1 // SPDX-License-Identifier: GPL-2.0 2 /** 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 31 #include "core.h" 32 #include "hw.h" 33 34 /* conversion functions */ 35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 36 { 37 return container_of(req, struct dwc2_hsotg_req, req); 38 } 39 40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 41 { 42 return container_of(ep, struct dwc2_hsotg_ep, ep); 43 } 44 45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 46 { 47 return container_of(gadget, struct dwc2_hsotg, gadget); 48 } 49 50 static inline void dwc2_set_bit(void __iomem *ptr, u32 val) 51 { 52 dwc2_writel(dwc2_readl(ptr) | val, ptr); 53 } 54 55 static inline void dwc2_clear_bit(void __iomem *ptr, u32 val) 56 { 57 dwc2_writel(dwc2_readl(ptr) & ~val, ptr); 58 } 59 60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 61 u32 ep_index, u32 dir_in) 62 { 63 if (dir_in) 64 return hsotg->eps_in[ep_index]; 65 else 66 return hsotg->eps_out[ep_index]; 67 } 68 69 /* forward declaration of functions */ 70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 71 72 /** 73 * using_dma - return the DMA status of the driver. 74 * @hsotg: The driver state. 75 * 76 * Return true if we're using DMA. 77 * 78 * Currently, we have the DMA support code worked into everywhere 79 * that needs it, but the AMBA DMA implementation in the hardware can 80 * only DMA from 32bit aligned addresses. This means that gadgets such 81 * as the CDC Ethernet cannot work as they often pass packets which are 82 * not 32bit aligned. 83 * 84 * Unfortunately the choice to use DMA or not is global to the controller 85 * and seems to be only settable when the controller is being put through 86 * a core reset. This means we either need to fix the gadgets to take 87 * account of DMA alignment, or add bounce buffers (yuerk). 88 * 89 * g_using_dma is set depending on dts flag. 90 */ 91 static inline bool using_dma(struct dwc2_hsotg *hsotg) 92 { 93 return hsotg->params.g_dma; 94 } 95 96 /* 97 * using_desc_dma - return the descriptor DMA status of the driver. 98 * @hsotg: The driver state. 99 * 100 * Return true if we're using descriptor DMA. 101 */ 102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 103 { 104 return hsotg->params.g_dma_desc; 105 } 106 107 /** 108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 109 * @hs_ep: The endpoint 110 * @increment: The value to increment by 111 * 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 114 */ 115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 116 { 117 hs_ep->target_frame += hs_ep->interval; 118 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 119 hs_ep->frame_overrun = true; 120 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 121 } else { 122 hs_ep->frame_overrun = false; 123 } 124 } 125 126 /** 127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 128 * @hsotg: The device state 129 * @ints: A bitmask of the interrupts to enable 130 */ 131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 132 { 133 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 134 u32 new_gsintmsk; 135 136 new_gsintmsk = gsintmsk | ints; 137 138 if (new_gsintmsk != gsintmsk) { 139 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 140 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 141 } 142 } 143 144 /** 145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 146 * @hsotg: The device state 147 * @ints: A bitmask of the interrupts to enable 148 */ 149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 150 { 151 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 152 u32 new_gsintmsk; 153 154 new_gsintmsk = gsintmsk & ~ints; 155 156 if (new_gsintmsk != gsintmsk) 157 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 158 } 159 160 /** 161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 162 * @hsotg: The device state 163 * @ep: The endpoint index 164 * @dir_in: True if direction is in. 165 * @en: The enable value, true to enable 166 * 167 * Set or clear the mask for an individual endpoint's interrupt 168 * request. 169 */ 170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 171 unsigned int ep, unsigned int dir_in, 172 unsigned int en) 173 { 174 unsigned long flags; 175 u32 bit = 1 << ep; 176 u32 daint; 177 178 if (!dir_in) 179 bit <<= 16; 180 181 local_irq_save(flags); 182 daint = dwc2_readl(hsotg->regs + DAINTMSK); 183 if (en) 184 daint |= bit; 185 else 186 daint &= ~bit; 187 dwc2_writel(daint, hsotg->regs + DAINTMSK); 188 local_irq_restore(flags); 189 } 190 191 /** 192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 193 */ 194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 195 { 196 if (hsotg->hw_params.en_multiple_tx_fifo) 197 /* In dedicated FIFO mode we need count of IN EPs */ 198 return hsotg->hw_params.num_dev_in_eps; 199 else 200 /* In shared FIFO mode we need count of Periodic IN EPs */ 201 return hsotg->hw_params.num_dev_perio_in_ep; 202 } 203 204 /** 205 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 206 * device mode TX FIFOs 207 */ 208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 209 { 210 int addr; 211 int tx_addr_max; 212 u32 np_tx_fifo_size; 213 214 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 215 hsotg->params.g_np_tx_fifo_size); 216 217 /* Get Endpoint Info Control block size in DWORDs. */ 218 tx_addr_max = hsotg->hw_params.total_fifo_size; 219 220 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 221 if (tx_addr_max <= addr) 222 return 0; 223 224 return tx_addr_max - addr; 225 } 226 227 /** 228 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 229 * TX FIFOs 230 */ 231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 232 { 233 int tx_fifo_count; 234 int tx_fifo_depth; 235 236 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 237 238 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 239 240 if (!tx_fifo_count) 241 return tx_fifo_depth; 242 else 243 return tx_fifo_depth / tx_fifo_count; 244 } 245 246 /** 247 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 248 * @hsotg: The device instance. 249 */ 250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 251 { 252 unsigned int ep; 253 unsigned int addr; 254 int timeout; 255 256 u32 val; 257 u32 *txfsz = hsotg->params.g_tx_fifo_size; 258 259 /* Reset fifo map if not correctly cleared during previous session */ 260 WARN_ON(hsotg->fifo_map); 261 hsotg->fifo_map = 0; 262 263 /* set RX/NPTX FIFO sizes */ 264 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ); 265 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) | 266 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 267 hsotg->regs + GNPTXFSIZ); 268 269 /* 270 * arange all the rest of the TX FIFOs, as some versions of this 271 * block have overlapping default addresses. This also ensures 272 * that if the settings have been changed, then they are set to 273 * known values. 274 */ 275 276 /* start at the end of the GNPTXFSIZ, rounded up */ 277 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 278 279 /* 280 * Configure fifos sizes from provided configuration and assign 281 * them to endpoints dynamically according to maxpacket size value of 282 * given endpoint. 283 */ 284 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 285 if (!txfsz[ep]) 286 continue; 287 val = addr; 288 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 289 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 290 "insufficient fifo memory"); 291 addr += txfsz[ep]; 292 293 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep)); 294 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep)); 295 } 296 297 dwc2_writel(hsotg->hw_params.total_fifo_size | 298 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 299 hsotg->regs + GDFIFOCFG); 300 /* 301 * according to p428 of the design guide, we need to ensure that 302 * all fifos are flushed before continuing 303 */ 304 305 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 306 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 307 308 /* wait until the fifos are both flushed */ 309 timeout = 100; 310 while (1) { 311 val = dwc2_readl(hsotg->regs + GRSTCTL); 312 313 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 314 break; 315 316 if (--timeout == 0) { 317 dev_err(hsotg->dev, 318 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 319 __func__, val); 320 break; 321 } 322 323 udelay(1); 324 } 325 326 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 327 } 328 329 /** 330 * @ep: USB endpoint to allocate request for. 331 * @flags: Allocation flags 332 * 333 * Allocate a new USB request structure appropriate for the specified endpoint 334 */ 335 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 336 gfp_t flags) 337 { 338 struct dwc2_hsotg_req *req; 339 340 req = kzalloc(sizeof(*req), flags); 341 if (!req) 342 return NULL; 343 344 INIT_LIST_HEAD(&req->queue); 345 346 return &req->req; 347 } 348 349 /** 350 * is_ep_periodic - return true if the endpoint is in periodic mode. 351 * @hs_ep: The endpoint to query. 352 * 353 * Returns true if the endpoint is in periodic mode, meaning it is being 354 * used for an Interrupt or ISO transfer. 355 */ 356 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 357 { 358 return hs_ep->periodic; 359 } 360 361 /** 362 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 363 * @hsotg: The device state. 364 * @hs_ep: The endpoint for the request 365 * @hs_req: The request being processed. 366 * 367 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 368 * of a request to ensure the buffer is ready for access by the caller. 369 */ 370 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 371 struct dwc2_hsotg_ep *hs_ep, 372 struct dwc2_hsotg_req *hs_req) 373 { 374 struct usb_request *req = &hs_req->req; 375 376 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 377 } 378 379 /* 380 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 381 * for Control endpoint 382 * @hsotg: The device state. 383 * 384 * This function will allocate 4 descriptor chains for EP 0: 2 for 385 * Setup stage, per one for IN and OUT data/status transactions. 386 */ 387 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 388 { 389 hsotg->setup_desc[0] = 390 dmam_alloc_coherent(hsotg->dev, 391 sizeof(struct dwc2_dma_desc), 392 &hsotg->setup_desc_dma[0], 393 GFP_KERNEL); 394 if (!hsotg->setup_desc[0]) 395 goto fail; 396 397 hsotg->setup_desc[1] = 398 dmam_alloc_coherent(hsotg->dev, 399 sizeof(struct dwc2_dma_desc), 400 &hsotg->setup_desc_dma[1], 401 GFP_KERNEL); 402 if (!hsotg->setup_desc[1]) 403 goto fail; 404 405 hsotg->ctrl_in_desc = 406 dmam_alloc_coherent(hsotg->dev, 407 sizeof(struct dwc2_dma_desc), 408 &hsotg->ctrl_in_desc_dma, 409 GFP_KERNEL); 410 if (!hsotg->ctrl_in_desc) 411 goto fail; 412 413 hsotg->ctrl_out_desc = 414 dmam_alloc_coherent(hsotg->dev, 415 sizeof(struct dwc2_dma_desc), 416 &hsotg->ctrl_out_desc_dma, 417 GFP_KERNEL); 418 if (!hsotg->ctrl_out_desc) 419 goto fail; 420 421 return 0; 422 423 fail: 424 return -ENOMEM; 425 } 426 427 /** 428 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 429 * @hsotg: The controller state. 430 * @hs_ep: The endpoint we're going to write for. 431 * @hs_req: The request to write data for. 432 * 433 * This is called when the TxFIFO has some space in it to hold a new 434 * transmission and we have something to give it. The actual setup of 435 * the data size is done elsewhere, so all we have to do is to actually 436 * write the data. 437 * 438 * The return value is zero if there is more space (or nothing was done) 439 * otherwise -ENOSPC is returned if the FIFO space was used up. 440 * 441 * This routine is only needed for PIO 442 */ 443 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 444 struct dwc2_hsotg_ep *hs_ep, 445 struct dwc2_hsotg_req *hs_req) 446 { 447 bool periodic = is_ep_periodic(hs_ep); 448 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS); 449 int buf_pos = hs_req->req.actual; 450 int to_write = hs_ep->size_loaded; 451 void *data; 452 int can_write; 453 int pkt_round; 454 int max_transfer; 455 456 to_write -= (buf_pos - hs_ep->last_load); 457 458 /* if there's nothing to write, get out early */ 459 if (to_write == 0) 460 return 0; 461 462 if (periodic && !hsotg->dedicated_fifos) { 463 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 464 int size_left; 465 int size_done; 466 467 /* 468 * work out how much data was loaded so we can calculate 469 * how much data is left in the fifo. 470 */ 471 472 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 473 474 /* 475 * if shared fifo, we cannot write anything until the 476 * previous data has been completely sent. 477 */ 478 if (hs_ep->fifo_load != 0) { 479 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 480 return -ENOSPC; 481 } 482 483 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 484 __func__, size_left, 485 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 486 487 /* how much of the data has moved */ 488 size_done = hs_ep->size_loaded - size_left; 489 490 /* how much data is left in the fifo */ 491 can_write = hs_ep->fifo_load - size_done; 492 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 493 __func__, can_write); 494 495 can_write = hs_ep->fifo_size - can_write; 496 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 497 __func__, can_write); 498 499 if (can_write <= 0) { 500 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 501 return -ENOSPC; 502 } 503 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 504 can_write = dwc2_readl(hsotg->regs + 505 DTXFSTS(hs_ep->fifo_index)); 506 507 can_write &= 0xffff; 508 can_write *= 4; 509 } else { 510 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 511 dev_dbg(hsotg->dev, 512 "%s: no queue slots available (0x%08x)\n", 513 __func__, gnptxsts); 514 515 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 516 return -ENOSPC; 517 } 518 519 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 520 can_write *= 4; /* fifo size is in 32bit quantities. */ 521 } 522 523 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 524 525 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 526 __func__, gnptxsts, can_write, to_write, max_transfer); 527 528 /* 529 * limit to 512 bytes of data, it seems at least on the non-periodic 530 * FIFO, requests of >512 cause the endpoint to get stuck with a 531 * fragment of the end of the transfer in it. 532 */ 533 if (can_write > 512 && !periodic) 534 can_write = 512; 535 536 /* 537 * limit the write to one max-packet size worth of data, but allow 538 * the transfer to return that it did not run out of fifo space 539 * doing it. 540 */ 541 if (to_write > max_transfer) { 542 to_write = max_transfer; 543 544 /* it's needed only when we do not use dedicated fifos */ 545 if (!hsotg->dedicated_fifos) 546 dwc2_hsotg_en_gsint(hsotg, 547 periodic ? GINTSTS_PTXFEMP : 548 GINTSTS_NPTXFEMP); 549 } 550 551 /* see if we can write data */ 552 553 if (to_write > can_write) { 554 to_write = can_write; 555 pkt_round = to_write % max_transfer; 556 557 /* 558 * Round the write down to an 559 * exact number of packets. 560 * 561 * Note, we do not currently check to see if we can ever 562 * write a full packet or not to the FIFO. 563 */ 564 565 if (pkt_round) 566 to_write -= pkt_round; 567 568 /* 569 * enable correct FIFO interrupt to alert us when there 570 * is more room left. 571 */ 572 573 /* it's needed only when we do not use dedicated fifos */ 574 if (!hsotg->dedicated_fifos) 575 dwc2_hsotg_en_gsint(hsotg, 576 periodic ? GINTSTS_PTXFEMP : 577 GINTSTS_NPTXFEMP); 578 } 579 580 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 581 to_write, hs_req->req.length, can_write, buf_pos); 582 583 if (to_write <= 0) 584 return -ENOSPC; 585 586 hs_req->req.actual = buf_pos + to_write; 587 hs_ep->total_data += to_write; 588 589 if (periodic) 590 hs_ep->fifo_load += to_write; 591 592 to_write = DIV_ROUND_UP(to_write, 4); 593 data = hs_req->req.buf + buf_pos; 594 595 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 596 597 return (to_write >= can_write) ? -ENOSPC : 0; 598 } 599 600 /** 601 * get_ep_limit - get the maximum data legnth for this endpoint 602 * @hs_ep: The endpoint 603 * 604 * Return the maximum data that can be queued in one go on a given endpoint 605 * so that transfers that are too long can be split. 606 */ 607 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 608 { 609 int index = hs_ep->index; 610 unsigned int maxsize; 611 unsigned int maxpkt; 612 613 if (index != 0) { 614 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 615 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 616 } else { 617 maxsize = 64 + 64; 618 if (hs_ep->dir_in) 619 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 620 else 621 maxpkt = 2; 622 } 623 624 /* we made the constant loading easier above by using +1 */ 625 maxpkt--; 626 maxsize--; 627 628 /* 629 * constrain by packet count if maxpkts*pktsize is greater 630 * than the length register size. 631 */ 632 633 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 634 maxsize = maxpkt * hs_ep->ep.maxpacket; 635 636 return maxsize; 637 } 638 639 /** 640 * dwc2_hsotg_read_frameno - read current frame number 641 * @hsotg: The device instance 642 * 643 * Return the current frame number 644 */ 645 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 646 { 647 u32 dsts; 648 649 dsts = dwc2_readl(hsotg->regs + DSTS); 650 dsts &= DSTS_SOFFN_MASK; 651 dsts >>= DSTS_SOFFN_SHIFT; 652 653 return dsts; 654 } 655 656 /** 657 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 658 * DMA descriptor chain prepared for specific endpoint 659 * @hs_ep: The endpoint 660 * 661 * Return the maximum data that can be queued in one go on a given endpoint 662 * depending on its descriptor chain capacity so that transfers that 663 * are too long can be split. 664 */ 665 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 666 { 667 int is_isoc = hs_ep->isochronous; 668 unsigned int maxsize; 669 670 if (is_isoc) 671 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 672 DEV_DMA_ISOC_RX_NBYTES_LIMIT; 673 else 674 maxsize = DEV_DMA_NBYTES_LIMIT; 675 676 /* Above size of one descriptor was chosen, multiple it */ 677 maxsize *= MAX_DMA_DESC_NUM_GENERIC; 678 679 return maxsize; 680 } 681 682 /* 683 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 684 * @hs_ep: The endpoint 685 * @mask: RX/TX bytes mask to be defined 686 * 687 * Returns maximum data payload for one descriptor after analyzing endpoint 688 * characteristics. 689 * DMA descriptor transfer bytes limit depends on EP type: 690 * Control out - MPS, 691 * Isochronous - descriptor rx/tx bytes bitfield limit, 692 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 693 * have concatenations from various descriptors within one packet. 694 * 695 * Selects corresponding mask for RX/TX bytes as well. 696 */ 697 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 698 { 699 u32 mps = hs_ep->ep.maxpacket; 700 int dir_in = hs_ep->dir_in; 701 u32 desc_size = 0; 702 703 if (!hs_ep->index && !dir_in) { 704 desc_size = mps; 705 *mask = DEV_DMA_NBYTES_MASK; 706 } else if (hs_ep->isochronous) { 707 if (dir_in) { 708 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 709 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 710 } else { 711 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 712 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 713 } 714 } else { 715 desc_size = DEV_DMA_NBYTES_LIMIT; 716 *mask = DEV_DMA_NBYTES_MASK; 717 718 /* Round down desc_size to be mps multiple */ 719 desc_size -= desc_size % mps; 720 } 721 722 return desc_size; 723 } 724 725 /* 726 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 727 * @hs_ep: The endpoint 728 * @dma_buff: DMA address to use 729 * @len: Length of the transfer 730 * 731 * This function will iterate over descriptor chain and fill its entries 732 * with corresponding information based on transfer data. 733 */ 734 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 735 dma_addr_t dma_buff, 736 unsigned int len) 737 { 738 struct dwc2_hsotg *hsotg = hs_ep->parent; 739 int dir_in = hs_ep->dir_in; 740 struct dwc2_dma_desc *desc = hs_ep->desc_list; 741 u32 mps = hs_ep->ep.maxpacket; 742 u32 maxsize = 0; 743 u32 offset = 0; 744 u32 mask = 0; 745 int i; 746 747 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 748 749 hs_ep->desc_count = (len / maxsize) + 750 ((len % maxsize) ? 1 : 0); 751 if (len == 0) 752 hs_ep->desc_count = 1; 753 754 for (i = 0; i < hs_ep->desc_count; ++i) { 755 desc->status = 0; 756 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 757 << DEV_DMA_BUFF_STS_SHIFT); 758 759 if (len > maxsize) { 760 if (!hs_ep->index && !dir_in) 761 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 762 763 desc->status |= (maxsize << 764 DEV_DMA_NBYTES_SHIFT & mask); 765 desc->buf = dma_buff + offset; 766 767 len -= maxsize; 768 offset += maxsize; 769 } else { 770 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 771 772 if (dir_in) 773 desc->status |= (len % mps) ? DEV_DMA_SHORT : 774 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0); 775 if (len > maxsize) 776 dev_err(hsotg->dev, "wrong len %d\n", len); 777 778 desc->status |= 779 len << DEV_DMA_NBYTES_SHIFT & mask; 780 desc->buf = dma_buff + offset; 781 } 782 783 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 784 desc->status |= (DEV_DMA_BUFF_STS_HREADY 785 << DEV_DMA_BUFF_STS_SHIFT); 786 desc++; 787 } 788 } 789 790 /* 791 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 792 * @hs_ep: The isochronous endpoint. 793 * @dma_buff: usb requests dma buffer. 794 * @len: usb request transfer length. 795 * 796 * Finds out index of first free entry either in the bottom or up half of 797 * descriptor chain depend on which is under SW control and not processed 798 * by HW. Then fills that descriptor with the data of the arrived usb request, 799 * frame info, sets Last and IOC bits increments next_desc. If filled 800 * descriptor is not the first one, removes L bit from the previous descriptor 801 * status. 802 */ 803 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 804 dma_addr_t dma_buff, unsigned int len) 805 { 806 struct dwc2_dma_desc *desc; 807 struct dwc2_hsotg *hsotg = hs_ep->parent; 808 u32 index; 809 u32 maxsize = 0; 810 u32 mask = 0; 811 812 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 813 if (len > maxsize) { 814 dev_err(hsotg->dev, "wrong len %d\n", len); 815 return -EINVAL; 816 } 817 818 /* 819 * If SW has already filled half of chain, then return and wait for 820 * the other chain to be processed by HW. 821 */ 822 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2) 823 return -EBUSY; 824 825 /* Increment frame number by interval for IN */ 826 if (hs_ep->dir_in) 827 dwc2_gadget_incr_frame_num(hs_ep); 828 829 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num + 830 hs_ep->next_desc; 831 832 /* Sanity check of calculated index */ 833 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) || 834 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) { 835 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index); 836 return -EINVAL; 837 } 838 839 desc = &hs_ep->desc_list[index]; 840 841 /* Clear L bit of previous desc if more than one entries in the chain */ 842 if (hs_ep->next_desc) 843 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 844 845 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 846 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 847 848 desc->status = 0; 849 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 850 851 desc->buf = dma_buff; 852 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 853 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 854 855 if (hs_ep->dir_in) { 856 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) & 857 DEV_DMA_ISOC_PID_MASK) | 858 ((len % hs_ep->ep.maxpacket) ? 859 DEV_DMA_SHORT : 0) | 860 ((hs_ep->target_frame << 861 DEV_DMA_ISOC_FRNUM_SHIFT) & 862 DEV_DMA_ISOC_FRNUM_MASK); 863 } 864 865 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 866 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 867 868 /* Update index of last configured entry in the chain */ 869 hs_ep->next_desc++; 870 871 return 0; 872 } 873 874 /* 875 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 876 * @hs_ep: The isochronous endpoint. 877 * 878 * Prepare first descriptor chain for isochronous endpoints. Afterwards 879 * write DMA address to HW and enable the endpoint. 880 * 881 * Switch between descriptor chains via isoc_chain_num to give SW opportunity 882 * to prepare second descriptor chain while first one is being processed by HW. 883 */ 884 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 885 { 886 struct dwc2_hsotg *hsotg = hs_ep->parent; 887 struct dwc2_hsotg_req *hs_req, *treq; 888 int index = hs_ep->index; 889 int ret; 890 u32 dma_reg; 891 u32 depctl; 892 u32 ctrl; 893 894 if (list_empty(&hs_ep->queue)) { 895 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 896 return; 897 } 898 899 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 900 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 901 hs_req->req.length); 902 if (ret) { 903 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 904 break; 905 } 906 } 907 908 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 909 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 910 911 /* write descriptor chain address to control register */ 912 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 913 914 ctrl = dwc2_readl(hsotg->regs + depctl); 915 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 916 dwc2_writel(ctrl, hsotg->regs + depctl); 917 918 /* Switch ISOC descriptor chain number being processed by SW*/ 919 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1; 920 hs_ep->next_desc = 0; 921 } 922 923 /** 924 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 925 * @hsotg: The controller state. 926 * @hs_ep: The endpoint to process a request for 927 * @hs_req: The request to start. 928 * @continuing: True if we are doing more for the current request. 929 * 930 * Start the given request running by setting the endpoint registers 931 * appropriately, and writing any data to the FIFOs. 932 */ 933 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 934 struct dwc2_hsotg_ep *hs_ep, 935 struct dwc2_hsotg_req *hs_req, 936 bool continuing) 937 { 938 struct usb_request *ureq = &hs_req->req; 939 int index = hs_ep->index; 940 int dir_in = hs_ep->dir_in; 941 u32 epctrl_reg; 942 u32 epsize_reg; 943 u32 epsize; 944 u32 ctrl; 945 unsigned int length; 946 unsigned int packets; 947 unsigned int maxreq; 948 unsigned int dma_reg; 949 950 if (index != 0) { 951 if (hs_ep->req && !continuing) { 952 dev_err(hsotg->dev, "%s: active request\n", __func__); 953 WARN_ON(1); 954 return; 955 } else if (hs_ep->req != hs_req && continuing) { 956 dev_err(hsotg->dev, 957 "%s: continue different req\n", __func__); 958 WARN_ON(1); 959 return; 960 } 961 } 962 963 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 964 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 965 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 966 967 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 968 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index, 969 hs_ep->dir_in ? "in" : "out"); 970 971 /* If endpoint is stalled, we will restart request later */ 972 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 973 974 if (index && ctrl & DXEPCTL_STALL) { 975 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 976 return; 977 } 978 979 length = ureq->length - ureq->actual; 980 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 981 ureq->length, ureq->actual); 982 983 if (!using_desc_dma(hsotg)) 984 maxreq = get_ep_limit(hs_ep); 985 else 986 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 987 988 if (length > maxreq) { 989 int round = maxreq % hs_ep->ep.maxpacket; 990 991 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 992 __func__, length, maxreq, round); 993 994 /* round down to multiple of packets */ 995 if (round) 996 maxreq -= round; 997 998 length = maxreq; 999 } 1000 1001 if (length) 1002 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1003 else 1004 packets = 1; /* send one packet if length is zero. */ 1005 1006 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1007 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 1008 return; 1009 } 1010 1011 if (dir_in && index != 0) 1012 if (hs_ep->isochronous) 1013 epsize = DXEPTSIZ_MC(packets); 1014 else 1015 epsize = DXEPTSIZ_MC(1); 1016 else 1017 epsize = 0; 1018 1019 /* 1020 * zero length packet should be programmed on its own and should not 1021 * be counted in DIEPTSIZ.PktCnt with other packets. 1022 */ 1023 if (dir_in && ureq->zero && !continuing) { 1024 /* Test if zlp is actually required. */ 1025 if ((ureq->length >= hs_ep->ep.maxpacket) && 1026 !(ureq->length % hs_ep->ep.maxpacket)) 1027 hs_ep->send_zlp = 1; 1028 } 1029 1030 epsize |= DXEPTSIZ_PKTCNT(packets); 1031 epsize |= DXEPTSIZ_XFERSIZE(length); 1032 1033 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1034 __func__, packets, length, ureq->length, epsize, epsize_reg); 1035 1036 /* store the request as the current one we're doing */ 1037 hs_ep->req = hs_req; 1038 1039 if (using_desc_dma(hsotg)) { 1040 u32 offset = 0; 1041 u32 mps = hs_ep->ep.maxpacket; 1042 1043 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1044 if (!dir_in) { 1045 if (!index) 1046 length = mps; 1047 else if (length % mps) 1048 length += (mps - (length % mps)); 1049 } 1050 1051 /* 1052 * If more data to send, adjust DMA for EP0 out data stage. 1053 * ureq->dma stays unchanged, hence increment it by already 1054 * passed passed data count before starting new transaction. 1055 */ 1056 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1057 continuing) 1058 offset = ureq->actual; 1059 1060 /* Fill DDMA chain entries */ 1061 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1062 length); 1063 1064 /* write descriptor chain address to control register */ 1065 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 1066 1067 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1068 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1069 } else { 1070 /* write size / packets */ 1071 dwc2_writel(epsize, hsotg->regs + epsize_reg); 1072 1073 if (using_dma(hsotg) && !continuing && (length != 0)) { 1074 /* 1075 * write DMA address to control register, buffer 1076 * already synced by dwc2_hsotg_ep_queue(). 1077 */ 1078 1079 dwc2_writel(ureq->dma, hsotg->regs + dma_reg); 1080 1081 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1082 __func__, &ureq->dma, dma_reg); 1083 } 1084 } 1085 1086 if (hs_ep->isochronous && hs_ep->interval == 1) { 1087 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1088 dwc2_gadget_incr_frame_num(hs_ep); 1089 1090 if (hs_ep->target_frame & 0x1) 1091 ctrl |= DXEPCTL_SETODDFR; 1092 else 1093 ctrl |= DXEPCTL_SETEVENFR; 1094 } 1095 1096 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1097 1098 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1099 1100 /* For Setup request do not clear NAK */ 1101 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1102 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1103 1104 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1105 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 1106 1107 /* 1108 * set these, it seems that DMA support increments past the end 1109 * of the packet buffer so we need to calculate the length from 1110 * this information. 1111 */ 1112 hs_ep->size_loaded = length; 1113 hs_ep->last_load = ureq->actual; 1114 1115 if (dir_in && !using_dma(hsotg)) { 1116 /* set these anyway, we may need them for non-periodic in */ 1117 hs_ep->fifo_load = 0; 1118 1119 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1120 } 1121 1122 /* 1123 * Note, trying to clear the NAK here causes problems with transmit 1124 * on the S3C6400 ending up with the TXFIFO becoming full. 1125 */ 1126 1127 /* check ep is enabled */ 1128 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 1129 dev_dbg(hsotg->dev, 1130 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1131 index, dwc2_readl(hsotg->regs + epctrl_reg)); 1132 1133 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1134 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 1135 1136 /* enable ep interrupts */ 1137 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1138 } 1139 1140 /** 1141 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1142 * @hsotg: The device state. 1143 * @hs_ep: The endpoint the request is on. 1144 * @req: The request being processed. 1145 * 1146 * We've been asked to queue a request, so ensure that the memory buffer 1147 * is correctly setup for DMA. If we've been passed an extant DMA address 1148 * then ensure the buffer has been synced to memory. If our buffer has no 1149 * DMA memory, then we map the memory and mark our request to allow us to 1150 * cleanup on completion. 1151 */ 1152 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1153 struct dwc2_hsotg_ep *hs_ep, 1154 struct usb_request *req) 1155 { 1156 int ret; 1157 1158 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1159 if (ret) 1160 goto dma_error; 1161 1162 return 0; 1163 1164 dma_error: 1165 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1166 __func__, req->buf, req->length); 1167 1168 return -EIO; 1169 } 1170 1171 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1172 struct dwc2_hsotg_ep *hs_ep, 1173 struct dwc2_hsotg_req *hs_req) 1174 { 1175 void *req_buf = hs_req->req.buf; 1176 1177 /* If dma is not being used or buffer is aligned */ 1178 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1179 return 0; 1180 1181 WARN_ON(hs_req->saved_req_buf); 1182 1183 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1184 hs_ep->ep.name, req_buf, hs_req->req.length); 1185 1186 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1187 if (!hs_req->req.buf) { 1188 hs_req->req.buf = req_buf; 1189 dev_err(hsotg->dev, 1190 "%s: unable to allocate memory for bounce buffer\n", 1191 __func__); 1192 return -ENOMEM; 1193 } 1194 1195 /* Save actual buffer */ 1196 hs_req->saved_req_buf = req_buf; 1197 1198 if (hs_ep->dir_in) 1199 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1200 return 0; 1201 } 1202 1203 static void 1204 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1205 struct dwc2_hsotg_ep *hs_ep, 1206 struct dwc2_hsotg_req *hs_req) 1207 { 1208 /* If dma is not being used or buffer was aligned */ 1209 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1210 return; 1211 1212 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1213 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1214 1215 /* Copy data from bounce buffer on successful out transfer */ 1216 if (!hs_ep->dir_in && !hs_req->req.status) 1217 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1218 hs_req->req.actual); 1219 1220 /* Free bounce buffer */ 1221 kfree(hs_req->req.buf); 1222 1223 hs_req->req.buf = hs_req->saved_req_buf; 1224 hs_req->saved_req_buf = NULL; 1225 } 1226 1227 /** 1228 * dwc2_gadget_target_frame_elapsed - Checks target frame 1229 * @hs_ep: The driver endpoint to check 1230 * 1231 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1232 * corresponding transfer. 1233 */ 1234 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1235 { 1236 struct dwc2_hsotg *hsotg = hs_ep->parent; 1237 u32 target_frame = hs_ep->target_frame; 1238 u32 current_frame = dwc2_hsotg_read_frameno(hsotg); 1239 bool frame_overrun = hs_ep->frame_overrun; 1240 1241 if (!frame_overrun && current_frame >= target_frame) 1242 return true; 1243 1244 if (frame_overrun && current_frame >= target_frame && 1245 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1246 return true; 1247 1248 return false; 1249 } 1250 1251 /* 1252 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1253 * @hsotg: The driver state 1254 * @hs_ep: the ep descriptor chain is for 1255 * 1256 * Called to update EP0 structure's pointers depend on stage of 1257 * control transfer. 1258 */ 1259 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1260 struct dwc2_hsotg_ep *hs_ep) 1261 { 1262 switch (hsotg->ep0_state) { 1263 case DWC2_EP0_SETUP: 1264 case DWC2_EP0_STATUS_OUT: 1265 hs_ep->desc_list = hsotg->setup_desc[0]; 1266 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1267 break; 1268 case DWC2_EP0_DATA_IN: 1269 case DWC2_EP0_STATUS_IN: 1270 hs_ep->desc_list = hsotg->ctrl_in_desc; 1271 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1272 break; 1273 case DWC2_EP0_DATA_OUT: 1274 hs_ep->desc_list = hsotg->ctrl_out_desc; 1275 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1276 break; 1277 default: 1278 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1279 hsotg->ep0_state); 1280 return -EINVAL; 1281 } 1282 1283 return 0; 1284 } 1285 1286 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1287 gfp_t gfp_flags) 1288 { 1289 struct dwc2_hsotg_req *hs_req = our_req(req); 1290 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1291 struct dwc2_hsotg *hs = hs_ep->parent; 1292 bool first; 1293 int ret; 1294 1295 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1296 ep->name, req, req->length, req->buf, req->no_interrupt, 1297 req->zero, req->short_not_ok); 1298 1299 /* Prevent new request submission when controller is suspended */ 1300 if (hs->lx_state != DWC2_L0) { 1301 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1302 __func__); 1303 return -EAGAIN; 1304 } 1305 1306 /* initialise status of the request */ 1307 INIT_LIST_HEAD(&hs_req->queue); 1308 req->actual = 0; 1309 req->status = -EINPROGRESS; 1310 1311 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1312 if (ret) 1313 return ret; 1314 1315 /* if we're using DMA, sync the buffers as necessary */ 1316 if (using_dma(hs)) { 1317 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1318 if (ret) 1319 return ret; 1320 } 1321 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1322 if (using_desc_dma(hs) && !hs_ep->index) { 1323 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1324 if (ret) 1325 return ret; 1326 } 1327 1328 first = list_empty(&hs_ep->queue); 1329 list_add_tail(&hs_req->queue, &hs_ep->queue); 1330 1331 /* 1332 * Handle DDMA isochronous transfers separately - just add new entry 1333 * to the half of descriptor chain that is not processed by HW. 1334 * Transfer will be started once SW gets either one of NAK or 1335 * OutTknEpDis interrupts. 1336 */ 1337 if (using_desc_dma(hs) && hs_ep->isochronous && 1338 hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1339 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 1340 hs_req->req.length); 1341 if (ret) 1342 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__); 1343 1344 return 0; 1345 } 1346 1347 if (first) { 1348 if (!hs_ep->isochronous) { 1349 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1350 return 0; 1351 } 1352 1353 while (dwc2_gadget_target_frame_elapsed(hs_ep)) 1354 dwc2_gadget_incr_frame_num(hs_ep); 1355 1356 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1357 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1358 } 1359 return 0; 1360 } 1361 1362 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1363 gfp_t gfp_flags) 1364 { 1365 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1366 struct dwc2_hsotg *hs = hs_ep->parent; 1367 unsigned long flags = 0; 1368 int ret = 0; 1369 1370 spin_lock_irqsave(&hs->lock, flags); 1371 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1372 spin_unlock_irqrestore(&hs->lock, flags); 1373 1374 return ret; 1375 } 1376 1377 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1378 struct usb_request *req) 1379 { 1380 struct dwc2_hsotg_req *hs_req = our_req(req); 1381 1382 kfree(hs_req); 1383 } 1384 1385 /** 1386 * dwc2_hsotg_complete_oursetup - setup completion callback 1387 * @ep: The endpoint the request was on. 1388 * @req: The request completed. 1389 * 1390 * Called on completion of any requests the driver itself 1391 * submitted that need cleaning up. 1392 */ 1393 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1394 struct usb_request *req) 1395 { 1396 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1397 struct dwc2_hsotg *hsotg = hs_ep->parent; 1398 1399 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1400 1401 dwc2_hsotg_ep_free_request(ep, req); 1402 } 1403 1404 /** 1405 * ep_from_windex - convert control wIndex value to endpoint 1406 * @hsotg: The driver state. 1407 * @windex: The control request wIndex field (in host order). 1408 * 1409 * Convert the given wIndex into a pointer to an driver endpoint 1410 * structure, or return NULL if it is not a valid endpoint. 1411 */ 1412 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1413 u32 windex) 1414 { 1415 struct dwc2_hsotg_ep *ep; 1416 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1417 int idx = windex & 0x7F; 1418 1419 if (windex >= 0x100) 1420 return NULL; 1421 1422 if (idx > hsotg->num_of_eps) 1423 return NULL; 1424 1425 ep = index_to_ep(hsotg, idx, dir); 1426 1427 if (idx && ep->dir_in != dir) 1428 return NULL; 1429 1430 return ep; 1431 } 1432 1433 /** 1434 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1435 * @hsotg: The driver state. 1436 * @testmode: requested usb test mode 1437 * Enable usb Test Mode requested by the Host. 1438 */ 1439 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1440 { 1441 int dctl = dwc2_readl(hsotg->regs + DCTL); 1442 1443 dctl &= ~DCTL_TSTCTL_MASK; 1444 switch (testmode) { 1445 case TEST_J: 1446 case TEST_K: 1447 case TEST_SE0_NAK: 1448 case TEST_PACKET: 1449 case TEST_FORCE_EN: 1450 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1451 break; 1452 default: 1453 return -EINVAL; 1454 } 1455 dwc2_writel(dctl, hsotg->regs + DCTL); 1456 return 0; 1457 } 1458 1459 /** 1460 * dwc2_hsotg_send_reply - send reply to control request 1461 * @hsotg: The device state 1462 * @ep: Endpoint 0 1463 * @buff: Buffer for request 1464 * @length: Length of reply. 1465 * 1466 * Create a request and queue it on the given endpoint. This is useful as 1467 * an internal method of sending replies to certain control requests, etc. 1468 */ 1469 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1470 struct dwc2_hsotg_ep *ep, 1471 void *buff, 1472 int length) 1473 { 1474 struct usb_request *req; 1475 int ret; 1476 1477 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1478 1479 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1480 hsotg->ep0_reply = req; 1481 if (!req) { 1482 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1483 return -ENOMEM; 1484 } 1485 1486 req->buf = hsotg->ep0_buff; 1487 req->length = length; 1488 /* 1489 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1490 * STATUS stage. 1491 */ 1492 req->zero = 0; 1493 req->complete = dwc2_hsotg_complete_oursetup; 1494 1495 if (length) 1496 memcpy(req->buf, buff, length); 1497 1498 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1499 if (ret) { 1500 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1501 return ret; 1502 } 1503 1504 return 0; 1505 } 1506 1507 /** 1508 * dwc2_hsotg_process_req_status - process request GET_STATUS 1509 * @hsotg: The device state 1510 * @ctrl: USB control request 1511 */ 1512 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1513 struct usb_ctrlrequest *ctrl) 1514 { 1515 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1516 struct dwc2_hsotg_ep *ep; 1517 __le16 reply; 1518 int ret; 1519 1520 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1521 1522 if (!ep0->dir_in) { 1523 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1524 return -EINVAL; 1525 } 1526 1527 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1528 case USB_RECIP_DEVICE: 1529 /* 1530 * bit 0 => self powered 1531 * bit 1 => remote wakeup 1532 */ 1533 reply = cpu_to_le16(0); 1534 break; 1535 1536 case USB_RECIP_INTERFACE: 1537 /* currently, the data result should be zero */ 1538 reply = cpu_to_le16(0); 1539 break; 1540 1541 case USB_RECIP_ENDPOINT: 1542 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1543 if (!ep) 1544 return -ENOENT; 1545 1546 reply = cpu_to_le16(ep->halted ? 1 : 0); 1547 break; 1548 1549 default: 1550 return 0; 1551 } 1552 1553 if (le16_to_cpu(ctrl->wLength) != 2) 1554 return -EINVAL; 1555 1556 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1557 if (ret) { 1558 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1559 return ret; 1560 } 1561 1562 return 1; 1563 } 1564 1565 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1566 1567 /** 1568 * get_ep_head - return the first request on the endpoint 1569 * @hs_ep: The controller endpoint to get 1570 * 1571 * Get the first request on the endpoint. 1572 */ 1573 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1574 { 1575 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1576 queue); 1577 } 1578 1579 /** 1580 * dwc2_gadget_start_next_request - Starts next request from ep queue 1581 * @hs_ep: Endpoint structure 1582 * 1583 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1584 * in its handler. Hence we need to unmask it here to be able to do 1585 * resynchronization. 1586 */ 1587 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1588 { 1589 u32 mask; 1590 struct dwc2_hsotg *hsotg = hs_ep->parent; 1591 int dir_in = hs_ep->dir_in; 1592 struct dwc2_hsotg_req *hs_req; 1593 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1594 1595 if (!list_empty(&hs_ep->queue)) { 1596 hs_req = get_ep_head(hs_ep); 1597 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1598 return; 1599 } 1600 if (!hs_ep->isochronous) 1601 return; 1602 1603 if (dir_in) { 1604 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1605 __func__); 1606 } else { 1607 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1608 __func__); 1609 mask = dwc2_readl(hsotg->regs + epmsk_reg); 1610 mask |= DOEPMSK_OUTTKNEPDISMSK; 1611 dwc2_writel(mask, hsotg->regs + epmsk_reg); 1612 } 1613 } 1614 1615 /** 1616 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1617 * @hsotg: The device state 1618 * @ctrl: USB control request 1619 */ 1620 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1621 struct usb_ctrlrequest *ctrl) 1622 { 1623 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1624 struct dwc2_hsotg_req *hs_req; 1625 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1626 struct dwc2_hsotg_ep *ep; 1627 int ret; 1628 bool halted; 1629 u32 recip; 1630 u32 wValue; 1631 u32 wIndex; 1632 1633 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1634 __func__, set ? "SET" : "CLEAR"); 1635 1636 wValue = le16_to_cpu(ctrl->wValue); 1637 wIndex = le16_to_cpu(ctrl->wIndex); 1638 recip = ctrl->bRequestType & USB_RECIP_MASK; 1639 1640 switch (recip) { 1641 case USB_RECIP_DEVICE: 1642 switch (wValue) { 1643 case USB_DEVICE_REMOTE_WAKEUP: 1644 hsotg->remote_wakeup_allowed = 1; 1645 break; 1646 1647 case USB_DEVICE_TEST_MODE: 1648 if ((wIndex & 0xff) != 0) 1649 return -EINVAL; 1650 if (!set) 1651 return -EINVAL; 1652 1653 hsotg->test_mode = wIndex >> 8; 1654 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1655 if (ret) { 1656 dev_err(hsotg->dev, 1657 "%s: failed to send reply\n", __func__); 1658 return ret; 1659 } 1660 break; 1661 default: 1662 return -ENOENT; 1663 } 1664 break; 1665 1666 case USB_RECIP_ENDPOINT: 1667 ep = ep_from_windex(hsotg, wIndex); 1668 if (!ep) { 1669 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1670 __func__, wIndex); 1671 return -ENOENT; 1672 } 1673 1674 switch (wValue) { 1675 case USB_ENDPOINT_HALT: 1676 halted = ep->halted; 1677 1678 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1679 1680 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1681 if (ret) { 1682 dev_err(hsotg->dev, 1683 "%s: failed to send reply\n", __func__); 1684 return ret; 1685 } 1686 1687 /* 1688 * we have to complete all requests for ep if it was 1689 * halted, and the halt was cleared by CLEAR_FEATURE 1690 */ 1691 1692 if (!set && halted) { 1693 /* 1694 * If we have request in progress, 1695 * then complete it 1696 */ 1697 if (ep->req) { 1698 hs_req = ep->req; 1699 ep->req = NULL; 1700 list_del_init(&hs_req->queue); 1701 if (hs_req->req.complete) { 1702 spin_unlock(&hsotg->lock); 1703 usb_gadget_giveback_request( 1704 &ep->ep, &hs_req->req); 1705 spin_lock(&hsotg->lock); 1706 } 1707 } 1708 1709 /* If we have pending request, then start it */ 1710 if (!ep->req) 1711 dwc2_gadget_start_next_request(ep); 1712 } 1713 1714 break; 1715 1716 default: 1717 return -ENOENT; 1718 } 1719 break; 1720 default: 1721 return -ENOENT; 1722 } 1723 return 1; 1724 } 1725 1726 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1727 1728 /** 1729 * dwc2_hsotg_stall_ep0 - stall ep0 1730 * @hsotg: The device state 1731 * 1732 * Set stall for ep0 as response for setup request. 1733 */ 1734 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1735 { 1736 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1737 u32 reg; 1738 u32 ctrl; 1739 1740 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1741 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1742 1743 /* 1744 * DxEPCTL_Stall will be cleared by EP once it has 1745 * taken effect, so no need to clear later. 1746 */ 1747 1748 ctrl = dwc2_readl(hsotg->regs + reg); 1749 ctrl |= DXEPCTL_STALL; 1750 ctrl |= DXEPCTL_CNAK; 1751 dwc2_writel(ctrl, hsotg->regs + reg); 1752 1753 dev_dbg(hsotg->dev, 1754 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1755 ctrl, reg, dwc2_readl(hsotg->regs + reg)); 1756 1757 /* 1758 * complete won't be called, so we enqueue 1759 * setup request here 1760 */ 1761 dwc2_hsotg_enqueue_setup(hsotg); 1762 } 1763 1764 /** 1765 * dwc2_hsotg_process_control - process a control request 1766 * @hsotg: The device state 1767 * @ctrl: The control request received 1768 * 1769 * The controller has received the SETUP phase of a control request, and 1770 * needs to work out what to do next (and whether to pass it on to the 1771 * gadget driver). 1772 */ 1773 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1774 struct usb_ctrlrequest *ctrl) 1775 { 1776 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1777 int ret = 0; 1778 u32 dcfg; 1779 1780 dev_dbg(hsotg->dev, 1781 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1782 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1783 ctrl->wIndex, ctrl->wLength); 1784 1785 if (ctrl->wLength == 0) { 1786 ep0->dir_in = 1; 1787 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1788 } else if (ctrl->bRequestType & USB_DIR_IN) { 1789 ep0->dir_in = 1; 1790 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1791 } else { 1792 ep0->dir_in = 0; 1793 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1794 } 1795 1796 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1797 switch (ctrl->bRequest) { 1798 case USB_REQ_SET_ADDRESS: 1799 hsotg->connected = 1; 1800 dcfg = dwc2_readl(hsotg->regs + DCFG); 1801 dcfg &= ~DCFG_DEVADDR_MASK; 1802 dcfg |= (le16_to_cpu(ctrl->wValue) << 1803 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1804 dwc2_writel(dcfg, hsotg->regs + DCFG); 1805 1806 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1807 1808 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1809 return; 1810 1811 case USB_REQ_GET_STATUS: 1812 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1813 break; 1814 1815 case USB_REQ_CLEAR_FEATURE: 1816 case USB_REQ_SET_FEATURE: 1817 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1818 break; 1819 } 1820 } 1821 1822 /* as a fallback, try delivering it to the driver to deal with */ 1823 1824 if (ret == 0 && hsotg->driver) { 1825 spin_unlock(&hsotg->lock); 1826 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1827 spin_lock(&hsotg->lock); 1828 if (ret < 0) 1829 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1830 } 1831 1832 /* 1833 * the request is either unhandlable, or is not formatted correctly 1834 * so respond with a STALL for the status stage to indicate failure. 1835 */ 1836 1837 if (ret < 0) 1838 dwc2_hsotg_stall_ep0(hsotg); 1839 } 1840 1841 /** 1842 * dwc2_hsotg_complete_setup - completion of a setup transfer 1843 * @ep: The endpoint the request was on. 1844 * @req: The request completed. 1845 * 1846 * Called on completion of any requests the driver itself submitted for 1847 * EP0 setup packets 1848 */ 1849 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1850 struct usb_request *req) 1851 { 1852 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1853 struct dwc2_hsotg *hsotg = hs_ep->parent; 1854 1855 if (req->status < 0) { 1856 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1857 return; 1858 } 1859 1860 spin_lock(&hsotg->lock); 1861 if (req->actual == 0) 1862 dwc2_hsotg_enqueue_setup(hsotg); 1863 else 1864 dwc2_hsotg_process_control(hsotg, req->buf); 1865 spin_unlock(&hsotg->lock); 1866 } 1867 1868 /** 1869 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1870 * @hsotg: The device state. 1871 * 1872 * Enqueue a request on EP0 if necessary to received any SETUP packets 1873 * received from the host. 1874 */ 1875 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 1876 { 1877 struct usb_request *req = hsotg->ctrl_req; 1878 struct dwc2_hsotg_req *hs_req = our_req(req); 1879 int ret; 1880 1881 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1882 1883 req->zero = 0; 1884 req->length = 8; 1885 req->buf = hsotg->ctrl_buff; 1886 req->complete = dwc2_hsotg_complete_setup; 1887 1888 if (!list_empty(&hs_req->queue)) { 1889 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1890 return; 1891 } 1892 1893 hsotg->eps_out[0]->dir_in = 0; 1894 hsotg->eps_out[0]->send_zlp = 0; 1895 hsotg->ep0_state = DWC2_EP0_SETUP; 1896 1897 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 1898 if (ret < 0) { 1899 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1900 /* 1901 * Don't think there's much we can do other than watch the 1902 * driver fail. 1903 */ 1904 } 1905 } 1906 1907 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 1908 struct dwc2_hsotg_ep *hs_ep) 1909 { 1910 u32 ctrl; 1911 u8 index = hs_ep->index; 1912 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1913 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1914 1915 if (hs_ep->dir_in) 1916 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 1917 index); 1918 else 1919 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 1920 index); 1921 if (using_desc_dma(hsotg)) { 1922 /* Not specific buffer needed for ep0 ZLP */ 1923 dma_addr_t dma = hs_ep->desc_list_dma; 1924 1925 if (!index) 1926 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 1927 1928 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 1929 } else { 1930 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1931 DXEPTSIZ_XFERSIZE(0), hsotg->regs + 1932 epsiz_reg); 1933 } 1934 1935 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 1936 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1937 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1938 ctrl |= DXEPCTL_USBACTEP; 1939 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 1940 } 1941 1942 /** 1943 * dwc2_hsotg_complete_request - complete a request given to us 1944 * @hsotg: The device state. 1945 * @hs_ep: The endpoint the request was on. 1946 * @hs_req: The request to complete. 1947 * @result: The result code (0 => Ok, otherwise errno) 1948 * 1949 * The given request has finished, so call the necessary completion 1950 * if it has one and then look to see if we can start a new request 1951 * on the endpoint. 1952 * 1953 * Note, expects the ep to already be locked as appropriate. 1954 */ 1955 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1956 struct dwc2_hsotg_ep *hs_ep, 1957 struct dwc2_hsotg_req *hs_req, 1958 int result) 1959 { 1960 if (!hs_req) { 1961 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1962 return; 1963 } 1964 1965 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 1966 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 1967 1968 /* 1969 * only replace the status if we've not already set an error 1970 * from a previous transaction 1971 */ 1972 1973 if (hs_req->req.status == -EINPROGRESS) 1974 hs_req->req.status = result; 1975 1976 if (using_dma(hsotg)) 1977 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 1978 1979 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 1980 1981 hs_ep->req = NULL; 1982 list_del_init(&hs_req->queue); 1983 1984 /* 1985 * call the complete request with the locks off, just in case the 1986 * request tries to queue more work for this endpoint. 1987 */ 1988 1989 if (hs_req->req.complete) { 1990 spin_unlock(&hsotg->lock); 1991 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 1992 spin_lock(&hsotg->lock); 1993 } 1994 1995 /* In DDMA don't need to proceed to starting of next ISOC request */ 1996 if (using_desc_dma(hsotg) && hs_ep->isochronous) 1997 return; 1998 1999 /* 2000 * Look to see if there is anything else to do. Note, the completion 2001 * of the previous request may have caused a new request to be started 2002 * so be careful when doing this. 2003 */ 2004 2005 if (!hs_ep->req && result >= 0) 2006 dwc2_gadget_start_next_request(hs_ep); 2007 } 2008 2009 /* 2010 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2011 * @hs_ep: The endpoint the request was on. 2012 * 2013 * Get first request from the ep queue, determine descriptor on which complete 2014 * happened. SW based on isoc_chain_num discovers which half of the descriptor 2015 * chain is currently in use by HW, adjusts dma_address and calculates index 2016 * of completed descriptor based on the value of DEPDMA register. Update actual 2017 * length of request, giveback to gadget. 2018 */ 2019 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2020 { 2021 struct dwc2_hsotg *hsotg = hs_ep->parent; 2022 struct dwc2_hsotg_req *hs_req; 2023 struct usb_request *ureq; 2024 int index; 2025 dma_addr_t dma_addr; 2026 u32 dma_reg; 2027 u32 depdma; 2028 u32 desc_sts; 2029 u32 mask; 2030 2031 hs_req = get_ep_head(hs_ep); 2032 if (!hs_req) { 2033 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2034 return; 2035 } 2036 ureq = &hs_req->req; 2037 2038 dma_addr = hs_ep->desc_list_dma; 2039 2040 /* 2041 * If lower half of descriptor chain is currently use by SW, 2042 * that means higher half is being processed by HW, so shift 2043 * DMA address to higher half of descriptor chain. 2044 */ 2045 if (!hs_ep->isoc_chain_num) 2046 dma_addr += sizeof(struct dwc2_dma_desc) * 2047 (MAX_DMA_DESC_NUM_GENERIC / 2); 2048 2049 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index); 2050 depdma = dwc2_readl(hsotg->regs + dma_reg); 2051 2052 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1; 2053 desc_sts = hs_ep->desc_list[index].status; 2054 2055 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2056 DEV_DMA_ISOC_RX_NBYTES_MASK; 2057 ureq->actual = ureq->length - 2058 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT); 2059 2060 /* Adjust actual length for ISOC Out if length is not align of 4 */ 2061 if (!hs_ep->dir_in && ureq->length & 0x3) 2062 ureq->actual += 4 - (ureq->length & 0x3); 2063 2064 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2065 } 2066 2067 /* 2068 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any. 2069 * @hs_ep: The isochronous endpoint to be re-enabled. 2070 * 2071 * If ep has been disabled due to last descriptor servicing (IN endpoint) or 2072 * BNA (OUT endpoint) check the status of other half of descriptor chain that 2073 * was under SW control till HW was busy and restart the endpoint if needed. 2074 */ 2075 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 2076 { 2077 struct dwc2_hsotg *hsotg = hs_ep->parent; 2078 u32 depctl; 2079 u32 dma_reg; 2080 u32 ctrl; 2081 u32 dma_addr = hs_ep->desc_list_dma; 2082 unsigned char index = hs_ep->index; 2083 2084 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 2085 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2086 2087 ctrl = dwc2_readl(hsotg->regs + depctl); 2088 2089 /* 2090 * EP was disabled if HW has processed last descriptor or BNA was set. 2091 * So restart ep if SW has prepared new descriptor chain in ep_queue 2092 * routine while HW was busy. 2093 */ 2094 if (!(ctrl & DXEPCTL_EPENA)) { 2095 if (!hs_ep->next_desc) { 2096 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n", 2097 __func__); 2098 return; 2099 } 2100 2101 dma_addr += sizeof(struct dwc2_dma_desc) * 2102 (MAX_DMA_DESC_NUM_GENERIC / 2) * 2103 hs_ep->isoc_chain_num; 2104 dwc2_writel(dma_addr, hsotg->regs + dma_reg); 2105 2106 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 2107 dwc2_writel(ctrl, hsotg->regs + depctl); 2108 2109 /* Switch ISOC descriptor chain number being processed by SW*/ 2110 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1; 2111 hs_ep->next_desc = 0; 2112 2113 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n", 2114 __func__); 2115 } 2116 } 2117 2118 /** 2119 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2120 * @hsotg: The device state. 2121 * @ep_idx: The endpoint index for the data 2122 * @size: The size of data in the fifo, in bytes 2123 * 2124 * The FIFO status shows there is data to read from the FIFO for a given 2125 * endpoint, so sort out whether we need to read the data into a request 2126 * that has been made for that endpoint. 2127 */ 2128 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2129 { 2130 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2131 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2132 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 2133 int to_read; 2134 int max_req; 2135 int read_ptr; 2136 2137 if (!hs_req) { 2138 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx)); 2139 int ptr; 2140 2141 dev_dbg(hsotg->dev, 2142 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2143 __func__, size, ep_idx, epctl); 2144 2145 /* dump the data from the FIFO, we've nothing we can do */ 2146 for (ptr = 0; ptr < size; ptr += 4) 2147 (void)dwc2_readl(fifo); 2148 2149 return; 2150 } 2151 2152 to_read = size; 2153 read_ptr = hs_req->req.actual; 2154 max_req = hs_req->req.length - read_ptr; 2155 2156 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2157 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2158 2159 if (to_read > max_req) { 2160 /* 2161 * more data appeared than we where willing 2162 * to deal with in this request. 2163 */ 2164 2165 /* currently we don't deal this */ 2166 WARN_ON_ONCE(1); 2167 } 2168 2169 hs_ep->total_data += to_read; 2170 hs_req->req.actual += to_read; 2171 to_read = DIV_ROUND_UP(to_read, 4); 2172 2173 /* 2174 * note, we might over-write the buffer end by 3 bytes depending on 2175 * alignment of the data. 2176 */ 2177 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 2178 } 2179 2180 /** 2181 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2182 * @hsotg: The device instance 2183 * @dir_in: If IN zlp 2184 * 2185 * Generate a zero-length IN packet request for terminating a SETUP 2186 * transaction. 2187 * 2188 * Note, since we don't write any data to the TxFIFO, then it is 2189 * currently believed that we do not need to wait for any space in 2190 * the TxFIFO. 2191 */ 2192 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2193 { 2194 /* eps_out[0] is used in both directions */ 2195 hsotg->eps_out[0]->dir_in = dir_in; 2196 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2197 2198 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2199 } 2200 2201 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2202 u32 epctl_reg) 2203 { 2204 u32 ctrl; 2205 2206 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2207 if (ctrl & DXEPCTL_EOFRNUM) 2208 ctrl |= DXEPCTL_SETEVENFR; 2209 else 2210 ctrl |= DXEPCTL_SETODDFR; 2211 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 2212 } 2213 2214 /* 2215 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2216 * @hs_ep - The endpoint on which transfer went 2217 * 2218 * Iterate over endpoints descriptor chain and get info on bytes remained 2219 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2220 */ 2221 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2222 { 2223 struct dwc2_hsotg *hsotg = hs_ep->parent; 2224 unsigned int bytes_rem = 0; 2225 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2226 int i; 2227 u32 status; 2228 2229 if (!desc) 2230 return -EINVAL; 2231 2232 for (i = 0; i < hs_ep->desc_count; ++i) { 2233 status = desc->status; 2234 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2235 2236 if (status & DEV_DMA_STS_MASK) 2237 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2238 i, status & DEV_DMA_STS_MASK); 2239 } 2240 2241 return bytes_rem; 2242 } 2243 2244 /** 2245 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2246 * @hsotg: The device instance 2247 * @epnum: The endpoint received from 2248 * 2249 * The RXFIFO has delivered an OutDone event, which means that the data 2250 * transfer for an OUT endpoint has been completed, either by a short 2251 * packet or by the finish of a transfer. 2252 */ 2253 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2254 { 2255 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum)); 2256 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2257 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2258 struct usb_request *req = &hs_req->req; 2259 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2260 int result = 0; 2261 2262 if (!hs_req) { 2263 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2264 return; 2265 } 2266 2267 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2268 dev_dbg(hsotg->dev, "zlp packet received\n"); 2269 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2270 dwc2_hsotg_enqueue_setup(hsotg); 2271 return; 2272 } 2273 2274 if (using_desc_dma(hsotg)) 2275 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2276 2277 if (using_dma(hsotg)) { 2278 unsigned int size_done; 2279 2280 /* 2281 * Calculate the size of the transfer by checking how much 2282 * is left in the endpoint size register and then working it 2283 * out from the amount we loaded for the transfer. 2284 * 2285 * We need to do this as DMA pointers are always 32bit aligned 2286 * so may overshoot/undershoot the transfer. 2287 */ 2288 2289 size_done = hs_ep->size_loaded - size_left; 2290 size_done += hs_ep->last_load; 2291 2292 req->actual = size_done; 2293 } 2294 2295 /* if there is more request to do, schedule new transfer */ 2296 if (req->actual < req->length && size_left == 0) { 2297 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2298 return; 2299 } 2300 2301 if (req->actual < req->length && req->short_not_ok) { 2302 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2303 __func__, req->actual, req->length); 2304 2305 /* 2306 * todo - what should we return here? there's no one else 2307 * even bothering to check the status. 2308 */ 2309 } 2310 2311 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2312 if (!using_desc_dma(hsotg) && epnum == 0 && 2313 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2314 /* Move to STATUS IN */ 2315 dwc2_hsotg_ep0_zlp(hsotg, true); 2316 return; 2317 } 2318 2319 /* 2320 * Slave mode OUT transfers do not go through XferComplete so 2321 * adjust the ISOC parity here. 2322 */ 2323 if (!using_dma(hsotg)) { 2324 if (hs_ep->isochronous && hs_ep->interval == 1) 2325 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2326 else if (hs_ep->isochronous && hs_ep->interval > 1) 2327 dwc2_gadget_incr_frame_num(hs_ep); 2328 } 2329 2330 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2331 } 2332 2333 /** 2334 * dwc2_hsotg_handle_rx - RX FIFO has data 2335 * @hsotg: The device instance 2336 * 2337 * The IRQ handler has detected that the RX FIFO has some data in it 2338 * that requires processing, so find out what is in there and do the 2339 * appropriate read. 2340 * 2341 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2342 * chunks, so if you have x packets received on an endpoint you'll get x 2343 * FIFO events delivered, each with a packet's worth of data in it. 2344 * 2345 * When using DMA, we should not be processing events from the RXFIFO 2346 * as the actual data should be sent to the memory directly and we turn 2347 * on the completion interrupts to get notifications of transfer completion. 2348 */ 2349 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2350 { 2351 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP); 2352 u32 epnum, status, size; 2353 2354 WARN_ON(using_dma(hsotg)); 2355 2356 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2357 status = grxstsr & GRXSTS_PKTSTS_MASK; 2358 2359 size = grxstsr & GRXSTS_BYTECNT_MASK; 2360 size >>= GRXSTS_BYTECNT_SHIFT; 2361 2362 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2363 __func__, grxstsr, size, epnum); 2364 2365 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2366 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2367 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2368 break; 2369 2370 case GRXSTS_PKTSTS_OUTDONE: 2371 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2372 dwc2_hsotg_read_frameno(hsotg)); 2373 2374 if (!using_dma(hsotg)) 2375 dwc2_hsotg_handle_outdone(hsotg, epnum); 2376 break; 2377 2378 case GRXSTS_PKTSTS_SETUPDONE: 2379 dev_dbg(hsotg->dev, 2380 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2381 dwc2_hsotg_read_frameno(hsotg), 2382 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2383 /* 2384 * Call dwc2_hsotg_handle_outdone here if it was not called from 2385 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2386 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2387 */ 2388 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2389 dwc2_hsotg_handle_outdone(hsotg, epnum); 2390 break; 2391 2392 case GRXSTS_PKTSTS_OUTRX: 2393 dwc2_hsotg_rx_data(hsotg, epnum, size); 2394 break; 2395 2396 case GRXSTS_PKTSTS_SETUPRX: 2397 dev_dbg(hsotg->dev, 2398 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2399 dwc2_hsotg_read_frameno(hsotg), 2400 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2401 2402 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2403 2404 dwc2_hsotg_rx_data(hsotg, epnum, size); 2405 break; 2406 2407 default: 2408 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2409 __func__, grxstsr); 2410 2411 dwc2_hsotg_dump(hsotg); 2412 break; 2413 } 2414 } 2415 2416 /** 2417 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2418 * @mps: The maximum packet size in bytes. 2419 */ 2420 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2421 { 2422 switch (mps) { 2423 case 64: 2424 return D0EPCTL_MPS_64; 2425 case 32: 2426 return D0EPCTL_MPS_32; 2427 case 16: 2428 return D0EPCTL_MPS_16; 2429 case 8: 2430 return D0EPCTL_MPS_8; 2431 } 2432 2433 /* bad max packet size, warn and return invalid result */ 2434 WARN_ON(1); 2435 return (u32)-1; 2436 } 2437 2438 /** 2439 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2440 * @hsotg: The driver state. 2441 * @ep: The index number of the endpoint 2442 * @mps: The maximum packet size in bytes 2443 * @mc: The multicount value 2444 * 2445 * Configure the maximum packet size for the given endpoint, updating 2446 * the hardware control registers to reflect this. 2447 */ 2448 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2449 unsigned int ep, unsigned int mps, 2450 unsigned int mc, unsigned int dir_in) 2451 { 2452 struct dwc2_hsotg_ep *hs_ep; 2453 void __iomem *regs = hsotg->regs; 2454 u32 reg; 2455 2456 hs_ep = index_to_ep(hsotg, ep, dir_in); 2457 if (!hs_ep) 2458 return; 2459 2460 if (ep == 0) { 2461 u32 mps_bytes = mps; 2462 2463 /* EP0 is a special case */ 2464 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2465 if (mps > 3) 2466 goto bad_mps; 2467 hs_ep->ep.maxpacket = mps_bytes; 2468 hs_ep->mc = 1; 2469 } else { 2470 if (mps > 1024) 2471 goto bad_mps; 2472 hs_ep->mc = mc; 2473 if (mc > 3) 2474 goto bad_mps; 2475 hs_ep->ep.maxpacket = mps; 2476 } 2477 2478 if (dir_in) { 2479 reg = dwc2_readl(regs + DIEPCTL(ep)); 2480 reg &= ~DXEPCTL_MPS_MASK; 2481 reg |= mps; 2482 dwc2_writel(reg, regs + DIEPCTL(ep)); 2483 } else { 2484 reg = dwc2_readl(regs + DOEPCTL(ep)); 2485 reg &= ~DXEPCTL_MPS_MASK; 2486 reg |= mps; 2487 dwc2_writel(reg, regs + DOEPCTL(ep)); 2488 } 2489 2490 return; 2491 2492 bad_mps: 2493 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2494 } 2495 2496 /** 2497 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2498 * @hsotg: The driver state 2499 * @idx: The index for the endpoint (0..15) 2500 */ 2501 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2502 { 2503 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2504 hsotg->regs + GRSTCTL); 2505 2506 /* wait until the fifo is flushed */ 2507 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2508 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2509 __func__); 2510 } 2511 2512 /** 2513 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2514 * @hsotg: The driver state 2515 * @hs_ep: The driver endpoint to check. 2516 * 2517 * Check to see if there is a request that has data to send, and if so 2518 * make an attempt to write data into the FIFO. 2519 */ 2520 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2521 struct dwc2_hsotg_ep *hs_ep) 2522 { 2523 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2524 2525 if (!hs_ep->dir_in || !hs_req) { 2526 /** 2527 * if request is not enqueued, we disable interrupts 2528 * for endpoints, excepting ep0 2529 */ 2530 if (hs_ep->index != 0) 2531 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2532 hs_ep->dir_in, 0); 2533 return 0; 2534 } 2535 2536 if (hs_req->req.actual < hs_req->req.length) { 2537 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2538 hs_ep->index); 2539 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2540 } 2541 2542 return 0; 2543 } 2544 2545 /** 2546 * dwc2_hsotg_complete_in - complete IN transfer 2547 * @hsotg: The device state. 2548 * @hs_ep: The endpoint that has just completed. 2549 * 2550 * An IN transfer has been completed, update the transfer's state and then 2551 * call the relevant completion routines. 2552 */ 2553 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2554 struct dwc2_hsotg_ep *hs_ep) 2555 { 2556 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2557 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 2558 int size_left, size_done; 2559 2560 if (!hs_req) { 2561 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2562 return; 2563 } 2564 2565 /* Finish ZLP handling for IN EP0 transactions */ 2566 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2567 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2568 2569 /* 2570 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2571 * changed to IN. Change back to complete OUT transfer request 2572 */ 2573 hs_ep->dir_in = 0; 2574 2575 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2576 if (hsotg->test_mode) { 2577 int ret; 2578 2579 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2580 if (ret < 0) { 2581 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2582 hsotg->test_mode); 2583 dwc2_hsotg_stall_ep0(hsotg); 2584 return; 2585 } 2586 } 2587 dwc2_hsotg_enqueue_setup(hsotg); 2588 return; 2589 } 2590 2591 /* 2592 * Calculate the size of the transfer by checking how much is left 2593 * in the endpoint size register and then working it out from 2594 * the amount we loaded for the transfer. 2595 * 2596 * We do this even for DMA, as the transfer may have incremented 2597 * past the end of the buffer (DMA transfers are always 32bit 2598 * aligned). 2599 */ 2600 if (using_desc_dma(hsotg)) { 2601 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2602 if (size_left < 0) 2603 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2604 size_left); 2605 } else { 2606 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2607 } 2608 2609 size_done = hs_ep->size_loaded - size_left; 2610 size_done += hs_ep->last_load; 2611 2612 if (hs_req->req.actual != size_done) 2613 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2614 __func__, hs_req->req.actual, size_done); 2615 2616 hs_req->req.actual = size_done; 2617 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2618 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2619 2620 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2621 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2622 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2623 return; 2624 } 2625 2626 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2627 if (hs_ep->send_zlp) { 2628 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2629 hs_ep->send_zlp = 0; 2630 /* transfer will be completed on next complete interrupt */ 2631 return; 2632 } 2633 2634 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2635 /* Move to STATUS OUT */ 2636 dwc2_hsotg_ep0_zlp(hsotg, false); 2637 return; 2638 } 2639 2640 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2641 } 2642 2643 /** 2644 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2645 * @hsotg: The device state. 2646 * @idx: Index of ep. 2647 * @dir_in: Endpoint direction 1-in 0-out. 2648 * 2649 * Reads for endpoint with given index and direction, by masking 2650 * epint_reg with coresponding mask. 2651 */ 2652 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2653 unsigned int idx, int dir_in) 2654 { 2655 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2656 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2657 u32 ints; 2658 u32 mask; 2659 u32 diepempmsk; 2660 2661 mask = dwc2_readl(hsotg->regs + epmsk_reg); 2662 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK); 2663 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2664 mask |= DXEPINT_SETUP_RCVD; 2665 2666 ints = dwc2_readl(hsotg->regs + epint_reg); 2667 ints &= mask; 2668 return ints; 2669 } 2670 2671 /** 2672 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2673 * @hs_ep: The endpoint on which interrupt is asserted. 2674 * 2675 * This interrupt indicates that the endpoint has been disabled per the 2676 * application's request. 2677 * 2678 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2679 * in case of ISOC completes current request. 2680 * 2681 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2682 * request starts it. 2683 */ 2684 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2685 { 2686 struct dwc2_hsotg *hsotg = hs_ep->parent; 2687 struct dwc2_hsotg_req *hs_req; 2688 unsigned char idx = hs_ep->index; 2689 int dir_in = hs_ep->dir_in; 2690 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2691 int dctl = dwc2_readl(hsotg->regs + DCTL); 2692 2693 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2694 2695 if (dir_in) { 2696 int epctl = dwc2_readl(hsotg->regs + epctl_reg); 2697 2698 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2699 2700 if (hs_ep->isochronous) { 2701 dwc2_hsotg_complete_in(hsotg, hs_ep); 2702 return; 2703 } 2704 2705 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2706 int dctl = dwc2_readl(hsotg->regs + DCTL); 2707 2708 dctl |= DCTL_CGNPINNAK; 2709 dwc2_writel(dctl, hsotg->regs + DCTL); 2710 } 2711 return; 2712 } 2713 2714 if (dctl & DCTL_GOUTNAKSTS) { 2715 dctl |= DCTL_CGOUTNAK; 2716 dwc2_writel(dctl, hsotg->regs + DCTL); 2717 } 2718 2719 if (!hs_ep->isochronous) 2720 return; 2721 2722 if (list_empty(&hs_ep->queue)) { 2723 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2724 __func__, hs_ep); 2725 return; 2726 } 2727 2728 do { 2729 hs_req = get_ep_head(hs_ep); 2730 if (hs_req) 2731 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2732 -ENODATA); 2733 dwc2_gadget_incr_frame_num(hs_ep); 2734 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2735 2736 dwc2_gadget_start_next_request(hs_ep); 2737 } 2738 2739 /** 2740 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2741 * @hs_ep: The endpoint on which interrupt is asserted. 2742 * 2743 * This is starting point for ISOC-OUT transfer, synchronization done with 2744 * first out token received from host while corresponding EP is disabled. 2745 * 2746 * Device does not know initial frame in which out token will come. For this 2747 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2748 * getting this interrupt SW starts calculation for next transfer frame. 2749 */ 2750 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2751 { 2752 struct dwc2_hsotg *hsotg = ep->parent; 2753 int dir_in = ep->dir_in; 2754 u32 doepmsk; 2755 u32 tmp; 2756 2757 if (dir_in || !ep->isochronous) 2758 return; 2759 2760 /* 2761 * Store frame in which irq was asserted here, as 2762 * it can change while completing request below. 2763 */ 2764 tmp = dwc2_hsotg_read_frameno(hsotg); 2765 2766 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA); 2767 2768 if (using_desc_dma(hsotg)) { 2769 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2770 /* Start first ISO Out */ 2771 ep->target_frame = tmp; 2772 dwc2_gadget_start_isoc_ddma(ep); 2773 } 2774 return; 2775 } 2776 2777 if (ep->interval > 1 && 2778 ep->target_frame == TARGET_FRAME_INITIAL) { 2779 u32 dsts; 2780 u32 ctrl; 2781 2782 dsts = dwc2_readl(hsotg->regs + DSTS); 2783 ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2784 dwc2_gadget_incr_frame_num(ep); 2785 2786 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index)); 2787 if (ep->target_frame & 0x1) 2788 ctrl |= DXEPCTL_SETODDFR; 2789 else 2790 ctrl |= DXEPCTL_SETEVENFR; 2791 2792 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index)); 2793 } 2794 2795 dwc2_gadget_start_next_request(ep); 2796 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 2797 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2798 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK); 2799 } 2800 2801 /** 2802 * dwc2_gadget_handle_nak - handle NAK interrupt 2803 * @hs_ep: The endpoint on which interrupt is asserted. 2804 * 2805 * This is starting point for ISOC-IN transfer, synchronization done with 2806 * first IN token received from host while corresponding EP is disabled. 2807 * 2808 * Device does not know when first one token will arrive from host. On first 2809 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2810 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2811 * sent in response to that as there was no data in FIFO. SW is basing on this 2812 * interrupt to obtain frame in which token has come and then based on the 2813 * interval calculates next frame for transfer. 2814 */ 2815 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2816 { 2817 struct dwc2_hsotg *hsotg = hs_ep->parent; 2818 int dir_in = hs_ep->dir_in; 2819 2820 if (!dir_in || !hs_ep->isochronous) 2821 return; 2822 2823 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2824 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2825 2826 if (using_desc_dma(hsotg)) { 2827 dwc2_gadget_start_isoc_ddma(hs_ep); 2828 return; 2829 } 2830 2831 if (hs_ep->interval > 1) { 2832 u32 ctrl = dwc2_readl(hsotg->regs + 2833 DIEPCTL(hs_ep->index)); 2834 if (hs_ep->target_frame & 0x1) 2835 ctrl |= DXEPCTL_SETODDFR; 2836 else 2837 ctrl |= DXEPCTL_SETEVENFR; 2838 2839 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index)); 2840 } 2841 2842 dwc2_hsotg_complete_request(hsotg, hs_ep, 2843 get_ep_head(hs_ep), 0); 2844 } 2845 2846 dwc2_gadget_incr_frame_num(hs_ep); 2847 } 2848 2849 /** 2850 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2851 * @hsotg: The driver state 2852 * @idx: The index for the endpoint (0..15) 2853 * @dir_in: Set if this is an IN endpoint 2854 * 2855 * Process and clear any interrupt pending for an individual endpoint 2856 */ 2857 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2858 int dir_in) 2859 { 2860 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2861 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2862 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2863 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2864 u32 ints; 2865 u32 ctrl; 2866 2867 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2868 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2869 2870 /* Clear endpoint interrupts */ 2871 dwc2_writel(ints, hsotg->regs + epint_reg); 2872 2873 if (!hs_ep) { 2874 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2875 __func__, idx, dir_in ? "in" : "out"); 2876 return; 2877 } 2878 2879 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2880 __func__, idx, dir_in ? "in" : "out", ints); 2881 2882 /* Don't process XferCompl interrupt if it is a setup packet */ 2883 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 2884 ints &= ~DXEPINT_XFERCOMPL; 2885 2886 /* 2887 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 2888 * stage and xfercomplete was generated without SETUP phase done 2889 * interrupt. SW should parse received setup packet only after host's 2890 * exit from setup phase of control transfer. 2891 */ 2892 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 2893 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 2894 ints &= ~DXEPINT_XFERCOMPL; 2895 2896 if (ints & DXEPINT_XFERCOMPL) { 2897 dev_dbg(hsotg->dev, 2898 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 2899 __func__, dwc2_readl(hsotg->regs + epctl_reg), 2900 dwc2_readl(hsotg->regs + epsiz_reg)); 2901 2902 /* In DDMA handle isochronous requests separately */ 2903 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 2904 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 2905 /* Try to start next isoc request */ 2906 dwc2_gadget_start_next_isoc_ddma(hs_ep); 2907 } else if (dir_in) { 2908 /* 2909 * We get OutDone from the FIFO, so we only 2910 * need to look at completing IN requests here 2911 * if operating slave mode 2912 */ 2913 if (hs_ep->isochronous && hs_ep->interval > 1) 2914 dwc2_gadget_incr_frame_num(hs_ep); 2915 2916 dwc2_hsotg_complete_in(hsotg, hs_ep); 2917 if (ints & DXEPINT_NAKINTRPT) 2918 ints &= ~DXEPINT_NAKINTRPT; 2919 2920 if (idx == 0 && !hs_ep->req) 2921 dwc2_hsotg_enqueue_setup(hsotg); 2922 } else if (using_dma(hsotg)) { 2923 /* 2924 * We're using DMA, we need to fire an OutDone here 2925 * as we ignore the RXFIFO. 2926 */ 2927 if (hs_ep->isochronous && hs_ep->interval > 1) 2928 dwc2_gadget_incr_frame_num(hs_ep); 2929 2930 dwc2_hsotg_handle_outdone(hsotg, idx); 2931 } 2932 } 2933 2934 if (ints & DXEPINT_EPDISBLD) 2935 dwc2_gadget_handle_ep_disabled(hs_ep); 2936 2937 if (ints & DXEPINT_OUTTKNEPDIS) 2938 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 2939 2940 if (ints & DXEPINT_NAKINTRPT) 2941 dwc2_gadget_handle_nak(hs_ep); 2942 2943 if (ints & DXEPINT_AHBERR) 2944 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 2945 2946 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 2947 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 2948 2949 if (using_dma(hsotg) && idx == 0) { 2950 /* 2951 * this is the notification we've received a 2952 * setup packet. In non-DMA mode we'd get this 2953 * from the RXFIFO, instead we need to process 2954 * the setup here. 2955 */ 2956 2957 if (dir_in) 2958 WARN_ON_ONCE(1); 2959 else 2960 dwc2_hsotg_handle_outdone(hsotg, 0); 2961 } 2962 } 2963 2964 if (ints & DXEPINT_STSPHSERCVD) { 2965 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 2966 2967 /* Safety check EP0 state when STSPHSERCVD asserted */ 2968 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2969 /* Move to STATUS IN for DDMA */ 2970 if (using_desc_dma(hsotg)) 2971 dwc2_hsotg_ep0_zlp(hsotg, true); 2972 } 2973 2974 } 2975 2976 if (ints & DXEPINT_BACK2BACKSETUP) 2977 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 2978 2979 if (ints & DXEPINT_BNAINTR) { 2980 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 2981 2982 /* 2983 * Try to start next isoc request, if any. 2984 * Sometimes the endpoint remains enabled after BNA interrupt 2985 * assertion, which is not expected, hence we can enter here 2986 * couple of times. 2987 */ 2988 if (hs_ep->isochronous) 2989 dwc2_gadget_start_next_isoc_ddma(hs_ep); 2990 } 2991 2992 if (dir_in && !hs_ep->isochronous) { 2993 /* not sure if this is important, but we'll clear it anyway */ 2994 if (ints & DXEPINT_INTKNTXFEMP) { 2995 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 2996 __func__, idx); 2997 } 2998 2999 /* this probably means something bad is happening */ 3000 if (ints & DXEPINT_INTKNEPMIS) { 3001 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3002 __func__, idx); 3003 } 3004 3005 /* FIFO has space or is empty (see GAHBCFG) */ 3006 if (hsotg->dedicated_fifos && 3007 ints & DXEPINT_TXFEMP) { 3008 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3009 __func__, idx); 3010 if (!using_dma(hsotg)) 3011 dwc2_hsotg_trytx(hsotg, hs_ep); 3012 } 3013 } 3014 } 3015 3016 /** 3017 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3018 * @hsotg: The device state. 3019 * 3020 * Handle updating the device settings after the enumeration phase has 3021 * been completed. 3022 */ 3023 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3024 { 3025 u32 dsts = dwc2_readl(hsotg->regs + DSTS); 3026 int ep0_mps = 0, ep_mps = 8; 3027 3028 /* 3029 * This should signal the finish of the enumeration phase 3030 * of the USB handshaking, so we should now know what rate 3031 * we connected at. 3032 */ 3033 3034 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3035 3036 /* 3037 * note, since we're limited by the size of transfer on EP0, and 3038 * it seems IN transfers must be a even number of packets we do 3039 * not advertise a 64byte MPS on EP0. 3040 */ 3041 3042 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3043 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3044 case DSTS_ENUMSPD_FS: 3045 case DSTS_ENUMSPD_FS48: 3046 hsotg->gadget.speed = USB_SPEED_FULL; 3047 ep0_mps = EP0_MPS_LIMIT; 3048 ep_mps = 1023; 3049 break; 3050 3051 case DSTS_ENUMSPD_HS: 3052 hsotg->gadget.speed = USB_SPEED_HIGH; 3053 ep0_mps = EP0_MPS_LIMIT; 3054 ep_mps = 1024; 3055 break; 3056 3057 case DSTS_ENUMSPD_LS: 3058 hsotg->gadget.speed = USB_SPEED_LOW; 3059 ep0_mps = 8; 3060 ep_mps = 8; 3061 /* 3062 * note, we don't actually support LS in this driver at the 3063 * moment, and the documentation seems to imply that it isn't 3064 * supported by the PHYs on some of the devices. 3065 */ 3066 break; 3067 } 3068 dev_info(hsotg->dev, "new device is %s\n", 3069 usb_speed_string(hsotg->gadget.speed)); 3070 3071 /* 3072 * we should now know the maximum packet size for an 3073 * endpoint, so set the endpoints to a default value. 3074 */ 3075 3076 if (ep0_mps) { 3077 int i; 3078 /* Initialize ep0 for both in and out directions */ 3079 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3080 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3081 for (i = 1; i < hsotg->num_of_eps; i++) { 3082 if (hsotg->eps_in[i]) 3083 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3084 0, 1); 3085 if (hsotg->eps_out[i]) 3086 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3087 0, 0); 3088 } 3089 } 3090 3091 /* ensure after enumeration our EP0 is active */ 3092 3093 dwc2_hsotg_enqueue_setup(hsotg); 3094 3095 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3096 dwc2_readl(hsotg->regs + DIEPCTL0), 3097 dwc2_readl(hsotg->regs + DOEPCTL0)); 3098 } 3099 3100 /** 3101 * kill_all_requests - remove all requests from the endpoint's queue 3102 * @hsotg: The device state. 3103 * @ep: The endpoint the requests may be on. 3104 * @result: The result code to use. 3105 * 3106 * Go through the requests on the given endpoint and mark them 3107 * completed with the given result code. 3108 */ 3109 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3110 struct dwc2_hsotg_ep *ep, 3111 int result) 3112 { 3113 struct dwc2_hsotg_req *req, *treq; 3114 unsigned int size; 3115 3116 ep->req = NULL; 3117 3118 list_for_each_entry_safe(req, treq, &ep->queue, queue) 3119 dwc2_hsotg_complete_request(hsotg, ep, req, 3120 result); 3121 3122 if (!hsotg->dedicated_fifos) 3123 return; 3124 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3125 if (size < ep->fifo_size) 3126 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3127 } 3128 3129 /** 3130 * dwc2_hsotg_disconnect - disconnect service 3131 * @hsotg: The device state. 3132 * 3133 * The device has been disconnected. Remove all current 3134 * transactions and signal the gadget driver that this 3135 * has happened. 3136 */ 3137 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3138 { 3139 unsigned int ep; 3140 3141 if (!hsotg->connected) 3142 return; 3143 3144 hsotg->connected = 0; 3145 hsotg->test_mode = 0; 3146 3147 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3148 if (hsotg->eps_in[ep]) 3149 kill_all_requests(hsotg, hsotg->eps_in[ep], 3150 -ESHUTDOWN); 3151 if (hsotg->eps_out[ep]) 3152 kill_all_requests(hsotg, hsotg->eps_out[ep], 3153 -ESHUTDOWN); 3154 } 3155 3156 call_gadget(hsotg, disconnect); 3157 hsotg->lx_state = DWC2_L3; 3158 3159 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3160 } 3161 3162 /** 3163 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3164 * @hsotg: The device state: 3165 * @periodic: True if this is a periodic FIFO interrupt 3166 */ 3167 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3168 { 3169 struct dwc2_hsotg_ep *ep; 3170 int epno, ret; 3171 3172 /* look through for any more data to transmit */ 3173 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3174 ep = index_to_ep(hsotg, epno, 1); 3175 3176 if (!ep) 3177 continue; 3178 3179 if (!ep->dir_in) 3180 continue; 3181 3182 if ((periodic && !ep->periodic) || 3183 (!periodic && ep->periodic)) 3184 continue; 3185 3186 ret = dwc2_hsotg_trytx(hsotg, ep); 3187 if (ret < 0) 3188 break; 3189 } 3190 } 3191 3192 /* IRQ flags which will trigger a retry around the IRQ loop */ 3193 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3194 GINTSTS_PTXFEMP | \ 3195 GINTSTS_RXFLVL) 3196 3197 /** 3198 * dwc2_hsotg_core_init - issue softreset to the core 3199 * @hsotg: The device state 3200 * 3201 * Issue a soft reset to the core, and await the core finishing it. 3202 */ 3203 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3204 bool is_usb_reset) 3205 { 3206 u32 intmsk; 3207 u32 val; 3208 u32 usbcfg; 3209 u32 dcfg = 0; 3210 3211 /* Kill any ep0 requests as controller will be reinitialized */ 3212 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3213 3214 if (!is_usb_reset) 3215 if (dwc2_core_reset(hsotg, true)) 3216 return; 3217 3218 /* 3219 * we must now enable ep0 ready for host detection and then 3220 * set configuration. 3221 */ 3222 3223 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3224 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 3225 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 3226 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 3227 3228 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS && 3229 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 3230 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) { 3231 /* FS/LS Dedicated Transceiver Interface */ 3232 usbcfg |= GUSBCFG_PHYSEL; 3233 } else { 3234 /* set the PLL on, remove the HNP/SRP and set the PHY */ 3235 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 3236 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 3237 (val << GUSBCFG_USBTRDTIM_SHIFT); 3238 } 3239 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 3240 3241 dwc2_hsotg_init_fifo(hsotg); 3242 3243 if (!is_usb_reset) 3244 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 3245 3246 dcfg |= DCFG_EPMISCNT(1); 3247 3248 switch (hsotg->params.speed) { 3249 case DWC2_SPEED_PARAM_LOW: 3250 dcfg |= DCFG_DEVSPD_LS; 3251 break; 3252 case DWC2_SPEED_PARAM_FULL: 3253 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3254 dcfg |= DCFG_DEVSPD_FS48; 3255 else 3256 dcfg |= DCFG_DEVSPD_FS; 3257 break; 3258 default: 3259 dcfg |= DCFG_DEVSPD_HS; 3260 } 3261 3262 dwc2_writel(dcfg, hsotg->regs + DCFG); 3263 3264 /* Clear any pending OTG interrupts */ 3265 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT); 3266 3267 /* Clear any pending interrupts */ 3268 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 3269 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3270 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3271 GINTSTS_USBRST | GINTSTS_RESETDET | 3272 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3273 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3274 GINTSTS_LPMTRANRCVD; 3275 3276 if (!using_desc_dma(hsotg)) 3277 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3278 3279 if (!hsotg->params.external_id_pin_ctl) 3280 intmsk |= GINTSTS_CONIDSTSCHNG; 3281 3282 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 3283 3284 if (using_dma(hsotg)) { 3285 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3286 hsotg->params.ahbcfg, 3287 hsotg->regs + GAHBCFG); 3288 3289 /* Set DDMA mode support in the core if needed */ 3290 if (using_desc_dma(hsotg)) 3291 dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN); 3292 3293 } else { 3294 dwc2_writel(((hsotg->dedicated_fifos) ? 3295 (GAHBCFG_NP_TXF_EMP_LVL | 3296 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3297 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG); 3298 } 3299 3300 /* 3301 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3302 * when we have no data to transfer. Otherwise we get being flooded by 3303 * interrupts. 3304 */ 3305 3306 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3307 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3308 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3309 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3310 hsotg->regs + DIEPMSK); 3311 3312 /* 3313 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3314 * DMA mode we may need this and StsPhseRcvd. 3315 */ 3316 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3317 DOEPMSK_STSPHSERCVDMSK) : 0) | 3318 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3319 DOEPMSK_SETUPMSK, 3320 hsotg->regs + DOEPMSK); 3321 3322 /* Enable BNA interrupt for DDMA */ 3323 if (using_desc_dma(hsotg)) 3324 dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK); 3325 3326 dwc2_writel(0, hsotg->regs + DAINTMSK); 3327 3328 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3329 dwc2_readl(hsotg->regs + DIEPCTL0), 3330 dwc2_readl(hsotg->regs + DOEPCTL0)); 3331 3332 /* enable in and out endpoint interrupts */ 3333 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3334 3335 /* 3336 * Enable the RXFIFO when in slave mode, as this is how we collect 3337 * the data. In DMA mode, we get events from the FIFO but also 3338 * things we cannot process, so do not use it. 3339 */ 3340 if (!using_dma(hsotg)) 3341 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3342 3343 /* Enable interrupts for EP0 in and out */ 3344 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3345 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3346 3347 if (!is_usb_reset) { 3348 dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3349 udelay(10); /* see openiboot */ 3350 dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3351 } 3352 3353 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL)); 3354 3355 /* 3356 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3357 * writing to the EPCTL register.. 3358 */ 3359 3360 /* set to read 1 8byte packet */ 3361 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3362 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 3363 3364 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3365 DXEPCTL_CNAK | DXEPCTL_EPENA | 3366 DXEPCTL_USBACTEP, 3367 hsotg->regs + DOEPCTL0); 3368 3369 /* enable, but don't activate EP0in */ 3370 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3371 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 3372 3373 /* clear global NAKs */ 3374 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3375 if (!is_usb_reset) 3376 val |= DCTL_SFTDISCON; 3377 dwc2_set_bit(hsotg->regs + DCTL, val); 3378 3379 /* configure the core to support LPM */ 3380 dwc2_gadget_init_lpm(hsotg); 3381 3382 /* must be at-least 3ms to allow bus to see disconnect */ 3383 mdelay(3); 3384 3385 hsotg->lx_state = DWC2_L0; 3386 3387 dwc2_hsotg_enqueue_setup(hsotg); 3388 3389 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3390 dwc2_readl(hsotg->regs + DIEPCTL0), 3391 dwc2_readl(hsotg->regs + DOEPCTL0)); 3392 } 3393 3394 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3395 { 3396 /* set the soft-disconnect bit */ 3397 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 3398 } 3399 3400 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3401 { 3402 /* remove the soft-disconnect and let's go */ 3403 dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 3404 } 3405 3406 /** 3407 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3408 * @hsotg: The device state: 3409 * 3410 * This interrupt indicates one of the following conditions occurred while 3411 * transmitting an ISOC transaction. 3412 * - Corrupted IN Token for ISOC EP. 3413 * - Packet not complete in FIFO. 3414 * 3415 * The following actions will be taken: 3416 * - Determine the EP 3417 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3418 */ 3419 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3420 { 3421 struct dwc2_hsotg_ep *hs_ep; 3422 u32 epctrl; 3423 u32 daintmsk; 3424 u32 idx; 3425 3426 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3427 3428 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3429 3430 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3431 hs_ep = hsotg->eps_in[idx]; 3432 /* Proceed only unmasked ISOC EPs */ 3433 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk)) 3434 continue; 3435 3436 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx)); 3437 if ((epctrl & DXEPCTL_EPENA) && 3438 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3439 epctrl |= DXEPCTL_SNAK; 3440 epctrl |= DXEPCTL_EPDIS; 3441 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx)); 3442 } 3443 } 3444 3445 /* Clear interrupt */ 3446 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS); 3447 } 3448 3449 /** 3450 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3451 * @hsotg: The device state: 3452 * 3453 * This interrupt indicates one of the following conditions occurred while 3454 * transmitting an ISOC transaction. 3455 * - Corrupted OUT Token for ISOC EP. 3456 * - Packet not complete in FIFO. 3457 * 3458 * The following actions will be taken: 3459 * - Determine the EP 3460 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3461 */ 3462 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3463 { 3464 u32 gintsts; 3465 u32 gintmsk; 3466 u32 daintmsk; 3467 u32 epctrl; 3468 struct dwc2_hsotg_ep *hs_ep; 3469 int idx; 3470 3471 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3472 3473 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3474 daintmsk >>= DAINT_OUTEP_SHIFT; 3475 3476 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3477 hs_ep = hsotg->eps_out[idx]; 3478 /* Proceed only unmasked ISOC EPs */ 3479 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk)) 3480 continue; 3481 3482 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3483 if ((epctrl & DXEPCTL_EPENA) && 3484 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3485 /* Unmask GOUTNAKEFF interrupt */ 3486 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3487 gintmsk |= GINTSTS_GOUTNAKEFF; 3488 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3489 3490 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3491 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3492 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3493 break; 3494 } 3495 } 3496 } 3497 3498 /* Clear interrupt */ 3499 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS); 3500 } 3501 3502 /** 3503 * dwc2_hsotg_irq - handle device interrupt 3504 * @irq: The IRQ number triggered 3505 * @pw: The pw value when registered the handler. 3506 */ 3507 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3508 { 3509 struct dwc2_hsotg *hsotg = pw; 3510 int retry_count = 8; 3511 u32 gintsts; 3512 u32 gintmsk; 3513 3514 if (!dwc2_is_device_mode(hsotg)) 3515 return IRQ_NONE; 3516 3517 spin_lock(&hsotg->lock); 3518 irq_retry: 3519 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3520 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3521 3522 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3523 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3524 3525 gintsts &= gintmsk; 3526 3527 if (gintsts & GINTSTS_RESETDET) { 3528 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3529 3530 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS); 3531 3532 /* This event must be used only if controller is suspended */ 3533 if (hsotg->lx_state == DWC2_L2) { 3534 dwc2_exit_partial_power_down(hsotg, true); 3535 hsotg->lx_state = DWC2_L0; 3536 } 3537 } 3538 3539 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3540 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL); 3541 u32 connected = hsotg->connected; 3542 3543 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3544 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3545 dwc2_readl(hsotg->regs + GNPTXSTS)); 3546 3547 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 3548 3549 /* Report disconnection if it is not already done. */ 3550 dwc2_hsotg_disconnect(hsotg); 3551 3552 /* Reset device address to zero */ 3553 dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK); 3554 3555 if (usb_status & GOTGCTL_BSESVLD && connected) 3556 dwc2_hsotg_core_init_disconnected(hsotg, true); 3557 } 3558 3559 if (gintsts & GINTSTS_ENUMDONE) { 3560 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 3561 3562 dwc2_hsotg_irq_enumdone(hsotg); 3563 } 3564 3565 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3566 u32 daint = dwc2_readl(hsotg->regs + DAINT); 3567 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3568 u32 daint_out, daint_in; 3569 int ep; 3570 3571 daint &= daintmsk; 3572 daint_out = daint >> DAINT_OUTEP_SHIFT; 3573 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3574 3575 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3576 3577 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3578 ep++, daint_out >>= 1) { 3579 if (daint_out & 1) 3580 dwc2_hsotg_epint(hsotg, ep, 0); 3581 } 3582 3583 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3584 ep++, daint_in >>= 1) { 3585 if (daint_in & 1) 3586 dwc2_hsotg_epint(hsotg, ep, 1); 3587 } 3588 } 3589 3590 /* check both FIFOs */ 3591 3592 if (gintsts & GINTSTS_NPTXFEMP) { 3593 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3594 3595 /* 3596 * Disable the interrupt to stop it happening again 3597 * unless one of these endpoint routines decides that 3598 * it needs re-enabling 3599 */ 3600 3601 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3602 dwc2_hsotg_irq_fifoempty(hsotg, false); 3603 } 3604 3605 if (gintsts & GINTSTS_PTXFEMP) { 3606 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3607 3608 /* See note in GINTSTS_NPTxFEmp */ 3609 3610 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3611 dwc2_hsotg_irq_fifoempty(hsotg, true); 3612 } 3613 3614 if (gintsts & GINTSTS_RXFLVL) { 3615 /* 3616 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3617 * we need to retry dwc2_hsotg_handle_rx if this is still 3618 * set. 3619 */ 3620 3621 dwc2_hsotg_handle_rx(hsotg); 3622 } 3623 3624 if (gintsts & GINTSTS_ERLYSUSP) { 3625 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3626 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 3627 } 3628 3629 /* 3630 * these next two seem to crop-up occasionally causing the core 3631 * to shutdown the USB transfer, so try clearing them and logging 3632 * the occurrence. 3633 */ 3634 3635 if (gintsts & GINTSTS_GOUTNAKEFF) { 3636 u8 idx; 3637 u32 epctrl; 3638 u32 gintmsk; 3639 u32 daintmsk; 3640 struct dwc2_hsotg_ep *hs_ep; 3641 3642 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3643 daintmsk >>= DAINT_OUTEP_SHIFT; 3644 /* Mask this interrupt */ 3645 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3646 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3647 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3648 3649 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3650 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3651 hs_ep = hsotg->eps_out[idx]; 3652 /* Proceed only unmasked ISOC EPs */ 3653 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk)) 3654 continue; 3655 3656 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3657 3658 if (epctrl & DXEPCTL_EPENA) { 3659 epctrl |= DXEPCTL_SNAK; 3660 epctrl |= DXEPCTL_EPDIS; 3661 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx)); 3662 } 3663 } 3664 3665 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3666 } 3667 3668 if (gintsts & GINTSTS_GINNAKEFF) { 3669 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3670 3671 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3672 3673 dwc2_hsotg_dump(hsotg); 3674 } 3675 3676 if (gintsts & GINTSTS_INCOMPL_SOIN) 3677 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3678 3679 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3680 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3681 3682 /* 3683 * if we've had fifo events, we should try and go around the 3684 * loop again to see if there's any point in returning yet. 3685 */ 3686 3687 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3688 goto irq_retry; 3689 3690 spin_unlock(&hsotg->lock); 3691 3692 return IRQ_HANDLED; 3693 } 3694 3695 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3696 struct dwc2_hsotg_ep *hs_ep) 3697 { 3698 u32 epctrl_reg; 3699 u32 epint_reg; 3700 3701 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3702 DOEPCTL(hs_ep->index); 3703 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3704 DOEPINT(hs_ep->index); 3705 3706 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3707 hs_ep->name); 3708 3709 if (hs_ep->dir_in) { 3710 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3711 dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK); 3712 /* Wait for Nak effect */ 3713 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3714 DXEPINT_INEPNAKEFF, 100)) 3715 dev_warn(hsotg->dev, 3716 "%s: timeout DIEPINT.NAKEFF\n", 3717 __func__); 3718 } else { 3719 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK); 3720 /* Wait for Nak effect */ 3721 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3722 GINTSTS_GINNAKEFF, 100)) 3723 dev_warn(hsotg->dev, 3724 "%s: timeout GINTSTS.GINNAKEFF\n", 3725 __func__); 3726 } 3727 } else { 3728 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF)) 3729 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3730 3731 /* Wait for global nak to take effect */ 3732 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3733 GINTSTS_GOUTNAKEFF, 100)) 3734 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3735 __func__); 3736 } 3737 3738 /* Disable ep */ 3739 dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3740 3741 /* Wait for ep to be disabled */ 3742 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3743 dev_warn(hsotg->dev, 3744 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3745 3746 /* Clear EPDISBLD interrupt */ 3747 dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD); 3748 3749 if (hs_ep->dir_in) { 3750 unsigned short fifo_index; 3751 3752 if (hsotg->dedicated_fifos || hs_ep->periodic) 3753 fifo_index = hs_ep->fifo_index; 3754 else 3755 fifo_index = 0; 3756 3757 /* Flush TX FIFO */ 3758 dwc2_flush_tx_fifo(hsotg, fifo_index); 3759 3760 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3761 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3762 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3763 3764 } else { 3765 /* Remove global NAKs */ 3766 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK); 3767 } 3768 } 3769 3770 /** 3771 * dwc2_hsotg_ep_enable - enable the given endpoint 3772 * @ep: The USB endpint to configure 3773 * @desc: The USB endpoint descriptor to configure with. 3774 * 3775 * This is called from the USB gadget code's usb_ep_enable(). 3776 */ 3777 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3778 const struct usb_endpoint_descriptor *desc) 3779 { 3780 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3781 struct dwc2_hsotg *hsotg = hs_ep->parent; 3782 unsigned long flags; 3783 unsigned int index = hs_ep->index; 3784 u32 epctrl_reg; 3785 u32 epctrl; 3786 u32 mps; 3787 u32 mc; 3788 u32 mask; 3789 unsigned int dir_in; 3790 unsigned int i, val, size; 3791 int ret = 0; 3792 3793 dev_dbg(hsotg->dev, 3794 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3795 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3796 desc->wMaxPacketSize, desc->bInterval); 3797 3798 /* not to be called for EP0 */ 3799 if (index == 0) { 3800 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3801 return -EINVAL; 3802 } 3803 3804 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3805 if (dir_in != hs_ep->dir_in) { 3806 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3807 return -EINVAL; 3808 } 3809 3810 mps = usb_endpoint_maxp(desc); 3811 mc = usb_endpoint_maxp_mult(desc); 3812 3813 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3814 3815 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3816 epctrl = dwc2_readl(hsotg->regs + epctrl_reg); 3817 3818 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3819 __func__, epctrl, epctrl_reg); 3820 3821 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 3822 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 3823 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 3824 MAX_DMA_DESC_NUM_GENERIC * 3825 sizeof(struct dwc2_dma_desc), 3826 &hs_ep->desc_list_dma, GFP_ATOMIC); 3827 if (!hs_ep->desc_list) { 3828 ret = -ENOMEM; 3829 goto error2; 3830 } 3831 } 3832 3833 spin_lock_irqsave(&hsotg->lock, flags); 3834 3835 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 3836 epctrl |= DXEPCTL_MPS(mps); 3837 3838 /* 3839 * mark the endpoint as active, otherwise the core may ignore 3840 * transactions entirely for this endpoint 3841 */ 3842 epctrl |= DXEPCTL_USBACTEP; 3843 3844 /* update the endpoint state */ 3845 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 3846 3847 /* default, set to non-periodic */ 3848 hs_ep->isochronous = 0; 3849 hs_ep->periodic = 0; 3850 hs_ep->halted = 0; 3851 hs_ep->interval = desc->bInterval; 3852 3853 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { 3854 case USB_ENDPOINT_XFER_ISOC: 3855 epctrl |= DXEPCTL_EPTYPE_ISO; 3856 epctrl |= DXEPCTL_SETEVENFR; 3857 hs_ep->isochronous = 1; 3858 hs_ep->interval = 1 << (desc->bInterval - 1); 3859 hs_ep->target_frame = TARGET_FRAME_INITIAL; 3860 hs_ep->isoc_chain_num = 0; 3861 hs_ep->next_desc = 0; 3862 if (dir_in) { 3863 hs_ep->periodic = 1; 3864 mask = dwc2_readl(hsotg->regs + DIEPMSK); 3865 mask |= DIEPMSK_NAKMSK; 3866 dwc2_writel(mask, hsotg->regs + DIEPMSK); 3867 } else { 3868 mask = dwc2_readl(hsotg->regs + DOEPMSK); 3869 mask |= DOEPMSK_OUTTKNEPDISMSK; 3870 dwc2_writel(mask, hsotg->regs + DOEPMSK); 3871 } 3872 break; 3873 3874 case USB_ENDPOINT_XFER_BULK: 3875 epctrl |= DXEPCTL_EPTYPE_BULK; 3876 break; 3877 3878 case USB_ENDPOINT_XFER_INT: 3879 if (dir_in) 3880 hs_ep->periodic = 1; 3881 3882 if (hsotg->gadget.speed == USB_SPEED_HIGH) 3883 hs_ep->interval = 1 << (desc->bInterval - 1); 3884 3885 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 3886 break; 3887 3888 case USB_ENDPOINT_XFER_CONTROL: 3889 epctrl |= DXEPCTL_EPTYPE_CONTROL; 3890 break; 3891 } 3892 3893 /* 3894 * if the hardware has dedicated fifos, we must give each IN EP 3895 * a unique tx-fifo even if it is non-periodic. 3896 */ 3897 if (dir_in && hsotg->dedicated_fifos) { 3898 u32 fifo_index = 0; 3899 u32 fifo_size = UINT_MAX; 3900 3901 size = hs_ep->ep.maxpacket * hs_ep->mc; 3902 for (i = 1; i < hsotg->num_of_eps; ++i) { 3903 if (hsotg->fifo_map & (1 << i)) 3904 continue; 3905 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i)); 3906 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 3907 if (val < size) 3908 continue; 3909 /* Search for smallest acceptable fifo */ 3910 if (val < fifo_size) { 3911 fifo_size = val; 3912 fifo_index = i; 3913 } 3914 } 3915 if (!fifo_index) { 3916 dev_err(hsotg->dev, 3917 "%s: No suitable fifo found\n", __func__); 3918 ret = -ENOMEM; 3919 goto error1; 3920 } 3921 hsotg->fifo_map |= 1 << fifo_index; 3922 epctrl |= DXEPCTL_TXFNUM(fifo_index); 3923 hs_ep->fifo_index = fifo_index; 3924 hs_ep->fifo_size = fifo_size; 3925 } 3926 3927 /* for non control endpoints, set PID to D0 */ 3928 if (index && !hs_ep->isochronous) 3929 epctrl |= DXEPCTL_SETD0PID; 3930 3931 /* WA for Full speed ISOC IN in DDMA mode. 3932 * By Clear NAK status of EP, core will send ZLP 3933 * to IN token and assert NAK interrupt relying 3934 * on TxFIFO status only 3935 */ 3936 3937 if (hsotg->gadget.speed == USB_SPEED_FULL && 3938 hs_ep->isochronous && dir_in) { 3939 /* The WA applies only to core versions from 2.72a 3940 * to 4.00a (including both). Also for FS_IOT_1.00a 3941 * and HS_IOT_1.00a. 3942 */ 3943 u32 gsnpsid = dwc2_readl(hsotg->regs + GSNPSID); 3944 3945 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 3946 gsnpsid <= DWC2_CORE_REV_4_00a) || 3947 gsnpsid == DWC2_FS_IOT_REV_1_00a || 3948 gsnpsid == DWC2_HS_IOT_REV_1_00a) 3949 epctrl |= DXEPCTL_CNAK; 3950 } 3951 3952 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 3953 __func__, epctrl); 3954 3955 dwc2_writel(epctrl, hsotg->regs + epctrl_reg); 3956 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 3957 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 3958 3959 /* enable the endpoint interrupt */ 3960 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 3961 3962 error1: 3963 spin_unlock_irqrestore(&hsotg->lock, flags); 3964 3965 error2: 3966 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 3967 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC * 3968 sizeof(struct dwc2_dma_desc), 3969 hs_ep->desc_list, hs_ep->desc_list_dma); 3970 hs_ep->desc_list = NULL; 3971 } 3972 3973 return ret; 3974 } 3975 3976 /** 3977 * dwc2_hsotg_ep_disable - disable given endpoint 3978 * @ep: The endpoint to disable. 3979 */ 3980 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 3981 { 3982 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3983 struct dwc2_hsotg *hsotg = hs_ep->parent; 3984 int dir_in = hs_ep->dir_in; 3985 int index = hs_ep->index; 3986 unsigned long flags; 3987 u32 epctrl_reg; 3988 u32 ctrl; 3989 3990 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 3991 3992 if (ep == &hsotg->eps_out[0]->ep) { 3993 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 3994 return -EINVAL; 3995 } 3996 3997 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 3998 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 3999 return -EINVAL; 4000 } 4001 4002 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4003 4004 spin_lock_irqsave(&hsotg->lock, flags); 4005 4006 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 4007 4008 if (ctrl & DXEPCTL_EPENA) 4009 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4010 4011 ctrl &= ~DXEPCTL_EPENA; 4012 ctrl &= ~DXEPCTL_USBACTEP; 4013 ctrl |= DXEPCTL_SNAK; 4014 4015 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4016 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 4017 4018 /* disable endpoint interrupts */ 4019 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4020 4021 /* terminate all requests with shutdown */ 4022 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4023 4024 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4025 hs_ep->fifo_index = 0; 4026 hs_ep->fifo_size = 0; 4027 4028 spin_unlock_irqrestore(&hsotg->lock, flags); 4029 return 0; 4030 } 4031 4032 /** 4033 * on_list - check request is on the given endpoint 4034 * @ep: The endpoint to check. 4035 * @test: The request to test if it is on the endpoint. 4036 */ 4037 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4038 { 4039 struct dwc2_hsotg_req *req, *treq; 4040 4041 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4042 if (req == test) 4043 return true; 4044 } 4045 4046 return false; 4047 } 4048 4049 /** 4050 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4051 * @ep: The endpoint to dequeue. 4052 * @req: The request to be removed from a queue. 4053 */ 4054 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4055 { 4056 struct dwc2_hsotg_req *hs_req = our_req(req); 4057 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4058 struct dwc2_hsotg *hs = hs_ep->parent; 4059 unsigned long flags; 4060 4061 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4062 4063 spin_lock_irqsave(&hs->lock, flags); 4064 4065 if (!on_list(hs_ep, hs_req)) { 4066 spin_unlock_irqrestore(&hs->lock, flags); 4067 return -EINVAL; 4068 } 4069 4070 /* Dequeue already started request */ 4071 if (req == &hs_ep->req->req) 4072 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4073 4074 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4075 spin_unlock_irqrestore(&hs->lock, flags); 4076 4077 return 0; 4078 } 4079 4080 /** 4081 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4082 * @ep: The endpoint to set halt. 4083 * @value: Set or unset the halt. 4084 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4085 * the endpoint is busy processing requests. 4086 * 4087 * We need to stall the endpoint immediately if request comes from set_feature 4088 * protocol command handler. 4089 */ 4090 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4091 { 4092 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4093 struct dwc2_hsotg *hs = hs_ep->parent; 4094 int index = hs_ep->index; 4095 u32 epreg; 4096 u32 epctl; 4097 u32 xfertype; 4098 4099 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4100 4101 if (index == 0) { 4102 if (value) 4103 dwc2_hsotg_stall_ep0(hs); 4104 else 4105 dev_warn(hs->dev, 4106 "%s: can't clear halt on ep0\n", __func__); 4107 return 0; 4108 } 4109 4110 if (hs_ep->isochronous) { 4111 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4112 return -EINVAL; 4113 } 4114 4115 if (!now && value && !list_empty(&hs_ep->queue)) { 4116 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4117 ep->name); 4118 return -EAGAIN; 4119 } 4120 4121 if (hs_ep->dir_in) { 4122 epreg = DIEPCTL(index); 4123 epctl = dwc2_readl(hs->regs + epreg); 4124 4125 if (value) { 4126 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4127 if (epctl & DXEPCTL_EPENA) 4128 epctl |= DXEPCTL_EPDIS; 4129 } else { 4130 epctl &= ~DXEPCTL_STALL; 4131 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4132 if (xfertype == DXEPCTL_EPTYPE_BULK || 4133 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4134 epctl |= DXEPCTL_SETD0PID; 4135 } 4136 dwc2_writel(epctl, hs->regs + epreg); 4137 } else { 4138 epreg = DOEPCTL(index); 4139 epctl = dwc2_readl(hs->regs + epreg); 4140 4141 if (value) { 4142 epctl |= DXEPCTL_STALL; 4143 } else { 4144 epctl &= ~DXEPCTL_STALL; 4145 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4146 if (xfertype == DXEPCTL_EPTYPE_BULK || 4147 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4148 epctl |= DXEPCTL_SETD0PID; 4149 } 4150 dwc2_writel(epctl, hs->regs + epreg); 4151 } 4152 4153 hs_ep->halted = value; 4154 4155 return 0; 4156 } 4157 4158 /** 4159 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4160 * @ep: The endpoint to set halt. 4161 * @value: Set or unset the halt. 4162 */ 4163 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4164 { 4165 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4166 struct dwc2_hsotg *hs = hs_ep->parent; 4167 unsigned long flags = 0; 4168 int ret = 0; 4169 4170 spin_lock_irqsave(&hs->lock, flags); 4171 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4172 spin_unlock_irqrestore(&hs->lock, flags); 4173 4174 return ret; 4175 } 4176 4177 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4178 .enable = dwc2_hsotg_ep_enable, 4179 .disable = dwc2_hsotg_ep_disable, 4180 .alloc_request = dwc2_hsotg_ep_alloc_request, 4181 .free_request = dwc2_hsotg_ep_free_request, 4182 .queue = dwc2_hsotg_ep_queue_lock, 4183 .dequeue = dwc2_hsotg_ep_dequeue, 4184 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4185 /* note, don't believe we have any call for the fifo routines */ 4186 }; 4187 4188 /** 4189 * dwc2_hsotg_init - initialize the usb core 4190 * @hsotg: The driver state 4191 */ 4192 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4193 { 4194 u32 trdtim; 4195 u32 usbcfg; 4196 /* unmask subset of endpoint interrupts */ 4197 4198 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4199 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4200 hsotg->regs + DIEPMSK); 4201 4202 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4203 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4204 hsotg->regs + DOEPMSK); 4205 4206 dwc2_writel(0, hsotg->regs + DAINTMSK); 4207 4208 /* Be in disconnected state until gadget is registered */ 4209 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 4210 4211 /* setup fifos */ 4212 4213 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4214 dwc2_readl(hsotg->regs + GRXFSIZ), 4215 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 4216 4217 dwc2_hsotg_init_fifo(hsotg); 4218 4219 /* keep other bits untouched (so e.g. forced modes are not lost) */ 4220 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 4221 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 4222 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 4223 4224 /* set the PLL on, remove the HNP/SRP and set the PHY */ 4225 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 4226 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 4227 (trdtim << GUSBCFG_USBTRDTIM_SHIFT); 4228 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 4229 4230 if (using_dma(hsotg)) 4231 dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN); 4232 } 4233 4234 /** 4235 * dwc2_hsotg_udc_start - prepare the udc for work 4236 * @gadget: The usb gadget state 4237 * @driver: The usb gadget driver 4238 * 4239 * Perform initialization to prepare udc device and driver 4240 * to work. 4241 */ 4242 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4243 struct usb_gadget_driver *driver) 4244 { 4245 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4246 unsigned long flags; 4247 int ret; 4248 4249 if (!hsotg) { 4250 pr_err("%s: called with no device\n", __func__); 4251 return -ENODEV; 4252 } 4253 4254 if (!driver) { 4255 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4256 return -EINVAL; 4257 } 4258 4259 if (driver->max_speed < USB_SPEED_FULL) 4260 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4261 4262 if (!driver->setup) { 4263 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4264 return -EINVAL; 4265 } 4266 4267 WARN_ON(hsotg->driver); 4268 4269 driver->driver.bus = NULL; 4270 hsotg->driver = driver; 4271 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4272 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4273 4274 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4275 ret = dwc2_lowlevel_hw_enable(hsotg); 4276 if (ret) 4277 goto err; 4278 } 4279 4280 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4281 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4282 4283 spin_lock_irqsave(&hsotg->lock, flags); 4284 if (dwc2_hw_is_device(hsotg)) { 4285 dwc2_hsotg_init(hsotg); 4286 dwc2_hsotg_core_init_disconnected(hsotg, false); 4287 } 4288 4289 hsotg->enabled = 0; 4290 spin_unlock_irqrestore(&hsotg->lock, flags); 4291 4292 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4293 4294 return 0; 4295 4296 err: 4297 hsotg->driver = NULL; 4298 return ret; 4299 } 4300 4301 /** 4302 * dwc2_hsotg_udc_stop - stop the udc 4303 * @gadget: The usb gadget state 4304 * @driver: The usb gadget driver 4305 * 4306 * Stop udc hw block and stay tunned for future transmissions 4307 */ 4308 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4309 { 4310 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4311 unsigned long flags = 0; 4312 int ep; 4313 4314 if (!hsotg) 4315 return -ENODEV; 4316 4317 /* all endpoints should be shutdown */ 4318 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4319 if (hsotg->eps_in[ep]) 4320 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4321 if (hsotg->eps_out[ep]) 4322 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4323 } 4324 4325 spin_lock_irqsave(&hsotg->lock, flags); 4326 4327 hsotg->driver = NULL; 4328 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4329 hsotg->enabled = 0; 4330 4331 spin_unlock_irqrestore(&hsotg->lock, flags); 4332 4333 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4334 otg_set_peripheral(hsotg->uphy->otg, NULL); 4335 4336 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4337 dwc2_lowlevel_hw_disable(hsotg); 4338 4339 return 0; 4340 } 4341 4342 /** 4343 * dwc2_hsotg_gadget_getframe - read the frame number 4344 * @gadget: The usb gadget state 4345 * 4346 * Read the {micro} frame number 4347 */ 4348 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4349 { 4350 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4351 } 4352 4353 /** 4354 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4355 * @gadget: The usb gadget state 4356 * @is_on: Current state of the USB PHY 4357 * 4358 * Connect/Disconnect the USB PHY pullup 4359 */ 4360 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4361 { 4362 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4363 unsigned long flags = 0; 4364 4365 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4366 hsotg->op_state); 4367 4368 /* Don't modify pullup state while in host mode */ 4369 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4370 hsotg->enabled = is_on; 4371 return 0; 4372 } 4373 4374 spin_lock_irqsave(&hsotg->lock, flags); 4375 if (is_on) { 4376 hsotg->enabled = 1; 4377 dwc2_hsotg_core_init_disconnected(hsotg, false); 4378 /* Enable ACG feature in device mode,if supported */ 4379 dwc2_enable_acg(hsotg); 4380 dwc2_hsotg_core_connect(hsotg); 4381 } else { 4382 dwc2_hsotg_core_disconnect(hsotg); 4383 dwc2_hsotg_disconnect(hsotg); 4384 hsotg->enabled = 0; 4385 } 4386 4387 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4388 spin_unlock_irqrestore(&hsotg->lock, flags); 4389 4390 return 0; 4391 } 4392 4393 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4394 { 4395 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4396 unsigned long flags; 4397 4398 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4399 spin_lock_irqsave(&hsotg->lock, flags); 4400 4401 /* 4402 * If controller is hibernated, it must exit from power_down 4403 * before being initialized / de-initialized 4404 */ 4405 if (hsotg->lx_state == DWC2_L2) 4406 dwc2_exit_partial_power_down(hsotg, false); 4407 4408 if (is_active) { 4409 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4410 4411 dwc2_hsotg_core_init_disconnected(hsotg, false); 4412 if (hsotg->enabled) { 4413 /* Enable ACG feature in device mode,if supported */ 4414 dwc2_enable_acg(hsotg); 4415 dwc2_hsotg_core_connect(hsotg); 4416 } 4417 } else { 4418 dwc2_hsotg_core_disconnect(hsotg); 4419 dwc2_hsotg_disconnect(hsotg); 4420 } 4421 4422 spin_unlock_irqrestore(&hsotg->lock, flags); 4423 return 0; 4424 } 4425 4426 /** 4427 * dwc2_hsotg_vbus_draw - report bMaxPower field 4428 * @gadget: The usb gadget state 4429 * @mA: Amount of current 4430 * 4431 * Report how much power the device may consume to the phy. 4432 */ 4433 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4434 { 4435 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4436 4437 if (IS_ERR_OR_NULL(hsotg->uphy)) 4438 return -ENOTSUPP; 4439 return usb_phy_set_power(hsotg->uphy, mA); 4440 } 4441 4442 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4443 .get_frame = dwc2_hsotg_gadget_getframe, 4444 .udc_start = dwc2_hsotg_udc_start, 4445 .udc_stop = dwc2_hsotg_udc_stop, 4446 .pullup = dwc2_hsotg_pullup, 4447 .vbus_session = dwc2_hsotg_vbus_session, 4448 .vbus_draw = dwc2_hsotg_vbus_draw, 4449 }; 4450 4451 /** 4452 * dwc2_hsotg_initep - initialise a single endpoint 4453 * @hsotg: The device state. 4454 * @hs_ep: The endpoint to be initialised. 4455 * @epnum: The endpoint number 4456 * 4457 * Initialise the given endpoint (as part of the probe and device state 4458 * creation) to give to the gadget driver. Setup the endpoint name, any 4459 * direction information and other state that may be required. 4460 */ 4461 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4462 struct dwc2_hsotg_ep *hs_ep, 4463 int epnum, 4464 bool dir_in) 4465 { 4466 char *dir; 4467 4468 if (epnum == 0) 4469 dir = ""; 4470 else if (dir_in) 4471 dir = "in"; 4472 else 4473 dir = "out"; 4474 4475 hs_ep->dir_in = dir_in; 4476 hs_ep->index = epnum; 4477 4478 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4479 4480 INIT_LIST_HEAD(&hs_ep->queue); 4481 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4482 4483 /* add to the list of endpoints known by the gadget driver */ 4484 if (epnum) 4485 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4486 4487 hs_ep->parent = hsotg; 4488 hs_ep->ep.name = hs_ep->name; 4489 4490 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4491 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4492 else 4493 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4494 epnum ? 1024 : EP0_MPS_LIMIT); 4495 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4496 4497 if (epnum == 0) { 4498 hs_ep->ep.caps.type_control = true; 4499 } else { 4500 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4501 hs_ep->ep.caps.type_iso = true; 4502 hs_ep->ep.caps.type_bulk = true; 4503 } 4504 hs_ep->ep.caps.type_int = true; 4505 } 4506 4507 if (dir_in) 4508 hs_ep->ep.caps.dir_in = true; 4509 else 4510 hs_ep->ep.caps.dir_out = true; 4511 4512 /* 4513 * if we're using dma, we need to set the next-endpoint pointer 4514 * to be something valid. 4515 */ 4516 4517 if (using_dma(hsotg)) { 4518 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4519 4520 if (dir_in) 4521 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum)); 4522 else 4523 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum)); 4524 } 4525 } 4526 4527 /** 4528 * dwc2_hsotg_hw_cfg - read HW configuration registers 4529 * @param: The device state 4530 * 4531 * Read the USB core HW configuration registers 4532 */ 4533 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4534 { 4535 u32 cfg; 4536 u32 ep_type; 4537 u32 i; 4538 4539 /* check hardware configuration */ 4540 4541 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4542 4543 /* Add ep0 */ 4544 hsotg->num_of_eps++; 4545 4546 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4547 sizeof(struct dwc2_hsotg_ep), 4548 GFP_KERNEL); 4549 if (!hsotg->eps_in[0]) 4550 return -ENOMEM; 4551 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4552 hsotg->eps_out[0] = hsotg->eps_in[0]; 4553 4554 cfg = hsotg->hw_params.dev_ep_dirs; 4555 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4556 ep_type = cfg & 3; 4557 /* Direction in or both */ 4558 if (!(ep_type & 2)) { 4559 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4560 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4561 if (!hsotg->eps_in[i]) 4562 return -ENOMEM; 4563 } 4564 /* Direction out or both */ 4565 if (!(ep_type & 1)) { 4566 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4567 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4568 if (!hsotg->eps_out[i]) 4569 return -ENOMEM; 4570 } 4571 } 4572 4573 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4574 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4575 4576 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4577 hsotg->num_of_eps, 4578 hsotg->dedicated_fifos ? "dedicated" : "shared", 4579 hsotg->fifo_mem); 4580 return 0; 4581 } 4582 4583 /** 4584 * dwc2_hsotg_dump - dump state of the udc 4585 * @param: The device state 4586 */ 4587 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4588 { 4589 #ifdef DEBUG 4590 struct device *dev = hsotg->dev; 4591 void __iomem *regs = hsotg->regs; 4592 u32 val; 4593 int idx; 4594 4595 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4596 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL), 4597 dwc2_readl(regs + DIEPMSK)); 4598 4599 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4600 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1)); 4601 4602 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4603 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ)); 4604 4605 /* show periodic fifo settings */ 4606 4607 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4608 val = dwc2_readl(regs + DPTXFSIZN(idx)); 4609 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4610 val >> FIFOSIZE_DEPTH_SHIFT, 4611 val & FIFOSIZE_STARTADDR_MASK); 4612 } 4613 4614 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4615 dev_info(dev, 4616 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4617 dwc2_readl(regs + DIEPCTL(idx)), 4618 dwc2_readl(regs + DIEPTSIZ(idx)), 4619 dwc2_readl(regs + DIEPDMA(idx))); 4620 4621 val = dwc2_readl(regs + DOEPCTL(idx)); 4622 dev_info(dev, 4623 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4624 idx, dwc2_readl(regs + DOEPCTL(idx)), 4625 dwc2_readl(regs + DOEPTSIZ(idx)), 4626 dwc2_readl(regs + DOEPDMA(idx))); 4627 } 4628 4629 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4630 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE)); 4631 #endif 4632 } 4633 4634 /** 4635 * dwc2_gadget_init - init function for gadget 4636 * @dwc2: The data structure for the DWC2 driver. 4637 */ 4638 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4639 { 4640 struct device *dev = hsotg->dev; 4641 int epnum; 4642 int ret; 4643 4644 /* Dump fifo information */ 4645 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4646 hsotg->params.g_np_tx_fifo_size); 4647 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4648 4649 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4650 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4651 hsotg->gadget.name = dev_name(dev); 4652 hsotg->remote_wakeup_allowed = 0; 4653 4654 if (hsotg->params.lpm) 4655 hsotg->gadget.lpm_capable = true; 4656 4657 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4658 hsotg->gadget.is_otg = 1; 4659 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4660 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4661 4662 ret = dwc2_hsotg_hw_cfg(hsotg); 4663 if (ret) { 4664 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4665 return ret; 4666 } 4667 4668 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4669 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4670 if (!hsotg->ctrl_buff) 4671 return -ENOMEM; 4672 4673 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4674 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4675 if (!hsotg->ep0_buff) 4676 return -ENOMEM; 4677 4678 if (using_desc_dma(hsotg)) { 4679 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4680 if (ret < 0) 4681 return ret; 4682 } 4683 4684 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4685 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4686 if (ret < 0) { 4687 dev_err(dev, "cannot claim IRQ for gadget\n"); 4688 return ret; 4689 } 4690 4691 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4692 4693 if (hsotg->num_of_eps == 0) { 4694 dev_err(dev, "wrong number of EPs (zero)\n"); 4695 return -EINVAL; 4696 } 4697 4698 /* setup endpoint information */ 4699 4700 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4701 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4702 4703 /* allocate EP0 request */ 4704 4705 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4706 GFP_KERNEL); 4707 if (!hsotg->ctrl_req) { 4708 dev_err(dev, "failed to allocate ctrl req\n"); 4709 return -ENOMEM; 4710 } 4711 4712 /* initialise the endpoints now the core has been initialised */ 4713 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4714 if (hsotg->eps_in[epnum]) 4715 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4716 epnum, 1); 4717 if (hsotg->eps_out[epnum]) 4718 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4719 epnum, 0); 4720 } 4721 4722 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4723 if (ret) 4724 return ret; 4725 4726 dwc2_hsotg_dump(hsotg); 4727 4728 return 0; 4729 } 4730 4731 /** 4732 * dwc2_hsotg_remove - remove function for hsotg driver 4733 * @pdev: The platform information for the driver 4734 */ 4735 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4736 { 4737 usb_del_gadget_udc(&hsotg->gadget); 4738 4739 return 0; 4740 } 4741 4742 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4743 { 4744 unsigned long flags; 4745 4746 if (hsotg->lx_state != DWC2_L0) 4747 return 0; 4748 4749 if (hsotg->driver) { 4750 int ep; 4751 4752 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4753 hsotg->driver->driver.name); 4754 4755 spin_lock_irqsave(&hsotg->lock, flags); 4756 if (hsotg->enabled) 4757 dwc2_hsotg_core_disconnect(hsotg); 4758 dwc2_hsotg_disconnect(hsotg); 4759 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4760 spin_unlock_irqrestore(&hsotg->lock, flags); 4761 4762 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4763 if (hsotg->eps_in[ep]) 4764 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4765 if (hsotg->eps_out[ep]) 4766 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4767 } 4768 } 4769 4770 return 0; 4771 } 4772 4773 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4774 { 4775 unsigned long flags; 4776 4777 if (hsotg->lx_state == DWC2_L2) 4778 return 0; 4779 4780 if (hsotg->driver) { 4781 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4782 hsotg->driver->driver.name); 4783 4784 spin_lock_irqsave(&hsotg->lock, flags); 4785 dwc2_hsotg_core_init_disconnected(hsotg, false); 4786 if (hsotg->enabled) { 4787 /* Enable ACG feature in device mode,if supported */ 4788 dwc2_enable_acg(hsotg); 4789 dwc2_hsotg_core_connect(hsotg); 4790 } 4791 spin_unlock_irqrestore(&hsotg->lock, flags); 4792 } 4793 4794 return 0; 4795 } 4796 4797 /** 4798 * dwc2_backup_device_registers() - Backup controller device registers. 4799 * When suspending usb bus, registers needs to be backuped 4800 * if controller power is disabled once suspended. 4801 * 4802 * @hsotg: Programming view of the DWC_otg controller 4803 */ 4804 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 4805 { 4806 struct dwc2_dregs_backup *dr; 4807 int i; 4808 4809 dev_dbg(hsotg->dev, "%s\n", __func__); 4810 4811 /* Backup dev regs */ 4812 dr = &hsotg->dr_backup; 4813 4814 dr->dcfg = dwc2_readl(hsotg->regs + DCFG); 4815 dr->dctl = dwc2_readl(hsotg->regs + DCTL); 4816 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 4817 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK); 4818 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 4819 4820 for (i = 0; i < hsotg->num_of_eps; i++) { 4821 /* Backup IN EPs */ 4822 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i)); 4823 4824 /* Ensure DATA PID is correctly configured */ 4825 if (dr->diepctl[i] & DXEPCTL_DPID) 4826 dr->diepctl[i] |= DXEPCTL_SETD1PID; 4827 else 4828 dr->diepctl[i] |= DXEPCTL_SETD0PID; 4829 4830 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i)); 4831 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i)); 4832 4833 /* Backup OUT EPs */ 4834 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i)); 4835 4836 /* Ensure DATA PID is correctly configured */ 4837 if (dr->doepctl[i] & DXEPCTL_DPID) 4838 dr->doepctl[i] |= DXEPCTL_SETD1PID; 4839 else 4840 dr->doepctl[i] |= DXEPCTL_SETD0PID; 4841 4842 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i)); 4843 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i)); 4844 dr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i)); 4845 } 4846 dr->valid = true; 4847 return 0; 4848 } 4849 4850 /** 4851 * dwc2_restore_device_registers() - Restore controller device registers. 4852 * When resuming usb bus, device registers needs to be restored 4853 * if controller power were disabled. 4854 * 4855 * @hsotg: Programming view of the DWC_otg controller 4856 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 4857 * 4858 * Return: 0 if successful, negative error code otherwise 4859 */ 4860 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 4861 { 4862 struct dwc2_dregs_backup *dr; 4863 int i; 4864 4865 dev_dbg(hsotg->dev, "%s\n", __func__); 4866 4867 /* Restore dev regs */ 4868 dr = &hsotg->dr_backup; 4869 if (!dr->valid) { 4870 dev_err(hsotg->dev, "%s: no device registers to restore\n", 4871 __func__); 4872 return -EINVAL; 4873 } 4874 dr->valid = false; 4875 4876 if (!remote_wakeup) 4877 dwc2_writel(dr->dctl, hsotg->regs + DCTL); 4878 4879 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK); 4880 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK); 4881 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK); 4882 4883 for (i = 0; i < hsotg->num_of_eps; i++) { 4884 /* Restore IN EPs */ 4885 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i)); 4886 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i)); 4887 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i)); 4888 /** WA for enabled EPx's IN in DDMA mode. On entering to 4889 * hibernation wrong value read and saved from DIEPDMAx, 4890 * as result BNA interrupt asserted on hibernation exit 4891 * by restoring from saved area. 4892 */ 4893 if (hsotg->params.g_dma_desc && 4894 (dr->diepctl[i] & DXEPCTL_EPENA)) 4895 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 4896 dwc2_writel(dr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i)); 4897 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i)); 4898 /* Restore OUT EPs */ 4899 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i)); 4900 /* WA for enabled EPx's OUT in DDMA mode. On entering to 4901 * hibernation wrong value read and saved from DOEPDMAx, 4902 * as result BNA interrupt asserted on hibernation exit 4903 * by restoring from saved area. 4904 */ 4905 if (hsotg->params.g_dma_desc && 4906 (dr->doepctl[i] & DXEPCTL_EPENA)) 4907 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 4908 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i)); 4909 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i)); 4910 } 4911 4912 return 0; 4913 } 4914 4915 /** 4916 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 4917 * 4918 * @hsotg: Programming view of DWC_otg controller 4919 * 4920 */ 4921 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 4922 { 4923 u32 val; 4924 4925 if (!hsotg->params.lpm) 4926 return; 4927 4928 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 4929 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 4930 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 4931 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 4932 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 4933 dwc2_writel(val, hsotg->regs + GLPMCFG); 4934 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg->regs 4935 + GLPMCFG)); 4936 } 4937 4938 /** 4939 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 4940 * 4941 * @hsotg: Programming view of the DWC_otg controller 4942 * 4943 * Return non-zero if failed to enter to hibernation. 4944 */ 4945 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 4946 { 4947 u32 gpwrdn; 4948 int ret = 0; 4949 4950 /* Change to L2(suspend) state */ 4951 hsotg->lx_state = DWC2_L2; 4952 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 4953 ret = dwc2_backup_global_registers(hsotg); 4954 if (ret) { 4955 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 4956 __func__); 4957 return ret; 4958 } 4959 ret = dwc2_backup_device_registers(hsotg); 4960 if (ret) { 4961 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 4962 __func__); 4963 return ret; 4964 } 4965 4966 gpwrdn = GPWRDN_PWRDNRSTN; 4967 gpwrdn |= GPWRDN_PMUACTV; 4968 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 4969 udelay(10); 4970 4971 /* Set flag to indicate that we are in hibernation */ 4972 hsotg->hibernated = 1; 4973 4974 /* Enable interrupts from wake up logic */ 4975 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 4976 gpwrdn |= GPWRDN_PMUINTSEL; 4977 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 4978 udelay(10); 4979 4980 /* Unmask device mode interrupts in GPWRDN */ 4981 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 4982 gpwrdn |= GPWRDN_RST_DET_MSK; 4983 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 4984 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 4985 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 4986 udelay(10); 4987 4988 /* Enable Power Down Clamp */ 4989 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 4990 gpwrdn |= GPWRDN_PWRDNCLMP; 4991 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 4992 udelay(10); 4993 4994 /* Switch off VDD */ 4995 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 4996 gpwrdn |= GPWRDN_PWRDNSWTCH; 4997 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 4998 udelay(10); 4999 5000 /* Save gpwrdn register for further usage if stschng interrupt */ 5001 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5002 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5003 5004 return ret; 5005 } 5006 5007 /** 5008 * dwc2_gadget_exit_hibernation() 5009 * This function is for exiting from Device mode hibernation by host initiated 5010 * resume/reset and device initiated remote-wakeup. 5011 * 5012 * @hsotg: Programming view of the DWC_otg controller 5013 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5014 * @param reset: indicates whether resume is initiated by Reset. 5015 * 5016 * Return non-zero if failed to exit from hibernation. 5017 */ 5018 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5019 int rem_wakeup, int reset) 5020 { 5021 u32 pcgcctl; 5022 u32 gpwrdn; 5023 u32 dctl; 5024 int ret = 0; 5025 struct dwc2_gregs_backup *gr; 5026 struct dwc2_dregs_backup *dr; 5027 5028 gr = &hsotg->gr_backup; 5029 dr = &hsotg->dr_backup; 5030 5031 if (!hsotg->hibernated) { 5032 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5033 return 1; 5034 } 5035 dev_dbg(hsotg->dev, 5036 "%s: called with rem_wakeup = %d reset = %d\n", 5037 __func__, rem_wakeup, reset); 5038 5039 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5040 5041 if (!reset) { 5042 /* Clear all pending interupts */ 5043 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 5044 } 5045 5046 /* De-assert Restore */ 5047 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5048 gpwrdn &= ~GPWRDN_RESTORE; 5049 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5050 udelay(10); 5051 5052 if (!rem_wakeup) { 5053 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL); 5054 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5055 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL); 5056 } 5057 5058 /* Restore GUSBCFG, DCFG and DCTL */ 5059 dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG); 5060 dwc2_writel(dr->dcfg, hsotg->regs + DCFG); 5061 dwc2_writel(dr->dctl, hsotg->regs + DCTL); 5062 5063 /* De-assert Wakeup Logic */ 5064 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5065 gpwrdn &= ~GPWRDN_PMUACTV; 5066 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5067 5068 if (rem_wakeup) { 5069 udelay(10); 5070 /* Start Remote Wakeup Signaling */ 5071 dwc2_writel(dr->dctl | DCTL_RMTWKUPSIG, hsotg->regs + DCTL); 5072 } else { 5073 udelay(50); 5074 /* Set Device programming done bit */ 5075 dctl = dwc2_readl(hsotg->regs + DCTL); 5076 dctl |= DCTL_PWRONPRGDONE; 5077 dwc2_writel(dctl, hsotg->regs + DCTL); 5078 } 5079 /* Wait for interrupts which must be cleared */ 5080 mdelay(2); 5081 /* Clear all pending interupts */ 5082 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 5083 5084 /* Restore global registers */ 5085 ret = dwc2_restore_global_registers(hsotg); 5086 if (ret) { 5087 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5088 __func__); 5089 return ret; 5090 } 5091 5092 /* Restore device registers */ 5093 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5094 if (ret) { 5095 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5096 __func__); 5097 return ret; 5098 } 5099 5100 if (rem_wakeup) { 5101 mdelay(10); 5102 dctl = dwc2_readl(hsotg->regs + DCTL); 5103 dctl &= ~DCTL_RMTWKUPSIG; 5104 dwc2_writel(dctl, hsotg->regs + DCTL); 5105 } 5106 5107 hsotg->hibernated = 0; 5108 hsotg->lx_state = DWC2_L0; 5109 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5110 5111 return ret; 5112 } 5113