xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision d2168146)
1 /**
2  * linux/drivers/usb/gadget/s3c-hsotg.c
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  *		http://www.samsung.com
6  *
7  * Copyright 2008 Openmoko, Inc.
8  * Copyright 2008 Simtec Electronics
9  *      Ben Dooks <ben@simtec.co.uk>
10  *      http://armlinux.simtec.co.uk/
11  *
12  * S3C USB2.0 High-speed / OtG driver
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/delay.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/of_platform.h>
33 #include <linux/phy/phy.h>
34 
35 #include <linux/usb/ch9.h>
36 #include <linux/usb/gadget.h>
37 #include <linux/usb/phy.h>
38 #include <linux/platform_data/s3c-hsotg.h>
39 
40 #include "core.h"
41 
42 /* conversion functions */
43 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
44 {
45 	return container_of(req, struct s3c_hsotg_req, req);
46 }
47 
48 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
49 {
50 	return container_of(ep, struct s3c_hsotg_ep, ep);
51 }
52 
53 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
54 {
55 	return container_of(gadget, struct s3c_hsotg, gadget);
56 }
57 
58 static inline void __orr32(void __iomem *ptr, u32 val)
59 {
60 	writel(readl(ptr) | val, ptr);
61 }
62 
63 static inline void __bic32(void __iomem *ptr, u32 val)
64 {
65 	writel(readl(ptr) & ~val, ptr);
66 }
67 
68 /* forward decleration of functions */
69 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
70 
71 /**
72  * using_dma - return the DMA status of the driver.
73  * @hsotg: The driver state.
74  *
75  * Return true if we're using DMA.
76  *
77  * Currently, we have the DMA support code worked into everywhere
78  * that needs it, but the AMBA DMA implementation in the hardware can
79  * only DMA from 32bit aligned addresses. This means that gadgets such
80  * as the CDC Ethernet cannot work as they often pass packets which are
81  * not 32bit aligned.
82  *
83  * Unfortunately the choice to use DMA or not is global to the controller
84  * and seems to be only settable when the controller is being put through
85  * a core reset. This means we either need to fix the gadgets to take
86  * account of DMA alignment, or add bounce buffers (yuerk).
87  *
88  * Until this issue is sorted out, we always return 'false'.
89  */
90 static inline bool using_dma(struct s3c_hsotg *hsotg)
91 {
92 	return false;	/* support is not complete */
93 }
94 
95 /**
96  * s3c_hsotg_en_gsint - enable one or more of the general interrupt
97  * @hsotg: The device state
98  * @ints: A bitmask of the interrupts to enable
99  */
100 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
101 {
102 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
103 	u32 new_gsintmsk;
104 
105 	new_gsintmsk = gsintmsk | ints;
106 
107 	if (new_gsintmsk != gsintmsk) {
108 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
109 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
110 	}
111 }
112 
113 /**
114  * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
115  * @hsotg: The device state
116  * @ints: A bitmask of the interrupts to enable
117  */
118 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
119 {
120 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
121 	u32 new_gsintmsk;
122 
123 	new_gsintmsk = gsintmsk & ~ints;
124 
125 	if (new_gsintmsk != gsintmsk)
126 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
127 }
128 
129 /**
130  * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
131  * @hsotg: The device state
132  * @ep: The endpoint index
133  * @dir_in: True if direction is in.
134  * @en: The enable value, true to enable
135  *
136  * Set or clear the mask for an individual endpoint's interrupt
137  * request.
138  */
139 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
140 				 unsigned int ep, unsigned int dir_in,
141 				 unsigned int en)
142 {
143 	unsigned long flags;
144 	u32 bit = 1 << ep;
145 	u32 daint;
146 
147 	if (!dir_in)
148 		bit <<= 16;
149 
150 	local_irq_save(flags);
151 	daint = readl(hsotg->regs + DAINTMSK);
152 	if (en)
153 		daint |= bit;
154 	else
155 		daint &= ~bit;
156 	writel(daint, hsotg->regs + DAINTMSK);
157 	local_irq_restore(flags);
158 }
159 
160 /**
161  * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
162  * @hsotg: The device instance.
163  */
164 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
165 {
166 	unsigned int ep;
167 	unsigned int addr;
168 	unsigned int size;
169 	int timeout;
170 	u32 val;
171 
172 	/* set FIFO sizes to 2048/1024 */
173 
174 	writel(2048, hsotg->regs + GRXFSIZ);
175 	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
176 		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
177 
178 	/*
179 	 * arange all the rest of the TX FIFOs, as some versions of this
180 	 * block have overlapping default addresses. This also ensures
181 	 * that if the settings have been changed, then they are set to
182 	 * known values.
183 	 */
184 
185 	/* start at the end of the GNPTXFSIZ, rounded up */
186 	addr = 2048 + 1024;
187 	size = 768;
188 
189 	/*
190 	 * currently we allocate TX FIFOs for all possible endpoints,
191 	 * and assume that they are all the same size.
192 	 */
193 
194 	for (ep = 1; ep <= 15; ep++) {
195 		val = addr;
196 		val |= size << FIFOSIZE_DEPTH_SHIFT;
197 		addr += size;
198 
199 		writel(val, hsotg->regs + DPTXFSIZN(ep));
200 	}
201 
202 	/*
203 	 * according to p428 of the design guide, we need to ensure that
204 	 * all fifos are flushed before continuing
205 	 */
206 
207 	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
208 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
209 
210 	/* wait until the fifos are both flushed */
211 	timeout = 100;
212 	while (1) {
213 		val = readl(hsotg->regs + GRSTCTL);
214 
215 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
216 			break;
217 
218 		if (--timeout == 0) {
219 			dev_err(hsotg->dev,
220 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
221 				__func__, val);
222 		}
223 
224 		udelay(1);
225 	}
226 
227 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
228 }
229 
230 /**
231  * @ep: USB endpoint to allocate request for.
232  * @flags: Allocation flags
233  *
234  * Allocate a new USB request structure appropriate for the specified endpoint
235  */
236 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
237 						      gfp_t flags)
238 {
239 	struct s3c_hsotg_req *req;
240 
241 	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
242 	if (!req)
243 		return NULL;
244 
245 	INIT_LIST_HEAD(&req->queue);
246 
247 	return &req->req;
248 }
249 
250 /**
251  * is_ep_periodic - return true if the endpoint is in periodic mode.
252  * @hs_ep: The endpoint to query.
253  *
254  * Returns true if the endpoint is in periodic mode, meaning it is being
255  * used for an Interrupt or ISO transfer.
256  */
257 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
258 {
259 	return hs_ep->periodic;
260 }
261 
262 /**
263  * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
264  * @hsotg: The device state.
265  * @hs_ep: The endpoint for the request
266  * @hs_req: The request being processed.
267  *
268  * This is the reverse of s3c_hsotg_map_dma(), called for the completion
269  * of a request to ensure the buffer is ready for access by the caller.
270  */
271 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
272 				struct s3c_hsotg_ep *hs_ep,
273 				struct s3c_hsotg_req *hs_req)
274 {
275 	struct usb_request *req = &hs_req->req;
276 
277 	/* ignore this if we're not moving any data */
278 	if (hs_req->req.length == 0)
279 		return;
280 
281 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
282 }
283 
284 /**
285  * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
286  * @hsotg: The controller state.
287  * @hs_ep: The endpoint we're going to write for.
288  * @hs_req: The request to write data for.
289  *
290  * This is called when the TxFIFO has some space in it to hold a new
291  * transmission and we have something to give it. The actual setup of
292  * the data size is done elsewhere, so all we have to do is to actually
293  * write the data.
294  *
295  * The return value is zero if there is more space (or nothing was done)
296  * otherwise -ENOSPC is returned if the FIFO space was used up.
297  *
298  * This routine is only needed for PIO
299  */
300 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
301 				struct s3c_hsotg_ep *hs_ep,
302 				struct s3c_hsotg_req *hs_req)
303 {
304 	bool periodic = is_ep_periodic(hs_ep);
305 	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
306 	int buf_pos = hs_req->req.actual;
307 	int to_write = hs_ep->size_loaded;
308 	void *data;
309 	int can_write;
310 	int pkt_round;
311 	int max_transfer;
312 
313 	to_write -= (buf_pos - hs_ep->last_load);
314 
315 	/* if there's nothing to write, get out early */
316 	if (to_write == 0)
317 		return 0;
318 
319 	if (periodic && !hsotg->dedicated_fifos) {
320 		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
321 		int size_left;
322 		int size_done;
323 
324 		/*
325 		 * work out how much data was loaded so we can calculate
326 		 * how much data is left in the fifo.
327 		 */
328 
329 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
330 
331 		/*
332 		 * if shared fifo, we cannot write anything until the
333 		 * previous data has been completely sent.
334 		 */
335 		if (hs_ep->fifo_load != 0) {
336 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
337 			return -ENOSPC;
338 		}
339 
340 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
341 			__func__, size_left,
342 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
343 
344 		/* how much of the data has moved */
345 		size_done = hs_ep->size_loaded - size_left;
346 
347 		/* how much data is left in the fifo */
348 		can_write = hs_ep->fifo_load - size_done;
349 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
350 			__func__, can_write);
351 
352 		can_write = hs_ep->fifo_size - can_write;
353 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
354 			__func__, can_write);
355 
356 		if (can_write <= 0) {
357 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
358 			return -ENOSPC;
359 		}
360 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
361 		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
362 
363 		can_write &= 0xffff;
364 		can_write *= 4;
365 	} else {
366 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
367 			dev_dbg(hsotg->dev,
368 				"%s: no queue slots available (0x%08x)\n",
369 				__func__, gnptxsts);
370 
371 			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
372 			return -ENOSPC;
373 		}
374 
375 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
376 		can_write *= 4;	/* fifo size is in 32bit quantities. */
377 	}
378 
379 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
380 
381 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
382 		 __func__, gnptxsts, can_write, to_write, max_transfer);
383 
384 	/*
385 	 * limit to 512 bytes of data, it seems at least on the non-periodic
386 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
387 	 * fragment of the end of the transfer in it.
388 	 */
389 	if (can_write > 512 && !periodic)
390 		can_write = 512;
391 
392 	/*
393 	 * limit the write to one max-packet size worth of data, but allow
394 	 * the transfer to return that it did not run out of fifo space
395 	 * doing it.
396 	 */
397 	if (to_write > max_transfer) {
398 		to_write = max_transfer;
399 
400 		/* it's needed only when we do not use dedicated fifos */
401 		if (!hsotg->dedicated_fifos)
402 			s3c_hsotg_en_gsint(hsotg,
403 					   periodic ? GINTSTS_PTXFEMP :
404 					   GINTSTS_NPTXFEMP);
405 	}
406 
407 	/* see if we can write data */
408 
409 	if (to_write > can_write) {
410 		to_write = can_write;
411 		pkt_round = to_write % max_transfer;
412 
413 		/*
414 		 * Round the write down to an
415 		 * exact number of packets.
416 		 *
417 		 * Note, we do not currently check to see if we can ever
418 		 * write a full packet or not to the FIFO.
419 		 */
420 
421 		if (pkt_round)
422 			to_write -= pkt_round;
423 
424 		/*
425 		 * enable correct FIFO interrupt to alert us when there
426 		 * is more room left.
427 		 */
428 
429 		/* it's needed only when we do not use dedicated fifos */
430 		if (!hsotg->dedicated_fifos)
431 			s3c_hsotg_en_gsint(hsotg,
432 					   periodic ? GINTSTS_PTXFEMP :
433 					   GINTSTS_NPTXFEMP);
434 	}
435 
436 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
437 		 to_write, hs_req->req.length, can_write, buf_pos);
438 
439 	if (to_write <= 0)
440 		return -ENOSPC;
441 
442 	hs_req->req.actual = buf_pos + to_write;
443 	hs_ep->total_data += to_write;
444 
445 	if (periodic)
446 		hs_ep->fifo_load += to_write;
447 
448 	to_write = DIV_ROUND_UP(to_write, 4);
449 	data = hs_req->req.buf + buf_pos;
450 
451 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
452 
453 	return (to_write >= can_write) ? -ENOSPC : 0;
454 }
455 
456 /**
457  * get_ep_limit - get the maximum data legnth for this endpoint
458  * @hs_ep: The endpoint
459  *
460  * Return the maximum data that can be queued in one go on a given endpoint
461  * so that transfers that are too long can be split.
462  */
463 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
464 {
465 	int index = hs_ep->index;
466 	unsigned maxsize;
467 	unsigned maxpkt;
468 
469 	if (index != 0) {
470 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
471 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
472 	} else {
473 		maxsize = 64+64;
474 		if (hs_ep->dir_in)
475 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
476 		else
477 			maxpkt = 2;
478 	}
479 
480 	/* we made the constant loading easier above by using +1 */
481 	maxpkt--;
482 	maxsize--;
483 
484 	/*
485 	 * constrain by packet count if maxpkts*pktsize is greater
486 	 * than the length register size.
487 	 */
488 
489 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
490 		maxsize = maxpkt * hs_ep->ep.maxpacket;
491 
492 	return maxsize;
493 }
494 
495 /**
496  * s3c_hsotg_start_req - start a USB request from an endpoint's queue
497  * @hsotg: The controller state.
498  * @hs_ep: The endpoint to process a request for
499  * @hs_req: The request to start.
500  * @continuing: True if we are doing more for the current request.
501  *
502  * Start the given request running by setting the endpoint registers
503  * appropriately, and writing any data to the FIFOs.
504  */
505 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
506 				struct s3c_hsotg_ep *hs_ep,
507 				struct s3c_hsotg_req *hs_req,
508 				bool continuing)
509 {
510 	struct usb_request *ureq = &hs_req->req;
511 	int index = hs_ep->index;
512 	int dir_in = hs_ep->dir_in;
513 	u32 epctrl_reg;
514 	u32 epsize_reg;
515 	u32 epsize;
516 	u32 ctrl;
517 	unsigned length;
518 	unsigned packets;
519 	unsigned maxreq;
520 
521 	if (index != 0) {
522 		if (hs_ep->req && !continuing) {
523 			dev_err(hsotg->dev, "%s: active request\n", __func__);
524 			WARN_ON(1);
525 			return;
526 		} else if (hs_ep->req != hs_req && continuing) {
527 			dev_err(hsotg->dev,
528 				"%s: continue different req\n", __func__);
529 			WARN_ON(1);
530 			return;
531 		}
532 	}
533 
534 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
535 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
536 
537 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
538 		__func__, readl(hsotg->regs + epctrl_reg), index,
539 		hs_ep->dir_in ? "in" : "out");
540 
541 	/* If endpoint is stalled, we will restart request later */
542 	ctrl = readl(hsotg->regs + epctrl_reg);
543 
544 	if (ctrl & DXEPCTL_STALL) {
545 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
546 		return;
547 	}
548 
549 	length = ureq->length - ureq->actual;
550 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
551 		ureq->length, ureq->actual);
552 	if (0)
553 		dev_dbg(hsotg->dev,
554 			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
555 			ureq->buf, length, &ureq->dma,
556 			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
557 
558 	maxreq = get_ep_limit(hs_ep);
559 	if (length > maxreq) {
560 		int round = maxreq % hs_ep->ep.maxpacket;
561 
562 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
563 			__func__, length, maxreq, round);
564 
565 		/* round down to multiple of packets */
566 		if (round)
567 			maxreq -= round;
568 
569 		length = maxreq;
570 	}
571 
572 	if (length)
573 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
574 	else
575 		packets = 1;	/* send one packet if length is zero. */
576 
577 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
578 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
579 		return;
580 	}
581 
582 	if (dir_in && index != 0)
583 		if (hs_ep->isochronous)
584 			epsize = DXEPTSIZ_MC(packets);
585 		else
586 			epsize = DXEPTSIZ_MC(1);
587 	else
588 		epsize = 0;
589 
590 	if (index != 0 && ureq->zero) {
591 		/*
592 		 * test for the packets being exactly right for the
593 		 * transfer
594 		 */
595 
596 		if (length == (packets * hs_ep->ep.maxpacket))
597 			packets++;
598 	}
599 
600 	epsize |= DXEPTSIZ_PKTCNT(packets);
601 	epsize |= DXEPTSIZ_XFERSIZE(length);
602 
603 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
604 		__func__, packets, length, ureq->length, epsize, epsize_reg);
605 
606 	/* store the request as the current one we're doing */
607 	hs_ep->req = hs_req;
608 
609 	/* write size / packets */
610 	writel(epsize, hsotg->regs + epsize_reg);
611 
612 	if (using_dma(hsotg) && !continuing) {
613 		unsigned int dma_reg;
614 
615 		/*
616 		 * write DMA address to control register, buffer already
617 		 * synced by s3c_hsotg_ep_queue().
618 		 */
619 
620 		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
621 		writel(ureq->dma, hsotg->regs + dma_reg);
622 
623 		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
624 			__func__, &ureq->dma, dma_reg);
625 	}
626 
627 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
628 	ctrl |= DXEPCTL_USBACTEP;
629 
630 	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
631 
632 	/* For Setup request do not clear NAK */
633 	if (hsotg->setup && index == 0)
634 		hsotg->setup = 0;
635 	else
636 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
637 
638 
639 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
640 	writel(ctrl, hsotg->regs + epctrl_reg);
641 
642 	/*
643 	 * set these, it seems that DMA support increments past the end
644 	 * of the packet buffer so we need to calculate the length from
645 	 * this information.
646 	 */
647 	hs_ep->size_loaded = length;
648 	hs_ep->last_load = ureq->actual;
649 
650 	if (dir_in && !using_dma(hsotg)) {
651 		/* set these anyway, we may need them for non-periodic in */
652 		hs_ep->fifo_load = 0;
653 
654 		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
655 	}
656 
657 	/*
658 	 * clear the INTknTXFEmpMsk when we start request, more as a aide
659 	 * to debugging to see what is going on.
660 	 */
661 	if (dir_in)
662 		writel(DIEPMSK_INTKNTXFEMPMSK,
663 		       hsotg->regs + DIEPINT(index));
664 
665 	/*
666 	 * Note, trying to clear the NAK here causes problems with transmit
667 	 * on the S3C6400 ending up with the TXFIFO becoming full.
668 	 */
669 
670 	/* check ep is enabled */
671 	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
672 		dev_warn(hsotg->dev,
673 			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
674 			 index, readl(hsotg->regs + epctrl_reg));
675 
676 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
677 		__func__, readl(hsotg->regs + epctrl_reg));
678 
679 	/* enable ep interrupts */
680 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
681 }
682 
683 /**
684  * s3c_hsotg_map_dma - map the DMA memory being used for the request
685  * @hsotg: The device state.
686  * @hs_ep: The endpoint the request is on.
687  * @req: The request being processed.
688  *
689  * We've been asked to queue a request, so ensure that the memory buffer
690  * is correctly setup for DMA. If we've been passed an extant DMA address
691  * then ensure the buffer has been synced to memory. If our buffer has no
692  * DMA memory, then we map the memory and mark our request to allow us to
693  * cleanup on completion.
694  */
695 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
696 			     struct s3c_hsotg_ep *hs_ep,
697 			     struct usb_request *req)
698 {
699 	struct s3c_hsotg_req *hs_req = our_req(req);
700 	int ret;
701 
702 	/* if the length is zero, ignore the DMA data */
703 	if (hs_req->req.length == 0)
704 		return 0;
705 
706 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
707 	if (ret)
708 		goto dma_error;
709 
710 	return 0;
711 
712 dma_error:
713 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
714 		__func__, req->buf, req->length);
715 
716 	return -EIO;
717 }
718 
719 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
720 			      gfp_t gfp_flags)
721 {
722 	struct s3c_hsotg_req *hs_req = our_req(req);
723 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
724 	struct s3c_hsotg *hs = hs_ep->parent;
725 	bool first;
726 
727 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
728 		ep->name, req, req->length, req->buf, req->no_interrupt,
729 		req->zero, req->short_not_ok);
730 
731 	/* initialise status of the request */
732 	INIT_LIST_HEAD(&hs_req->queue);
733 	req->actual = 0;
734 	req->status = -EINPROGRESS;
735 
736 	/* if we're using DMA, sync the buffers as necessary */
737 	if (using_dma(hs)) {
738 		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
739 		if (ret)
740 			return ret;
741 	}
742 
743 	first = list_empty(&hs_ep->queue);
744 	list_add_tail(&hs_req->queue, &hs_ep->queue);
745 
746 	if (first)
747 		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
748 
749 	return 0;
750 }
751 
752 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
753 			      gfp_t gfp_flags)
754 {
755 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
756 	struct s3c_hsotg *hs = hs_ep->parent;
757 	unsigned long flags = 0;
758 	int ret = 0;
759 
760 	spin_lock_irqsave(&hs->lock, flags);
761 	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
762 	spin_unlock_irqrestore(&hs->lock, flags);
763 
764 	return ret;
765 }
766 
767 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
768 				      struct usb_request *req)
769 {
770 	struct s3c_hsotg_req *hs_req = our_req(req);
771 
772 	kfree(hs_req);
773 }
774 
775 /**
776  * s3c_hsotg_complete_oursetup - setup completion callback
777  * @ep: The endpoint the request was on.
778  * @req: The request completed.
779  *
780  * Called on completion of any requests the driver itself
781  * submitted that need cleaning up.
782  */
783 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
784 					struct usb_request *req)
785 {
786 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
787 	struct s3c_hsotg *hsotg = hs_ep->parent;
788 
789 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
790 
791 	s3c_hsotg_ep_free_request(ep, req);
792 }
793 
794 /**
795  * ep_from_windex - convert control wIndex value to endpoint
796  * @hsotg: The driver state.
797  * @windex: The control request wIndex field (in host order).
798  *
799  * Convert the given wIndex into a pointer to an driver endpoint
800  * structure, or return NULL if it is not a valid endpoint.
801  */
802 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
803 					   u32 windex)
804 {
805 	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
806 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
807 	int idx = windex & 0x7F;
808 
809 	if (windex >= 0x100)
810 		return NULL;
811 
812 	if (idx > hsotg->num_of_eps)
813 		return NULL;
814 
815 	if (idx && ep->dir_in != dir)
816 		return NULL;
817 
818 	return ep;
819 }
820 
821 /**
822  * s3c_hsotg_send_reply - send reply to control request
823  * @hsotg: The device state
824  * @ep: Endpoint 0
825  * @buff: Buffer for request
826  * @length: Length of reply.
827  *
828  * Create a request and queue it on the given endpoint. This is useful as
829  * an internal method of sending replies to certain control requests, etc.
830  */
831 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
832 				struct s3c_hsotg_ep *ep,
833 				void *buff,
834 				int length)
835 {
836 	struct usb_request *req;
837 	int ret;
838 
839 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
840 
841 	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
842 	hsotg->ep0_reply = req;
843 	if (!req) {
844 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
845 		return -ENOMEM;
846 	}
847 
848 	req->buf = hsotg->ep0_buff;
849 	req->length = length;
850 	req->zero = 1; /* always do zero-length final transfer */
851 	req->complete = s3c_hsotg_complete_oursetup;
852 
853 	if (length)
854 		memcpy(req->buf, buff, length);
855 	else
856 		ep->sent_zlp = 1;
857 
858 	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
859 	if (ret) {
860 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
861 		return ret;
862 	}
863 
864 	return 0;
865 }
866 
867 /**
868  * s3c_hsotg_process_req_status - process request GET_STATUS
869  * @hsotg: The device state
870  * @ctrl: USB control request
871  */
872 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
873 					struct usb_ctrlrequest *ctrl)
874 {
875 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
876 	struct s3c_hsotg_ep *ep;
877 	__le16 reply;
878 	int ret;
879 
880 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
881 
882 	if (!ep0->dir_in) {
883 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
884 		return -EINVAL;
885 	}
886 
887 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
888 	case USB_RECIP_DEVICE:
889 		reply = cpu_to_le16(0); /* bit 0 => self powered,
890 					 * bit 1 => remote wakeup */
891 		break;
892 
893 	case USB_RECIP_INTERFACE:
894 		/* currently, the data result should be zero */
895 		reply = cpu_to_le16(0);
896 		break;
897 
898 	case USB_RECIP_ENDPOINT:
899 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
900 		if (!ep)
901 			return -ENOENT;
902 
903 		reply = cpu_to_le16(ep->halted ? 1 : 0);
904 		break;
905 
906 	default:
907 		return 0;
908 	}
909 
910 	if (le16_to_cpu(ctrl->wLength) != 2)
911 		return -EINVAL;
912 
913 	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
914 	if (ret) {
915 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
916 		return ret;
917 	}
918 
919 	return 1;
920 }
921 
922 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
923 
924 /**
925  * get_ep_head - return the first request on the endpoint
926  * @hs_ep: The controller endpoint to get
927  *
928  * Get the first request on the endpoint.
929  */
930 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
931 {
932 	if (list_empty(&hs_ep->queue))
933 		return NULL;
934 
935 	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
936 }
937 
938 /**
939  * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
940  * @hsotg: The device state
941  * @ctrl: USB control request
942  */
943 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
944 					 struct usb_ctrlrequest *ctrl)
945 {
946 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
947 	struct s3c_hsotg_req *hs_req;
948 	bool restart;
949 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
950 	struct s3c_hsotg_ep *ep;
951 	int ret;
952 	bool halted;
953 
954 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
955 		__func__, set ? "SET" : "CLEAR");
956 
957 	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
958 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
959 		if (!ep) {
960 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
961 				__func__, le16_to_cpu(ctrl->wIndex));
962 			return -ENOENT;
963 		}
964 
965 		switch (le16_to_cpu(ctrl->wValue)) {
966 		case USB_ENDPOINT_HALT:
967 			halted = ep->halted;
968 
969 			s3c_hsotg_ep_sethalt(&ep->ep, set);
970 
971 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
972 			if (ret) {
973 				dev_err(hsotg->dev,
974 					"%s: failed to send reply\n", __func__);
975 				return ret;
976 			}
977 
978 			/*
979 			 * we have to complete all requests for ep if it was
980 			 * halted, and the halt was cleared by CLEAR_FEATURE
981 			 */
982 
983 			if (!set && halted) {
984 				/*
985 				 * If we have request in progress,
986 				 * then complete it
987 				 */
988 				if (ep->req) {
989 					hs_req = ep->req;
990 					ep->req = NULL;
991 					list_del_init(&hs_req->queue);
992 					hs_req->req.complete(&ep->ep,
993 							     &hs_req->req);
994 				}
995 
996 				/* If we have pending request, then start it */
997 				restart = !list_empty(&ep->queue);
998 				if (restart) {
999 					hs_req = get_ep_head(ep);
1000 					s3c_hsotg_start_req(hsotg, ep,
1001 							    hs_req, false);
1002 				}
1003 			}
1004 
1005 			break;
1006 
1007 		default:
1008 			return -ENOENT;
1009 		}
1010 	} else
1011 		return -ENOENT;  /* currently only deal with endpoint */
1012 
1013 	return 1;
1014 }
1015 
1016 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1017 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1018 
1019 /**
1020  * s3c_hsotg_stall_ep0 - stall ep0
1021  * @hsotg: The device state
1022  *
1023  * Set stall for ep0 as response for setup request.
1024  */
1025 static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg) {
1026 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1027 	u32 reg;
1028 	u32 ctrl;
1029 
1030 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1031 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1032 
1033 	/*
1034 	 * DxEPCTL_Stall will be cleared by EP once it has
1035 	 * taken effect, so no need to clear later.
1036 	 */
1037 
1038 	ctrl = readl(hsotg->regs + reg);
1039 	ctrl |= DXEPCTL_STALL;
1040 	ctrl |= DXEPCTL_CNAK;
1041 	writel(ctrl, hsotg->regs + reg);
1042 
1043 	dev_dbg(hsotg->dev,
1044 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1045 		ctrl, reg, readl(hsotg->regs + reg));
1046 
1047 	 /*
1048 	  * complete won't be called, so we enqueue
1049 	  * setup request here
1050 	  */
1051 	 s3c_hsotg_enqueue_setup(hsotg);
1052 }
1053 
1054 /**
1055  * s3c_hsotg_process_control - process a control request
1056  * @hsotg: The device state
1057  * @ctrl: The control request received
1058  *
1059  * The controller has received the SETUP phase of a control request, and
1060  * needs to work out what to do next (and whether to pass it on to the
1061  * gadget driver).
1062  */
1063 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1064 				      struct usb_ctrlrequest *ctrl)
1065 {
1066 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1067 	int ret = 0;
1068 	u32 dcfg;
1069 
1070 	ep0->sent_zlp = 0;
1071 
1072 	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1073 		 ctrl->bRequest, ctrl->bRequestType,
1074 		 ctrl->wValue, ctrl->wLength);
1075 
1076 	/*
1077 	 * record the direction of the request, for later use when enquing
1078 	 * packets onto EP0.
1079 	 */
1080 
1081 	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1082 	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1083 
1084 	/*
1085 	 * if we've no data with this request, then the last part of the
1086 	 * transaction is going to implicitly be IN.
1087 	 */
1088 	if (ctrl->wLength == 0)
1089 		ep0->dir_in = 1;
1090 
1091 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1092 		switch (ctrl->bRequest) {
1093 		case USB_REQ_SET_ADDRESS:
1094 			s3c_hsotg_disconnect(hsotg);
1095 			dcfg = readl(hsotg->regs + DCFG);
1096 			dcfg &= ~DCFG_DEVADDR_MASK;
1097 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1098 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1099 			writel(dcfg, hsotg->regs + DCFG);
1100 
1101 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1102 
1103 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1104 			return;
1105 
1106 		case USB_REQ_GET_STATUS:
1107 			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1108 			break;
1109 
1110 		case USB_REQ_CLEAR_FEATURE:
1111 		case USB_REQ_SET_FEATURE:
1112 			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1113 			break;
1114 		}
1115 	}
1116 
1117 	/* as a fallback, try delivering it to the driver to deal with */
1118 
1119 	if (ret == 0 && hsotg->driver) {
1120 		spin_unlock(&hsotg->lock);
1121 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1122 		spin_lock(&hsotg->lock);
1123 		if (ret < 0)
1124 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1125 	}
1126 
1127 	/*
1128 	 * the request is either unhandlable, or is not formatted correctly
1129 	 * so respond with a STALL for the status stage to indicate failure.
1130 	 */
1131 
1132 	if (ret < 0)
1133 		s3c_hsotg_stall_ep0(hsotg);
1134 }
1135 
1136 /**
1137  * s3c_hsotg_complete_setup - completion of a setup transfer
1138  * @ep: The endpoint the request was on.
1139  * @req: The request completed.
1140  *
1141  * Called on completion of any requests the driver itself submitted for
1142  * EP0 setup packets
1143  */
1144 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1145 				     struct usb_request *req)
1146 {
1147 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1148 	struct s3c_hsotg *hsotg = hs_ep->parent;
1149 
1150 	if (req->status < 0) {
1151 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1152 		return;
1153 	}
1154 
1155 	spin_lock(&hsotg->lock);
1156 	if (req->actual == 0)
1157 		s3c_hsotg_enqueue_setup(hsotg);
1158 	else
1159 		s3c_hsotg_process_control(hsotg, req->buf);
1160 	spin_unlock(&hsotg->lock);
1161 }
1162 
1163 /**
1164  * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1165  * @hsotg: The device state.
1166  *
1167  * Enqueue a request on EP0 if necessary to received any SETUP packets
1168  * received from the host.
1169  */
1170 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1171 {
1172 	struct usb_request *req = hsotg->ctrl_req;
1173 	struct s3c_hsotg_req *hs_req = our_req(req);
1174 	int ret;
1175 
1176 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1177 
1178 	req->zero = 0;
1179 	req->length = 8;
1180 	req->buf = hsotg->ctrl_buff;
1181 	req->complete = s3c_hsotg_complete_setup;
1182 
1183 	if (!list_empty(&hs_req->queue)) {
1184 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1185 		return;
1186 	}
1187 
1188 	hsotg->eps[0].dir_in = 0;
1189 
1190 	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1191 	if (ret < 0) {
1192 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1193 		/*
1194 		 * Don't think there's much we can do other than watch the
1195 		 * driver fail.
1196 		 */
1197 	}
1198 }
1199 
1200 /**
1201  * s3c_hsotg_complete_request - complete a request given to us
1202  * @hsotg: The device state.
1203  * @hs_ep: The endpoint the request was on.
1204  * @hs_req: The request to complete.
1205  * @result: The result code (0 => Ok, otherwise errno)
1206  *
1207  * The given request has finished, so call the necessary completion
1208  * if it has one and then look to see if we can start a new request
1209  * on the endpoint.
1210  *
1211  * Note, expects the ep to already be locked as appropriate.
1212  */
1213 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1214 				       struct s3c_hsotg_ep *hs_ep,
1215 				       struct s3c_hsotg_req *hs_req,
1216 				       int result)
1217 {
1218 	bool restart;
1219 
1220 	if (!hs_req) {
1221 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1222 		return;
1223 	}
1224 
1225 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1226 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1227 
1228 	/*
1229 	 * only replace the status if we've not already set an error
1230 	 * from a previous transaction
1231 	 */
1232 
1233 	if (hs_req->req.status == -EINPROGRESS)
1234 		hs_req->req.status = result;
1235 
1236 	hs_ep->req = NULL;
1237 	list_del_init(&hs_req->queue);
1238 
1239 	if (using_dma(hsotg))
1240 		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1241 
1242 	/*
1243 	 * call the complete request with the locks off, just in case the
1244 	 * request tries to queue more work for this endpoint.
1245 	 */
1246 
1247 	if (hs_req->req.complete) {
1248 		spin_unlock(&hsotg->lock);
1249 		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1250 		spin_lock(&hsotg->lock);
1251 	}
1252 
1253 	/*
1254 	 * Look to see if there is anything else to do. Note, the completion
1255 	 * of the previous request may have caused a new request to be started
1256 	 * so be careful when doing this.
1257 	 */
1258 
1259 	if (!hs_ep->req && result >= 0) {
1260 		restart = !list_empty(&hs_ep->queue);
1261 		if (restart) {
1262 			hs_req = get_ep_head(hs_ep);
1263 			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1264 		}
1265 	}
1266 }
1267 
1268 /**
1269  * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1270  * @hsotg: The device state.
1271  * @ep_idx: The endpoint index for the data
1272  * @size: The size of data in the fifo, in bytes
1273  *
1274  * The FIFO status shows there is data to read from the FIFO for a given
1275  * endpoint, so sort out whether we need to read the data into a request
1276  * that has been made for that endpoint.
1277  */
1278 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1279 {
1280 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1281 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1282 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1283 	int to_read;
1284 	int max_req;
1285 	int read_ptr;
1286 
1287 
1288 	if (!hs_req) {
1289 		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1290 		int ptr;
1291 
1292 		dev_warn(hsotg->dev,
1293 			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1294 			 __func__, size, ep_idx, epctl);
1295 
1296 		/* dump the data from the FIFO, we've nothing we can do */
1297 		for (ptr = 0; ptr < size; ptr += 4)
1298 			(void)readl(fifo);
1299 
1300 		return;
1301 	}
1302 
1303 	to_read = size;
1304 	read_ptr = hs_req->req.actual;
1305 	max_req = hs_req->req.length - read_ptr;
1306 
1307 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1308 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1309 
1310 	if (to_read > max_req) {
1311 		/*
1312 		 * more data appeared than we where willing
1313 		 * to deal with in this request.
1314 		 */
1315 
1316 		/* currently we don't deal this */
1317 		WARN_ON_ONCE(1);
1318 	}
1319 
1320 	hs_ep->total_data += to_read;
1321 	hs_req->req.actual += to_read;
1322 	to_read = DIV_ROUND_UP(to_read, 4);
1323 
1324 	/*
1325 	 * note, we might over-write the buffer end by 3 bytes depending on
1326 	 * alignment of the data.
1327 	 */
1328 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1329 }
1330 
1331 /**
1332  * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1333  * @hsotg: The device instance
1334  * @req: The request currently on this endpoint
1335  *
1336  * Generate a zero-length IN packet request for terminating a SETUP
1337  * transaction.
1338  *
1339  * Note, since we don't write any data to the TxFIFO, then it is
1340  * currently believed that we do not need to wait for any space in
1341  * the TxFIFO.
1342  */
1343 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1344 			       struct s3c_hsotg_req *req)
1345 {
1346 	u32 ctrl;
1347 
1348 	if (!req) {
1349 		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1350 		return;
1351 	}
1352 
1353 	if (req->req.length == 0) {
1354 		hsotg->eps[0].sent_zlp = 1;
1355 		s3c_hsotg_enqueue_setup(hsotg);
1356 		return;
1357 	}
1358 
1359 	hsotg->eps[0].dir_in = 1;
1360 	hsotg->eps[0].sent_zlp = 1;
1361 
1362 	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1363 
1364 	/* issue a zero-sized packet to terminate this */
1365 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1366 	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1367 
1368 	ctrl = readl(hsotg->regs + DIEPCTL0);
1369 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1370 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1371 	ctrl |= DXEPCTL_USBACTEP;
1372 	writel(ctrl, hsotg->regs + DIEPCTL0);
1373 }
1374 
1375 /**
1376  * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1377  * @hsotg: The device instance
1378  * @epnum: The endpoint received from
1379  * @was_setup: Set if processing a SetupDone event.
1380  *
1381  * The RXFIFO has delivered an OutDone event, which means that the data
1382  * transfer for an OUT endpoint has been completed, either by a short
1383  * packet or by the finish of a transfer.
1384  */
1385 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1386 				     int epnum, bool was_setup)
1387 {
1388 	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1389 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1390 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1391 	struct usb_request *req = &hs_req->req;
1392 	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1393 	int result = 0;
1394 
1395 	if (!hs_req) {
1396 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1397 		return;
1398 	}
1399 
1400 	if (using_dma(hsotg)) {
1401 		unsigned size_done;
1402 
1403 		/*
1404 		 * Calculate the size of the transfer by checking how much
1405 		 * is left in the endpoint size register and then working it
1406 		 * out from the amount we loaded for the transfer.
1407 		 *
1408 		 * We need to do this as DMA pointers are always 32bit aligned
1409 		 * so may overshoot/undershoot the transfer.
1410 		 */
1411 
1412 		size_done = hs_ep->size_loaded - size_left;
1413 		size_done += hs_ep->last_load;
1414 
1415 		req->actual = size_done;
1416 	}
1417 
1418 	/* if there is more request to do, schedule new transfer */
1419 	if (req->actual < req->length && size_left == 0) {
1420 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1421 		return;
1422 	} else if (epnum == 0) {
1423 		/*
1424 		 * After was_setup = 1 =>
1425 		 * set CNAK for non Setup requests
1426 		 */
1427 		hsotg->setup = was_setup ? 0 : 1;
1428 	}
1429 
1430 	if (req->actual < req->length && req->short_not_ok) {
1431 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1432 			__func__, req->actual, req->length);
1433 
1434 		/*
1435 		 * todo - what should we return here? there's no one else
1436 		 * even bothering to check the status.
1437 		 */
1438 	}
1439 
1440 	if (epnum == 0) {
1441 		/*
1442 		 * Condition req->complete != s3c_hsotg_complete_setup says:
1443 		 * send ZLP when we have an asynchronous request from gadget
1444 		 */
1445 		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1446 			s3c_hsotg_send_zlp(hsotg, hs_req);
1447 	}
1448 
1449 	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1450 }
1451 
1452 /**
1453  * s3c_hsotg_read_frameno - read current frame number
1454  * @hsotg: The device instance
1455  *
1456  * Return the current frame number
1457  */
1458 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1459 {
1460 	u32 dsts;
1461 
1462 	dsts = readl(hsotg->regs + DSTS);
1463 	dsts &= DSTS_SOFFN_MASK;
1464 	dsts >>= DSTS_SOFFN_SHIFT;
1465 
1466 	return dsts;
1467 }
1468 
1469 /**
1470  * s3c_hsotg_handle_rx - RX FIFO has data
1471  * @hsotg: The device instance
1472  *
1473  * The IRQ handler has detected that the RX FIFO has some data in it
1474  * that requires processing, so find out what is in there and do the
1475  * appropriate read.
1476  *
1477  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1478  * chunks, so if you have x packets received on an endpoint you'll get x
1479  * FIFO events delivered, each with a packet's worth of data in it.
1480  *
1481  * When using DMA, we should not be processing events from the RXFIFO
1482  * as the actual data should be sent to the memory directly and we turn
1483  * on the completion interrupts to get notifications of transfer completion.
1484  */
1485 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1486 {
1487 	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1488 	u32 epnum, status, size;
1489 
1490 	WARN_ON(using_dma(hsotg));
1491 
1492 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1493 	status = grxstsr & GRXSTS_PKTSTS_MASK;
1494 
1495 	size = grxstsr & GRXSTS_BYTECNT_MASK;
1496 	size >>= GRXSTS_BYTECNT_SHIFT;
1497 
1498 	if (1)
1499 		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1500 			__func__, grxstsr, size, epnum);
1501 
1502 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1503 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1504 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1505 		break;
1506 
1507 	case GRXSTS_PKTSTS_OUTDONE:
1508 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1509 			s3c_hsotg_read_frameno(hsotg));
1510 
1511 		if (!using_dma(hsotg))
1512 			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1513 		break;
1514 
1515 	case GRXSTS_PKTSTS_SETUPDONE:
1516 		dev_dbg(hsotg->dev,
1517 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1518 			s3c_hsotg_read_frameno(hsotg),
1519 			readl(hsotg->regs + DOEPCTL(0)));
1520 
1521 		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1522 		break;
1523 
1524 	case GRXSTS_PKTSTS_OUTRX:
1525 		s3c_hsotg_rx_data(hsotg, epnum, size);
1526 		break;
1527 
1528 	case GRXSTS_PKTSTS_SETUPRX:
1529 		dev_dbg(hsotg->dev,
1530 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1531 			s3c_hsotg_read_frameno(hsotg),
1532 			readl(hsotg->regs + DOEPCTL(0)));
1533 
1534 		s3c_hsotg_rx_data(hsotg, epnum, size);
1535 		break;
1536 
1537 	default:
1538 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1539 			 __func__, grxstsr);
1540 
1541 		s3c_hsotg_dump(hsotg);
1542 		break;
1543 	}
1544 }
1545 
1546 /**
1547  * s3c_hsotg_ep0_mps - turn max packet size into register setting
1548  * @mps: The maximum packet size in bytes.
1549  */
1550 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1551 {
1552 	switch (mps) {
1553 	case 64:
1554 		return D0EPCTL_MPS_64;
1555 	case 32:
1556 		return D0EPCTL_MPS_32;
1557 	case 16:
1558 		return D0EPCTL_MPS_16;
1559 	case 8:
1560 		return D0EPCTL_MPS_8;
1561 	}
1562 
1563 	/* bad max packet size, warn and return invalid result */
1564 	WARN_ON(1);
1565 	return (u32)-1;
1566 }
1567 
1568 /**
1569  * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1570  * @hsotg: The driver state.
1571  * @ep: The index number of the endpoint
1572  * @mps: The maximum packet size in bytes
1573  *
1574  * Configure the maximum packet size for the given endpoint, updating
1575  * the hardware control registers to reflect this.
1576  */
1577 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1578 				       unsigned int ep, unsigned int mps)
1579 {
1580 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1581 	void __iomem *regs = hsotg->regs;
1582 	u32 mpsval;
1583 	u32 mcval;
1584 	u32 reg;
1585 
1586 	if (ep == 0) {
1587 		/* EP0 is a special case */
1588 		mpsval = s3c_hsotg_ep0_mps(mps);
1589 		if (mpsval > 3)
1590 			goto bad_mps;
1591 		hs_ep->ep.maxpacket = mps;
1592 		hs_ep->mc = 1;
1593 	} else {
1594 		mpsval = mps & DXEPCTL_MPS_MASK;
1595 		if (mpsval > 1024)
1596 			goto bad_mps;
1597 		mcval = ((mps >> 11) & 0x3) + 1;
1598 		hs_ep->mc = mcval;
1599 		if (mcval > 3)
1600 			goto bad_mps;
1601 		hs_ep->ep.maxpacket = mpsval;
1602 	}
1603 
1604 	/*
1605 	 * update both the in and out endpoint controldir_ registers, even
1606 	 * if one of the directions may not be in use.
1607 	 */
1608 
1609 	reg = readl(regs + DIEPCTL(ep));
1610 	reg &= ~DXEPCTL_MPS_MASK;
1611 	reg |= mpsval;
1612 	writel(reg, regs + DIEPCTL(ep));
1613 
1614 	if (ep) {
1615 		reg = readl(regs + DOEPCTL(ep));
1616 		reg &= ~DXEPCTL_MPS_MASK;
1617 		reg |= mpsval;
1618 		writel(reg, regs + DOEPCTL(ep));
1619 	}
1620 
1621 	return;
1622 
1623 bad_mps:
1624 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1625 }
1626 
1627 /**
1628  * s3c_hsotg_txfifo_flush - flush Tx FIFO
1629  * @hsotg: The driver state
1630  * @idx: The index for the endpoint (0..15)
1631  */
1632 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1633 {
1634 	int timeout;
1635 	int val;
1636 
1637 	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1638 		hsotg->regs + GRSTCTL);
1639 
1640 	/* wait until the fifo is flushed */
1641 	timeout = 100;
1642 
1643 	while (1) {
1644 		val = readl(hsotg->regs + GRSTCTL);
1645 
1646 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1647 			break;
1648 
1649 		if (--timeout == 0) {
1650 			dev_err(hsotg->dev,
1651 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1652 				__func__, val);
1653 		}
1654 
1655 		udelay(1);
1656 	}
1657 }
1658 
1659 /**
1660  * s3c_hsotg_trytx - check to see if anything needs transmitting
1661  * @hsotg: The driver state
1662  * @hs_ep: The driver endpoint to check.
1663  *
1664  * Check to see if there is a request that has data to send, and if so
1665  * make an attempt to write data into the FIFO.
1666  */
1667 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1668 			   struct s3c_hsotg_ep *hs_ep)
1669 {
1670 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1671 
1672 	if (!hs_ep->dir_in || !hs_req) {
1673 		/**
1674 		 * if request is not enqueued, we disable interrupts
1675 		 * for endpoints, excepting ep0
1676 		 */
1677 		if (hs_ep->index != 0)
1678 			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1679 					     hs_ep->dir_in, 0);
1680 		return 0;
1681 	}
1682 
1683 	if (hs_req->req.actual < hs_req->req.length) {
1684 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1685 			hs_ep->index);
1686 		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 /**
1693  * s3c_hsotg_complete_in - complete IN transfer
1694  * @hsotg: The device state.
1695  * @hs_ep: The endpoint that has just completed.
1696  *
1697  * An IN transfer has been completed, update the transfer's state and then
1698  * call the relevant completion routines.
1699  */
1700 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1701 				  struct s3c_hsotg_ep *hs_ep)
1702 {
1703 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1704 	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1705 	int size_left, size_done;
1706 
1707 	if (!hs_req) {
1708 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1709 		return;
1710 	}
1711 
1712 	/* Finish ZLP handling for IN EP0 transactions */
1713 	if (hsotg->eps[0].sent_zlp) {
1714 		dev_dbg(hsotg->dev, "zlp packet received\n");
1715 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1716 		return;
1717 	}
1718 
1719 	/*
1720 	 * Calculate the size of the transfer by checking how much is left
1721 	 * in the endpoint size register and then working it out from
1722 	 * the amount we loaded for the transfer.
1723 	 *
1724 	 * We do this even for DMA, as the transfer may have incremented
1725 	 * past the end of the buffer (DMA transfers are always 32bit
1726 	 * aligned).
1727 	 */
1728 
1729 	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1730 
1731 	size_done = hs_ep->size_loaded - size_left;
1732 	size_done += hs_ep->last_load;
1733 
1734 	if (hs_req->req.actual != size_done)
1735 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1736 			__func__, hs_req->req.actual, size_done);
1737 
1738 	hs_req->req.actual = size_done;
1739 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1740 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1741 
1742 	/*
1743 	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1744 	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1745 	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1746 	 * inform the host that no more data is available.
1747 	 * The state of req.zero member is checked to be sure that the value to
1748 	 * send is smaller than wValue expected from host.
1749 	 * Check req.length to NOT send another ZLP when the current one is
1750 	 * under completion (the one for which this completion has been called).
1751 	 */
1752 	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1753 	    hs_req->req.length == hs_req->req.actual &&
1754 	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1755 
1756 		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1757 		s3c_hsotg_send_zlp(hsotg, hs_req);
1758 
1759 		return;
1760 	}
1761 
1762 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1763 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1764 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1765 	} else
1766 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1767 }
1768 
1769 /**
1770  * s3c_hsotg_epint - handle an in/out endpoint interrupt
1771  * @hsotg: The driver state
1772  * @idx: The index for the endpoint (0..15)
1773  * @dir_in: Set if this is an IN endpoint
1774  *
1775  * Process and clear any interrupt pending for an individual endpoint
1776  */
1777 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1778 			    int dir_in)
1779 {
1780 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1781 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1782 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1783 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1784 	u32 ints;
1785 	u32 ctrl;
1786 
1787 	ints = readl(hsotg->regs + epint_reg);
1788 	ctrl = readl(hsotg->regs + epctl_reg);
1789 
1790 	/* Clear endpoint interrupts */
1791 	writel(ints, hsotg->regs + epint_reg);
1792 
1793 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1794 		__func__, idx, dir_in ? "in" : "out", ints);
1795 
1796 	if (ints & DXEPINT_XFERCOMPL) {
1797 		if (hs_ep->isochronous && hs_ep->interval == 1) {
1798 			if (ctrl & DXEPCTL_EOFRNUM)
1799 				ctrl |= DXEPCTL_SETEVENFR;
1800 			else
1801 				ctrl |= DXEPCTL_SETODDFR;
1802 			writel(ctrl, hsotg->regs + epctl_reg);
1803 		}
1804 
1805 		dev_dbg(hsotg->dev,
1806 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1807 			__func__, readl(hsotg->regs + epctl_reg),
1808 			readl(hsotg->regs + epsiz_reg));
1809 
1810 		/*
1811 		 * we get OutDone from the FIFO, so we only need to look
1812 		 * at completing IN requests here
1813 		 */
1814 		if (dir_in) {
1815 			s3c_hsotg_complete_in(hsotg, hs_ep);
1816 
1817 			if (idx == 0 && !hs_ep->req)
1818 				s3c_hsotg_enqueue_setup(hsotg);
1819 		} else if (using_dma(hsotg)) {
1820 			/*
1821 			 * We're using DMA, we need to fire an OutDone here
1822 			 * as we ignore the RXFIFO.
1823 			 */
1824 
1825 			s3c_hsotg_handle_outdone(hsotg, idx, false);
1826 		}
1827 	}
1828 
1829 	if (ints & DXEPINT_EPDISBLD) {
1830 		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1831 
1832 		if (dir_in) {
1833 			int epctl = readl(hsotg->regs + epctl_reg);
1834 
1835 			s3c_hsotg_txfifo_flush(hsotg, idx);
1836 
1837 			if ((epctl & DXEPCTL_STALL) &&
1838 				(epctl & DXEPCTL_EPTYPE_BULK)) {
1839 				int dctl = readl(hsotg->regs + DCTL);
1840 
1841 				dctl |= DCTL_CGNPINNAK;
1842 				writel(dctl, hsotg->regs + DCTL);
1843 			}
1844 		}
1845 	}
1846 
1847 	if (ints & DXEPINT_AHBERR)
1848 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1849 
1850 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1851 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1852 
1853 		if (using_dma(hsotg) && idx == 0) {
1854 			/*
1855 			 * this is the notification we've received a
1856 			 * setup packet. In non-DMA mode we'd get this
1857 			 * from the RXFIFO, instead we need to process
1858 			 * the setup here.
1859 			 */
1860 
1861 			if (dir_in)
1862 				WARN_ON_ONCE(1);
1863 			else
1864 				s3c_hsotg_handle_outdone(hsotg, 0, true);
1865 		}
1866 	}
1867 
1868 	if (ints & DXEPINT_BACK2BACKSETUP)
1869 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1870 
1871 	if (dir_in && !hs_ep->isochronous) {
1872 		/* not sure if this is important, but we'll clear it anyway */
1873 		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1874 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1875 				__func__, idx);
1876 		}
1877 
1878 		/* this probably means something bad is happening */
1879 		if (ints & DIEPMSK_INTKNEPMISMSK) {
1880 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1881 				 __func__, idx);
1882 		}
1883 
1884 		/* FIFO has space or is empty (see GAHBCFG) */
1885 		if (hsotg->dedicated_fifos &&
1886 		    ints & DIEPMSK_TXFIFOEMPTY) {
1887 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1888 				__func__, idx);
1889 			if (!using_dma(hsotg))
1890 				s3c_hsotg_trytx(hsotg, hs_ep);
1891 		}
1892 	}
1893 }
1894 
1895 /**
1896  * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1897  * @hsotg: The device state.
1898  *
1899  * Handle updating the device settings after the enumeration phase has
1900  * been completed.
1901  */
1902 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1903 {
1904 	u32 dsts = readl(hsotg->regs + DSTS);
1905 	int ep0_mps = 0, ep_mps;
1906 
1907 	/*
1908 	 * This should signal the finish of the enumeration phase
1909 	 * of the USB handshaking, so we should now know what rate
1910 	 * we connected at.
1911 	 */
1912 
1913 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1914 
1915 	/*
1916 	 * note, since we're limited by the size of transfer on EP0, and
1917 	 * it seems IN transfers must be a even number of packets we do
1918 	 * not advertise a 64byte MPS on EP0.
1919 	 */
1920 
1921 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1922 	switch (dsts & DSTS_ENUMSPD_MASK) {
1923 	case DSTS_ENUMSPD_FS:
1924 	case DSTS_ENUMSPD_FS48:
1925 		hsotg->gadget.speed = USB_SPEED_FULL;
1926 		ep0_mps = EP0_MPS_LIMIT;
1927 		ep_mps = 1023;
1928 		break;
1929 
1930 	case DSTS_ENUMSPD_HS:
1931 		hsotg->gadget.speed = USB_SPEED_HIGH;
1932 		ep0_mps = EP0_MPS_LIMIT;
1933 		ep_mps = 1024;
1934 		break;
1935 
1936 	case DSTS_ENUMSPD_LS:
1937 		hsotg->gadget.speed = USB_SPEED_LOW;
1938 		/*
1939 		 * note, we don't actually support LS in this driver at the
1940 		 * moment, and the documentation seems to imply that it isn't
1941 		 * supported by the PHYs on some of the devices.
1942 		 */
1943 		break;
1944 	}
1945 	dev_info(hsotg->dev, "new device is %s\n",
1946 		 usb_speed_string(hsotg->gadget.speed));
1947 
1948 	/*
1949 	 * we should now know the maximum packet size for an
1950 	 * endpoint, so set the endpoints to a default value.
1951 	 */
1952 
1953 	if (ep0_mps) {
1954 		int i;
1955 		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1956 		for (i = 1; i < hsotg->num_of_eps; i++)
1957 			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1958 	}
1959 
1960 	/* ensure after enumeration our EP0 is active */
1961 
1962 	s3c_hsotg_enqueue_setup(hsotg);
1963 
1964 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1965 		readl(hsotg->regs + DIEPCTL0),
1966 		readl(hsotg->regs + DOEPCTL0));
1967 }
1968 
1969 /**
1970  * kill_all_requests - remove all requests from the endpoint's queue
1971  * @hsotg: The device state.
1972  * @ep: The endpoint the requests may be on.
1973  * @result: The result code to use.
1974  * @force: Force removal of any current requests
1975  *
1976  * Go through the requests on the given endpoint and mark them
1977  * completed with the given result code.
1978  */
1979 static void kill_all_requests(struct s3c_hsotg *hsotg,
1980 			      struct s3c_hsotg_ep *ep,
1981 			      int result, bool force)
1982 {
1983 	struct s3c_hsotg_req *req, *treq;
1984 
1985 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1986 		/*
1987 		 * currently, we can't do much about an already
1988 		 * running request on an in endpoint
1989 		 */
1990 
1991 		if (ep->req == req && ep->dir_in && !force)
1992 			continue;
1993 
1994 		s3c_hsotg_complete_request(hsotg, ep, req,
1995 					   result);
1996 	}
1997 	if(hsotg->dedicated_fifos)
1998 		if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072)
1999 			s3c_hsotg_txfifo_flush(hsotg, ep->index);
2000 }
2001 
2002 /**
2003  * s3c_hsotg_disconnect - disconnect service
2004  * @hsotg: The device state.
2005  *
2006  * The device has been disconnected. Remove all current
2007  * transactions and signal the gadget driver that this
2008  * has happened.
2009  */
2010 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2011 {
2012 	unsigned ep;
2013 
2014 	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2015 		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2016 
2017 	call_gadget(hsotg, disconnect);
2018 }
2019 
2020 /**
2021  * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2022  * @hsotg: The device state:
2023  * @periodic: True if this is a periodic FIFO interrupt
2024  */
2025 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2026 {
2027 	struct s3c_hsotg_ep *ep;
2028 	int epno, ret;
2029 
2030 	/* look through for any more data to transmit */
2031 
2032 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2033 		ep = &hsotg->eps[epno];
2034 
2035 		if (!ep->dir_in)
2036 			continue;
2037 
2038 		if ((periodic && !ep->periodic) ||
2039 		    (!periodic && ep->periodic))
2040 			continue;
2041 
2042 		ret = s3c_hsotg_trytx(hsotg, ep);
2043 		if (ret < 0)
2044 			break;
2045 	}
2046 }
2047 
2048 /* IRQ flags which will trigger a retry around the IRQ loop */
2049 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2050 			GINTSTS_PTXFEMP |  \
2051 			GINTSTS_RXFLVL)
2052 
2053 /**
2054  * s3c_hsotg_corereset - issue softreset to the core
2055  * @hsotg: The device state
2056  *
2057  * Issue a soft reset to the core, and await the core finishing it.
2058  */
2059 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2060 {
2061 	int timeout;
2062 	u32 grstctl;
2063 
2064 	dev_dbg(hsotg->dev, "resetting core\n");
2065 
2066 	/* issue soft reset */
2067 	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2068 
2069 	timeout = 10000;
2070 	do {
2071 		grstctl = readl(hsotg->regs + GRSTCTL);
2072 	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2073 
2074 	if (grstctl & GRSTCTL_CSFTRST) {
2075 		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2076 		return -EINVAL;
2077 	}
2078 
2079 	timeout = 10000;
2080 
2081 	while (1) {
2082 		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2083 
2084 		if (timeout-- < 0) {
2085 			dev_info(hsotg->dev,
2086 				 "%s: reset failed, GRSTCTL=%08x\n",
2087 				 __func__, grstctl);
2088 			return -ETIMEDOUT;
2089 		}
2090 
2091 		if (!(grstctl & GRSTCTL_AHBIDLE))
2092 			continue;
2093 
2094 		break;		/* reset done */
2095 	}
2096 
2097 	dev_dbg(hsotg->dev, "reset successful\n");
2098 	return 0;
2099 }
2100 
2101 /**
2102  * s3c_hsotg_core_init - issue softreset to the core
2103  * @hsotg: The device state
2104  *
2105  * Issue a soft reset to the core, and await the core finishing it.
2106  */
2107 static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2108 {
2109 	s3c_hsotg_corereset(hsotg);
2110 
2111 	/*
2112 	 * we must now enable ep0 ready for host detection and then
2113 	 * set configuration.
2114 	 */
2115 
2116 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2117 	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2118 	       (0x5 << 10), hsotg->regs + GUSBCFG);
2119 
2120 	s3c_hsotg_init_fifo(hsotg);
2121 
2122 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2123 
2124 	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2125 
2126 	/* Clear any pending OTG interrupts */
2127 	writel(0xffffffff, hsotg->regs + GOTGINT);
2128 
2129 	/* Clear any pending interrupts */
2130 	writel(0xffffffff, hsotg->regs + GINTSTS);
2131 
2132 	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2133 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2134 		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2135 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2136 		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2137 		hsotg->regs + GINTMSK);
2138 
2139 	if (using_dma(hsotg))
2140 		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2141 		       GAHBCFG_HBSTLEN_INCR4,
2142 		       hsotg->regs + GAHBCFG);
2143 	else
2144 		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2145 						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
2146 		       GAHBCFG_GLBL_INTR_EN,
2147 		       hsotg->regs + GAHBCFG);
2148 
2149 	/*
2150 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2151 	 * when we have no data to transfer. Otherwise we get being flooded by
2152 	 * interrupts.
2153 	 */
2154 
2155 	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
2156 		DIEPMSK_INTKNTXFEMPMSK : 0) |
2157 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2158 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2159 		DIEPMSK_INTKNEPMISMSK,
2160 		hsotg->regs + DIEPMSK);
2161 
2162 	/*
2163 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2164 	 * DMA mode we may need this.
2165 	 */
2166 	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2167 				    DIEPMSK_TIMEOUTMSK) : 0) |
2168 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2169 		DOEPMSK_SETUPMSK,
2170 		hsotg->regs + DOEPMSK);
2171 
2172 	writel(0, hsotg->regs + DAINTMSK);
2173 
2174 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2175 		readl(hsotg->regs + DIEPCTL0),
2176 		readl(hsotg->regs + DOEPCTL0));
2177 
2178 	/* enable in and out endpoint interrupts */
2179 	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2180 
2181 	/*
2182 	 * Enable the RXFIFO when in slave mode, as this is how we collect
2183 	 * the data. In DMA mode, we get events from the FIFO but also
2184 	 * things we cannot process, so do not use it.
2185 	 */
2186 	if (!using_dma(hsotg))
2187 		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2188 
2189 	/* Enable interrupts for EP0 in and out */
2190 	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2191 	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2192 
2193 	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2194 	udelay(10);  /* see openiboot */
2195 	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2196 
2197 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2198 
2199 	/*
2200 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2201 	 * writing to the EPCTL register..
2202 	 */
2203 
2204 	/* set to read 1 8byte packet */
2205 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2206 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2207 
2208 	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2209 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2210 	       DXEPCTL_USBACTEP,
2211 	       hsotg->regs + DOEPCTL0);
2212 
2213 	/* enable, but don't activate EP0in */
2214 	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2215 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2216 
2217 	s3c_hsotg_enqueue_setup(hsotg);
2218 
2219 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2220 		readl(hsotg->regs + DIEPCTL0),
2221 		readl(hsotg->regs + DOEPCTL0));
2222 
2223 	/* clear global NAKs */
2224 	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2225 	       hsotg->regs + DCTL);
2226 
2227 	/* must be at-least 3ms to allow bus to see disconnect */
2228 	mdelay(3);
2229 
2230 	/* remove the soft-disconnect and let's go */
2231 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2232 }
2233 
2234 /**
2235  * s3c_hsotg_irq - handle device interrupt
2236  * @irq: The IRQ number triggered
2237  * @pw: The pw value when registered the handler.
2238  */
2239 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2240 {
2241 	struct s3c_hsotg *hsotg = pw;
2242 	int retry_count = 8;
2243 	u32 gintsts;
2244 	u32 gintmsk;
2245 
2246 	spin_lock(&hsotg->lock);
2247 irq_retry:
2248 	gintsts = readl(hsotg->regs + GINTSTS);
2249 	gintmsk = readl(hsotg->regs + GINTMSK);
2250 
2251 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2252 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2253 
2254 	gintsts &= gintmsk;
2255 
2256 	if (gintsts & GINTSTS_OTGINT) {
2257 		u32 otgint = readl(hsotg->regs + GOTGINT);
2258 
2259 		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2260 
2261 		writel(otgint, hsotg->regs + GOTGINT);
2262 	}
2263 
2264 	if (gintsts & GINTSTS_SESSREQINT) {
2265 		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2266 		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2267 	}
2268 
2269 	if (gintsts & GINTSTS_ENUMDONE) {
2270 		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2271 
2272 		s3c_hsotg_irq_enumdone(hsotg);
2273 	}
2274 
2275 	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2276 		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2277 			readl(hsotg->regs + DSTS),
2278 			readl(hsotg->regs + GOTGCTL));
2279 
2280 		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2281 	}
2282 
2283 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2284 		u32 daint = readl(hsotg->regs + DAINT);
2285 		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2286 		u32 daint_out, daint_in;
2287 		int ep;
2288 
2289 		daint &= daintmsk;
2290 		daint_out = daint >> DAINT_OUTEP_SHIFT;
2291 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2292 
2293 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2294 
2295 		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2296 			if (daint_out & 1)
2297 				s3c_hsotg_epint(hsotg, ep, 0);
2298 		}
2299 
2300 		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2301 			if (daint_in & 1)
2302 				s3c_hsotg_epint(hsotg, ep, 1);
2303 		}
2304 	}
2305 
2306 	if (gintsts & GINTSTS_USBRST) {
2307 
2308 		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2309 
2310 		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2311 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2312 			readl(hsotg->regs + GNPTXSTS));
2313 
2314 		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2315 
2316 		if (usb_status & GOTGCTL_BSESVLD) {
2317 			if (time_after(jiffies, hsotg->last_rst +
2318 				       msecs_to_jiffies(200))) {
2319 
2320 				kill_all_requests(hsotg, &hsotg->eps[0],
2321 							  -ECONNRESET, true);
2322 
2323 				s3c_hsotg_core_init(hsotg);
2324 				hsotg->last_rst = jiffies;
2325 			}
2326 		}
2327 	}
2328 
2329 	/* check both FIFOs */
2330 
2331 	if (gintsts & GINTSTS_NPTXFEMP) {
2332 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2333 
2334 		/*
2335 		 * Disable the interrupt to stop it happening again
2336 		 * unless one of these endpoint routines decides that
2337 		 * it needs re-enabling
2338 		 */
2339 
2340 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2341 		s3c_hsotg_irq_fifoempty(hsotg, false);
2342 	}
2343 
2344 	if (gintsts & GINTSTS_PTXFEMP) {
2345 		dev_dbg(hsotg->dev, "PTxFEmp\n");
2346 
2347 		/* See note in GINTSTS_NPTxFEmp */
2348 
2349 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2350 		s3c_hsotg_irq_fifoempty(hsotg, true);
2351 	}
2352 
2353 	if (gintsts & GINTSTS_RXFLVL) {
2354 		/*
2355 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2356 		 * we need to retry s3c_hsotg_handle_rx if this is still
2357 		 * set.
2358 		 */
2359 
2360 		s3c_hsotg_handle_rx(hsotg);
2361 	}
2362 
2363 	if (gintsts & GINTSTS_MODEMIS) {
2364 		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2365 		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2366 	}
2367 
2368 	if (gintsts & GINTSTS_USBSUSP) {
2369 		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2370 		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2371 
2372 		call_gadget(hsotg, suspend);
2373 	}
2374 
2375 	if (gintsts & GINTSTS_WKUPINT) {
2376 		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2377 		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2378 
2379 		call_gadget(hsotg, resume);
2380 	}
2381 
2382 	if (gintsts & GINTSTS_ERLYSUSP) {
2383 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2384 		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2385 	}
2386 
2387 	/*
2388 	 * these next two seem to crop-up occasionally causing the core
2389 	 * to shutdown the USB transfer, so try clearing them and logging
2390 	 * the occurrence.
2391 	 */
2392 
2393 	if (gintsts & GINTSTS_GOUTNAKEFF) {
2394 		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2395 
2396 		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2397 
2398 		s3c_hsotg_dump(hsotg);
2399 	}
2400 
2401 	if (gintsts & GINTSTS_GINNAKEFF) {
2402 		dev_info(hsotg->dev, "GINNakEff triggered\n");
2403 
2404 		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2405 
2406 		s3c_hsotg_dump(hsotg);
2407 	}
2408 
2409 	/*
2410 	 * if we've had fifo events, we should try and go around the
2411 	 * loop again to see if there's any point in returning yet.
2412 	 */
2413 
2414 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2415 			goto irq_retry;
2416 
2417 	spin_unlock(&hsotg->lock);
2418 
2419 	return IRQ_HANDLED;
2420 }
2421 
2422 /**
2423  * s3c_hsotg_ep_enable - enable the given endpoint
2424  * @ep: The USB endpint to configure
2425  * @desc: The USB endpoint descriptor to configure with.
2426  *
2427  * This is called from the USB gadget code's usb_ep_enable().
2428  */
2429 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2430 			       const struct usb_endpoint_descriptor *desc)
2431 {
2432 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2433 	struct s3c_hsotg *hsotg = hs_ep->parent;
2434 	unsigned long flags;
2435 	int index = hs_ep->index;
2436 	u32 epctrl_reg;
2437 	u32 epctrl;
2438 	u32 mps;
2439 	int dir_in;
2440 	int ret = 0;
2441 
2442 	dev_dbg(hsotg->dev,
2443 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2444 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2445 		desc->wMaxPacketSize, desc->bInterval);
2446 
2447 	/* not to be called for EP0 */
2448 	WARN_ON(index == 0);
2449 
2450 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2451 	if (dir_in != hs_ep->dir_in) {
2452 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2453 		return -EINVAL;
2454 	}
2455 
2456 	mps = usb_endpoint_maxp(desc);
2457 
2458 	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2459 
2460 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2461 	epctrl = readl(hsotg->regs + epctrl_reg);
2462 
2463 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2464 		__func__, epctrl, epctrl_reg);
2465 
2466 	spin_lock_irqsave(&hsotg->lock, flags);
2467 
2468 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2469 	epctrl |= DXEPCTL_MPS(mps);
2470 
2471 	/*
2472 	 * mark the endpoint as active, otherwise the core may ignore
2473 	 * transactions entirely for this endpoint
2474 	 */
2475 	epctrl |= DXEPCTL_USBACTEP;
2476 
2477 	/*
2478 	 * set the NAK status on the endpoint, otherwise we might try and
2479 	 * do something with data that we've yet got a request to process
2480 	 * since the RXFIFO will take data for an endpoint even if the
2481 	 * size register hasn't been set.
2482 	 */
2483 
2484 	epctrl |= DXEPCTL_SNAK;
2485 
2486 	/* update the endpoint state */
2487 	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2488 
2489 	/* default, set to non-periodic */
2490 	hs_ep->isochronous = 0;
2491 	hs_ep->periodic = 0;
2492 	hs_ep->halted = 0;
2493 	hs_ep->interval = desc->bInterval;
2494 
2495 	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2496 		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2497 
2498 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2499 	case USB_ENDPOINT_XFER_ISOC:
2500 		epctrl |= DXEPCTL_EPTYPE_ISO;
2501 		epctrl |= DXEPCTL_SETEVENFR;
2502 		hs_ep->isochronous = 1;
2503 		if (dir_in)
2504 			hs_ep->periodic = 1;
2505 		break;
2506 
2507 	case USB_ENDPOINT_XFER_BULK:
2508 		epctrl |= DXEPCTL_EPTYPE_BULK;
2509 		break;
2510 
2511 	case USB_ENDPOINT_XFER_INT:
2512 		if (dir_in) {
2513 			/*
2514 			 * Allocate our TxFNum by simply using the index
2515 			 * of the endpoint for the moment. We could do
2516 			 * something better if the host indicates how
2517 			 * many FIFOs we are expecting to use.
2518 			 */
2519 
2520 			hs_ep->periodic = 1;
2521 			epctrl |= DXEPCTL_TXFNUM(index);
2522 		}
2523 
2524 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2525 		break;
2526 
2527 	case USB_ENDPOINT_XFER_CONTROL:
2528 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2529 		break;
2530 	}
2531 
2532 	/*
2533 	 * if the hardware has dedicated fifos, we must give each IN EP
2534 	 * a unique tx-fifo even if it is non-periodic.
2535 	 */
2536 	if (dir_in && hsotg->dedicated_fifos)
2537 		epctrl |= DXEPCTL_TXFNUM(index);
2538 
2539 	/* for non control endpoints, set PID to D0 */
2540 	if (index)
2541 		epctrl |= DXEPCTL_SETD0PID;
2542 
2543 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2544 		__func__, epctrl);
2545 
2546 	writel(epctrl, hsotg->regs + epctrl_reg);
2547 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2548 		__func__, readl(hsotg->regs + epctrl_reg));
2549 
2550 	/* enable the endpoint interrupt */
2551 	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2552 
2553 	spin_unlock_irqrestore(&hsotg->lock, flags);
2554 	return ret;
2555 }
2556 
2557 /**
2558  * s3c_hsotg_ep_disable - disable given endpoint
2559  * @ep: The endpoint to disable.
2560  */
2561 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2562 {
2563 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2564 	struct s3c_hsotg *hsotg = hs_ep->parent;
2565 	int dir_in = hs_ep->dir_in;
2566 	int index = hs_ep->index;
2567 	unsigned long flags;
2568 	u32 epctrl_reg;
2569 	u32 ctrl;
2570 
2571 	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2572 
2573 	if (ep == &hsotg->eps[0].ep) {
2574 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2575 		return -EINVAL;
2576 	}
2577 
2578 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2579 
2580 	spin_lock_irqsave(&hsotg->lock, flags);
2581 	/* terminate all requests with shutdown */
2582 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2583 
2584 
2585 	ctrl = readl(hsotg->regs + epctrl_reg);
2586 	ctrl &= ~DXEPCTL_EPENA;
2587 	ctrl &= ~DXEPCTL_USBACTEP;
2588 	ctrl |= DXEPCTL_SNAK;
2589 
2590 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2591 	writel(ctrl, hsotg->regs + epctrl_reg);
2592 
2593 	/* disable endpoint interrupts */
2594 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2595 
2596 	spin_unlock_irqrestore(&hsotg->lock, flags);
2597 	return 0;
2598 }
2599 
2600 /**
2601  * on_list - check request is on the given endpoint
2602  * @ep: The endpoint to check.
2603  * @test: The request to test if it is on the endpoint.
2604  */
2605 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2606 {
2607 	struct s3c_hsotg_req *req, *treq;
2608 
2609 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2610 		if (req == test)
2611 			return true;
2612 	}
2613 
2614 	return false;
2615 }
2616 
2617 /**
2618  * s3c_hsotg_ep_dequeue - dequeue given endpoint
2619  * @ep: The endpoint to dequeue.
2620  * @req: The request to be removed from a queue.
2621  */
2622 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2623 {
2624 	struct s3c_hsotg_req *hs_req = our_req(req);
2625 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2626 	struct s3c_hsotg *hs = hs_ep->parent;
2627 	unsigned long flags;
2628 
2629 	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2630 
2631 	spin_lock_irqsave(&hs->lock, flags);
2632 
2633 	if (!on_list(hs_ep, hs_req)) {
2634 		spin_unlock_irqrestore(&hs->lock, flags);
2635 		return -EINVAL;
2636 	}
2637 
2638 	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2639 	spin_unlock_irqrestore(&hs->lock, flags);
2640 
2641 	return 0;
2642 }
2643 
2644 /**
2645  * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2646  * @ep: The endpoint to set halt.
2647  * @value: Set or unset the halt.
2648  */
2649 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2650 {
2651 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2652 	struct s3c_hsotg *hs = hs_ep->parent;
2653 	int index = hs_ep->index;
2654 	u32 epreg;
2655 	u32 epctl;
2656 	u32 xfertype;
2657 
2658 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2659 
2660 	if (index == 0) {
2661 		if (value)
2662 			s3c_hsotg_stall_ep0(hs);
2663 		else
2664 			dev_warn(hs->dev,
2665 				 "%s: can't clear halt on ep0\n", __func__);
2666 		return 0;
2667 	}
2668 
2669 	/* write both IN and OUT control registers */
2670 
2671 	epreg = DIEPCTL(index);
2672 	epctl = readl(hs->regs + epreg);
2673 
2674 	if (value) {
2675 		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2676 		if (epctl & DXEPCTL_EPENA)
2677 			epctl |= DXEPCTL_EPDIS;
2678 	} else {
2679 		epctl &= ~DXEPCTL_STALL;
2680 		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2681 		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2682 			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2683 				epctl |= DXEPCTL_SETD0PID;
2684 	}
2685 
2686 	writel(epctl, hs->regs + epreg);
2687 
2688 	epreg = DOEPCTL(index);
2689 	epctl = readl(hs->regs + epreg);
2690 
2691 	if (value)
2692 		epctl |= DXEPCTL_STALL;
2693 	else {
2694 		epctl &= ~DXEPCTL_STALL;
2695 		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2696 		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2697 			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2698 				epctl |= DXEPCTL_SETD0PID;
2699 	}
2700 
2701 	writel(epctl, hs->regs + epreg);
2702 
2703 	hs_ep->halted = value;
2704 
2705 	return 0;
2706 }
2707 
2708 /**
2709  * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2710  * @ep: The endpoint to set halt.
2711  * @value: Set or unset the halt.
2712  */
2713 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2714 {
2715 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2716 	struct s3c_hsotg *hs = hs_ep->parent;
2717 	unsigned long flags = 0;
2718 	int ret = 0;
2719 
2720 	spin_lock_irqsave(&hs->lock, flags);
2721 	ret = s3c_hsotg_ep_sethalt(ep, value);
2722 	spin_unlock_irqrestore(&hs->lock, flags);
2723 
2724 	return ret;
2725 }
2726 
2727 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2728 	.enable		= s3c_hsotg_ep_enable,
2729 	.disable	= s3c_hsotg_ep_disable,
2730 	.alloc_request	= s3c_hsotg_ep_alloc_request,
2731 	.free_request	= s3c_hsotg_ep_free_request,
2732 	.queue		= s3c_hsotg_ep_queue_lock,
2733 	.dequeue	= s3c_hsotg_ep_dequeue,
2734 	.set_halt	= s3c_hsotg_ep_sethalt_lock,
2735 	/* note, don't believe we have any call for the fifo routines */
2736 };
2737 
2738 /**
2739  * s3c_hsotg_phy_enable - enable platform phy dev
2740  * @hsotg: The driver state
2741  *
2742  * A wrapper for platform code responsible for controlling
2743  * low-level USB code
2744  */
2745 static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2746 {
2747 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2748 
2749 	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2750 
2751 	if (hsotg->phy) {
2752 		phy_init(hsotg->phy);
2753 		phy_power_on(hsotg->phy);
2754 	} else if (hsotg->uphy)
2755 		usb_phy_init(hsotg->uphy);
2756 	else if (hsotg->plat->phy_init)
2757 		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2758 }
2759 
2760 /**
2761  * s3c_hsotg_phy_disable - disable platform phy dev
2762  * @hsotg: The driver state
2763  *
2764  * A wrapper for platform code responsible for controlling
2765  * low-level USB code
2766  */
2767 static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2768 {
2769 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2770 
2771 	if (hsotg->phy) {
2772 		phy_power_off(hsotg->phy);
2773 		phy_exit(hsotg->phy);
2774 	} else if (hsotg->uphy)
2775 		usb_phy_shutdown(hsotg->uphy);
2776 	else if (hsotg->plat->phy_exit)
2777 		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2778 }
2779 
2780 /**
2781  * s3c_hsotg_init - initalize the usb core
2782  * @hsotg: The driver state
2783  */
2784 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2785 {
2786 	/* unmask subset of endpoint interrupts */
2787 
2788 	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2789 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2790 		hsotg->regs + DIEPMSK);
2791 
2792 	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2793 		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2794 		hsotg->regs + DOEPMSK);
2795 
2796 	writel(0, hsotg->regs + DAINTMSK);
2797 
2798 	/* Be in disconnected state until gadget is registered */
2799 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2800 
2801 	if (0) {
2802 		/* post global nak until we're ready */
2803 		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2804 		       hsotg->regs + DCTL);
2805 	}
2806 
2807 	/* setup fifos */
2808 
2809 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2810 		readl(hsotg->regs + GRXFSIZ),
2811 		readl(hsotg->regs + GNPTXFSIZ));
2812 
2813 	s3c_hsotg_init_fifo(hsotg);
2814 
2815 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2816 	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2817 	       hsotg->regs + GUSBCFG);
2818 
2819 	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2820 	       hsotg->regs + GAHBCFG);
2821 }
2822 
2823 /**
2824  * s3c_hsotg_udc_start - prepare the udc for work
2825  * @gadget: The usb gadget state
2826  * @driver: The usb gadget driver
2827  *
2828  * Perform initialization to prepare udc device and driver
2829  * to work.
2830  */
2831 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2832 			   struct usb_gadget_driver *driver)
2833 {
2834 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2835 	int ret;
2836 
2837 	if (!hsotg) {
2838 		pr_err("%s: called with no device\n", __func__);
2839 		return -ENODEV;
2840 	}
2841 
2842 	if (!driver) {
2843 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2844 		return -EINVAL;
2845 	}
2846 
2847 	if (driver->max_speed < USB_SPEED_FULL)
2848 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2849 
2850 	if (!driver->setup) {
2851 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2852 		return -EINVAL;
2853 	}
2854 
2855 	WARN_ON(hsotg->driver);
2856 
2857 	driver->driver.bus = NULL;
2858 	hsotg->driver = driver;
2859 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2860 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2861 
2862 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2863 				    hsotg->supplies);
2864 	if (ret) {
2865 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2866 		goto err;
2867 	}
2868 
2869 	hsotg->last_rst = jiffies;
2870 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2871 	return 0;
2872 
2873 err:
2874 	hsotg->driver = NULL;
2875 	return ret;
2876 }
2877 
2878 /**
2879  * s3c_hsotg_udc_stop - stop the udc
2880  * @gadget: The usb gadget state
2881  * @driver: The usb gadget driver
2882  *
2883  * Stop udc hw block and stay tunned for future transmissions
2884  */
2885 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
2886 			  struct usb_gadget_driver *driver)
2887 {
2888 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2889 	unsigned long flags = 0;
2890 	int ep;
2891 
2892 	if (!hsotg)
2893 		return -ENODEV;
2894 
2895 	/* all endpoints should be shutdown */
2896 	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2897 		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2898 
2899 	spin_lock_irqsave(&hsotg->lock, flags);
2900 
2901 	s3c_hsotg_phy_disable(hsotg);
2902 
2903 	if (!driver)
2904 		hsotg->driver = NULL;
2905 
2906 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2907 
2908 	spin_unlock_irqrestore(&hsotg->lock, flags);
2909 
2910 	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2911 
2912 	return 0;
2913 }
2914 
2915 /**
2916  * s3c_hsotg_gadget_getframe - read the frame number
2917  * @gadget: The usb gadget state
2918  *
2919  * Read the {micro} frame number
2920  */
2921 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2922 {
2923 	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2924 }
2925 
2926 /**
2927  * s3c_hsotg_pullup - connect/disconnect the USB PHY
2928  * @gadget: The usb gadget state
2929  * @is_on: Current state of the USB PHY
2930  *
2931  * Connect/Disconnect the USB PHY pullup
2932  */
2933 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
2934 {
2935 	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2936 	unsigned long flags = 0;
2937 
2938 	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
2939 
2940 	spin_lock_irqsave(&hsotg->lock, flags);
2941 	if (is_on) {
2942 		s3c_hsotg_phy_enable(hsotg);
2943 		s3c_hsotg_core_init(hsotg);
2944 	} else {
2945 		s3c_hsotg_disconnect(hsotg);
2946 		s3c_hsotg_phy_disable(hsotg);
2947 	}
2948 
2949 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2950 	spin_unlock_irqrestore(&hsotg->lock, flags);
2951 
2952 	return 0;
2953 }
2954 
2955 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2956 	.get_frame	= s3c_hsotg_gadget_getframe,
2957 	.udc_start		= s3c_hsotg_udc_start,
2958 	.udc_stop		= s3c_hsotg_udc_stop,
2959 	.pullup                 = s3c_hsotg_pullup,
2960 };
2961 
2962 /**
2963  * s3c_hsotg_initep - initialise a single endpoint
2964  * @hsotg: The device state.
2965  * @hs_ep: The endpoint to be initialised.
2966  * @epnum: The endpoint number
2967  *
2968  * Initialise the given endpoint (as part of the probe and device state
2969  * creation) to give to the gadget driver. Setup the endpoint name, any
2970  * direction information and other state that may be required.
2971  */
2972 static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2973 				       struct s3c_hsotg_ep *hs_ep,
2974 				       int epnum)
2975 {
2976 	u32 ptxfifo;
2977 	char *dir;
2978 
2979 	if (epnum == 0)
2980 		dir = "";
2981 	else if ((epnum % 2) == 0) {
2982 		dir = "out";
2983 	} else {
2984 		dir = "in";
2985 		hs_ep->dir_in = 1;
2986 	}
2987 
2988 	hs_ep->index = epnum;
2989 
2990 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2991 
2992 	INIT_LIST_HEAD(&hs_ep->queue);
2993 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2994 
2995 	/* add to the list of endpoints known by the gadget driver */
2996 	if (epnum)
2997 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2998 
2999 	hs_ep->parent = hsotg;
3000 	hs_ep->ep.name = hs_ep->name;
3001 	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3002 	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3003 
3004 	/*
3005 	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3006 	 * an OUT endpoint, we may as well do this if in future the
3007 	 * code is changed to make each endpoint's direction changeable.
3008 	 */
3009 
3010 	ptxfifo = readl(hsotg->regs + DPTXFSIZN(epnum));
3011 	hs_ep->fifo_size = FIFOSIZE_DEPTH_GET(ptxfifo) * 4;
3012 
3013 	/*
3014 	 * if we're using dma, we need to set the next-endpoint pointer
3015 	 * to be something valid.
3016 	 */
3017 
3018 	if (using_dma(hsotg)) {
3019 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3020 		writel(next, hsotg->regs + DIEPCTL(epnum));
3021 		writel(next, hsotg->regs + DOEPCTL(epnum));
3022 	}
3023 }
3024 
3025 /**
3026  * s3c_hsotg_hw_cfg - read HW configuration registers
3027  * @param: The device state
3028  *
3029  * Read the USB core HW configuration registers
3030  */
3031 static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3032 {
3033 	u32 cfg2, cfg4;
3034 	/* check hardware configuration */
3035 
3036 	cfg2 = readl(hsotg->regs + 0x48);
3037 	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3038 
3039 	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3040 
3041 	cfg4 = readl(hsotg->regs + 0x50);
3042 	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3043 
3044 	dev_info(hsotg->dev, "%s fifos\n",
3045 		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3046 }
3047 
3048 /**
3049  * s3c_hsotg_dump - dump state of the udc
3050  * @param: The device state
3051  */
3052 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3053 {
3054 #ifdef DEBUG
3055 	struct device *dev = hsotg->dev;
3056 	void __iomem *regs = hsotg->regs;
3057 	u32 val;
3058 	int idx;
3059 
3060 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3061 		 readl(regs + DCFG), readl(regs + DCTL),
3062 		 readl(regs + DIEPMSK));
3063 
3064 	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3065 		 readl(regs + GAHBCFG), readl(regs + 0x44));
3066 
3067 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3068 		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3069 
3070 	/* show periodic fifo settings */
3071 
3072 	for (idx = 1; idx <= 15; idx++) {
3073 		val = readl(regs + DPTXFSIZN(idx));
3074 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3075 			 val >> FIFOSIZE_DEPTH_SHIFT,
3076 			 val & FIFOSIZE_STARTADDR_MASK);
3077 	}
3078 
3079 	for (idx = 0; idx < 15; idx++) {
3080 		dev_info(dev,
3081 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3082 			 readl(regs + DIEPCTL(idx)),
3083 			 readl(regs + DIEPTSIZ(idx)),
3084 			 readl(regs + DIEPDMA(idx)));
3085 
3086 		val = readl(regs + DOEPCTL(idx));
3087 		dev_info(dev,
3088 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3089 			 idx, readl(regs + DOEPCTL(idx)),
3090 			 readl(regs + DOEPTSIZ(idx)),
3091 			 readl(regs + DOEPDMA(idx)));
3092 
3093 	}
3094 
3095 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3096 		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3097 #endif
3098 }
3099 
3100 /**
3101  * state_show - debugfs: show overall driver and device state.
3102  * @seq: The seq file to write to.
3103  * @v: Unused parameter.
3104  *
3105  * This debugfs entry shows the overall state of the hardware and
3106  * some general information about each of the endpoints available
3107  * to the system.
3108  */
3109 static int state_show(struct seq_file *seq, void *v)
3110 {
3111 	struct s3c_hsotg *hsotg = seq->private;
3112 	void __iomem *regs = hsotg->regs;
3113 	int idx;
3114 
3115 	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3116 		 readl(regs + DCFG),
3117 		 readl(regs + DCTL),
3118 		 readl(regs + DSTS));
3119 
3120 	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3121 		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3122 
3123 	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3124 		   readl(regs + GINTMSK),
3125 		   readl(regs + GINTSTS));
3126 
3127 	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3128 		   readl(regs + DAINTMSK),
3129 		   readl(regs + DAINT));
3130 
3131 	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3132 		   readl(regs + GNPTXSTS),
3133 		   readl(regs + GRXSTSR));
3134 
3135 	seq_puts(seq, "\nEndpoint status:\n");
3136 
3137 	for (idx = 0; idx < 15; idx++) {
3138 		u32 in, out;
3139 
3140 		in = readl(regs + DIEPCTL(idx));
3141 		out = readl(regs + DOEPCTL(idx));
3142 
3143 		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3144 			   idx, in, out);
3145 
3146 		in = readl(regs + DIEPTSIZ(idx));
3147 		out = readl(regs + DOEPTSIZ(idx));
3148 
3149 		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3150 			   in, out);
3151 
3152 		seq_puts(seq, "\n");
3153 	}
3154 
3155 	return 0;
3156 }
3157 
3158 static int state_open(struct inode *inode, struct file *file)
3159 {
3160 	return single_open(file, state_show, inode->i_private);
3161 }
3162 
3163 static const struct file_operations state_fops = {
3164 	.owner		= THIS_MODULE,
3165 	.open		= state_open,
3166 	.read		= seq_read,
3167 	.llseek		= seq_lseek,
3168 	.release	= single_release,
3169 };
3170 
3171 /**
3172  * fifo_show - debugfs: show the fifo information
3173  * @seq: The seq_file to write data to.
3174  * @v: Unused parameter.
3175  *
3176  * Show the FIFO information for the overall fifo and all the
3177  * periodic transmission FIFOs.
3178  */
3179 static int fifo_show(struct seq_file *seq, void *v)
3180 {
3181 	struct s3c_hsotg *hsotg = seq->private;
3182 	void __iomem *regs = hsotg->regs;
3183 	u32 val;
3184 	int idx;
3185 
3186 	seq_puts(seq, "Non-periodic FIFOs:\n");
3187 	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3188 
3189 	val = readl(regs + GNPTXFSIZ);
3190 	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3191 		   val >> FIFOSIZE_DEPTH_SHIFT,
3192 		   val & FIFOSIZE_DEPTH_MASK);
3193 
3194 	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3195 
3196 	for (idx = 1; idx <= 15; idx++) {
3197 		val = readl(regs + DPTXFSIZN(idx));
3198 
3199 		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3200 			   val >> FIFOSIZE_DEPTH_SHIFT,
3201 			   val & FIFOSIZE_STARTADDR_MASK);
3202 	}
3203 
3204 	return 0;
3205 }
3206 
3207 static int fifo_open(struct inode *inode, struct file *file)
3208 {
3209 	return single_open(file, fifo_show, inode->i_private);
3210 }
3211 
3212 static const struct file_operations fifo_fops = {
3213 	.owner		= THIS_MODULE,
3214 	.open		= fifo_open,
3215 	.read		= seq_read,
3216 	.llseek		= seq_lseek,
3217 	.release	= single_release,
3218 };
3219 
3220 
3221 static const char *decode_direction(int is_in)
3222 {
3223 	return is_in ? "in" : "out";
3224 }
3225 
3226 /**
3227  * ep_show - debugfs: show the state of an endpoint.
3228  * @seq: The seq_file to write data to.
3229  * @v: Unused parameter.
3230  *
3231  * This debugfs entry shows the state of the given endpoint (one is
3232  * registered for each available).
3233  */
3234 static int ep_show(struct seq_file *seq, void *v)
3235 {
3236 	struct s3c_hsotg_ep *ep = seq->private;
3237 	struct s3c_hsotg *hsotg = ep->parent;
3238 	struct s3c_hsotg_req *req;
3239 	void __iomem *regs = hsotg->regs;
3240 	int index = ep->index;
3241 	int show_limit = 15;
3242 	unsigned long flags;
3243 
3244 	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3245 		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3246 
3247 	/* first show the register state */
3248 
3249 	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3250 		   readl(regs + DIEPCTL(index)),
3251 		   readl(regs + DOEPCTL(index)));
3252 
3253 	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3254 		   readl(regs + DIEPDMA(index)),
3255 		   readl(regs + DOEPDMA(index)));
3256 
3257 	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3258 		   readl(regs + DIEPINT(index)),
3259 		   readl(regs + DOEPINT(index)));
3260 
3261 	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3262 		   readl(regs + DIEPTSIZ(index)),
3263 		   readl(regs + DOEPTSIZ(index)));
3264 
3265 	seq_puts(seq, "\n");
3266 	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3267 	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3268 
3269 	seq_printf(seq, "request list (%p,%p):\n",
3270 		   ep->queue.next, ep->queue.prev);
3271 
3272 	spin_lock_irqsave(&hsotg->lock, flags);
3273 
3274 	list_for_each_entry(req, &ep->queue, queue) {
3275 		if (--show_limit < 0) {
3276 			seq_puts(seq, "not showing more requests...\n");
3277 			break;
3278 		}
3279 
3280 		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3281 			   req == ep->req ? '*' : ' ',
3282 			   req, req->req.length, req->req.buf);
3283 		seq_printf(seq, "%d done, res %d\n",
3284 			   req->req.actual, req->req.status);
3285 	}
3286 
3287 	spin_unlock_irqrestore(&hsotg->lock, flags);
3288 
3289 	return 0;
3290 }
3291 
3292 static int ep_open(struct inode *inode, struct file *file)
3293 {
3294 	return single_open(file, ep_show, inode->i_private);
3295 }
3296 
3297 static const struct file_operations ep_fops = {
3298 	.owner		= THIS_MODULE,
3299 	.open		= ep_open,
3300 	.read		= seq_read,
3301 	.llseek		= seq_lseek,
3302 	.release	= single_release,
3303 };
3304 
3305 /**
3306  * s3c_hsotg_create_debug - create debugfs directory and files
3307  * @hsotg: The driver state
3308  *
3309  * Create the debugfs files to allow the user to get information
3310  * about the state of the system. The directory name is created
3311  * with the same name as the device itself, in case we end up
3312  * with multiple blocks in future systems.
3313  */
3314 static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3315 {
3316 	struct dentry *root;
3317 	unsigned epidx;
3318 
3319 	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3320 	hsotg->debug_root = root;
3321 	if (IS_ERR(root)) {
3322 		dev_err(hsotg->dev, "cannot create debug root\n");
3323 		return;
3324 	}
3325 
3326 	/* create general state file */
3327 
3328 	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3329 						hsotg, &state_fops);
3330 
3331 	if (IS_ERR(hsotg->debug_file))
3332 		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3333 
3334 	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3335 						hsotg, &fifo_fops);
3336 
3337 	if (IS_ERR(hsotg->debug_fifo))
3338 		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3339 
3340 	/* create one file for each endpoint */
3341 
3342 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3343 		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3344 
3345 		ep->debugfs = debugfs_create_file(ep->name, 0444,
3346 						  root, ep, &ep_fops);
3347 
3348 		if (IS_ERR(ep->debugfs))
3349 			dev_err(hsotg->dev, "failed to create %s debug file\n",
3350 				ep->name);
3351 	}
3352 }
3353 
3354 /**
3355  * s3c_hsotg_delete_debug - cleanup debugfs entries
3356  * @hsotg: The driver state
3357  *
3358  * Cleanup (remove) the debugfs files for use on module exit.
3359  */
3360 static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3361 {
3362 	unsigned epidx;
3363 
3364 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3365 		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3366 		debugfs_remove(ep->debugfs);
3367 	}
3368 
3369 	debugfs_remove(hsotg->debug_file);
3370 	debugfs_remove(hsotg->debug_fifo);
3371 	debugfs_remove(hsotg->debug_root);
3372 }
3373 
3374 /**
3375  * s3c_hsotg_probe - probe function for hsotg driver
3376  * @pdev: The platform information for the driver
3377  */
3378 
3379 static int s3c_hsotg_probe(struct platform_device *pdev)
3380 {
3381 	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3382 	struct phy *phy;
3383 	struct usb_phy *uphy;
3384 	struct device *dev = &pdev->dev;
3385 	struct s3c_hsotg_ep *eps;
3386 	struct s3c_hsotg *hsotg;
3387 	struct resource *res;
3388 	int epnum;
3389 	int ret;
3390 	int i;
3391 
3392 	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3393 	if (!hsotg) {
3394 		dev_err(dev, "cannot get memory\n");
3395 		return -ENOMEM;
3396 	}
3397 
3398 	/*
3399 	 * Attempt to find a generic PHY, then look for an old style
3400 	 * USB PHY, finally fall back to pdata
3401 	 */
3402 	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3403 	if (IS_ERR(phy)) {
3404 		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3405 		if (IS_ERR(uphy)) {
3406 			/* Fallback for pdata */
3407 			plat = dev_get_platdata(&pdev->dev);
3408 			if (!plat) {
3409 				dev_err(&pdev->dev,
3410 				"no platform data or transceiver defined\n");
3411 				return -EPROBE_DEFER;
3412 			}
3413 			hsotg->plat = plat;
3414 		} else
3415 			hsotg->uphy = uphy;
3416 	} else
3417 		hsotg->phy = phy;
3418 
3419 	hsotg->dev = dev;
3420 
3421 	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3422 	if (IS_ERR(hsotg->clk)) {
3423 		dev_err(dev, "cannot get otg clock\n");
3424 		return PTR_ERR(hsotg->clk);
3425 	}
3426 
3427 	platform_set_drvdata(pdev, hsotg);
3428 
3429 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3430 
3431 	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3432 	if (IS_ERR(hsotg->regs)) {
3433 		ret = PTR_ERR(hsotg->regs);
3434 		goto err_clk;
3435 	}
3436 
3437 	ret = platform_get_irq(pdev, 0);
3438 	if (ret < 0) {
3439 		dev_err(dev, "cannot find IRQ\n");
3440 		goto err_clk;
3441 	}
3442 
3443 	spin_lock_init(&hsotg->lock);
3444 
3445 	hsotg->irq = ret;
3446 
3447 	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3448 				dev_name(dev), hsotg);
3449 	if (ret < 0) {
3450 		dev_err(dev, "cannot claim IRQ\n");
3451 		goto err_clk;
3452 	}
3453 
3454 	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3455 
3456 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3457 	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3458 	hsotg->gadget.name = dev_name(dev);
3459 
3460 	/* reset the system */
3461 
3462 	clk_prepare_enable(hsotg->clk);
3463 
3464 	/* regulators */
3465 
3466 	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3467 		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3468 
3469 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3470 				 hsotg->supplies);
3471 	if (ret) {
3472 		dev_err(dev, "failed to request supplies: %d\n", ret);
3473 		goto err_clk;
3474 	}
3475 
3476 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3477 				    hsotg->supplies);
3478 
3479 	if (ret) {
3480 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3481 		goto err_supplies;
3482 	}
3483 
3484 	/* Set default UTMI width */
3485 	hsotg->phyif = GUSBCFG_PHYIF16;
3486 
3487 	/*
3488 	 * If using the generic PHY framework, check if the PHY bus
3489 	 * width is 8-bit and set the phyif appropriately.
3490 	 */
3491 	if (hsotg->phy && (phy_get_bus_width(phy) == 8))
3492 		hsotg->phyif = GUSBCFG_PHYIF8;
3493 
3494 	if (hsotg->phy)
3495 		phy_init(hsotg->phy);
3496 
3497 	/* usb phy enable */
3498 	s3c_hsotg_phy_enable(hsotg);
3499 
3500 	s3c_hsotg_corereset(hsotg);
3501 	s3c_hsotg_init(hsotg);
3502 	s3c_hsotg_hw_cfg(hsotg);
3503 
3504 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3505 
3506 	if (hsotg->num_of_eps == 0) {
3507 		dev_err(dev, "wrong number of EPs (zero)\n");
3508 		ret = -EINVAL;
3509 		goto err_supplies;
3510 	}
3511 
3512 	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3513 		      GFP_KERNEL);
3514 	if (!eps) {
3515 		dev_err(dev, "cannot get memory\n");
3516 		ret = -ENOMEM;
3517 		goto err_supplies;
3518 	}
3519 
3520 	hsotg->eps = eps;
3521 
3522 	/* setup endpoint information */
3523 
3524 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3525 	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3526 
3527 	/* allocate EP0 request */
3528 
3529 	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3530 						     GFP_KERNEL);
3531 	if (!hsotg->ctrl_req) {
3532 		dev_err(dev, "failed to allocate ctrl req\n");
3533 		ret = -ENOMEM;
3534 		goto err_ep_mem;
3535 	}
3536 
3537 	/* initialise the endpoints now the core has been initialised */
3538 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3539 		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3540 
3541 	/* disable power and clock */
3542 
3543 	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3544 				    hsotg->supplies);
3545 	if (ret) {
3546 		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3547 		goto err_ep_mem;
3548 	}
3549 
3550 	s3c_hsotg_phy_disable(hsotg);
3551 
3552 	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3553 	if (ret)
3554 		goto err_ep_mem;
3555 
3556 	s3c_hsotg_create_debug(hsotg);
3557 
3558 	s3c_hsotg_dump(hsotg);
3559 
3560 	return 0;
3561 
3562 err_ep_mem:
3563 	kfree(eps);
3564 err_supplies:
3565 	s3c_hsotg_phy_disable(hsotg);
3566 err_clk:
3567 	clk_disable_unprepare(hsotg->clk);
3568 
3569 	return ret;
3570 }
3571 
3572 /**
3573  * s3c_hsotg_remove - remove function for hsotg driver
3574  * @pdev: The platform information for the driver
3575  */
3576 static int s3c_hsotg_remove(struct platform_device *pdev)
3577 {
3578 	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3579 
3580 	usb_del_gadget_udc(&hsotg->gadget);
3581 
3582 	s3c_hsotg_delete_debug(hsotg);
3583 
3584 	if (hsotg->driver) {
3585 		/* should have been done already by driver model core */
3586 		usb_gadget_unregister_driver(hsotg->driver);
3587 	}
3588 
3589 	s3c_hsotg_phy_disable(hsotg);
3590 	if (hsotg->phy)
3591 		phy_exit(hsotg->phy);
3592 	clk_disable_unprepare(hsotg->clk);
3593 
3594 	return 0;
3595 }
3596 
3597 static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
3598 {
3599 	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3600 	unsigned long flags;
3601 	int ret = 0;
3602 
3603 	if (hsotg->driver)
3604 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3605 			 hsotg->driver->driver.name);
3606 
3607 	spin_lock_irqsave(&hsotg->lock, flags);
3608 	s3c_hsotg_disconnect(hsotg);
3609 	s3c_hsotg_phy_disable(hsotg);
3610 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3611 	spin_unlock_irqrestore(&hsotg->lock, flags);
3612 
3613 	if (hsotg->driver) {
3614 		int ep;
3615 		for (ep = 0; ep < hsotg->num_of_eps; ep++)
3616 			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3617 
3618 		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3619 					     hsotg->supplies);
3620 	}
3621 
3622 	return ret;
3623 }
3624 
3625 static int s3c_hsotg_resume(struct platform_device *pdev)
3626 {
3627 	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3628 	unsigned long flags;
3629 	int ret = 0;
3630 
3631 	if (hsotg->driver) {
3632 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3633 			 hsotg->driver->driver.name);
3634 		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3635 				      hsotg->supplies);
3636 	}
3637 
3638 	spin_lock_irqsave(&hsotg->lock, flags);
3639 	hsotg->last_rst = jiffies;
3640 	s3c_hsotg_phy_enable(hsotg);
3641 	s3c_hsotg_core_init(hsotg);
3642 	spin_unlock_irqrestore(&hsotg->lock, flags);
3643 
3644 	return ret;
3645 }
3646 
3647 #ifdef CONFIG_OF
3648 static const struct of_device_id s3c_hsotg_of_ids[] = {
3649 	{ .compatible = "samsung,s3c6400-hsotg", },
3650 	{ .compatible = "snps,dwc2", },
3651 	{ /* sentinel */ }
3652 };
3653 MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3654 #endif
3655 
3656 static struct platform_driver s3c_hsotg_driver = {
3657 	.driver		= {
3658 		.name	= "s3c-hsotg",
3659 		.owner	= THIS_MODULE,
3660 		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3661 	},
3662 	.probe		= s3c_hsotg_probe,
3663 	.remove		= s3c_hsotg_remove,
3664 	.suspend	= s3c_hsotg_suspend,
3665 	.resume		= s3c_hsotg_resume,
3666 };
3667 
3668 module_platform_driver(s3c_hsotg_driver);
3669 
3670 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3671 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3672 MODULE_LICENSE("GPL");
3673 MODULE_ALIAS("platform:s3c-hsotg");
3674