * then ensure the buffer has been synced to memory. If our buffer has no
1149  * DMA memory, then we map the memory and mark our request to allow us to
1150  * cleanup on completion.
1151  */
1152 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1153 			      struct dwc2_hsotg_ep *hs_ep,
1154 			     struct usb_request *req)
1155 {
1156 	int ret;
1157 
1158 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1159 	if (ret)
1160 		goto dma_error;
1161 
1162 	return 0;
1163 
1164 dma_error:
1165 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1166 		__func__, req->buf, req->length);
1167 
1168 	return -EIO;
1169 }
1170 
1171 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1172 						 struct dwc2_hsotg_ep *hs_ep,
1173 						 struct dwc2_hsotg_req *hs_req)
1174 {
1175 	void *req_buf = hs_req->req.buf;
1176 
1177 	/* If dma is not being used or buffer is aligned */
1178 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1179 		return 0;
1180 
1181 	WARN_ON(hs_req->saved_req_buf);
1182 
1183 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1184 		hs_ep->ep.name, req_buf, hs_req->req.length);
1185 
1186 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1187 	if (!hs_req->req.buf) {
1188 		hs_req->req.buf = req_buf;
1189 		dev_err(hsotg->dev,
1190 			"%s: unable to allocate memory for bounce buffer\n",
1191 			__func__);
1192 		return -ENOMEM;
1193 	}
1194 
1195 	/* Save actual buffer */
1196 	hs_req->saved_req_buf = req_buf;
1197 
1198 	if (hs_ep->dir_in)
1199 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1200 	return 0;
1201 }
1202 
1203 static void
1204 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1205 					 struct dwc2_hsotg_ep *hs_ep,
1206 					 struct dwc2_hsotg_req *hs_req)
1207 {
1208 	/* If dma is not being used or buffer was aligned */
1209 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1210 		return;
1211 
1212 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1213 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1214 
1215 	/* Copy data from bounce buffer on successful out transfer */
1216 	if (!hs_ep->dir_in && !hs_req->req.status)
1217 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1218 		       hs_req->req.actual);
1219 
1220 	/* Free bounce buffer */
1221 	kfree(hs_req->req.buf);
1222 
1223 	hs_req->req.buf = hs_req->saved_req_buf;
1224 	hs_req->saved_req_buf = NULL;
1225 }
1226 
1227 /**
1228  * dwc2_gadget_target_frame_elapsed - Checks target frame
1229  * @hs_ep: The driver endpoint to check
1230  *
1231  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1232  * corresponding transfer.
1233  */
1234 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1235 {
1236 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1237 	u32 target_frame = hs_ep->target_frame;
1238 	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1239 	bool frame_overrun = hs_ep->frame_overrun;
1240 
1241 	if (!frame_overrun && current_frame >= target_frame)
1242 		return true;
1243 
1244 	if (frame_overrun && current_frame >= target_frame &&
1245 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1246 		return true;
1247 
1248 	return false;
1249 }
1250 
1251 /*
1252  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1253  * @hsotg: The driver state
1254  * @hs_ep: the ep descriptor chain is for
1255  *
1256  * Called to update EP0 structure's pointers depend on stage of
1257  * control transfer.
1258  */
1259 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1260 					  struct dwc2_hsotg_ep *hs_ep)
1261 {
1262 	switch (hsotg->ep0_state) {
1263 	case DWC2_EP0_SETUP:
1264 	case DWC2_EP0_STATUS_OUT:
1265 		hs_ep->desc_list = hsotg->setup_desc[0];
1266 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1267 		break;
1268 	case DWC2_EP0_DATA_IN:
1269 	case DWC2_EP0_STATUS_IN:
1270 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1271 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1272 		break;
1273 	case DWC2_EP0_DATA_OUT:
1274 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1275 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1276 		break;
1277 	default:
1278 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1279 			hsotg->ep0_state);
1280 		return -EINVAL;
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1287 			       gfp_t gfp_flags)
1288 {
1289 	struct dwc2_hsotg_req *hs_req = our_req(req);
1290 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1291 	struct dwc2_hsotg *hs = hs_ep->parent;
1292 	bool first;
1293 	int ret;
1294 
1295 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1296 		ep->name, req, req->length, req->buf, req->no_interrupt,
1297 		req->zero, req->short_not_ok);
1298 
1299 	/* Prevent new request submission when controller is suspended */
1300 	if (hs->lx_state != DWC2_L0) {
1301 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1302 			__func__);
1303 		return -EAGAIN;
1304 	}
1305 
1306 	/* initialise status of the request */
1307 	INIT_LIST_HEAD(&hs_req->queue);
1308 	req->actual = 0;
1309 	req->status = -EINPROGRESS;
1310 
1311 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1312 	if (ret)
1313 		return ret;
1314 
1315 	/* if we're using DMA, sync the buffers as necessary */
1316 	if (using_dma(hs)) {
1317 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1318 		if (ret)
1319 			return ret;
1320 	}
1321 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1322 	if (using_desc_dma(hs) && !hs_ep->index) {
1323 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1324 		if (ret)
1325 			return ret;
1326 	}
1327 
1328 	first = list_empty(&hs_ep->queue);
1329 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1330 
1331 	/*
1332 	 * Handle DDMA isochronous transfers separately - just add new entry
1333 	 * to the half of descriptor chain that is not processed by HW.
1334 	 * Transfer will be started once SW gets either one of NAK or
1335 	 * OutTknEpDis interrupts.
1336 	 */
1337 	if (using_desc_dma(hs) && hs_ep->isochronous &&
1338 	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1339 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1340 						 hs_req->req.length);
1341 		if (ret)
1342 			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1343 
1344 		return 0;
1345 	}
1346 
1347 	if (first) {
1348 		if (!hs_ep->isochronous) {
1349 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1350 			return 0;
1351 		}
1352 
1353 		while (dwc2_gadget_target_frame_elapsed(hs_ep))
1354 			dwc2_gadget_incr_frame_num(hs_ep);
1355 
1356 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1357 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1358 	}
1359 	return 0;
1360 }
1361 
1362 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1363 				    gfp_t gfp_flags)
1364 {
1365 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1366 	struct dwc2_hsotg *hs = hs_ep->parent;
1367 	unsigned long flags = 0;
1368 	int ret = 0;
1369 
1370 	spin_lock_irqsave(&hs->lock, flags);
1371 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1372 	spin_unlock_irqrestore(&hs->lock, flags);
1373 
1374 	return ret;
1375 }
1376 
1377 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1378 				       struct usb_request *req)
1379 {
1380 	struct dwc2_hsotg_req *hs_req = our_req(req);
1381 
1382 	kfree(hs_req);
1383 }
1384 
1385 /**
1386  * dwc2_hsotg_complete_oursetup - setup completion callback
1387  * @ep: The endpoint the request was on.
1388  * @req: The request completed.
1389  *
1390  * Called on completion of any requests the driver itself
1391  * submitted that need cleaning up.
1392  */
1393 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1394 					 struct usb_request *req)
1395 {
1396 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1397 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1398 
1399 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1400 
1401 	dwc2_hsotg_ep_free_request(ep, req);
1402 }
1403 
1404 /**
1405  * ep_from_windex - convert control wIndex value to endpoint
1406  * @hsotg: The driver state.
1407  * @windex: The control request wIndex field (in host order).
1408  *
1409  * Convert the given wIndex into a pointer to an driver endpoint
1410  * structure, or return NULL if it is not a valid endpoint.
1411  */
1412 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1413 					    u32 windex)
1414 {
1415 	struct dwc2_hsotg_ep *ep;
1416 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1417 	int idx = windex & 0x7F;
1418 
1419 	if (windex >= 0x100)
1420 		return NULL;
1421 
1422 	if (idx > hsotg->num_of_eps)
1423 		return NULL;
1424 
1425 	ep = index_to_ep(hsotg, idx, dir);
1426 
1427 	if (idx && ep->dir_in != dir)
1428 		return NULL;
1429 
1430 	return ep;
1431 }
1432 
1433 /**
1434  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1435  * @hsotg: The driver state.
1436  * @testmode: requested usb test mode
1437  * Enable usb Test Mode requested by the Host.
1438  */
1439 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1440 {
1441 	int dctl = dwc2_readl(hsotg->regs + DCTL);
1442 
1443 	dctl &= ~DCTL_TSTCTL_MASK;
1444 	switch (testmode) {
1445 	case TEST_J:
1446 	case TEST_K:
1447 	case TEST_SE0_NAK:
1448 	case TEST_PACKET:
1449 	case TEST_FORCE_EN:
1450 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1451 		break;
1452 	default:
1453 		return -EINVAL;
1454 	}
1455 	dwc2_writel(dctl, hsotg->regs + DCTL);
1456 	return 0;
1457 }
1458 
1459 /**
1460  * dwc2_hsotg_send_reply - send reply to control request
1461  * @hsotg: The device state
1462  * @ep: Endpoint 0
1463  * @buff: Buffer for request
1464  * @length: Length of reply.
1465  *
1466  * Create a request and queue it on the given endpoint. This is useful as
1467  * an internal method of sending replies to certain control requests, etc.
1468  */
1469 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1470 				 struct dwc2_hsotg_ep *ep,
1471 				void *buff,
1472 				int length)
1473 {
1474 	struct usb_request *req;
1475 	int ret;
1476 
1477 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1478 
1479 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1480 	hsotg->ep0_reply = req;
1481 	if (!req) {
1482 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1483 		return -ENOMEM;
1484 	}
1485 
1486 	req->buf = hsotg->ep0_buff;
1487 	req->length = length;
1488 	/*
1489 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1490 	 * STATUS stage.
1491 	 */
1492 	req->zero = 0;
1493 	req->complete = dwc2_hsotg_complete_oursetup;
1494 
1495 	if (length)
1496 		memcpy(req->buf, buff, length);
1497 
1498 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1499 	if (ret) {
1500 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1501 		return ret;
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 /**
1508  * dwc2_hsotg_process_req_status - process request GET_STATUS
1509  * @hsotg: The device state
1510  * @ctrl: USB control request
1511  */
1512 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1513 					 struct usb_ctrlrequest *ctrl)
1514 {
1515 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1516 	struct dwc2_hsotg_ep *ep;
1517 	__le16 reply;
1518 	int ret;
1519 
1520 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1521 
1522 	if (!ep0->dir_in) {
1523 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1524 		return -EINVAL;
1525 	}
1526 
1527 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1528 	case USB_RECIP_DEVICE:
1529 		/*
1530 		 * bit 0 => self powered
1531 		 * bit 1 => remote wakeup
1532 		 */
1533 		reply = cpu_to_le16(0);
1534 		break;
1535 
1536 	case USB_RECIP_INTERFACE:
1537 		/* currently, the data result should be zero */
1538 		reply = cpu_to_le16(0);
1539 		break;
1540 
1541 	case USB_RECIP_ENDPOINT:
1542 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1543 		if (!ep)
1544 			return -ENOENT;
1545 
1546 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1547 		break;
1548 
1549 	default:
1550 		return 0;
1551 	}
1552 
1553 	if (le16_to_cpu(ctrl->wLength) != 2)
1554 		return -EINVAL;
1555 
1556 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1557 	if (ret) {
1558 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1559 		return ret;
1560 	}
1561 
1562 	return 1;
1563 }
1564 
1565 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1566 
1567 /**
1568  * get_ep_head - return the first request on the endpoint
1569  * @hs_ep: The controller endpoint to get
1570  *
1571  * Get the first request on the endpoint.
1572  */
1573 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1574 {
1575 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1576 					queue);
1577 }
1578 
1579 /**
1580  * dwc2_gadget_start_next_request - Starts next request from ep queue
1581  * @hs_ep: Endpoint structure
1582  *
1583  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1584  * in its handler. Hence we need to unmask it here to be able to do
1585  * resynchronization.
1586  */
1587 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1588 {
1589 	u32 mask;
1590 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1591 	int dir_in = hs_ep->dir_in;
1592 	struct dwc2_hsotg_req *hs_req;
1593 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1594 
1595 	if (!list_empty(&hs_ep->queue)) {
1596 		hs_req = get_ep_head(hs_ep);
1597 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1598 		return;
1599 	}
1600 	if (!hs_ep->isochronous)
1601 		return;
1602 
1603 	if (dir_in) {
1604 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1605 			__func__);
1606 	} else {
1607 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1608 			__func__);
1609 		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1610 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1611 		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1612 	}
1613 }
1614 
1615 /**
1616  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1617  * @hsotg: The device state
1618  * @ctrl: USB control request
1619  */
1620 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1621 					  struct usb_ctrlrequest *ctrl)
1622 {
1623 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1624 	struct dwc2_hsotg_req *hs_req;
1625 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1626 	struct dwc2_hsotg_ep *ep;
1627 	int ret;
1628 	bool halted;
1629 	u32 recip;
1630 	u32 wValue;
1631 	u32 wIndex;
1632 
1633 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1634 		__func__, set ? "SET" : "CLEAR");
1635 
1636 	wValue = le16_to_cpu(ctrl->wValue);
1637 	wIndex = le16_to_cpu(ctrl->wIndex);
1638 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1639 
1640 	switch (recip) {
1641 	case USB_RECIP_DEVICE:
1642 		switch (wValue) {
1643 		case USB_DEVICE_REMOTE_WAKEUP:
1644 			hsotg->remote_wakeup_allowed = 1;
1645 			break;
1646 
1647 		case USB_DEVICE_TEST_MODE:
1648 			if ((wIndex & 0xff) != 0)
1649 				return -EINVAL;
1650 			if (!set)
1651 				return -EINVAL;
1652 
1653 			hsotg->test_mode = wIndex >> 8;
1654 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1655 			if (ret) {
1656 				dev_err(hsotg->dev,
1657 					"%s: failed to send reply\n", __func__);
1658 				return ret;
1659 			}
1660 			break;
1661 		default:
1662 			return -ENOENT;
1663 		}
1664 		break;
1665 
1666 	case USB_RECIP_ENDPOINT:
1667 		ep = ep_from_windex(hsotg, wIndex);
1668 		if (!ep) {
1669 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1670 				__func__, wIndex);
1671 			return -ENOENT;
1672 		}
1673 
1674 		switch (wValue) {
1675 		case USB_ENDPOINT_HALT:
1676 			halted = ep->halted;
1677 
1678 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1679 
1680 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1681 			if (ret) {
1682 				dev_err(hsotg->dev,
1683 					"%s: failed to send reply\n", __func__);
1684 				return ret;
1685 			}
1686 
1687 			/*
1688 			 * we have to complete all requests for ep if it was
1689 			 * halted, and the halt was cleared by CLEAR_FEATURE
1690 			 */
1691 
1692 			if (!set && halted) {
1693 				/*
1694 				 * If we have request in progress,
1695 				 * then complete it
1696 				 */
1697 				if (ep->req) {
1698 					hs_req = ep->req;
1699 					ep->req = NULL;
1700 					list_del_init(&hs_req->queue);
1701 					if (hs_req->req.complete) {
1702 						spin_unlock(&hsotg->lock);
1703 						usb_gadget_giveback_request(
1704 							&ep->ep, &hs_req->req);
1705 						spin_lock(&hsotg->lock);
1706 					}
1707 				}
1708 
1709 				/* If we have pending request, then start it */
1710 				if (!ep->req)
1711 					dwc2_gadget_start_next_request(ep);
1712 			}
1713 
1714 			break;
1715 
1716 		default:
1717 			return -ENOENT;
1718 		}
1719 		break;
1720 	default:
1721 		return -ENOENT;
1722 	}
1723 	return 1;
1724 }
1725 
1726 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1727 
1728 /**
1729  * dwc2_hsotg_stall_ep0 - stall ep0
1730  * @hsotg: The device state
1731  *
1732  * Set stall for ep0 as response for setup request.
1733  */
1734 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1735 {
1736 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1737 	u32 reg;
1738 	u32 ctrl;
1739 
1740 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1741 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1742 
1743 	/*
1744 	 * DxEPCTL_Stall will be cleared by EP once it has
1745 	 * taken effect, so no need to clear later.
1746 	 */
1747 
1748 	ctrl = dwc2_readl(hsotg->regs + reg);
1749 	ctrl |= DXEPCTL_STALL;
1750 	ctrl |= DXEPCTL_CNAK;
1751 	dwc2_writel(ctrl, hsotg->regs + reg);
1752 
1753 	dev_dbg(hsotg->dev,
1754 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1755 		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1756 
1757 	 /*
1758 	  * complete won't be called, so we enqueue
1759 	  * setup request here
1760 	  */
1761 	 dwc2_hsotg_enqueue_setup(hsotg);
1762 }
1763 
1764 /**
1765  * dwc2_hsotg_process_control - process a control request
1766  * @hsotg: The device state
1767  * @ctrl: The control request received
1768  *
1769  * The controller has received the SETUP phase of a control request, and
1770  * needs to work out what to do next (and whether to pass it on to the
1771  * gadget driver).
1772  */
1773 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1774 				       struct usb_ctrlrequest *ctrl)
1775 {
1776 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1777 	int ret = 0;
1778 	u32 dcfg;
1779 
1780 	dev_dbg(hsotg->dev,
1781 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1782 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1783 		ctrl->wIndex, ctrl->wLength);
1784 
1785 	if (ctrl->wLength == 0) {
1786 		ep0->dir_in = 1;
1787 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1788 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1789 		ep0->dir_in = 1;
1790 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1791 	} else {
1792 		ep0->dir_in = 0;
1793 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1794 	}
1795 
1796 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1797 		switch (ctrl->bRequest) {
1798 		case USB_REQ_SET_ADDRESS:
1799 			hsotg->connected = 1;
1800 			dcfg = dwc2_readl(hsotg->regs + DCFG);
1801 			dcfg &= ~DCFG_DEVADDR_MASK;
1802 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1803 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1804 			dwc2_writel(dcfg, hsotg->regs + DCFG);
1805 
1806 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1807 
1808 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1809 			return;
1810 
1811 		case USB_REQ_GET_STATUS:
1812 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1813 			break;
1814 
1815 		case USB_REQ_CLEAR_FEATURE:
1816 		case USB_REQ_SET_FEATURE:
1817 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1818 			break;
1819 		}
1820 	}
1821 
1822 	/* as a fallback, try delivering it to the driver to deal with */
1823 
1824 	if (ret == 0 && hsotg->driver) {
1825 		spin_unlock(&hsotg->lock);
1826 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1827 		spin_lock(&hsotg->lock);
1828 		if (ret < 0)
1829 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1830 	}
1831 
1832 	/*
1833 	 * the request is either unhandlable, or is not formatted correctly
1834 	 * so respond with a STALL for the status stage to indicate failure.
1835 	 */
1836 
1837 	if (ret < 0)
1838 		dwc2_hsotg_stall_ep0(hsotg);
1839 }
1840 
1841 /**
1842  * dwc2_hsotg_complete_setup - completion of a setup transfer
1843  * @ep: The endpoint the request was on.
1844  * @req: The request completed.
1845  *
1846  * Called on completion of any requests the driver itself submitted for
1847  * EP0 setup packets
1848  */
1849 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1850 				      struct usb_request *req)
1851 {
1852 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1853 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1854 
1855 	if (req->status < 0) {
1856 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1857 		return;
1858 	}
1859 
1860 	spin_lock(&hsotg->lock);
1861 	if (req->actual == 0)
1862 		dwc2_hsotg_enqueue_setup(hsotg);
1863 	else
1864 		dwc2_hsotg_process_control(hsotg, req->buf);
1865 	spin_unlock(&hsotg->lock);
1866 }
1867 
1868 /**
1869  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1870  * @hsotg: The device state.
1871  *
1872  * Enqueue a request on EP0 if necessary to received any SETUP packets
1873  * received from the host.
1874  */
1875 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1876 {
1877 	struct usb_request *req = hsotg->ctrl_req;
1878 	struct dwc2_hsotg_req *hs_req = our_req(req);
1879 	int ret;
1880 
1881 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1882 
1883 	req->zero = 0;
1884 	req->length = 8;
1885 	req->buf = hsotg->ctrl_buff;
1886 	req->complete = dwc2_hsotg_complete_setup;
1887 
1888 	if (!list_empty(&hs_req->queue)) {
1889 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1890 		return;
1891 	}
1892 
1893 	hsotg->eps_out[0]->dir_in = 0;
1894 	hsotg->eps_out[0]->send_zlp = 0;
1895 	hsotg->ep0_state = DWC2_EP0_SETUP;
1896 
1897 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1898 	if (ret < 0) {
1899 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1900 		/*
1901 		 * Don't think there's much we can do other than watch the
1902 		 * driver fail.
1903 		 */
1904 	}
1905 }
1906 
1907 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1908 				   struct dwc2_hsotg_ep *hs_ep)
1909 {
1910 	u32 ctrl;
1911 	u8 index = hs_ep->index;
1912 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1913 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1914 
1915 	if (hs_ep->dir_in)
1916 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1917 			index);
1918 	else
1919 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1920 			index);
1921 	if (using_desc_dma(hsotg)) {
1922 		/* Not specific buffer needed for ep0 ZLP */
1923 		dma_addr_t dma = hs_ep->desc_list_dma;
1924 
1925 		if (!index)
1926 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1927 
1928 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1929 	} else {
1930 		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1931 			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1932 			    epsiz_reg);
1933 	}
1934 
1935 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1936 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1937 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1938 	ctrl |= DXEPCTL_USBACTEP;
1939 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1940 }
1941 
1942 /**
1943  * dwc2_hsotg_complete_request - complete a request given to us
1944  * @hsotg: The device state.
1945  * @hs_ep: The endpoint the request was on.
1946  * @hs_req: The request to complete.
1947  * @result: The result code (0 => Ok, otherwise errno)
1948  *
1949  * The given request has finished, so call the necessary completion
1950  * if it has one and then look to see if we can start a new request
1951  * on the endpoint.
1952  *
1953  * Note, expects the ep to already be locked as appropriate.
1954  */
1955 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1956 					struct dwc2_hsotg_ep *hs_ep,
1957 				       struct dwc2_hsotg_req *hs_req,
1958 				       int result)
1959 {
1960 	if (!hs_req) {
1961 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1962 		return;
1963 	}
1964 
1965 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1966 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1967 
1968 	/*
1969 	 * only replace the status if we've not already set an error
1970 	 * from a previous transaction
1971 	 */
1972 
1973 	if (hs_req->req.status == -EINPROGRESS)
1974 		hs_req->req.status = result;
1975 
1976 	if (using_dma(hsotg))
1977 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1978 
1979 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1980 
1981 	hs_ep->req = NULL;
1982 	list_del_init(&hs_req->queue);
1983 
1984 	/*
1985 	 * call the complete request with the locks off, just in case the
1986 	 * request tries to queue more work for this endpoint.
1987 	 */
1988 
1989 	if (hs_req->req.complete) {
1990 		spin_unlock(&hsotg->lock);
1991 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1992 		spin_lock(&hsotg->lock);
1993 	}
1994 
1995 	/* In DDMA don't need to proceed to starting of next ISOC request */
1996 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
1997 		return;
1998 
1999 	/*
2000 	 * Look to see if there is anything else to do. Note, the completion
2001 	 * of the previous request may have caused a new request to be started
2002 	 * so be careful when doing this.
2003 	 */
2004 
2005 	if (!hs_ep->req && result >= 0)
2006 		dwc2_gadget_start_next_request(hs_ep);
2007 }
2008 
2009 /*
2010  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2011  * @hs_ep: The endpoint the request was on.
2012  *
2013  * Get first request from the ep queue, determine descriptor on which complete
2014  * happened. SW based on isoc_chain_num discovers which half of the descriptor
2015  * chain is currently in use by HW, adjusts dma_address and calculates index
2016  * of completed descriptor based on the value of DEPDMA register. Update actual
2017  * length of request, giveback to gadget.
2018  */
2019 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2020 {
2021 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2022 	struct dwc2_hsotg_req *hs_req;
2023 	struct usb_request *ureq;
2024 	int index;
2025 	dma_addr_t dma_addr;
2026 	u32 dma_reg;
2027 	u32 depdma;
2028 	u32 desc_sts;
2029 	u32 mask;
2030 
2031 	hs_req = get_ep_head(hs_ep);
2032 	if (!hs_req) {
2033 		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2034 		return;
2035 	}
2036 	ureq = &hs_req->req;
2037 
2038 	dma_addr = hs_ep->desc_list_dma;
2039 
2040 	/*
2041 	 * If lower half of  descriptor chain is currently use by SW,
2042 	 * that means higher half is being processed by HW, so shift
2043 	 * DMA address to higher half of descriptor chain.
2044 	 */
2045 	if (!hs_ep->isoc_chain_num)
2046 		dma_addr += sizeof(struct dwc2_dma_desc) *
2047 			    (MAX_DMA_DESC_NUM_GENERIC / 2);
2048 
2049 	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2050 	depdma = dwc2_readl(hsotg->regs + dma_reg);
2051 
2052 	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2053 	desc_sts = hs_ep->desc_list[index].status;
2054 
2055 	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2056 	       DEV_DMA_ISOC_RX_NBYTES_MASK;
2057 	ureq->actual = ureq->length -
2058 		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2059 
2060 	/* Adjust actual length for ISOC Out if length is not align of 4 */
2061 	if (!hs_ep->dir_in && ureq->length & 0x3)
2062 		ureq->actual += 4 - (ureq->length & 0x3);
2063 
2064 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2065 }
2066 
2067 /*
2068  * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2069  * @hs_ep: The isochronous endpoint to be re-enabled.
2070  *
2071  * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2072  * BNA (OUT endpoint) check the status of other half of descriptor chain that
2073  * was under SW control till HW was busy and restart the endpoint if needed.
2074  */
2075 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2076 {
2077 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2078 	u32 depctl;
2079 	u32 dma_reg;
2080 	u32 ctrl;
2081 	u32 dma_addr = hs_ep->desc_list_dma;
2082 	unsigned char index = hs_ep->index;
2083 
2084 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2085 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2086 
2087 	ctrl = dwc2_readl(hsotg->regs + depctl);
2088 
2089 	/*
2090 	 * EP was disabled if HW has processed last descriptor or BNA was set.
2091 	 * So restart ep if SW has prepared new descriptor chain in ep_queue
2092 	 * routine while HW was busy.
2093 	 */
2094 	if (!(ctrl & DXEPCTL_EPENA)) {
2095 		if (!hs_ep->next_desc) {
2096 			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2097 				__func__);
2098 			return;
2099 		}
2100 
2101 		dma_addr += sizeof(struct dwc2_dma_desc) *
2102 			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
2103 			    hs_ep->isoc_chain_num;
2104 		dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2105 
2106 		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2107 		dwc2_writel(ctrl, hsotg->regs + depctl);
2108 
2109 		/* Switch ISOC descriptor chain number being processed by SW*/
2110 		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2111 		hs_ep->next_desc = 0;
2112 
2113 		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2114 			__func__);
2115 	}
2116 }
2117 
2118 /**
2119  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2120  * @hsotg: The device state.
2121  * @ep_idx: The endpoint index for the data
2122  * @size: The size of data in the fifo, in bytes
2123  *
2124  * The FIFO status shows there is data to read from the FIFO for a given
2125  * endpoint, so sort out whether we need to read the data into a request
2126  * that has been made for that endpoint.
2127  */
2128 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2129 {
2130 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2131 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2132 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2133 	int to_read;
2134 	int max_req;
2135 	int read_ptr;
2136 
2137 	if (!hs_req) {
2138 		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2139 		int ptr;
2140 
2141 		dev_dbg(hsotg->dev,
2142 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2143 			 __func__, size, ep_idx, epctl);
2144 
2145 		/* dump the data from the FIFO, we've nothing we can do */
2146 		for (ptr = 0; ptr < size; ptr += 4)
2147 			(void)dwc2_readl(fifo);
2148 
2149 		return;
2150 	}
2151 
2152 	to_read = size;
2153 	read_ptr = hs_req->req.actual;
2154 	max_req = hs_req->req.length - read_ptr;
2155 
2156 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2157 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2158 
2159 	if (to_read > max_req) {
2160 		/*
2161 		 * more data appeared than we where willing
2162 		 * to deal with in this request.
2163 		 */
2164 
2165 		/* currently we don't deal this */
2166 		WARN_ON_ONCE(1);
2167 	}
2168 
2169 	hs_ep->total_data += to_read;
2170 	hs_req->req.actual += to_read;
2171 	to_read = DIV_ROUND_UP(to_read, 4);
2172 
2173 	/*
2174 	 * note, we might over-write the buffer end by 3 bytes depending on
2175 	 * alignment of the data.
2176 	 */
2177 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2178 }
2179 
2180 /**
2181  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2182  * @hsotg: The device instance
2183  * @dir_in: If IN zlp
2184  *
2185  * Generate a zero-length IN packet request for terminating a SETUP
2186  * transaction.
2187  *
2188  * Note, since we don't write any data to the TxFIFO, then it is
2189  * currently believed that we do not need to wait for any space in
2190  * the TxFIFO.
2191  */
2192 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2193 {
2194 	/* eps_out[0] is used in both directions */
2195 	hsotg->eps_out[0]->dir_in = dir_in;
2196 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2197 
2198 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2199 }
2200 
2201 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2202 					    u32 epctl_reg)
2203 {
2204 	u32 ctrl;
2205 
2206 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2207 	if (ctrl & DXEPCTL_EOFRNUM)
2208 		ctrl |= DXEPCTL_SETEVENFR;
2209 	else
2210 		ctrl |= DXEPCTL_SETODDFR;
2211 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2212 }
2213 
2214 /*
2215  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2216  * @hs_ep - The endpoint on which transfer went
2217  *
2218  * Iterate over endpoints descriptor chain and get info on bytes remained
2219  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2220  */
2221 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2222 {
2223 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2224 	unsigned int bytes_rem = 0;
2225 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2226 	int i;
2227 	u32 status;
2228 
2229 	if (!desc)
2230 		return -EINVAL;
2231 
2232 	for (i = 0; i < hs_ep->desc_count; ++i) {
2233 		status = desc->status;
2234 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2235 
2236 		if (status & DEV_DMA_STS_MASK)
2237 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2238 				i, status & DEV_DMA_STS_MASK);
2239 	}
2240 
2241 	return bytes_rem;
2242 }
2243 
2244 /**
2245  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2246  * @hsotg: The device instance
2247  * @epnum: The endpoint received from
2248  *
2249  * The RXFIFO has delivered an OutDone event, which means that the data
2250  * transfer for an OUT endpoint has been completed, either by a short
2251  * packet or by the finish of a transfer.
2252  */
2253 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2254 {
2255 	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2256 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2257 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2258 	struct usb_request *req = &hs_req->req;
2259 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2260 	int result = 0;
2261 
2262 	if (!hs_req) {
2263 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2264 		return;
2265 	}
2266 
2267 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2268 		dev_dbg(hsotg->dev, "zlp packet received\n");
2269 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2270 		dwc2_hsotg_enqueue_setup(hsotg);
2271 		return;
2272 	}
2273 
2274 	if (using_desc_dma(hsotg))
2275 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2276 
2277 	if (using_dma(hsotg)) {
2278 		unsigned int size_done;
2279 
2280 		/*
2281 		 * Calculate the size of the transfer by checking how much
2282 		 * is left in the endpoint size register and then working it
2283 		 * out from the amount we loaded for the transfer.
2284 		 *
2285 		 * We need to do this as DMA pointers are always 32bit aligned
2286 		 * so may overshoot/undershoot the transfer.
2287 		 */
2288 
2289 		size_done = hs_ep->size_loaded - size_left;
2290 		size_done += hs_ep->last_load;
2291 
2292 		req->actual = size_done;
2293 	}
2294 
2295 	/* if there is more request to do, schedule new transfer */
2296 	if (req->actual < req->length && size_left == 0) {
2297 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2298 		return;
2299 	}
2300 
2301 	if (req->actual < req->length && req->short_not_ok) {
2302 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2303 			__func__, req->actual, req->length);
2304 
2305 		/*
2306 		 * todo - what should we return here? there's no one else
2307 		 * even bothering to check the status.
2308 		 */
2309 	}
2310 
2311 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2312 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2313 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2314 		/* Move to STATUS IN */
2315 		dwc2_hsotg_ep0_zlp(hsotg, true);
2316 		return;
2317 	}
2318 
2319 	/*
2320 	 * Slave mode OUT transfers do not go through XferComplete so
2321 	 * adjust the ISOC parity here.
2322 	 */
2323 	if (!using_dma(hsotg)) {
2324 		if (hs_ep->isochronous && hs_ep->interval == 1)
2325 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2326 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2327 			dwc2_gadget_incr_frame_num(hs_ep);
2328 	}
2329 
2330 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2331 }
2332 
2333 /**
2334  * dwc2_hsotg_handle_rx - RX FIFO has data
2335  * @hsotg: The device instance
2336  *
2337  * The IRQ handler has detected that the RX FIFO has some data in it
2338  * that requires processing, so find out what is in there and do the
2339  * appropriate read.
2340  *
2341  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2342  * chunks, so if you have x packets received on an endpoint you'll get x
2343  * FIFO events delivered, each with a packet's worth of data in it.
2344  *
2345  * When using DMA, we should not be processing events from the RXFIFO
2346  * as the actual data should be sent to the memory directly and we turn
2347  * on the completion interrupts to get notifications of transfer completion.
2348  */
2349 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2350 {
2351 	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2352 	u32 epnum, status, size;
2353 
2354 	WARN_ON(using_dma(hsotg));
2355 
2356 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2357 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2358 
2359 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2360 	size >>= GRXSTS_BYTECNT_SHIFT;
2361 
2362 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2363 		__func__, grxstsr, size, epnum);
2364 
2365 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2366 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2367 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2368 		break;
2369 
2370 	case GRXSTS_PKTSTS_OUTDONE:
2371 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2372 			dwc2_hsotg_read_frameno(hsotg));
2373 
2374 		if (!using_dma(hsotg))
2375 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2376 		break;
2377 
2378 	case GRXSTS_PKTSTS_SETUPDONE:
2379 		dev_dbg(hsotg->dev,
2380 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2381 			dwc2_hsotg_read_frameno(hsotg),
2382 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2383 		/*
2384 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2385 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2386 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2387 		 */
2388 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2389 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2390 		break;
2391 
2392 	case GRXSTS_PKTSTS_OUTRX:
2393 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2394 		break;
2395 
2396 	case GRXSTS_PKTSTS_SETUPRX:
2397 		dev_dbg(hsotg->dev,
2398 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2399 			dwc2_hsotg_read_frameno(hsotg),
2400 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2401 
2402 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2403 
2404 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2405 		break;
2406 
2407 	default:
2408 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2409 			 __func__, grxstsr);
2410 
2411 		dwc2_hsotg_dump(hsotg);
2412 		break;
2413 	}
2414 }
2415 
2416 /**
2417  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2418  * @mps: The maximum packet size in bytes.
2419  */
2420 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2421 {
2422 	switch (mps) {
2423 	case 64:
2424 		return D0EPCTL_MPS_64;
2425 	case 32:
2426 		return D0EPCTL_MPS_32;
2427 	case 16:
2428 		return D0EPCTL_MPS_16;
2429 	case 8:
2430 		return D0EPCTL_MPS_8;
2431 	}
2432 
2433 	/* bad max packet size, warn and return invalid result */
2434 	WARN_ON(1);
2435 	return (u32)-1;
2436 }
2437 
2438 /**
2439  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2440  * @hsotg: The driver state.
2441  * @ep: The index number of the endpoint
2442  * @mps: The maximum packet size in bytes
2443  * @mc: The multicount value
2444  *
2445  * Configure the maximum packet size for the given endpoint, updating
2446  * the hardware control registers to reflect this.
2447  */
2448 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2449 					unsigned int ep, unsigned int mps,
2450 					unsigned int mc, unsigned int dir_in)
2451 {
2452 	struct dwc2_hsotg_ep *hs_ep;
2453 	void __iomem *regs = hsotg->regs;
2454 	u32 reg;
2455 
2456 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2457 	if (!hs_ep)
2458 		return;
2459 
2460 	if (ep == 0) {
2461 		u32 mps_bytes = mps;
2462 
2463 		/* EP0 is a special case */
2464 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2465 		if (mps > 3)
2466 			goto bad_mps;
2467 		hs_ep->ep.maxpacket = mps_bytes;
2468 		hs_ep->mc = 1;
2469 	} else {
2470 		if (mps > 1024)
2471 			goto bad_mps;
2472 		hs_ep->mc = mc;
2473 		if (mc > 3)
2474 			goto bad_mps;
2475 		hs_ep->ep.maxpacket = mps;
2476 	}
2477 
2478 	if (dir_in) {
2479 		reg = dwc2_readl(regs + DIEPCTL(ep));
2480 		reg &= ~DXEPCTL_MPS_MASK;
2481 		reg |= mps;
2482 		dwc2_writel(reg, regs + DIEPCTL(ep));
2483 	} else {
2484 		reg = dwc2_readl(regs + DOEPCTL(ep));
2485 		reg &= ~DXEPCTL_MPS_MASK;
2486 		reg |= mps;
2487 		dwc2_writel(reg, regs + DOEPCTL(ep));
2488 	}
2489 
2490 	return;
2491 
2492 bad_mps:
2493 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2494 }
2495 
2496 /**
2497  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2498  * @hsotg: The driver state
2499  * @idx: The index for the endpoint (0..15)
2500  */
2501 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2502 {
2503 	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2504 		    hsotg->regs + GRSTCTL);
2505 
2506 	/* wait until the fifo is flushed */
2507 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2508 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2509 			 __func__);
2510 }
2511 
2512 /**
2513  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2514  * @hsotg: The driver state
2515  * @hs_ep: The driver endpoint to check.
2516  *
2517  * Check to see if there is a request that has data to send, and if so
2518  * make an attempt to write data into the FIFO.
2519  */
2520 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2521 			    struct dwc2_hsotg_ep *hs_ep)
2522 {
2523 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2524 
2525 	if (!hs_ep->dir_in || !hs_req) {
2526 		/**
2527 		 * if request is not enqueued, we disable interrupts
2528 		 * for endpoints, excepting ep0
2529 		 */
2530 		if (hs_ep->index != 0)
2531 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2532 					      hs_ep->dir_in, 0);
2533 		return 0;
2534 	}
2535 
2536 	if (hs_req->req.actual < hs_req->req.length) {
2537 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2538 			hs_ep->index);
2539 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 /**
2546  * dwc2_hsotg_complete_in - complete IN transfer
2547  * @hsotg: The device state.
2548  * @hs_ep: The endpoint that has just completed.
2549  *
2550  * An IN transfer has been completed, update the transfer's state and then
2551  * call the relevant completion routines.
2552  */
2553 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2554 				   struct dwc2_hsotg_ep *hs_ep)
2555 {
2556 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2557 	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2558 	int size_left, size_done;
2559 
2560 	if (!hs_req) {
2561 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2562 		return;
2563 	}
2564 
2565 	/* Finish ZLP handling for IN EP0 transactions */
2566 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2567 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2568 
2569 		/*
2570 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2571 		 * changed to IN. Change back to complete OUT transfer request
2572 		 */
2573 		hs_ep->dir_in = 0;
2574 
2575 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2576 		if (hsotg->test_mode) {
2577 			int ret;
2578 
2579 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2580 			if (ret < 0) {
2581 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2582 					hsotg->test_mode);
2583 				dwc2_hsotg_stall_ep0(hsotg);
2584 				return;
2585 			}
2586 		}
2587 		dwc2_hsotg_enqueue_setup(hsotg);
2588 		return;
2589 	}
2590 
2591 	/*
2592 	 * Calculate the size of the transfer by checking how much is left
2593 	 * in the endpoint size register and then working it out from
2594 	 * the amount we loaded for the transfer.
2595 	 *
2596 	 * We do this even for DMA, as the transfer may have incremented
2597 	 * past the end of the buffer (DMA transfers are always 32bit
2598 	 * aligned).
2599 	 */
2600 	if (using_desc_dma(hsotg)) {
2601 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2602 		if (size_left < 0)
2603 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2604 				size_left);
2605 	} else {
2606 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2607 	}
2608 
2609 	size_done = hs_ep->size_loaded - size_left;
2610 	size_done += hs_ep->last_load;
2611 
2612 	if (hs_req->req.actual != size_done)
2613 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2614 			__func__, hs_req->req.actual, size_done);
2615 
2616 	hs_req->req.actual = size_done;
2617 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2618 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2619 
2620 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2621 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2622 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2623 		return;
2624 	}
2625 
2626 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2627 	if (hs_ep->send_zlp) {
2628 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2629 		hs_ep->send_zlp = 0;
2630 		/* transfer will be completed on next complete interrupt */
2631 		return;
2632 	}
2633 
2634 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2635 		/* Move to STATUS OUT */
2636 		dwc2_hsotg_ep0_zlp(hsotg, false);
2637 		return;
2638 	}
2639 
2640 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2641 }
2642 
2643 /**
2644  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2645  * @hsotg: The device state.
2646  * @idx: Index of ep.
2647  * @dir_in: Endpoint direction 1-in 0-out.
2648  *
2649  * Reads for endpoint with given index and direction, by masking
2650  * epint_reg with coresponding mask.
2651  */
2652 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2653 					  unsigned int idx, int dir_in)
2654 {
2655 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2656 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2657 	u32 ints;
2658 	u32 mask;
2659 	u32 diepempmsk;
2660 
2661 	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2662 	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2663 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2664 	mask |= DXEPINT_SETUP_RCVD;
2665 
2666 	ints = dwc2_readl(hsotg->regs + epint_reg);
2667 	ints &= mask;
2668 	return ints;
2669 }
2670 
2671 /**
2672  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2673  * @hs_ep: The endpoint on which interrupt is asserted.
2674  *
2675  * This interrupt indicates that the endpoint has been disabled per the
2676  * application's request.
2677  *
2678  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2679  * in case of ISOC completes current request.
2680  *
2681  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2682  * request starts it.
2683  */
2684 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2685 {
2686 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2687 	struct dwc2_hsotg_req *hs_req;
2688 	unsigned char idx = hs_ep->index;
2689 	int dir_in = hs_ep->dir_in;
2690 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2691 	int dctl = dwc2_readl(hsotg->regs + DCTL);
2692 
2693 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2694 
2695 	if (dir_in) {
2696 		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2697 
2698 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2699 
2700 		if (hs_ep->isochronous) {
2701 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2702 			return;
2703 		}
2704 
2705 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2706 			int dctl = dwc2_readl(hsotg->regs + DCTL);
2707 
2708 			dctl |= DCTL_CGNPINNAK;
2709 			dwc2_writel(dctl, hsotg->regs + DCTL);
2710 		}
2711 		return;
2712 	}
2713 
2714 	if (dctl & DCTL_GOUTNAKSTS) {
2715 		dctl |= DCTL_CGOUTNAK;
2716 		dwc2_writel(dctl, hsotg->regs + DCTL);
2717 	}
2718 
2719 	if (!hs_ep->isochronous)
2720 		return;
2721 
2722 	if (list_empty(&hs_ep->queue)) {
2723 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2724 			__func__, hs_ep);
2725 		return;
2726 	}
2727 
2728 	do {
2729 		hs_req = get_ep_head(hs_ep);
2730 		if (hs_req)
2731 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2732 						    -ENODATA);
2733 		dwc2_gadget_incr_frame_num(hs_ep);
2734 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2735 
2736 	dwc2_gadget_start_next_request(hs_ep);
2737 }
2738 
2739 /**
2740  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2741  * @hs_ep: The endpoint on which interrupt is asserted.
2742  *
2743  * This is starting point for ISOC-OUT transfer, synchronization done with
2744  * first out token received from host while corresponding EP is disabled.
2745  *
2746  * Device does not know initial frame in which out token will come. For this
2747  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2748  * getting this interrupt SW starts calculation for next transfer frame.
2749  */
2750 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2751 {
2752 	struct dwc2_hsotg *hsotg = ep->parent;
2753 	int dir_in = ep->dir_in;
2754 	u32 doepmsk;
2755 	u32 tmp;
2756 
2757 	if (dir_in || !ep->isochronous)
2758 		return;
2759 
2760 	/*
2761 	 * Store frame in which irq was asserted here, as
2762 	 * it can change while completing request below.
2763 	 */
2764 	tmp = dwc2_hsotg_read_frameno(hsotg);
2765 
2766 	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2767 
2768 	if (using_desc_dma(hsotg)) {
2769 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2770 			/* Start first ISO Out */
2771 			ep->target_frame = tmp;
2772 			dwc2_gadget_start_isoc_ddma(ep);
2773 		}
2774 		return;
2775 	}
2776 
2777 	if (ep->interval > 1 &&
2778 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2779 		u32 dsts;
2780 		u32 ctrl;
2781 
2782 		dsts = dwc2_readl(hsotg->regs + DSTS);
2783 		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2784 		dwc2_gadget_incr_frame_num(ep);
2785 
2786 		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2787 		if (ep->target_frame & 0x1)
2788 			ctrl |= DXEPCTL_SETODDFR;
2789 		else
2790 			ctrl |= DXEPCTL_SETEVENFR;
2791 
2792 		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2793 	}
2794 
2795 	dwc2_gadget_start_next_request(ep);
2796 	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2797 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2798 	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2799 }
2800 
2801 /**
2802  * dwc2_gadget_handle_nak - handle NAK interrupt
2803  * @hs_ep: The endpoint on which interrupt is asserted.
2804  *
2805  * This is starting point for ISOC-IN transfer, synchronization done with
2806  * first IN token received from host while corresponding EP is disabled.
2807  *
2808  * Device does not know when first one token will arrive from host. On first
2809  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2810  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2811  * sent in response to that as there was no data in FIFO. SW is basing on this
2812  * interrupt to obtain frame in which token has come and then based on the
2813  * interval calculates next frame for transfer.
2814  */
2815 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2816 {
2817 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2818 	int dir_in = hs_ep->dir_in;
2819 
2820 	if (!dir_in || !hs_ep->isochronous)
2821 		return;
2822 
2823 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2824 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2825 
2826 		if (using_desc_dma(hsotg)) {
2827 			dwc2_gadget_start_isoc_ddma(hs_ep);
2828 			return;
2829 		}
2830 
2831 		if (hs_ep->interval > 1) {
2832 			u32 ctrl = dwc2_readl(hsotg->regs +
2833 					      DIEPCTL(hs_ep->index));
2834 			if (hs_ep->target_frame & 0x1)
2835 				ctrl |= DXEPCTL_SETODDFR;
2836 			else
2837 				ctrl |= DXEPCTL_SETEVENFR;
2838 
2839 			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2840 		}
2841 
2842 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2843 					    get_ep_head(hs_ep), 0);
2844 	}
2845 
2846 	dwc2_gadget_incr_frame_num(hs_ep);
2847 }
2848 
2849 /**
2850  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2851  * @hsotg: The driver state
2852  * @idx: The index for the endpoint (0..15)
2853  * @dir_in: Set if this is an IN endpoint
2854  *
2855  * Process and clear any interrupt pending for an individual endpoint
2856  */
2857 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2858 			     int dir_in)
2859 {
2860 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2861 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2862 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2863 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2864 	u32 ints;
2865 	u32 ctrl;
2866 
2867 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2868 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2869 
2870 	/* Clear endpoint interrupts */
2871 	dwc2_writel(ints, hsotg->regs + epint_reg);
2872 
2873 	if (!hs_ep) {
2874 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2875 			__func__, idx, dir_in ? "in" : "out");
2876 		return;
2877 	}
2878 
2879 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2880 		__func__, idx, dir_in ? "in" : "out", ints);
2881 
2882 	/* Don't process XferCompl interrupt if it is a setup packet */
2883 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2884 		ints &= ~DXEPINT_XFERCOMPL;
2885 
2886 	/*
2887 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2888 	 * stage and xfercomplete was generated without SETUP phase done
2889 	 * interrupt. SW should parse received setup packet only after host's
2890 	 * exit from setup phase of control transfer.
2891 	 */
2892 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2893 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2894 		ints &= ~DXEPINT_XFERCOMPL;
2895 
2896 	if (ints & DXEPINT_XFERCOMPL) {
2897 		dev_dbg(hsotg->dev,
2898 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2899 			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2900 			dwc2_readl(hsotg->regs + epsiz_reg));
2901 
2902 		/* In DDMA handle isochronous requests separately */
2903 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2904 			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2905 			/* Try to start next isoc request */
2906 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2907 		} else if (dir_in) {
2908 			/*
2909 			 * We get OutDone from the FIFO, so we only
2910 			 * need to look at completing IN requests here
2911 			 * if operating slave mode
2912 			 */
2913 			if (hs_ep->isochronous && hs_ep->interval > 1)
2914 				dwc2_gadget_incr_frame_num(hs_ep);
2915 
2916 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2917 			if (ints & DXEPINT_NAKINTRPT)
2918 				ints &= ~DXEPINT_NAKINTRPT;
2919 
2920 			if (idx == 0 && !hs_ep->req)
2921 				dwc2_hsotg_enqueue_setup(hsotg);
2922 		} else if (using_dma(hsotg)) {
2923 			/*
2924 			 * We're using DMA, we need to fire an OutDone here
2925 			 * as we ignore the RXFIFO.
2926 			 */
2927 			if (hs_ep->isochronous && hs_ep->interval > 1)
2928 				dwc2_gadget_incr_frame_num(hs_ep);
2929 
2930 			dwc2_hsotg_handle_outdone(hsotg, idx);
2931 		}
2932 	}
2933 
2934 	if (ints & DXEPINT_EPDISBLD)
2935 		dwc2_gadget_handle_ep_disabled(hs_ep);
2936 
2937 	if (ints & DXEPINT_OUTTKNEPDIS)
2938 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2939 
2940 	if (ints & DXEPINT_NAKINTRPT)
2941 		dwc2_gadget_handle_nak(hs_ep);
2942 
2943 	if (ints & DXEPINT_AHBERR)
2944 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2945 
2946 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2947 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2948 
2949 		if (using_dma(hsotg) && idx == 0) {
2950 			/*
2951 			 * this is the notification we've received a
2952 			 * setup packet. In non-DMA mode we'd get this
2953 			 * from the RXFIFO, instead we need to process
2954 			 * the setup here.
2955 			 */
2956 
2957 			if (dir_in)
2958 				WARN_ON_ONCE(1);
2959 			else
2960 				dwc2_hsotg_handle_outdone(hsotg, 0);
2961 		}
2962 	}
2963 
2964 	if (ints & DXEPINT_STSPHSERCVD) {
2965 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2966 
2967 		/* Safety check EP0 state when STSPHSERCVD asserted */
2968 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2969 			/* Move to STATUS IN for DDMA */
2970 			if (using_desc_dma(hsotg))
2971 				dwc2_hsotg_ep0_zlp(hsotg, true);
2972 		}
2973 
2974 	}
2975 
2976 	if (ints & DXEPINT_BACK2BACKSETUP)
2977 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2978 
2979 	if (ints & DXEPINT_BNAINTR) {
2980 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2981 
2982 		/*
2983 		 * Try to start next isoc request, if any.
2984 		 * Sometimes the endpoint remains enabled after BNA interrupt
2985 		 * assertion, which is not expected, hence we can enter here
2986 		 * couple of times.
2987 		 */
2988 		if (hs_ep->isochronous)
2989 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2990 	}
2991 
2992 	if (dir_in && !hs_ep->isochronous) {
2993 		/* not sure if this is important, but we'll clear it anyway */
2994 		if (ints & DXEPINT_INTKNTXFEMP) {
2995 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2996 				__func__, idx);
2997 		}
2998 
2999 		/* this probably means something bad is happening */
3000 		if (ints & DXEPINT_INTKNEPMIS) {
3001 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3002 				 __func__, idx);
3003 		}
3004 
3005 		/* FIFO has space or is empty (see GAHBCFG) */
3006 		if (hsotg->dedicated_fifos &&
3007 		    ints & DXEPINT_TXFEMP) {
3008 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3009 				__func__, idx);
3010 			if (!using_dma(hsotg))
3011 				dwc2_hsotg_trytx(hsotg, hs_ep);
3012 		}
3013 	}
3014 }
3015 
3016 /**
3017  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3018  * @hsotg: The device state.
3019  *
3020  * Handle updating the device settings after the enumeration phase has
3021  * been completed.
3022  */
3023 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3024 {
3025 	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3026 	int ep0_mps = 0, ep_mps = 8;
3027 
3028 	/*
3029 	 * This should signal the finish of the enumeration phase
3030 	 * of the USB handshaking, so we should now know what rate
3031 	 * we connected at.
3032 	 */
3033 
3034 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3035 
3036 	/*
3037 	 * note, since we're limited by the size of transfer on EP0, and
3038 	 * it seems IN transfers must be a even number of packets we do
3039 	 * not advertise a 64byte MPS on EP0.
3040 	 */
3041 
3042 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3043 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3044 	case DSTS_ENUMSPD_FS:
3045 	case DSTS_ENUMSPD_FS48:
3046 		hsotg->gadget.speed = USB_SPEED_FULL;
3047 		ep0_mps = EP0_MPS_LIMIT;
3048 		ep_mps = 1023;
3049 		break;
3050 
3051 	case DSTS_ENUMSPD_HS:
3052 		hsotg->gadget.speed = USB_SPEED_HIGH;
3053 		ep0_mps = EP0_MPS_LIMIT;
3054 		ep_mps = 1024;
3055 		break;
3056 
3057 	case DSTS_ENUMSPD_LS:
3058 		hsotg->gadget.speed = USB_SPEED_LOW;
3059 		ep0_mps = 8;
3060 		ep_mps = 8;
3061 		/*
3062 		 * note, we don't actually support LS in this driver at the
3063 		 * moment, and the documentation seems to imply that it isn't
3064 		 * supported by the PHYs on some of the devices.
3065 		 */
3066 		break;
3067 	}
3068 	dev_info(hsotg->dev, "new device is %s\n",
3069 		 usb_speed_string(hsotg->gadget.speed));
3070 
3071 	/*
3072 	 * we should now know the maximum packet size for an
3073 	 * endpoint, so set the endpoints to a default value.
3074 	 */
3075 
3076 	if (ep0_mps) {
3077 		int i;
3078 		/* Initialize ep0 for both in and out directions */
3079 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3080 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3081 		for (i = 1; i < hsotg->num_of_eps; i++) {
3082 			if (hsotg->eps_in[i])
3083 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3084 							    0, 1);
3085 			if (hsotg->eps_out[i])
3086 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3087 							    0, 0);
3088 		}
3089 	}
3090 
3091 	/* ensure after enumeration our EP0 is active */
3092 
3093 	dwc2_hsotg_enqueue_setup(hsotg);
3094 
3095 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3096 		dwc2_readl(hsotg->regs + DIEPCTL0),
3097 		dwc2_readl(hsotg->regs + DOEPCTL0));
3098 }
3099 
3100 /**
3101  * kill_all_requests - remove all requests from the endpoint's queue
3102  * @hsotg: The device state.
3103  * @ep: The endpoint the requests may be on.
3104  * @result: The result code to use.
3105  *
3106  * Go through the requests on the given endpoint and mark them
3107  * completed with the given result code.
3108  */
3109 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3110 			      struct dwc2_hsotg_ep *ep,
3111 			      int result)
3112 {
3113 	struct dwc2_hsotg_req *req, *treq;
3114 	unsigned int size;
3115 
3116 	ep->req = NULL;
3117 
3118 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3119 		dwc2_hsotg_complete_request(hsotg, ep, req,
3120 					    result);
3121 
3122 	if (!hsotg->dedicated_fifos)
3123 		return;
3124 	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3125 	if (size < ep->fifo_size)
3126 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3127 }
3128 
3129 /**
3130  * dwc2_hsotg_disconnect - disconnect service
3131  * @hsotg: The device state.
3132  *
3133  * The device has been disconnected. Remove all current
3134  * transactions and signal the gadget driver that this
3135  * has happened.
3136  */
3137 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3138 {
3139 	unsigned int ep;
3140 
3141 	if (!hsotg->connected)
3142 		return;
3143 
3144 	hsotg->connected = 0;
3145 	hsotg->test_mode = 0;
3146 
3147 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3148 		if (hsotg->eps_in[ep])
3149 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3150 					  -ESHUTDOWN);
3151 		if (hsotg->eps_out[ep])
3152 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3153 					  -ESHUTDOWN);
3154 	}
3155 
3156 	call_gadget(hsotg, disconnect);
3157 	hsotg->lx_state = DWC2_L3;
3158 
3159 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3160 }
3161 
3162 /**
3163  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3164  * @hsotg: The device state:
3165  * @periodic: True if this is a periodic FIFO interrupt
3166  */
3167 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3168 {
3169 	struct dwc2_hsotg_ep *ep;
3170 	int epno, ret;
3171 
3172 	/* look through for any more data to transmit */
3173 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3174 		ep = index_to_ep(hsotg, epno, 1);
3175 
3176 		if (!ep)
3177 			continue;
3178 
3179 		if (!ep->dir_in)
3180 			continue;
3181 
3182 		if ((periodic && !ep->periodic) ||
3183 		    (!periodic && ep->periodic))
3184 			continue;
3185 
3186 		ret = dwc2_hsotg_trytx(hsotg, ep);
3187 		if (ret < 0)
3188 			break;
3189 	}
3190 }
3191 
3192 /* IRQ flags which will trigger a retry around the IRQ loop */
3193 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3194 			GINTSTS_PTXFEMP |  \
3195 			GINTSTS_RXFLVL)
3196 
3197 /**
3198  * dwc2_hsotg_core_init - issue softreset to the core
3199  * @hsotg: The device state
3200  *
3201  * Issue a soft reset to the core, and await the core finishing it.
3202  */
3203 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3204 				       bool is_usb_reset)
3205 {
3206 	u32 intmsk;
3207 	u32 val;
3208 	u32 usbcfg;
3209 	u32 dcfg = 0;
3210 
3211 	/* Kill any ep0 requests as controller will be reinitialized */
3212 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3213 
3214 	if (!is_usb_reset)
3215 		if (dwc2_core_reset(hsotg, true))
3216 			return;
3217 
3218 	/*
3219 	 * we must now enable ep0 ready for host detection and then
3220 	 * set configuration.
3221 	 */
3222 
3223 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3224 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3225 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3226 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3227 
3228 	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3229 	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3230 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3231 		/* FS/LS Dedicated Transceiver Interface */
3232 		usbcfg |= GUSBCFG_PHYSEL;
3233 	} else {
3234 		/* set the PLL on, remove the HNP/SRP and set the PHY */
3235 		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3236 		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3237 			(val << GUSBCFG_USBTRDTIM_SHIFT);
3238 	}
3239 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3240 
3241 	dwc2_hsotg_init_fifo(hsotg);
3242 
3243 	if (!is_usb_reset)
3244 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3245 
3246 	dcfg |= DCFG_EPMISCNT(1);
3247 
3248 	switch (hsotg->params.speed) {
3249 	case DWC2_SPEED_PARAM_LOW:
3250 		dcfg |= DCFG_DEVSPD_LS;
3251 		break;
3252 	case DWC2_SPEED_PARAM_FULL:
3253 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3254 			dcfg |= DCFG_DEVSPD_FS48;
3255 		else
3256 			dcfg |= DCFG_DEVSPD_FS;
3257 		break;
3258 	default:
3259 		dcfg |= DCFG_DEVSPD_HS;
3260 	}
3261 
3262 	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3263 
3264 	/* Clear any pending OTG interrupts */
3265 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3266 
3267 	/* Clear any pending interrupts */
3268 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3269 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3270 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3271 		GINTSTS_USBRST | GINTSTS_RESETDET |
3272 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3273 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3274 		GINTSTS_LPMTRANRCVD;
3275 
3276 	if (!using_desc_dma(hsotg))
3277 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3278 
3279 	if (!hsotg->params.external_id_pin_ctl)
3280 		intmsk |= GINTSTS_CONIDSTSCHNG;
3281 
3282 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3283 
3284 	if (using_dma(hsotg)) {
3285 		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3286 			    hsotg->params.ahbcfg,
3287 			    hsotg->regs + GAHBCFG);
3288 
3289 		/* Set DDMA mode support in the core if needed */
3290 		if (using_desc_dma(hsotg))
3291 			dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3292 
3293 	} else {
3294 		dwc2_writel(((hsotg->dedicated_fifos) ?
3295 						(GAHBCFG_NP_TXF_EMP_LVL |
3296 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3297 			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3298 	}
3299 
3300 	/*
3301 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3302 	 * when we have no data to transfer. Otherwise we get being flooded by
3303 	 * interrupts.
3304 	 */
3305 
3306 	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3307 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3308 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3309 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3310 		hsotg->regs + DIEPMSK);
3311 
3312 	/*
3313 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3314 	 * DMA mode we may need this and StsPhseRcvd.
3315 	 */
3316 	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3317 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3318 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3319 		DOEPMSK_SETUPMSK,
3320 		hsotg->regs + DOEPMSK);
3321 
3322 	/* Enable BNA interrupt for DDMA */
3323 	if (using_desc_dma(hsotg))
3324 		dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3325 
3326 	dwc2_writel(0, hsotg->regs + DAINTMSK);
3327 
3328 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3329 		dwc2_readl(hsotg->regs + DIEPCTL0),
3330 		dwc2_readl(hsotg->regs + DOEPCTL0));
3331 
3332 	/* enable in and out endpoint interrupts */
3333 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3334 
3335 	/*
3336 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3337 	 * the data. In DMA mode, we get events from the FIFO but also
3338 	 * things we cannot process, so do not use it.
3339 	 */
3340 	if (!using_dma(hsotg))
3341 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3342 
3343 	/* Enable interrupts for EP0 in and out */
3344 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3345 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3346 
3347 	if (!is_usb_reset) {
3348 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3349 		udelay(10);  /* see openiboot */
3350 		dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3351 	}
3352 
3353 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3354 
3355 	/*
3356 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3357 	 * writing to the EPCTL register..
3358 	 */
3359 
3360 	/* set to read 1 8byte packet */
3361 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3362 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3363 
3364 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3365 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3366 	       DXEPCTL_USBACTEP,
3367 	       hsotg->regs + DOEPCTL0);
3368 
3369 	/* enable, but don't activate EP0in */
3370 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3371 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3372 
3373 	/* clear global NAKs */
3374 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3375 	if (!is_usb_reset)
3376 		val |= DCTL_SFTDISCON;
3377 	dwc2_set_bit(hsotg->regs + DCTL, val);
3378 
3379 	/* configure the core to support LPM */
3380 	dwc2_gadget_init_lpm(hsotg);
3381 
3382 	/* must be at-least 3ms to allow bus to see disconnect */
3383 	mdelay(3);
3384 
3385 	hsotg->lx_state = DWC2_L0;
3386 
3387 	dwc2_hsotg_enqueue_setup(hsotg);
3388 
3389 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3390 		dwc2_readl(hsotg->regs + DIEPCTL0),
3391 		dwc2_readl(hsotg->regs + DOEPCTL0));
3392 }
3393 
3394 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3395 {
3396 	/* set the soft-disconnect bit */
3397 	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3398 }
3399 
3400 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3401 {
3402 	/* remove the soft-disconnect and let's go */
3403 	dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3404 }
3405 
3406 /**
3407  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3408  * @hsotg: The device state:
3409  *
3410  * This interrupt indicates one of the following conditions occurred while
3411  * transmitting an ISOC transaction.
3412  * - Corrupted IN Token for ISOC EP.
3413  * - Packet not complete in FIFO.
3414  *
3415  * The following actions will be taken:
3416  * - Determine the EP
3417  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3418  */
3419 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3420 {
3421 	struct dwc2_hsotg_ep *hs_ep;
3422 	u32 epctrl;
3423 	u32 daintmsk;
3424 	u32 idx;
3425 
3426 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3427 
3428 	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3429 
3430 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3431 		hs_ep = hsotg->eps_in[idx];
3432 		/* Proceed only unmasked ISOC EPs */
3433 		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3434 			continue;
3435 
3436 		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3437 		if ((epctrl & DXEPCTL_EPENA) &&
3438 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3439 			epctrl |= DXEPCTL_SNAK;
3440 			epctrl |= DXEPCTL_EPDIS;
3441 			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3442 		}
3443 	}
3444 
3445 	/* Clear interrupt */
3446 	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3447 }
3448 
3449 /**
3450  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3451  * @hsotg: The device state:
3452  *
3453  * This interrupt indicates one of the following conditions occurred while
3454  * transmitting an ISOC transaction.
3455  * - Corrupted OUT Token for ISOC EP.
3456  * - Packet not complete in FIFO.
3457  *
3458  * The following actions will be taken:
3459  * - Determine the EP
3460  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3461  */
3462 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3463 {
3464 	u32 gintsts;
3465 	u32 gintmsk;
3466 	u32 daintmsk;
3467 	u32 epctrl;
3468 	struct dwc2_hsotg_ep *hs_ep;
3469 	int idx;
3470 
3471 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3472 
3473 	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3474 	daintmsk >>= DAINT_OUTEP_SHIFT;
3475 
3476 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3477 		hs_ep = hsotg->eps_out[idx];
3478 		/* Proceed only unmasked ISOC EPs */
3479 		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3480 			continue;
3481 
3482 		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3483 		if ((epctrl & DXEPCTL_EPENA) &&
3484 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3485 			/* Unmask GOUTNAKEFF interrupt */
3486 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3487 			gintmsk |= GINTSTS_GOUTNAKEFF;
3488 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3489 
3490 			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3491 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3492 				dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3493 				break;
3494 			}
3495 		}
3496 	}
3497 
3498 	/* Clear interrupt */
3499 	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3500 }
3501 
3502 /**
3503  * dwc2_hsotg_irq - handle device interrupt
3504  * @irq: The IRQ number triggered
3505  * @pw: The pw value when registered the handler.
3506  */
3507 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3508 {
3509 	struct dwc2_hsotg *hsotg = pw;
3510 	int retry_count = 8;
3511 	u32 gintsts;
3512 	u32 gintmsk;
3513 
3514 	if (!dwc2_is_device_mode(hsotg))
3515 		return IRQ_NONE;
3516 
3517 	spin_lock(&hsotg->lock);
3518 irq_retry:
3519 	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3520 	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3521 
3522 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3523 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3524 
3525 	gintsts &= gintmsk;
3526 
3527 	if (gintsts & GINTSTS_RESETDET) {
3528 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3529 
3530 		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3531 
3532 		/* This event must be used only if controller is suspended */
3533 		if (hsotg->lx_state == DWC2_L2) {
3534 			dwc2_exit_partial_power_down(hsotg, true);
3535 			hsotg->lx_state = DWC2_L0;
3536 		}
3537 	}
3538 
3539 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3540 		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3541 		u32 connected = hsotg->connected;
3542 
3543 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3544 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3545 			dwc2_readl(hsotg->regs + GNPTXSTS));
3546 
3547 		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3548 
3549 		/* Report disconnection if it is not already done. */
3550 		dwc2_hsotg_disconnect(hsotg);
3551 
3552 		/* Reset device address to zero */
3553 		dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3554 
3555 		if (usb_status & GOTGCTL_BSESVLD && connected)
3556 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3557 	}
3558 
3559 	if (gintsts & GINTSTS_ENUMDONE) {
3560 		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3561 
3562 		dwc2_hsotg_irq_enumdone(hsotg);
3563 	}
3564 
3565 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3566 		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3567 		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3568 		u32 daint_out, daint_in;
3569 		int ep;
3570 
3571 		daint &= daintmsk;
3572 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3573 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3574 
3575 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3576 
3577 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3578 						ep++, daint_out >>= 1) {
3579 			if (daint_out & 1)
3580 				dwc2_hsotg_epint(hsotg, ep, 0);
3581 		}
3582 
3583 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3584 						ep++, daint_in >>= 1) {
3585 			if (daint_in & 1)
3586 				dwc2_hsotg_epint(hsotg, ep, 1);
3587 		}
3588 	}
3589 
3590 	/* check both FIFOs */
3591 
3592 	if (gintsts & GINTSTS_NPTXFEMP) {
3593 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3594 
3595 		/*
3596 		 * Disable the interrupt to stop it happening again
3597 		 * unless one of these endpoint routines decides that
3598 		 * it needs re-enabling
3599 		 */
3600 
3601 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3602 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3603 	}
3604 
3605 	if (gintsts & GINTSTS_PTXFEMP) {
3606 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3607 
3608 		/* See note in GINTSTS_NPTxFEmp */
3609 
3610 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3611 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3612 	}
3613 
3614 	if (gintsts & GINTSTS_RXFLVL) {
3615 		/*
3616 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3617 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3618 		 * set.
3619 		 */
3620 
3621 		dwc2_hsotg_handle_rx(hsotg);
3622 	}
3623 
3624 	if (gintsts & GINTSTS_ERLYSUSP) {
3625 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3626 		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3627 	}
3628 
3629 	/*
3630 	 * these next two seem to crop-up occasionally causing the core
3631 	 * to shutdown the USB transfer, so try clearing them and logging
3632 	 * the occurrence.
3633 	 */
3634 
3635 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3636 		u8 idx;
3637 		u32 epctrl;
3638 		u32 gintmsk;
3639 		u32 daintmsk;
3640 		struct dwc2_hsotg_ep *hs_ep;
3641 
3642 		daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3643 		daintmsk >>= DAINT_OUTEP_SHIFT;
3644 		/* Mask this interrupt */
3645 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3646 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3647 		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3648 
3649 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3650 		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3651 			hs_ep = hsotg->eps_out[idx];
3652 			/* Proceed only unmasked ISOC EPs */
3653 			if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3654 				continue;
3655 
3656 			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3657 
3658 			if (epctrl & DXEPCTL_EPENA) {
3659 				epctrl |= DXEPCTL_SNAK;
3660 				epctrl |= DXEPCTL_EPDIS;
3661 				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3662 			}
3663 		}
3664 
3665 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3666 	}
3667 
3668 	if (gintsts & GINTSTS_GINNAKEFF) {
3669 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3670 
3671 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3672 
3673 		dwc2_hsotg_dump(hsotg);
3674 	}
3675 
3676 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3677 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3678 
3679 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3680 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3681 
3682 	/*
3683 	 * if we've had fifo events, we should try and go around the
3684 	 * loop again to see if there's any point in returning yet.
3685 	 */
3686 
3687 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3688 		goto irq_retry;
3689 
3690 	spin_unlock(&hsotg->lock);
3691 
3692 	return IRQ_HANDLED;
3693 }
3694 
3695 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3696 				   struct dwc2_hsotg_ep *hs_ep)
3697 {
3698 	u32 epctrl_reg;
3699 	u32 epint_reg;
3700 
3701 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3702 		DOEPCTL(hs_ep->index);
3703 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3704 		DOEPINT(hs_ep->index);
3705 
3706 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3707 		hs_ep->name);
3708 
3709 	if (hs_ep->dir_in) {
3710 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3711 			dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3712 			/* Wait for Nak effect */
3713 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3714 						    DXEPINT_INEPNAKEFF, 100))
3715 				dev_warn(hsotg->dev,
3716 					 "%s: timeout DIEPINT.NAKEFF\n",
3717 					 __func__);
3718 		} else {
3719 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3720 			/* Wait for Nak effect */
3721 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3722 						    GINTSTS_GINNAKEFF, 100))
3723 				dev_warn(hsotg->dev,
3724 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3725 					 __func__);
3726 		}
3727 	} else {
3728 		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3729 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3730 
3731 		/* Wait for global nak to take effect */
3732 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3733 					    GINTSTS_GOUTNAKEFF, 100))
3734 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3735 				 __func__);
3736 	}
3737 
3738 	/* Disable ep */
3739 	dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3740 
3741 	/* Wait for ep to be disabled */
3742 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3743 		dev_warn(hsotg->dev,
3744 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3745 
3746 	/* Clear EPDISBLD interrupt */
3747 	dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3748 
3749 	if (hs_ep->dir_in) {
3750 		unsigned short fifo_index;
3751 
3752 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3753 			fifo_index = hs_ep->fifo_index;
3754 		else
3755 			fifo_index = 0;
3756 
3757 		/* Flush TX FIFO */
3758 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3759 
3760 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3761 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3762 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3763 
3764 	} else {
3765 		/* Remove global NAKs */
3766 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3767 	}
3768 }
3769 
3770 /**
3771  * dwc2_hsotg_ep_enable - enable the given endpoint
3772  * @ep: The USB endpint to configure
3773  * @desc: The USB endpoint descriptor to configure with.
3774  *
3775  * This is called from the USB gadget code's usb_ep_enable().
3776  */
3777 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3778 				const struct usb_endpoint_descriptor *desc)
3779 {
3780 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3781 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3782 	unsigned long flags;
3783 	unsigned int index = hs_ep->index;
3784 	u32 epctrl_reg;
3785 	u32 epctrl;
3786 	u32 mps;
3787 	u32 mc;
3788 	u32 mask;
3789 	unsigned int dir_in;
3790 	unsigned int i, val, size;
3791 	int ret = 0;
3792 
3793 	dev_dbg(hsotg->dev,
3794 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3795 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3796 		desc->wMaxPacketSize, desc->bInterval);
3797 
3798 	/* not to be called for EP0 */
3799 	if (index == 0) {
3800 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3801 		return -EINVAL;
3802 	}
3803 
3804 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3805 	if (dir_in != hs_ep->dir_in) {
3806 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3807 		return -EINVAL;
3808 	}
3809 
3810 	mps = usb_endpoint_maxp(desc);
3811 	mc = usb_endpoint_maxp_mult(desc);
3812 
3813 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3814 
3815 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3816 	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3817 
3818 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3819 		__func__, epctrl, epctrl_reg);
3820 
3821 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3822 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3823 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3824 			MAX_DMA_DESC_NUM_GENERIC *
3825 			sizeof(struct dwc2_dma_desc),
3826 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3827 		if (!hs_ep->desc_list) {
3828 			ret = -ENOMEM;
3829 			goto error2;
3830 		}
3831 	}
3832 
3833 	spin_lock_irqsave(&hsotg->lock, flags);
3834 
3835 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3836 	epctrl |= DXEPCTL_MPS(mps);
3837 
3838 	/*
3839 	 * mark the endpoint as active, otherwise the core may ignore
3840 	 * transactions entirely for this endpoint
3841 	 */
3842 	epctrl |= DXEPCTL_USBACTEP;
3843 
3844 	/* update the endpoint state */
3845 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3846 
3847 	/* default, set to non-periodic */
3848 	hs_ep->isochronous = 0;
3849 	hs_ep->periodic = 0;
3850 	hs_ep->halted = 0;
3851 	hs_ep->interval = desc->bInterval;
3852 
3853 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3854 	case USB_ENDPOINT_XFER_ISOC:
3855 		epctrl |= DXEPCTL_EPTYPE_ISO;
3856 		epctrl |= DXEPCTL_SETEVENFR;
3857 		hs_ep->isochronous = 1;
3858 		hs_ep->interval = 1 << (desc->bInterval - 1);
3859 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3860 		hs_ep->isoc_chain_num = 0;
3861 		hs_ep->next_desc = 0;
3862 		if (dir_in) {
3863 			hs_ep->periodic = 1;
3864 			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3865 			mask |= DIEPMSK_NAKMSK;
3866 			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3867 		} else {
3868 			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3869 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3870 			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3871 		}
3872 		break;
3873 
3874 	case USB_ENDPOINT_XFER_BULK:
3875 		epctrl |= DXEPCTL_EPTYPE_BULK;
3876 		break;
3877 
3878 	case USB_ENDPOINT_XFER_INT:
3879 		if (dir_in)
3880 			hs_ep->periodic = 1;
3881 
3882 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3883 			hs_ep->interval = 1 << (desc->bInterval - 1);
3884 
3885 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3886 		break;
3887 
3888 	case USB_ENDPOINT_XFER_CONTROL:
3889 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3890 		break;
3891 	}
3892 
3893 	/*
3894 	 * if the hardware has dedicated fifos, we must give each IN EP
3895 	 * a unique tx-fifo even if it is non-periodic.
3896 	 */
3897 	if (dir_in && hsotg->dedicated_fifos) {
3898 		u32 fifo_index = 0;
3899 		u32 fifo_size = UINT_MAX;
3900 
3901 		size = hs_ep->ep.maxpacket * hs_ep->mc;
3902 		for (i = 1; i < hsotg->num_of_eps; ++i) {
3903 			if (hsotg->fifo_map & (1 << i))
3904 				continue;
3905 			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3906 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3907 			if (val < size)
3908 				continue;
3909 			/* Search for smallest acceptable fifo */
3910 			if (val < fifo_size) {
3911 				fifo_size = val;
3912 				fifo_index = i;
3913 			}
3914 		}
3915 		if (!fifo_index) {
3916 			dev_err(hsotg->dev,
3917 				"%s: No suitable fifo found\n", __func__);
3918 			ret = -ENOMEM;
3919 			goto error1;
3920 		}
3921 		hsotg->fifo_map |= 1 << fifo_index;
3922 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3923 		hs_ep->fifo_index = fifo_index;
3924 		hs_ep->fifo_size = fifo_size;
3925 	}
3926 
3927 	/* for non control endpoints, set PID to D0 */
3928 	if (index && !hs_ep->isochronous)
3929 		epctrl |= DXEPCTL_SETD0PID;
3930 
3931 	/* WA for Full speed ISOC IN in DDMA mode.
3932 	 * By Clear NAK status of EP, core will send ZLP
3933 	 * to IN token and assert NAK interrupt relying
3934 	 * on TxFIFO status only
3935 	 */
3936 
3937 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
3938 	    hs_ep->isochronous && dir_in) {
3939 		/* The WA applies only to core versions from 2.72a
3940 		 * to 4.00a (including both). Also for FS_IOT_1.00a
3941 		 * and HS_IOT_1.00a.
3942 		 */
3943 		u32 gsnpsid = dwc2_readl(hsotg->regs + GSNPSID);
3944 
3945 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
3946 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
3947 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
3948 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
3949 			epctrl |= DXEPCTL_CNAK;
3950 	}
3951 
3952 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3953 		__func__, epctrl);
3954 
3955 	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3956 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3957 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3958 
3959 	/* enable the endpoint interrupt */
3960 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3961 
3962 error1:
3963 	spin_unlock_irqrestore(&hsotg->lock, flags);
3964 
3965 error2:
3966 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3967 		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3968 			sizeof(struct dwc2_dma_desc),
3969 			hs_ep->desc_list, hs_ep->desc_list_dma);
3970 		hs_ep->desc_list = NULL;
3971 	}
3972 
3973 	return ret;
3974 }
3975 
3976 /**
3977  * dwc2_hsotg_ep_disable - disable given endpoint
3978  * @ep: The endpoint to disable.
3979  */
3980 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3981 {
3982 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3983 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3984 	int dir_in = hs_ep->dir_in;
3985 	int index = hs_ep->index;
3986 	unsigned long flags;
3987 	u32 epctrl_reg;
3988 	u32 ctrl;
3989 
3990 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3991 
3992 	if (ep == &hsotg->eps_out[0]->ep) {
3993 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3994 		return -EINVAL;
3995 	}
3996 
3997 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3998 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
3999 		return -EINVAL;
4000 	}
4001 
4002 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4003 
4004 	spin_lock_irqsave(&hsotg->lock, flags);
4005 
4006 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4007 
4008 	if (ctrl & DXEPCTL_EPENA)
4009 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4010 
4011 	ctrl &= ~DXEPCTL_EPENA;
4012 	ctrl &= ~DXEPCTL_USBACTEP;
4013 	ctrl |= DXEPCTL_SNAK;
4014 
4015 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4016 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4017 
4018 	/* disable endpoint interrupts */
4019 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4020 
4021 	/* terminate all requests with shutdown */
4022 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4023 
4024 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4025 	hs_ep->fifo_index = 0;
4026 	hs_ep->fifo_size = 0;
4027 
4028 	spin_unlock_irqrestore(&hsotg->lock, flags);
4029 	return 0;
4030 }
4031 
4032 /**
4033  * on_list - check request is on the given endpoint
4034  * @ep: The endpoint to check.
4035  * @test: The request to test if it is on the endpoint.
4036  */
4037 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4038 {
4039 	struct dwc2_hsotg_req *req, *treq;
4040 
4041 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4042 		if (req == test)
4043 			return true;
4044 	}
4045 
4046 	return false;
4047 }
4048 
4049 /**
4050  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4051  * @ep: The endpoint to dequeue.
4052  * @req: The request to be removed from a queue.
4053  */
4054 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4055 {
4056 	struct dwc2_hsotg_req *hs_req = our_req(req);
4057 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4058 	struct dwc2_hsotg *hs = hs_ep->parent;
4059 	unsigned long flags;
4060 
4061 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4062 
4063 	spin_lock_irqsave(&hs->lock, flags);
4064 
4065 	if (!on_list(hs_ep, hs_req)) {
4066 		spin_unlock_irqrestore(&hs->lock, flags);
4067 		return -EINVAL;
4068 	}
4069 
4070 	/* Dequeue already started request */
4071 	if (req == &hs_ep->req->req)
4072 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4073 
4074 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4075 	spin_unlock_irqrestore(&hs->lock, flags);
4076 
4077 	return 0;
4078 }
4079 
4080 /**
4081  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4082  * @ep: The endpoint to set halt.
4083  * @value: Set or unset the halt.
4084  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4085  *       the endpoint is busy processing requests.
4086  *
4087  * We need to stall the endpoint immediately if request comes from set_feature
4088  * protocol command handler.
4089  */
4090 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4091 {
4092 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4093 	struct dwc2_hsotg *hs = hs_ep->parent;
4094 	int index = hs_ep->index;
4095 	u32 epreg;
4096 	u32 epctl;
4097 	u32 xfertype;
4098 
4099 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4100 
4101 	if (index == 0) {
4102 		if (value)
4103 			dwc2_hsotg_stall_ep0(hs);
4104 		else
4105 			dev_warn(hs->dev,
4106 				 "%s: can't clear halt on ep0\n", __func__);
4107 		return 0;
4108 	}
4109 
4110 	if (hs_ep->isochronous) {
4111 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4112 		return -EINVAL;
4113 	}
4114 
4115 	if (!now && value && !list_empty(&hs_ep->queue)) {
4116 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4117 			ep->name);
4118 		return -EAGAIN;
4119 	}
4120 
4121 	if (hs_ep->dir_in) {
4122 		epreg = DIEPCTL(index);
4123 		epctl = dwc2_readl(hs->regs + epreg);
4124 
4125 		if (value) {
4126 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4127 			if (epctl & DXEPCTL_EPENA)
4128 				epctl |= DXEPCTL_EPDIS;
4129 		} else {
4130 			epctl &= ~DXEPCTL_STALL;
4131 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4132 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4133 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4134 				epctl |= DXEPCTL_SETD0PID;
4135 		}
4136 		dwc2_writel(epctl, hs->regs + epreg);
4137 	} else {
4138 		epreg = DOEPCTL(index);
4139 		epctl = dwc2_readl(hs->regs + epreg);
4140 
4141 		if (value) {
4142 			epctl |= DXEPCTL_STALL;
4143 		} else {
4144 			epctl &= ~DXEPCTL_STALL;
4145 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4146 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4147 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4148 				epctl |= DXEPCTL_SETD0PID;
4149 		}
4150 		dwc2_writel(epctl, hs->regs + epreg);
4151 	}
4152 
4153 	hs_ep->halted = value;
4154 
4155 	return 0;
4156 }
4157 
4158 /**
4159  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4160  * @ep: The endpoint to set halt.
4161  * @value: Set or unset the halt.
4162  */
4163 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4164 {
4165 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4166 	struct dwc2_hsotg *hs = hs_ep->parent;
4167 	unsigned long flags = 0;
4168 	int ret = 0;
4169 
4170 	spin_lock_irqsave(&hs->lock, flags);
4171 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4172 	spin_unlock_irqrestore(&hs->lock, flags);
4173 
4174 	return ret;
4175 }
4176 
4177 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4178 	.enable		= dwc2_hsotg_ep_enable,
4179 	.disable	= dwc2_hsotg_ep_disable,
4180 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4181 	.free_request	= dwc2_hsotg_ep_free_request,
4182 	.queue		= dwc2_hsotg_ep_queue_lock,
4183 	.dequeue	= dwc2_hsotg_ep_dequeue,
4184 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4185 	/* note, don't believe we have any call for the fifo routines */
4186 };
4187 
4188 /**
4189  * dwc2_hsotg_init - initialize the usb core
4190  * @hsotg: The driver state
4191  */
4192 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4193 {
4194 	u32 trdtim;
4195 	u32 usbcfg;
4196 	/* unmask subset of endpoint interrupts */
4197 
4198 	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4199 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4200 		    hsotg->regs + DIEPMSK);
4201 
4202 	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4203 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4204 		    hsotg->regs + DOEPMSK);
4205 
4206 	dwc2_writel(0, hsotg->regs + DAINTMSK);
4207 
4208 	/* Be in disconnected state until gadget is registered */
4209 	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
4210 
4211 	/* setup fifos */
4212 
4213 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4214 		dwc2_readl(hsotg->regs + GRXFSIZ),
4215 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4216 
4217 	dwc2_hsotg_init_fifo(hsotg);
4218 
4219 	/* keep other bits untouched (so e.g. forced modes are not lost) */
4220 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4221 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4222 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4223 
4224 	/* set the PLL on, remove the HNP/SRP and set the PHY */
4225 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4226 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4227 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4228 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4229 
4230 	if (using_dma(hsotg))
4231 		dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4232 }
4233 
4234 /**
4235  * dwc2_hsotg_udc_start - prepare the udc for work
4236  * @gadget: The usb gadget state
4237  * @driver: The usb gadget driver
4238  *
4239  * Perform initialization to prepare udc device and driver
4240  * to work.
4241  */
4242 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4243 				struct usb_gadget_driver *driver)
4244 {
4245 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4246 	unsigned long flags;
4247 	int ret;
4248 
4249 	if (!hsotg) {
4250 		pr_err("%s: called with no device\n", __func__);
4251 		return -ENODEV;
4252 	}
4253 
4254 	if (!driver) {
4255 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4256 		return -EINVAL;
4257 	}
4258 
4259 	if (driver->max_speed < USB_SPEED_FULL)
4260 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4261 
4262 	if (!driver->setup) {
4263 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4264 		return -EINVAL;
4265 	}
4266 
4267 	WARN_ON(hsotg->driver);
4268 
4269 	driver->driver.bus = NULL;
4270 	hsotg->driver = driver;
4271 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4272 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4273 
4274 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4275 		ret = dwc2_lowlevel_hw_enable(hsotg);
4276 		if (ret)
4277 			goto err;
4278 	}
4279 
4280 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4281 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4282 
4283 	spin_lock_irqsave(&hsotg->lock, flags);
4284 	if (dwc2_hw_is_device(hsotg)) {
4285 		dwc2_hsotg_init(hsotg);
4286 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4287 	}
4288 
4289 	hsotg->enabled = 0;
4290 	spin_unlock_irqrestore(&hsotg->lock, flags);
4291 
4292 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4293 
4294 	return 0;
4295 
4296 err:
4297 	hsotg->driver = NULL;
4298 	return ret;
4299 }
4300 
4301 /**
4302  * dwc2_hsotg_udc_stop - stop the udc
4303  * @gadget: The usb gadget state
4304  * @driver: The usb gadget driver
4305  *
4306  * Stop udc hw block and stay tunned for future transmissions
4307  */
4308 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4309 {
4310 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4311 	unsigned long flags = 0;
4312 	int ep;
4313 
4314 	if (!hsotg)
4315 		return -ENODEV;
4316 
4317 	/* all endpoints should be shutdown */
4318 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4319 		if (hsotg->eps_in[ep])
4320 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4321 		if (hsotg->eps_out[ep])
4322 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4323 	}
4324 
4325 	spin_lock_irqsave(&hsotg->lock, flags);
4326 
4327 	hsotg->driver = NULL;
4328 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4329 	hsotg->enabled = 0;
4330 
4331 	spin_unlock_irqrestore(&hsotg->lock, flags);
4332 
4333 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4334 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4335 
4336 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4337 		dwc2_lowlevel_hw_disable(hsotg);
4338 
4339 	return 0;
4340 }
4341 
4342 /**
4343  * dwc2_hsotg_gadget_getframe - read the frame number
4344  * @gadget: The usb gadget state
4345  *
4346  * Read the {micro} frame number
4347  */
4348 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4349 {
4350 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4351 }
4352 
4353 /**
4354  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4355  * @gadget: The usb gadget state
4356  * @is_on: Current state of the USB PHY
4357  *
4358  * Connect/Disconnect the USB PHY pullup
4359  */
4360 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4361 {
4362 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4363 	unsigned long flags = 0;
4364 
4365 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4366 		hsotg->op_state);
4367 
4368 	/* Don't modify pullup state while in host mode */
4369 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4370 		hsotg->enabled = is_on;
4371 		return 0;
4372 	}
4373 
4374 	spin_lock_irqsave(&hsotg->lock, flags);
4375 	if (is_on) {
4376 		hsotg->enabled = 1;
4377 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4378 		/* Enable ACG feature in device mode,if supported */
4379 		dwc2_enable_acg(hsotg);
4380 		dwc2_hsotg_core_connect(hsotg);
4381 	} else {
4382 		dwc2_hsotg_core_disconnect(hsotg);
4383 		dwc2_hsotg_disconnect(hsotg);
4384 		hsotg->enabled = 0;
4385 	}
4386 
4387 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4388 	spin_unlock_irqrestore(&hsotg->lock, flags);
4389 
4390 	return 0;
4391 }
4392 
4393 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4394 {
4395 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4396 	unsigned long flags;
4397 
4398 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4399 	spin_lock_irqsave(&hsotg->lock, flags);
4400 
4401 	/*
4402 	 * If controller is hibernated, it must exit from power_down
4403 	 * before being initialized / de-initialized
4404 	 */
4405 	if (hsotg->lx_state == DWC2_L2)
4406 		dwc2_exit_partial_power_down(hsotg, false);
4407 
4408 	if (is_active) {
4409 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4410 
4411 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4412 		if (hsotg->enabled) {
4413 			/* Enable ACG feature in device mode,if supported */
4414 			dwc2_enable_acg(hsotg);
4415 			dwc2_hsotg_core_connect(hsotg);
4416 		}
4417 	} else {
4418 		dwc2_hsotg_core_disconnect(hsotg);
4419 		dwc2_hsotg_disconnect(hsotg);
4420 	}
4421 
4422 	spin_unlock_irqrestore(&hsotg->lock, flags);
4423 	return 0;
4424 }
4425 
4426 /**
4427  * dwc2_hsotg_vbus_draw - report bMaxPower field
4428  * @gadget: The usb gadget state
4429  * @mA: Amount of current
4430  *
4431  * Report how much power the device may consume to the phy.
4432  */
4433 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4434 {
4435 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4436 
4437 	if (IS_ERR_OR_NULL(hsotg->uphy))
4438 		return -ENOTSUPP;
4439 	return usb_phy_set_power(hsotg->uphy, mA);
4440 }
4441 
4442 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4443 	.get_frame	= dwc2_hsotg_gadget_getframe,
4444 	.udc_start		= dwc2_hsotg_udc_start,
4445 	.udc_stop		= dwc2_hsotg_udc_stop,
4446 	.pullup                 = dwc2_hsotg_pullup,
4447 	.vbus_session		= dwc2_hsotg_vbus_session,
4448 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4449 };
4450 
4451 /**
4452  * dwc2_hsotg_initep - initialise a single endpoint
4453  * @hsotg: The device state.
4454  * @hs_ep: The endpoint to be initialised.
4455  * @epnum: The endpoint number
4456  *
4457  * Initialise the given endpoint (as part of the probe and device state
4458  * creation) to give to the gadget driver. Setup the endpoint name, any
4459  * direction information and other state that may be required.
4460  */
4461 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4462 			      struct dwc2_hsotg_ep *hs_ep,
4463 				       int epnum,
4464 				       bool dir_in)
4465 {
4466 	char *dir;
4467 
4468 	if (epnum == 0)
4469 		dir = "";
4470 	else if (dir_in)
4471 		dir = "in";
4472 	else
4473 		dir = "out";
4474 
4475 	hs_ep->dir_in = dir_in;
4476 	hs_ep->index = epnum;
4477 
4478 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4479 
4480 	INIT_LIST_HEAD(&hs_ep->queue);
4481 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4482 
4483 	/* add to the list of endpoints known by the gadget driver */
4484 	if (epnum)
4485 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4486 
4487 	hs_ep->parent = hsotg;
4488 	hs_ep->ep.name = hs_ep->name;
4489 
4490 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4491 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4492 	else
4493 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4494 					   epnum ? 1024 : EP0_MPS_LIMIT);
4495 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4496 
4497 	if (epnum == 0) {
4498 		hs_ep->ep.caps.type_control = true;
4499 	} else {
4500 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4501 			hs_ep->ep.caps.type_iso = true;
4502 			hs_ep->ep.caps.type_bulk = true;
4503 		}
4504 		hs_ep->ep.caps.type_int = true;
4505 	}
4506 
4507 	if (dir_in)
4508 		hs_ep->ep.caps.dir_in = true;
4509 	else
4510 		hs_ep->ep.caps.dir_out = true;
4511 
4512 	/*
4513 	 * if we're using dma, we need to set the next-endpoint pointer
4514 	 * to be something valid.
4515 	 */
4516 
4517 	if (using_dma(hsotg)) {
4518 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4519 
4520 		if (dir_in)
4521 			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4522 		else
4523 			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4524 	}
4525 }
4526 
4527 /**
4528  * dwc2_hsotg_hw_cfg - read HW configuration registers
4529  * @param: The device state
4530  *
4531  * Read the USB core HW configuration registers
4532  */
4533 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4534 {
4535 	u32 cfg;
4536 	u32 ep_type;
4537 	u32 i;
4538 
4539 	/* check hardware configuration */
4540 
4541 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4542 
4543 	/* Add ep0 */
4544 	hsotg->num_of_eps++;
4545 
4546 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4547 					sizeof(struct dwc2_hsotg_ep),
4548 					GFP_KERNEL);
4549 	if (!hsotg->eps_in[0])
4550 		return -ENOMEM;
4551 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4552 	hsotg->eps_out[0] = hsotg->eps_in[0];
4553 
4554 	cfg = hsotg->hw_params.dev_ep_dirs;
4555 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4556 		ep_type = cfg & 3;
4557 		/* Direction in or both */
4558 		if (!(ep_type & 2)) {
4559 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4560 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4561 			if (!hsotg->eps_in[i])
4562 				return -ENOMEM;
4563 		}
4564 		/* Direction out or both */
4565 		if (!(ep_type & 1)) {
4566 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4567 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4568 			if (!hsotg->eps_out[i])
4569 				return -ENOMEM;
4570 		}
4571 	}
4572 
4573 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4574 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4575 
4576 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4577 		 hsotg->num_of_eps,
4578 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4579 		 hsotg->fifo_mem);
4580 	return 0;
4581 }
4582 
4583 /**
4584  * dwc2_hsotg_dump - dump state of the udc
4585  * @param: The device state
4586  */
4587 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4588 {
4589 #ifdef DEBUG
4590 	struct device *dev = hsotg->dev;
4591 	void __iomem *regs = hsotg->regs;
4592 	u32 val;
4593 	int idx;
4594 
4595 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4596 		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4597 		 dwc2_readl(regs + DIEPMSK));
4598 
4599 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4600 		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4601 
4602 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4603 		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4604 
4605 	/* show periodic fifo settings */
4606 
4607 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4608 		val = dwc2_readl(regs + DPTXFSIZN(idx));
4609 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4610 			 val >> FIFOSIZE_DEPTH_SHIFT,
4611 			 val & FIFOSIZE_STARTADDR_MASK);
4612 	}
4613 
4614 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4615 		dev_info(dev,
4616 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4617 			 dwc2_readl(regs + DIEPCTL(idx)),
4618 			 dwc2_readl(regs + DIEPTSIZ(idx)),
4619 			 dwc2_readl(regs + DIEPDMA(idx)));
4620 
4621 		val = dwc2_readl(regs + DOEPCTL(idx));
4622 		dev_info(dev,
4623 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4624 			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4625 			 dwc2_readl(regs + DOEPTSIZ(idx)),
4626 			 dwc2_readl(regs + DOEPDMA(idx)));
4627 	}
4628 
4629 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4630 		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4631 #endif
4632 }
4633 
4634 /**
4635  * dwc2_gadget_init - init function for gadget
4636  * @dwc2: The data structure for the DWC2 driver.
4637  */
4638 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4639 {
4640 	struct device *dev = hsotg->dev;
4641 	int epnum;
4642 	int ret;
4643 
4644 	/* Dump fifo information */
4645 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4646 		hsotg->params.g_np_tx_fifo_size);
4647 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4648 
4649 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4650 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4651 	hsotg->gadget.name = dev_name(dev);
4652 	hsotg->remote_wakeup_allowed = 0;
4653 
4654 	if (hsotg->params.lpm)
4655 		hsotg->gadget.lpm_capable = true;
4656 
4657 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4658 		hsotg->gadget.is_otg = 1;
4659 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4660 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4661 
4662 	ret = dwc2_hsotg_hw_cfg(hsotg);
4663 	if (ret) {
4664 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4665 		return ret;
4666 	}
4667 
4668 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4669 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4670 	if (!hsotg->ctrl_buff)
4671 		return -ENOMEM;
4672 
4673 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4674 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4675 	if (!hsotg->ep0_buff)
4676 		return -ENOMEM;
4677 
4678 	if (using_desc_dma(hsotg)) {
4679 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4680 		if (ret < 0)
4681 			return ret;
4682 	}
4683 
4684 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4685 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4686 	if (ret < 0) {
4687 		dev_err(dev, "cannot claim IRQ for gadget\n");
4688 		return ret;
4689 	}
4690 
4691 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4692 
4693 	if (hsotg->num_of_eps == 0) {
4694 		dev_err(dev, "wrong number of EPs (zero)\n");
4695 		return -EINVAL;
4696 	}
4697 
4698 	/* setup endpoint information */
4699 
4700 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4701 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4702 
4703 	/* allocate EP0 request */
4704 
4705 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4706 						     GFP_KERNEL);
4707 	if (!hsotg->ctrl_req) {
4708 		dev_err(dev, "failed to allocate ctrl req\n");
4709 		return -ENOMEM;
4710 	}
4711 
4712 	/* initialise the endpoints now the core has been initialised */
4713 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4714 		if (hsotg->eps_in[epnum])
4715 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4716 					  epnum, 1);
4717 		if (hsotg->eps_out[epnum])
4718 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4719 					  epnum, 0);
4720 	}
4721 
4722 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4723 	if (ret)
4724 		return ret;
4725 
4726 	dwc2_hsotg_dump(hsotg);
4727 
4728 	return 0;
4729 }
4730 
4731 /**
4732  * dwc2_hsotg_remove - remove function for hsotg driver
4733  * @pdev: The platform information for the driver
4734  */
4735 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4736 {
4737 	usb_del_gadget_udc(&hsotg->gadget);
4738 
4739 	return 0;
4740 }
4741 
4742 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4743 {
4744 	unsigned long flags;
4745 
4746 	if (hsotg->lx_state != DWC2_L0)
4747 		return 0;
4748 
4749 	if (hsotg->driver) {
4750 		int ep;
4751 
4752 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4753 			 hsotg->driver->driver.name);
4754 
4755 		spin_lock_irqsave(&hsotg->lock, flags);
4756 		if (hsotg->enabled)
4757 			dwc2_hsotg_core_disconnect(hsotg);
4758 		dwc2_hsotg_disconnect(hsotg);
4759 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4760 		spin_unlock_irqrestore(&hsotg->lock, flags);
4761 
4762 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4763 			if (hsotg->eps_in[ep])
4764 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4765 			if (hsotg->eps_out[ep])
4766 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4767 		}
4768 	}
4769 
4770 	return 0;
4771 }
4772 
4773 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4774 {
4775 	unsigned long flags;
4776 
4777 	if (hsotg->lx_state == DWC2_L2)
4778 		return 0;
4779 
4780 	if (hsotg->driver) {
4781 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4782 			 hsotg->driver->driver.name);
4783 
4784 		spin_lock_irqsave(&hsotg->lock, flags);
4785 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4786 		if (hsotg->enabled) {
4787 			/* Enable ACG feature in device mode,if supported */
4788 			dwc2_enable_acg(hsotg);
4789 			dwc2_hsotg_core_connect(hsotg);
4790 		}
4791 		spin_unlock_irqrestore(&hsotg->lock, flags);
4792 	}
4793 
4794 	return 0;
4795 }
4796 
4797 /**
4798  * dwc2_backup_device_registers() - Backup controller device registers.
4799  * When suspending usb bus, registers needs to be backuped
4800  * if controller power is disabled once suspended.
4801  *
4802  * @hsotg: Programming view of the DWC_otg controller
4803  */
4804 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4805 {
4806 	struct dwc2_dregs_backup *dr;
4807 	int i;
4808 
4809 	dev_dbg(hsotg->dev, "%s\n", __func__);
4810 
4811 	/* Backup dev regs */
4812 	dr = &hsotg->dr_backup;
4813 
4814 	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4815 	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4816 	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4817 	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4818 	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4819 
4820 	for (i = 0; i < hsotg->num_of_eps; i++) {
4821 		/* Backup IN EPs */
4822 		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4823 
4824 		/* Ensure DATA PID is correctly configured */
4825 		if (dr->diepctl[i] & DXEPCTL_DPID)
4826 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4827 		else
4828 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4829 
4830 		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4831 		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4832 
4833 		/* Backup OUT EPs */
4834 		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4835 
4836 		/* Ensure DATA PID is correctly configured */
4837 		if (dr->doepctl[i] & DXEPCTL_DPID)
4838 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4839 		else
4840 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4841 
4842 		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4843 		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4844 		dr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
4845 	}
4846 	dr->valid = true;
4847 	return 0;
4848 }
4849 
4850 /**
4851  * dwc2_restore_device_registers() - Restore controller device registers.
4852  * When resuming usb bus, device registers needs to be restored
4853  * if controller power were disabled.
4854  *
4855  * @hsotg: Programming view of the DWC_otg controller
4856  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
4857  *
4858  * Return: 0 if successful, negative error code otherwise
4859  */
4860 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
4861 {
4862 	struct dwc2_dregs_backup *dr;
4863 	int i;
4864 
4865 	dev_dbg(hsotg->dev, "%s\n", __func__);
4866 
4867 	/* Restore dev regs */
4868 	dr = &hsotg->dr_backup;
4869 	if (!dr->valid) {
4870 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4871 			__func__);
4872 		return -EINVAL;
4873 	}
4874 	dr->valid = false;
4875 
4876 	if (!remote_wakeup)
4877 		dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4878 
4879 	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4880 	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4881 	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4882 
4883 	for (i = 0; i < hsotg->num_of_eps; i++) {
4884 		/* Restore IN EPs */
4885 		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4886 		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4887 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4888 		/** WA for enabled EPx's IN in DDMA mode. On entering to
4889 		 * hibernation wrong value read and saved from DIEPDMAx,
4890 		 * as result BNA interrupt asserted on hibernation exit
4891 		 * by restoring from saved area.
4892 		 */
4893 		if (hsotg->params.g_dma_desc &&
4894 		    (dr->diepctl[i] & DXEPCTL_EPENA))
4895 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
4896 		dwc2_writel(dr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
4897 		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4898 		/* Restore OUT EPs */
4899 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4900 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
4901 		 * hibernation wrong value read and saved from DOEPDMAx,
4902 		 * as result BNA interrupt asserted on hibernation exit
4903 		 * by restoring from saved area.
4904 		 */
4905 		if (hsotg->params.g_dma_desc &&
4906 		    (dr->doepctl[i] & DXEPCTL_EPENA))
4907 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
4908 		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4909 		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4910 	}
4911 
4912 	return 0;
4913 }
4914 
4915 /**
4916  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
4917  *
4918  * @hsotg: Programming view of DWC_otg controller
4919  *
4920  */
4921 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
4922 {
4923 	u32 val;
4924 
4925 	if (!hsotg->params.lpm)
4926 		return;
4927 
4928 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
4929 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
4930 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
4931 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
4932 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
4933 	dwc2_writel(val, hsotg->regs + GLPMCFG);
4934 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg->regs
4935 		+ GLPMCFG));
4936 }
4937 
4938 /**
4939  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
4940  *
4941  * @hsotg: Programming view of the DWC_otg controller
4942  *
4943  * Return non-zero if failed to enter to hibernation.
4944  */
4945 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
4946 {
4947 	u32 gpwrdn;
4948 	int ret = 0;
4949 
4950 	/* Change to L2(suspend) state */
4951 	hsotg->lx_state = DWC2_L2;
4952 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
4953 	ret = dwc2_backup_global_registers(hsotg);
4954 	if (ret) {
4955 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
4956 			__func__);
4957 		return ret;
4958 	}
4959 	ret = dwc2_backup_device_registers(hsotg);
4960 	if (ret) {
4961 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
4962 			__func__);
4963 		return ret;
4964 	}
4965 
4966 	gpwrdn = GPWRDN_PWRDNRSTN;
4967 	gpwrdn |= GPWRDN_PMUACTV;
4968 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4969 	udelay(10);
4970 
4971 	/* Set flag to indicate that we are in hibernation */
4972 	hsotg->hibernated = 1;
4973 
4974 	/* Enable interrupts from wake up logic */
4975 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4976 	gpwrdn |= GPWRDN_PMUINTSEL;
4977 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4978 	udelay(10);
4979 
4980 	/* Unmask device mode interrupts in GPWRDN */
4981 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4982 	gpwrdn |= GPWRDN_RST_DET_MSK;
4983 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
4984 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
4985 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4986 	udelay(10);
4987 
4988 	/* Enable Power Down Clamp */
4989 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4990 	gpwrdn |= GPWRDN_PWRDNCLMP;
4991 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4992 	udelay(10);
4993 
4994 	/* Switch off VDD */
4995 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4996 	gpwrdn |= GPWRDN_PWRDNSWTCH;
4997 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4998 	udelay(10);
4999 
5000 	/* Save gpwrdn register for further usage if stschng interrupt */
5001 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5002 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5003 
5004 	return ret;
5005 }
5006 
5007 /**
5008  * dwc2_gadget_exit_hibernation()
5009  * This function is for exiting from Device mode hibernation by host initiated
5010  * resume/reset and device initiated remote-wakeup.
5011  *
5012  * @hsotg: Programming view of the DWC_otg controller
5013  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5014  * @param reset: indicates whether resume is initiated by Reset.
5015  *
5016  * Return non-zero if failed to exit from hibernation.
5017  */
5018 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5019 				 int rem_wakeup, int reset)
5020 {
5021 	u32 pcgcctl;
5022 	u32 gpwrdn;
5023 	u32 dctl;
5024 	int ret = 0;
5025 	struct dwc2_gregs_backup *gr;
5026 	struct dwc2_dregs_backup *dr;
5027 
5028 	gr = &hsotg->gr_backup;
5029 	dr = &hsotg->dr_backup;
5030 
5031 	if (!hsotg->hibernated) {
5032 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5033 		return 1;
5034 	}
5035 	dev_dbg(hsotg->dev,
5036 		"%s: called with rem_wakeup = %d reset = %d\n",
5037 		__func__, rem_wakeup, reset);
5038 
5039 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5040 
5041 	if (!reset) {
5042 		/* Clear all pending interupts */
5043 		dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5044 	}
5045 
5046 	/* De-assert Restore */
5047 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5048 	gpwrdn &= ~GPWRDN_RESTORE;
5049 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5050 	udelay(10);
5051 
5052 	if (!rem_wakeup) {
5053 		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5054 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5055 		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5056 	}
5057 
5058 	/* Restore GUSBCFG, DCFG and DCTL */
5059 	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5060 	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
5061 	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
5062 
5063 	/* De-assert Wakeup Logic */
5064 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5065 	gpwrdn &= ~GPWRDN_PMUACTV;
5066 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5067 
5068 	if (rem_wakeup) {
5069 		udelay(10);
5070 		/* Start Remote Wakeup Signaling */
5071 		dwc2_writel(dr->dctl | DCTL_RMTWKUPSIG, hsotg->regs + DCTL);
5072 	} else {
5073 		udelay(50);
5074 		/* Set Device programming done bit */
5075 		dctl = dwc2_readl(hsotg->regs + DCTL);
5076 		dctl |= DCTL_PWRONPRGDONE;
5077 		dwc2_writel(dctl, hsotg->regs + DCTL);
5078 	}
5079 	/* Wait for interrupts which must be cleared */
5080 	mdelay(2);
5081 	/* Clear all pending interupts */
5082 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5083 
5084 	/* Restore global registers */
5085 	ret = dwc2_restore_global_registers(hsotg);
5086 	if (ret) {
5087 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5088 			__func__);
5089 		return ret;
5090 	}
5091 
5092 	/* Restore device registers */
5093 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5094 	if (ret) {
5095 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5096 			__func__);
5097 		return ret;
5098 	}
5099 
5100 	if (rem_wakeup) {
5101 		mdelay(10);
5102 		dctl = dwc2_readl(hsotg->regs + DCTL);
5103 		dctl &= ~DCTL_RMTWKUPSIG;
5104 		dwc2_writel(dctl, hsotg->regs + DCTL);
5105 	}
5106 
5107 	hsotg->hibernated = 0;
5108 	hsotg->lx_state = DWC2_L0;
5109 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5110 
5111 	return ret;
5112 }
5113