1 /** 2 * linux/drivers/usb/gadget/s3c-hsotg.c 3 * 4 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com 6 * 7 * Copyright 2008 Openmoko, Inc. 8 * Copyright 2008 Simtec Electronics 9 * Ben Dooks <ben@simtec.co.uk> 10 * http://armlinux.simtec.co.uk/ 11 * 12 * S3C USB2.0 High-speed / OtG driver 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/spinlock.h> 22 #include <linux/interrupt.h> 23 #include <linux/platform_device.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/delay.h> 28 #include <linux/io.h> 29 #include <linux/slab.h> 30 #include <linux/clk.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/of_platform.h> 33 #include <linux/phy/phy.h> 34 35 #include <linux/usb/ch9.h> 36 #include <linux/usb/gadget.h> 37 #include <linux/usb/phy.h> 38 #include <linux/platform_data/s3c-hsotg.h> 39 40 #include "core.h" 41 42 /* conversion functions */ 43 static inline struct s3c_hsotg_req *our_req(struct usb_request *req) 44 { 45 return container_of(req, struct s3c_hsotg_req, req); 46 } 47 48 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep) 49 { 50 return container_of(ep, struct s3c_hsotg_ep, ep); 51 } 52 53 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget) 54 { 55 return container_of(gadget, struct s3c_hsotg, gadget); 56 } 57 58 static inline void __orr32(void __iomem *ptr, u32 val) 59 { 60 writel(readl(ptr) | val, ptr); 61 } 62 63 static inline void __bic32(void __iomem *ptr, u32 val) 64 { 65 writel(readl(ptr) & ~val, ptr); 66 } 67 68 /* forward decleration of functions */ 69 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg); 70 71 /** 72 * using_dma - return the DMA status of the driver. 73 * @hsotg: The driver state. 74 * 75 * Return true if we're using DMA. 76 * 77 * Currently, we have the DMA support code worked into everywhere 78 * that needs it, but the AMBA DMA implementation in the hardware can 79 * only DMA from 32bit aligned addresses. This means that gadgets such 80 * as the CDC Ethernet cannot work as they often pass packets which are 81 * not 32bit aligned. 82 * 83 * Unfortunately the choice to use DMA or not is global to the controller 84 * and seems to be only settable when the controller is being put through 85 * a core reset. This means we either need to fix the gadgets to take 86 * account of DMA alignment, or add bounce buffers (yuerk). 87 * 88 * Until this issue is sorted out, we always return 'false'. 89 */ 90 static inline bool using_dma(struct s3c_hsotg *hsotg) 91 { 92 return false; /* support is not complete */ 93 } 94 95 /** 96 * s3c_hsotg_en_gsint - enable one or more of the general interrupt 97 * @hsotg: The device state 98 * @ints: A bitmask of the interrupts to enable 99 */ 100 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints) 101 { 102 u32 gsintmsk = readl(hsotg->regs + GINTMSK); 103 u32 new_gsintmsk; 104 105 new_gsintmsk = gsintmsk | ints; 106 107 if (new_gsintmsk != gsintmsk) { 108 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 109 writel(new_gsintmsk, hsotg->regs + GINTMSK); 110 } 111 } 112 113 /** 114 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt 115 * @hsotg: The device state 116 * @ints: A bitmask of the interrupts to enable 117 */ 118 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints) 119 { 120 u32 gsintmsk = readl(hsotg->regs + GINTMSK); 121 u32 new_gsintmsk; 122 123 new_gsintmsk = gsintmsk & ~ints; 124 125 if (new_gsintmsk != gsintmsk) 126 writel(new_gsintmsk, hsotg->regs + GINTMSK); 127 } 128 129 /** 130 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq 131 * @hsotg: The device state 132 * @ep: The endpoint index 133 * @dir_in: True if direction is in. 134 * @en: The enable value, true to enable 135 * 136 * Set or clear the mask for an individual endpoint's interrupt 137 * request. 138 */ 139 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg, 140 unsigned int ep, unsigned int dir_in, 141 unsigned int en) 142 { 143 unsigned long flags; 144 u32 bit = 1 << ep; 145 u32 daint; 146 147 if (!dir_in) 148 bit <<= 16; 149 150 local_irq_save(flags); 151 daint = readl(hsotg->regs + DAINTMSK); 152 if (en) 153 daint |= bit; 154 else 155 daint &= ~bit; 156 writel(daint, hsotg->regs + DAINTMSK); 157 local_irq_restore(flags); 158 } 159 160 /** 161 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs 162 * @hsotg: The device instance. 163 */ 164 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg) 165 { 166 unsigned int ep; 167 unsigned int addr; 168 unsigned int size; 169 int timeout; 170 u32 val; 171 172 /* set FIFO sizes to 2048/1024 */ 173 174 writel(2048, hsotg->regs + GRXFSIZ); 175 writel((2048 << FIFOSIZE_STARTADDR_SHIFT) | 176 (1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ); 177 178 /* 179 * arange all the rest of the TX FIFOs, as some versions of this 180 * block have overlapping default addresses. This also ensures 181 * that if the settings have been changed, then they are set to 182 * known values. 183 */ 184 185 /* start at the end of the GNPTXFSIZ, rounded up */ 186 addr = 2048 + 1024; 187 size = 768; 188 189 /* 190 * currently we allocate TX FIFOs for all possible endpoints, 191 * and assume that they are all the same size. 192 */ 193 194 for (ep = 1; ep <= 15; ep++) { 195 val = addr; 196 val |= size << FIFOSIZE_DEPTH_SHIFT; 197 addr += size; 198 199 writel(val, hsotg->regs + DPTXFSIZN(ep)); 200 } 201 202 /* 203 * according to p428 of the design guide, we need to ensure that 204 * all fifos are flushed before continuing 205 */ 206 207 writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 208 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 209 210 /* wait until the fifos are both flushed */ 211 timeout = 100; 212 while (1) { 213 val = readl(hsotg->regs + GRSTCTL); 214 215 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 216 break; 217 218 if (--timeout == 0) { 219 dev_err(hsotg->dev, 220 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 221 __func__, val); 222 } 223 224 udelay(1); 225 } 226 227 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 228 } 229 230 /** 231 * @ep: USB endpoint to allocate request for. 232 * @flags: Allocation flags 233 * 234 * Allocate a new USB request structure appropriate for the specified endpoint 235 */ 236 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep, 237 gfp_t flags) 238 { 239 struct s3c_hsotg_req *req; 240 241 req = kzalloc(sizeof(struct s3c_hsotg_req), flags); 242 if (!req) 243 return NULL; 244 245 INIT_LIST_HEAD(&req->queue); 246 247 return &req->req; 248 } 249 250 /** 251 * is_ep_periodic - return true if the endpoint is in periodic mode. 252 * @hs_ep: The endpoint to query. 253 * 254 * Returns true if the endpoint is in periodic mode, meaning it is being 255 * used for an Interrupt or ISO transfer. 256 */ 257 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep) 258 { 259 return hs_ep->periodic; 260 } 261 262 /** 263 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request 264 * @hsotg: The device state. 265 * @hs_ep: The endpoint for the request 266 * @hs_req: The request being processed. 267 * 268 * This is the reverse of s3c_hsotg_map_dma(), called for the completion 269 * of a request to ensure the buffer is ready for access by the caller. 270 */ 271 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg, 272 struct s3c_hsotg_ep *hs_ep, 273 struct s3c_hsotg_req *hs_req) 274 { 275 struct usb_request *req = &hs_req->req; 276 277 /* ignore this if we're not moving any data */ 278 if (hs_req->req.length == 0) 279 return; 280 281 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 282 } 283 284 /** 285 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO 286 * @hsotg: The controller state. 287 * @hs_ep: The endpoint we're going to write for. 288 * @hs_req: The request to write data for. 289 * 290 * This is called when the TxFIFO has some space in it to hold a new 291 * transmission and we have something to give it. The actual setup of 292 * the data size is done elsewhere, so all we have to do is to actually 293 * write the data. 294 * 295 * The return value is zero if there is more space (or nothing was done) 296 * otherwise -ENOSPC is returned if the FIFO space was used up. 297 * 298 * This routine is only needed for PIO 299 */ 300 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg, 301 struct s3c_hsotg_ep *hs_ep, 302 struct s3c_hsotg_req *hs_req) 303 { 304 bool periodic = is_ep_periodic(hs_ep); 305 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS); 306 int buf_pos = hs_req->req.actual; 307 int to_write = hs_ep->size_loaded; 308 void *data; 309 int can_write; 310 int pkt_round; 311 int max_transfer; 312 313 to_write -= (buf_pos - hs_ep->last_load); 314 315 /* if there's nothing to write, get out early */ 316 if (to_write == 0) 317 return 0; 318 319 if (periodic && !hsotg->dedicated_fifos) { 320 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 321 int size_left; 322 int size_done; 323 324 /* 325 * work out how much data was loaded so we can calculate 326 * how much data is left in the fifo. 327 */ 328 329 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 330 331 /* 332 * if shared fifo, we cannot write anything until the 333 * previous data has been completely sent. 334 */ 335 if (hs_ep->fifo_load != 0) { 336 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 337 return -ENOSPC; 338 } 339 340 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 341 __func__, size_left, 342 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 343 344 /* how much of the data has moved */ 345 size_done = hs_ep->size_loaded - size_left; 346 347 /* how much data is left in the fifo */ 348 can_write = hs_ep->fifo_load - size_done; 349 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 350 __func__, can_write); 351 352 can_write = hs_ep->fifo_size - can_write; 353 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 354 __func__, can_write); 355 356 if (can_write <= 0) { 357 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 358 return -ENOSPC; 359 } 360 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 361 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index)); 362 363 can_write &= 0xffff; 364 can_write *= 4; 365 } else { 366 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 367 dev_dbg(hsotg->dev, 368 "%s: no queue slots available (0x%08x)\n", 369 __func__, gnptxsts); 370 371 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 372 return -ENOSPC; 373 } 374 375 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 376 can_write *= 4; /* fifo size is in 32bit quantities. */ 377 } 378 379 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 380 381 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 382 __func__, gnptxsts, can_write, to_write, max_transfer); 383 384 /* 385 * limit to 512 bytes of data, it seems at least on the non-periodic 386 * FIFO, requests of >512 cause the endpoint to get stuck with a 387 * fragment of the end of the transfer in it. 388 */ 389 if (can_write > 512 && !periodic) 390 can_write = 512; 391 392 /* 393 * limit the write to one max-packet size worth of data, but allow 394 * the transfer to return that it did not run out of fifo space 395 * doing it. 396 */ 397 if (to_write > max_transfer) { 398 to_write = max_transfer; 399 400 /* it's needed only when we do not use dedicated fifos */ 401 if (!hsotg->dedicated_fifos) 402 s3c_hsotg_en_gsint(hsotg, 403 periodic ? GINTSTS_PTXFEMP : 404 GINTSTS_NPTXFEMP); 405 } 406 407 /* see if we can write data */ 408 409 if (to_write > can_write) { 410 to_write = can_write; 411 pkt_round = to_write % max_transfer; 412 413 /* 414 * Round the write down to an 415 * exact number of packets. 416 * 417 * Note, we do not currently check to see if we can ever 418 * write a full packet or not to the FIFO. 419 */ 420 421 if (pkt_round) 422 to_write -= pkt_round; 423 424 /* 425 * enable correct FIFO interrupt to alert us when there 426 * is more room left. 427 */ 428 429 /* it's needed only when we do not use dedicated fifos */ 430 if (!hsotg->dedicated_fifos) 431 s3c_hsotg_en_gsint(hsotg, 432 periodic ? GINTSTS_PTXFEMP : 433 GINTSTS_NPTXFEMP); 434 } 435 436 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 437 to_write, hs_req->req.length, can_write, buf_pos); 438 439 if (to_write <= 0) 440 return -ENOSPC; 441 442 hs_req->req.actual = buf_pos + to_write; 443 hs_ep->total_data += to_write; 444 445 if (periodic) 446 hs_ep->fifo_load += to_write; 447 448 to_write = DIV_ROUND_UP(to_write, 4); 449 data = hs_req->req.buf + buf_pos; 450 451 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 452 453 return (to_write >= can_write) ? -ENOSPC : 0; 454 } 455 456 /** 457 * get_ep_limit - get the maximum data legnth for this endpoint 458 * @hs_ep: The endpoint 459 * 460 * Return the maximum data that can be queued in one go on a given endpoint 461 * so that transfers that are too long can be split. 462 */ 463 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep) 464 { 465 int index = hs_ep->index; 466 unsigned maxsize; 467 unsigned maxpkt; 468 469 if (index != 0) { 470 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 471 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 472 } else { 473 maxsize = 64+64; 474 if (hs_ep->dir_in) 475 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 476 else 477 maxpkt = 2; 478 } 479 480 /* we made the constant loading easier above by using +1 */ 481 maxpkt--; 482 maxsize--; 483 484 /* 485 * constrain by packet count if maxpkts*pktsize is greater 486 * than the length register size. 487 */ 488 489 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 490 maxsize = maxpkt * hs_ep->ep.maxpacket; 491 492 return maxsize; 493 } 494 495 /** 496 * s3c_hsotg_start_req - start a USB request from an endpoint's queue 497 * @hsotg: The controller state. 498 * @hs_ep: The endpoint to process a request for 499 * @hs_req: The request to start. 500 * @continuing: True if we are doing more for the current request. 501 * 502 * Start the given request running by setting the endpoint registers 503 * appropriately, and writing any data to the FIFOs. 504 */ 505 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg, 506 struct s3c_hsotg_ep *hs_ep, 507 struct s3c_hsotg_req *hs_req, 508 bool continuing) 509 { 510 struct usb_request *ureq = &hs_req->req; 511 int index = hs_ep->index; 512 int dir_in = hs_ep->dir_in; 513 u32 epctrl_reg; 514 u32 epsize_reg; 515 u32 epsize; 516 u32 ctrl; 517 unsigned length; 518 unsigned packets; 519 unsigned maxreq; 520 521 if (index != 0) { 522 if (hs_ep->req && !continuing) { 523 dev_err(hsotg->dev, "%s: active request\n", __func__); 524 WARN_ON(1); 525 return; 526 } else if (hs_ep->req != hs_req && continuing) { 527 dev_err(hsotg->dev, 528 "%s: continue different req\n", __func__); 529 WARN_ON(1); 530 return; 531 } 532 } 533 534 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 535 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 536 537 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 538 __func__, readl(hsotg->regs + epctrl_reg), index, 539 hs_ep->dir_in ? "in" : "out"); 540 541 /* If endpoint is stalled, we will restart request later */ 542 ctrl = readl(hsotg->regs + epctrl_reg); 543 544 if (ctrl & DXEPCTL_STALL) { 545 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 546 return; 547 } 548 549 length = ureq->length - ureq->actual; 550 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 551 ureq->length, ureq->actual); 552 if (0) 553 dev_dbg(hsotg->dev, 554 "REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n", 555 ureq->buf, length, &ureq->dma, 556 ureq->no_interrupt, ureq->zero, ureq->short_not_ok); 557 558 maxreq = get_ep_limit(hs_ep); 559 if (length > maxreq) { 560 int round = maxreq % hs_ep->ep.maxpacket; 561 562 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 563 __func__, length, maxreq, round); 564 565 /* round down to multiple of packets */ 566 if (round) 567 maxreq -= round; 568 569 length = maxreq; 570 } 571 572 if (length) 573 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 574 else 575 packets = 1; /* send one packet if length is zero. */ 576 577 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 578 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 579 return; 580 } 581 582 if (dir_in && index != 0) 583 if (hs_ep->isochronous) 584 epsize = DXEPTSIZ_MC(packets); 585 else 586 epsize = DXEPTSIZ_MC(1); 587 else 588 epsize = 0; 589 590 if (index != 0 && ureq->zero) { 591 /* 592 * test for the packets being exactly right for the 593 * transfer 594 */ 595 596 if (length == (packets * hs_ep->ep.maxpacket)) 597 packets++; 598 } 599 600 epsize |= DXEPTSIZ_PKTCNT(packets); 601 epsize |= DXEPTSIZ_XFERSIZE(length); 602 603 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 604 __func__, packets, length, ureq->length, epsize, epsize_reg); 605 606 /* store the request as the current one we're doing */ 607 hs_ep->req = hs_req; 608 609 /* write size / packets */ 610 writel(epsize, hsotg->regs + epsize_reg); 611 612 if (using_dma(hsotg) && !continuing) { 613 unsigned int dma_reg; 614 615 /* 616 * write DMA address to control register, buffer already 617 * synced by s3c_hsotg_ep_queue(). 618 */ 619 620 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 621 writel(ureq->dma, hsotg->regs + dma_reg); 622 623 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 624 __func__, &ureq->dma, dma_reg); 625 } 626 627 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 628 ctrl |= DXEPCTL_USBACTEP; 629 630 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup); 631 632 /* For Setup request do not clear NAK */ 633 if (hsotg->setup && index == 0) 634 hsotg->setup = 0; 635 else 636 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 637 638 639 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 640 writel(ctrl, hsotg->regs + epctrl_reg); 641 642 /* 643 * set these, it seems that DMA support increments past the end 644 * of the packet buffer so we need to calculate the length from 645 * this information. 646 */ 647 hs_ep->size_loaded = length; 648 hs_ep->last_load = ureq->actual; 649 650 if (dir_in && !using_dma(hsotg)) { 651 /* set these anyway, we may need them for non-periodic in */ 652 hs_ep->fifo_load = 0; 653 654 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); 655 } 656 657 /* 658 * clear the INTknTXFEmpMsk when we start request, more as a aide 659 * to debugging to see what is going on. 660 */ 661 if (dir_in) 662 writel(DIEPMSK_INTKNTXFEMPMSK, 663 hsotg->regs + DIEPINT(index)); 664 665 /* 666 * Note, trying to clear the NAK here causes problems with transmit 667 * on the S3C6400 ending up with the TXFIFO becoming full. 668 */ 669 670 /* check ep is enabled */ 671 if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 672 dev_warn(hsotg->dev, 673 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 674 index, readl(hsotg->regs + epctrl_reg)); 675 676 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 677 __func__, readl(hsotg->regs + epctrl_reg)); 678 679 /* enable ep interrupts */ 680 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 681 } 682 683 /** 684 * s3c_hsotg_map_dma - map the DMA memory being used for the request 685 * @hsotg: The device state. 686 * @hs_ep: The endpoint the request is on. 687 * @req: The request being processed. 688 * 689 * We've been asked to queue a request, so ensure that the memory buffer 690 * is correctly setup for DMA. If we've been passed an extant DMA address 691 * then ensure the buffer has been synced to memory. If our buffer has no 692 * DMA memory, then we map the memory and mark our request to allow us to 693 * cleanup on completion. 694 */ 695 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg, 696 struct s3c_hsotg_ep *hs_ep, 697 struct usb_request *req) 698 { 699 struct s3c_hsotg_req *hs_req = our_req(req); 700 int ret; 701 702 /* if the length is zero, ignore the DMA data */ 703 if (hs_req->req.length == 0) 704 return 0; 705 706 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 707 if (ret) 708 goto dma_error; 709 710 return 0; 711 712 dma_error: 713 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 714 __func__, req->buf, req->length); 715 716 return -EIO; 717 } 718 719 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 720 gfp_t gfp_flags) 721 { 722 struct s3c_hsotg_req *hs_req = our_req(req); 723 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 724 struct s3c_hsotg *hs = hs_ep->parent; 725 bool first; 726 727 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 728 ep->name, req, req->length, req->buf, req->no_interrupt, 729 req->zero, req->short_not_ok); 730 731 /* initialise status of the request */ 732 INIT_LIST_HEAD(&hs_req->queue); 733 req->actual = 0; 734 req->status = -EINPROGRESS; 735 736 /* if we're using DMA, sync the buffers as necessary */ 737 if (using_dma(hs)) { 738 int ret = s3c_hsotg_map_dma(hs, hs_ep, req); 739 if (ret) 740 return ret; 741 } 742 743 first = list_empty(&hs_ep->queue); 744 list_add_tail(&hs_req->queue, &hs_ep->queue); 745 746 if (first) 747 s3c_hsotg_start_req(hs, hs_ep, hs_req, false); 748 749 return 0; 750 } 751 752 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 753 gfp_t gfp_flags) 754 { 755 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 756 struct s3c_hsotg *hs = hs_ep->parent; 757 unsigned long flags = 0; 758 int ret = 0; 759 760 spin_lock_irqsave(&hs->lock, flags); 761 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags); 762 spin_unlock_irqrestore(&hs->lock, flags); 763 764 return ret; 765 } 766 767 static void s3c_hsotg_ep_free_request(struct usb_ep *ep, 768 struct usb_request *req) 769 { 770 struct s3c_hsotg_req *hs_req = our_req(req); 771 772 kfree(hs_req); 773 } 774 775 /** 776 * s3c_hsotg_complete_oursetup - setup completion callback 777 * @ep: The endpoint the request was on. 778 * @req: The request completed. 779 * 780 * Called on completion of any requests the driver itself 781 * submitted that need cleaning up. 782 */ 783 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep, 784 struct usb_request *req) 785 { 786 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 787 struct s3c_hsotg *hsotg = hs_ep->parent; 788 789 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 790 791 s3c_hsotg_ep_free_request(ep, req); 792 } 793 794 /** 795 * ep_from_windex - convert control wIndex value to endpoint 796 * @hsotg: The driver state. 797 * @windex: The control request wIndex field (in host order). 798 * 799 * Convert the given wIndex into a pointer to an driver endpoint 800 * structure, or return NULL if it is not a valid endpoint. 801 */ 802 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg, 803 u32 windex) 804 { 805 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F]; 806 int dir = (windex & USB_DIR_IN) ? 1 : 0; 807 int idx = windex & 0x7F; 808 809 if (windex >= 0x100) 810 return NULL; 811 812 if (idx > hsotg->num_of_eps) 813 return NULL; 814 815 if (idx && ep->dir_in != dir) 816 return NULL; 817 818 return ep; 819 } 820 821 /** 822 * s3c_hsotg_send_reply - send reply to control request 823 * @hsotg: The device state 824 * @ep: Endpoint 0 825 * @buff: Buffer for request 826 * @length: Length of reply. 827 * 828 * Create a request and queue it on the given endpoint. This is useful as 829 * an internal method of sending replies to certain control requests, etc. 830 */ 831 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg, 832 struct s3c_hsotg_ep *ep, 833 void *buff, 834 int length) 835 { 836 struct usb_request *req; 837 int ret; 838 839 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 840 841 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 842 hsotg->ep0_reply = req; 843 if (!req) { 844 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 845 return -ENOMEM; 846 } 847 848 req->buf = hsotg->ep0_buff; 849 req->length = length; 850 req->zero = 1; /* always do zero-length final transfer */ 851 req->complete = s3c_hsotg_complete_oursetup; 852 853 if (length) 854 memcpy(req->buf, buff, length); 855 else 856 ep->sent_zlp = 1; 857 858 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 859 if (ret) { 860 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 861 return ret; 862 } 863 864 return 0; 865 } 866 867 /** 868 * s3c_hsotg_process_req_status - process request GET_STATUS 869 * @hsotg: The device state 870 * @ctrl: USB control request 871 */ 872 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg, 873 struct usb_ctrlrequest *ctrl) 874 { 875 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 876 struct s3c_hsotg_ep *ep; 877 __le16 reply; 878 int ret; 879 880 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 881 882 if (!ep0->dir_in) { 883 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 884 return -EINVAL; 885 } 886 887 switch (ctrl->bRequestType & USB_RECIP_MASK) { 888 case USB_RECIP_DEVICE: 889 reply = cpu_to_le16(0); /* bit 0 => self powered, 890 * bit 1 => remote wakeup */ 891 break; 892 893 case USB_RECIP_INTERFACE: 894 /* currently, the data result should be zero */ 895 reply = cpu_to_le16(0); 896 break; 897 898 case USB_RECIP_ENDPOINT: 899 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 900 if (!ep) 901 return -ENOENT; 902 903 reply = cpu_to_le16(ep->halted ? 1 : 0); 904 break; 905 906 default: 907 return 0; 908 } 909 910 if (le16_to_cpu(ctrl->wLength) != 2) 911 return -EINVAL; 912 913 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2); 914 if (ret) { 915 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 916 return ret; 917 } 918 919 return 1; 920 } 921 922 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value); 923 924 /** 925 * get_ep_head - return the first request on the endpoint 926 * @hs_ep: The controller endpoint to get 927 * 928 * Get the first request on the endpoint. 929 */ 930 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep) 931 { 932 if (list_empty(&hs_ep->queue)) 933 return NULL; 934 935 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue); 936 } 937 938 /** 939 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE 940 * @hsotg: The device state 941 * @ctrl: USB control request 942 */ 943 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg, 944 struct usb_ctrlrequest *ctrl) 945 { 946 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 947 struct s3c_hsotg_req *hs_req; 948 bool restart; 949 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 950 struct s3c_hsotg_ep *ep; 951 int ret; 952 bool halted; 953 954 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 955 __func__, set ? "SET" : "CLEAR"); 956 957 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) { 958 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 959 if (!ep) { 960 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 961 __func__, le16_to_cpu(ctrl->wIndex)); 962 return -ENOENT; 963 } 964 965 switch (le16_to_cpu(ctrl->wValue)) { 966 case USB_ENDPOINT_HALT: 967 halted = ep->halted; 968 969 s3c_hsotg_ep_sethalt(&ep->ep, set); 970 971 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 972 if (ret) { 973 dev_err(hsotg->dev, 974 "%s: failed to send reply\n", __func__); 975 return ret; 976 } 977 978 /* 979 * we have to complete all requests for ep if it was 980 * halted, and the halt was cleared by CLEAR_FEATURE 981 */ 982 983 if (!set && halted) { 984 /* 985 * If we have request in progress, 986 * then complete it 987 */ 988 if (ep->req) { 989 hs_req = ep->req; 990 ep->req = NULL; 991 list_del_init(&hs_req->queue); 992 hs_req->req.complete(&ep->ep, 993 &hs_req->req); 994 } 995 996 /* If we have pending request, then start it */ 997 restart = !list_empty(&ep->queue); 998 if (restart) { 999 hs_req = get_ep_head(ep); 1000 s3c_hsotg_start_req(hsotg, ep, 1001 hs_req, false); 1002 } 1003 } 1004 1005 break; 1006 1007 default: 1008 return -ENOENT; 1009 } 1010 } else 1011 return -ENOENT; /* currently only deal with endpoint */ 1012 1013 return 1; 1014 } 1015 1016 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg); 1017 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg); 1018 1019 /** 1020 * s3c_hsotg_stall_ep0 - stall ep0 1021 * @hsotg: The device state 1022 * 1023 * Set stall for ep0 as response for setup request. 1024 */ 1025 static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg) { 1026 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 1027 u32 reg; 1028 u32 ctrl; 1029 1030 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1031 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1032 1033 /* 1034 * DxEPCTL_Stall will be cleared by EP once it has 1035 * taken effect, so no need to clear later. 1036 */ 1037 1038 ctrl = readl(hsotg->regs + reg); 1039 ctrl |= DXEPCTL_STALL; 1040 ctrl |= DXEPCTL_CNAK; 1041 writel(ctrl, hsotg->regs + reg); 1042 1043 dev_dbg(hsotg->dev, 1044 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1045 ctrl, reg, readl(hsotg->regs + reg)); 1046 1047 /* 1048 * complete won't be called, so we enqueue 1049 * setup request here 1050 */ 1051 s3c_hsotg_enqueue_setup(hsotg); 1052 } 1053 1054 /** 1055 * s3c_hsotg_process_control - process a control request 1056 * @hsotg: The device state 1057 * @ctrl: The control request received 1058 * 1059 * The controller has received the SETUP phase of a control request, and 1060 * needs to work out what to do next (and whether to pass it on to the 1061 * gadget driver). 1062 */ 1063 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg, 1064 struct usb_ctrlrequest *ctrl) 1065 { 1066 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; 1067 int ret = 0; 1068 u32 dcfg; 1069 1070 ep0->sent_zlp = 0; 1071 1072 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n", 1073 ctrl->bRequest, ctrl->bRequestType, 1074 ctrl->wValue, ctrl->wLength); 1075 1076 /* 1077 * record the direction of the request, for later use when enquing 1078 * packets onto EP0. 1079 */ 1080 1081 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0; 1082 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in); 1083 1084 /* 1085 * if we've no data with this request, then the last part of the 1086 * transaction is going to implicitly be IN. 1087 */ 1088 if (ctrl->wLength == 0) 1089 ep0->dir_in = 1; 1090 1091 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1092 switch (ctrl->bRequest) { 1093 case USB_REQ_SET_ADDRESS: 1094 s3c_hsotg_disconnect(hsotg); 1095 dcfg = readl(hsotg->regs + DCFG); 1096 dcfg &= ~DCFG_DEVADDR_MASK; 1097 dcfg |= (le16_to_cpu(ctrl->wValue) << 1098 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1099 writel(dcfg, hsotg->regs + DCFG); 1100 1101 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1102 1103 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); 1104 return; 1105 1106 case USB_REQ_GET_STATUS: 1107 ret = s3c_hsotg_process_req_status(hsotg, ctrl); 1108 break; 1109 1110 case USB_REQ_CLEAR_FEATURE: 1111 case USB_REQ_SET_FEATURE: 1112 ret = s3c_hsotg_process_req_feature(hsotg, ctrl); 1113 break; 1114 } 1115 } 1116 1117 /* as a fallback, try delivering it to the driver to deal with */ 1118 1119 if (ret == 0 && hsotg->driver) { 1120 spin_unlock(&hsotg->lock); 1121 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1122 spin_lock(&hsotg->lock); 1123 if (ret < 0) 1124 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1125 } 1126 1127 /* 1128 * the request is either unhandlable, or is not formatted correctly 1129 * so respond with a STALL for the status stage to indicate failure. 1130 */ 1131 1132 if (ret < 0) 1133 s3c_hsotg_stall_ep0(hsotg); 1134 } 1135 1136 /** 1137 * s3c_hsotg_complete_setup - completion of a setup transfer 1138 * @ep: The endpoint the request was on. 1139 * @req: The request completed. 1140 * 1141 * Called on completion of any requests the driver itself submitted for 1142 * EP0 setup packets 1143 */ 1144 static void s3c_hsotg_complete_setup(struct usb_ep *ep, 1145 struct usb_request *req) 1146 { 1147 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 1148 struct s3c_hsotg *hsotg = hs_ep->parent; 1149 1150 if (req->status < 0) { 1151 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1152 return; 1153 } 1154 1155 spin_lock(&hsotg->lock); 1156 if (req->actual == 0) 1157 s3c_hsotg_enqueue_setup(hsotg); 1158 else 1159 s3c_hsotg_process_control(hsotg, req->buf); 1160 spin_unlock(&hsotg->lock); 1161 } 1162 1163 /** 1164 * s3c_hsotg_enqueue_setup - start a request for EP0 packets 1165 * @hsotg: The device state. 1166 * 1167 * Enqueue a request on EP0 if necessary to received any SETUP packets 1168 * received from the host. 1169 */ 1170 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg) 1171 { 1172 struct usb_request *req = hsotg->ctrl_req; 1173 struct s3c_hsotg_req *hs_req = our_req(req); 1174 int ret; 1175 1176 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1177 1178 req->zero = 0; 1179 req->length = 8; 1180 req->buf = hsotg->ctrl_buff; 1181 req->complete = s3c_hsotg_complete_setup; 1182 1183 if (!list_empty(&hs_req->queue)) { 1184 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1185 return; 1186 } 1187 1188 hsotg->eps[0].dir_in = 0; 1189 1190 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC); 1191 if (ret < 0) { 1192 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1193 /* 1194 * Don't think there's much we can do other than watch the 1195 * driver fail. 1196 */ 1197 } 1198 } 1199 1200 /** 1201 * s3c_hsotg_complete_request - complete a request given to us 1202 * @hsotg: The device state. 1203 * @hs_ep: The endpoint the request was on. 1204 * @hs_req: The request to complete. 1205 * @result: The result code (0 => Ok, otherwise errno) 1206 * 1207 * The given request has finished, so call the necessary completion 1208 * if it has one and then look to see if we can start a new request 1209 * on the endpoint. 1210 * 1211 * Note, expects the ep to already be locked as appropriate. 1212 */ 1213 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg, 1214 struct s3c_hsotg_ep *hs_ep, 1215 struct s3c_hsotg_req *hs_req, 1216 int result) 1217 { 1218 bool restart; 1219 1220 if (!hs_req) { 1221 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1222 return; 1223 } 1224 1225 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 1226 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 1227 1228 /* 1229 * only replace the status if we've not already set an error 1230 * from a previous transaction 1231 */ 1232 1233 if (hs_req->req.status == -EINPROGRESS) 1234 hs_req->req.status = result; 1235 1236 hs_ep->req = NULL; 1237 list_del_init(&hs_req->queue); 1238 1239 if (using_dma(hsotg)) 1240 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 1241 1242 /* 1243 * call the complete request with the locks off, just in case the 1244 * request tries to queue more work for this endpoint. 1245 */ 1246 1247 if (hs_req->req.complete) { 1248 spin_unlock(&hsotg->lock); 1249 hs_req->req.complete(&hs_ep->ep, &hs_req->req); 1250 spin_lock(&hsotg->lock); 1251 } 1252 1253 /* 1254 * Look to see if there is anything else to do. Note, the completion 1255 * of the previous request may have caused a new request to be started 1256 * so be careful when doing this. 1257 */ 1258 1259 if (!hs_ep->req && result >= 0) { 1260 restart = !list_empty(&hs_ep->queue); 1261 if (restart) { 1262 hs_req = get_ep_head(hs_ep); 1263 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1264 } 1265 } 1266 } 1267 1268 /** 1269 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint 1270 * @hsotg: The device state. 1271 * @ep_idx: The endpoint index for the data 1272 * @size: The size of data in the fifo, in bytes 1273 * 1274 * The FIFO status shows there is data to read from the FIFO for a given 1275 * endpoint, so sort out whether we need to read the data into a request 1276 * that has been made for that endpoint. 1277 */ 1278 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size) 1279 { 1280 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx]; 1281 struct s3c_hsotg_req *hs_req = hs_ep->req; 1282 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 1283 int to_read; 1284 int max_req; 1285 int read_ptr; 1286 1287 1288 if (!hs_req) { 1289 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx)); 1290 int ptr; 1291 1292 dev_warn(hsotg->dev, 1293 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 1294 __func__, size, ep_idx, epctl); 1295 1296 /* dump the data from the FIFO, we've nothing we can do */ 1297 for (ptr = 0; ptr < size; ptr += 4) 1298 (void)readl(fifo); 1299 1300 return; 1301 } 1302 1303 to_read = size; 1304 read_ptr = hs_req->req.actual; 1305 max_req = hs_req->req.length - read_ptr; 1306 1307 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 1308 __func__, to_read, max_req, read_ptr, hs_req->req.length); 1309 1310 if (to_read > max_req) { 1311 /* 1312 * more data appeared than we where willing 1313 * to deal with in this request. 1314 */ 1315 1316 /* currently we don't deal this */ 1317 WARN_ON_ONCE(1); 1318 } 1319 1320 hs_ep->total_data += to_read; 1321 hs_req->req.actual += to_read; 1322 to_read = DIV_ROUND_UP(to_read, 4); 1323 1324 /* 1325 * note, we might over-write the buffer end by 3 bytes depending on 1326 * alignment of the data. 1327 */ 1328 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 1329 } 1330 1331 /** 1332 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint 1333 * @hsotg: The device instance 1334 * @req: The request currently on this endpoint 1335 * 1336 * Generate a zero-length IN packet request for terminating a SETUP 1337 * transaction. 1338 * 1339 * Note, since we don't write any data to the TxFIFO, then it is 1340 * currently believed that we do not need to wait for any space in 1341 * the TxFIFO. 1342 */ 1343 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg, 1344 struct s3c_hsotg_req *req) 1345 { 1346 u32 ctrl; 1347 1348 if (!req) { 1349 dev_warn(hsotg->dev, "%s: no request?\n", __func__); 1350 return; 1351 } 1352 1353 if (req->req.length == 0) { 1354 hsotg->eps[0].sent_zlp = 1; 1355 s3c_hsotg_enqueue_setup(hsotg); 1356 return; 1357 } 1358 1359 hsotg->eps[0].dir_in = 1; 1360 hsotg->eps[0].sent_zlp = 1; 1361 1362 dev_dbg(hsotg->dev, "sending zero-length packet\n"); 1363 1364 /* issue a zero-sized packet to terminate this */ 1365 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1366 DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0)); 1367 1368 ctrl = readl(hsotg->regs + DIEPCTL0); 1369 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1370 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1371 ctrl |= DXEPCTL_USBACTEP; 1372 writel(ctrl, hsotg->regs + DIEPCTL0); 1373 } 1374 1375 /** 1376 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 1377 * @hsotg: The device instance 1378 * @epnum: The endpoint received from 1379 * @was_setup: Set if processing a SetupDone event. 1380 * 1381 * The RXFIFO has delivered an OutDone event, which means that the data 1382 * transfer for an OUT endpoint has been completed, either by a short 1383 * packet or by the finish of a transfer. 1384 */ 1385 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg, 1386 int epnum, bool was_setup) 1387 { 1388 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum)); 1389 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum]; 1390 struct s3c_hsotg_req *hs_req = hs_ep->req; 1391 struct usb_request *req = &hs_req->req; 1392 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 1393 int result = 0; 1394 1395 if (!hs_req) { 1396 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 1397 return; 1398 } 1399 1400 if (using_dma(hsotg)) { 1401 unsigned size_done; 1402 1403 /* 1404 * Calculate the size of the transfer by checking how much 1405 * is left in the endpoint size register and then working it 1406 * out from the amount we loaded for the transfer. 1407 * 1408 * We need to do this as DMA pointers are always 32bit aligned 1409 * so may overshoot/undershoot the transfer. 1410 */ 1411 1412 size_done = hs_ep->size_loaded - size_left; 1413 size_done += hs_ep->last_load; 1414 1415 req->actual = size_done; 1416 } 1417 1418 /* if there is more request to do, schedule new transfer */ 1419 if (req->actual < req->length && size_left == 0) { 1420 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); 1421 return; 1422 } else if (epnum == 0) { 1423 /* 1424 * After was_setup = 1 => 1425 * set CNAK for non Setup requests 1426 */ 1427 hsotg->setup = was_setup ? 0 : 1; 1428 } 1429 1430 if (req->actual < req->length && req->short_not_ok) { 1431 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 1432 __func__, req->actual, req->length); 1433 1434 /* 1435 * todo - what should we return here? there's no one else 1436 * even bothering to check the status. 1437 */ 1438 } 1439 1440 if (epnum == 0) { 1441 /* 1442 * Condition req->complete != s3c_hsotg_complete_setup says: 1443 * send ZLP when we have an asynchronous request from gadget 1444 */ 1445 if (!was_setup && req->complete != s3c_hsotg_complete_setup) 1446 s3c_hsotg_send_zlp(hsotg, hs_req); 1447 } 1448 1449 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 1450 } 1451 1452 /** 1453 * s3c_hsotg_read_frameno - read current frame number 1454 * @hsotg: The device instance 1455 * 1456 * Return the current frame number 1457 */ 1458 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg) 1459 { 1460 u32 dsts; 1461 1462 dsts = readl(hsotg->regs + DSTS); 1463 dsts &= DSTS_SOFFN_MASK; 1464 dsts >>= DSTS_SOFFN_SHIFT; 1465 1466 return dsts; 1467 } 1468 1469 /** 1470 * s3c_hsotg_handle_rx - RX FIFO has data 1471 * @hsotg: The device instance 1472 * 1473 * The IRQ handler has detected that the RX FIFO has some data in it 1474 * that requires processing, so find out what is in there and do the 1475 * appropriate read. 1476 * 1477 * The RXFIFO is a true FIFO, the packets coming out are still in packet 1478 * chunks, so if you have x packets received on an endpoint you'll get x 1479 * FIFO events delivered, each with a packet's worth of data in it. 1480 * 1481 * When using DMA, we should not be processing events from the RXFIFO 1482 * as the actual data should be sent to the memory directly and we turn 1483 * on the completion interrupts to get notifications of transfer completion. 1484 */ 1485 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg) 1486 { 1487 u32 grxstsr = readl(hsotg->regs + GRXSTSP); 1488 u32 epnum, status, size; 1489 1490 WARN_ON(using_dma(hsotg)); 1491 1492 epnum = grxstsr & GRXSTS_EPNUM_MASK; 1493 status = grxstsr & GRXSTS_PKTSTS_MASK; 1494 1495 size = grxstsr & GRXSTS_BYTECNT_MASK; 1496 size >>= GRXSTS_BYTECNT_SHIFT; 1497 1498 if (1) 1499 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 1500 __func__, grxstsr, size, epnum); 1501 1502 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 1503 case GRXSTS_PKTSTS_GLOBALOUTNAK: 1504 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 1505 break; 1506 1507 case GRXSTS_PKTSTS_OUTDONE: 1508 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 1509 s3c_hsotg_read_frameno(hsotg)); 1510 1511 if (!using_dma(hsotg)) 1512 s3c_hsotg_handle_outdone(hsotg, epnum, false); 1513 break; 1514 1515 case GRXSTS_PKTSTS_SETUPDONE: 1516 dev_dbg(hsotg->dev, 1517 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 1518 s3c_hsotg_read_frameno(hsotg), 1519 readl(hsotg->regs + DOEPCTL(0))); 1520 1521 s3c_hsotg_handle_outdone(hsotg, epnum, true); 1522 break; 1523 1524 case GRXSTS_PKTSTS_OUTRX: 1525 s3c_hsotg_rx_data(hsotg, epnum, size); 1526 break; 1527 1528 case GRXSTS_PKTSTS_SETUPRX: 1529 dev_dbg(hsotg->dev, 1530 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 1531 s3c_hsotg_read_frameno(hsotg), 1532 readl(hsotg->regs + DOEPCTL(0))); 1533 1534 s3c_hsotg_rx_data(hsotg, epnum, size); 1535 break; 1536 1537 default: 1538 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 1539 __func__, grxstsr); 1540 1541 s3c_hsotg_dump(hsotg); 1542 break; 1543 } 1544 } 1545 1546 /** 1547 * s3c_hsotg_ep0_mps - turn max packet size into register setting 1548 * @mps: The maximum packet size in bytes. 1549 */ 1550 static u32 s3c_hsotg_ep0_mps(unsigned int mps) 1551 { 1552 switch (mps) { 1553 case 64: 1554 return D0EPCTL_MPS_64; 1555 case 32: 1556 return D0EPCTL_MPS_32; 1557 case 16: 1558 return D0EPCTL_MPS_16; 1559 case 8: 1560 return D0EPCTL_MPS_8; 1561 } 1562 1563 /* bad max packet size, warn and return invalid result */ 1564 WARN_ON(1); 1565 return (u32)-1; 1566 } 1567 1568 /** 1569 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field 1570 * @hsotg: The driver state. 1571 * @ep: The index number of the endpoint 1572 * @mps: The maximum packet size in bytes 1573 * 1574 * Configure the maximum packet size for the given endpoint, updating 1575 * the hardware control registers to reflect this. 1576 */ 1577 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg, 1578 unsigned int ep, unsigned int mps) 1579 { 1580 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep]; 1581 void __iomem *regs = hsotg->regs; 1582 u32 mpsval; 1583 u32 mcval; 1584 u32 reg; 1585 1586 if (ep == 0) { 1587 /* EP0 is a special case */ 1588 mpsval = s3c_hsotg_ep0_mps(mps); 1589 if (mpsval > 3) 1590 goto bad_mps; 1591 hs_ep->ep.maxpacket = mps; 1592 hs_ep->mc = 1; 1593 } else { 1594 mpsval = mps & DXEPCTL_MPS_MASK; 1595 if (mpsval > 1024) 1596 goto bad_mps; 1597 mcval = ((mps >> 11) & 0x3) + 1; 1598 hs_ep->mc = mcval; 1599 if (mcval > 3) 1600 goto bad_mps; 1601 hs_ep->ep.maxpacket = mpsval; 1602 } 1603 1604 /* 1605 * update both the in and out endpoint controldir_ registers, even 1606 * if one of the directions may not be in use. 1607 */ 1608 1609 reg = readl(regs + DIEPCTL(ep)); 1610 reg &= ~DXEPCTL_MPS_MASK; 1611 reg |= mpsval; 1612 writel(reg, regs + DIEPCTL(ep)); 1613 1614 if (ep) { 1615 reg = readl(regs + DOEPCTL(ep)); 1616 reg &= ~DXEPCTL_MPS_MASK; 1617 reg |= mpsval; 1618 writel(reg, regs + DOEPCTL(ep)); 1619 } 1620 1621 return; 1622 1623 bad_mps: 1624 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 1625 } 1626 1627 /** 1628 * s3c_hsotg_txfifo_flush - flush Tx FIFO 1629 * @hsotg: The driver state 1630 * @idx: The index for the endpoint (0..15) 1631 */ 1632 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx) 1633 { 1634 int timeout; 1635 int val; 1636 1637 writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 1638 hsotg->regs + GRSTCTL); 1639 1640 /* wait until the fifo is flushed */ 1641 timeout = 100; 1642 1643 while (1) { 1644 val = readl(hsotg->regs + GRSTCTL); 1645 1646 if ((val & (GRSTCTL_TXFFLSH)) == 0) 1647 break; 1648 1649 if (--timeout == 0) { 1650 dev_err(hsotg->dev, 1651 "%s: timeout flushing fifo (GRSTCTL=%08x)\n", 1652 __func__, val); 1653 } 1654 1655 udelay(1); 1656 } 1657 } 1658 1659 /** 1660 * s3c_hsotg_trytx - check to see if anything needs transmitting 1661 * @hsotg: The driver state 1662 * @hs_ep: The driver endpoint to check. 1663 * 1664 * Check to see if there is a request that has data to send, and if so 1665 * make an attempt to write data into the FIFO. 1666 */ 1667 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg, 1668 struct s3c_hsotg_ep *hs_ep) 1669 { 1670 struct s3c_hsotg_req *hs_req = hs_ep->req; 1671 1672 if (!hs_ep->dir_in || !hs_req) { 1673 /** 1674 * if request is not enqueued, we disable interrupts 1675 * for endpoints, excepting ep0 1676 */ 1677 if (hs_ep->index != 0) 1678 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, 1679 hs_ep->dir_in, 0); 1680 return 0; 1681 } 1682 1683 if (hs_req->req.actual < hs_req->req.length) { 1684 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 1685 hs_ep->index); 1686 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1687 } 1688 1689 return 0; 1690 } 1691 1692 /** 1693 * s3c_hsotg_complete_in - complete IN transfer 1694 * @hsotg: The device state. 1695 * @hs_ep: The endpoint that has just completed. 1696 * 1697 * An IN transfer has been completed, update the transfer's state and then 1698 * call the relevant completion routines. 1699 */ 1700 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg, 1701 struct s3c_hsotg_ep *hs_ep) 1702 { 1703 struct s3c_hsotg_req *hs_req = hs_ep->req; 1704 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 1705 int size_left, size_done; 1706 1707 if (!hs_req) { 1708 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 1709 return; 1710 } 1711 1712 /* Finish ZLP handling for IN EP0 transactions */ 1713 if (hsotg->eps[0].sent_zlp) { 1714 dev_dbg(hsotg->dev, "zlp packet received\n"); 1715 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1716 return; 1717 } 1718 1719 /* 1720 * Calculate the size of the transfer by checking how much is left 1721 * in the endpoint size register and then working it out from 1722 * the amount we loaded for the transfer. 1723 * 1724 * We do this even for DMA, as the transfer may have incremented 1725 * past the end of the buffer (DMA transfers are always 32bit 1726 * aligned). 1727 */ 1728 1729 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 1730 1731 size_done = hs_ep->size_loaded - size_left; 1732 size_done += hs_ep->last_load; 1733 1734 if (hs_req->req.actual != size_done) 1735 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 1736 __func__, hs_req->req.actual, size_done); 1737 1738 hs_req->req.actual = size_done; 1739 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 1740 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 1741 1742 /* 1743 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0 1744 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B 1745 * ,256B ... ), after last MPS sized packet send IN ZLP packet to 1746 * inform the host that no more data is available. 1747 * The state of req.zero member is checked to be sure that the value to 1748 * send is smaller than wValue expected from host. 1749 * Check req.length to NOT send another ZLP when the current one is 1750 * under completion (the one for which this completion has been called). 1751 */ 1752 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero && 1753 hs_req->req.length == hs_req->req.actual && 1754 !(hs_req->req.length % hs_ep->ep.maxpacket)) { 1755 1756 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n"); 1757 s3c_hsotg_send_zlp(hsotg, hs_req); 1758 1759 return; 1760 } 1761 1762 if (!size_left && hs_req->req.actual < hs_req->req.length) { 1763 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 1764 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); 1765 } else 1766 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 1767 } 1768 1769 /** 1770 * s3c_hsotg_epint - handle an in/out endpoint interrupt 1771 * @hsotg: The driver state 1772 * @idx: The index for the endpoint (0..15) 1773 * @dir_in: Set if this is an IN endpoint 1774 * 1775 * Process and clear any interrupt pending for an individual endpoint 1776 */ 1777 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx, 1778 int dir_in) 1779 { 1780 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx]; 1781 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 1782 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 1783 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 1784 u32 ints; 1785 u32 ctrl; 1786 1787 ints = readl(hsotg->regs + epint_reg); 1788 ctrl = readl(hsotg->regs + epctl_reg); 1789 1790 /* Clear endpoint interrupts */ 1791 writel(ints, hsotg->regs + epint_reg); 1792 1793 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 1794 __func__, idx, dir_in ? "in" : "out", ints); 1795 1796 if (ints & DXEPINT_XFERCOMPL) { 1797 if (hs_ep->isochronous && hs_ep->interval == 1) { 1798 if (ctrl & DXEPCTL_EOFRNUM) 1799 ctrl |= DXEPCTL_SETEVENFR; 1800 else 1801 ctrl |= DXEPCTL_SETODDFR; 1802 writel(ctrl, hsotg->regs + epctl_reg); 1803 } 1804 1805 dev_dbg(hsotg->dev, 1806 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 1807 __func__, readl(hsotg->regs + epctl_reg), 1808 readl(hsotg->regs + epsiz_reg)); 1809 1810 /* 1811 * we get OutDone from the FIFO, so we only need to look 1812 * at completing IN requests here 1813 */ 1814 if (dir_in) { 1815 s3c_hsotg_complete_in(hsotg, hs_ep); 1816 1817 if (idx == 0 && !hs_ep->req) 1818 s3c_hsotg_enqueue_setup(hsotg); 1819 } else if (using_dma(hsotg)) { 1820 /* 1821 * We're using DMA, we need to fire an OutDone here 1822 * as we ignore the RXFIFO. 1823 */ 1824 1825 s3c_hsotg_handle_outdone(hsotg, idx, false); 1826 } 1827 } 1828 1829 if (ints & DXEPINT_EPDISBLD) { 1830 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 1831 1832 if (dir_in) { 1833 int epctl = readl(hsotg->regs + epctl_reg); 1834 1835 s3c_hsotg_txfifo_flush(hsotg, idx); 1836 1837 if ((epctl & DXEPCTL_STALL) && 1838 (epctl & DXEPCTL_EPTYPE_BULK)) { 1839 int dctl = readl(hsotg->regs + DCTL); 1840 1841 dctl |= DCTL_CGNPINNAK; 1842 writel(dctl, hsotg->regs + DCTL); 1843 } 1844 } 1845 } 1846 1847 if (ints & DXEPINT_AHBERR) 1848 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 1849 1850 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 1851 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 1852 1853 if (using_dma(hsotg) && idx == 0) { 1854 /* 1855 * this is the notification we've received a 1856 * setup packet. In non-DMA mode we'd get this 1857 * from the RXFIFO, instead we need to process 1858 * the setup here. 1859 */ 1860 1861 if (dir_in) 1862 WARN_ON_ONCE(1); 1863 else 1864 s3c_hsotg_handle_outdone(hsotg, 0, true); 1865 } 1866 } 1867 1868 if (ints & DXEPINT_BACK2BACKSETUP) 1869 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 1870 1871 if (dir_in && !hs_ep->isochronous) { 1872 /* not sure if this is important, but we'll clear it anyway */ 1873 if (ints & DIEPMSK_INTKNTXFEMPMSK) { 1874 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 1875 __func__, idx); 1876 } 1877 1878 /* this probably means something bad is happening */ 1879 if (ints & DIEPMSK_INTKNEPMISMSK) { 1880 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 1881 __func__, idx); 1882 } 1883 1884 /* FIFO has space or is empty (see GAHBCFG) */ 1885 if (hsotg->dedicated_fifos && 1886 ints & DIEPMSK_TXFIFOEMPTY) { 1887 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 1888 __func__, idx); 1889 if (!using_dma(hsotg)) 1890 s3c_hsotg_trytx(hsotg, hs_ep); 1891 } 1892 } 1893 } 1894 1895 /** 1896 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 1897 * @hsotg: The device state. 1898 * 1899 * Handle updating the device settings after the enumeration phase has 1900 * been completed. 1901 */ 1902 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg) 1903 { 1904 u32 dsts = readl(hsotg->regs + DSTS); 1905 int ep0_mps = 0, ep_mps; 1906 1907 /* 1908 * This should signal the finish of the enumeration phase 1909 * of the USB handshaking, so we should now know what rate 1910 * we connected at. 1911 */ 1912 1913 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 1914 1915 /* 1916 * note, since we're limited by the size of transfer on EP0, and 1917 * it seems IN transfers must be a even number of packets we do 1918 * not advertise a 64byte MPS on EP0. 1919 */ 1920 1921 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 1922 switch (dsts & DSTS_ENUMSPD_MASK) { 1923 case DSTS_ENUMSPD_FS: 1924 case DSTS_ENUMSPD_FS48: 1925 hsotg->gadget.speed = USB_SPEED_FULL; 1926 ep0_mps = EP0_MPS_LIMIT; 1927 ep_mps = 1023; 1928 break; 1929 1930 case DSTS_ENUMSPD_HS: 1931 hsotg->gadget.speed = USB_SPEED_HIGH; 1932 ep0_mps = EP0_MPS_LIMIT; 1933 ep_mps = 1024; 1934 break; 1935 1936 case DSTS_ENUMSPD_LS: 1937 hsotg->gadget.speed = USB_SPEED_LOW; 1938 /* 1939 * note, we don't actually support LS in this driver at the 1940 * moment, and the documentation seems to imply that it isn't 1941 * supported by the PHYs on some of the devices. 1942 */ 1943 break; 1944 } 1945 dev_info(hsotg->dev, "new device is %s\n", 1946 usb_speed_string(hsotg->gadget.speed)); 1947 1948 /* 1949 * we should now know the maximum packet size for an 1950 * endpoint, so set the endpoints to a default value. 1951 */ 1952 1953 if (ep0_mps) { 1954 int i; 1955 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps); 1956 for (i = 1; i < hsotg->num_of_eps; i++) 1957 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps); 1958 } 1959 1960 /* ensure after enumeration our EP0 is active */ 1961 1962 s3c_hsotg_enqueue_setup(hsotg); 1963 1964 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 1965 readl(hsotg->regs + DIEPCTL0), 1966 readl(hsotg->regs + DOEPCTL0)); 1967 } 1968 1969 /** 1970 * kill_all_requests - remove all requests from the endpoint's queue 1971 * @hsotg: The device state. 1972 * @ep: The endpoint the requests may be on. 1973 * @result: The result code to use. 1974 * @force: Force removal of any current requests 1975 * 1976 * Go through the requests on the given endpoint and mark them 1977 * completed with the given result code. 1978 */ 1979 static void kill_all_requests(struct s3c_hsotg *hsotg, 1980 struct s3c_hsotg_ep *ep, 1981 int result, bool force) 1982 { 1983 struct s3c_hsotg_req *req, *treq; 1984 1985 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 1986 /* 1987 * currently, we can't do much about an already 1988 * running request on an in endpoint 1989 */ 1990 1991 if (ep->req == req && ep->dir_in && !force) 1992 continue; 1993 1994 s3c_hsotg_complete_request(hsotg, ep, req, 1995 result); 1996 } 1997 if(hsotg->dedicated_fifos) 1998 if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072) 1999 s3c_hsotg_txfifo_flush(hsotg, ep->index); 2000 } 2001 2002 /** 2003 * s3c_hsotg_disconnect - disconnect service 2004 * @hsotg: The device state. 2005 * 2006 * The device has been disconnected. Remove all current 2007 * transactions and signal the gadget driver that this 2008 * has happened. 2009 */ 2010 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg) 2011 { 2012 unsigned ep; 2013 2014 for (ep = 0; ep < hsotg->num_of_eps; ep++) 2015 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true); 2016 2017 call_gadget(hsotg, disconnect); 2018 } 2019 2020 /** 2021 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 2022 * @hsotg: The device state: 2023 * @periodic: True if this is a periodic FIFO interrupt 2024 */ 2025 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic) 2026 { 2027 struct s3c_hsotg_ep *ep; 2028 int epno, ret; 2029 2030 /* look through for any more data to transmit */ 2031 2032 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 2033 ep = &hsotg->eps[epno]; 2034 2035 if (!ep->dir_in) 2036 continue; 2037 2038 if ((periodic && !ep->periodic) || 2039 (!periodic && ep->periodic)) 2040 continue; 2041 2042 ret = s3c_hsotg_trytx(hsotg, ep); 2043 if (ret < 0) 2044 break; 2045 } 2046 } 2047 2048 /* IRQ flags which will trigger a retry around the IRQ loop */ 2049 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 2050 GINTSTS_PTXFEMP | \ 2051 GINTSTS_RXFLVL) 2052 2053 /** 2054 * s3c_hsotg_corereset - issue softreset to the core 2055 * @hsotg: The device state 2056 * 2057 * Issue a soft reset to the core, and await the core finishing it. 2058 */ 2059 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg) 2060 { 2061 int timeout; 2062 u32 grstctl; 2063 2064 dev_dbg(hsotg->dev, "resetting core\n"); 2065 2066 /* issue soft reset */ 2067 writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL); 2068 2069 timeout = 10000; 2070 do { 2071 grstctl = readl(hsotg->regs + GRSTCTL); 2072 } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0); 2073 2074 if (grstctl & GRSTCTL_CSFTRST) { 2075 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n"); 2076 return -EINVAL; 2077 } 2078 2079 timeout = 10000; 2080 2081 while (1) { 2082 u32 grstctl = readl(hsotg->regs + GRSTCTL); 2083 2084 if (timeout-- < 0) { 2085 dev_info(hsotg->dev, 2086 "%s: reset failed, GRSTCTL=%08x\n", 2087 __func__, grstctl); 2088 return -ETIMEDOUT; 2089 } 2090 2091 if (!(grstctl & GRSTCTL_AHBIDLE)) 2092 continue; 2093 2094 break; /* reset done */ 2095 } 2096 2097 dev_dbg(hsotg->dev, "reset successful\n"); 2098 return 0; 2099 } 2100 2101 /** 2102 * s3c_hsotg_core_init - issue softreset to the core 2103 * @hsotg: The device state 2104 * 2105 * Issue a soft reset to the core, and await the core finishing it. 2106 */ 2107 static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg) 2108 { 2109 s3c_hsotg_corereset(hsotg); 2110 2111 /* 2112 * we must now enable ep0 ready for host detection and then 2113 * set configuration. 2114 */ 2115 2116 /* set the PLL on, remove the HNP/SRP and set the PHY */ 2117 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) | 2118 (0x5 << 10), hsotg->regs + GUSBCFG); 2119 2120 s3c_hsotg_init_fifo(hsotg); 2121 2122 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2123 2124 writel(1 << 18 | DCFG_DEVSPD_HS, hsotg->regs + DCFG); 2125 2126 /* Clear any pending OTG interrupts */ 2127 writel(0xffffffff, hsotg->regs + GOTGINT); 2128 2129 /* Clear any pending interrupts */ 2130 writel(0xffffffff, hsotg->regs + GINTSTS); 2131 2132 writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 2133 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 2134 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST | 2135 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 2136 GINTSTS_USBSUSP | GINTSTS_WKUPINT, 2137 hsotg->regs + GINTMSK); 2138 2139 if (using_dma(hsotg)) 2140 writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 2141 GAHBCFG_HBSTLEN_INCR4, 2142 hsotg->regs + GAHBCFG); 2143 else 2144 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL | 2145 GAHBCFG_P_TXF_EMP_LVL) : 0) | 2146 GAHBCFG_GLBL_INTR_EN, 2147 hsotg->regs + GAHBCFG); 2148 2149 /* 2150 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 2151 * when we have no data to transfer. Otherwise we get being flooded by 2152 * interrupts. 2153 */ 2154 2155 writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY | 2156 DIEPMSK_INTKNTXFEMPMSK : 0) | 2157 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 2158 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 2159 DIEPMSK_INTKNEPMISMSK, 2160 hsotg->regs + DIEPMSK); 2161 2162 /* 2163 * don't need XferCompl, we get that from RXFIFO in slave mode. In 2164 * DMA mode we may need this. 2165 */ 2166 writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 2167 DIEPMSK_TIMEOUTMSK) : 0) | 2168 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 2169 DOEPMSK_SETUPMSK, 2170 hsotg->regs + DOEPMSK); 2171 2172 writel(0, hsotg->regs + DAINTMSK); 2173 2174 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2175 readl(hsotg->regs + DIEPCTL0), 2176 readl(hsotg->regs + DOEPCTL0)); 2177 2178 /* enable in and out endpoint interrupts */ 2179 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 2180 2181 /* 2182 * Enable the RXFIFO when in slave mode, as this is how we collect 2183 * the data. In DMA mode, we get events from the FIFO but also 2184 * things we cannot process, so do not use it. 2185 */ 2186 if (!using_dma(hsotg)) 2187 s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 2188 2189 /* Enable interrupts for EP0 in and out */ 2190 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1); 2191 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1); 2192 2193 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 2194 udelay(10); /* see openiboot */ 2195 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 2196 2197 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL)); 2198 2199 /* 2200 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 2201 * writing to the EPCTL register.. 2202 */ 2203 2204 /* set to read 1 8byte packet */ 2205 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2206 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 2207 2208 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) | 2209 DXEPCTL_CNAK | DXEPCTL_EPENA | 2210 DXEPCTL_USBACTEP, 2211 hsotg->regs + DOEPCTL0); 2212 2213 /* enable, but don't activate EP0in */ 2214 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) | 2215 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 2216 2217 s3c_hsotg_enqueue_setup(hsotg); 2218 2219 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 2220 readl(hsotg->regs + DIEPCTL0), 2221 readl(hsotg->regs + DOEPCTL0)); 2222 2223 /* clear global NAKs */ 2224 writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK, 2225 hsotg->regs + DCTL); 2226 2227 /* must be at-least 3ms to allow bus to see disconnect */ 2228 mdelay(3); 2229 2230 /* remove the soft-disconnect and let's go */ 2231 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2232 } 2233 2234 /** 2235 * s3c_hsotg_irq - handle device interrupt 2236 * @irq: The IRQ number triggered 2237 * @pw: The pw value when registered the handler. 2238 */ 2239 static irqreturn_t s3c_hsotg_irq(int irq, void *pw) 2240 { 2241 struct s3c_hsotg *hsotg = pw; 2242 int retry_count = 8; 2243 u32 gintsts; 2244 u32 gintmsk; 2245 2246 spin_lock(&hsotg->lock); 2247 irq_retry: 2248 gintsts = readl(hsotg->regs + GINTSTS); 2249 gintmsk = readl(hsotg->regs + GINTMSK); 2250 2251 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 2252 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 2253 2254 gintsts &= gintmsk; 2255 2256 if (gintsts & GINTSTS_OTGINT) { 2257 u32 otgint = readl(hsotg->regs + GOTGINT); 2258 2259 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint); 2260 2261 writel(otgint, hsotg->regs + GOTGINT); 2262 } 2263 2264 if (gintsts & GINTSTS_SESSREQINT) { 2265 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__); 2266 writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS); 2267 } 2268 2269 if (gintsts & GINTSTS_ENUMDONE) { 2270 writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 2271 2272 s3c_hsotg_irq_enumdone(hsotg); 2273 } 2274 2275 if (gintsts & GINTSTS_CONIDSTSCHNG) { 2276 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n", 2277 readl(hsotg->regs + DSTS), 2278 readl(hsotg->regs + GOTGCTL)); 2279 2280 writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS); 2281 } 2282 2283 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 2284 u32 daint = readl(hsotg->regs + DAINT); 2285 u32 daintmsk = readl(hsotg->regs + DAINTMSK); 2286 u32 daint_out, daint_in; 2287 int ep; 2288 2289 daint &= daintmsk; 2290 daint_out = daint >> DAINT_OUTEP_SHIFT; 2291 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 2292 2293 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 2294 2295 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) { 2296 if (daint_out & 1) 2297 s3c_hsotg_epint(hsotg, ep, 0); 2298 } 2299 2300 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) { 2301 if (daint_in & 1) 2302 s3c_hsotg_epint(hsotg, ep, 1); 2303 } 2304 } 2305 2306 if (gintsts & GINTSTS_USBRST) { 2307 2308 u32 usb_status = readl(hsotg->regs + GOTGCTL); 2309 2310 dev_info(hsotg->dev, "%s: USBRst\n", __func__); 2311 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 2312 readl(hsotg->regs + GNPTXSTS)); 2313 2314 writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 2315 2316 if (usb_status & GOTGCTL_BSESVLD) { 2317 if (time_after(jiffies, hsotg->last_rst + 2318 msecs_to_jiffies(200))) { 2319 2320 kill_all_requests(hsotg, &hsotg->eps[0], 2321 -ECONNRESET, true); 2322 2323 s3c_hsotg_core_init(hsotg); 2324 hsotg->last_rst = jiffies; 2325 } 2326 } 2327 } 2328 2329 /* check both FIFOs */ 2330 2331 if (gintsts & GINTSTS_NPTXFEMP) { 2332 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 2333 2334 /* 2335 * Disable the interrupt to stop it happening again 2336 * unless one of these endpoint routines decides that 2337 * it needs re-enabling 2338 */ 2339 2340 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 2341 s3c_hsotg_irq_fifoempty(hsotg, false); 2342 } 2343 2344 if (gintsts & GINTSTS_PTXFEMP) { 2345 dev_dbg(hsotg->dev, "PTxFEmp\n"); 2346 2347 /* See note in GINTSTS_NPTxFEmp */ 2348 2349 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 2350 s3c_hsotg_irq_fifoempty(hsotg, true); 2351 } 2352 2353 if (gintsts & GINTSTS_RXFLVL) { 2354 /* 2355 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 2356 * we need to retry s3c_hsotg_handle_rx if this is still 2357 * set. 2358 */ 2359 2360 s3c_hsotg_handle_rx(hsotg); 2361 } 2362 2363 if (gintsts & GINTSTS_MODEMIS) { 2364 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n"); 2365 writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS); 2366 } 2367 2368 if (gintsts & GINTSTS_USBSUSP) { 2369 dev_info(hsotg->dev, "GINTSTS_USBSusp\n"); 2370 writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS); 2371 2372 call_gadget(hsotg, suspend); 2373 } 2374 2375 if (gintsts & GINTSTS_WKUPINT) { 2376 dev_info(hsotg->dev, "GINTSTS_WkUpIn\n"); 2377 writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS); 2378 2379 call_gadget(hsotg, resume); 2380 } 2381 2382 if (gintsts & GINTSTS_ERLYSUSP) { 2383 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 2384 writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 2385 } 2386 2387 /* 2388 * these next two seem to crop-up occasionally causing the core 2389 * to shutdown the USB transfer, so try clearing them and logging 2390 * the occurrence. 2391 */ 2392 2393 if (gintsts & GINTSTS_GOUTNAKEFF) { 2394 dev_info(hsotg->dev, "GOUTNakEff triggered\n"); 2395 2396 writel(DCTL_CGOUTNAK, hsotg->regs + DCTL); 2397 2398 s3c_hsotg_dump(hsotg); 2399 } 2400 2401 if (gintsts & GINTSTS_GINNAKEFF) { 2402 dev_info(hsotg->dev, "GINNakEff triggered\n"); 2403 2404 writel(DCTL_CGNPINNAK, hsotg->regs + DCTL); 2405 2406 s3c_hsotg_dump(hsotg); 2407 } 2408 2409 /* 2410 * if we've had fifo events, we should try and go around the 2411 * loop again to see if there's any point in returning yet. 2412 */ 2413 2414 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 2415 goto irq_retry; 2416 2417 spin_unlock(&hsotg->lock); 2418 2419 return IRQ_HANDLED; 2420 } 2421 2422 /** 2423 * s3c_hsotg_ep_enable - enable the given endpoint 2424 * @ep: The USB endpint to configure 2425 * @desc: The USB endpoint descriptor to configure with. 2426 * 2427 * This is called from the USB gadget code's usb_ep_enable(). 2428 */ 2429 static int s3c_hsotg_ep_enable(struct usb_ep *ep, 2430 const struct usb_endpoint_descriptor *desc) 2431 { 2432 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2433 struct s3c_hsotg *hsotg = hs_ep->parent; 2434 unsigned long flags; 2435 int index = hs_ep->index; 2436 u32 epctrl_reg; 2437 u32 epctrl; 2438 u32 mps; 2439 int dir_in; 2440 int ret = 0; 2441 2442 dev_dbg(hsotg->dev, 2443 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 2444 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 2445 desc->wMaxPacketSize, desc->bInterval); 2446 2447 /* not to be called for EP0 */ 2448 WARN_ON(index == 0); 2449 2450 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 2451 if (dir_in != hs_ep->dir_in) { 2452 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 2453 return -EINVAL; 2454 } 2455 2456 mps = usb_endpoint_maxp(desc); 2457 2458 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */ 2459 2460 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 2461 epctrl = readl(hsotg->regs + epctrl_reg); 2462 2463 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 2464 __func__, epctrl, epctrl_reg); 2465 2466 spin_lock_irqsave(&hsotg->lock, flags); 2467 2468 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 2469 epctrl |= DXEPCTL_MPS(mps); 2470 2471 /* 2472 * mark the endpoint as active, otherwise the core may ignore 2473 * transactions entirely for this endpoint 2474 */ 2475 epctrl |= DXEPCTL_USBACTEP; 2476 2477 /* 2478 * set the NAK status on the endpoint, otherwise we might try and 2479 * do something with data that we've yet got a request to process 2480 * since the RXFIFO will take data for an endpoint even if the 2481 * size register hasn't been set. 2482 */ 2483 2484 epctrl |= DXEPCTL_SNAK; 2485 2486 /* update the endpoint state */ 2487 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps); 2488 2489 /* default, set to non-periodic */ 2490 hs_ep->isochronous = 0; 2491 hs_ep->periodic = 0; 2492 hs_ep->halted = 0; 2493 hs_ep->interval = desc->bInterval; 2494 2495 if (hs_ep->interval > 1 && hs_ep->mc > 1) 2496 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n"); 2497 2498 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { 2499 case USB_ENDPOINT_XFER_ISOC: 2500 epctrl |= DXEPCTL_EPTYPE_ISO; 2501 epctrl |= DXEPCTL_SETEVENFR; 2502 hs_ep->isochronous = 1; 2503 if (dir_in) 2504 hs_ep->periodic = 1; 2505 break; 2506 2507 case USB_ENDPOINT_XFER_BULK: 2508 epctrl |= DXEPCTL_EPTYPE_BULK; 2509 break; 2510 2511 case USB_ENDPOINT_XFER_INT: 2512 if (dir_in) { 2513 /* 2514 * Allocate our TxFNum by simply using the index 2515 * of the endpoint for the moment. We could do 2516 * something better if the host indicates how 2517 * many FIFOs we are expecting to use. 2518 */ 2519 2520 hs_ep->periodic = 1; 2521 epctrl |= DXEPCTL_TXFNUM(index); 2522 } 2523 2524 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 2525 break; 2526 2527 case USB_ENDPOINT_XFER_CONTROL: 2528 epctrl |= DXEPCTL_EPTYPE_CONTROL; 2529 break; 2530 } 2531 2532 /* 2533 * if the hardware has dedicated fifos, we must give each IN EP 2534 * a unique tx-fifo even if it is non-periodic. 2535 */ 2536 if (dir_in && hsotg->dedicated_fifos) 2537 epctrl |= DXEPCTL_TXFNUM(index); 2538 2539 /* for non control endpoints, set PID to D0 */ 2540 if (index) 2541 epctrl |= DXEPCTL_SETD0PID; 2542 2543 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 2544 __func__, epctrl); 2545 2546 writel(epctrl, hsotg->regs + epctrl_reg); 2547 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 2548 __func__, readl(hsotg->regs + epctrl_reg)); 2549 2550 /* enable the endpoint interrupt */ 2551 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 2552 2553 spin_unlock_irqrestore(&hsotg->lock, flags); 2554 return ret; 2555 } 2556 2557 /** 2558 * s3c_hsotg_ep_disable - disable given endpoint 2559 * @ep: The endpoint to disable. 2560 */ 2561 static int s3c_hsotg_ep_disable(struct usb_ep *ep) 2562 { 2563 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2564 struct s3c_hsotg *hsotg = hs_ep->parent; 2565 int dir_in = hs_ep->dir_in; 2566 int index = hs_ep->index; 2567 unsigned long flags; 2568 u32 epctrl_reg; 2569 u32 ctrl; 2570 2571 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep); 2572 2573 if (ep == &hsotg->eps[0].ep) { 2574 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 2575 return -EINVAL; 2576 } 2577 2578 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 2579 2580 spin_lock_irqsave(&hsotg->lock, flags); 2581 /* terminate all requests with shutdown */ 2582 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false); 2583 2584 2585 ctrl = readl(hsotg->regs + epctrl_reg); 2586 ctrl &= ~DXEPCTL_EPENA; 2587 ctrl &= ~DXEPCTL_USBACTEP; 2588 ctrl |= DXEPCTL_SNAK; 2589 2590 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 2591 writel(ctrl, hsotg->regs + epctrl_reg); 2592 2593 /* disable endpoint interrupts */ 2594 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 2595 2596 spin_unlock_irqrestore(&hsotg->lock, flags); 2597 return 0; 2598 } 2599 2600 /** 2601 * on_list - check request is on the given endpoint 2602 * @ep: The endpoint to check. 2603 * @test: The request to test if it is on the endpoint. 2604 */ 2605 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test) 2606 { 2607 struct s3c_hsotg_req *req, *treq; 2608 2609 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 2610 if (req == test) 2611 return true; 2612 } 2613 2614 return false; 2615 } 2616 2617 /** 2618 * s3c_hsotg_ep_dequeue - dequeue given endpoint 2619 * @ep: The endpoint to dequeue. 2620 * @req: The request to be removed from a queue. 2621 */ 2622 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 2623 { 2624 struct s3c_hsotg_req *hs_req = our_req(req); 2625 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2626 struct s3c_hsotg *hs = hs_ep->parent; 2627 unsigned long flags; 2628 2629 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 2630 2631 spin_lock_irqsave(&hs->lock, flags); 2632 2633 if (!on_list(hs_ep, hs_req)) { 2634 spin_unlock_irqrestore(&hs->lock, flags); 2635 return -EINVAL; 2636 } 2637 2638 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 2639 spin_unlock_irqrestore(&hs->lock, flags); 2640 2641 return 0; 2642 } 2643 2644 /** 2645 * s3c_hsotg_ep_sethalt - set halt on a given endpoint 2646 * @ep: The endpoint to set halt. 2647 * @value: Set or unset the halt. 2648 */ 2649 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value) 2650 { 2651 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2652 struct s3c_hsotg *hs = hs_ep->parent; 2653 int index = hs_ep->index; 2654 u32 epreg; 2655 u32 epctl; 2656 u32 xfertype; 2657 2658 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 2659 2660 if (index == 0) { 2661 if (value) 2662 s3c_hsotg_stall_ep0(hs); 2663 else 2664 dev_warn(hs->dev, 2665 "%s: can't clear halt on ep0\n", __func__); 2666 return 0; 2667 } 2668 2669 /* write both IN and OUT control registers */ 2670 2671 epreg = DIEPCTL(index); 2672 epctl = readl(hs->regs + epreg); 2673 2674 if (value) { 2675 epctl |= DXEPCTL_STALL + DXEPCTL_SNAK; 2676 if (epctl & DXEPCTL_EPENA) 2677 epctl |= DXEPCTL_EPDIS; 2678 } else { 2679 epctl &= ~DXEPCTL_STALL; 2680 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 2681 if (xfertype == DXEPCTL_EPTYPE_BULK || 2682 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 2683 epctl |= DXEPCTL_SETD0PID; 2684 } 2685 2686 writel(epctl, hs->regs + epreg); 2687 2688 epreg = DOEPCTL(index); 2689 epctl = readl(hs->regs + epreg); 2690 2691 if (value) 2692 epctl |= DXEPCTL_STALL; 2693 else { 2694 epctl &= ~DXEPCTL_STALL; 2695 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 2696 if (xfertype == DXEPCTL_EPTYPE_BULK || 2697 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 2698 epctl |= DXEPCTL_SETD0PID; 2699 } 2700 2701 writel(epctl, hs->regs + epreg); 2702 2703 hs_ep->halted = value; 2704 2705 return 0; 2706 } 2707 2708 /** 2709 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 2710 * @ep: The endpoint to set halt. 2711 * @value: Set or unset the halt. 2712 */ 2713 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 2714 { 2715 struct s3c_hsotg_ep *hs_ep = our_ep(ep); 2716 struct s3c_hsotg *hs = hs_ep->parent; 2717 unsigned long flags = 0; 2718 int ret = 0; 2719 2720 spin_lock_irqsave(&hs->lock, flags); 2721 ret = s3c_hsotg_ep_sethalt(ep, value); 2722 spin_unlock_irqrestore(&hs->lock, flags); 2723 2724 return ret; 2725 } 2726 2727 static struct usb_ep_ops s3c_hsotg_ep_ops = { 2728 .enable = s3c_hsotg_ep_enable, 2729 .disable = s3c_hsotg_ep_disable, 2730 .alloc_request = s3c_hsotg_ep_alloc_request, 2731 .free_request = s3c_hsotg_ep_free_request, 2732 .queue = s3c_hsotg_ep_queue_lock, 2733 .dequeue = s3c_hsotg_ep_dequeue, 2734 .set_halt = s3c_hsotg_ep_sethalt_lock, 2735 /* note, don't believe we have any call for the fifo routines */ 2736 }; 2737 2738 /** 2739 * s3c_hsotg_phy_enable - enable platform phy dev 2740 * @hsotg: The driver state 2741 * 2742 * A wrapper for platform code responsible for controlling 2743 * low-level USB code 2744 */ 2745 static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg) 2746 { 2747 struct platform_device *pdev = to_platform_device(hsotg->dev); 2748 2749 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev); 2750 2751 if (hsotg->phy) { 2752 phy_init(hsotg->phy); 2753 phy_power_on(hsotg->phy); 2754 } else if (hsotg->uphy) 2755 usb_phy_init(hsotg->uphy); 2756 else if (hsotg->plat->phy_init) 2757 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type); 2758 } 2759 2760 /** 2761 * s3c_hsotg_phy_disable - disable platform phy dev 2762 * @hsotg: The driver state 2763 * 2764 * A wrapper for platform code responsible for controlling 2765 * low-level USB code 2766 */ 2767 static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg) 2768 { 2769 struct platform_device *pdev = to_platform_device(hsotg->dev); 2770 2771 if (hsotg->phy) { 2772 phy_power_off(hsotg->phy); 2773 phy_exit(hsotg->phy); 2774 } else if (hsotg->uphy) 2775 usb_phy_shutdown(hsotg->uphy); 2776 else if (hsotg->plat->phy_exit) 2777 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type); 2778 } 2779 2780 /** 2781 * s3c_hsotg_init - initalize the usb core 2782 * @hsotg: The driver state 2783 */ 2784 static void s3c_hsotg_init(struct s3c_hsotg *hsotg) 2785 { 2786 /* unmask subset of endpoint interrupts */ 2787 2788 writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 2789 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 2790 hsotg->regs + DIEPMSK); 2791 2792 writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 2793 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 2794 hsotg->regs + DOEPMSK); 2795 2796 writel(0, hsotg->regs + DAINTMSK); 2797 2798 /* Be in disconnected state until gadget is registered */ 2799 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 2800 2801 if (0) { 2802 /* post global nak until we're ready */ 2803 writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK, 2804 hsotg->regs + DCTL); 2805 } 2806 2807 /* setup fifos */ 2808 2809 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 2810 readl(hsotg->regs + GRXFSIZ), 2811 readl(hsotg->regs + GNPTXFSIZ)); 2812 2813 s3c_hsotg_init_fifo(hsotg); 2814 2815 /* set the PLL on, remove the HNP/SRP and set the PHY */ 2816 writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10), 2817 hsotg->regs + GUSBCFG); 2818 2819 writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0, 2820 hsotg->regs + GAHBCFG); 2821 } 2822 2823 /** 2824 * s3c_hsotg_udc_start - prepare the udc for work 2825 * @gadget: The usb gadget state 2826 * @driver: The usb gadget driver 2827 * 2828 * Perform initialization to prepare udc device and driver 2829 * to work. 2830 */ 2831 static int s3c_hsotg_udc_start(struct usb_gadget *gadget, 2832 struct usb_gadget_driver *driver) 2833 { 2834 struct s3c_hsotg *hsotg = to_hsotg(gadget); 2835 int ret; 2836 2837 if (!hsotg) { 2838 pr_err("%s: called with no device\n", __func__); 2839 return -ENODEV; 2840 } 2841 2842 if (!driver) { 2843 dev_err(hsotg->dev, "%s: no driver\n", __func__); 2844 return -EINVAL; 2845 } 2846 2847 if (driver->max_speed < USB_SPEED_FULL) 2848 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 2849 2850 if (!driver->setup) { 2851 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 2852 return -EINVAL; 2853 } 2854 2855 WARN_ON(hsotg->driver); 2856 2857 driver->driver.bus = NULL; 2858 hsotg->driver = driver; 2859 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 2860 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2861 2862 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 2863 hsotg->supplies); 2864 if (ret) { 2865 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret); 2866 goto err; 2867 } 2868 2869 hsotg->last_rst = jiffies; 2870 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 2871 return 0; 2872 2873 err: 2874 hsotg->driver = NULL; 2875 return ret; 2876 } 2877 2878 /** 2879 * s3c_hsotg_udc_stop - stop the udc 2880 * @gadget: The usb gadget state 2881 * @driver: The usb gadget driver 2882 * 2883 * Stop udc hw block and stay tunned for future transmissions 2884 */ 2885 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget, 2886 struct usb_gadget_driver *driver) 2887 { 2888 struct s3c_hsotg *hsotg = to_hsotg(gadget); 2889 unsigned long flags = 0; 2890 int ep; 2891 2892 if (!hsotg) 2893 return -ENODEV; 2894 2895 /* all endpoints should be shutdown */ 2896 for (ep = 0; ep < hsotg->num_of_eps; ep++) 2897 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep); 2898 2899 spin_lock_irqsave(&hsotg->lock, flags); 2900 2901 s3c_hsotg_phy_disable(hsotg); 2902 2903 if (!driver) 2904 hsotg->driver = NULL; 2905 2906 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2907 2908 spin_unlock_irqrestore(&hsotg->lock, flags); 2909 2910 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies); 2911 2912 return 0; 2913 } 2914 2915 /** 2916 * s3c_hsotg_gadget_getframe - read the frame number 2917 * @gadget: The usb gadget state 2918 * 2919 * Read the {micro} frame number 2920 */ 2921 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget) 2922 { 2923 return s3c_hsotg_read_frameno(to_hsotg(gadget)); 2924 } 2925 2926 /** 2927 * s3c_hsotg_pullup - connect/disconnect the USB PHY 2928 * @gadget: The usb gadget state 2929 * @is_on: Current state of the USB PHY 2930 * 2931 * Connect/Disconnect the USB PHY pullup 2932 */ 2933 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on) 2934 { 2935 struct s3c_hsotg *hsotg = to_hsotg(gadget); 2936 unsigned long flags = 0; 2937 2938 dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on); 2939 2940 spin_lock_irqsave(&hsotg->lock, flags); 2941 if (is_on) { 2942 s3c_hsotg_phy_enable(hsotg); 2943 s3c_hsotg_core_init(hsotg); 2944 } else { 2945 s3c_hsotg_disconnect(hsotg); 2946 s3c_hsotg_phy_disable(hsotg); 2947 } 2948 2949 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 2950 spin_unlock_irqrestore(&hsotg->lock, flags); 2951 2952 return 0; 2953 } 2954 2955 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = { 2956 .get_frame = s3c_hsotg_gadget_getframe, 2957 .udc_start = s3c_hsotg_udc_start, 2958 .udc_stop = s3c_hsotg_udc_stop, 2959 .pullup = s3c_hsotg_pullup, 2960 }; 2961 2962 /** 2963 * s3c_hsotg_initep - initialise a single endpoint 2964 * @hsotg: The device state. 2965 * @hs_ep: The endpoint to be initialised. 2966 * @epnum: The endpoint number 2967 * 2968 * Initialise the given endpoint (as part of the probe and device state 2969 * creation) to give to the gadget driver. Setup the endpoint name, any 2970 * direction information and other state that may be required. 2971 */ 2972 static void s3c_hsotg_initep(struct s3c_hsotg *hsotg, 2973 struct s3c_hsotg_ep *hs_ep, 2974 int epnum) 2975 { 2976 u32 ptxfifo; 2977 char *dir; 2978 2979 if (epnum == 0) 2980 dir = ""; 2981 else if ((epnum % 2) == 0) { 2982 dir = "out"; 2983 } else { 2984 dir = "in"; 2985 hs_ep->dir_in = 1; 2986 } 2987 2988 hs_ep->index = epnum; 2989 2990 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 2991 2992 INIT_LIST_HEAD(&hs_ep->queue); 2993 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 2994 2995 /* add to the list of endpoints known by the gadget driver */ 2996 if (epnum) 2997 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 2998 2999 hs_ep->parent = hsotg; 3000 hs_ep->ep.name = hs_ep->name; 3001 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT); 3002 hs_ep->ep.ops = &s3c_hsotg_ep_ops; 3003 3004 /* 3005 * Read the FIFO size for the Periodic TX FIFO, even if we're 3006 * an OUT endpoint, we may as well do this if in future the 3007 * code is changed to make each endpoint's direction changeable. 3008 */ 3009 3010 ptxfifo = readl(hsotg->regs + DPTXFSIZN(epnum)); 3011 hs_ep->fifo_size = FIFOSIZE_DEPTH_GET(ptxfifo) * 4; 3012 3013 /* 3014 * if we're using dma, we need to set the next-endpoint pointer 3015 * to be something valid. 3016 */ 3017 3018 if (using_dma(hsotg)) { 3019 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 3020 writel(next, hsotg->regs + DIEPCTL(epnum)); 3021 writel(next, hsotg->regs + DOEPCTL(epnum)); 3022 } 3023 } 3024 3025 /** 3026 * s3c_hsotg_hw_cfg - read HW configuration registers 3027 * @param: The device state 3028 * 3029 * Read the USB core HW configuration registers 3030 */ 3031 static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg) 3032 { 3033 u32 cfg2, cfg4; 3034 /* check hardware configuration */ 3035 3036 cfg2 = readl(hsotg->regs + 0x48); 3037 hsotg->num_of_eps = (cfg2 >> 10) & 0xF; 3038 3039 dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps); 3040 3041 cfg4 = readl(hsotg->regs + 0x50); 3042 hsotg->dedicated_fifos = (cfg4 >> 25) & 1; 3043 3044 dev_info(hsotg->dev, "%s fifos\n", 3045 hsotg->dedicated_fifos ? "dedicated" : "shared"); 3046 } 3047 3048 /** 3049 * s3c_hsotg_dump - dump state of the udc 3050 * @param: The device state 3051 */ 3052 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg) 3053 { 3054 #ifdef DEBUG 3055 struct device *dev = hsotg->dev; 3056 void __iomem *regs = hsotg->regs; 3057 u32 val; 3058 int idx; 3059 3060 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 3061 readl(regs + DCFG), readl(regs + DCTL), 3062 readl(regs + DIEPMSK)); 3063 3064 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n", 3065 readl(regs + GAHBCFG), readl(regs + 0x44)); 3066 3067 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 3068 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ)); 3069 3070 /* show periodic fifo settings */ 3071 3072 for (idx = 1; idx <= 15; idx++) { 3073 val = readl(regs + DPTXFSIZN(idx)); 3074 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 3075 val >> FIFOSIZE_DEPTH_SHIFT, 3076 val & FIFOSIZE_STARTADDR_MASK); 3077 } 3078 3079 for (idx = 0; idx < 15; idx++) { 3080 dev_info(dev, 3081 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 3082 readl(regs + DIEPCTL(idx)), 3083 readl(regs + DIEPTSIZ(idx)), 3084 readl(regs + DIEPDMA(idx))); 3085 3086 val = readl(regs + DOEPCTL(idx)); 3087 dev_info(dev, 3088 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 3089 idx, readl(regs + DOEPCTL(idx)), 3090 readl(regs + DOEPTSIZ(idx)), 3091 readl(regs + DOEPDMA(idx))); 3092 3093 } 3094 3095 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 3096 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE)); 3097 #endif 3098 } 3099 3100 /** 3101 * state_show - debugfs: show overall driver and device state. 3102 * @seq: The seq file to write to. 3103 * @v: Unused parameter. 3104 * 3105 * This debugfs entry shows the overall state of the hardware and 3106 * some general information about each of the endpoints available 3107 * to the system. 3108 */ 3109 static int state_show(struct seq_file *seq, void *v) 3110 { 3111 struct s3c_hsotg *hsotg = seq->private; 3112 void __iomem *regs = hsotg->regs; 3113 int idx; 3114 3115 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n", 3116 readl(regs + DCFG), 3117 readl(regs + DCTL), 3118 readl(regs + DSTS)); 3119 3120 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n", 3121 readl(regs + DIEPMSK), readl(regs + DOEPMSK)); 3122 3123 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n", 3124 readl(regs + GINTMSK), 3125 readl(regs + GINTSTS)); 3126 3127 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n", 3128 readl(regs + DAINTMSK), 3129 readl(regs + DAINT)); 3130 3131 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n", 3132 readl(regs + GNPTXSTS), 3133 readl(regs + GRXSTSR)); 3134 3135 seq_puts(seq, "\nEndpoint status:\n"); 3136 3137 for (idx = 0; idx < 15; idx++) { 3138 u32 in, out; 3139 3140 in = readl(regs + DIEPCTL(idx)); 3141 out = readl(regs + DOEPCTL(idx)); 3142 3143 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x", 3144 idx, in, out); 3145 3146 in = readl(regs + DIEPTSIZ(idx)); 3147 out = readl(regs + DOEPTSIZ(idx)); 3148 3149 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x", 3150 in, out); 3151 3152 seq_puts(seq, "\n"); 3153 } 3154 3155 return 0; 3156 } 3157 3158 static int state_open(struct inode *inode, struct file *file) 3159 { 3160 return single_open(file, state_show, inode->i_private); 3161 } 3162 3163 static const struct file_operations state_fops = { 3164 .owner = THIS_MODULE, 3165 .open = state_open, 3166 .read = seq_read, 3167 .llseek = seq_lseek, 3168 .release = single_release, 3169 }; 3170 3171 /** 3172 * fifo_show - debugfs: show the fifo information 3173 * @seq: The seq_file to write data to. 3174 * @v: Unused parameter. 3175 * 3176 * Show the FIFO information for the overall fifo and all the 3177 * periodic transmission FIFOs. 3178 */ 3179 static int fifo_show(struct seq_file *seq, void *v) 3180 { 3181 struct s3c_hsotg *hsotg = seq->private; 3182 void __iomem *regs = hsotg->regs; 3183 u32 val; 3184 int idx; 3185 3186 seq_puts(seq, "Non-periodic FIFOs:\n"); 3187 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ)); 3188 3189 val = readl(regs + GNPTXFSIZ); 3190 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n", 3191 val >> FIFOSIZE_DEPTH_SHIFT, 3192 val & FIFOSIZE_DEPTH_MASK); 3193 3194 seq_puts(seq, "\nPeriodic TXFIFOs:\n"); 3195 3196 for (idx = 1; idx <= 15; idx++) { 3197 val = readl(regs + DPTXFSIZN(idx)); 3198 3199 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx, 3200 val >> FIFOSIZE_DEPTH_SHIFT, 3201 val & FIFOSIZE_STARTADDR_MASK); 3202 } 3203 3204 return 0; 3205 } 3206 3207 static int fifo_open(struct inode *inode, struct file *file) 3208 { 3209 return single_open(file, fifo_show, inode->i_private); 3210 } 3211 3212 static const struct file_operations fifo_fops = { 3213 .owner = THIS_MODULE, 3214 .open = fifo_open, 3215 .read = seq_read, 3216 .llseek = seq_lseek, 3217 .release = single_release, 3218 }; 3219 3220 3221 static const char *decode_direction(int is_in) 3222 { 3223 return is_in ? "in" : "out"; 3224 } 3225 3226 /** 3227 * ep_show - debugfs: show the state of an endpoint. 3228 * @seq: The seq_file to write data to. 3229 * @v: Unused parameter. 3230 * 3231 * This debugfs entry shows the state of the given endpoint (one is 3232 * registered for each available). 3233 */ 3234 static int ep_show(struct seq_file *seq, void *v) 3235 { 3236 struct s3c_hsotg_ep *ep = seq->private; 3237 struct s3c_hsotg *hsotg = ep->parent; 3238 struct s3c_hsotg_req *req; 3239 void __iomem *regs = hsotg->regs; 3240 int index = ep->index; 3241 int show_limit = 15; 3242 unsigned long flags; 3243 3244 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n", 3245 ep->index, ep->ep.name, decode_direction(ep->dir_in)); 3246 3247 /* first show the register state */ 3248 3249 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n", 3250 readl(regs + DIEPCTL(index)), 3251 readl(regs + DOEPCTL(index))); 3252 3253 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n", 3254 readl(regs + DIEPDMA(index)), 3255 readl(regs + DOEPDMA(index))); 3256 3257 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n", 3258 readl(regs + DIEPINT(index)), 3259 readl(regs + DOEPINT(index))); 3260 3261 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n", 3262 readl(regs + DIEPTSIZ(index)), 3263 readl(regs + DOEPTSIZ(index))); 3264 3265 seq_puts(seq, "\n"); 3266 seq_printf(seq, "mps %d\n", ep->ep.maxpacket); 3267 seq_printf(seq, "total_data=%ld\n", ep->total_data); 3268 3269 seq_printf(seq, "request list (%p,%p):\n", 3270 ep->queue.next, ep->queue.prev); 3271 3272 spin_lock_irqsave(&hsotg->lock, flags); 3273 3274 list_for_each_entry(req, &ep->queue, queue) { 3275 if (--show_limit < 0) { 3276 seq_puts(seq, "not showing more requests...\n"); 3277 break; 3278 } 3279 3280 seq_printf(seq, "%c req %p: %d bytes @%p, ", 3281 req == ep->req ? '*' : ' ', 3282 req, req->req.length, req->req.buf); 3283 seq_printf(seq, "%d done, res %d\n", 3284 req->req.actual, req->req.status); 3285 } 3286 3287 spin_unlock_irqrestore(&hsotg->lock, flags); 3288 3289 return 0; 3290 } 3291 3292 static int ep_open(struct inode *inode, struct file *file) 3293 { 3294 return single_open(file, ep_show, inode->i_private); 3295 } 3296 3297 static const struct file_operations ep_fops = { 3298 .owner = THIS_MODULE, 3299 .open = ep_open, 3300 .read = seq_read, 3301 .llseek = seq_lseek, 3302 .release = single_release, 3303 }; 3304 3305 /** 3306 * s3c_hsotg_create_debug - create debugfs directory and files 3307 * @hsotg: The driver state 3308 * 3309 * Create the debugfs files to allow the user to get information 3310 * about the state of the system. The directory name is created 3311 * with the same name as the device itself, in case we end up 3312 * with multiple blocks in future systems. 3313 */ 3314 static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg) 3315 { 3316 struct dentry *root; 3317 unsigned epidx; 3318 3319 root = debugfs_create_dir(dev_name(hsotg->dev), NULL); 3320 hsotg->debug_root = root; 3321 if (IS_ERR(root)) { 3322 dev_err(hsotg->dev, "cannot create debug root\n"); 3323 return; 3324 } 3325 3326 /* create general state file */ 3327 3328 hsotg->debug_file = debugfs_create_file("state", 0444, root, 3329 hsotg, &state_fops); 3330 3331 if (IS_ERR(hsotg->debug_file)) 3332 dev_err(hsotg->dev, "%s: failed to create state\n", __func__); 3333 3334 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root, 3335 hsotg, &fifo_fops); 3336 3337 if (IS_ERR(hsotg->debug_fifo)) 3338 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__); 3339 3340 /* create one file for each endpoint */ 3341 3342 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) { 3343 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx]; 3344 3345 ep->debugfs = debugfs_create_file(ep->name, 0444, 3346 root, ep, &ep_fops); 3347 3348 if (IS_ERR(ep->debugfs)) 3349 dev_err(hsotg->dev, "failed to create %s debug file\n", 3350 ep->name); 3351 } 3352 } 3353 3354 /** 3355 * s3c_hsotg_delete_debug - cleanup debugfs entries 3356 * @hsotg: The driver state 3357 * 3358 * Cleanup (remove) the debugfs files for use on module exit. 3359 */ 3360 static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg) 3361 { 3362 unsigned epidx; 3363 3364 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) { 3365 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx]; 3366 debugfs_remove(ep->debugfs); 3367 } 3368 3369 debugfs_remove(hsotg->debug_file); 3370 debugfs_remove(hsotg->debug_fifo); 3371 debugfs_remove(hsotg->debug_root); 3372 } 3373 3374 /** 3375 * s3c_hsotg_probe - probe function for hsotg driver 3376 * @pdev: The platform information for the driver 3377 */ 3378 3379 static int s3c_hsotg_probe(struct platform_device *pdev) 3380 { 3381 struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev); 3382 struct phy *phy; 3383 struct usb_phy *uphy; 3384 struct device *dev = &pdev->dev; 3385 struct s3c_hsotg_ep *eps; 3386 struct s3c_hsotg *hsotg; 3387 struct resource *res; 3388 int epnum; 3389 int ret; 3390 int i; 3391 3392 hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL); 3393 if (!hsotg) { 3394 dev_err(dev, "cannot get memory\n"); 3395 return -ENOMEM; 3396 } 3397 3398 /* 3399 * Attempt to find a generic PHY, then look for an old style 3400 * USB PHY, finally fall back to pdata 3401 */ 3402 phy = devm_phy_get(&pdev->dev, "usb2-phy"); 3403 if (IS_ERR(phy)) { 3404 uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); 3405 if (IS_ERR(uphy)) { 3406 /* Fallback for pdata */ 3407 plat = dev_get_platdata(&pdev->dev); 3408 if (!plat) { 3409 dev_err(&pdev->dev, 3410 "no platform data or transceiver defined\n"); 3411 return -EPROBE_DEFER; 3412 } 3413 hsotg->plat = plat; 3414 } else 3415 hsotg->uphy = uphy; 3416 } else 3417 hsotg->phy = phy; 3418 3419 hsotg->dev = dev; 3420 3421 hsotg->clk = devm_clk_get(&pdev->dev, "otg"); 3422 if (IS_ERR(hsotg->clk)) { 3423 dev_err(dev, "cannot get otg clock\n"); 3424 return PTR_ERR(hsotg->clk); 3425 } 3426 3427 platform_set_drvdata(pdev, hsotg); 3428 3429 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3430 3431 hsotg->regs = devm_ioremap_resource(&pdev->dev, res); 3432 if (IS_ERR(hsotg->regs)) { 3433 ret = PTR_ERR(hsotg->regs); 3434 goto err_clk; 3435 } 3436 3437 ret = platform_get_irq(pdev, 0); 3438 if (ret < 0) { 3439 dev_err(dev, "cannot find IRQ\n"); 3440 goto err_clk; 3441 } 3442 3443 spin_lock_init(&hsotg->lock); 3444 3445 hsotg->irq = ret; 3446 3447 ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0, 3448 dev_name(dev), hsotg); 3449 if (ret < 0) { 3450 dev_err(dev, "cannot claim IRQ\n"); 3451 goto err_clk; 3452 } 3453 3454 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq); 3455 3456 hsotg->gadget.max_speed = USB_SPEED_HIGH; 3457 hsotg->gadget.ops = &s3c_hsotg_gadget_ops; 3458 hsotg->gadget.name = dev_name(dev); 3459 3460 /* reset the system */ 3461 3462 clk_prepare_enable(hsotg->clk); 3463 3464 /* regulators */ 3465 3466 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++) 3467 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i]; 3468 3469 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies), 3470 hsotg->supplies); 3471 if (ret) { 3472 dev_err(dev, "failed to request supplies: %d\n", ret); 3473 goto err_clk; 3474 } 3475 3476 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 3477 hsotg->supplies); 3478 3479 if (ret) { 3480 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret); 3481 goto err_supplies; 3482 } 3483 3484 /* Set default UTMI width */ 3485 hsotg->phyif = GUSBCFG_PHYIF16; 3486 3487 /* 3488 * If using the generic PHY framework, check if the PHY bus 3489 * width is 8-bit and set the phyif appropriately. 3490 */ 3491 if (hsotg->phy && (phy_get_bus_width(phy) == 8)) 3492 hsotg->phyif = GUSBCFG_PHYIF8; 3493 3494 if (hsotg->phy) 3495 phy_init(hsotg->phy); 3496 3497 /* usb phy enable */ 3498 s3c_hsotg_phy_enable(hsotg); 3499 3500 s3c_hsotg_corereset(hsotg); 3501 s3c_hsotg_init(hsotg); 3502 s3c_hsotg_hw_cfg(hsotg); 3503 3504 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 3505 3506 if (hsotg->num_of_eps == 0) { 3507 dev_err(dev, "wrong number of EPs (zero)\n"); 3508 ret = -EINVAL; 3509 goto err_supplies; 3510 } 3511 3512 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep), 3513 GFP_KERNEL); 3514 if (!eps) { 3515 dev_err(dev, "cannot get memory\n"); 3516 ret = -ENOMEM; 3517 goto err_supplies; 3518 } 3519 3520 hsotg->eps = eps; 3521 3522 /* setup endpoint information */ 3523 3524 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 3525 hsotg->gadget.ep0 = &hsotg->eps[0].ep; 3526 3527 /* allocate EP0 request */ 3528 3529 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep, 3530 GFP_KERNEL); 3531 if (!hsotg->ctrl_req) { 3532 dev_err(dev, "failed to allocate ctrl req\n"); 3533 ret = -ENOMEM; 3534 goto err_ep_mem; 3535 } 3536 3537 /* initialise the endpoints now the core has been initialised */ 3538 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) 3539 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum); 3540 3541 /* disable power and clock */ 3542 3543 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3544 hsotg->supplies); 3545 if (ret) { 3546 dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret); 3547 goto err_ep_mem; 3548 } 3549 3550 s3c_hsotg_phy_disable(hsotg); 3551 3552 ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget); 3553 if (ret) 3554 goto err_ep_mem; 3555 3556 s3c_hsotg_create_debug(hsotg); 3557 3558 s3c_hsotg_dump(hsotg); 3559 3560 return 0; 3561 3562 err_ep_mem: 3563 kfree(eps); 3564 err_supplies: 3565 s3c_hsotg_phy_disable(hsotg); 3566 err_clk: 3567 clk_disable_unprepare(hsotg->clk); 3568 3569 return ret; 3570 } 3571 3572 /** 3573 * s3c_hsotg_remove - remove function for hsotg driver 3574 * @pdev: The platform information for the driver 3575 */ 3576 static int s3c_hsotg_remove(struct platform_device *pdev) 3577 { 3578 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev); 3579 3580 usb_del_gadget_udc(&hsotg->gadget); 3581 3582 s3c_hsotg_delete_debug(hsotg); 3583 3584 if (hsotg->driver) { 3585 /* should have been done already by driver model core */ 3586 usb_gadget_unregister_driver(hsotg->driver); 3587 } 3588 3589 s3c_hsotg_phy_disable(hsotg); 3590 if (hsotg->phy) 3591 phy_exit(hsotg->phy); 3592 clk_disable_unprepare(hsotg->clk); 3593 3594 return 0; 3595 } 3596 3597 static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state) 3598 { 3599 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev); 3600 unsigned long flags; 3601 int ret = 0; 3602 3603 if (hsotg->driver) 3604 dev_info(hsotg->dev, "suspending usb gadget %s\n", 3605 hsotg->driver->driver.name); 3606 3607 spin_lock_irqsave(&hsotg->lock, flags); 3608 s3c_hsotg_disconnect(hsotg); 3609 s3c_hsotg_phy_disable(hsotg); 3610 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 3611 spin_unlock_irqrestore(&hsotg->lock, flags); 3612 3613 if (hsotg->driver) { 3614 int ep; 3615 for (ep = 0; ep < hsotg->num_of_eps; ep++) 3616 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep); 3617 3618 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), 3619 hsotg->supplies); 3620 } 3621 3622 return ret; 3623 } 3624 3625 static int s3c_hsotg_resume(struct platform_device *pdev) 3626 { 3627 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev); 3628 unsigned long flags; 3629 int ret = 0; 3630 3631 if (hsotg->driver) { 3632 dev_info(hsotg->dev, "resuming usb gadget %s\n", 3633 hsotg->driver->driver.name); 3634 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies), 3635 hsotg->supplies); 3636 } 3637 3638 spin_lock_irqsave(&hsotg->lock, flags); 3639 hsotg->last_rst = jiffies; 3640 s3c_hsotg_phy_enable(hsotg); 3641 s3c_hsotg_core_init(hsotg); 3642 spin_unlock_irqrestore(&hsotg->lock, flags); 3643 3644 return ret; 3645 } 3646 3647 #ifdef CONFIG_OF 3648 static const struct of_device_id s3c_hsotg_of_ids[] = { 3649 { .compatible = "samsung,s3c6400-hsotg", }, 3650 { .compatible = "snps,dwc2", }, 3651 { /* sentinel */ } 3652 }; 3653 MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids); 3654 #endif 3655 3656 static struct platform_driver s3c_hsotg_driver = { 3657 .driver = { 3658 .name = "s3c-hsotg", 3659 .owner = THIS_MODULE, 3660 .of_match_table = of_match_ptr(s3c_hsotg_of_ids), 3661 }, 3662 .probe = s3c_hsotg_probe, 3663 .remove = s3c_hsotg_remove, 3664 .suspend = s3c_hsotg_suspend, 3665 .resume = s3c_hsotg_resume, 3666 }; 3667 3668 module_platform_driver(s3c_hsotg_driver); 3669 3670 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device"); 3671 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); 3672 MODULE_LICENSE("GPL"); 3673 MODULE_ALIAS("platform:s3c-hsotg"); 3674